CEUR-WS.org/Vol-2175/paper09.pdf

Spatial Indexing on Flash-Based Solid State Drives

Anderson C. Carniel
Supervised by Cristina D. A. Ciferri
University of Sao Paulo, Brazil

accarniel@gmail.com

ABSTRACT

The use of a spatial index is fundamental to process spatial
queries on spatial database systems. With the growing use
of flash-based Solid State Drives (SSDs), designing spatial
indices for these storage devices has gained increasing at-
tention. Hence, while there are spatial indices dedicated to
magnetic disks (i.e., disk-based spatial indices), the litera-
ture has focused on to propose flash-aware spatial indices
that consider the intrinsic characteristics of SSDs, such as
the asymmetric costs of reads and writes. However, the re-
search to date has not been able to establish a flash-aware
spatial index that actually exploits all the benefits of SSDs.
The principal goal of this PhD work is to propose an efficient
flash-aware spatial indexing method by taking into account
the system implications introduced by SSDs. The main pre-
liminary result of this PhD is eFIND, a generic framework
that transforms a disk-based spatial index into an efficient
flash-aware spatial index. Performance tests showed that,
compared to the state of the art, eFIND improved the con-
struction of spatial indices from 60% to 77%, and the spatial
query processing from 22% to 23%.

1. INTRODUCTION

Spatial database systems largely employ spatial indices to
process spatial queries [6], such as intersection range queries
(IRQs). A wide range of spatial indices like the R-tree
and its variants assume that the indexed spatial objects are
stored in magnetic disks (i.e., Hard Disk Drives - HDDs).
Hence, they consider the slow mechanical access and the
cost of search and rotational delay of disks in their design;
we term them as disk-based spatial indices.

On the other hand, there is an increasing number of spa-
tial database applications requiring the use of spatial indices
to retrieve efficiently spatial objects stored in flash-based
Solid State Drives (SSDs) [5, 2]. In fact, SSDs have been
widely used as secondary storage in database servers. In
contrast to HDDs, SSDs have a smaller size, lighter weight,

Proceedings of the VLDB 2018 PhD Workshop, August 27, 2018. Rio de
Janeiro, Brazil.

Copyright (C) 2018 for this paper by its authors. Copying permitted for
private and academic purposes.

lower power consumption, better shock resistance, and faster
reads and writes.

SSDs have also intrinsic characteristics that introduce sev-
eral system implications [8]. A well-known characteristic is
that a write requires more time and power consumption than
a read. In addition, SSDs require an erase-before-update
operation to rewrite a page since they only are capable of
writing to empty pages. To deal with these characteristics,
some flash-aware spatial indices have been proposed in the
literature [11, 9, 10, 7].

However, current flash-aware spatial indices do not ex-
ploit all the benefits of SSDs. First, the impact of SSDs
on the spatial indexing context is understudied, particularly
for designing of efficient flash-aware spatial indices. Second,
existing indices assume that the random read is the fastest
operation of SSDs and thus, they execute an excessive num-
ber of reads to minimize the number of random writes. But,
this behavior degenerates SSD performance [8]. Third, there
is no special treatment to minimize the effects of interleaved
reads and writes, which also negatively impact SSD per-
formance [8]. Finally, existing flash-aware spatial indices
handle inefficient in-memory data structures.

In this PhD work, we aim to solve the aforementioned
problems by pursuing three objectives. The first objective
is to understand the impact of SSDs on the spatial indexing
context by means of empirical evaluations. To this end,
we analyzed the performance behavior of spatial indices on
HDDs and SSDs [2]. The goal was to check whether a spatial
index that shows the best results on the HDD also shows the
best results on the SSD and vice-versa. Hence, we analyzed
what should be modified in existing spatial indices in order
to achieve good performance on SSDs.

The second objective is to propose a set of design goals
for designing flash-aware spatial indices. To this end, we
correlated the intrinsic characteristics of SSDs and obser-
vations from our empirical studies. The proposed design
goals were validated through the implementation of the effi-
cient Framework for spatial INDezing on SSDs (eFIND) [3].
eFIND is a generic framework that transforms a disk-based
spatial index into a flash-aware spatial index without requir-
ing modifications in the structure and algorithms of the un-
derlying index. Instead, eFIND efficiently changes the way
in which reads and writes are performed on the SSD. This
characteristic allows us to incorporate eFIND into exist-
ing spatial database systems with low implementation costs.
Our experiments showed that eFIND is very efficient since
it provides efficient data structures specifically developed to
achieve each design goal.

The third, and last, objective is to propose a novel effi-
cient and robust flash-aware spatial index. Currently, we are
developing this index by taking the design goals of eFIND
as a basis and by modifying the internal structure of the
index to exploit the benefits of SSDs. An initial idea is to
consider structures based on the R-tree, where levels near-
est to leaf nodes might have an update-intensive workload.
Thus, minimizing the number of split operations on these
levels will lead to a decreasing number of writes to SSDs.
Further, high levels of the tree can be buffered to minimize
the number of reads from SSDs since the nodes in such levels
are not frequently modified and are read-intensive.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 summarizes our studies on
the impact of SSDs on the spatial indexing. Section 4 intro-
duces our design goals and eFIND. Finally, Section 5 con-
cludes the paper and presents future work.

2. RELATED WORK

We classify the existing approaches that study spatial in-
dexing on SSDs in the following groups: (i) works that con-
duct experimental evaluations, and (ii) proposals of flash-
aware spatial indices. With respect to the first group, there
are some performance studies that analyze the affect of SSDs
on the spatial indexing. Unfortunately, a common limitation
of these studies is that they do not vary parameters that
impact the performance of spatial indices, such as the page
size (i.e., node size). An example of performance study is [5],
which empirically analyzes the R*-tree in the computation
of k-nearest neighbor queries on HDDs and SSDs.

With respect to the second group, the existing flash-aware
spatial indices are inspired by unidimensional indices for
flash memory (e.g., the LA-tree [1]) and often attempt to
port the R-tree to be flash-aware. We detail the main char-
acteristics of flash-aware spatial indices as follows.

The RFTL [11] is a first straightforward extension of the
R-tree. It does not change the structure of the R-tree and
only employs a write buffer to deal with the well-known poor
performance of random writes of SSDs. The main problem
of RFTL is the flushing operation because it writes all mod-
ifications stored in the write buffer, requiring high elapsed
times. Another problem is related to the data durability.
This means that the modifications stored in the write buffer
are lost after a system crash or power failure.

The LCR-tree [9] emerged to improve the flushing opera-
tion of RFTL by using a log-structured format to store the
modifications in its write buffer. However, the management
of this write buffer requires an additional computational cost
to keep the log-structured format. Another problem is the
lack of a flushing policy for the flushing operation, which
still requires long times to write all buffered modifications.

FAST [10] generalized the write buffer for allowing the
transformation of any disk-based hierarchical index into a
flash-aware index, such as the creation of the FAST R-tree
from the R-tree. The FAST’s buffer improves the search
performance by storing the results of index modifications. In
addition, FAST provides a specialized flushing algorithm to
create space for new modifications whenever the write buffer
is full. Another characteristic of FAST is its support for data
durability. However, FAST faces the following problems.
First, it can write a flushing unit containing a node without
modification, resulting in unnecessary writes to the SSD.
This is due to the static creation of flushing units as soon

-+ Linear R-tree (HDD) -o- Quadratic R-tree (HDD) - R*-tree (HDD)
-+ Linear R-tree (SSD) -o Quadratic R-tree (SSD) -8 R*-tree (SSD)

900 =
7501 |
600/ -

450(

Elapsed Time (s)

300F

150

Index Page Size (KB)

Figure 1: Performance results when creating R-trees
and R*-trees on an HDD (denoted by filled marks)
and on an SSD (denoted by empty marks).

as nodes are created in the index. Second, the modifications
of a node are stored in a list that allows repeated elements.
That means this list can store the result of old modifications
and a full scan is needed to retrieve the most recent version
of a node. These problems impact on FAST performance,
as detailed in [3].

The FOR-tree [7] improves the flushing algorithm of FAST
by dynamically creating flushing units with only the modifi-
cations stored in the write buffer. It also abolishes splitting
operations of full nodes by allowing overflowed nodes stored
in the main memory. When a specific number of accesses
to an overflowed node is reached, a merge-back operation
is invoked. This operation eliminates overflowed nodes by
inserting them as entries in its parent, growing up the tree
if needed. However, the number of accesses of an overflowed
root node is never incremented in an insertion operation. As
a consequence, spatial objects are stored in the overflowed
root node in a sequential form when building an index. This
critical problem disallowed us to create spatial indices over
voluminous datasets.

3. THE IMPACT OF FLASH MEMORY ON
THE SPATIAL INDEXING CONTEXT

In this section, we provide a summary of an empirical
analysis of spatial indices on HDDs and SSDs that was con-
ducted in our work [2]. Considering a dataset extracted
from the OpenStreetMap containing 534,926 regions (spec-
ified in [4]), here we report the elapsed time when creating
R-trees (varying the split algorithm) and R*-trees on an
HDD and SSD (Figure 1). In general, the index page size
of 4KB gathered the best performance results for all spatial
indices. For this page size, the SSD showed better perfor-
mance results with performance gains between 4% and 16%
over the HDD.

On the other hand, for the index page sizes greater than
8KB we obtained best performance results by using the
HDD. For these page sizes, the construction of spatial in-
dices on the SSD showed a performance loss ranging from
6% to 38% over the HDD. This result could be considered
as counter-intuitive since SSDs often have faster reads and
writes than HDDs. However, the main reason for this per-
formance degradation is due to the interleaved writes and

reads during the index construction. This kind of perfor-
mance behavior is well studied in the literature, such as
discussed in [8]. In addition, the lack of a special treatment
for random writes was also determinant since writes are the
most expensive operations of SSDs.

The results suggested that the direct use of existing disk-
based spatial indices does not guarantee efficiency. There-
fore, we should design flash-aware spatial indices that con-
sider the intrinsic characteristics of SSDs. This topic is ad-
dressed in Section 4.

4. DESIGNING EFFICIENT FLASH-AWARE
SPATIAL INDICES

Although the intrinsic characteristics of SSDs have been
well studied in the literature, it remains unclear how to deal
with them to deliver good spatial indexing performance. We
solve this problem by specifying a set of design goals for
flash-aware spatial indices (Section 4.1), and by proposing
eFIND (Section 4.2).

4.1 Design Goals

Our five design goals are inspired by analysis of experi-
mental evaluations on SSDs (Section 3) and techniques used
by existing indices for flash memory (Section 2). These de-
sign goals should be employed as a basis to create efficient
and robust flash-aware spatial indices. We detail each design
goal as follows.
Goal 1 - Avoid random writes. Random writes are
expensive and can lead to erase-before-update operations,
bad block management, and poor performance of internal
SSD algorithms [8]. To achieve Goal 1, a flash-aware spatial
index should employ an efficient in-memory buffer, called
write buffer, to store the most recent modifications of the
index. Whenever the write buffer is full, a flushing algorithm
should be executed, which should write sequentially a set of
modifications to the SSD as specified in Goal 2.
Goal 2 - Dynamically pick modifications to be se-
quentially flushed. A flushing operation that flushes all
modifications contained in the write buffer degenerates per-
formance and might writes index pages frequently modi-
fied [10]. To achieve Goal 2, a flash-aware spatial index
should include a specialized flushing algorithm consisting of
a flushing policy and a flushing unit creator. The flush-
ing policy should pick the modified index pages to be writ-
ten, according to distinct criteria (e.g., number of modifica-
tions, and the moment of its last modification). The flushing
unit creator should create a flushing unit as sequential index
pages, following the flushing policy, and determine the size
of data that is written to the SSD in each flushing operation.
Goal 3 - Avoid excessive random reads in frequent
locations. The common assumption that the random read
is the fastest operation of SSDs is not always valid because
of the read disturbance management [8]. To achieve Goal 3,
a flash-aware spatial index should use an in-memory buffer
dedicated to reads, called read buffer. Thus, instead of per-
forming a random read directly from the SSD to obtain a
frequently accessed index page, the index page can be ob-
tained from the read buffer. Further, the management of the
read buffer should include a read buffer replacement policy,
such as the LRU.
Goal 4 - Avoid interleaved reads and writes. Mixing
reads and writes negatively affect SSD performance because

of the interference between these operations [8]. To achieve
Goal 4, a flash-aware spatial index should use read and write
buffers together with a temporal control, which temporally
stores the identifiers of the last read and written index pages
to aid in the management of these buffers.

Goal 5 - Provide data durability. System crashes and
power failures impact the consistency of the index since
modifications stored in the write buffer are lost. To achieve
Goal 5, a flash-aware spatial index should use a log-structured
approach that sequentially saves non-flushed modifications
in a log file.

To the best of our knowledge, there is no flash-aware spa-
tial index that fulfills all these design goals. Existing flash-
aware spatial indices do not improve the performance of
reads and do not avoid interleaved reads and writes. Among
them, FAST provides the best characteristics (Section 2).
Therefore, we consider FAST as the state of the art in spa-
tial indexing for SSDs by comparing it in our experiments.

4.2 eFIND as a Solution

This section details eFIND, a generic and efficient frame-
work that transforms a disk-based spatial index into a flash-
aware spatial index. The eFIND’s architecture consists of
three sophisticated managers to meet the requirements of
the design goals introduced in Section 4.1. More details
about eFIND are given in [3].

Buffer Manager. It leverages two in-memory buffers to
deal with random writes and reads. The first one is the
write buffer, which stores the most recent index modifica-
tions from insert, update, and delete operations (Goal 1).
The second one is the read buffer, which caches index pages
frequently accessed in search operations (Goal 3).
Flushing Manager. It contains three interacting compo-
nents to perform a flushing operation. The first component
is the flushing unit creator, which builds flushing units by
grouping sequential index pages. The second component is
the flushing policy, which ranks flushing units according to
different criteria (Goal 2). The last component is the tem-
poral control of reads and writes, which avoids interleaved
reads and writes (Goal 4).

Log Manager. It guarantees data durability (Goal 5) by
keeping a log of all modifications stored in the write buffer
and of flushing operations. Modifications lost after a system
crash can be recovered by dispatching the restart operation.
This manager also compacts the log file to decrease the cost
of the space utilization.

Now, we discuss the performance gains of an extension of
eFIND against the state of the art, FAST. The experiments
and their results are detailed as follows.

Setup. We used a dataset from the OpenStreetMap con-
taining 1,485,866 regions that represent the buildings of Brazil
(specified in [4]). We compared the FAST R-tree, and the
eFIND R-tree. They employed an in-memory buffer of 512KB.
We used the best parameter values for these configurations
and executed two workloads: (i) index construction, and (ii)
execution of IRQs [6]. Here we show the results of the execu-
tion of 100 IRQs with query windows of 0.001% of the area
of Brazil. The running environment employed was FESTIval
(available at https://github.com/accarniel/festival), a
PostgreSQL extension implemented during this PhD that
allows us to conduct performance tests of spatial indices.
Finally, we conducted the experiments on a Kingston SSD
V300 of 480GB.

—— eFIND R-tree —©- FAST R-tree
800 36

D
o
S
T
L

27| R

S
=)
S
T
I

Elapsed Time
[\
o
o
Il
Nej
T

24 8 16 32 24 8 16 32

Index Page Size (KB) Index Page Size (KB)
(a) Index construction (b) Query processing

(=)

Figure 2: The eFIND R-tree showed expressive per-
formance gains when building spatial indices (a). It
also showed the best performance to process the
IRQs when using large index page sizes (b).

Index Construction. As shown in Figure 2a, the eFIND
R-tree overcame the FAST R-tree for all employed page
sizes. Its performance gains were very expressive, ranging
from 60% to 77%. The eFIND R-tree exploited the ben-
efits of the SSDs because it is based on the design goals
defined in Section 4.1. The contribution of the read buffer
to obtain these results was significantly relevant even using
a relatively small portion of the buffer size (20%). Another
important contribution was the use of the temporal con-
trol, which guaranteed that frequently accessed index pages
were stored beforehand in the read buffer. Further, eFIND
improved the space utilization of the write buffer by leverag-
ing efficient data structures to manage index modifications.
This led to the faster retrieval of index pages, reflecting in
the elapsed time when building spatial indices in the SSD.
Spatial Query Processing. Figure 2b depicts that, for
both configurations, larger page sizes provided better elapsed
times since more entries are loaded into the main memory,
requiring fewer reads from the SSD. For these page sizes
(16KB and 32KB), the eFIND R-tree showed gains of 22%
and 23% respectively mainly because of the read buffer,
which contributes to reducing the number of reads.

S. CONCLUSIONS AND OUTLOOK

This paper describes a PhD work on spatial indexing on
SSDs. The PhD encompasses three main goals: (i) under-
stand the impact of SSDs on the spatial indexing context,
(ii) design methods for efficient flash-aware spatial indexing,
and (iii) propose a new efficient flash-aware spatial index.
The first goal was achieved through extensive experimental
evaluations to analyze the performance behavior of spatial
indices on HDDs and SSDs. As a result, we studied the defi-
ciencies of disk-based spatial indices when applied to SSDs.
With this study, we then achieved the second goal of this
PhD by proposing eFIND, which is based on a set of design
goals that exploit the benefits of SSDs. eFIND is a generic
framework that can be applied in a wide range of spatial in-
dices, such as the R-tree and its variants, without changing
original algorithms of the underlying index. eFIND is also
efficient, showing expressive performance gains that ranged
from (i) 60% to 77% when building spatial indices and from
(ii) 22% to 23% when processing spatial queries.

The next activities of this PhD include the proposal of a
novel flash-aware spatial index. By using the design goals of

eFIND and other findings of the conducted experiments, we
plan to design a tree structure that exploits the benefits of
SSDs. For instance, we learned from the experiments that
a high number of writes is performed from splitting oper-
ations in the bottom levels of the tree. Thus, by allowing
overflowed nodes in the bottom levels, we could improve the
performance of the index in maintenance operations without
impairing the spatial organization of the index. Finally, the
novel flash-aware spatial index will be evaluated by means of
extended performance tests, that is, with other types of spa-
tial indices in addition to IRQs, and other spatial datasets.

6. ACKNOWLEDGMENTS

This work has been supported by CAPES, CNPq, and
FAPESP. A. C. Carniel has been supported by the grant
#2015/26687-8, FAPESP.

7. REFERENCES
[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and

S. Singh. Lazy-adaptive tree: An optimized index
structure for flash devices. VLDB Endowment,
2(1):361-372, 2009.

[2] A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri.
Analyzing the performance of spatial indices on hard
disk drives and flash-based solid state drives. Journal
of Inf. and Data Management, 8(1):34-49, 2017.

[3] A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri. A
generic and efficient framework for spatial indexing on
flash-based solid state drives. In European Conf. on
Advances in Databases and Information Systems,
pages 229-243, 2017.

[4] A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri.
Spatial datasets for conducting experimental
evaluations of spatial indices. In Satellite Events of the
Brazilian Symp. on Databases, pages 286—295, 2017.

[5] T. Emrich, F. Graf, H.-P. Kriegel, M. Schubert, and
M. Thoma. On the impact of flash SSDs on spatial
indexing. In Int. Work. on Data Management on New
Hardware, pages 3-8, 2010.

[6] V. Gaede and O. Giinther. Multidimensional access
methods. ACM Comp. Surveys, 30(2):170-231, 1998.

[7] P. Jin, X. Xie, N. Wang, and L. Yue. Optimizing
R-tree for flash memory. Ezpert Systems with
Applications, 42(10):4676-4686, 2015.

[8] M. Jung and M. Kandemir. Revisiting widely held
SSD expectations and rethinking system-level
implications. In ACM SIGMETRICS Int. Conf. on
Measurement and Modeling of Computer Systems,
pages 203-216, 2013.

[9] Y. Lv, J. Li, B. Cui, and X. Chen. Log-Compact
R-tree: An efficient spatial index for SSD. In Int.
Conf. on Database Systems for Advanced Applications,
pages 202-213, 2011.

[10] M. Sarwat, M. F. Mokbel, X. Zhou, and S. Nath.
Generic and efficient framework for search trees on
flash memory storage systems. Geolnformatica,
17(3):417-448, 2013.

[11] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient
R-tree implementation over flash-memory storage
systems. In ACM SIGSPATIAL Int. Conf. on
Advances in Geographic Information Systems, pages
17-24, 2003.

