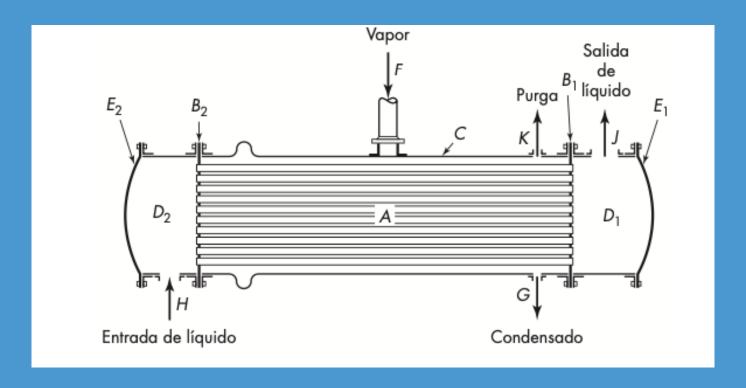
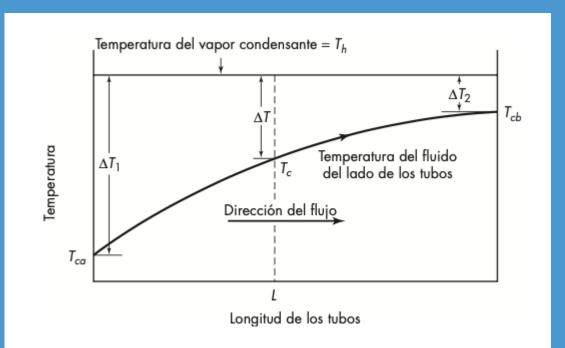
Transferência de Calor em Fluidos


Situação frequente em processos químicos industriais:
Transferência de calor entre fluidos separados por uma parede sólida

Trocadores de calor, evaporadores, condensadores, secadores ...

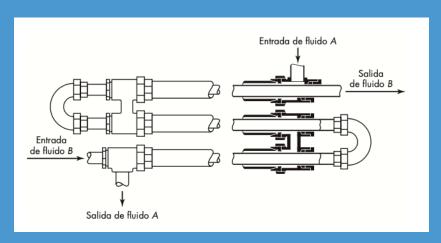

Envolvem mecanismos de condução e convecção

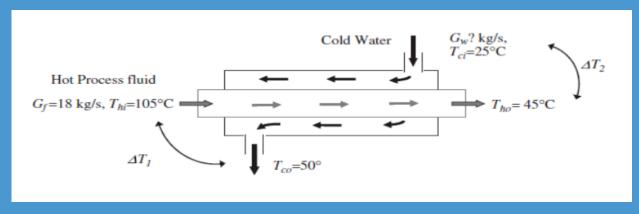
O calor transferido pode ser calor latente, que vem acompanhado de uma mudança de fase, como evaporação ou condensação, ou devido ao abaixamento ou aumento da temperatura de um fluido.

Equipamento típico usado para troca de calor entre fluidos - Trocador de calor de carcaça e tubos ou casco e tubos

△T = diferença de temperatura entre o fluido quente e o fluido frio

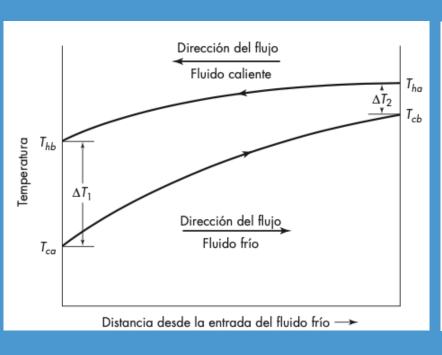
T_h = temperatura do fluido quente

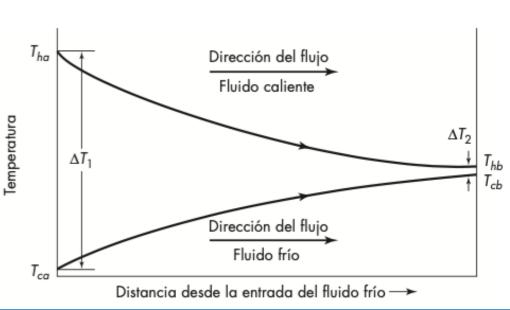

 T_c = temperatura do fluido frio


T_{ca} = temperatura do fluido frio na entrada

T_{cb} = temperatura do fluido frio na saída

L = comprimento dos tubos


Trocador de tubos concêntricos ou de tubos duplos



Fluxo em contra-corrente

Fluxo em correntes paralelas

Balanços de Energia

- O tratamento quantitativo de problemas de transferência de calor é baseado em balanços de energia e estimativas de taxas de transferência de calor.
- Muitos dispositivos de transferência de calor, talvez a maioria deles, operam em condições de estado estacionário e apenas esse tipo de operação será considerado aqui.
- > As energias mecânicas, potencial e cinética, são muito pequenas frente aos termos de energia térmica e, além disso, não há trabalho externo sendo exercido.

Nestas condições, o balanço de energia será:

$$\dot{m}(H_b - H_a) = q$$

 \dot{m} = vazão mássica do fluxo

q =fluxo de calor

H_a, H_b = entalpias por unidade de massa das correntes de entrada e de saída

Esta equação pode ser escrita para cada um dos fluidos

$$\dot{m}_h \big(H_{hb} - H_{ha} \big) = q_h$$

$$\dot{m}_c \big(H_{cb} - H_{ca} \big) = q_c$$

$$m_c$$
, m_h = vazão mássica dos fluidos frio e quente

$$H_{ca}$$
, H_{ha} = entalpias de entrada dos fluido frio e quente

$$H_{cb}$$
, H_{hb} = entalpias de saída dos fluidos frio e quente

$$q_c$$
, q_h = fluxos de calor dos fluidos frio e quente

$$q_c = -q_h$$

$$\dot{m}_h (H_{ha} - H_{hb}) = \dot{m}_c (H_{cb} - H_{ca}) = q$$

$$\dot{m}_h c_{ph} \left(T_{ha} - T_{hb} \right) = \dot{m}_c c_{pc} \left(T_{cb} - T_{ca} \right) = q$$

Balanço de energia quando houver condensação

a) quando o vapor entra na temperatura de saturação

$$\dot{m}_h \lambda = \dot{m}_c c_{pc} (T_{cb} - T_{ca}) = q$$

 \dot{m}_{h} = fluxo de condensação de vapor

 λ = calor latente de condensação do vapor

b) se o condensado sai a uma temperatura inferior a T_h

$$\dot{m}_h \Big[\lambda + c_{ph} \big(T_h - T_{hb} \big) \Big] = \dot{m}_c c_{pc} \big(T_{cb} - T_{ca} \big)$$

<u>Coeficientes Globais de Transferência de Calor</u>

O fluxo de calor através das camadas de sólidos em série é proporcional à força motriz que é a diferença de temperatura global ΔT . Isso também se aplica ao fluxo de calor através camadas líquidas e sólidas em série.

Em um trocador de calor, a força motriz é tomada como $\Delta T = T_h - T_c$,

 ΔT pode variar consideravelmente de um ponto a outro ao longo do tubo; e, portanto, uma vez que o fluxo de calor é proporcional a ΔT , o fluxo também varia com o comprimento.

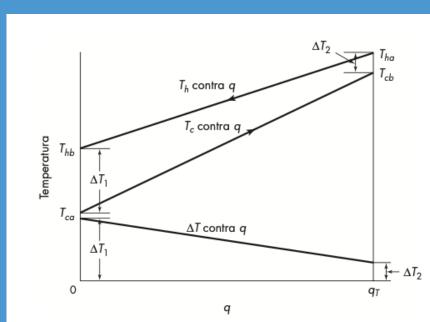
É necessário partir de uma equação diferencial, enfocando uma área diferencial dA através da qual um fluxo diferencial de calor dq é transmitido sob a ação de uma força motriz local com valor ∆T.

O fluxo local é então dq / dA e está relacionado ao valor local de \(\Delta T \) pela equação

$$\frac{dq}{dA} = U\Delta T = U(T_h - T_c)$$

U = Coeficiente Global de Troca Térmica

Para um trocador tubular é necessário especificar se U se refere a área interna ou externa dos tubos (A_i ou A_o) de forma que se designa como U_i e U_o respectivamente.


$$\frac{U_o}{U_i} = \frac{dA_i}{dA_o} = \frac{D_i}{D_o}$$

Para aplicar a todo a área do trocador é necessário integrar a equação diferencial.

Condições:

- 1. O coeficiente global U é constante em todo o trocador
- 2. Os calores específicos dos fluidos são constantes
- 3. A troca de calor com o meio externo é desprezível
- 4. O fluxo de calor é estacionário

$$\frac{d(\Delta T)}{dq} = \frac{\Delta T_2 - \Delta T_1}{q_T}$$

$$\frac{d(\Delta T)}{U\Delta T dA} = \frac{\Delta T_2 - \Delta T_1}{q_T}$$

$$\int_{\Delta T_1}^{\Delta T_2} \frac{d(\Delta T)}{\Delta T} = \frac{U(\Delta T_2 - \Delta T_1)}{q_T} \int_0^{A_T} dA$$

$$\ln \frac{\Delta T_2}{\Delta T_1} = \frac{U(\Delta T_2 - \Delta T_1)}{q_T} A_T$$

$$q_T = UA_T \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)} = UA_T \overline{\Delta T_L}$$

$$\overline{\Delta T_L} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$

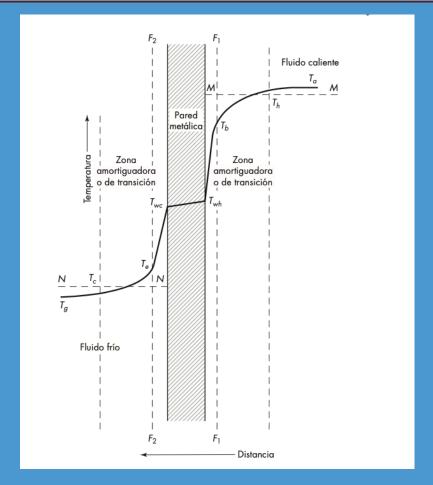
Média logarítmica das diferenças de temperatura

Quando ΔT_1 e ΔT_2 são quase iguais, a média aritmética ΔT_1 pode ser usada

Se um dos fluidos está em temperatura constante, como em um condensador, não há diferença entre fluxo em contracorrente, fluxo paralelo ou fluxo em várias etapas, e a Equação se aplica a todos eles.

Em fluxo contracorrente, com mudanças de temperatura em ambos os lados, ΔT_2 , o gradiente da parte quente, pode ser menor que ΔT_1 , o gradiente da parte fria. Neste caso e para eliminar números negativos e logaritmos, os subscritos da equação (são trocados para obter

$$\overline{\Delta T_L} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)}$$


Coeficiente Global variável

$$q_T = A_T \frac{U_2 \Delta T_1 - U_1 \Delta T_2}{\ln(U_2 \Delta T_1 / U_1 \Delta T_2)}$$

U1, U2 = Coeficientes Globais nos extremos do trocador

 ΔT_1 , ΔT_2 = diferenças de temperaturas aproximadas nos correspondentes extremos do trocador

Coeficientes Individuais de Transferência de Calor

Os coeficientes globais são dependentes das condições individuais, ou seja, do fluido quente, do fluido frio e do sólido de separação

Coeficientes individuais de troca térmica, representados por "h "

$$h = \frac{aq/aA}{T_h - T_{wh}}$$

 $h = \frac{dq/dA}{T_{wc} - T_c}$

 h_{h}

 $h_{\rm c}$

dq/dA = fluxo de calor local, com base na área de contato do fluido

 $T_h = t_{\text{emperatura média local do fluido quente}}$

 T_c = temperatura média local do fluido frio

 T_{w} = temperatura da parede em contato com o fluido frio

 T_{wh} = temperatura da parede em contato com o fluido quente

$1/h_{\rm h}$ e $1/h_{\rm c}$ são as resistências térmicas

$$h_i = \frac{dq/dA_i}{T_h - T_{wh}}$$
 quando se refere ao interior do tubo

$$h_o = \frac{dq/dA_o}{T_{ov} - T_o}$$

quando se refere ao exterior do tubo

Coeficientes Globais a partir dos coeficientes Individuais de Transferência de Calor

Para o fluxo de calor através da parede teremos:

$$\frac{dq}{d\overline{A}_L} = \frac{k_m (T_{wh} - T_{wc})}{x_w}$$

 T_{wh} - T = diferença de temperatura na parede do tubo tubo

 $k_{\rm m}$ = condutividade térmica da parede

x_w = espessura da parede do tubo

dq / dA_I = fluxo de calor local, com base na média logarítmica das áreas interiores e externa do tubo

$$(T_h - T_{wh}) + (T_{wh} - T_{wc}) + (T_{wc} - T_c) = T_h - T_c = \Delta T$$

$$\Delta T = dq \left(\frac{1}{dA_i h_i} + \frac{x_w}{d\overline{A}_L k_m} + \frac{1}{dA_o h_o} \right)$$

Supondo que a velocidade de fluxo de calor está baseada na área externa do tubo:

$$\begin{split} \frac{dq}{dA_o} &= \frac{T_h - T_c}{\frac{1}{h_i} \left(\frac{dA_o}{dA_i}\right) + \frac{x_w}{k_m} \left(\frac{dA_o}{d\overline{A}_L}\right) + \frac{1}{h_o}} \\ \frac{dA_o}{dA_i} &= \frac{D_o}{D_i} \quad \text{y} \quad \frac{dA_o}{d\overline{A}_L} = \frac{D_o}{\overline{D}_L} \end{split}$$

$$\frac{dq}{dA_o} = \frac{T_h - T_c}{\frac{1}{h_i} \left(\frac{D_o}{D_i}\right) + \frac{x_w}{k_m} \left(\frac{D_o}{\overline{D}_L}\right) + \frac{1}{h_o}}$$

Coeficiente Global baseado na área externa do tubo

$$U_o = \frac{1}{\frac{1}{h_i} \left(\frac{D_o}{D_i}\right) + \frac{x_w}{k_m} \left(\frac{D_o}{\overline{D}_L}\right) + \frac{1}{h_o}}$$

$$R_o = \frac{1}{U_o} = \frac{D_o}{D_i h_i} + \frac{x_w}{k_m} \frac{D_o}{\overline{D}_L} + \frac{1}{h_o}$$

$$\frac{\Delta T}{1/U_o} = \frac{\Delta T_i}{D_o/D_i h_i} = \frac{\Delta T_w}{\left(x_w/k_m\right) \left(D_o/\overline{D}_L\right)} = \frac{\Delta T_o}{1/h_o}$$

Coeficiente Global baseado na área interna do tubo

$$U_i = \frac{1}{\frac{1}{h_i} + \frac{x_w}{k_m} \left(\frac{D_i}{\overline{D}_L}\right) + \frac{1}{h_o} \left(\frac{D_i}{D_o}\right)}$$

Para uma parede plana

$$\frac{1}{U_{\varnothing}} = \frac{D_o}{D_i' h_i} + \frac{x_w}{k_m} \frac{D_o}{\overline{D}_L'} + \frac{1}{h_o}$$

Valores de los coeficientes de la transferencia de calor

Tipo de procesos	Rango de valores de h	
	W/m² · °C	Btu/ft² · h · °F
Vapor de agua (condensación en gotas)	30 000-100 000	5000-20000
Vapor de agua (condensación en película)	6000-20000	1000-3000
Ebullición de agua	1700-50000	300-9000
Vapores orgánicos condensables	1000-2000	200-400
Agua (calentamiento o enfriamiento)	300-20000	50-3000
Aceites (calentamiento o enfriamiento)	50-1 500	10-300
Vapor de agua (sobrecalentamiento)	30-100	5-20
Aire (calentamiento o enfriamiento)	1-50	0.2-10

Fuente: con autorización del autor y editor de W. H. McAdams, Heat Transmission, 3a. ed., p. 5. Derechos de autor, 1954, McGraw-Hill Book Company.