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Chapter 5 

Transducers, Beam 
Patterns, and Resolution 

5.1 , INTRODUCTION 

A key ingredient of any ultrasonic instrument is the means for generating 
and detecting the acoustic waves. Since the origin ofmost generator signals 
is electrical in nature and since the most convenient way of conditioning, 
amplifying, and displaying signals is by electronic circuits, some device for 
translating electrical power into acoustica1 power, and vice versa, is needed. 
Among the possibilities are induction coilloudspeakers and magnetostric
tive devices, but by far the most convenient transducers at ultrasonic fre
quencies are piezoelectric crystals and ceramics. 

Piezoelectric materiais (piezo = pressure) possess the property that a 
voltage applied to them will produce apressure fieÍd on the atoms in their 
lattice (a stress) with an accompanying overall contraction or expan
sion in one or more dimensions of the material (a strain). The stress is a 
result of the lack of a center of inversion symmetry in the ionic lattice 
structure of the material; Figure 5.1 shows how an asymmetric atomic 
structure will distort in an applied electriç field. By the piezoelectric property 
of the material, electrical excitation is changed into motion and pressure, 
lhe necessary elements for acoustic waves. Since the process is reversible, 
a piezoelectric crystal will also change an impinging pressure field into a 
strain and resulting voltage, so it can be used as an ultrasonic receiver just 
as welI. Certain semicrystalline polymers, such as poly(vinylidene fluoride), 
~VDF, may also be made piezoelectric by stretching and polarizing them 
In a strong electric field during fabrication . 
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Figure Sol When an electric field E is applied to a piezoelectric materi.al, 
in which charge asymmetry exists on an atomic scale, stresses and strams 
result in the material. This diagram is highly simplified. 

In this chapter we discuss the details of electrical stimulation of pi
ezoelectric transducers, analyze the spatial beam patterns from single 
transducers and introduce the concept of multiple-element transducer ar
rayso It will be shown that the ultimate resolution (lateral and axial) of 
bioinstruments is determined by the size. frequency, and acoustical "Q" 

of the transducer used. 

5.2 ELECTRICAL EXCIT ATION OF PIEZOELECTRIC 

TRANSDUCERS 

Figure 502a shows a simplified diagram of a piezoelect~c m~terial cut and 
oriented for use as an ultrasonic transducer. The matenal mlght be quartz, 
barium titanate lead zirconium titanate (PZT), or poly(vinylidene fluoride) 
(PVDF). Two ~pposite faces of the transducer are plated with conductive 
metal films; a voltage generator V is attached to the electrodes to pro.duce 
an electric field Ez across the thickness I ofthe transducer whose magmtude 
is given by (assuming the diameter is much larger than I) 

(Sol) 

In piezoelectric materiais in general, any given Olientation of the 
electric field might produce two stresses (shear and compressional) in any 
of the three directions of the crystal, so a complete specification of tbe 
piezoelectric properties of the crystal would require a 3 X 6 tensor to teU 
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Figure 502 (a) Simplified sketch of a piezoelectric material used 
as a transducer with opposing electrodes. (b) In order to rnatch 
excitation and boundary conditions, an odd number of half
wavelengths must fit between the transducer faces. 
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how each of the six components of the stress is related to each of the three 
components ofthe electric field. However, in practice tbe material is usually 
oriented to take advantage of the Largest piezoelectric coefficient, which 
for most materiais is one for which compressional stress is in the same 
direction as the applied electric field along some preferred axis. For the 
orientation shown in Figure 502a, known as the "thickness" mode of vi
bration, the pressure on the broad faces will be mainly longitudinal and 
the resulting pistonlike action will set up the desired com pressionai waveso 
The piezoelectric coefficient relating the resultant stress to the electric field 
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in this case is labeled as either ell or e)), depending upon the convention 
used for the particular crystal or ceramic. 

There are two interesting possibilities for the temporal nature of the 
electrical excitation to the transducer-continuous wave (cw) and pulsed. 
These two cases are covered in order next. 

5.2.1 Continuous Wave Excitation 

Ifthe voltage generator applies a voltage across the transducer ofthe form 
V = Vo cos wl, then the pressure waves produced will be continuous si
nusoidal-type waves ofthe nature discussed in earlier chapters. These waves 
will propagate inside the crystal with a phase velocity Ct and will strike the 
front and back faces ofthe crystal. Here, they will be reflected in proportion 
to the impedance mismatch between the crystal material and the materiaIs 
outside. Since the impedance ofthe transducer material is generally much 
higher than that of the air, water, or tissue media against the transducer 
faces, the reflection coefficient will be nearly R = -1, so the resultant 
pressure at the two boundaries must be nearly zero and a standing wave 
will be set up inside the transducer between its faces. 

Only certain frequencies of excitation will be effective in generating 
waves that have the proper wavelength inside the transducer to match the 
simultaneous requirements for zero pressure at both interfaces. These fre
quencies, called the resonant frequencies of the transducer, are those for 
which an integral number of half-wavelengths fit between the faces of the 
transducer cavity. In addition, because the electrical excitation has the 
same polarity across the entire thickness of the transducer at any given 
instant (since electrical wavelength is much larger than I), only standing 
wave patterns with an odd number of half-wavelengths will be efficiently 
driven by the electrical input. Patterns with an even number of half
wavelengths will always have an equal number of regions with opposite 
phases, which will cancel electrically, leading to mínimal coupling with the 
input field. 

Figure 5.2b shows two waves which match both the boundary con
ditions and the excitation requirement. The lowest frequency to satisfy the 
resonance condition is called the fundamental frequency of the crystal, 
and at this frequency a single half-wavelength fits inside the cavity. The 
nulls of the pressure standing wave occur at the faces of the transducer to 
match the boundary conditions. For a transducer of thickness I, the fun
damentai frequency I. will have a wavelength ÀI inside the transducer such 
that 

~=l 
2 

(5.2) 
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Since ÀI = ctlI., where ct is the compressional wave velocity in the trans
ducer material, then 

~ 
~ (5.3) 

At ultrasonic frequencies, the thickness required to use a transducer 
crystal in its fundamental mode can be quite thin, making some crystals 
fragile (see Problem 5.1), so very-high-frequency transducers are sometimes 
employed in their higher harmonic modes. As an example, Figure 5.2b 
shows a third harmonic wave which will oscillate at three times the fre
quency of the fundamental. 

Frequency Re'sponse 

Near each ofthe resonant frequencies, the transducer will have a response 
to voltage that will vary according to the proximity ofits frequency to the 
resonant frequency. A curve showing how the power density I radiated by 
a transducer varies as a function of frequency around its point of resonance 
is given in Figure 5.3. The narrowness or broadness ofthe resonance curve 
as measured by the frequency width !lfto the half-power points, is defined 
by the so-called quality factor, or Q, ofthe cavity in the following way: 

f 
Power 
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I 

Ji=Q 
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Frcquency _ 
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Figure 5.3 The resonance curve for a transducer with center frequency r 
and I' JI 

qua Ity factor Q. The larger Q, the narrower the frequency response. 

(5.4) 

User
Retângulo

User
Retângulo

User
Retângulo



74 5(TRANSDUCERS. BEAM PATTERNS. AND RESOLUTION 

Thus, a high Q leads to a very narrowly peaked resonance, and a low-Q 
transducer has a broadband response. 

The magnitude of Q is determined by the losses (absorption and 
transmission) encountered in the transducer. By far the largest contributor 
to the losses of most transducers is the transmission of acoustic power 
through the faces into neighboring regions, since the internalloss of good 
transducer materiais, especially quartz, is small. If air forms the regions 
on both sides of the transducer, the impedance mismatch is so large that 
hardly any power escapes, leading to Q values as high as 30,000. In fact, 
for use in high-precision frequency oscillators, quartz crystals are mounted 
in small evacuated cans where the vacuum environment gives very low 
transmission losses with Q values approaching 1,000,000. Since t1f is so 
small for these crystals, they are in common use in electronic equipment 
whenever accurate frequencies are needed, as in quartz watches. 

Of course, if the transducer is to be used for radiating acoustic waves 
into tissues, some power is purposely lost through one face ofthe transducer. 
When tissue replaces air at one of the transducer faces, the impedance 
mismatch is reduced, power is transmitted, and the Q of the cavity goes 
down dramatically.* Problem 5.7 shows that for a typical rigid crystal 
transducer such as quartz radiating into tissue, Q = 5-15. 

Since air presents a large impedance mismatch with the transducer 
(as compared to tissue), no air can be allowed to find its way between the 
transducer face 2nd the tissue surface being irradiated if maximum power 
transmission in to tissue is desired. Any air layer more than a fraction of a 
wavelength in thickness will reflect considerable power back into the trans
ducer, reducing its effectiveness as a transmitter. Thus, in clinicai practice, 
mineral oil or commercially available gel is used to coat the transducer 
and force out any air between the transducerjtissue interface. 

Radiafed Power 

The power density that a transducer driven by a voltage source will radiate 
into a medium may be found by using the piezoelectric relationship for 
the transducer: 

where 

p j is the pressure in the transducer material 

Ej is the electric fi eld applied 

(5.5) 

* The resonant frequency of the transducer is also slightly lowered from its lossless 
value. because of the loss now encountered. 
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ejj is the material's piezoelectric stress coefficient 

~ is the displacement of the particles in the material, so a~jaz 
is strain (elongation or compression) of the material 

Cjj is the elastic stiffness constant of the material 

i is a subscript denoting the directions of the pressure, electric 
field , and strain (here assumed to be ali in the same direction). 
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The analysis then assumes two countertraveling acoustic waves inside 
the transducer, as diagrammed in Figure 5.4. When combined, these two 
waves produce the standing wave pattern described earlier. By matching 
boundary conditions at the two faces for continuity of both pressure and 
velocity across the interfaces, similar to the procedure ofSection 3.4.2, and 
using Equation (5.5), it can be shown (see Problem 5.3) that the velocity 
of the transducer faces at resonance is 

+ 
2ejjEj 

uf=-
ZI+Z2 

(5 .6) 

where ZI and Z2 are the acoustic impedances of the media on either side 
of the transducer, and the ± sign denotes that the face velocities are in 
opposite directions since a resonant vibration mode with an odd number 
of haIf-wavelengths was assumed. 

Many transducers have air in the region to the rear; for this case, 
ZI "'" O and Equation (5.6) gives the velocity of the front face (touching 
tissue or water) as 

Rcgion I Transducer Regio n 2 

, % 
2 J 2 2 

A 

-L- D 
B 

!igure 5.4 Analysis ofwaves excited inside a trans
ucer. Matcbing the velocity and pressure boundary 

cOnd' . 
ItJons at the two faces leads to Equation (5 .6). 
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(5.7) 

The power density transmitted forward into mecÍium 2 is then easily 
found from velocity continuity and the relationship [ = Zu2 to be 

4e2 E? [= __ 11_' 
Z2 

(5.8) 

For the configuration shown in Figure 5.2a where the transducer is excited 
by a sinusoidal voltage source, Equation (5.1) may be used to give the 
average radiated power density: 

/0 
(5 .9) 

where Vo is the peak sinusoidal exciting voltage and a factor of ~ was used 
to give the time average of power density. 

Piezoelectric Coefficients 

As Equation (5.9) shows, the ability ofa transducer to convert voltage into 
acoustical power is related to the strength of its piezoelectric stress coefficient 
eji . Table 5.1 gives some values for various piezoelectric materials com
monly used as ultrasound transducers. Sometimes the literature will list 
other related coefficients, such as djj , the piezoelectric strain coefficient 
(sometimes called the transmitting constant). lt is related to ejj by the re
lationship 

ejj=djjCjj (5.10) 

where Cjj is the material's elastic stiffness constant (under condirions of 
constant electric field) . AIso, the piezoelectric coefficient gjj (sometimes 
called the voltage output coefficient, or receiving constant) may be given. 
lt is related to dji by 

(5 .11) 

where f r is the relative dielectric constant ofthe transducer material (under 
unrestrained or free conditions), and fO is tbe perrnittivity of free space 
(fO = 8.85 X 10- 12 Fim). 

By scanning Table 5.1 it can be seen that there are large differences 
in e j j and f r (and therefore in d jj and gji) among the materiais. lt would 
appear that barium titanate or PZT are by far the most efficient radiators, 
and indeed they are widely used as good transducer materiais. But the 
picture is more complicated tban just comparing the values of eji, since 
other factors must be considered, such as the electrical coupling of the 
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transducer to the transmitting and receiving circuitry, the internaI losses 
of the material, the material's phase velocity and dielectric constant, the 
temperature range aUowable, and physical attributes such as flexibility and 
ease offabrication. For example, for a fixed frequency ofresonance, Equa
tion (5.3) shows that a transducer's thickness I is proportional to the ma
terial's phase velocity C/. Therefore, a transducer made from PVDF, because . 
of its relatively low C/. wiI1 be thinner than one of barium titanate. Con
sequentIy, since P appears in the denominator ofEquation (5.9) for output 
power, the electric field is high for a given voltage, and PVDF is not as 
weak as would be predicted by its low value of eii alone. 

Equivalent Circuits of Transducers 

Electrical characterization of the transducer is very important in deter
mining the electricalload that the transducer presents to the drive or receiver 
circuitry and in optimizing the match between the two. As a step in finding 
the equivalent electrical circuit, a companion equation to Equation (5.5) 
gives the surface charge density (l; appearing at the face of the transducer: 

(5.12) 

This surface charge, occurring on the two parallel electrodes separated by 
the thin piezoelectric material, forms the essence of a parallel-plate capac
itor. The capacitance Co of such a parallel-plate capacitor is given by the 
well-known equation 

where 

q (l;A fiA 

Co=V= E;l =-,-
q = total charge on either plate 
V = voltage between plates 
A = area ofplate(transducer area) 
, = spacing between plates 

fi = effectivedielectric constant ofmaterial between plates. 

(5.13) 

Due to the piezoelectric activity ofthe transducer material represented by 
the second term on the right-hand side of Equation (5.12), the effective 
dielectric constant fi of the material when used in a nonfree (p 1= O) con
dition is different from its free value of frfO. To determine fi for an important 
nonfree situation, namely, when the transducer is clamped so that all strain 
is zero, Eq. (5 .5) with a~/az = O is substituted into Equation (5 .12) for p;: 

(
. d . e .. ) 

(l; = frfoE; - d;;e;;E; = frfO I _ .l!.......!!. E; 
fOf r 

= frfO( 1 - g;; eii)E, 

= frfO( 1 - K
2)E; (5.14) 
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where K = V giieii is known as the coefficient of electromechanical coupling 
of the material. It can be shown that the parameter K is related to the ratio 
of mechanical energy to electrical energy stored in the vibrating transducer. 

Using Equation (5.14) in Equation (5.13) gives the material's effective 
dielectric constant fi under clamped conditions: 

fi = frfO(l - K2) (5.15) 

and the capacitance of the transducer when clamped: 

(5.16) 

A detailed electrical anaIysis of a transducer at resonance (see Problem 
5.4) shows that the transducer appears electrically to be composed of just 
two elements: a capacitor of value Co given by Equation (5. I 6), which 
represents the accumulation of surface charge on the plates due to the 
applied voltage; and a paralleI resistor R", . which represents the transfor
marion of electrical power into radiated acousticaI power. The value of 
Rm. called the motional resistance. can easily be found from Equation (5.9) 
and the fact that, for this transducer with no assumed internaI losses, all 
average electricaI power VÔ/2Rm consumed must equal the average acous
tical power IaveA radiated. Using Equation (5.9) in this equality, 

2e'f;VôA Vô 
f2z2 2Rm 

or, solving for R",. 

(5 .17) 

Figure 5.5a shows the equivalent electricaI circuit at resonance, with 
the values of Co and Rm given by Equations (5.16) and (5.17), respecrively. 
The capacitance Co can be moderately high (due to the large values of f r 

for many transducer materiaIs, as large as f r = 1700 for barium titanate), 
and the resistance Rm is inversely proportional to the power radiated by 
the device; high acoustic radiating ability means a low value for the parallel 
Rm . and vice versa. Problem 5.5 gives values typical ofa medicaI imaging 
transducer. 
. As the circuit of Figure 5.5a shows, a transducer appears capacitive 
In nature right at its frequency of resonance. So, to efficiently match it to 
the driving voltage generator, a parallel inductor Lo is sometimes placed 
between the transducer and generator. The value ofthe inductor is chosen 
sUch that the electrical resonance frequency w = VI/LoCo is matched to 
the acoustical resonance frequency. A transformer may also be used to 
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(a) 

(b) 

C L 

I I I 
I 

Rk ~ Co Rm 

I R, 

Figure 5.5 (a) The equívalent electrical circuit for a lossless 
transducer precisely at resonance. Co is the parallel-plate capac
itance of the device (with a modified dielectric constant E' to 
account for the piezoelectric activity), and Rm is a resistance 
representing the radiation of acoustic power. (b) The complete 
equivalent circuit in the neighborhood of resonance adds an 
inductance L and capacitance C in series with Rm . To complete 
the picture, possible internalloss resistances Rk and Ra may also 
be added. At resonance, the impedances of L and C cancel. 

transform the transducer's resistance at resonance, Rm. to match the output 
impedance of the generator, usually 50 ohms. However, the addition of 
an electrical resonance circuit increases the overall electrical Q oftbe net
work, and in some applications, such as when .short acoustic pulses are 
required for echo ranging, a high Q is not desirable; the effect of Q on pulse 
length is covered in the next section. 

When the frequency driyjng the transducer is moved away from res
onance, two more components are needed to characterize the equivalent 
circuit: an ioductor L and a capacito r C in series with Rm. The imped
ance of tbese two eiern"ents cancel right at resonance but give this branch 
a capacitive nature be10w resonance and ao inductive nature above 
re.sonaoce. 

To complete the picture, two more resistors may be added to account 
for any nonradiative losses in the traosducer: a parallel resisto r Rk (generally 
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large) to account for leakage curreo.t, a~d a series ~esist?r Ra (geoerally 
ali) to account for ioternal absorptlOn lO the matenal. FIgure 5.5b shows 

:: complete equivalent circuit, which is valid io the neighborhood of 
resonance as well as at resonance. 

comparison of Piezoelectric Materiais 

Returning now to Table 5.1, it can be ooted that the top three materiaIs 
listed in the table are fairly deose, rigid crystals: Qua:tz occurs both as a 

tural crystal or may be mao-made (Si02) . BarlUm tItaoate and PZT are oa . b 
mao-made ceramics that are rendered piezoelectric by first heatlOg a o~e 
their Curie temperature, then cooling in the presence of a strong electnc 
field to produce a permanent "ferroelectric" effect. These mao-made ma
teriaIs may be molded during fabricatioo to the desired diameter and thick
oess; sometimes a concave face is molded ioto the tissue si de ofthe traos
ducer to give focusing ofthe radiated beam. Note that these three crystals 
have high acoustic impedances (compared to soft tissue impedance ofabout 
1.5 X 106 kg/m2 s) due to their deose and relatively incompressible nature. 

The polymer transducer material PVDF is much softer and less dense 
than the other materiaIs. As such, it may be fabricated as a film aod has 
the possibility of being shaped around nonplanar body surfaces. It is fab
ricated by first stretching the raw material along one direction, then po
larizing it in a strong dc electric field . The acoustic impédance of PVDF 
is a much closer match to that of tissue, and therefore more power is 
Coupled out into the tissue. Trus lowers the Q ofthe transducer (see Probiem 
5.9), making it more broadband and giviog it better axial resolution, as 
discussed in Section 5.2.2. Unfortunately, these advantages are offset 
somewhat by the larger internalloss that PVDF has compared to the'crystal
line or ceramic materiaIs, by its lower temperature raoge of operation (re
stricted to below about 80°C for continuous exposure, which limits the 
amount of power it can handle as a transmitter due to heat generation by 
its internalloss), and by its generaLly lower piezoelectric transmissioo coef
ficients eii and dii . 

When used in the receiver mode, though, the concern is not so much 
with the efficiency ofthe traosducer in transformiog electrical energy into 
acoustical energy. Rather, the receiver elemeot is ofteo connected to a 
high-input impedaoce voltage amplifier, and a good measure of receiving 
sensitivity is the voItage output coefficient gii = d;;/frfo. Due to the low 
relative dielectric constant of PVDF (fr = 12), its voltage output coefficient 
is high, making it a better receiving material than an efficient eoergy trans
Illitting element. 

We now turn our attention to the other basic way of exciting ultrasonic 
~ransducers-with a sharp pulse of electrical voltage. Trus mode of operation 
IS actually the most common for medicaI instrumentation, inasmuch as 
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the majority of these imagers use pulsed echoes to locate and image the 
deep-Iying tissue boundaries within the body. The precision with which 
the boundaries are located along the direction of the beam travei (axial 
resolution) will be shown to be directly related to the time behavior oftbe 
transducer's response to the input voltage pulse, as characterized by the Q 
value ofthe transducer. 

5.2.2 Pulsed Excitation and Axial Resolution 

Ifthe electrical input to the transducer is a sharp impulse ofvoltage, sucb 
as that obtained by rapidly discbarging a capacitor using a circuit similar 
to that shown in Figure 5.6, the pressure wave radiated by the transducer 
will take the fonn ofan exponentially decaying sinusoid. The voltage pulse 
may be either negative or positive with respect to ground; a negative pulse 
is often easier to generate with a positive supply using the circuit shown 
in Figure 5.6. 

Figure 5.7 shows the example of a positive voltage pulse and the 
resultant pressure waveform from the transducer. The pressure waveform 
does not precisely duplicate the waveform ofthe voltage (i.e. , a sharp pulse 
ofpressure) because the crystal possesses resonant qualities as discussed in 
the previous section. When excited by an impulse, the crystal will resonate 
sinusoidally at its fundamental frequency; the envelope of this wave wiU 
decay at a rate proportional to the losses (internaI and transmitted) ofthe 

Posi tive high voltage 

High·voltage 
switching 
transistor ~ 

Triggcr pu lse Jl:UI 

c 
+ 

100 pF 

Figure 5.6 An electrical circuit for generating a sharp voltage pulse to a transducer. 
During the off-time ofthe transistor, the capacitor charges to the high supply voltage. 
When the transistor is turned on by the trigger pulse, its low on-resistance takes 
the left side ofthe capacitor to near ground voltage, applying a large negative pulse 
to the upper transducer terminal. The capacitor then discharges Ihrough the Irans
ducer. R" is a damping resistor for shapi ng lhe trailing edge of the pulse. 
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~igure 5.7 The pressure waveform radiated by a transducer excited by a sharp 
l~pulse of voltage. The pressure at any distance decays at a rate inversely propor-
110nal to the Q of lhe transducer. For the waveform of this figure, Q is approxi
mately 4.5 . 

transducer. In a real sense, the crystal acts in the same fashion as a bell 
\\lhe fad. n .struck a sharp blow by a hammer, except that the losses due to 
. latlOn from the ultrasonic transducer are much larger than those found 
In a gOod-quality bell, so the transducer will not "ring" as long. 
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.. The rate of decay is proportional to the losses in the transducer, so 
It IS natural to expect that the rate will be related to the Q of the crystal 
Indeed, a definition of Q that is entirely consistent with Equation (5.4) bu~ 
is of a different form can be given in terms of the energy lost per cycle or 
resonance as follows: 

Q 
energy stored 

= 2~ 
energy lost per cycle 

(5.18) 

Ifwe let J represent the energy stored by the crystal, then Equation (5.18) 
can be rearranged in differential form as 

dt}; Q 
(5.19) 

where}; = frequency of resonance. The solution to Equation (5.19) has 
an exponential decay as a function of time: 

(5.20) 

Substituting Equation (5.20) into Equation (5.19) and solving for 'Y yields 
the decay rate in terms of Q: 

(5.21) 

Since the power output of the transducer is proportional to the energy 
stored in its oscillations, and since the magnitude ofthe radiated pressure 
wave is proportional to the square root of the power in the wave, it is 
possible to write the time decay of the envelope of the pressure wave ra
diating from a transducer with a given Q as 

1 p = poe-(y/2)1 = poe-(w1/2Q)1 1 (5.22) 

where Equation (5.21) has been used to relate 'Y to the Q ofthe transducer. 
Thus, a high Q leads to a long ringing time whereas a low Q gives a shortened 
waveform. Figure 5.7 plots the pressure waveform for the example of a 
low-Q transducer. 

As an approximate rule of thumb, it can be said that the number of 
cycles contained in the power waveform is roughly numerically equal to 
the Q ofthe transducer.* This can be shown by defining the point in time 
when the wavefom1 is effectively ended to be that time t' when the power 
has diminished to e- 1< = 0.043 of its original value ando the pressure has 

. • As Problem 5.10 shows, "the Q ofthe transducer" is really not correcl nomenclalure 
smce lhe valu~ of Q is nol ~ fixed characlerislic of lhe transducer but is deterrnined by lhe 
lype of .mate~al agamst whlch lhe transducer is placed and will vary from applicalion to 
apphcallOn wllh lhe same transducer. However, in ullrasonic bioinstrumentation lhe transdur.er 
is invariably placed againsl tissue, so lhe resulling Q will be reasonable fixed. 
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therefore diminished to e- 1</2 = 0.208. This point is shown on Figure 5.7. 
fron1 Equation (5.22), 

so 

w, ~ 
-t'=-
2Q 2 

(5.23) 

Since the period of one cyc1e of the power waveform is one-half the period 
ofthe pressure waveform (see' Figure 3.1) and the pressure period is given 
by 1/}; , the period of the power wa veform is 1/2}; , and 

It' = Q periods of power 1 

As the rule of thumb states, there are approximately Q cycles of power 
(and, correspondingly, Q/2 cycles of pressure) contained in the pulse. 

Axial Resolution 

An important design question is now appropriate: Is it desirable to have a 
high-Q or a low-Q transducer for bioinstruments? The answer depends 
upon whether the instrument is operated cw (as some Doppler flowmeters 
are) or pulsed (as in echocardiography). If cw, for efficiency's sake it is best 
that the transducer has as high a Q as the transmission at the tissue interface 
will allow. The voltage exciting the transducer should then be a continuous 
sine wave centered at the resonant frequency ofthe crystal as determined 
by its thickness. 

If operated pulsed, however, a low-Q transducer is desirable. This is 
because the axial resolution (AR) ofthe instrument is dependent upon the 
~ength of the pulsed waveform. Since the depth of the boundaries being 
In.vestigated by a pulsed instrument is determined by measuring the round
tnp transit time of the pulses reflected from the boundaries, the more 
aCCurate this time can be measured, the more accurate will be the deter
mination of depth. It is clear lhat a shorter transmitted pulse will lead to 
a more precise measurement of the time of arrival of the echoes and in 
tu . ' . rn, the depth of the reflectmg borders. If we define the effective pulse 
tt~e to be t' as previously and use the straightforward relationship that 
dlstance equals the product of time and velocity, we get 

A . I I ' t'c xla reso utlOn = -
2 

(5.24) 
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Transducer 
face 

Beam Axial ; 
--+-----.II'------=~;,;..----~ Longitudinal ; 

direction Range 

Figure 5.8 Conventions for directions related to beam propagation 
from a transducer. 

where the factor of2 enters because ofthe round-trip nature ofthe reflected 
wave (see Problem 5.6). 

The nomenclature that is conventionally used to describe the direc
tions related to a transducer and its propagating beam is summarized in 
Figure 5.8. Note that the terms "axial" and " longitudinal" are general1y 
interchangeable, as are "transverse" and "lateral." Axial resolution pertains 
to spatial resolution in the direction of beam propagation, whereas trans
verse resolution is measured in the plane perpendicular to the beam's 
direction. 

Seen in another way, axial resolution is a measurement of an instru
ment's ability to resolve two reflecting boundaries that are closely spaced 
in the axial (or longitudinal) direction ofthe instrumento Figure 5.9 shows 
the time sequence ofpulses reflected from two closely spaced interfaces.1t 
can be said that when tbe two boundaries are spaced apart in tbe longi
tudinal direction a distance equal to or greater than the axial resolution,* 
they can be resolved as separate reflectors. When they are closer, theif 
echoes blend into one another. 

Since the effective time ltingth of a transducer's pulse is related to Q, 
Equation (5.24) for axial resolution can be rewritten using Equation (5.23): 

. I . (2c 
AXla resolutlOn = Ir 

411 
Put in terms of wavelength, 

(5 .25) 

* Some authors prefer defining resolution as the illl'erse ofminimal resolvable distanCC. 
with units of cycles per mm. In this text, we wil! use distance directly, since this defi nition 

seems more straightforward. In any case, the units tel! the definition. 
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Figure 5.9 Four successive snapshots of the positions and lengths of 
echoes from two closely spaced interfaces. When d is reduced to the 
POint where the echoes overlap but are just resolvable, then d = axial 
resolution . 

wh' . . 

87 

. lch shows that lmproved resolutlOn (a smaller value for Equation (5.25» 
IS a result of a lower-Q transducer. In fact, loss is sometimes purposely 
added to the back face of a transducer to lower its Q and improve its 
res~lution. A1though the total acoustic output power oftbe transducer (for 
a ~lven electrical excitation) is reduced by this technique, the increased 
aXIal precision of imaging is often worth the cost. Figure 5.10 shows how 
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Transducer 

Acoustlcal 
isolation 

Figure 5.10 (a) A photo of a typical3.5-MHz single element transducer. lts diameter 
is approximately 1.5 em. (b) In order to reduce the Q and improve AR, some 
transducers have an absorber added on the rear face of the transducer. 

this might be accomplished. Instead of air on the back side ofthe transducer, 
a material having an acoustic impedance much doser to the transducer'S 
impedance is placed in dose contact with the rear transducer face. This 
aUows power to flow out the rear of the transducer in addition to that 
radiated into the tissue, thus lowering the transducer's Q. If the bacIcing 
material is a good ultrasound absorber, this power is permanentIy lost. 
Absorber materiais that have been successfully used indu de aluminum
filled epoxy and tungsten-filled epoxy. Problem 5.8 sbows that an absorber-
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baoked tr:ansducer wilI possess a lower Q and better AR than an air
backed one. 

Equation (5 .25) also reveals an important relationship between res
olution and wavelength. Tbe shorter the wavelength, the better wilI be the 
instrumeDit's ability to resolve detail since a smalI value for axial resolution 
leads to improved ll1easurement of spacings. For good resolution, an ul
trasonic illlstrument should employ as high a frequency (as short a wave
length) as IPossible, limited only by the increased attenuation at the higher 
frequencie:s. For example, adult echocardiography is normalIy done at 2.25 
MHz as a compromise between resolution and penetration. Pediatric echo
cardiograp'hy, however, wiII use frequencies as high as 5 MHz to improve 
resolution" since the path length into the heart is shorter in children and 
higher atte:nuation per centimeter is therefore allowed. 

Thene are several practical factors that cause the actual axial resolution 
of a typicaI medicai instrument to be worse than predicted by Equation 
(5.25). One is due to the frequency dependence oftissue absorption, caUed 
dispersive absorption, which wilI effectively lengthen the pulse as it travels 
through inttervening tissue. As discussed in Chapter 4, most tissues show 
a linear increase in absorption"with increasing frequency; high frequencies 
are attenuated much more than lower frequencies. A sharp pulse oftrans
mitted aCOlLlstical energy (such as shown in Figure 5.7) actualIy contains a 
wide spectrum of frequency components, obtained by Fourier analysis of 
the time waveform of the pulse. The sharper the pulse, the higher the 
frequencies contained in its spectrum. (lt can be said that the high-frequency 
components contribute to the "sharpness" ofthe pulse.) When this pulse 
travels through tissue, these higher frequencies are selectively lost at a faster 
rate than the low-frequency components are. The result is a stretching of 
the pulse time leading to worse axial resolution between neighboring 
reflectors. 

Another factor is any electronic compression which may be purposely 
added in the receiver stages ofthe instrument to decrease its signal dynamic 
range before the display (covered in Chapter 6). Often, logarithmic 
c?mpression is employed. Compression has' the effect of minimizing the 
differences between large-amplitude signals and smalI-amplitude signals. 
When applied to the pulse waveform shown in Figure 5.7, it can be seen 
that the effect is to boost the tail of the pulse and therefore to effectively 
le~gthen the pulse in lime as seen on the display, again leading to a wors
enmg of the axial resolution. 

5.3 BEAM PATTERNS C (<l 'IV f 'li •• ' I) c.", . ( " 
Lo-- ..... '( v- (..«--. 

~e now tum our attelltion to the description ofthe shape ofthe radiating 
earo fro ro the transducer. The behavior of this beam is important in 
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determining the spatial sensitivity of the imaging instrument, both in the 
transmit and the receive modes. 

The pressure wave that propagates from the face of an unfocu5e(j 
transducer generally maintains the approximate lateral dimensions of the 
transducer for a certain distance, but natural divergence begins to spread 
the transverse extent ofthe beam at larger distances so that the beam takes 
on a diverging nature. In the region near the transducer (the "near .field"), 
the beam has many amplitude and phase irregularities due to interference 
between the contributing waves from ali parts of the transducer's face, 
whereas in tbe region furtber from the transducer (the "far field"), the 
beam profile is much more uniform and well behaved. To quantitatively 
define the transition distance between these near-field and far-field regions, 
and to more precisely determine the amount of beam spreading in the far 
field, we next mathematically solve for the radiation pattern from an ui. 
trasonic transducer. 

The geometry of the problem is given in Figure 5.11; a circular co
ordinate system is initially assumed. The coordinates of the source points 
in the plane ofthe transducer face are denoted p and O, and the coordinates 
pointing to the observation point where the pattern is sought are denoted 
r and cP . The distance from the source points to the observation point is 
given by r'. For circularly symmetric situations no generality is lost by 
letting the observation points lie on the XI axis. From geometry (see Problem 
5.11), 

r' = (r 2 + p2 - 2rp cos B sin cP )1/2 (5.26) 

To analyze the observed radiation pattern, we rely upon Huygen's 
principie, which states that the radiation pattern from a general extended 
source can be constructed by considering the source as an appropriately 
weighted collection ofpoint sources, each radiating outwardly propagating 
spherical waves. To get the complete radiation pattern, the contributions 

'Z.;: ~<.O.fa)<" ... f?.. Z'Y'un c9 <..Ih(rtf-fIJ 
e .,.: z y 

S . t ".'2 .. nr~~rn""""'" t9) / ourcc po m .. ,. \l. lO 

.l _ -" Observatíon 
J)- i.r- '1. 1. 2 f[ Cu>8r-r 

Transducer 
face 

.( ., = ~ t- r - poínt 

r ------

\ 

Figure 5.11 The general coordinates for solving for the radiation pattern fraro aO 

ultrasound transducer. 
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of alI spherical waves from alI point sources comprising the transducer are 
added (magnitude and phase) at the point of olbservation. This decom
positi?n of the compl~x problem into a summation of simpler parts (i.e., 
sphencal waves radIatmg from point sources) is allowed beca use the wave 

. equation is a linear equation in the pressure variiable, as shown in Prob
lem 2.7. 

Each point on the transducer face, then, is assumed to be the radiator 
of a spherical pressure wave, the form of which is 

dp=--cos wt-kr'+- dS kZUo ( 'Ir) 
2'1rr' 2 (5.27) 

where dp is the. incrementaI pressure contribution at the observation point 
due to a sphencal wave from a point source of incrementaI size dS k is 
the propagati.on cons~ant ofthe wave (k = 21[/)..), Z is the acoustical i~ped
ance of the llltervemng medium, and r' is the distance from source to 
observation point as given by Equation (5.26). Note that the pressure de
creases as a function of I/r' away from the point Source· this is consistent 
with the I/r

2 
dependence ofpower density expected fro~ the conservation 

of en~rgy principie applied to a diverging spherical wave. In obtaining 
~uatl.on (5.27): the transducer face was assumed to be vibrating with a 
SIllUSOldal veloclty of u = Uo cos(wt) perpendicular to the p-B plane. 

The total pressure at the observation point is the integral of the in
crementaI pressures: 

p=l dp 
source 

(5.28) 

As~uming all portions of transducer face are oscillating with the same ve
l~clty ~nd are in phase with each other, as would be the case for a rigid, 
p.lstonhke transducer, Equations (5.27) and (5.28) may be combined to 
glve 

kZtlol cos(wt - kr' + 'Ir/2) . 
p=-- . pdpdB 

2'1r sou rce r' (5.29) 

where p dp dO ~as been substituted for dS For a general transducer shape 
and for an arbltrary observation point, this eq uation is quite difficult to 
evaluate and usually requires a computer solution. Rut it may be evaluated 
for some sim pie cases, as shown below. 

5.3.1 Near-Field PaHern (On-Axis) of a Circular 
Transducer 

CO~sider the transducer to be a circular disc of radius a. In the near-field 
reglO ' . I . . n, r IS not arge enough to allow a mathemattcal simplification of 
Its form , so Equation (5.29) is sti ll toa complex for a general solution. 
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We therefore restrict our observation points to be on the z axis, such that 
sin cf> = O and r = z. Equation (5 .26) then reduces to 

r' ~ Yp 2+ Z2 

Figure 5.12 shows the geometry for this special case. Substituting for r' in 
Equation (5.29) gives 

_kzuolacos(wt-k'{;1+?+1r/2) d r2 
.. dO 

p(z, t)--2- ,~ P P J( 
1r o V P- + z - o 

Changing variables to (3 = Y p2 + Z2 and using straightforward integration 

leads to 

p(z. t) = -Zuo[sin(wt - kYa 2 + Z2 + 1r/2) - sin(wt - kz + 1r/2)] 
= ZUQ[cos(wt -:- kz) - cos(wt - kYa 2 + Z2)] (5.30) 

This result for the on-axis pressure amplitude has a very interesting 
interpretation. Note that the first term in the equation, ZUo cos(wt - kz), 
is just the familiar form for apressure wave that appears to be coming 
fram the center of the transducer, whereas the second term, ZUo cos(wt 
- k Ya 2 + Z2), which subtracts fram the first, appears to be a wave coming 
from a point at the edge (radius = a) of the transducer. The combination 
of these two waves, with phases that change at different rates as z varies, 
pravides the destructive and constructive interference pattem which pra
duces the irregularities found in the near field. 

Circular (disk) 
transducer 

On-axis 
observation 
point 

Figure 5.12 Geometry for ca1culating the near-field on-axis pressure field from 
a circular transducer of radius a and diameter D. 
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Figure 5.13 Variation of the magnitude of on-axis pressure field from a circular 
transducer of diameter D. This is a plot of the absolute magnitude of Equation 
(5 .30) at one particular time, t = O, and is the envelope of the oscillating pressure. 
The transition point from the near field to the far field is defined as the position of 
the furthest maximum. Beyond that point the field is more uniform. 

A plot of the magnitude of Equation (5.30), shown in Figure 5.13, 
reveals the rapid variation of on-axis pressure in the near field of a circular 
transducer. Note that there is a multitude of points in the near field where 
the pressure actually goes to zera (complete destructive interference) and 
that the rapidity of the spatial oscillation of the pattem decreases as one 
moves further away fram the face ofthe transducer. In fact, at large distances 
from the face of the transducer, the resultant pressure amplitude is no 
longer oscillatory but behaves as a slowly decreasing (1/z) field; this is the 
far field . 

To mark the transition fram near-field to far-field behavior, it is rea
~onable to choose the on-axis point where Equation (5.30) has its last max
Imum for increasing z. This is the value of z for which the phase difference 
between the first cosine term and the second cosine term in Equation 
(5.30) is just equal to 1r, so both terms are positive and the two terrns add. 
Thus, if the transition point is denoted ZR . then 

(5.31 ) 
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Since ZR ~ a for a transducer many wavelengths in radius, the radical in 
Equation (5.31) may be approximated as 

Then Equation (5.31) becomes 

Rearranging yields 

(5.32) 

For many unfocused transducers used in medicaI imaging, the body struc
tures being imaged are not wholly in the far field of the radiation pattem 
where the fie1ds are desirably uniform. For a 2-cm-diameter transducer at 
2.25 MHz, the transition distance is ZR = 15 em, rather deep. 

Ifthe transducer face is square or rectangular rather than round, the 
above equations do not strictly apply. For example, the pressure in the 
near field never goes exactly to zero anywhere as it does for a circular 
transducer. Nonetheless, the pressure magnitude has many peaks and val
leys in the near field, and the qualitative description ofthe irregular near
field behavior making a transition to a more uniform far-field behavior is 
still valido This is shown in Figure 5.14, where intensity maps (proportional 
to the square of pressure) are given at three progressively farther distances 
from a square transducer. The smoothing of the beam irregularities at 
greater distances is evident; however, even the most distant map shown in 
the figure is not yet in the far field of the transducer. 

5.3.2 Far-Field Pattern of an Ultrasound Transducer 

When the beam is observed at a large distance from the transducer, sim
plifications can be made in the general Equation (5.29) that allow the field 
to be calculated at any point (off-axis as well as on-axis) in the plane of 
observation. The approximations appear at two places in Equation (5.29). 
First, in the far field the magnitude of the r' term which appears alone in 
the denominator of the integrand will not differ appreciably from r over 
the range ofthe source integration, since ris much greater than the source 
dimensions. This r' is therefore set equal to r (a constant with respect to 
the integration variables) and is brought out of the integral. 
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z = 100 em 

z = 50 em 

z = 20 em 

Figure 5.14 Radiation intensity maps at three planes 
progressively more distant from a square transducer 
face. Note the progression toward a more uniform 
distribution. The transducer is 5 em X 5 em operating 
at 3 MHz. Data froro P. C. Pedersen and D. A. Chris
tensen, Acoustical Holography 6 (1975) 711-739 
Plenum Press. ' . ' 

. Second, the .r' ter~ in the argument of the cosine also may be ap
~rOXlmated, but. smce thlS r' is multiplied by k (= 2'1fIÀ), and since À is 
:au at ultrasoru~ freq,uencies (making k large), this approximation cannot 

~s rough as lettlOg r = r = constant; the phase term k,,' may vary several 
radians over the source integration, causing severa! oscillations ofthe cosine 
term T h· ·..c: '. sim '. o ~reserve, t IS mteuerence effect lO the mtegration, only a partial 
a Pli~cah~n ofr from Equati~n (5.~6) is made, known as the Fraunhofer 
pproxlmahon. If the observatlOn c:hstance is far enough away froro the 

95 
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source that the source appears small compared to the observation length, 
then r ~ p and Equation (5.26) may be approximated by 

r' = r - p cos O sin cP (5 .33) 

Putting Equation (5 .33) into the phase term of Equation (5.29) and 
letting r' = r in the denoininator as discussed above gives 

p( cP , r, l) = kZuo r COS[Wl- kr + kp cos O sin cP + ~2]P dp dO 
27rr J sourcc 

= K r cos['lr(t) + kp sin cP cos O]p dp dO (5.34) 
J source 

where 

and 

kZuo 
K=--

27rr 

'lr(t) = (Wl- kr+~) 
K and 'l1(t) are constants with respect to integration over the source co
ordinates p and O. The result of this integration will depend Upl.fll the 
particular shape of the transducer. Two cases are considered next. 

Circular Disk Transducer of Radius a 

For a circularly symmetric source, the limits of integration become simply 

p(cP, r, l) = K f f" cos['lr(t) + kp sin cP cos O]dO p dp 

Using the trigonometric identity cos (A + B) = cos A cos B. - sin A sin B 
gives 

p(cP, r, l) = K f[ cos 'lr(l) f" cos(kp sin cP cos O)dO 

- sin 'lr(l) f" sin(kp sin cP cos O)dO ]p dp (5.35) 

The last integral in this equation is zero since the sine term is an odd 
function of the cyclical argument (cos O) as O ranges from O to 27r. The 
other integral over O is of the form which results in a Bessel function, aS 
given in reference texts on Bessel functions: 

r2.-Jo cos(x cos O)dO = 27r lo(x) 
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w,here lo is the Bessel function of the first kind with order zero. Therefore, 
E<quation (5.35) becomes 

p(cP, r, l) = 27rK cos 'lr(l) La lo(kp sin cP)p dp (5.36) 

Tlhis integral, in tum, can be ,evaluated by the relation 

J x l o(x)dx = xli (x) 

wlhere li is the Bessel function ofthe first kind with order 1. Then, Equation 
(5i.36) becomes (see Problem .5.13) 

p(cP, r, l) = 7ra 2K cos 'I!(t)[21~(ka. sin cP)] 
a SlO cP 

(5 .37) 

Tlhe instantaneous radiated power density partem may be found from I = 

~,t/Z, and reinserting the previous definitions for K and 'lr(t) yields 

(5.38) 

Some interesting observations about the far-field radiation pattem 
frmm a circular transducer may be obtained from Equation (5.38). First, 
nmte that the power density decreases as 1/r2 in this region, as would be 
eXlpected when the measureme:nts are made far enough away that the source 
ap>pears as a small radiator of ,diverging waves. More importantly, the dis
triibution with respect to angle behaves according to the term in the square 
bnackets, the so-called directional facto r:. 

(5.39) 

To obtain a feeling of the shape of this far-field pattem, it may be 
plcotted on an observation screen a distance z away from the transducer. 
If lthe angles of divergence of ilhe beam are not toa great, the small angle 
aplProximation /. xJ . \. sm cP = -;- (5.40) 

m<ay be used, where XI IS the coor ma lO the plane of observation: refer 
~o I Figure 5. 11. Then, the directional factor Equation (5 .39) may be written 
In . terms of distance on the observation plane: 

(5.4 1 ) 
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The square of this term is plotted in Figure 5.15a and gives an indication 
ofthe extent ofthe power density pattem at a distance z from the transducer. 
Due to the denominator of Hc(XI) and the behavior of 11, the power density 
drops off rapidly as XI increases from the center of the partem. AIso, there 
are repeti tive zeros and side peaks as the Bessel function li oscillates with 
the increasing arguments. 

The great majority of power is contained in the central (main) lobe 
of the pattern between the first zeros on either si de of this central peak. 
However, some power is found in the side lobes which neighbor the main 
lobe. The extent of the main lobe may be defined as occupying the area 
between the first zeros; these zeros occur at 

or 

Z 
XI =±3.83 ka 

(5.42) 

as shown in Figure 5.1 5a. Note that the width of the main lobe increases 
linearly with distance z in the far-field region. 

Returning now to the angular dependence of the far-field radiation 
pattern, Equation (5.39) shows that the pattern may be considered to be 
a circularly symmetric function of the angle 41 via the term sin 41; this 
equation is valid even for large 41. ·An angular plot ofthe logarithm ofthe 
square of Equation (5 .39) in terms of decibels (to compress the range) is 
given in Figure 5.15b in polar coordinates; such a plot is sometimes referred 
to as the anlenna pattern ofthe radiator. To obtain such a specific angular 
plot, a value of the transducer radius a must be given. For this figure, the 
transducer diameter is assumed to be 10 wavelengths wide, so a = 5" or 
ka = 1011'. 

The angular position ofthe first zero defines the amount of divergence 
(half-angle) 41d of the main lobe as it propagates from the source; from 
Equation (5.42), 

or 

. 3.83 
smcJ>d= -

ka 

. _ ( ") cJ>d = sm I 0.61 ~ (5.43) 

It is convenient to use this angle as a measure of divergence of the beam 
from a circular transducer, although some authors consider it too conser
vative. The smaller angular width to the half-power points (-3 dB) rather 
than to the zeros is sometimes used; twice this angle is known as the Full 
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Figure 5.15 (a) The far-field power density pattern observed at a distanc~ z fram 
a circular transducer of radius Q. (b) An angular plot of ~he sa~e patte.m 10 polar 
cOordinates. The intensity is plotted in logarithmic (decibel) umts. In thls example, 
the transducer diameter equals 10 wavelengths . 

Width to HalfMaximum (FWHM) ofpower densit:Y· In this text, however, 
We shall use cJ>dgiven by Equation (5.43) as the meas.ure of divergence (half
angle) for reasons that will become clear when the: concept of lateral res
olution is discussed. 
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Note the inverse relationship in Equation (5.43) between cPd and the 
transducer radius a. When a is a large number ofwavelengths (as measured 
in the tissue), the far-field beam is highly directed; conversely, when ais 
small, the beam spreads considerably as it propagates from the transducer. 
In fact , when a is approximately one-half a wavelength (i.e., the diameter 
is one wavelength) or smaller, the half-angle of divergence is greater than 
90° and the beam appears to be radiating hemispherically more or less 
isotropically from a point source. 

A word of caution regarding the use of far-field patterns: Most single 
transducers used in medicaI imaging are many tissue wavelengths in di
ameter so the transition distance ZR is large enough for the retlecting objects 
to fali in the near-field region. Also, the transducers are often focused by 
an integrallens (covered in Section 5.5). In either case, the far-field diver
gence angle cPd does not directly apply to the imaged region. However, 
multiple-element transducers, such as the linear arrays found in real-time 
scanners and discussed at the end of this chapter, are usually tnade of a 
series of small unfocused elements, and the radiation pattern from each 
of these smaU elements is determined by the far-field considerations of 
Equation (5.43). Also, for focused transducers the shapes ofthe beams in 
the focal plane will be shown later to be scaled-down versions of the far
field patterns found above. 

Rectangular Transducer of Dimensions b x h 

The analysis ofthe far-field radiation from a rectangularly shaped transducer 
with width b in the Xo dírection and height h in the Yo direction proceeds 
from Equation (5.34) in a manner similar to that outlined above for a 
circular one; Figure 5.16a shows the orientation. Note that in the source 
plane, p cos () = xo. Initially restricting our observation to be along the X I 

axis (cP = cPx), Equation (5.34) may be integrated over the rectangular source 
to give (see Problem 5.14) 

[
Sin[(kb sin cPx)/2]] 

p(cPx, r, t) = bhK cos 'lt(t) (kb sin cPx)/2 (5 .44) 

A similar expression holds for observations along the YI axis (cP = cPy), and 
since the source is the shape of a rectangle whose boundaries may be ex
pressed by equations that are mathematically separable in Xo and Yo, the 
complete expression for far-field power density from a rectangular trans
ducer is also separable in cPx and cPy: 

T(A. . A. . ) = b2h2UÕ Z sin2(wt - kr) [Sin[(kb sin cPx)/2] sin[(kh sin cPy)/2]]2 
J ' 'I'", '/'y, I , ( 22 

À ,. (kb sin cPxl/2 (kh sin cP.I')/2 

3 BEAM PATTERNS 
5. 

(a) 

)'0 

(b) 

sin2 (klr sin 1>y /2) 

(klr sin 1»2)2 

sin2 (kb sin 1>x/2) 

(kb sin 1>x/2)2 

Figure 5.16 (a) The geometry for determining the far-field radiation fro~ 
a rectangular transducer. (b) The far-field power density pa~tern. as observe 
in the XI direction superimposed on the pattem in the Y I dlrectlOn. 

The term in the square brackets is the directional factor: 

_ [Sin[(kb sin cPx)/2] sin[(kh sin cPy)/2]] 
Hr(cPx, cPy) - (kb sin cPx)/2 (kh sin cPy)/2 
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(5.45) 

The far-field beam pattern fram a rectangular element has the saroe qu~l
itative features as those described for a circular source, such as mam 
lobe, side lobes, and so on, except that the directionality now has the forro 
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(sin x)jx. Note that the half-angle to the first zero marking the extent of 
the main lobe is now given in the x, direction by 

. (kb sin cPXd) O sm = 
2 

or 

kb sin cPxd = 27r 

or 

(5.46) 

A similar equation describes the divergence as measured in the y, direction: 

. _'(") cPYd = sm h (5.47) 

Figure 5. l6b shows that, as opposed to the pattem from a circular trans
ducer, the pattern here is asymmetric. The inverse relationship between 
size and divergence angle still applies, however. For a rectangular element 
that is taller than it is wide (i.e. , h > b), the far-field radiation pattern of 
the element will be wider than it is taIl [i .e., cPxd > cPyd from Equations 
(5.46) and (5.47)] . More will be said about rectangular radiation patterns 
when arrays of small elements are discussed at the end of this chapter. 

5.4 WIOTH OF BEAM IN NEAR FIELO ANO FAR FIELO 

As the previous section described, the beam pattern in the near field has 
a very irregular interior, with many peaks and valleys, especially near lhe 
transducer face; Figure 5.l4 showed this. The lateral extent of the near 
field is roughly confined to the size ofthe transducer, although it must be 
admitted that it is difficult to precisely define the edge of such an irregu
lar field. 

As the beam progresses into the far field , its topology becomes much 
more smooth, eventually evolving into a well-defined single main lobe with 
low-intensity side lobes as shown in Figure 5.l5a. The edges ofthis beam 
now spread linearly with distance, and the width ofthe main lobe, as given 
by the half-angle cPd to the first zero on each side, asymptotically diverges 
at a constant angle inversely proportional to the transducer diameter and 
therefore the near-field beam diameter. 
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This progressive spreading of the beam width is diagrammed quali
tatively in Figure 5.l7. In the near field, also known as the Fresnel region, 
the beam is nearly collimated until it approaches the transition distance 
ZR. At this point the beam has started to spread a little. (Some authors 
define a "transition zone" here between the near field and the far field 
within which the beam changes its character from nearly coLlimated edges 
to diverging edges.) 

As it travels into the far field, also known as the Fraunhofer region, 
the beam widens further and eventuaIIy approaches the constant angle of 

(a) 

Transducer 

-_ .... _----i/Jd 
D~~~~ __ ~ __ ~ __ ------~~---------- -------

I· ZR 
Z_ 

, 
Y 

I ~--------y~--------_I 

Near·field Far-field 
Fresnel region Fraunhofer region 

(b) 

Tra nsducer B 

Figure 5.17 (a) The shape af a beam as it propagates away from an unfocused 
transducer. The beam stays approximately collimated in the near field, but di verges 
linearly in the far field appraaching a half-angle rPd. (b) The beam from a small 
transducer diverges more rapidly than the beam from a larger transducer. 
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divergence c/>d. It is interesting to note in Figure 5.l7b that the beam frOIll 
a small transducer (transducer B) starts small but eventually becomes larger 
since it possesses a shorter ZR and greater c/>d than transducer A. 

Smoothing the Beam's Profile 

The irregularities within the near field and the presence of side lobes in 
the far field are sometimes an inconvenience when attempting to predict 
the returns from reflectors in the beam's pattern. There is a technique for 
smoothing out these irregularities, although a price is paid. It is based upon 
the fact that, if the beam's amplitude profile as a function of radius was 
Gaussian-shaped at the transducer face (peaked at the center and decreasing 
to zero as exp(-p2/ a T) toward the edges) rather than being the uniform 
amplitude across the transducer face assumed above, then the radiated 
beam's profile would be smoothly Gaussian-shaped everywhere in the near 
field as well as in the far field. 

Therefore, if by some means the transducer excitation profile ap
proximates a Gaussian form with decreasing activity away from the center, 
the beam would be expected to be more uniform in its transverse behavior. 
Various ways of achieving a shaded profile at the radiating surface include 
placing a radially varying absorber in front of the transducer, designing 
the transducer face to have a star shape with some unexcited areas near 
the edges, ar by using a concentric ring transducer ("bull's-eye") and exciting 
the outer rings with progressively less drive voltage than the center rings. 
Ali these techniques, known as apodization because they reduce the "feet" 
(side lobes) in the radiated beam pattern, will produce an overall smoother 
beam profile. The disadvantages, however, are that less total power is ra
diated, the transducer is more complex, and, as Equation (5.43) shows, 
the beam diverges at a greater angle since the effective transducer diameter 
is smaller. 

5.5 FOCUSING WITH LENSES, ANO LATERAL 
RESOLUTION 

The beam width from an unfocused transducer is generally too wide 
to give adequate definition of the fine lateral features of objects. being im
aged. Therefore, a tens or other focusing scheme such as a spherical reflector 
is usual1y employed to converge the radiating beam into a spot at the focaI 
plane ofthe lens. However, the size ofthe focused beam cannot be infinitely 
small, since the natural divergence of a propagating wave as described in 
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the previous section will attempt to spread even a converging beam, r~
ducing the focusing effect of the lens. The further away the focal plane 1S 

from the lens, the larger the focused spot will be. . 
The equations of Section 5.3 can be used .to evaluate the SlZe of the 

focused spot once they are modified to include the effects of the lens. As 
in optics, an acousticallens is fabricated from a disk of material by forming 
a curved refracting surface on one or both of its faces; Figure 5.18 shows 
the cross-section of a plano-concave focusing lens. As opposed to optics, 

(a) 

Medium: em 

I, .\ 

(b) 

Figure 5.18 (a) A focusing lens made of material (such as polystyrene) with 
Phase velocity greater than in the surrounding medium. (b) A lens has the prop
erty of transforming angles into position on the focal plane. 
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the lens material generally possesses an acoustic phase velocity which . 
grealer than that of the material surrounding it (water or tissue). Thu IS 

converging (positive) lens will have a concave face. Problem 5.18 :~ 
Snell's law for ray tracing to show that a plano-coocave lens havin 
surface with radius of curvature RI will produce focusing at a focallen~~ 
equal to 

RI &=--
1_ Cm 

(5.48) 

CI 

wher~ CI is the phase velocity of the lens material and Cm is the phase 
veloclty of the medium ioto which the wave is focused. 
. Lenses hav.e the property oftransforming angles in to position. That 
IS, ~" rays entenng the lens at a common angle 4> wiU get directed to a 
radlUs XI on the focal plane as shown in Figure 5.18b. Under the smalI
angle approximation, geometry gives the transformation relationship as 

. XI 
SIO 4>=-

& 
(5.49) 

Therefore, a lens of focal leogth & placed in front of the beam from a 
ci:cular transducer whose radiation pattem is given by Equation (5.39) 
wIlI transform the far-field angular distribution into a spatial distribution 
00 the focal plane via the transformation of Equation (5.49). Making this 
substitution into Equation (5.39) yields the spatial distribution ofthe pres
sure at a focused spot from a circular transducer of radius a: 

(5.50) 

and the focused pattem looks exactly like the far-field pattem of Figure 
5.15a, except that it is scaled dowo by an amount ~/z. Figure 5. J 9 shows 
how the focllsed spot would appear face-on. 

Size af Facused Spat 

The focllsed spot has a dense central porti~~ (corresponding to the main 
lobe) surrounded by minor rings (the side lobes). The diameter ofthe centraI 
~ortion is defined as previollsly: the distance between the first zeros bound
lI1g the main lobe. From Eqllation (5 .50) the radills ofthe first zero is fOllnd 
at 

_ 3.83&_ 0.6 !liÀ X, - ------
ka a 
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x,_ 

d 

Figure 5.19 The greatly magnified pattem of a focused spot fram a lens of 
focal length if. The entering beam diameter is D. 
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or, put io terms of original beam (transducer) diameter D = 2a, the diameter 
between first zeros is the focused spot diameter d = 2Xt: 

(5.5 J) 

Figure 5.20 defines the qllantities enteriog Equation (5.51). 
For the case of a rectangular transducer of width b, an anaJogous 

development can be undertaken to find the width w of the focused spot in 
the direction parallel to b. Using Equations (5.44) and (5.49), the result 
for a rectaogular transducer is 

(5.52) 
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Transducer 

z_ 

Figure 5.20 A tens will focus the beam to a small spot, but the size d ofthe focused 
spot depends upon lj, D, and À according to Equation (5.51). 

The effects of divergence are manifested in these relationships. In 
Equation (5.51) the 1arger the diameter D ofthe transducer, the smaller is 
the tendency of divergence to expand the beam, and the smaller the spot 
of focus. AIso, the further away the position of focus Ir, the greater is the 
effect of divergence, leading to a larger d. 

How small can the beam be focused practically? The ratio in the 
parentheses in Equation (5.5l) is known as the 'j-number" of the lens; 
and due to practical limitations such as spherical aberration, it is difficult 
to fabricate a quality lens whose fnumber is much smaller than unity. 
Therefore, as a rule of thumb, it can be said that the smallest possible 
focused spot is on the order of the wavelength of radiation used. * 

Not only is it impossible to focus to an infinitely small spot, it may 
be impossible to get any narrowing at ali in the beam diameter if the at
tempted focal distance is toa far away. Equation (5 .51) shows that d will 
bc greater than D if 

(5.53) 

or, in other words, no focusing occurs if the focal length of the lens is 
greater than about the transition distance. Thus, it may be said that focusing 
is only possible at distances within the near field , not in the far field of a 
transducer. 

• This li~itation appears in optics and general quantum-mechanical wave analyses as 
well as In acoustlcs. 
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Lateral Resolution 

The spot size of the foc.used beam determines the transverse spatial reso
lution of a medicaI uItrasound imager, as indicated in Figure 5.21. Here, 
the focused beam is swept unifonnly past a pai r of point reflectors. The 
waveform ofthe envelope ofthe received echoes depends upon the lateral 
spacing of the points. When far apart, the echoes from each point are 
distinct, and it is clear that there are two separate points. As they move 
closer, however, approaching the spacing d, the separate echoes start to 
blend together, and at some stage the points are so close that their echoes 
cannot be separately resolved: that is, they appear as one reflecting object. 

The spacing in the transverse plane at which the points are just sep
arately resolvable is known as the lateral resolution (LR); and from Figure 
5.21 a reasonable measure of LR is the dia meter of the focused spot d. 
That is, 

LR=d 

and the motivation for focusing the beam to reduce the focused spot size 
d in an imaging system is obvious. Using Eq. (5.51) for a circular transducer, 

(5.54) 

This relationship, along with the previous expression for axial resolution, 
is restated in Table 5.2. 

We can now make an important observation: The resolution in ali 
directions (axial and lateral) is closely related to wavelength, and as a prac
tica! matter cannot be made smaller than the wavelength used. Therefore, 
high resolution machines will employ as bigh a frequency as possible, unti! 
increasing attenuation takes the signal to the lower limit of the signal-to
noise ratio. Echo instruments for imaging tiny objects in the eye, for in
stance, may go as high as 15 MHz since the abso~bing path length is so 
short there. 

Depth of Focus 

There is one disadvantage to tight focusing of the beam. Although it im
proves lateral resol ution for reflecting objects located in the plane of focus, 
points in planes either nearer or further away than the foca! length are 
compromised beca use the beam is somewhat larger than d on either side 
of the focal plane. The problem gets worse with decrease in the focused 
size, as shown in Figure 5.22. 

The axial distance over which tbe beam maintains its approximate 
focused size is termed the depth of focus. To obtain an estimate of this 
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(a) 

(b) 

Reflector spacing: Received signal : 

-1 > d r- 1_ 

(c) 

~ 
-1 d r-

(d) 

• ~ 
-1 ~ <d 

Figure 5.21 (a) The lateral spatial resolution is determined by the size d of the 
foeused spot. (b)-(d) The signal reeeived from a pair of point refleetors as their 
lateral spaeing is progressively narrowed. 
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TABLE 5.2 THEORETICAL EXPRESSIONS 
FOR SPATIAL RESOLUTION 

AR = gÀ 
4 

LR = 2.44(~)À 
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distance, note that the beam shapes on both sides of the focal point are 
mjrror images of one another, reflected about the focal plane. The beam 
behavior on one side of this plane, from the focus outward, has the same 
general characteristics that we earlier examined in Figure 5.17a for a beam 
propagating from an initially planar wavefront of a given diameter. There
fore, it stays approximately collimated within the transition distance ZR . 

Applied to the situation here, the transition distance of Equation (5 .32) 
becomes 

d 2 

Z =-
R.d 4À 

The depth of focus may be estimated to be twice this distance due to 
symmetry about the focal plane: 

Focal 
Beam B plane 

z -

Depth of 

foclls B 

Depth of focus A 

Figure 5.22 The depth of foeus deseribes the longitudinal distanee over whieh 
the beam maintains its approximate focused size. It gets shorter for tightly foeused 
beams. 
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d2 (,)2 
Depth of focus = 2À = 3 i À (5.55) 

where Equation (5.51) was used to get the last result. 
The tradeoffbetween focused size and depth offocus sometimes dic_ 

tates a compromise in lens designo For example, in fixed-focus systems 
the lens may be purposely given a nonspherical surface to cause the focused 
spot size to be larger than the theoreticallimit, thereby increasing the depth 
of focus . 

Example af Resalutian Values 

A numerical example of the spatial resolution limits for a typical medicaI 
ultrasound system is enlightening. The transducer pictured earlier in Figure 
5.10 is designed for shallow cardiac imaging. It operates at 3.5 MHz with 
a Q of approximately 7. Its beam diameter is 1.5 cm and the focallength 
of the lens is 5 cm. Therefore, À = 0.043 cm in tissue, and the theoretical 
resolution limits are 

AR = (~)0 .043 = 0.075 cm 

LR = 2.44(~)0.043 = 0.35 cm 
1.5 

and depth of focus is approximately equal to 1.4 cm. 
However, practical factors will worsen the lateral resolution. These 

factors include lens aberrations, objects being outside the depth of focus, 
side-Iobe (or grating-Iobe) off-axis sensitivity, spatial interference noise 
(speckle) due to the coherent nature ofultrasound, and signal compression 
in the receiver electronics. In addition, as mentioned in Section 5.2.2, 
practical factors such as dispersive absorption in tissue and signal compres
sion in the receiver will degrade the axial resolution. Therefore, the actual 
resolutions are perhaps two to three times their theoretical values above. 
Note that, as is usually the case, the axial resolution is much better than 
the lateral resolution. 

5.6 LINEAR ARRA YS . 

In real-time B-scanners, described in the next chapter, the transducer is 
sometimes composed of a linear array of c10sely spaced elements (usuaIly 
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rectangular) as shown in Figure 5.23. Although each elell1ent may be smaU 
in terms ofnumber ofwavelengths, the overall width L ::an be appreciable 
(5 to 10 cm). The question is: What width is used in Equation (5.46) to 
calculate the angular divergence ofthe beam radiated fom this unfocused 
transducer, the single-element width b or the overall-array width L? The 
answer depends upon whether the elements are excited aneat a time or 
whether they are alI radiating together. 

If excited one at a time (as is done in the sequentially pulsed linear 
array machine), the pa.ttem is, not surprisingly, just that of a single element; 
this pattem was covered in Figure 5.16b and is relatively broad in the 
horizontal direction, or azimuth, due to the smallness of the elements. 

(a) 

(b) 

I 

Elevation 
YI 

Azimuth 
XI 

Figure 5.23 (a) The geometry for a linear array of rectangular elements. (b) A top 
view of two neighboring elements showing that at selected arlgles rPg" , the path 
length difference I is equal to an integral number of wavelengths. 
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If the elements are excited simultaneously and coherently (as in the 
phased-array imager), the effective transducer width is L and the far-field 
divergence, given by Equation (5.46), will be much narrower. CorresPond_ 
ingly, ifthis coherent array is focused, the beam will converge to a smaller 
spot size with improved lateral resolution. (Note, however, that the beam 
divergence in the vertical direction, called the elevation, wiU be the same 
whether the elements are excited independently or coherently; in both 
cases the effective array height is h). 

Grating Lobes 

There is a complexity in the radiation pattem which accompanies the seg
mentation of the transducer into an array of elements. It is the appearance 
ofreduced-ampLitude images ofthe main beam (complete with side lobes) 
known as graLing lobes. centered around one or more discrete angles in 
the <Px plane. The angles ofthe grating lobes, denoted <Pgn. are found to be 
those angles for which rays [rom two neighboring elements are in phase 
with each other by a multiple of 21r; constructive interference therefore 
takes place at these angles, and some power is radiated in those directions. 
An altemate way of stating the condition for constructive interference is 
that the path length difference I between rays fram the neighboring elements 
is equal to an integer number ofwavelengths. Figure 5.23b shows that this 
occurs when 

or 

. I nÀ 
Sln <PglI = - =

s s 

n = ±l, ±2, ... (5 .56) 

There wiJI be as many grating lobe orders in the pattem as the number of 
solutions ofEquation (5.56) that fali within ±90°. Notice that, as the spacing 
s increases in size with respect to a waveIength, the grating lobes get c10ser 
together in angle and increase in number. 

Figure 5.24 shows an exam ple of a 16-element array with a total 
length of L = 27À. Therefore, s = (27/ 15)À = 1.8À and 

<PgI = ±33.7° 

Only the first-order grating lobes are present in this pattem since the second
order (n = 2) and higher-order lobes are not valid solutions (within ±900) 
of Equation (5.56) for s = 1.8À. The shape of the main beam and the 
displaced grating lobes is determined by applying Equation (5.45) with the 
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Envelope: 

sin2 (kb sin "'x /2) 

(kb sin "'x /2)2 

n = - 1 
Grating lobe 

Main bea m: 

sm2 (kL sin "'x / 2) 

(kL sin "'x /2)2 
"'gl = 33.7° 

!---......:. 
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Figure 5.24 The power density beam pattern in the X I direction fram a 16-element 
linear array whose elemenlts are excited coherent1y. In addition to the main beam, 
copies of the main beam called grating lobes appear olfto each side. For this example, 
s = 1.8À and L = 27À. 

effective length b - L. Therefore, the width of the main lobe in the main 
beam (straight ahead) and also in the grating lobes is given by Equation 
(5.46): 

<Pxd= sin- '(i) = sin-
IG7) = 2.1 ° 

The envelope which determines the amplitude of the grating lobes 
compared to the main beam is given by the directional factor Hr o( one of 
the individual (assumed identical) elements, multiplied by a facto r cos <Px 
(which is due to the lack of a reinforcing rigid baffie surrounding the e1e
ments and which has a major effect only near ±900). Therefore, using 
Equation (5.45) for Hr , 

. sin[(kb sin <Px)/2j 
Envelope (amplitude) = (kb sin <Px )/2 cos <Px (5.57) 

since each element has a width of b (refer to Figure 5.23a). This envelope 
will possess zeros just Iike the main-beam directional factor, but they will 
be at much larger angles since b ~ L. The positions of the zeros of the 
envelope (in addition to ±90° from the cos <Px term) may be obtained fram 
Equation (5.46): 
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_ . _1(mÀ) cJ>xe - sm b m=±I,±2, ... (5.58) 

Note that the closer to unity the ratio bis is ("fill factor"), the closer the 
grating 10be angle from Equation (5.56) will be to a zero angle of the 
envelope from Equation (5.58), thus reducing the peak amplitude of 
the grating lobe. For the example of Figure 5.24, b = 0.67 s = 1.21 À, and 
the envelope has the shape shown with zeros at ±56°. 

An interesting envelope occurs for the special case of s = 2b corre
sponding to a "square wave" array whose element's active width is just 
one-half the spacing between element centers. For this case, the angle of 
the second grating lobe 

cJ>g2 = sin- 1Cs
À

) = sin- 1G) 

falls at the first zero in the envelope 

_ . _I (À) 
cJ>xe- sm b 

and the second grating lobe essentially vanishes. In fact, all even-order 
grating lobes disappear, leaving only the main beam and odd-order grating 
lobes. 

Grating Lobe Reduction 

Reduction in the number and amplitude of the grating lobes is desirable 
since grating lobes represent potential sources of ambiguity in determining 
the direction of the echoes returned to the transducer. The principie of 
reciprocity applies under most circumstances to acoustic wave propagation, 
so the transducer's receiver sensitivity pattern will usually have the same 
shape as the transmitter radiation pattern. Therefore, grating lobes (and, 
to a lesser degree, si de lobes) give off-axis sensitivity to a transducer used 
both as source and receiver. Reflecting points at the grating lobe angles are 
irradiated, and the receiver is sensitive to echoes coming from these angles 
in addition to straight ahead. Figure 5.25 shows how a single point scatterer 
will show up at three separate angular positions of a swept array with two 
grating lobes in addition to the main beam. 

The angles ofthe grating lobes are governed by the spacing s between 
elements of the array, and their amplitude is determined by the envelope 
shape set by the individual element length b. In addition, the overall width 
L determines the angular width of each lobe, and the number of elements 
is given by (LIs) + I. These array parameters can be manipulated by the 
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Figure 5.25 When the transducer is rotated, the grat
ing lobes produce multiple responses from a single ob
ject, confusing the interpretation of object position. 
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designer to optimize one feature or another, depending upon the desired 
application, but they all interact. For example, to move the grating lobe 
angle as far away from 00 as possible, the spacing s between elements is 
made smal!. However, for a fixed number of elements, this reduces the 
array width L, which in turn increases the angular width of the main beam, 
worsening lateral resolution. Problem 5.22 gives other examples of the 
tradeoffs encountered in array designo 

There is a temporal way to partially reduce the magnitude of the 
grating lobes in the transmitted pattern; it is based upon using very short 
transmitter pulses. As explained above, grating lobes are due to constructive 
interference occurring at selected angles between waves from neighboring 
elements. If the waves are really pulses of short duration (little more tban 
one cycle), the pulse from one element propagating at the grating lobe 
angle will have decayed considerably by the time it is joined by the pulse 
from its neighbor, amounting to less than total COI}structive interference; 
this is diagrammed in Figure 5.26. When pulses from alI the elements are 
considered, the skew in timing may significantIy reduce the grating lobe 
response. The pattern in the forward direction remains essentially unaItered, 
however, since all pulses coincide in this direction, providing totalcon
structive interference. 

Thus, the ratio of grating lobe response to main lobe response de
creases with decreasing pulse length (and therefore with decreasing trans
ducer Q). For example, for a 16-element array with an interelement spacing 
of b = 2.4À, the ratio offirst grating lobe amplitude to main lobe amplitude 
is 0.2 when Q = 9.4 but only 0.08 when Q = 3.1. Unfortunately, this 
reduction in peak grating lobe response is accompanied by an increase in 
the angular width of the grating lobe. 
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Figure 5.26 If short pulses are emitted 
from the elements of a linear array, their 
origins are skewed when summed at an 
angle. At the grating lobe angle r/>gn, some 
constructive interference takes place, but 
it is less than for continuous waves due 
to the decaying envelopes summed fram 
neighboring pulses. 

There is yet another way to attempt to reduce grating lobe response 
(for fixed L and for a given number of elements). The spacing between 
elements can be made nonuniform, defeating some of the constructive 
interference effects at off-axis propagation angles. This randomization or 
element spacing, however, is of minor benefit (especially for short pulses) 

· and also increases the width of the grating lobe, so it is probably not worth 
the effort. 

PROBLEMS 

• 5.1. What is the thickness of a barium titanate transducer whose fundamental 
frequency ofresonance is 5 MHz? How thick would it be ifits third harmonic 
were 5 MHz? 

t 5.2. A cw voltage with a peak magnitude of lO V is impressed across a barium 
titanate transducer at its fundamental frequency of I MHz. The area of the 
transducer face is I cm2• How much power is radiated into a layer ofmuscle 
in contact with the transducer? 

• 5.3. Using the configuration shown in Figure 5.4, derive Equation (5.6) for the 
velocity ofthe transducer faces when excited at resonance by an electric field 
E;. (Hinl: Let the four traveling waves be displacement waves ofthe form 

~I =A COS(wl + kz) 

~2 = B COS(wl- kz) 

6 = C cos(wl + k,z) 

~4 = D cos(wl- k2z) 

where ~ is the displacement ofthe material's particles from equilibrium and 
k, k

" 
and k2 are the propagation constants in the transducer, region I, and 

region 2, respectively. Particle velocity U is given by a~/al. Match particle 

velocity /I and pressure p at each interface following the sign conventions 
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used in Section 3.4.2. The pressure just inside the transducer face is given 
by Equation (5.5) for a piezoelectric material. The net displacement inside 
the transducer (to calculate strain) is given by ~I + b. Remember, at the 
frequency of fundamental resonance, À = 21 in the transducer, so kl = 7r. 

Solve for uf= -wD sin(wl - k2 /). 

5.4. Use Equation (5.12) to solve for the equivalent electrical circuit of an air
backed transducer at resonance. Procedure: Substitute Equation (5 .5) into 
Equation (5.12), then integTate with respect to z from z = O to z = I. The 
integral of electric field is voltage (V = J E; dz) and let U; be a constant. Solve 
for the total charge q = A U; in terms of Vand the displacements ~ of the two 
faces. Then, find the current I = dq/dl. Here, you wiU need to remember 
that d~/dl = ufofthe faces (given by Equation (5.6) with opposite signs for 
the two faces) and let V = V cos wl, so E; = (V cos wt)/1. The electrical 
admittance is finally given by 1/ V. Show that the admittance is the sum of 
two parts, one due to a capacitance with an admittance of magnitude wCo 
(90 0 out of phase from V), and the other due to a resistor with admittance 
I/Rm (in phase with V). Check your answers for Co and Rm with Equations 
(5.16) and (5.17). 

'45.5. An air-backed PZT transducer is radiating into water at its fundamental 
resonant frequency of3 MHz. It has a surface area of5 cm2

• Find its equivalent 
electrical circuit, including values for the components (assume it is internaUy 
lossless). When driven with a sinusoidal peak voltage of 10 V, use Rm to 
calculate how much power is radiated by this transducer. 

5.6. Using Figure 5.9, derive Equation (5.24) for axial resolution. Find an ap
proximate numerical value (including units) for the axial resolution of a 
bioinstrument whose transducer has a frequency;; = 2.25 MHz and a 
Q= 5. 

• 5.7. (a) Find the approximate Q ofthe foUowing quartz transducer arrangement 
at its fundamental frequency of 2 MHz by using Equation (5.18): 

Air Tissue 

x-Cut quartz 

Assume that the internai losses of the transducer are zero, so that losses 
are due entirely to the transrnission of power through the transducer 
faces. (Hint: Assume an internai wave with intensity lo is bouncing back 
and forth between the faces. Determine bow much intensity is lost during 
one period of the fundamental frequency. Let the stored intensity be an 
average of before and after the bounces.) 

(b) Calculate the axial resolution for this quartz transducer. 
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5.8. To investigate the reasons for adding an absorber to the back face of a trans.. 
ducer, redo Problem 5.7 for the same frequency and quartz material b 

I h · . h b . ' Ut rep ace t e alr Wlt a ackmg material made of an absorber whose acoust" 
. 6 2' le 
Impedance 2 = 3 X 10 kgJm s IS closer to quartzo Assume that ali Powe 
radiated into the absorber is lost. Find the new Q and the axial resolution. r 

5.9. Redo Problem 5.7 for the same frequency and air backing, but use PVDF 
as the transducer material instead of quartzo What are the Q and the axial 
resolution now? 

5.10. Applying the method outlined in Problem 5.7 to a general transducer with 
impedance 2 c radiating on one side only into a medium with impedance Z 
show that an approximate expression for the transducer's Q at its fundamen~i 
frequency is given by 

when 2 c ~ 2 2 • 

5.11. Using geometÍy in Figure 5.11, show that r' is given by Equation (5.26). 

, 5,12. Derive Equation (5 .30) for the on-axis pressure field of a circular transducer 
slarting from Equation (5 .29) and following the steps outlined in the text. 

• 5.13. Derive Equation (5.37) from Equation (5 .36) using the integral relationship 
between lo and l, given in the text. 

5.14. Integrate Equation (5.34) over a rectangular source ofdimensions b X h using 
lhe geometry shown in Figure 5.16a to get the pressure radiation pattern of 
Equation (5.44) along the X , axis. 

• 5.15. (a) Plot the pattern (similar to Figure 5.15a) ofintensity measured on a plane 
50 em away from a 2-MHz unfocused circular transducer whose diameter 
is I incho Find the diameter of the closest null ring surrounding the 
central peak of the pattern. 

(b) Estimate the FWHM diameter ofthe central peak as given by the width 
to the - 3-dB points on either side of the peak. 

5.16. Find the near-field to far-field transition distance and the far-field divergence 
angle for each of the unfocused transducers listed below: 
(a) Diam. = I cm, frequency = I MHz 
(b) Diam. = 3 cm, frequency = I MHz 
(c) Diam. = I cm, frequency = 2.25 MHz 

+ 5.17. An unfoeused circular transducer is used in the following configuration at a 
frequency of 3 MHz: 

Transdueer 

Ic'I Fal Muscle 

11 em 
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Estimate the power which the transducer must radiate into the tissue in order 
to receive 2 X 10- 8 W back at its face from the echo due to the fat/muscle 
interface. Include the effects of beam spreading and list any simplifying as
sumptions you make. 

5.18. Use Snell's law and ray racing to show that the focal length of a plano
concave lens is given by Equation (5.48). (Hint: Consider a ray entering 
parallel to the axis and use the small-angle approximation to find the distance 
where it intersects the axis.) 

5.19. How large a dia meter would a focused circular transducer of frequency 1.5 
MHz have to be to give a focused spot size of I mm at a distance of 10 cm 
from the transducer? What would be the depth of focus of this beam? 

.f5.20.' Find the theoretical axial resolution and lateral resolution at a distance of 6 
cm from a circular unfocused transducer whose frequency is 3 MHz, whose 
diameter is 1.5 cm, and whose Q is 10. 

45.21 . In echocardiography it is desirable to image the mitral valve leaflets with a 
resolution of approximately 2 mm. The distance from the chest wall to the 
valve is about 7 cm. To avoid excessive attenuation, a frequency of 2.25 
MHz is used. 
(a) Determine the maximum Q allowed for the transducer which will give 

the required resolution . 
(b) Determine the minimum diameter of the lens (and therefore the trans

ducer) which will give the required resolution, assuming focusing on the 
valve. 

5.22. (a) Sketch a rough polar power density plot for a coherently excited linear 
array composed of 16 SQuare elements, each 1 mm wide with a center
to-center spacing of 2 mm. The frequency is 2.25 MHz. Calculate the 
following three important features: width of main lobe; angular positions 
ofthe grating lobe(s); and ratio ofpeak power density in first grating lobe 
to peak power density in main lobe. 

(b) Explain qualitatively how each ofthe above three pattern features would 
change if each ofthe following modifieation was made independently in 
the array (ali other parameters stay as specified): 

(i) The wavelength was decreased. . 
(ii) The spacing between elements was decreased. 

(iH) The number of elements was decreased to eight. 




