RIGOROUS RESULTS FOR THE HOPFIELD MODEL
WITH MANY PATTERNS

MIiCHEL TALAGRAND

ABSTRACT. We perform a thorough investigation of the main aspects of the Hopfield
model with many patterns. Advances are made toward the validity of the “replica
symmetric” solution. Strong evidence of the validity of this solution is given over
the entire domain where this validity is conjectured; Complete proof is given in a
subregion that contains strictly the ergodic region.
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1. Introduction.

The Hopfield model centers on a certain random function defined on the space
Yx = {-1,1}¥. An element € of Xy will be called a configuration (because
physically it describes a configuration of N spins). The randomness is brought
by an independent sequence (1; x)i<N,k<m of Bernoulli random variables (P(n; x =
1) = P(nixw = —1) = 1/2). For k < M,n, = (nik)i<n represents a certain
configuration. These M random configurations play a special role and are called
the prototypes. We will consider the quantities (called the overlaps).
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1
mi(€) = (5 Z Mik€i)
i<N
that measure how close € is from 1. The random function of interest (called the
Hamiltonian) is

(1.1) Hie) = —g S ma(e)?.

k<M

Of course, H(€) depends upon N, M, and the variables (7; ;). The variables (; x)
are thought to be fixed at the beginning of any study of H, and are called the
quenched variables. All the quantities we will write depend upon the quenched
variables; but the dependence almost always remains implicit. On the other hand,
when necessary we will indicate the dependence of H in N and M.

The factor £ is a convenient normalization. The function H (€) physically repre-
sents the energy of the configuration €. When € = 9y, we have my (€)% = 1, and the
corresponding term gives a large contribution. Then (within normalization) H (e)
is a particularly simple choice of a function that tries to be small at each prototype.
It should be clear then that somehow a system governed by (1.1) “remembers” the
prototypes, and, while the present model was apparently introduced by Pastur and
Figotin, it is its rediscovery and interpretation by Hopfield as a model for memory
that made it popular. (While a discussion of the actual relevance of this model to
the inner workings of our brains is better left, say, to [T-D-C], it should be obvious

that anything as simple as (1.1) can at best be an extreme simplification).

It will turn out to be necessary to have one of the prototypes play a special role,
and for this reason, given h > 0, we will generalize (1.1) into

(1.2) H(e) = _% S mi(€)? — hNms (e).
k<M

One could of course distinguish p prototypes, by replacing the last term by

N > hgmyg(€); one could also introduce a term —h Y ¢; to represent an “external
k<p i<N

field”. These variations, however, require no new idea, so we feel more appropriate

to stick to the simplest case (1.2).

The system governed by (1.2) will be subject to “thermal noise”, that is, its
properties will be described by the Gibbs measure

-N
(13) G(e) = 2~ exp(~BH(e)
where Z = 27V Y exp(—BH(e)) and where the summation is over € € Y. The

€
parameter [ in (1.3) physically represents the inverse of the temperature. The



RIGOROUS RESULTS FOR THE HOPFIELD MODEL WITH MANY PATTERNS 3

lower the temperature, the larger is 3, and the more the specific properties of H
influence G. This Gibbs measure is the main object of the study of this paper.

The Hopfield model is somewhat connected to a famous model for spin glasses,
the Sherrington-Kirkpatrick (SK) model. Both models exhibit, at low temperature,
a mysterious “spin glass” phase. An important difference however is that the extra
parameter M makes the high temperature phase of the Hopfield model richer, and
hence more worthy of study. While writing the present paper, the author realized
that some of his methods were already of interest when applied to the technically
simpler SK model. This prompted the writing of [T4]. The present paper is almost
self-contained; however the key ideas underlying several section are already present
in a simplified and more accessible form in [T4].

With the exception of Section 9, all the results of the present paper concern
the “physically trivial” range of the parameters of the model (i.e., outside the spin
glass phase). For these values, the physicists have been able to discover beautiful
formulas [A-G-S] that agree with numerical simulations, and are believed to be
correct. The derivation of these formulas relied upon the replica method, that is
remarkably far from being mathematically rigorous. Providing rigorous proofs for
these results is a challenge, some of which is met in the present paper.

A number of properties of the Hopfield model are better studied as N — oc.
The most interesting case (and the only one that will be studied in this paper) is
when M = M(N) grows with N by staying “proportional” to N, the so called case
of many patterns. We will follow the tradition to consider the ratio « = M/N as
a parameter of the system, even though this notation creates an irresistible urge
to treat o as a continuous parameter (and at times to write formally incorrect
statements).

We now turn to a detailed description of our main results. Beside the Gibbs
measure, another object of prime importance is the free energy F' = log Z (although
a physicist might use instead 8~ !log2" Z). This is a random function, of course,
and when need arises to clear ambiguity, we may write Fy(«, 8, h) rather than F
(here, as always, « = M/N), or we may specify only some of the parameters. The
importance of F' stems from the fact that taking derivatives makes Z appear as
a denominator. Thus quantities actually physically measurable appear as partial
derivatives of F, e.g. g_lg = (—H(e)) is the average energy of a configuration.
Average here means for the Gibbs measure, and, for a function 4 : ¥y — R, (A(e))
denotes its integral for the Gibbs measure, i.e.

(A€) = 53y O Ale) exp(—FH(e)).

For simplicity, a quantity such as (A(e)) will be called a bracket.

In Section 2, we consider the case h = 0,8(1 + \/a) < 1. Arguments that are
specific to this case allow a detailed study.

The free energy, and most of the quantities we study depend upon the quenched
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variables. To study this dependence we denote by F and P expectation and prob-
ability relative to these.

Our first result bears on the fluctuations of Fy.

Theorem 1.1. Consider g, Bo with Bo(1 + /o) < 1, and assume h = 0. Then
there is a constant K, depending only upon «g, By, with the following property. If
a < ag, B < By, then we have, for u > 0:

(1.4) P(Fn(B) > % log(ﬁ) +u)<e™

2
(1.5) P(Fy(8) < %log(ﬁ) ) < K exp— %

The proof of this result parallels the proof of [T4], Theorem 2.1. The main
ingredients are a second moment calculation (after truncation) and concentration
of measure arguments.

It is claimed in [Sca-T| that Fy(8) + & log(1 — B) converges in distribution as
N — oo to normal (non standard) r.v. This result goes in a somewhat different
direction than Theorem 1.1, which presents inequalities true for all N (a formulation
better adapted to the potential physical content of the theorem). It was also pointed
out to me by two colleagues that the complicated estimates of [Sca-T] are not easy
to validate.

Ever present in our topic is the idea of replicas. A p-replica is simply product
space (XX, GP) (for the same realization of the quenched variables). A prime use
of replicas is the possibility to write a product of two brackets as a single bracket
by the formula

(1.6) (A(€))(B(€)) = (A(€) B(€))-

There the bracket on the right represents an integral on (X%;, G?), and the generic
point of ¥%; is (¢, €'). Formula (1.6) will be called the replica trick. 1t is nothing else
than the formula EXY = EXFEY valid for independent r.v. The notation (1.6)
does not attempt to distinguish whether the bracket represents an integral on Xy
or X4;; this should be clear from the context.

Another use of replicas is to define important parameters of the system, such as
(1.7) ™~ = N72%{(e-€)?)

where of course €- €' = > ¢; - €.
i<N

There the bracket again means [(e - €')?dG(e)dG(¢’). For simplicity, we will
say that €,€ are thermally independent. The idea under (1.7) is (as all great



RIGOROUS RESULTS FOR THE HOPFIELD MODEL WITH MANY PATTERNS 5

ideas) basically simple. Suppose that it happens that € points mostly in one single
direction (when distributed for G). Then an independent copy € will point in the
same direction, so N~2(e - €)% will often be of order one. On the other hand, 7
being small means lack of polarization. Quite naturally, this is the case at high
temperature, as the following result shows.

Theorem 1.2. For By(1+ /ag) < 1, h =0, there exists K depending upon g, Bo
only such that if o < ayg, B < By we have

L2
(1.8) E(exp (‘EK‘]EV) ) < K
and in particular
N
(1.9) Eexp KN < K.

Since the Hamiltonian (1.1) is defined in terms of the overlaps, it is natural to
consider the overlap vector m(e) = (mg(€))k<nm, and the parameter

((m(e) - m(e')?).

Theorem 1.3. For 5y(1+./ag) < 1, h =0, there is K depending only upon g, Bo
and an event Qg of probability > 1 — 2~N such that

(m(e) -m(e'))?
Flg, <e >< K.
Q, < exp N <
As the temperature decreases, so does the thermal noise, and at some point (for «
small) the influence of the prototype appears. To state our result, for h > 0, 8 > 0,
we consider the largest root m* = m*(8, h) of the equation

(1.10) m* = thB(m* + h)

where th denotes the hyperbolic tangent. Thus m* =0 only if A = 0,8 < 1. We
denote the canonical basis of RM by (ex)r<1.

Theorem 1.4. There exist two numbers L, Ly with the following property. Con-
sider 8> 0 and « < m**/L;.

a) If h =0, B > 1, consider the set C of configurations € such that m(e) is NOT
within distance Ly(a/m*2)Y? of a point £m*er(k < M)

b) If h > 0, consider the set C of configurations € such that m(e) is NOT within
distance Ly(o/m*2)Y/? of m*e;.
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Then, for some constant K independent of N,

E(G(0)) < K exp(—N/K).

In some sense Theorem 1.4 describes a memory effect since the Gibbs measure is
then supported by the union of 2M small balls (or even one small ball for h > 0).

A result of the same nature (but with worse estimates) was first proved in [B-G-
P]. The correct estimates, in the case h = 0, were independently announced in [T3]
in the case 8 > 1,8 — 1 small and proved for all # > 1 in [B-G 2]. (This requires an
additional simple argument compared to the case 5 —1 small). Actually, Bovier and
Gayrard prove Theorem 1.4 by deducing it from deeper and more precise facts. The
approach we will use (which is essentially the approach of our first proof) succeeds
in avoiding a number of the obstacles that Bovier and Gayrard have to conquer.

Theorem 1.4 will be proved in Section 3. In Section 4, we start to discuss the main
topic of the paper, the so called replica-symmetric (RS) solution of the Hopfield
model. This “solution” is a set of equation between the main parameters of the
model, relations that will be described below. These relations were discovered in
[A-G-S] using the replica method. It is a priori not clear what really lies behind
these remarkable formulas, and the first purpose of Section 4 is to draw the overall
picture, as we see it. The second purpose of Section 4 is to explain what are the
underlying ideas of the technical work ahead, and in some sense this section consists
in a considerable amplification of the part of the present introduction up to (1.18)

Before proceeding any further, let us write the basic equations of the RS solution.

Consider a standard normal r.v. g, and the system of equations

(1.11) p = EthB(gvr + p+ h)

(1.12) q = Eth?B(g/r + p+ h)

where we have set 7 = aq(1 — 3(1 — q))~2. Then (hopefully) these equations define
two functions u,q of «, 8, h (a fact that is not so obvious and for which we know
no reference). The RS solution predicts that

(1.13) i N~'EFy(a,,h) = RS(a, B, h)
where
(1.14) RS(a,B,h) = w8 +2( i _ log(1 - B+ Bq))

2 21— B+ Bq
- 851 =)+ Elogch B(gv/r + p+ h)

Given a domain D of R3, we will say that “the RS solution holds in the limit in D”
if (1.13) holds for («, 8, h) € D.

The main results of the paper rely upon induction over the number N of spins,
and iterative use of certain estimates. In Section 5, we learn how to relate a system
with (N + 1) spins to a system with NV spins. We then make a first use of iteration
to obtain the following.
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Theorem 1.5. There is By > 0 such that (for each h) the RS solution holds in the
limit for B < Bp-

The method of proof of Theorem 1.5 is based on iterative estimates of the quan-
tity

(1.15) Ey=EWN" ) ((e€)) — (e){e;))?).

1<i,j<N

The basic idea is simply to prove that
Eni1 < CEn + small term

for C' < 1; Iteration then yield that Epn is small, a key step in establishing the
validity of the RS solution. The method unfortunately produces an irretrievable
loss of information that forces restrictive conditions on 5. To go beyond Theorem
1.5, one needs rather to estimate iteratively a quantity such as

(1.16) E Z ((mkmg) - <mk)<me>)2

1<k, <M

This turns out to be a task of an entirely different magnitude. The main effort
of the author went into developing techniques to do this; these techniques are
presented in Section 6. These estimates identify leading terms and smaller order
(error) terms. The problem then is to control the error terms. Quite interestingly,
Theorem 1.4 is of a great help in this direction. The culmination of these efforts
will result in the following:

Theorem 1.6. There exists a number L with the following property. If h > 0, and
either

(1.17) <2 a< %(m*4+(1_13)2) orB>2, a< Llégﬁ

then the RS solution holds in the limit.

While we do not know how to prove the validity of the RS solution outside the
domain of Theorem 1.6, we have succeeded in proving that the Almeida-Thouless
conditions

(1.18) af’Ech™*B(gyr + p+h) < (1 - B(1 - q))°

occurs in a very natural way. Unfortunatly, it does not seem possible at this stage
to give even an informal version of the result that would be intelligible (such an
informal version is given in Theorem 4.2), and we urge the reader who has reached
this point, but is not interested in proofs to at least glance at Section 4. In fact,
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we consider the exact identification of condition (1.18) by mathematical methods
(rather than by analysis of the eigenvalues of matrices of dimension — 0---) as
the greatest success of the approach that we develop. Most remarkable is the fact
that (1.18) occurs as the result of a long computation where over a dozen of terms
rather miraculously combine into (1.18).

In Section 9, we investigate the zero temperature case. We give short proofs of
(improved versions of) several results of [Lou], concerning the existence of energy
barriers, for small « and the collapse of these as o — oco. While these results
apparently are today’s state of the art, they rely on somewhat ad-hoc methods
and are rather unsatisfactory. (Thus, while it could happen that some methods
presented elsewhere in the paper will be of long-lasting use, this is less likely for
the results of this section, and the proofs therefore are less detailed). The most
frustrating questions concern the evaluation of the minimum of H (€), for which only
extremely crude results are known. For example, there is overwhelming numerical
evidence that for, some values of a (say « = -1 ) there are local minima near the
prototypes, while the global minimum is not near any prototype, a fact we could
not prove.

Estimates for the norm of certain random matrices play an important technical
role in the Hopfield model. There is a well established and deep theory of these
[S]. On the other hand, one could get confused by the fact that some papers on the
Hopfield model have made use of complicated results that are not quite as good as
those of [S]. For clarification, we give in an appendix a short self-contained proof
of all what we need in this direction.

Now, a few words concerning the style. This paper attempts to be a fully rigorous
mathematical paper. There is, however a basic difficulty in the topic: a number
of secondary obstacles occur a great many times. These are easy to pass, but the
sheer accumulation of routine work needed to handle them in complete detail every
time would make the paper impossible to read (and to write). The strategy has
been to address in complete detail every such obstacle at its first occurrence. After
some point, when it is felt that the reader should be convinced that handling the
obstacle is now routine, the obstacle is ignored altogether.

Throughout the paper, we will say that an event occurs with overwhelming
probability if the probability that it does not occur is bounded by exp(—N/C),
where C does not depend upon N. We denote by L a universal constant, that may
change at each occurrence. When it helps to distinguish these constants they are
labeled Lg, L1, - - - ; this labeling remains valid for a few lines only (thus the several
constants L; occurring at various places are not the same.) In contrast, constants
that do not depend upon N, but might depend upon «, 3, h, - - - are denoted by K.

Acknowledgments. I am indebted to Pierre Picco for sending the paper [B-G-P]
to me, a paper that started my interest in the Hopfield Model, and to D. Loukianova
for communicating her thesis, that inspired much of Section 9. And, above all, it
must be said that this paper would not have been written without the encourage-
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ment of Erwin Bolthausen. (The reader will observe that, as what should have been
a three months project ended up only after over a year of very intense struggle, the
word “grateful” was omitted from the Acknowledgment).
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2. High temperature, no external field.

In this section, we will prove Theorems 1.1 to 1.3. We assume h = 0 unless
specified otherwise. We fix ag, By with Bo(1 + /ag) < 1, and we assume a <
g, 8 < Bo. For simplicity we do not attempt to track the dependence of our
bounds upon «g, By, so we denote by K a constant depending only upon «g, o,
that may vary at each occurrence.

A large part of the proof of Theorem 1.1 is devoted to elementary moment

estimates, that are presented in a series of lemmas that ends with Corollary 2.5.

Lemma 2.1. For each € € Y we have

1

(2.1) (1= B)™M/? < Eexp—pBH(e) < (1 —B)~M/2,

Proof. First, we observe that by independence we have

pep(-p1(0) = (Fep o (S mae) )

i<N

We now use the fact that if g is N(0,1), for a € R we have

a2
(2.2) exp o = Fexpag
so that
B ’ /B
(2.3) E exp N < Z m,m) = FEexp N Z i,1€:9
i<N i<N

= Eexp N logchgy/ %

assuming, as we may, that g is independent of the 7; 1, and averaging over these
first. Here, of course chz = (e®+e~?)/2. The elementary inequality chz < exp z%/2
yields a bound Eexp 8%g%/2 = (1 — B)~1/2.

To prove the lower bound in (2.1), we first observe the following elementary
result, that we state for further reference.

Lemma 2.2. The derivatives of the function log chx satisfy

2thx
ch?z’

(log chz)' = thz, (log chz)" = (cha)~2, (log chz)® = —
(log chz)® = 4(chz)~2 — 6(chz)™* < 4.
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In particular, Taylor’s formula show that

2 .734

T
2.4 logchz > — — —
(24) ogehs > - — %

so that (2.3) yields

Bg> B¢
Eexp—(anlez) >Eexp( 5 6N

i<N
1-8, B 4
\/_/exp< 5 —t 6Nt dt
2 244
= / exp(—t——iﬁt )dt
\/m NGTs 2  6N(1-p)2
1 1 t2 B2t )
> exp(—=)|1— ————= |dt
“Vi-BJ Vor = 2)< 6N(1—p)?
S 1 . K S 1 . K
- (12 XD — —
=/I-g\ N)= /i N
where we have used in the forth line the inequality e™* > 1 — z. g

Proof of Theorem 1.1. (Upper bound)

The upper bound of (2.1) implies EZ < (1 — 8)~M/2, from which (1.4) follows
by Markov inequality, since Fiy = log Z. (|

The following lemmas prepare the proof of (1.5) that is much harder.

Since fo(1+ /) < 1, we have ao(—ﬂ —1)% < 1. Thus we can consider p such
that ag(p —1)%2 < 1 and p > 1/(1 — B). We set to = Mp/2, our truncation level

Lemma 2.3. We have, for each e € XN

N

(2.5) E exp(—BH(€))L{-m@2t0} < (1= 8) M/ exp(—22).

Proof. Using Markov inequality and Lemma 2.1 we get, for 8/ > S that the left
hand side is bounded by

(1B exp - [ ~log(1 — B) +log(1 — #) + (' - ﬂ)p].

Y (i) o0,

Taking A" with p = 1/(1 — /') finish the proof, since log(l — z) + z < 0 for
0<r <l

The exponent is

O
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Lemma 2.4. Consider €,€' in X, and u = N"'e-€.

Then

(2.6) E exp(—B(H(e) + H(el)))1{—H(e)—H(e’)§2t0}
< (1= 5™ exp (o — 1)

Proof. We set I = {i < N;¢; =€.};J ={i < N;¢; = —€.}. Thus

card] = N(1+4 u)/2,cardJ = N(1 —u)/2.

Use of the formula
(x + y)2 + (z — y)z = 222 + 292

yields

H(e) + H(€') Z—%{Z (Zémz‘,k>2+ > (Zﬁﬂi,k)j-

k<M i€l k<M NieJ

We write
1 1+u 1—u

N - 2card/ - 2card.J

and we use Lemma 2.1 with A(1 4+ u) rather than 8 and cardl rather than N to
get, by independence

(2.7) Eexp—\(H(e) + H(€')) < exp Mp(X, u)

where

1 1
Au)=-log— 4+ -log— .
P =5 le TN rw T2 T oA —w)

Now, using (2.7) for A < 3, and recalling that 2ty = pM, we get

Eexp —IB(H(G) + H(el))l{—H(e)—H(e’)§2t0} S exp M((/B - /\)p + (,0()\, u))
Thereby, to finish the proof it suffices to show that

(2.8) in

Agfﬁ((ﬁ —A)p+ p(Au)) <log

1 1
- _122.
1_ﬁ+2@ ) u

Let us denote by h(u) the left hand side of (2.8).
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Thus
h(u) = p(B = A(w)) + ¢(A(u), v)

where A(u) is given by
0
(2.9) p= 55 M), ).

Hence
W) = 92 (\w),u).

To prove (2.8), it suffices to show that h'(u) < u(p — 1)2. Recalling (2.9), it
suffices to show that

(2.10) 9% —

Oy 2
50 = U5 1)=.

ox
Setting D =1 — 2\ + A?(1 — u?), algebra shows that

dp  XNu ¢  1—-A1-u?)

du_ D’ ox D

so that (2.10) becomes

l.e.

But this is true because

D=(1-2)2—-u*X22<(1-2)2<(1-2+u?(1+N)>2% O

For a function A on Xy, we write
EA=2"NY"A(e)

so that in particular Z = E. exp(—SH (€)).
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Corollary 2.5. For some 6 = §(a, o), we have

0
EE.Eq exp(—BH(€))1{_p(e)<to} exP(—BH(€'))1{_m(er)<to} €XD € €)’
M
<K (L) .
< 1-3
Proof. We fix € and € in X ; we then see from Lemma 2.4 that

E GXP(—ﬂH(E))l{—H(e)gto} eXp(—ﬂH(EI))l{_H(GI)StO}

M L )\2
S(ﬁ) eXp%(p—lf%

because
L me)<toy L—H(e)<to} < L{—H(e)-H (/) <20} -

We see now that we can choose § such that § +a(p —1)2/2 < 1/2. Then the proof
of Lemma 2.1 and the fact that € - € is distributed like ) 7; show that

i<N
12
v(e-€) <L 0
2N V1—vy

E.E. exp

The next two lemmas prepare to the use of concentration of measure arguments.
As we are dealing with Bernoulli r.v., these arguments require a convexification
procedure; that is, we extend the definition of H as follows. For y = (y; 1) €
[—1, 1]V*M | we define

H(y,e) = —% (Zyi,kﬁi)2-

k<M Ni<N

We denote by [ly|l2 the euclidean norm of y, i.e. |ly[l3 = > v7, and by [ly|| the
ki

norm of y seen as an operator from RY to RM | i.e.

ol = sup { S wevsis Y- 2 =1, 3" o7 <1,
k,i

k<M i<N

Lemma 2.6. Forz,y € [—1,1]V*M ye have

H(z+y.€) — H(y,e) = Z €i€jWi,j
ij<N



RIGOROUS RESULTS FOR THE HOPFIELD MODEL WITH MANY PATTERNS 15

where w; ; = w;j; and where

K
> wiy < o llelldiyll® + llzl3)-
i,j<N

Proof. We write
1
H(y,e) = TON e €€ ( kng yi,kyj,k)
so that
1
wij = =g O Wik@ik + TikYik + TikTjk)-
k<M

Now 9
> (X savie) < iPlel?
iG<N N k<M

and, using Cauchy-Schwarz

S (Caens) < (3 at)( X o)

i, j<N N k<M ij<N Nk<M <
= [l]|3- O

Given y in [—1,1]V*M

YN given by

, we can consider the corresponding Gibbs measure Gy on

Gy({e}) =27 Z ! exp(~BH(y,€))
where Z = Z(y) = Ec exp(—SH (y,€)). Integrals with respect to G, are denoted by

<'>y-

Lemma 2.7. We have

(expB Y ei€jwij)y > exp ( - ﬁ( 3y wf,j) 1/2<(6 : 6')2>§/2)-

1,j<N i,j<N

Proof. We use Jensen’s inequality in the space (X, Gy) to get

(expB D eicjwij)y > expB( Y eiejwi )y

1,j<N i,j<N

and we use Cauchy-Schwarz, since > (eie;)s = (€ €'))y. O
ii<N

Proof of Theorem 1.1, Lower bound
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Step 1. We decompose Z as Z; + Y where

Y = Ec.exp(—BH(€))1{_H(e)<to}
is the “main part” of Z and

Zy = Ec.exp(—BH(€))1{_H(e)>t0}

is small (but badly behaved). To see that Z; is small we use that from Lemma 2.5

(2.11) EZy < (1—=p8)"M2exp ( - %)

It follows from Lemma 2.1 that

EY =EZ —EZ; > (1—p)~M/? (% — eXp(—%)>

Since M/N < ay, considering separately the case where N is small yield

1
(2.12) EY >

> E(l —B)~M/2,

On the other hand, Corollary 2.5 implies that

(2.13) EY?<K(1-p)~™.

We then appeal to the following elementary fact (“Paley-Sygmund inequality”):
for any r.v. Y > 0, we have

EY, _1(EY)?

. > —) > - .
(2.14) P(Y > =) > s
With (2.12), (2.13) this yields
(2.15) P > i(1 — B)~M/2) > 1

. > >

Step 2. In order to use concentration of measure arguments, it is necessary to
think of the quenched variables § = (n; %) as a point of the space {—1,1}V*M
provided with the uniform probability. The aim of this step is to show that we can
choose K large enough that P(A) > 1/K, where

A={ne (=L MZ > L(1- )M (e €)) < KN

Il < KV'N}
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Here, as before, ||n|| is the operator norm.

We consider § > 0, and we write

%) = Z_zEeEer exp(—ﬂH(e) _ 6H(€I) + %(6 ) 6')2)

< Z7?(Uy + Us)

(2.18)  (exp

where
o
U, = EeEe’l{—H(e’)Sto}1{—H(e)§to} exp(—,BH(e) - ﬂH(EI) + N(e . 6’)2)
o
Uz = EEo (L{—(e)2t0) + L-H(e')2t0}) exP(=SH(€) — BH(€') + (e €)?).

Thus
Uz < 2Z66NE61{—H(6)2150} exp(—,BH(e)).

It then follows from Lemma 2.3 and Corollary 2.5 that we can choose § > 0 de-
pending only upon «ay, By such that (2.18) implies

(2.19) {exp %(e V< ZU + 2727

where EU, < K(1 - )M EV; < K(1 — g)~M/2,
Now, we know from (2.15) that we can find Ky such that P(B) > 1/K, where
B={2>(1-p)M2/Ky}

and (2.19) implies

Since 5 5 o

exp (€ €)?) < (exp (6;) )
and since ||n|| < K+v/N with probability > 1 — e~ MK (see Lemma 10.3) we have
shown that P(A4) > 1/K. O

Step 3. Consider v > 0 and the set
C={ze[-L VM 7(z) < e (1 - B)~M/2).

The definition of Z(z) shows the all important fact that C' is convex. It follows
from general principles [T2] that we can find y in A,z in C such that z = z — gy
satisfies

1
(2.20) lz|l2 < K4/log P
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where
N M
P=PBnN{-1,1}"")=P(F < 7log(1 —B) —u).

With the notation of Lemma 2.6 we have

x| z||4
>ty <x (15l ),

ij<N

The key observation is that

Z(z) = Ecexp —(H(y,€) exp S(H(y,€) — H(2€))
= Z(y)(exp B(H(y,€) — H(z,€)))y

Combining Lemmas 2.6 and 2.7, and using the properties of A, we have

22 K71 = 5) M exp (- &l + |f}%))

Since z € C, this implies

w_ K < K<”x“2+ |I$I|§)_
VN

Combining with (2.20),

1 K 1

2
so that P < max (eXP—<u}K> ,exp—%).

But, since obviously Z > 1, only the values of u < KN matter. Theorem 1.1.
follows easily. O

Proof of Theorem 1.2.

We write

(exp (e €)7) < exp (e - )2

_ 1/2 — 1/2
SZ 1U1/ +Z 1/2‘/1/

where Uy, V; are as in (2.19). Now (1.5) implies that EZ~2 < K(1 — 8)M, so use
of Cauchy-Schwarz finish the proof. (|

Proof of Theorem 1.3.
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For further purposes, we will prove a bit more than what is needed for the proof
of Theorem 1.3, by allowing the case h > 0. Throughout the paper, for a function
A: EN—>]Rd(d<1N -), we write A = A — (A). Thus é = € — (¢). Note that,
by symmetry, € = € when h = 0.

Consider the symmetric bilinear form on (RY)?2 given by m(z) - m(y) where

We find an orthonormal basis ('vp)p< ~ of RV and numbers ()\p),<n such that

(2.21) m(zx) - Z Ap(vp - ) (V) - Y).

p<N

Thus for any natural number £, we have

(m(€) -m(€)* = ( > (v &) (v - é')>e

p<N
= Z)‘pl " Apg H(”pr -€)(vp, - €).
r<f
Here and below, the summation is over all choices of indexes p1,--- ,ps < N. Using

the replica trick, we get
(m(@) -m(@)") = 3 Apy - el (v, &)+ (v, -)?
e o
<A Z(('vm '6) -+ (vp, - €))?
where A = max |Ap|- To handle the summation in the last term, we perform the
p<
same computation of before, taking now A, =1 for all p, to see that this sum is

(O (vk - &) (vr - €))% = (€ €)")

k
Thus, for all £,

(2.22) ((m(&) -m(&))*) < AX{(e-€)°)

and power series expansion show that

5 - . 2 5 - . 2
(exp o5 (m(©) -m(€)?) < (exp - (6-€)7).
Now, using (2.21) for x = y = v,, show that

A < sup{[lm(z)||% [|zll> < 1}

and, with probability > 1 — 27V this is at most N=!(1 + K+/a)?. Theorem 1.3
follows. O

We will use the following corollary of the proof.
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Corollary 2.8. There exists a number K such that for all o, 8, we have

(2.23) E((m(¢) -m(&))”) < (1 + KVa)'EN"*((é-€)?)
+ a22_NN2

Proof. We take expectation in (2.22) for £ = 2; on the exceptional event A >
N='(1 + K+/a)? we use the trivial bounds A < a,e-€ < N. O

More results can be proved. For example, Theorem 1.7 of [T4] extends imme-
diately to the present setting. An interesting question is whether Theorem 1.8 of
[T4] can be adapted too.

To conclude this section we show that when 8 < 1 (whatever the value of ),
the overlaps my(€)(k > 2) are small. In this result, we again allow the case h # 0.

Lemma 2.9. If < 1,h >0, for2 <k <M and u > 0 we have

L exp(- (1 - ppud).

(2.24) B(G{mi() 2 u})) < Z= 4

Proof. We consider
N
7, = E.exp (% Z m3(€) + ﬂth1(6)>
t#£k

so that Z > Zj. Denoting by FEj, exception at the variables 7; , fixed for £ # k, it
suffices to prove that

27y
= /T=-3

exp(~ 77 (1 = B)?).

Indeed, after dividing by Z, since Zj, does not depend upon (7y,;)i<n, we see that
the left-hand side dominates Ex(G({mg(-) > u}). To prove (2.25), for 8’ > 3, we
write, using Lemma 2.1

N
Exl{m,(e)>u) €XP %mk (€)?

/

Nme(e)? < (1= §) 7 e~ (8~ 6)

N
< exp(B — ﬁ/)EEk exp 52

and we take 8’ = (1+ 3)/2. 0O
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3. Emergence of Memory.

In this section, we prove Theorem 1.4.. In order to avoid a number of trivial but
confusing difficulties, we assume § > 1/2; and we leave the case 8 < 1/2 to the
reader. One should observe that the case 8 < 1/2,a < 1 is in fact (in principle)
completely understood because we will calculate the limit of the free energy in
Section 5.

On RM | we consider the Gaussian probability v of density W exp(—AN||z||%/2),
where W is the normalizing factor W = (NS/27)™/2. We will use the Hubbard-
Stratonovich transformation, that is, we will consider the measure G = G’*+y, where
G’ is the image of G under the map € — m(€). Since + is sharply concentrated on a
ball of radius v/a/B, it suffices to prove that EG(C) < K exp(—N/K) for the sets
C of Theorem 1.4.

Considering the vectors 9; = (9; x)k<m of RM | we define the function (depending
upon the quenched variables)

N
(3. 0(2) = =2V el + Y logehBn: -z + hi1)
i<N

where ||2||*? = 3", 22 The following lemma occurs already in [P-F1], and the

simple proof is reproduced for the convenience of the reader.
Lemma 3.1. The density of G at z with respect to Lebesque measure is W Z =~ exp (2).
Proof. This density is

=

N
WZ'E, exp (%Hm(e) :

Iz~ m(@I” + ﬂth1(6)>

=WZ texp —ﬂ7N||z||2Ee exp(BNz -m(e) + BhNm (€))
=WZ lexpy(z)

where we used the fact that

N(m(e) - z + hNmy(e)) = Z €N -2+ hni1) O

Our first task is to find lower bounds for Z. We observe that, from Lemma 3.1

(3.2) Z=W exp ) (z)dz.
RN

Consider a number a to be determined later, and b = B(a+h). We make the change
of variables z = ae; +v. We make an expansion of logch(b + ft) at order 4 using
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Lemma 2.2, to get

N N
(3.3) Y~ (v) =:(2) = —%cﬂ + Nlogchb — ’3—||'v||2 — BNav - €,
+thb Y A1 (n; - v) 2h2me
1<N
B3 thb
<N <N

where |R;(v)| < 1.

We observe that, for any rotation U of RM, we have

Z=w / exp ™ (v)dy = W / exp 4~ (U (v))dv

If we denote by dU the Haar measure on the group of rotations, by Jensen’s in-
equality we see that

(3.4) Z > W/exp(/ Y~ (U(v))dU)dv

The idea there is that the inner integral greatly simplifies the expression (3.4).
Indeed, for any vector z of RM, and p € N

(3-5) /(-"r U ()PdU = cplz||”[o][P

where the number ¢, does not depend on z and v. To estimate ¢, we apply (3.5)
to a Gaussian vector X of covariance matrix the identity and we take expectation,
to get

cp B[ X||P = Eg”

where g is N(0,1). Thus, ¢; = c3 = 0,c, = M1, and, since E||X||* > (E||X]|?)?,
we have ¢4 < 3M 2.

Thereby since ||n;]| = M/ for each i we have proved that

a’p BN B 2 4V
> - — — — -
Z>W expN( 5 + logchb> /exp ( 5 (1 ch2b) |lv]|* — B 5 ||| )d’u

By change of variable, we see that if X is as above

B —-M/2 2B 52 X 4
Z > (271'(1 — @)) expN(—aT + log chb) E exp ( — N —”[3/”ch2b)2>'
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We apply again Jensen’s inequality to the last term, and we use that E||X||* <
LM?. As for choosing a, it is appropriate to choose it to maximize the main term

2
—9;§4-bgch5@z+in

i.e. a =thB(a + h) that is a = m* = m*(3, h).
We observe that

1_ 21 2 * 1 _ an*2
g = L th?b=1—th’f(m" + h) =1 - m*.

Also, the derivative of the function a — th3(a + h) decreases, so that if m* > 0 at

a = m* this derivative must be < 1, so that (1 — m*?) < 1. To simplify notation,
we set

(3.6) atf=1-— /3(1 _ m*2); b* — _

*2
ﬂrg + log chB(m* + h)

(it might provide some insight to observe that b* is the free energy per site for the
Curie-Weiss model).

Throughout the section we consider only the case m* > 0 (i.e. either 8 > 1 or
h # 0) so that a* > 0. We have shown the following.

Proposition 3.2. We have

M/2
(3.7) Z > (L> exp (Nb* — M)

La* a*?

It should be observed that this bound holds for all values of a, 3, and of the
quenched variables.

Corollary 3.3. If

(1*2

:82

(3.8) a <

we have

1\ M/
Z > (—) exp Nb*.
La*

To understand a* better we note the following.
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Lemma 3.4. We have

*2
(3.9) mL <a*
If B > 1, we have
(3.10) a* < 2m*?;min(1,8 — 1) < Lm*2.

Proof. If B < 1, we have m*? < 2a*. Indeed this means
m*? < 2(1 — B) + 26m*2.

Since m*? < 1, it suffices to distinguish the cases 8 < 1/2,8 > 1/2. We now
assume 3 > 1. First, it is obvious that m*(8, h) increases with h. Next, as f —
1,m*2(3,0) ~ 3(8—1) so that

1—B(1—m*(8,0)%) ~2(8 - 1).

Also, 1— (1 —m*(8,0)?) stays away from zero as 3 stays away from one. To prove
the second part of (3.10), one can assume h = 0, and the result is obvious. To prove
(3.9), i.e.

m*2

L

it suffices again (if L > 1) to consider the case h = 0, where this is obvious. Now,
to prove the first part of (3.10),

Sl_ﬂ+,6m*2:a*

a* =1—-pB(1—m*?) < 2m*?
is true if 2m*? > 1. If m*? < 1/2, then
a* =1-p(1-m"?) <1~ p/2
so it suffices to consider the case 8 < 2. But then
a*=1-B(1-m**) =1- 8+ pBm** < 2m*% O

In conclusion, for 8 > 1,a* is of order m*2. (On the other hand, for % < B <
l,a* =1— B+ Bm*? is of order 1 — B+ m*?, and, possibly m*? << 1 — f3).

In trying to find upper bounds for v, we write, with some loss of information

(3.11) logchB(n; - 2+ hn; 1) < logchfB(|n; - z| + h)
= ¢((n: - 2)")

where ¢(z) = logchB(\/T + h).
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Lemma 3.5. We have

o"(z) < —% min(1,z~%/2).

Proof. If p(x) = f(y/x), it is straightforward that
1
J'(@) = o (VEF(VE) — £ (VD).

Here f'(y) = BthB(y + h), f"(y) = B*/ch®B(y + h), so that

y B ([ Ba
o) = i (g ~ A+ )

L 2 (B )
8x3/2 ch?B(y/z + h)

< B8 2t — sh2t
— 8x3/2\  ch?t

for t = B(\/z + h). Now, distinguishing the cases t <1 and t > 1, we see that

2t — sh2t 1 . 5
W S —z mln(t ,].)
so that
¢"(z) < —% min(1, z~%/2) O

Since m* < 1, it follows from Lemma 3.5 and Taylor’s formula that

(3.12) e((mi - 2)?) < p(m*?) + @' (m*?) (s - 2)* — m*?)
D min 1, (- 22— m™)?)
Quite conveniently, we have

ey — P o P
#(m*®) = S th(m* +h) = 2

so that, by summation of the inequalities (3.12), and after regrouping the terms we
get

3.1) 0@ <30+ 2 (2 - el

~ 25 min, (i -2)° — ™)),

i<N
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The last term there is crucial. In order to study its influence, we fix z and we
write

(mi - 2)* = |l2||” + X,
where

(3.14) X; = Z Ni,k"i,e 2k 2¢-
ke

Thus, if Y; = Y;(2) = ((n; - 2)2 — m*?)?, we have

Y; = (X; +b)?

for b = ||||> — m*2.

We observe that EX; = 0, so that EY; = b + EXZ?. We also observe that
EX2=Y 2222.
=,

It is general fact that for a r.v. of the type (3.14) we have EX} < L(EX?)?
[Bo]. Thus

EY? = EX] +4EX}b+ 6 EX7b* + AEX;b + b*
< L{(EX?)? + (EX?)%/%b + 6 EX2b? + bY]
< L(EX? +b*)? = L(EY;)>.

Use of the Paley-Zygmund inequality (2.14) yields

(3.15) P(Y; > EY;/2) > L™

To simplify notation, we set

R(2)(= EY:) = (|l2]” = m**)> + ) _ 222
k#L

Lemma 3.6. Assume a < a*?/83,8 > 1/2. Consider the event Qg of Appendiz 2
(Lemma 11-3), and Lqy such that on Q¢ we have |m(e)|| < Lo for all e € X (as
provided by (11.4)). Consider a subset A of RM . In order to prove that

(3.16) E(G(A)) < K exp(—N/K)

(where K does not depend upon N ) we can assume that A is within distance Lg of
the origin, and it suffices to prove that I(A) < K exp(—N/K), where

exp | S oun(Y - 27 = Nel?)) - 2 s

Qo <N

(3.17) I(A) = (LBNa*)M/? /

A
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Proof. To prove (3.16) it suffices to prove that

(3.18) E(1a,G(A)) < K exp(—N/K).

The ball B of RY consisting of points within distance Ly of the origin satisfies
G(B) > 1 —exp(—N/K), so that we can assume A C B. Using Lemma 3.1

G(A) =Wz /A exp 1 (2)dz.

Using Corollary 3.3 and (3.13),
10,G(A) < (LANa*)M/? | expU(z)dz
where

0
Now, using (3.15)

Eexp(—% min(1, Yi(2)) < (1 — %) + %exp(—% min(1, EY;(2)/2)).

Also,
(3.19) EY;(2) = R(z) < 3||z||* + 2m** < L,

because A C B. Thus, as 8 > 1/2

Eexp(—% min(1,Yi(2))) < 1 - T R(z) < exp ">

R(2)
-
Thus

sup(Y- (-2 = NelP) ) - 2

0 <N

We will say that a set A that satisfies (3.16) is negligible. For a moment we will
use the estimate

(3-20) up Y ((ni - 2)* — Nl|zl|*) < NLv/allz|?

s
Qo ;N

of Lemma 10.3, so that

(3.21) I(A) < (LBNa*)M/? /A eXpN(ﬂL\/a||z||2 - @)dz.
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Lemma 3.7. If a < a*?/f3, the set
A={z |z]| = c}

1s negligible, where

W\ 1/4
(3.22) ¢ = max <2m*, LpBY/? (a log (L\’ig >> )

(0%

Comment. Here and below, the dependence in 3 are not important; only crude and
simple bounds are used for this.

Proof. For ||z|| > ¢, we have |[z]|? — m*? > ¢ — m*? > 3c?/4, so that R(z) >
c?||z||?/2. Thus, if ¢ > Ly/afB, we have

N
1(4) < (LﬂNa*)M/2/ exp— 7 ||z

lzll>c
Nct Nlz|*c?
< *\M/2 e I lied | Bt
< (LBNa*)™/ = exp( 5T )/exp 5T dz
_ (LB M2 Nt
- c2 P 2L )
The result follows easily. O

Here we see the importance of the critical number

m*4

(3.23) ot =
L1B?log Ly (C,Lnﬂ22>

which is the value of o below which ¢ = 2m*.

To understand o* better, we note that by (3.10) we could also define

m*4

T LB log L2
*4

a*:Tzl for <1, m*?>1-p

o for g > 1

*4
% m

— *2 _
o = L1 log(Lr(1 = B)/m™) forf<1, m*“<1-p

The last two claims result from the fact that, for % <p<l, a*=1-p+pBm?is
of order max(1 — 3, m*?).
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Corollary 3.8. If a < a*, the set {z;||z|| > 2m™*} is negligible.

JFrom now on, we assume a < a*. To decide if a set A is negligible, we can
assume [|z|| < 2m* on A.
Lemma 3.9. Consider 0 < { < 1/2. Then, if ||2|| < 2m*,
2

Vk < M, ||z £ m*ex| > ém* = R(z) > 2£5—6m*4

Proof. If |||2]| — m*| > &m™* /16, then

R(z) > (ll]|* = m**)? = (2]l = m*)?(||z]| + m*)*
> £2m**/256.

Thus we can assume |||2|| — m*| < &m*/16. Now

> iz = llal* = Y =

k#L k<M

Assume that for each k we have z2 < (1 — §)||2||?, where § = £2?/8. Then

Yo 1=0)el? Y =018z’

k<M k<M

so that Y 2222 > 6||z||* > dm**/4 and the proof is finished. Now, if 22 > (1 —
kAt
€2/8)|2l|*, we have 3 27 < £%|2]|?/8, so that ||z — zxex|| < &|z]l/2v2 < Em*/V2.
ik
Also, since ||z]| > |z > (1 — £2/8)/2||2||, we have ||zx| — m*| < ém* /4, so that
|z — m*signziex|| < &m*, a contradiction that finishes the proof. O

L2\ M/2
[ w=(5)
lyll<e M

Proof. Of course we could use the formula for the volume of a ball. It is however
easier to write for A > 0

Lemma 3.10. We have

| ay<exnrs [exp-ylay
lyll<6

o\ M/2
= (X) exp G2
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and to take A = M /262 O

We consider now the set

1
(3.24) A={zeRM;|z|| <2m*,Vk < M, ||z £ m*ex|| > 5™}

Using Lemma 3.9 we now see that when a < o* (and the constant L; of (3.23)
is large enough), (3.21) yield

I(A) < (LBNa*)M/% exp (— NTI?*LL) / dz.
A

Using Lemma 3.10 for # = 2m™*, we then get

L *2 %\ M/2 N *x4
I(A)S<M> exp<_ m )
o L

< Kexp(—KN)

if the constant of (3.23) is large enough.

The set A of (3.24) is the complement of a union of balls. To be able to reduce
the radius of these, we need to improve upon (3.20).

Lemma 3.11. On the event Qg of Appendiz 2, for v,z in RM™ we have

Y (i 2)® — N|jz|® < LvaN||z — ol||jo]| + LvaN||z - o||?
i<N

+ (i) = Nl

i<N

Proof. Setting y = z — v, we have

Y (mi-2)? =Nzl = (ni-9)* = Nlyl* + > (- v)* = N|jo|’

i<N i<N i<N
+2(Z(m-y)(m-v)—Ny-v>- O
i<N

For p > 1, we consider

App={z e RM 2777 Im* < ||z — m ey || < 27Pm*}.

Using Lemma 3.11 for v = m*eg, and observing that (n; - v)? = ||v||? for all i,

we see that
> (mi-2)> = N|z||* < LyaN2"Pm*?
i<N
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so that, using (3.17) and Lemma 3.9,

2—2pm*4
llvll<6é

for § = 27Pm™*. Use of Lemma 3.10 yield

Lﬁa*2_2pm*4 M2 2—2pm*4
when 277 > LB(a/m*?)'/2. We then see that I(Ay, ) < K exp(—N/K) whenever
L *
272 > Lﬁz% log '3*(12 .
m m

Thus we have proved the following.

Proposition 3.12. If the constant Ly of (3.23) is large enough, and if « < o,
then the set

* ﬂ2a Lﬁa* 1/2

1s negligible.

Since a*/m*? < 2, this proves Theorem 4.1 when h = 0, 8 stays bounded. The
weakest point of this result is the poor dependence in #; but this is unimportant,
since we will use a different argument for 3 large.

In the case h > 0, we will prove that the set C' can be replaced by

Bra 1 L,Ba*) 1/2}.

m*2 ) m*2

(3.25) Co = {ll2]} | — m*es]| > (L

The difficulty there is that when 8 > 1, h can be arbitrarily small compared to
m*. As discovered in [B-G-P], concentration of measure provides the answer.

Lemma 3.13. Assume h = 0. Then for any set A C RM | there exists a number p
such that

— N2
01N = P(logGA) -~ 2 1) < 2exp (0 ).

To provide motivation, we first prove the following.
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Proposition 3.14. If0 < h < m*/L, we can replace C by Cy in Proposition 3.12.

Proof. Consider, for k < M,n € {—1,1}, the ball By, centered at nm*ey, of radius
5. Let us denote by G the measure corresponding to the case h = 0 (for the same
value of the quenched variables). Then, by symmetry, the distribution of Go(By )
does not depend upon £, 7.

Thus, there is p such that

— Nt?
(3.26) P(7k, 1, |10g Go(Bin) — 1| > 1) < 2N exp ( - 7).

Let us now try to compare Go(By ) with G(By ). Given y with [ly|| < m*/6,
we have, assuming the radius of By, to be at most m* /6 that

zEBl,l +y=>21 > 2m*/3
YIS Bl,—l +y=2 < —2’)77,*/3
k#1,2€ Byp+y =2 <m"/3.

The influence of the term Nhmq(€) on the Hamiltonian implies that
(3:27)  (k,m) # (1,1) = G'(Br,y +y) < exp(Nhm™ /3)Go(Br.q + y)
(3.28) G'(Bi1+y) > exp(2Nhm* /3)G)(B11 +y).
where G’ (resp. ) is the image of G (resp. Go) under the map € — m(e).

Now, we recall the Gaussian measure v defined at the beginning of this section.
We have

5 Mm*2 Nm*2
Y(llyll > m*/6) < exp(— ) = exp(———)
and thus, by integration of (3.27), (3.28) with respect to v we have
. . . Nm*2
(3.29) (k,m) # (1,1) = G(Bk,y) < exp(Nhm*/3)Go(Bk,) +exp | — )
. . - Nm*2
(3.30) G(B1,1) > exp(2Nhm*/3) | Go(B1,1) —exp | — 7 .

Now, by (3.26), the event
(3.31) Vk,n, |log Go(Bi.y) — p| < Nhm* /12

has a probability at least 1 — K exp(—N/K). Under (3.31), we have from (3.29),
(3.30)

* *2
(3.32) (k) # (0,1) = G(By.,) < exp (5]\’1 ’;m )eu 4 exp ( B Nan )

(3.33) G(B11) > exp <7N1’;m) (eu _exp ( - NTL"”)).
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Thus, from (3.33), since G is a probability,

“ <—7th*) < Nm*2>
e <exp| ——— | +exp| —

12 L

and, using h < m*/L, this is at most 2 exp(—Nhm*/2).

Plugging in (3.32) we get

— Nhm*
U  C(Biy) < 4N exp (— Lm >
(k,m)#(1,1)
and this finishes the proof. O

Proof of Lemma 3.13. We first observe that it has been shown in [T1], Theorem
6.8 that if t < N, we have (when o < 1)

t2
-1 _ >1) < -
P(|p7 log Z — pp| > t) < 12exp ( LN)

for a certain po. Thus, it suffices to show that for any subset A of RV, such that
||| < L for z € A, we have, for a certain p4,

P(\ﬂ_llog/

2
AeXplﬁ(z)dz—uAl >1) < exp(— ! )

NL

For w € [—1,1]V*M we define

vw,2) = 2N P+ Y logchﬂ< S i+ hw,.,l).

i<N k<M

This is a convex function of w, and so is

'w—>/ exp ¢ (w, 2)dz
A

so that
flw) = 571 1og [ expu(w, )z

A

is such that the sets {f(-) < u} are convex. Moreover, since logch has a derivative
<1, we have

[ (w, 2) — (', 2)| < (|2l + 1) VN[w —w'[|2

and thus
flw) = fw') < (L+h)VN|lw—w'||,.

The conclusion then follows from [T2], Theorem 6.6. O
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Unfortunately, Proposition 3.14 requires h < m*/L. However, the difficulty
was the case h small. The case where h is comparatively large can be handled
by separate arguments, that we start now. We make the change of variable z =
m*e; + v, and from (3.1) we get

N N
(3.34) 0(z) =~ = BV o) — pNm*y ey
+ Z logchB(m* + h +n;1m; - v)
i<N

To take care of the last summation, we observe the elementary inequality, true
for b > 0 and all z

thb b
logchz < 22— + logchb — —th
ogchx < x T + log chb 2t b
that we rewrite as
372,32
2b
We use this for b = B(m* + h) so that thb = m*, and we get

(3.35) logch(b + Bz) < logchb + xBthb + thb.

0(2) < 86 = X 1ol + o (3 mami- v~ e -v)

i<N
pm* 2
+ oy > i)
2(m* + h) ==
where b* is defined in (3.6), so that on the event Qy of Appendix 2,
P(z) < =Nb* + Lpm*/a|v||

N h
v i

Consider, for R > 0, the set
C={zR < || =z —m7el < 2R}.
Proceeding as usual, and since we assume h > m*/L, we see that

E(10,G(C)) < (2 PR a2 eXpN<LBm*\/&R_ /32_}22)

«

so that we can take R as small as Lm*\/a, and have C negligible.
It turns out that

o La* ) 1/2
log

(3.36) m*\/a < (

m*2 m*2

since m* < 1. Thus we have proved the following.
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Proposition 3.15. Ifh > 0,a < o* the set

«

2
m*2 log m*2

I8q*\ /2
C:{z,||z—m*el||§L( Ba) }

s negligible.

Proof of Theorem 1.4. Proposition 9.2 (to be proved in Section 9) shows that given

a constant Ly, that there is By, ap, such that if 8 > By, @ < ap, then E(G(C)) <
K exp —N/K, where

1
(3.37) C ={z;Vk < M,||z + m*e| > L—}
0

Moreover, for 8 > [y, we can assume m* > 1/2.

We observe that if 8 < By, Proposition 3.12 (when h = 0) and 3.13 (when h # 0)
prove Theorem 1.4. We consider the case 8 > By, and h = 0. It suffices to show
that in (3.37) the radius L' can be replaced by Ly/a. We have to find a sustitute
for (3.3) (where a = m*,b = B(m* + h)). For a lower bound, we simply use the
convexity of logchz. For an upper bound, we observe that

,82

T 42
2ch2(Bm* /2)

(3.38) logch(b + Bt) < logchb + Btthd +
+ §t21{t|2m*/2}-

The case |t| > m*/2 follows from (3.35), while the case [t| < m*/2 follows from
Taylor’s formula, since, if [t < m*/2, we have (logch(b+ 8t))” < B2ch™2(Bm*/2).
We use this for ¢ = 7; 1(; - v) to get by summation from (3.34) that

blmer-+) < N0 = o)+ N (S0 en)ni-0) = e -0)
i<N

B B
S Gmeja) 2= M0+ 5 D 0 a0l -

i<N i<N

Since 8 > By, m* > 1/2, we can assume 3/ch?(8m*/2) < 1/4. On the event Q of
Appendix 1, we have

> (i v)* < 2N]|jv|* < 2N/L}
i<N

where Lg is the constant of (3.36). Thus if

J={i < Ni(n;-v)>>
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we have cardJ < 32N/LZ. If 32/L% is smaller than the constant &y of Lemma 11.4,
on the event €2; of this lemma we then have

> (i 0)* Ly, wizme 2y < Nlv[|*/2.
i<N

Combining these gives
N
Y(m*e; +v) < Nb* — %||v||2 + Ly/a||v]|-
By a routine computation already done many times, it follows that we can replace

Ly by Ly/a in (3.37).

It now remains only to consider the case h # 0,8 > Bo. If h < m*/L, we deduce
it from the case h = 0, using the proof of Proposition 3.14, and (3.36) if h > m* /L.

Theorem 1.4 is proved. O
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4. The issues of the Replica-Symmetric solution.

The first attempt to justify the RS solution by rigorous means is to be found in
[P-S-T]. The authors assume that

(4.1) VarN ! Z<6i>2 -0

i<N

and try to derive from this condition the equations (1.11), (1.12), where u, g, are
natural parameters of the system. The rather subjective matter of as to which
extend the arguments given there are correct, complete and rigorous is better left
to the reader’s own appreciation, but, in order to avoid confusion, we are at least
obliged to say that in our opinion this paper misses a number of points. Even some
of the lesser problems are not so easily addressed, and taking care of these will
require a rather significant part of our future effort.

Why consider condition (4.1)? It seems to us that the main reason is historical;
the main motivation is the physicists’ prediction that (4.1) fails at low temperature
(in the “spin glass” region). Thus it is natural from this point of view to assume
that (4.1) hold as a condition to ensure that we are outside the spin glass region
and then prove that the RS solution holds. (The much more delicate question of
deciding when (4.1) actually hold is then left by [P-S-T] for future research.)

Let us now consider the condition

L e
(4.2) B—5{(&-¢)?) 0.

We recall that here, as well as as in the rest of the paper we use the notation A
to mean A — (A), where A is a map from Yy to R%.

Even though this is certainly not apparent at this stage, there is a very close
link between (4.1) and (4.2). It does not seem to be known how to show the
equivalence of (4.1) and (4.2) unless one uses the (somewhat mysterious) technique
of “perturbated Hamiltonians”. It is simply for this reason that the authors of
[P-S-T] consider the Hamiltonian

(4.3) H(e) = Ho(e) = VN D grmi(e) — 2 ) gie

2<k<M i<N

where Hy(e) is given by (1.1), and where (gx)rx<m, (9;)i<n are independent Gauss-
ian sequences. The last two terms are intended to be small perturbation terms with
limited influence on the limit of the free energy per site. The last perturbation term
of (4.3) allows to prove the equivalence of (4.1) and (4.2), following a technique that
will be used on several occasions in Appendix 1.

Consider now the condition

(4.4) E{(r-1))?) — 0.
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Here, as well as in the rest of the paper, we simplify notation by thinking of
m(e) as a function m on X, of which m’ is a (thermally) independent copy. It
is proved in [P-S-T] (and in Corollary 2.8) that (4.2) implies (4.4), and a simple
argument will be given in Section 5 to show the converse. The reason for the first
perturbation term in (4.3) is that it allows to prove the equivalence of (4.4) and of
the technically useful fact that

(4.5) Var( ) mi) — 0,
k<M

(with the same method as for the equivalence of (4.1) and (4.2)). However, we must
insist that:

(4.5) Condition (4.4) (or, equivalently, (4.2)) is the central feature of the RS
solution.

Let us now explain this statement. The basis of our approach is to try to calcu-
late all quantities of interest by induction upon N. The first step is that program,
Proposition 5.1 below, is simple algebra. This proposition brings to light the im-
portance of the quantities (exptn-m), where n = (ng)k<nm is independent of all the
other random sequences. It is obviously very helpful to know how to approximate
such a quantity, an idea already central to [P-S-T] (lemma 2.2 there)

Lemma 4.1. Fort <1, we have

(45) (exptn-m) = exp(tn - (m) + = (Im}?) + R)

where

(4.7) E|Ry| < K((B((n-m"))"/? + B _ i)
k<M

+E((llh]|* = (llh]|*)*) + K exp(-N/K)

With a little more effort one could replace the term (E{(rn - m')?))Y/2 by its
square, but this makes little difference under (4.4). It turns out from general
principles (also used in [P-S-T]) that the term E{(||m||?>— {||m||?))?) has a vanishing
contribution so that, under (4.4), E|Ry| — 0 provided

(4.8) E(Y i) —0.

k<M

It turns out that Em? — 0 is easy to get, and we will consider the condition

(4.9) E( Y mi)—0

2<k<M
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that is thus essentially stronger than (4.8).
Not only (4.9) allows to show that

(exptn - m) = exp(tn - (m) + = ()

it implies that conditionally upon all the other r.v. variables other than n, the

quantity > mi(my) is essentially gaussian, and (4.7) gives us a really complete
k>2
description of the r.v. {(exptn-m).

One can then use Proposition 4.1 to obtain a relation of the type

(4.10) (tN+1,Unt1, BN+1) = Vo n(pen,Un, Ry) + small error

where pn, Ry,Un are some important parameters of the system (e.g. un =
E(m.)), where N denotes the number of sites, and where ¥, g is some explicit
function.

Suppose now that we know that there is a point (i, u, r) (depending upon «, 3, h)
such that the following occurs

(411) (,LL, u, 7') = qj&,ﬂ,’l(u’ u, 7').

(4.12) There is a neighborhood V' of (u,u,r), such that if (u1,u1,71) € V and
(Bn+1;Un+1,Tn+1) = Ya g n(ln, Un, ), the sequence (fin, Uy, ) converges to
(1w, ).

Assume moreover that for some N we can prove (un, Un, Ry) € V. Then we are
in very good position to iterate (4.10), and to be able to prove the convergence of
(un,Un, Rn) towards (i, u, 7). Equations (1.11) and (1.12) are then a transcription
of (4.11). There is then a simple heuristic argument (given after Proposition 7.10)
to understand the full result (1.14).

While the function ¥, g is rather explicit, it is not simple, and the range of
values of (u,u,r) where (4.11) and (4.12) hold is by no means obvious. In the
range of Theorem 1.5, it is easily checked that W, g is a contraction. In the
range of Theorem 1.6, we will provide an ad-hoc (infinitely tedious) argument.
Condition (4.12) is of particular interest. It amounts to say that the eigenvalues
of the differential of ¥ at the fixed point (4.11) are of absolute value < 1. While
deciding for which values of the parameters this holds is in principle elementary
mathematics, I could not muster the energy to do it.

Before we discuss the critical condition (4.8) and (4.9), we prove Lemma 4.1.
We will not explicitly use this lemma, because the relation (4.10) will follow almost
immediately from the machinery developed to prove (4.4). Still the proof is very
instructive, and contains a simple occurrence of many of the basic ideas of this
paper. It relies upon a simple second moment computation that allows considerable
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simplification of previous arguments, such as those used in [P-S-T]. (The reader
might rather find, at first glance, that what we do is more complicated than the
argument of [P-S-T], but must keep in mind that we aim at a different level of
rigor).

Proof of Lemma 4.1. We consider an independent copy 5’ of 5, and we set

(4.13) X = (exptn-m), X' = (exptn’ - m),
so that
(4.14) Ep (X — X')? =2E,(X — E;,X)%

We consider a (thermally) independent copy m’ of m and we use the replica trick
to write

(X — X')? = (exptn - (th +m")) + (exptn’ - (1h +m'))
— 2(expt(n-m+n' -m'))

so that

t2 . . .
En,n’(X - X’)Q = 2(exp 5(”"‘”2 + ||m'||2)(exp(t2m -m' + t4B1) — €eXp t432))>

where, for j = 1,2,|B;| < L( S my +m§f)-
k<M

Now, there is an event €y (described in Lemma 11.3) in the quenched variables
such that |[m2||?,||m||? < K when this event occurs, while P(Qq) > 1 — KeV/K,
Using the bound |e? — 1| < |z|e/l, we then see that on

(4.15) By (X — X')? < K(<|m )+ (Y r‘ni>).
k<M

Now,

2.
E,X = (exp 5||m||2 +t*B)

where |B| < L( > mi), and thus, on €,
k<M

|EnX — exp §<||m||2>| < K[( > k) + ([llmwl|* = (|lml*)) |-
k<M
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Combining with (4.14), (4.15) we see that on g, using Cauchy-Schwarz, and the

fact that ( Y. m}) < K,
k<M

E,(X —exp %<|Im||2>)2 < K[( ) + (i - a/|) + (([lrn]|* — (|lm]|*)?) |-
k<M

Writing = yexp R for R = log 7, we see that |R| < K|z — y| when y > 1 and
x stays bounded. Using crude estimates (such as [ -m| < M) when Qg does not
occur, the result follows taking expectations. O

Remark. This proof is the first occurrence of a general fact. In our estimates, the
influence of the fact that sup ||[m(e)|| < K holds only outside an event of probability
exp(—N/K) rather that holding always results only in exponentially small permu-
tation terms (while the main terms are of order at least N=1). In order to make
the proofs easier to read we will from this point on ignore these small effects, and
behave, in all further estimates as if it were true that ||m(e)|| < K for all choices of
quenched variables.

Let us now turn to the study of condition (4.2). Again, this is the crucial point,
and the relations (4.10) represent the end rather than the beginning of the “real”
proof, but of course the reader that is mainly motivated by the fanciful formula
(1.14) should jump directly to (7.14).

To prove that a quantity Fy depending of N (and possibly of the parameters
a, B, h,---) is small, we will simply try to prove that

(4.17) Eni1 < 0En + small term

where 6 < 1, where the value of the parameter on the right is not too much different
from the values on the left. It then suffices to iterate this relation a few times to
prove that Fpy is small.

We first put this idea to use in Section 5. We prove a bound of the type (4.17)
for Dy = E{(é-€')?), and where N is of course the number of spins. This is rather
easy to do, and establishes (4.2) in the range of Theorem 1.5. As in this range
of parameters (4.9) is automatic, we have then already passed the main obstacles
towards the proof of this theorem.

The problem with this first attempt is that there seems to be no way to make
a precise estimation of En41 as a function of Ex. On the other hand, it will
be possible to estimate the quantity (4.4) by induction over N. As the term m;
is better handled separately, throughout the paper we will use the vector u =
(mi)a2<k<n of RM~-1. we will always denote by v a thermally independent copy of .
Thus, we wish to study E{(u-9)2) rather than E{(m-m')?). The centering implicitly
contained in the notation % is not amenable to easy computations so we replace it
by symmetrization 4 = u — u’, where %’ is a new thermally independent copy of
u. At an early stage of the writing of this paper, we observed that computation of
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E{(w-9)?) by induction involve the quantity E{(u%-v)?). As it was not obvious to
relate these two quantities except by the trivial inequality

E((t-9)?) <4E((4-v)?)
it appeared a better bet to study the larger one namely Cy = E{(u-v)?). We know

now how to relate these two quantities by applying a beautiful idea of F. Guerra
(Proposition 10.9 below) but we see no reason not to keep studying Cy.

The first step in the study of Cny1 is algebraic: one makes an expansion and
separate the occurrences of ex41 (or its copies) from the other terms. This is done
in Proposition 6.1 below, that yields a representation of Cy41 as a sum of eight
terms. The most dangerous of these is a sum E >  ngHg e where g is an

2<k A<M

independent Bernoulli sequence. Each term Hy, 4 is potentially of the same order as
Cn. Fortunately Hy , depends only rather little of 7, so there is huge cancellation.
If the variables 7, were gaussian rather than Bernoulli, use of integration by parts
as in E(gf(g9)) = Ef'(g) would take care of the situation. In Proposition 6.2, we
develop a substitute to integration by part, a substitute that expresses Cny 41 as a
combination of reasonable quantities such as (% - v)|[v]|?), etc. and that produces
a reasonable looking error term.

Even if at that stage we could use Lemma 4.1 to approximate quantities of the
type (exptn -m) by C(exptn - (m)), where C does not depend upon 7, we would
still face the fact that these quantities, when they occur in a denominator (as
in Proposition 5.1) are not easy handled. The only way we could imagine was a
conditioning argument upon the variables #-(m). Such an argument was successfully
used in a similar but technically much simpler situation, in the last section of [T4].
Unfortunately we do not know how to make conditioning with respect to a sum
> nrax where the 7, are Bernoulli. To go around the problem we show that the
variables (nx)r>2 can be replaced by standard normal variables with not essential
worsening of the previous error terms. This is the purpose of Proposition 6.3.
Of course an essential point is that this can be done before we have succeeded in
getting any real information about the system, and is very different from saying
(as becomes obvious much later in the proof) that the variables 9 - (m) are nearly
Gaussian. This essential technical step opens the way to conditioning arguments,
and to appropriate expressions. This is the part that requires real care, because
for the purpose of identifying the line (1.18) one must carefully account for each
first-order contribution. This is the purpose of Proposition 6.4, and the reader who
finds this complicated should try to imagine the kind of energy it took to realize
that (6.19) is a successful attack.

At the end of Section 6, we will have the tools to express Cy41 (and in fact a lot
of other parameters of a N + 1 spin system) as a sum of terms depending of a N
spin systems. Some of these look like main terms; the others look like error terms,
of a lower order. Of course it is natural to try to handle as many of the error terms
through general principles. For this reason, rather than the Hamiltonian (4.3), we



RIGOROUS RESULTS FOR THE HOPFIELD MODEL WITH MANY PATTERNS 43

will use the Hamiltonian

(4.16) H(e) = Ho(e) —vo(N) > gemu(e)
2<k<M

where v > 0, (gx)k<m are as in (4.3) and where ¢(N) is a certain function of N
(chosen for example as N'/3). To distinguish this Hamiltonian from (1.1) it will
be called the perturbed Hamiltonian, while (1.1) is the original Hamiltonian. The
miracle of this perturbation term is that, when ¢(N)2/N — 0 as N — oo, it has
a vanishing influence on the value of the free energy per site. Yet the existence of
this term allows to prove strong regularity conditions, as will be shown in Appendix
1. There are certainly reasons to feel uneasy about what can appear as unnatural
“tricks”. Possibly this uneasiness will disappear when our understanding deepens.
More importantly is must be said that this perturbating term in the Hamiltonian
should simply be seen as a labour saving device rather than as an essential tool; and
we feel that, with extra work, (involving no new ideas or techniques) one should
be able to dispense from using it. We have however felt that in the present stage,
it was better to present the shortest possible proofs. The reader observes that the
perturbation term in (4.16) does not include the case k = 1. There is no compelling
reason for including or not this term. It makes no difference.

We have felt that it would be confusing to present now the special techniques
that take advantage of the perturbation term (4.16), so these are relegated to an
Appendix, to which the reader will be referred when the need arises. It is the use
of these techniques that requires a technical device (that was already used in [T4)),
namely smoothing by integration of the parameters over a small domain.

General principles however do not allow to control all the error terms. In par-
ticular to control some of the error terms in the computation of C, one must (not
surprisingly) control

Av=E( )  my)
2<k<N
and show first that this is small. The study of Ay is then undertaken also by
induction over N, fortunately requiring no new techniques, and turning out to be
only a side story . This story has an amusing twist, as computation of Ay by
inductions forces to consider an auxiliary quantity By. As the computation of By
by induction uses Ap, one is led to consider combinations pAn+ By. These behave
very well, because for all values of the parameters, one (almost) have a relation

(4.17) PANt+1+ Bni1 < 0(pAn + Bn) + error terms,

where 6 < 1. This does not say that the error terms are easy to control; but one is
certainly led to conjecture that lim Ay = 0 whatever the value of the parameters.

Despite all this work, in order to make the iteration succeed one seem to require
some extra information. In Section 7, we exploit the information obtained in Section
3 for this purpose and we complete the proof of Theorem 1.6.
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The purpose of Section 8 is to identify the Almeida-Thouless line, and it seems
worthwhile to explain in detail what we do there. Assuming that the N spin
system is close to what the RS solution predicts, we compute Cny41 as a function
of parameters of the N spin system. The results reads

(4.18) Cpn41 =60Cn + Error terms + terms involving higher moments.

The most striking feature is that § < 1 if and only if (1.18) holds. The error
terms of (4.18) are small from general principles. The higher moment terms are just
that; terms such as E{(u-v)*), etc. We observe now that forar.v. 0 < X < 1, with
EX small, the only way that EX? is not much smaller than EX is if a significant
part of EX comes form values of X close to 1. The only way it could fail that
E{(u-v)*) = o(E{(u-v)?)) is if a large part of E{(&-v)2) would come from values
where |u - v| is of order one. Rather it is to be expected that the tails of @ - v look
like Gaussian, and that the sets where u - v is of order 1 have exponentially small
contribution. We formalize in Definition 8.1 the fact that higher moments should
be of small order and Conjecture 8.2 asserts that this is the case for the function
(@-v)? and Y. m2. It must be emphasized in the strongest possible way that

2<k<M

this conjecture is extremely weak. Should it fail, the corresponding pathology would
be considerably more surprising to me than the wildest predictions of the Parisi
solution. This of course does not mean that we see how this conjecture could be
proved. Certainly the related conjectures of [T4], in a technically much simpler
situation, should be studied first. Going back to (4.18), the meaning is as follows.
If for N spins, the system is close to the RS solution, then (unless extreme pathology
occurs) the condition (1.18) means that the (fundamental) constraint “Cn small”
is stable against addition of one extra spin. It is unfortunately necessary to give
slightly more complicated statement, because, while the condition “Cy small” is
certainly the crucial one, the condition “Ay small ” is also important.

Theorem 4.2. (Informal version) Under (1.18), if the N spin system is close to
the RS solution, the conditions “Cy and An small” are stable against addition of
one spin (unless extraordinary pathology occurs).

Even though we have not written it in complete detail, the reader should be
convinced after reading Section 8 that, under the same conditions, condition (1.18)
is necessary for the stability of the condition “C'yy small” against addition of one
spin.

In order to find the exact domain of parameters where the RS solution is stable
against addition of one extra spin, the “only” work to do is the analysis of (4.12),
a task with little relationship with the area of interest of the author, and that is
thus better left to others.

As an excuse for studying the stability of the RS solution against addition of one
spin, it must be pointed out that apparently the physisists do not have arguments
that the RS solution is the true solution: they only show a type of “stability”. The
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relationship between their notion of stability and stability against addition of one
spin is unclear to me.

Upon reading our proof of Theorem 1.7, A. Bovier and V. Gayrard [B-G3] dis-
covered a very beautiful different proof of the fact that, in most of the range of
that theorem, Cy and Ay are small, (a fact that, as already mentioned, is the
cornerstone of (1.14)). This proof is quite simpler than ours, at least if one assumes
a certain rather delicate convexity property of the function ¥ of (3.1) they had
proved earlier. This raises the question of whether this convexity property is a
central feature or a lucky coincidence. It should be at least said that our simple
minded method (they simply consists of computing everything by induction on N!)
worked quite well in the case of the SK model, where no convexity is apparent, and
that convexity properties do not yet appear able to reach either Theorem 4.2 or
even the full range of Theorem 1.7. We also hope to demonstrate in further work
the wide range of uses of the iteration method.



46 MICHEL TALAGRAND

5. A first look at iteration.

A first purpose of this section is to learn how to relate a situation for N + 1
(or N + 2) sites with a situation for N sites. As a first application of the iteration
method, we then show that (4.2) hold in the range of Theorem 1.5. The function
© of this section is that of (4.16). In the sequel, given € € ¥y, eny1 € {—1,1}, we
identify (€, en41) with an element of X y.

Proposition 5.1. Consider a fresh sequence n = (nx) of Bernoulli r.v., and set

B'=pBN/(N+1),h = h(N+1)/N,y" =vp(N +1)/p(N)

F=vo(N+1)/NT=h'm+5 > grm
2<k<M

Then, for a function A on Xny1,{A(€,ent1)) has the same distribution as

(5.1) zZ7t Z (A(e,eny1)expent18 (n-m+T))o

eNt+1==x1

where
Z= Y (expeni1f(m-m+T).

EN+1::i:1

Here (-) denotes thermal average with respect to the Hamiltonian

(5.2) HN+1(€,€N+1):—m Z( Z ﬂi,kﬁz’) —h Z 1€

k<M Ni<N+1 i<N+1
o(N +1)
_’YNi—I-l Z Z ik |9k
2<k<M “i<N+1

at inverse temperature 3, while (-)o denote thermal average for the Hamiltonian

1 2
Hy(e) = — IN ( E m,;ﬁ) — I’ E 7,16
k<M

i<N i<N
"o(N
- %() Z ( Z ﬂi,kﬁz’)gk
2<k<M “i<N

at inverse temperature (3.

Comment. What this means is that we can reduce the computation of the distri-
bution of thermal averages for a system with N + 1 spins to the computation of
thermal averages for a system with N spins. In doing so, the inverse temperature
changes from 8 to 3’, and the parameters «, h,~y change slightly. It will become
apparent later that these shifts in parameters play no role whatsoever.
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Proof. We have
Y. EcA(e,entr1) exp(—BHN11(€ €nt1))

ENS1 +1
Y. Ecexp(—BHni1(€ en+1))

enN1=%1

(Ale; eny1)) =

Now, straightforward algebra shows that, setting ng = nniy1

—BHN11(€,en+1) = —B'Hn(€) + BM/2(N + 1)

1
+ €N+1,BI[ > T 7 D minei + I‘] :

k<M i<N

The result follows. (The reader will note that the value of m in (5.1) is indeed the
value corresponding to an N-spin system.) 0

In the sequel we will use formulas corresponding to Proposition 5.1 in the case
where the bracket is not an average over ¥y1 but over Eﬁ, 41 Generalization is
immediate.

Our next task is to relate the quantities in (4.2) and (4.4). Setting py =
N~2((¢-€')?), and expending the dot product, we have

pn =N (éG¢5)°
©,j<N
so that, by symmetry
EpN S 4N_1 + E<é1é2>2

and, consequently
Epnis <ANT' 4+ E(éni1énia)?.

In order to evaluate the last term, we need a version of Proposition 5.1 to relate a
system of N + 2 spins with a system of N spins. With obvious notation, the reader
will check that (A(e, ent1,€n+2)), at inverse temperature S, and for parameters
h,~, has the same distribution as

(5.3) Z78 Y (Aleeniienta)V(ent1, enya))o
EN+1,EN42=%1

where

Z= Y (Vienti,ent2))o-

EN+1,EN+2=%1

Here, ()¢ denotes thermal average of a system with N spins, inverse temperature
B = BN/(N + 2), parameters o/ = aN/(N +2),h’ = h(N 4+ 2)/N,v" = yo(N +
2)/®(N), and

(5.4) V(ent1,ent2) = expleni1f (n-m+T) +en28'(n' -m + 1)

B
m€N+1€N+20 : 77')
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where 7,9’ are independent fresh Bernoulli sequences, where 5’ = BN/(N + 2),

o(N + 2)
T=hm+72"2 3 g
2<k<M

N +2
F'=h'77'1+77(p( ~ ) > gk

2<k<M

We now leave the reader perform the simple algebra needed to obtain from (5.3)
that

E(én+1én+2)’ —E(—(X Y)?),

where
X = <V(1a 1)>0<V(_1v _1)>O§ Y= <V(17 _1)>0<V(_1’ 1))O-

Using the inequality e* > 1 4+ x to find a lower bound for Z, we then get

LEx -y

E{éni1énia)? < 16

To lighten the presentation, we will leave to the reader to show (arguing as in
Proposition 3.3 of [T4]) that the last term in (5.4) has a smaller order influence,
and we will pretend that it is not there. Using 2-replicas we write

X =(expf'(n-(m—m')+n - (m—-m')))
YV =(expf'(n-(m—m')—q - (m—m')))o.

We set n = m —m/, and we consider a (thermally) independent copy n* of n. Thus,
using 4-replicas

X? = (expf'(n-(n+
XY =(expf'(n-(n+n")+n' - (n—n")))o.

We now denote by E,,  expectation as only 1,7’ vary; we assume 8 < 1/2, which
is not a restriction to prove Theorem 1.5. Then we have

By (X — Y)? = 2E7m’(X2 - XY)
ﬁlz *[2
= (exp - (2[ln +n*[" + B))o
B,2 *12 *||2 !
= (exp =~ ([In +n*|[" + [ln —n*[|" + B))o

where |B|,|B’| < L[ > ng —|—n,*;4}. Thus
k<M

Epy (X = Y)? = (exp B2(|In]|* + [In*]|*) (exp(28"*n - n* + B) — exp(B’)))o.
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We use the inequality [e* —x —1| < Lix? for z < L (Since a < 1 we can pretend by
Lemma 11.3 that ||m|| < L, and hence ||n||, |[n*|| < L). We observe that B? < L|B],
and that

(n-n*exp B7%(|In||” + [In*]|*))o = 0

by symmetry (say, exchange of the first two replicas). Thus

Epy (X =Y)? < LB?(((n-n*)%)o + (D niddo)-
k

We now observe that it is an easy consequence of Lemma 2.9 that E(m$)o < L/N2.
Thus, since (n})o < L{m})o and since ((n-n*)?)y = 4((m - m')?)¢ we have shown
the following, where 7y = {(1h - m/)?2),.

Proposition 5.2. If a <1,8 <1/2, we have

L
EpN+2(a7 /67 e h) S N + LﬁzETN(ala 1817 717 h’l)
where o' = aN/(N + 2), and B',%',h’ are as before.

Combining with Corollary 2.8, we then get that

L
E,DN+2(O£, ﬁa v, h’) S N + B2LEPN(O/7 ﬂla ’Yla h/)

Thus if we take 3y such that S2L < 1/2, use of iteration conclude that Epy < L/N
(for & < 1). This information is the main step in the proof of the validity of the RS
solution. The other arguments are by no means trivial. To avoid repetition they
are presented in complete detail only in the more difficult situation of Theorem
1.6. The reader who does not wish to use the tools of Section 6 to establish the
recursion relation 7.22 can do so using Lemma 4.1 (and some tools from Section
10). Analysis of this recursion relation is made simpler than in the case of Lemma
7.9 because the matrix V' there can be shown to be a contraction for 8 small.
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6. The basic techniques of iteration.

The inefficient part of the approach of Section 5 apparently lies in the estimate
(6.1) E{(m-m')?) < (14 Ka)?E((é-€)?).

If we inspect the proof of Corollary 2.8, we observe that (with the notation of
the proof of Theorem 1.3), by rank consideration, at most M of the numbers ),

are different from zero, so that N=! 3~ X, < aA. One could then hope in (2.22)
p<N

the terms Ay, ,---,Ap, would contribute like their average rather than like their
maximal value. If this were the case we could improve (6.1) by a factor La? on
the right, and we could hope to extend the argument of Section 5 to the region af
small rather than 8 small. The above heuristic argument appears however to be
plain nonsense, and the situation to be considerably more subtle.

Rather than trying to improve upon (6.1), we will directly study by induction
the quantity

(6.2) Cn = Cn(a, B,h,7) = E((@-v)*)
=F Z (kahg}(mkmg)
2<k,.<N

Here the last equality follows as usual by expending the dot product. The nota-
tion % holds for “symmetrization”; that is, 4 = u — u’, where u,u’ are thermally
independent. So the bracket in ((@ - v)?) in an average in a 3-replica. Similarly,
’fhk =my — m;c

We observe that we can write

N 1
mg = N+1 Z nzkzez
iI<N+1

where ¢; is the difference of two independent copies of ¢;, or, more precisely, the i*?
component of € = € — €, where €,€ are thermally independent. We substitute in
(6.2) to get, writing 7y rather than nx 41k,

(6.3) Cnt1 = N E D > niw(Emg) (mpma)

1SNH+12<k, <M

=E Z M (EN 170 ) (MK mg)
2<k, <M

using the symmetry between the sites. We now want to reduce to a system of N
spins, so we must remove the dependence of my, my, my upon the last spin. Also,
the normalization factor N + 1 in mj must be changed into N. So we write

(6.4) my =

1
N+16N+177£+N+1U€

where uy E i ¢€0, and similarly from my, m,. We find eight terms.
<N
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8
Proposition 6.1. We have (2F)3Cny1 = Y CI(\?)H where

p=1
CVa=EF Y me(Ensaiie)(weus)
2<k, <M
C.=E Z €N+1ue><€N+1ue>
2<k, e<M

1 .
CVL=E ) N e En-r1tie) (uren+1)

2<k, <M
4
O =B Y amlEni)ew )
2<k, <M
5
C](V—)f-l =FE Z 2"7k €N+1)2)<6N+1’ue)
2<k, <M
6 1 .
CVn=E > ﬁnk<(€N+1)2><uk€N+1>
2<k, <M
7
Cj(vzq =FE Z 2"7€<€N+1U£)
2<k, <M
8 1 .
Cz(vzﬂ =FE Z —3 6N+1)2>
2<k, <M

We would be in trouble if these terms were equally important. Fortunately this
is not the case. Roughly speaking, what happens is that the correlation between
the terms 7x,ne and the brackets following them is weak enough that, (as far as
order of magnitudes are concerned) these terms play the role of a factor 1/N. For
this reason, the leading terms of the previous decomposition are for p = 1,2, and all

the others are of lower order. Certainly this is not obvious now. What we will do

is to study in great detail the most dangerous term, that is C’](V)H, through general

estimates. We will then sketch how to deal with 01(\217 by that time the reader will
most likely agree that the other terms are much easier to handle.

We want to transform the product of brackets in c )1 into a single bracket.
For this, we consider (on ¥y 1) the vector (ug)1<¢<am and two thermally indepen-
dent copies (ug)1<e<mr, (Ve)i<e<m- We write u = (ug)2<e<y (omitting the first
coordinate), and similarly we define ', % = u — 4/, and v.

To simplify the vocabulary, we describe the above procedure by saying that u’, v
are “thermally independent copies of #”, being understood that it is in fact the
pairs (u),u’), (v1,v) that are independent copies of (uy,u).

Thus we have

CI(\}—)i—l = E Z Nk <€N_|_1’I~1g’vk’l)g> = E Z nk<EN+1’Uk(’l~L . ’U))
2<k, <M 2<k<M
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The quantity v (4 - v) does not depend upon the last spin, so that we can appeal
to the version of Proposition 5.1 for a 3-replica.

First, we observe that our sequence (1) is indeed the same as occurs in that
Proposition.

Next, we observe that in (5.1) the product denoted there by 9 - m includes the
term 71 my (which is now denoted 7,u1). We will now abuse notation and still write
7 for the vector (mx)2<k<m; The product n - u does not include the term 7;u;, and
this term has to be included separately. We set

L=hm+7 Y 9wk

2<k<M
where ¥ = y¢(N + 1)/N. Then we have
1
(6.5) O\ =
Uiz N
E Z 8?< Z (ent1 — 6II\/Jrl)'UIc('U' )V (en1, €9V+17 69</+1)>0
2<k<M 6N+1,6§V+1,6’1(,+1::l':1
where
(6.6) V(ensi, 69v+17 69(r+1) =exp ' (eng1m-u + 63v+1"7 u' + 69((-1—177 v
+m(en1ur + ey + ey yav1) + (envt1 + engr + engn)T)
and where
1
(6.7) Z = g( Z exp B'ens1(n - u +mu1 +T))o
6N+1::|:1

The meaning of { - )¢ is as in Proposition 5.1.

We note that exq1 — €y, = 0 unless €y, ; = —en41. Thus, (6.5) reduces to
1 "k ~
(6.8) CY=E Y 175 D Eun(@-v)E)o
2<k<M £.6=%1
where
(6.9) E€=E(§0)=expf'(En-tu+0n-v+Eniiy + Onoy + 61).

Now, we have to address the problem of understanding the correlation of n; with
the other terms. If the r.v. n; were to be Gaussian, we would use integration by
parts. Let us denote by fi(t) the function obtained by replacing n; by ¢ wherever
Nk occurs in the expression

iz—3< Y conli- )€

€,0==%1
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Thus

(6.10) cP,=E > mefilm)-
2<k<M

If we could integrate by parts, we would find C](\}_)I_l =F Y fi(m). We will
show that this is true modulo a small error. s
For any smooth function f on R, we have (integration by parts)
'
) =70 = P+ £+ [ 50 - DO

-1

and thus, using (6.10)

1
(6.11) O -E Y fol< Y / BP0t

2<k<M a<k<M V'~

We turn to the evaluation of the last term. Writing fx(¢) =Y 73 ,Sp) (t) is sum
of terms of the type
Const. Y&) z(&1) .| 7(¢) 7—p=3

where £y + 41+ --- 4+ ¢, = p. (Here we need only p = 3; the case p = 4 will be
needed later.)

Using the replica trick, each of these terms can be written

(6.12) (22)7P728P( Y Cug(a-v0)ay - 2pE)o.

5;907"' 7€p::|:1

Here

E=expf(n-a+n-( Y 0w +nm( Y 0wf)+ () 0)T)

0<t<p 0<t<p 0<t<p

with the convention that ny is everywhere replaced by ¢. The bracket represents an
integral over Z?V-"E’; the variables v,0 < £ < p are (thermally) independent copies
of the overlap vector u; and, for £ =1,---,p, zy is one of the quantities

&g, + Govp + Vr; Oevi + VG-
We expend the product z - - - z,. We use the inequality | [[ ye| < L(p) Y |yp+1|

2<p+1 £<p+1
to get that each term (6.12) is bounded by a sum of terms

(6.13) (|- v||22TE)o
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where zj, is one of v, @g, vE (£ =0, , D), Vgx-

We take expections, integrate for —1 < ¢ < 1; keeping in mind that, since
©(N) < VN, we have 7* < N=2, we then see that the right hand side of (6.12) is
bounded by

(6.14) KE((\'&-v|(k§/Iui+u;€4+v,‘§+w,‘§)>)+ \/%

where (wy) is an independent copy of (vg) (we could in fact put K /N rather than

K/V/N).

Proposition 6.2. (Integration by parts) Within an error at most (6.14), we can
write

(6.15) cGh Sl + e + oG,
where
1 _ -
Ot = JBEZ7 Y (@-v)*€(£,9)0)
£,0=+1
1
Oty = A B3 Y €8(@-v)[v]PE(E, 6))o)
£,0==+1
Cyh = ——ﬂ’E ( Y &o(@-v)(w-w)EE0E())o)
£,0,0==%1

for £(&,0) given by (6.9) and
E'(8) = exp B (69 - w + dnrwy + OT).

Proof. We use (6.12); we compute f;(n,) and regroup the terms, using formulas

such as @ -v = ) ugvg. We then find the terms described in the statement
2<k<M

of the Proposition, plus some other terms, that arise from the fact that I' depends

upon 7. Viewing fx(t) as a quotient, there are two such terms. The one occurring

when taking the derivative of the numerator is

—vng Ziﬁvk i-v)E

To compute the expectation we integrate by parts in g, at all the other variables
fixed. We then take absolute values, and the expectation in the variable 1, (g¢) ¢k
We then get a bound 72K E(|vg|)o. To evaluate the sum over k, we use that

D okl < VMY i)',

k<M k<M
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Since 72 < Kp(N)2/N? < K/N, the result follows. (The term coming from the
denominator is handled similarly.) O

So, we now have to learn how to compute 01(5)4_1,9 < £ < 11. An essential
ingredient of the main computation will be a conditioning argument with respect

to a variable of the type Y.  bgmg. To make this argument possible, the following
2<k<M
is an essential step.

Proposition 6.3. (Gaussian smoothing). In equation (6.15) we still make an error

at most of type (6.14) when we assume now, in the definition ofCI(\flLl(Z =9,10,11)
that the variables (g)k>2 (but NOT n1) are standard normal rather than Bernoulli.

Proof. The method we use was invented by Trotter to prove the CLT without using
characteristic functions. Consider a function S from R¥~1 to R. Given independent
N(0,1) variables (gx)2<k<m and independent Bernoulli variables (nx)2<k<m we
want to compare Ly = ES(ng,--- ,num) and Ly = ES(g2,--- ,9m). To do this we
consider Ly = ES(92,- - , 9k, Mk+1,- - s M) and we write

L1 — Lu| < Z |Ly1 — L.
k

In other words, we replace the n;’s by the gr’s one at a time. Consider, for a given
k, the function

fk(t) = 5(927' e 7gk7t777k+27' e 177M)
Thus

Z 10 /07('f 40

Using the fact that the first three moments of 7, and g coincide, we have

\Li+1 — Li| = |E(fr(g9x) — fre(nx))|

< Elgi|* sup |fP(u)|+ E sup [ (w)].
|u|<|gr] [u]<1

The function fi is the same as before. Very much the same estimates as those used
in Proposition 6.2 finish the proof. U

In the previous propositions, we have conducted the calculation in the case of

C](Vzrl because it should be obvious how to conduct this calculation in the other
(simpler) cases we need, so that it was useless to state a general result. On the
other hand, the main calculation is more delicate, and it helps to formulate a general
principle that will cover all the further needs. The framework is as follows. We
consider a small integer p (say, p < 10). For £ < p consider thermally independent
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vectors wy distributed like u. We consider d, € {—1,1}, and we set A = > d,. We

<p
consider a real-valued function f = f(n1,ws,--- ,w,), and the bracket
(6.16) U= (fexpB'(n Z(Sgwg +mz5e wie+ b))+ Ay Z 9kMk))0-
<p <p 2<k<M

We consider

7 = % Z (expB'(&n-u+m(ur +h') + &5 Z gKMk))o-

£=+1 2<k<M

Consider now a standard normal r.v. ¢ that is independent of all the other
variables. We consider the r.v.

(6.17) Y = B'(gll{woll + m({ur)o + 1))

Proposition 6.4. In order to evaluate E(U/ZP), we can use the approximate
equality

U
(6.18) ()~ T+ I+ T+ V4V
where
exp AY
I=E(—_ 5y (o)
exp AY
L= B2B(= o (f > ebibs - iber)o)
1244
AY
I = — 32 E(2
B E( SN (f ) g - b)
<p
2 eprY
IV = fPAB(— o fzéewe

= —ﬂlsz(eXp AY hpY Z(Se’lﬂg

The error made while using (6.18) is at most » E(]) where

E(1) = KE(|f| ) (e -e)*)o
L<p+2

E(2) = KE(|f| ) (is-b)*)o
<p+2

E(3) = K(Ef%)Y2(B((lull® - (|lu*)0)*)o)*?
E(4) = K(Ef?)?(B{(u1 — (u1)0)*)o) /2.
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Proof. The first task is to show that the term containing 7 creates only lower order
effects. Let us denote by V the quantity defined as U, but with ¥ = 0. We simply
write

vV U
E|§ - §| <E[V|expAY Y grme — 1
2<k<M
< (EV?)Y2(E(exp A7 Z geme — 1)%)1/2
2<k<M

Since yM < ap?(N)/N < «, a straight forward computation yields a bound
Kp(N)2/N, that goes to zero if, say, p(N) = N/3.

At this stage we have seen an example of each of the arguments needed to show
that the perturbation term in the Hamiltonian creates only errors that go to zero
with ¢(N)?/N. Before the real work starts, it is better, for the clarity of the
exposition to decide once and for all that all terms containing ¥ will be ignored,
and that we can pretend we work with the original Hamiltonian rather than with
the perturbed Hamiltonian.

Throughout the end of Section 8, we will use the notation b = (u)y. The key
idea, also central in [T4] is that a bracket {(exp {A'n-u)o depends upon 7 essentially
through # - b. Thus, if we write

(exp B'(&n - w4 m1(ur + h')))o = exp B'&n - blexp B'&n - + n1(ur + h'))o

the last bracket should be essentially independent of 7, so almost equal to its
expectation in . Approximating ||u||? and u; by their averages for (-)o, we are led
to set

(6.18) Z = chf'(n-b+m((ur)o + 1)) exp ﬁ—IQ(II?lIIz)o

2
= AchY

where A = exp &7 (i *)o, Y = £'(n b+ m ((ur)o + I')).

We will write

U U U@Zr-2zr) U(ZP— 2ZP)?
YAS 7D 72p 727D

The expectation of the terms on the right will first be computed conditionally on
7 -b. Thus, we first must learn how to compute such expectations.

RM—I

For a vector = of , We write

b(z -b)
16112




58 MICHEL TALAGRAND

Thus R(z)-b = 0 so that R(x)-n is independent of n-b, while S(z)-n is proportional
ton - b.

We denote Fj conditional expectation given n -b. The typical computation is
that, for a vector  of RM—1  we have

Eyexpn -z = Egpexp(n- R(zx)+n-S(x))

- S RTE)

Thus

12
B0 = { exp " R(Y s> + B - S dowe)

<p £<p
+B'm (Y Se(wre +1)))o-
£<p
The game now is to extract from this a manageable expression, allowing small

€rrors.

We observe that (by construction) (wy)o = b, so that w, = wy—b. Since R(b) =0,
we have R(wy) = R(wy). Since ||z||? = ||R(z)|]* + ||S(z)]|?, we then have

/2
(6.20 B = (fTexp 2| > bl
P

where

(6.21)T = exp (ﬁ'n . S(Z dewp) + B'?h(z Se(wi e+ h')) — ;HS(Z 5611111)“2)-

£<p ¢<p ¢<p

We write

1D Setivell = D lltbel|* +2 ) 8ptivg - tvpr.

t<p <p e<p
We use the inequality
(6.22) e® —x—1| < z2el!

to see that we can write

12

(6.23) EoU = X1 + (fT(1+ B Ze: Wy - Wer) eXp % ; lel|*)o
P

where E|X1| < E(1).
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We write
|[tog||® = ||we]|® — ||b]|* — e - b

and we use again (6.22) to obtain

/2
+(fT(U+ B2 ebpive -t — %) g -b) exp % > (lwell = 111*))o

<l £<p L<p

and | X,| < E(2).

Now
[well® — (161 = llwel|> — (|[well*)o + ([lbell*)o

so that, recalling A = exp BTIQ(||11||2)O, we can use |e® — 1| < |z|e® to write

(6.2550U = X1 + Xo + X3 + AP(fT(1+ B> 8pdptivg by — ) by - b))o
1234 2<p

where (using Cauchy Schwarz) we see that

E|X3| < K(E(f?)0)"*(B{(lul® — (|lull*)0)*)0) /2.

A similar argument shows that we can write
(626) E0U2X1+X2+X3+X4+U1

for
U= AP(fT'(1+ B Y 8ubpivg -t — 87y dotwer -b))o

e <p

where T” is defined like T, except that we replace wy ¢ by (w1 )0 = (u1)o, and
where

Eo|Xa| < K(E(f?)0)"/*(E{(u1 — (u1)0)*)0)"/*.

Since S(b) =b, and Y 6, = A, we have
L<p

T' = exp(B'An b+ B'mA((uso + 1) +0-be — [Ib]*c*/2)

where

ch=B'S(>_ dai).

L<p

Now we are interested in evaluating F(U/ Zq), where 0 < ¢ < p. Since Z > 1,
writing
U EU
A—) = E( P
Z1 VA

E( );
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we see that we can replace U by U; of (6.23). We will first integrate in the gaussian
variable ¢ = - b (then in the quenched variables). To integrate in g, (we denote
this by E,) we observe the following elementary fact. If W is a real valued function,
and g is N(0,0?), we have

c2o?

(6.27) Ey(W(g) exp(cg — ——)) = EW(g + co®).

Now,we can write
(6.28) EW (g +co®) = EW(g) + co®’EW'(g) + R
where
R| < P E( sup [W"(g+1))).

t|<co?

In our case,

Wio) = P I8
(chB'(g + m ((u1)o + h')))1
so that gA gA
/ _ ar A XD g ) €XP g
Wig) =B A— v — a8 — o thY

and |W"(t)| < K exppf'|t|. Since 02 = ||b||?, we have

=B'(D_ Sy - b)

<p

To evaluate E(U;/ch?Y), we write

Uy

Ichay = AP(fE,W (9 + co®) exp B'mA((ur)o + 1'))o

where

F=FA+p7Y 6yt -ty — B> we-b)

o<t (<p

and then we use (6.28). The expected value of the remainder term is bounded by
E(2). Thus, within errors Y E(j), we can approximate E(U/ch?Y’) by the sum of

i<4
the following terms

_ expAY -
(6:29) 415222 o)

_ eXpAY
(6.30) APTIB AR (———— v (f ) Seipe - b)

<p
AY

(6.31) — APTIB'%E (eXEqY thY (f 3~ dpabg - b)

L<p
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The reason we can put f rather than f in (6.30), (6.31), is that doing this creates
only further errors of the type E(1), E(2).

Consider now the case ¢ = p. Taking in account that 7P = APchPY | we see that
(6.29) is the term I + II + III of Proposition 6.4, while (6.30) is IV and (6.31) is V.
Thus, to finish the proof, we have to show that the last two terms of (6.19) produce
a contribution controlled by the error term Y E(j).

<4

First, we consider the case of the second term of (6.19). We write it as a sum of

terms of the type

Uz U’

.32 A R A AV 4 -
(6.32) U ( )/ Ze  Zai

for p4+1 < ¢q < 2p, where U’ = UZ9P~! and we write

U'Z U’ 1

!
X ~——=—(DtT+D7) — AU
YA VA 2 Zq-1

where .

U
Dt = P (expB'(n-u—+ni(ur +h')))o

and D~ is defined similarly with a minus sign in the exponent. We use the replica
trick to make each numerator appear as of the type (6.16). Now we have g variables
wi, -+ ,wq. Most importantly, f depends only upon wy,--- ,w,, so that, by inde-
pendence, {fwy -y )y =0 = (fwy - b)o unless £,£' < p. It should then be obvious
that if one considers the terms (6.29) to (6.31) arising from D+, D=, U’/Z9~1, these
terms cancel out when calculating E((Dt+D~)/2—U"/Z9). As for the error terms,
they are controlled by > E(j). (Observe that in the definition of E(1) to E(2),
<4

we have taken £,/ < p + 2 to make sure that terms where Wy, are independent
of f occur, as these terms occur in the control of DT, D~.)

Now, to control the last term of (6.19), we write

U(Zp — Zp)2

B(
VAINAY

) < E(U|(Z7 - 27)).
We bound |U| by the expression of the type (6.16), replacing f by |f|. We then
proceed as in the case of the previous term. O

The error terms E(3), E(4) are not dangerous. While it cannot be guaranteed
that these terms are small for a given value of the parameters, Proposition (10.8)
shows that they are small once we average over the parameters. To simplify notation
we will denote by Ax a nonnegative term (depending upon f,+, h) that has the
property that

lim AndBdhdy = 0.
N—00 Jg<By,h<ho,|v|<1
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These terms are “automatically small” in the sense that we already know they are
small, in contrast with other terms that will be proved small through iteration.

Controlling the error terms E(1), E(2) is trickier. We will use two different
techniques to do this; this is the object of the next two sections.
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7. The small o region.

In this section we prove Theorem 1.6. We will first assume g < 2, which is the
difficult case. We will then indicate the modification to make in the case 8 > 2.
We will make use of the results of Section 3, and in particular Proposition 3.15.
(The reader will check that this Proposition remains valid for the perturbated
Hamiltonian.) We assume that for a certain number S, we have

(7.1) E(G({|lm —m”e:1]| > 5})) < K exp(—N/K).

There, G is the same Gibbs measure as in the bracket ( - )o.

In particular
E(G({llull = 5})) < K exp(—N/K)

since the vector u simply forgets the first coordinate of the overlap vector m.

As usual, we will ignore the exponentially small terms arising from the fact that
it is not true that |lu|| < S always.

To study 01(33-1 we observe that it is the average of 4 terms (corresponding to
the choices of &, 0), that are all of the type of Proposition 6.4 for p = 3 and

wy=uwr=v,w3=v,f = (a-v)>.

All terms such as |{f(wg - we))ol, |{f(we - b))o| are bounded by (f)oS?, so that we
have

Lemma 7.1. Under (7.1) we have

1
ch?Y

(7.2) CQ) L < BE(—=((@-v)%)0) + KS*((@-v)%)o + E(5)

where
EG) <KE({(JG-v| Y (ug+ul® +vp +wh))o).
2<k<M

The term F/(5) above arises from the error made while “integrating by parts”,
and as usual Y = £'(g||b|| + n1 ({u1)o + h')).

Let us now study C](\}i)l. In that case, with w{,w,, w3 as before, we have
f(u,u',v) = u-v|[v]|?, so that (f)o = 0 and there is no contribution from the
term I of Proposition 6.4. We claim that the other contributions are bounded by
KS?((u-v)?)p. The factor S? arises from |[v||?>. We also observe that

(|fawe-bl)o < (f2)(1)/2<(m£ -b)? (1)/2
(e - tber o < (f%)o/*((tbe - b))
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Now, by Jensen’s inequality

(7.3) (e -B)*)o = ((t-5)*)o < ((%-v)*)o
(7.4) (e - tby)®)o < 2((t - v)*)o < 2((@-v)%)o.

The contributions of C](\H_)l are handled the same way, and (7.2) remains valid
with C§), rather than C$),.

To estimate the contribution of 01(\2_1, integration by parts is not needed, and
we have

1M -1

(2) _

1 N . -
Eﬁ< Z (@-v)expB'(En-a+0n-v+Enar + O (v + 1')))o.
¢,0==+1

We use Proposition 6.4 with f = % -v, so (& -v)g = 0. The terms II to IV are
bounded by KE({(u - v)?)o using (7.3), (7.4). No subtlety is needed because the
factor o (or rather 2-1) in (7.5) will be very small. Collecting all estimates, we
now have

Lemma 7.2. Under (7.1) we have

1
ch?Y

(7.6) Cny1 < B'E( (@ v)*)o) + K(S* + a) E{(@- v)*)o + E(5) + An-

In order to use a relation such as (7.6), we need information on E,ch=2Y. We
will use some notation from Section 3, (except that all parameters have now a
“prime”), i.e.

m* = thg'(m* + k') and a* =1 — B'(1 — m*).

Lemma 7.3. Under (7.1), with probability at least 1 — K exp(—N/K), we have

1
ﬁlEgchTY S 1-— a* —+ LIB:}(Sz + m*S)

Proof. Consider the function

1

90(55,?;) :Egm-

Then (0, 8'(m* + h')) =1 — m*?, so that

B'p(0,8' (m*+h"))=1—a".
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Next,
Oy 2thy
(0 —|_
| By Oyl=1- 42 y

| < 2y,
so that

B'e(0,y) <1—a"+2max(ly|, B'(m" + 1')|y — B'(m* +1')|.

Finally, using integration by parts

th

ch—Q(xg +y)| < 4]z

0
S p(@y)| = |~ 2Eqg

since the derivative of the function th(z)ch™2(z) is bounded by 2, and thus

o(r,y) < 222 + ¢(0,y).

We use these estimates for x = g'||b|| < 'S,y = 8/ ({m1)o+ ') so that |y —p'(m* +
h')| < B'S (and we note that m* > h’). O

Thus, we now have

(7.7) Cni1 < (1—a*+ K(Sm* + 5%+ a))Cn + E(5) + An.

There, Cy = ((&-v)?)o = Cn(c/, B/, W, 7).

We first consider the case 8 < 1, which is easier because Lemma 2.9 shows that
the term F(5) is of the type An.

Lemma 7.4. There is a number L such that if 0 < h <1, % < B <1, we have

a< ((,3—1)2+m*4):>C’N+1 < (#)CN-I-AN.

S

Proof. We recall that a* = 1 — 38+ Bm*? > 1 — B. (For simplicity we will not
distinguish between 8 and f’.) Thus it suffices to achieve

Sm* + 5% +a < a*/Ly.

(The constant K of (7.7) is now universal as 3, h are bounded.)

Since m*? < 1, we have a* > (1 — 8+ B)m*? > m*?, and thus (8 —1)2 +m*2 <
2a*2.

If « < m*?/Ly, Proposition 3.15 shows that we can take

S < (Lla/m*2)l/2 < La/4,
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On the other hand, if m*? < Ly, (and a < a*?/2) Lemma 3.7 shows that we

can take
*2 *2

S <2m* + L(alog a_)1/4 < 2L(alog a—)1/4.
a o

The result follows easily. O
Thus, if By < 1, and

1
(67 S Z max(\l - 50‘2,77’7,*4(,60, hO))

we can find a neighbourhood Dy of (3, h), and 6 < 1 such that if we set

In(a) = / C (@, B, h, 7)dBdydh
(B7h)€D07|’Y|S1

then, for all « in a neighbourhood of o, we have
Inyi(a) <OIn(d) +an

where ay — 0, so that lim Iy (a) = 0 for all & in this neighborhood of ag. This
is the main step in proving the validity of the RS solution. The other steps will
be delayed until the end of the section, and detailed in the more delicate case
1 < B < 2, to which we turn now. We assume that o < m**/L; Proposition 3.13
shows that we can choose L large enough that (with overwhelming probability)

m*2
. —— <1-
(78) Eq ch?y — L
The problem with (7.5) is that I do not see how to control E(5) unless I can
show that
2<k<M

is small. Thereby, it seems that this term should be studied prior to a study of Cly.
Fortunately, the techniques we have developed do bear on Ay.

Lemma 7.5. (Expansion) We have

K N
An+1(a, B, hyy) < N (TH)2E D melensaug).
2<k< M

Proof. We write

1

4 3

mg = N+l E €15, kMg
i<N

so that by symmetry Ayy1 = E Y, mni{ent1mi). We then replace my, by its
2<k<M
value (6.4). O
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Lemma 7.6. (Integration by parts) We have

(7.9) B( Y mlennud)) SBEC Y (up) = Y (enriud){en+1v)

2<k<M 2<k<M 2<k<M

+KE( Y up).

2<k<M

Proof. This should be obvious once understood the proof of Proposition 6.2, after
we observe that (>-upvd) < (O uf).

Next, we transform the brackets ( - ) into brackets ( - ) and we appeal to
Proposition 6.4. It should be apparent that under (7.1) we have

B(Y ub)<(1+KS)EC Y. ub.

2<k<M 2<k<M

Concerning the term > (ent1u3){en+1Vk), we transform it in a single bracket,

2<k<M
and we use Proposition 6.4 for f = Y wujvg. The terms I contribute as
2<k<M
E(th?Y( > wjvk)o). The contribution of all the other terms can be bounded
2<k<M
by KS?E({ Y wu})o, using that (3 udve)o < (O up)o-
2<k<M
Thus we have proved the following.
Lemma 7.7. Under (7.1) we have
A < (B +KSDE( Y updo) —BEMRY( ) ujve)o) + An.
2<k<M 2<k<M

We rewrite this as

(7.10) AN+1§KS2AN+ﬁ'E< ! (Y ui)a)

ch?Y
2<k<M
+,6”E(<( S (Y ugvk>0)thzy)+,4N.
2<k<M 2<k<M

If we compare with what we did in Corollary 7.5, the first two terms are promis-
ing. But to handle the third term, there seems to be no other way than to consider
the new quantity

(7.11) By=E(( Y, mi)— Y (mi){m)).
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At this point appears the drawback (or, if one prefers, the charm) of our method;
it tends to take us further and further from the original problem. On the other
hand, there is only a small number of expressions such as Ay, By that one can
write down, so at some stage we are bound to succeed in getting real information.

To study By41, we go through expansion, integration by parts, use of Proposi-
tion 6.4. The term (Y m}) is handled as for Ay. For the term > (m3)(mg), we

replace my by (N+1)"1 Y n; re; in the last bracket only, and after use of (6.4)
i<N+1
we get

N

N EC Y mllensnud) — (ud){en))) + K/N.

2<k<M

Bni1 < (

Using integration by parts, we then have
By <BE Y ((up) — (enprud)(entivx)
2<k<M
— (envrrug)(en1) — (i) (ur) + 2(up) {en+1)(en+1vk))

+KE( Y up).

2<k<M

Each term of the first summation is transformed in a bracket { - )¢, to which we
apply Proposition 6.4. It is quite fortunate that the contributions of the terms II

to V can all be bounded by KS?E( Y. wuj)o; such is also the case of the error
2<k<M

terms F(1), E(2). As for the contributions of the terms I, the situation is saved by

the fact that each term ey simply creates a factor thY, independently of where

it is located. Thus cancellation occurs. Using that th?Y =1 — 1/ch?Y, and that

(D ud)o < (Q_uk) (D uk))o < S uido

we have proved the following.

Lemma 7.8. Under (7.1) we have

(7.12) By41 < B’E(chiy (( o oupo— Y. <u2vk>o)> + KS?An + An.

2<k<M 2<k<M

The only remaining obstacle is that the small term K S?Ax contains Ay rather
than Bpy; and, conceivably, Ay >> Bpx. On the other hand, should By << Ap,
then (7.10) is the inductive relation we want; so we should try to combine (7.10)
and (7.12). Given a number p > 0, it follows from (7.10), (7.12) that

(713) pAN+1 + BN+]_

<08 (g + 0077 ) (o0 X ublo+{ X b= X utua))

2<k<M 2<k<M 2<k<M

+ KS*(pAn + By) + An.
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Now, using (7.7), with overwhelming probability

1 2
< _ -
BE, <ch2Y + pth Y) < Bp+ (1= p)BE; 5

*2

<B-Dp+1-(1-p T~

As m*2 > (8 —1)/L1, we can choose p universal constant such that, setting A%\, =
pAN + By we have

*2
m
s (1-2

) +KS2> 9V+-AN-

Consider now By, ho, and ag < m*4(Bo, ho)/L. We can find a neighborhood .J of
o, a neighborhood Dy of (8, h), such that if D = Dy x [0, 1], then, for « in J, we
have

JN_H(Ot) < HJN(O.’I) +an

where ay — 0,0 < 1, and
(7.14) JIn(a) = / E(Ah (o, B, b)) dBdhdry.
D

Consequently, N}im Jn(a) =0 for all v in J.
—00

As we know now how to control the term F(5), we see that if
In(a) = [, Cn(a, B, h,y)dBdhdry, then we have

lim In(a)=0.

N—>oo

We now turn to the proof of the validity of the RS solution. We introduce the
parameters

RN =F Z (mk>2
2<k<M

Wy=E Y  (mj)
2<k<M

Uv=E Y (m})=2(Wy— Rn)
2<k<M

pn = E(my)

Qn = Ele).
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Let us first consider the case of Wy. Then, with our usual notation

Wyii=E Y (m)

2<k<M
1

=L Z (m . Z €iMi kM)

2<k<M i<N+1
=E Y m{ensimu)

2<k<M

M—-1

— N1 +FE Z nk(eN+1uk).

2<k<M

We now use integration by parts, and Proposition 6.4 to transform this expres-
sion. What is nice, is that now that we have done the hard work, we know that the
error terms are automatically small (and still denoted by Ap), in the sense that
their integral over the domain D considered in (7.14) goes to zero. Integration by
parts yield

(7.15) Wy =a+BE( Y (uf) — (ureni1)?) + An.
2<k<M

Use of Proposition 6.4 yields

(7.16) Wyi1=a+BWx — BE(th®Y > (uk)f) + An,
2<k<M

where as usual Y = f'(g||b]| + n1({u1)o + 1)),

|Ib]] = Z (ug)3, and Wy = W (o, 8,7/, B).
2<k<M

(Since we now know that E((%-v)?)o is small - after averaging over 3, h,~ - only
the terms I have to be considered, and every factor ex41 gives rise to a term thY).

Proceeding in a similar fashion, for Uny, we get

(7.17) Unt1 = 20(1 = Q1) + BE( (llal*)o) + An-

ch?Y
Computing Qn+1 is a straightforward use of Proposition 6.4, and
(7.18) QN1 = Eth’Y + Ay.

To compute pyy1, we observe first that

pn+1 = Emi(eny1) + An
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and we use Proposition 6.4 (and the fact that f there may depend upon 7;) to get

We now substitute (7.18) into (7.17) to obtain

1 1,
(7.20) Un 1 = 2080 + BE(5(18]%)0) + Aw.

We replace W1 by Ryi1 + UN+1/2 in (7.16), and we combine with (7.18) to
obtain

2By (Ja])o) + Ax.

1
(721) Rw41 = aBth’Y + BE( 50 (lul*)o) +

At this point we observe that

IB]1* = llcw)oll* = (llull*)o — (Il —BII*)o

so that
Var||b||2 < 2Var(||’u,||2)0 + 2Var(||u — b||2>0.

We appeal to Proposition 10.5 to see that the first term is of the type Ay, and
to Proposition 10.7 to see (now that we control C!) that the second term is also
of the type Ay. It is at this point that the perturbed Hamiltonian is needed.
Consider the function ®, g5 from R?® to itself that transforms the point (z,y, 2)
into the point (z,y’, 2') given by

' = EthY
y' = (2a+By)E h2Y
1
2 = aEth’Y + BzE g2y T é yEth?Y

where Y = 3(g+/z + x + h). Then, using the symmetry of g to get rid of the terms
M1, (7.19) to (7.21) become

(7.22) (un+1,UNy1, Bnt1) = @apn(pn, Un, BN) + An

where Apn has the obvious meaning, and where un, Uy, Ry are as usual for
o, B,k ,~". Since (o, B, h) stays in an arbitrarily small neighborhood of (g, 8o, ho),
using Theorem 1.4, we see that for all N, setting mg = mgo(Bo, ho), we have

(MNaUNaRN) €A = {(x,y,z); \x—m*| < LO m*za‘y| |Z‘ < L
0 0

We define by induction A 5, = A and ALY, = &4 gn(A? 5,). It is now
simple to show by induction over p that for each p, we have

(7.23) sup A}lm dist ((un+1,UnN+1, Rnt1), AL 5 1 )dBdhdy = 0.
a€eJ —00 D
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Lemma 7.9. The set ﬂAﬁ’ﬁ,h consists of a single point.
P

Proof. This very tedious proof should be omitted at first reading. We would be
done if ® = ®, g, were a contraction. The differential of ® is the matrix

1
BE 3ty 0 A

V=|(@x+8y)C BEzt (2a+pPy)B

tC SEth?Y BE iy +tB
where t = 8z — a — Py/2,
0 1 0 1 0
C=—F B=—F A = —EthY.
0z ch?Y 0z ch?Y 0z

Thus, setting Q = Eth?Y, we have

thY
C = —2,8Ech2y.
so that, by Cauchy-Schwarz,
(7.24) Cl < 2B8V/Q.
Using integration by parts, we have
P S
so that
(7.25) |B| < 22
Similarly,
4= 2%Echgy - _52Ect1gf

so that
(7.26) 1Al < B2V/Q.

Despite these estimates, and the fact that

o]
7.27 t| < LB—>5
(7.27) < 18
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it does not seem that V is a contraction (for the euclidean norm). On the other

hand, if (eq, ez, e3) denotes the canonical basis of R, in the basis (Aje1, Ases, e3),
the matrix of V becomes

5(1 - Q) 0 A1aiz
(728) VI = i—iagl ,8(1 - Q) )\20,23
as1/ A az2/A2  B(1-Q)+1p

where

laws| = |[A] < L/Q

(&7)]
la21| = [(2a + By)C| < Lm*2
0

lass| = (20 + By)C| < L“—iwé

0
|CL31‘—‘tC|<L f

laga| = gQ < LQ.

(We recall that g < 2).

If we can find A2, A; (independent of (8, h) € Dy, (z,y,z) € A) such that V' is
always a contraction, the proof is finished. Assuming ag/my? < @, in an effort to
minimize the largest off diagonal term of V', we take

1/6 — 1/3
A = (msz)l/?’cz Ao = ()™

where Qg is the maximum value of @ over o € J, (8,h) € Dy, (z,y,z) € A. The
maximum off diagonal term of V' is then at most L (2% ) 3Q2/ %, To show that V'

is a contraction under the condition oy < my x4 /L, it then suffices to check that

T max(mi?, Qo) + A1 - Q) < 1

which follows easily from the method of Lemma, 7.3. O

We denote by (u,u,r) the unique point of ﬂAgﬁ,h, the dependence in the

P
parameters being kept implicit. Thus (7.23) implies

(7.29) lim / (i — gl + |Un — u| + [Ray — r)dBdhdy = 0.
N—ooo D
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Since (i, u,7) is a fixed point of @, setting Y = B(g\/7 + p+ h) and ¢ = Eth?Y,
we get the equations

(7.30) u = EthY

(7.31) u= (2a+ Bu)(1 —q)
(7.32) r=ag+ fr(l—q)+ 21 —q)
The second equation yields

2a(1 —q)
7.33 Uy = -
(7-33) 1—pB(1-q)
and the third then yields
aq

7.34 r= .
(730 A=A -0))

We now turn to the proof of (1.13). When o = 1/N(M = 1) the Hopfield model
reduces to the simple Curie Wiess model, so that N"'EFy ~ RS is easy in that
case. Thus it suffices to prove that

OFy ORS
7.35 N B~ ~——,
(7.35) ox oo

Since Fy is defined only for values of « of the type M/N(M > 1), the left-hand
side of (7.35) makes no sense apriori. So we extend the definition of Fy(a, 8, h,7)
to all values of & > 1/M by linear interpolation in « (at 3, h,y fixed). In that way,
we have

0FN

(736) W(O%I@’ h77) = N(FN(al + %7/87 h77) - FN(alaﬁa ha’Y))

where a; = M/N, for the integer M with M/N < o < (M + 1)/N and where the
derivative is understood as a right derivative.

Consider a fresh Bernoulli sequence (7;);<n. Then (7.36) implies

_,0F i 2
(7.37) EN‘haguu@hxm:lemmpav(qum)>

i<N

where the bracket is for the values ag, 3, h,y of the parameters. To compute the
right-hand side of (7.35), we observe that if in (1.14) we think of the right-hand
side as a function of independent variables «, 3, h, u, q, 7, equations (1.11) , (1.12),
(7.34) mean that the partial derivatives of this function in u,q,r, are zero. This
makes it obvious that

ORS 1 ( Bq

(7.38) e =280 =g

g ~log(1 - 81 - 1))

The key to (1.13) is the following precise version of (7.35).
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Proposition 7.10. If Dy is a small enough neighborhood of (B, ho)(Bo < 2, ho >
0) we have

i [ (Blog(exn ( 3 emz-)2>—1 (L—mga—ﬁ(l—q») dBdhdy = 0
Nooo Jp 2N\ & 2\1-8(1-4q)
uniformly over o < 1 ((Bo — 1)% + m*2(Bo, ho)).

Indeed, once this is proved, we integrate over « (using (7.37), (7.38)) to get

lim / |- EFx (0,6, 1) — RS(a 6, )| dBdhdy = 0

N—oo D

Since Dy is arbitrarily small, and since Fy and RS are convex functions of 3, h, 7y,
(1.13) follows.

The basic fact is the elementary formula (left to the reader). If ¢ < 1,

(7.39) E,exp(ag + ¢ %) = ! ex @’
) g plag 2g - 1_c2 p2(1_c)‘
The heuristic argument goes as follows. We write
g g
(7.40) (exp oz (€-m)*) = Eg{exp |/ 1-g€ - n)

=F exp\/ —ga - nexp\/ —gé-n)

where a = (). We know that (4.5), and hence (4.3) hold. The argument of Lemma
4.1 (used at many other places) then shows that

(7.41) (exp \/%gé -1) ~ (exp ’g‘]qv é2).

We certainly hope that Y éZ to be nearly constant, so equal to
i<N

B &) =N~ By Y (@) ~1 -

i<N i<N

so that (7.41) should yield

{exp \/ggé “1)) ™~ exp g(l —q)g°.
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Using (7.39),(7.40), we get

B 2\ ! ex ﬁ%
(exp o= (e m)%) = —B(l—q ToN1-B1-g)

Taking logarithm and expectation conclude this scheme of proof.

It is unfortunately a nontrivial task to justify rigorously the previous approxi-
mations.

Proof of Proposition 7.10. A first observation is that

N
log{exp o2-(e-n)*) < Y

so that the influence of exponentially small events (in the quenched variables imlicit
in (-) and n) is negligible. Appealing to Proposition 3.14, we can pretend that if

« La*\*?
C ={e € Xn, —m*| <L 1
fee Swlmile) ~m'l <1 L1og T ) )
where m* = m*(8, h), then G(C) > 1 —exp (—N/K) > 1/2, and, appealing again
to Proposition 3.14, this time for M + 1 rather than for M, we can pretend also
that

(b (e m)?) < (1 V) 1c exp (e ).

Thus, setting

Tn = log{lc exp %(e -n)?%)

we have to show that
N—oo

(7.42) lim / T — 25 4gdndy = o,
D 80!

Lemma 7.11. Consider an event Qn = Qn(a, 8,7, h) (depending upon
a, B,7,h in a measurable way). If

(7.43) lim | P(Qn)dBdhdy =0
N—oo D
then
(7.44) lim [ E(la,Ty)dBdhdy = 0.
N—oo D

In this statement, and the rest of the proof, we make the convention that it is
understood that all limits are uniform on « satisfying condition (1.17).
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Proof. If § is a positive number (to be specified below) we have the inequality

(7.45) (z+y)*<(1+ %)a? + (1 +0)y?

This implies

(7.46) Tn <logU +logV
for
2
(7.47) U= eXp 5 1 + = ( Z niMi, 1M )
i<N
3 2
(7.48) V= (lgexp o (1+9) (KZNm(ei - m,w*)) ).

Using Cauchy Schwarz to write E(1q,Tn)? < P(lq,)E(T%), it suffices from
(7.46) to show that E(logU)? < K, E(logV)? < K. The first statement is obvious.
For the second, we write, for € € C

(7.49) -1 Z —niam*) =1+ m*? —2N~1 Z €;Mi1m”
i<N i<N

=1+m*? - 2m*m;(e)
=1-—m*? 4 2m*(m* — my(e))

since € € C. By arguments already used, we see that if the constant of (1.17) is
small enough, (and if Dy is small enough), we can find § > 0 such that for (3,h) in
Dy, and € in C we have

(7.50) BA+06)3NT"Y (e —miam*)> < 1—4.

i<N

(The term (1+ §)3 rather than (1+6) is required for further purposes). A straight-
forward extension of Lemma 2.1 show that

Eexp = < > am,) (1 = af) o

i<N i<N

and thus from (7.50) we see that EV < K. Since V > 1/2 (as G(C) > 1/2) it
follows that E(logV)? < C. O

We now construct the events 2y to which we will apply Lemma 7.11.
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Lemma 7.12. We can find a sequence 6y — 0 such that the event

(7.52) Oy ={G(B) <1-0y or IN"'D (&) —q| > 6n}NC
i<N

satisfies (7.43).

Proof. We first show how to control the event

(g () ] = dw).

i<N

(From (7.18) and (7.28), we have
1
li —FE V2 — qldBdhdy = 0.
Ngnoo/D\N i;v@z) q|dBdhdy = 0
Thus it suffices to show that
1 2
lim / —E( ) —FE €; 2) dBdhdy =0
Jim [l D - £ X)) |

or, equivalently, that if 7 # j

lim / |E(e;)*(€;)* — ¢®|dBdhdy = 0.
D

N—oo

The reader should feel that to prove this is standard (reduction from N to N — 2
spins) now that we know (7.29) and we have the tools of Section 6.

Since (€;)? = 1 — (¢;)?, it suffices now to show that

. 1 . o)’
Jin [ (@ - o) asdny =

i<N i<N

or, equivalently, that, for 7 # j

. 1 .2 .9 S \2/. \2
i . N2 E(€i€5) — (&)°(¢;)")dBdhdy = 0.

Straightforward algebra shows that
(€765 — (€)"(&)* = 4&iej) (e (es)-
Thus is suffices to show that

1
(7.53) lim FE(é,-e'j>%zﬁdhdy = 0.

N—o0 D 2
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The computation of E(é;€;)?, or, more conveniently, of E(€;€;)? should again be
felt as easy. O

Combining Lemmas 7.11 and 7.12, to prove (7.41) it then suffices to prove that
(denoting by Qf; the complement of Q)

(7.54) Jim / Ellas (Tw — 225 1aBdndy = 0.
D N 80[

N—>oo

We start by a preparatory lemma.
Lemma 7.13. a) If x,y > 1/2, we have

(7.55) |log x — logy| <log(1l+ 2|z — y|)

b) IfU,V > 0,t > 1, we have

(logU)*

] log(14+UV) <tV
(7.56) og(1l+ ) <tV + logi

Proof. Since (a) is obvious, we prove only (b). If U < ¢, we have
log(1+UV) <log(1+tV) <tV.
If U >t, we have U > 1, and

(logU)?

log(14+UV) <log(U(1+V)) <logU +V < oz

+V.

Comment. The use of (b) is that if F(logU)? < K, EV — 0, then
Elog(1+UV) — 0.

Lemma 7.14. Consider the set B of (7.52) and

T}y = log(1p exp 5-(e-n)%).

Then

lim | Elge |Th — Tn|dBdhdy = 0.
N—oo D N

Proof. Using (7.55), we have

B
T = Tiy| < log(1 +2(1o\s exp (€ m)?)).
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Proceeding as in Lemma 7.11, we have

where U is given by (7.47) and V by (7.48), except that we have replaced 1¢ by
Ic\B- Using Holder’s inequality for Gibbs measure, we have

V< G(C\B) (1Cexp— l-l-(s (an(éz n;,1m )> )ﬁ
i<N

Appealing to (7.50), we then see that EV < K(Sf\,/(1+5). The result then follows
from Lemma 7.13. O

Lemma 7.15. Consider

| B B a2
2 = exp || r9a-1(lp exp o9 > )

i<N

and Ty = log Eqps, where E4 denotes expectation in g only. Then

(7.57) lim Ech | T]ﬂdﬁdhd’)/ =0.
N—oo D

To provide motivation for this last effort, we show why this proves (7.54), and
finishes the proof of Proposition 7.10. Using (7.39), we have

0 1 pla-n)’
TW =log(1lp TR P oa— BN b ég)).
S i<N

We use the definition of B to control Y é? from above and from below; we then
i<N

take expectation in 7, and use the definition of Qx to control |la|| and G(B). The

result follows.

Proof of Lemma 7.15. We set

p1 = exp g/ %a (1 expgy/ %é -n)

so that T, = log E4¢1. In view of Lemma 7.14, we can replace Ty by Ty in (7.57).
Appealing to (7.55), we write (since G(B) > 1/2)

T — Tv| < log(1+ 2Eg|p1 — ¢2).
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For £ > 0, we have, with obvious notation
Eglpr — 2| <E+UV

where

U(E, |1 — o] 10) 5
5
V = (Py(Jpr — 2| > §)) T+

As log(z + &) < &+ logx for £ > 0,2 > 1, it suffices to show by Lemma 7.13 that
for any & we have

(7.58) E(oglU)* < K
(7.59) lim / EVdBdhdy = 0.
N—oo D

We start by writing |1 — pa| = p3¢4 for

/ﬁ
$3 = €xpyg
(1p exp\/ — g€ - n—exp\/ 22

<N

Thus, from Holder’s inequality

1 o) 1
1+ (1+8)%\ 1+5)2 1482 ) +6?
U=F (<p§+5<,01+5) < (Eg(pg ° ) <E'g(p4(l +9) ) .

Using (7.50), one sees that the expected value of the last term remains bounded;
then (7.58) follows easily. To prove (7.59), it suffices to prove that

lim | P(lg1— ol > €)dBdhdy = 0.
N—oo D

Since for each t > 0, P(p3 > et) < K/t, (because Elogps < K) it suffices to show
that

i [ Pliei] > dpany =o.
N—oco D

Now, it suffices to show that for each value of g

lim [ E'(p4)dBdhdy =0
N—oo D
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where E’ denotes conditional expectation at g given. But this follows from (7.53)
and the fact that, as shown by the argument of Lemma 4.1, for each value of g we
have

B(en) < Ko) (@ €77+ ).

(One of the difficulties that make the present proof delicate is that it is not true
that E4K(g) < 0o). The proof is finished. O

Finally, we explain how to handle the (much easier) case where g > 2. (More
precisely, we will consider only the case 8 > By, where [y is a large enough constant.
This is sufficient because the analysis done for 8 < 2 also holds for 8 < fj, possibly
with different constants). The main difficulty in the case f < 2 was the crucial
coefficient ,BEﬁ was possibly dangerously close to one.

We will show that this is not possible for3 > By, < K 1log 3. We now have
m*,> 1/K, and (7.1) holds S = \/a/K, so that (u1)o > 1/K. We have

Echle < ch(;/2) + P(|gl]|b]] > (u1)o)-

Since (7.1) implies ||b|| < K+/c, we thus have

1

1 1
B < _ L
a7y = g T o

Ka)

so that BE1/ch?Y is small for 8 > By and o < K~ 'log3. We leave to the reader
the easy to perform necessary modifications of the previous arguments. These
results actually in great simplifications (e.g. the matrix V' of Lemma 7.9 can now
be assumed to be a contraction).
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8. Stability.

In this section we study the properties of the system when the parameters are
close to a given value «g, By, hg. We fix a small interval J around «y, a small cube
Dy around (B, hp). We set D = Dy x [0,1]. The sentence “for the parameters in
J x D” means “for (a, 8, h,v) € J x D”.

Considering a function U of 3, h, v, we will write
I(U) = / UdpBdhdy
D

By the expression “A random function gn from X%, — R defined on D” we mean
a (measurable) function gy from D x {—1,1}V*M x RM~1 x 38 0 R; that is, gn
depends upon the parameters, the quenched variables, the coefficients (gx)2<r<nm
of the perturbed Hamiltonian, the spins.

Fixing all these quantities except the spins, we can integrate g with respect to
the Gibbs measure, take expectations, and integrate over D to define I(E(g)) (that
depends upon « only).

Definition 8.1 (Condition (EI)). We say that a family (fx) of positive random
functions defined on D satisfies condition (EI) (for “equintegrable”) if, given p > 0,
there exists p; > 0 and Ny > 0, such that for each N > Ny, for each random
function g defined on D, valued in [0, 1], we have, for each « in J,

(8.1) I(Blg)) < pr = I(Efng)) < pI((E(fn).

What this means is simply that, when computing I(E(fn)), the contribution of
sets that are very small for the Gibbs measure, of rare events, and of exceptional
sets of parameters, is vanishingly small compared to I(E(fn))-

A much stronger (but easier to understand) property would be an inequality

I(E{f&)) < K(I(E{fn)))?

as follows from Cauchy Schwarz inequality

I(E(fn) < (L(E*)) 2T (EFRINY.

It seems very likely that this stronger property holds over the entire range of pa-
rameters for the two functions considered in the next conjecture.

Conjecture 8.2. When «, 8, h satisfy the condition of Theorem 1.7, if J and Dy

are small enough, the families of random functions (@ -v)? and Y., m} (from
2<k<M

¥:3; and XN respectively) to RT satisfy condition (EI).

We now assume that J and Dy have been chosen so that the functions of Con-
jecture 8.2 satisfy condition (EI). The subsequent results of this chapter depend on
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this unproven fact. The reader can check that in fact quite less would be necessary.
But, at this stage of our ignorance, it seems simpler to make a convenient blanket
assumption. To simplify notation, we will denote by N'(Ay) a quantity (depending
upon «, 3, h,y only) with the following property: Given p > 0, there is p; > 0 such
that for each « in J,

(8.2) I(Cn), I(AN) < 1 = I(N'(An)) < pI(Aw).

Here Ay, Cy are as in Sections 6 and 7. Quantities N'(Cy) are defined similarly.
The idea is simply that when trying to establish a relation I(An41) < 0I(An), for
6 < 1, if we know that I(Ax) and I(Cy) are small, terms N (Ay) are irrelevant.

The following explains one way to use condition (EI). The notation is as in
Proposition 6.4.

Lemma 8.3. We have

(8:3) E( Y, m})=N(Ax)
2<k<M
(8.4) E({UV)=N(An)
forU= > wdvgorU= > uj, V=|wg-wp|orV=|we-b|.
2<k<M 2<k<M

Proof. Inequality (8.3) should be obvious if one observes that

(D mi)<(( ) miw)

2<k<M 2<k<M

forw=( Y. m})/2, and thus E(w) < Ajl\{z. To prove (8.4), we first reduce to

2<k<M
the case U = Y. wuj by writing
2<k<M
E( Y wuV)< (B Y wV)YHE( Y V)i
2<k<M 2<k<M 2<k<M
We then observe that E(V) < LCy by (7.3), (7.4). O

Using Lemma 8.3 to control the error terms it should be obvious, following the
computations of Lemmas 7.5 to 7.7 that

Lemma 8.4. We have

1
Ani1 < BE(—5w( > uido)
2<k<M

FBEWY( Y ubo—( Y udueo)) +An + N (An)

2<k<M 2<k<M

By <BE(e (3 ubo— (Y uludo) + Av + N(Aw).

2<k<M 2<k<M
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Combining these relations, we will be able to take care of Ay, and we go back

to the main point, the study of Cn41, that is of CJ(V—)H and 01(\21- First we study

C](\Hrl. The error (6.14) is now N (Ay), so we study C’I(\er,é = 9,10, 11 through
Proposition 6.4. The error terms E(1), F(2) are N (Cy) (appealing again to (7.3),
(7.4)). Thus, we have to account for the contributions of the terms I to V. This is

easy for 01(\2-1' The contribution of I is

(85) B E (5 {(@))o)

and the contributions of IT to V are N'(Ay). Concerning C’](\}i)l and CI(\}JIF)I, a bit of

patience is needed. We regroup the contributions of each term after averaging over
the signs &, 0, 6.

Study of CI(\;—?-)l To use Proposition 6.4, we take w; = u,ws = v, w3 = v,5; =

5752:_£763_0

Contribution of the terms I and III. These are zero. This is obvious for I,
and for III this follows from cancellation when summing over &.

Contribution of the term II. This is
3 ex Y .. .. .
P25 om0 ol (i i+ €036 — €0 - )o)
€,0=+1

= 3By (- )i ) ol)o)

Contribution of the term IV. This is

/3 xD 0
ﬂ > 0B eﬁ)gYY(( v)|[v]|* (& b — €' - b+ 69 - b))o
£,0+1

= BE( h2Y<( v) (% - b)|[v]|*)o)

Contributions of the term V. This is

thY
ch*Y

3ﬁl2

) €0E(expdY

£,0=+1

= 357 w) @B ol)o)

((@-v)[lv]|* (€t - b — €' - b+ 69 - b)o)
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Study of C’I(\}Jlr)l. There we have one more variable w4 = w, and d4 = 0.
It should be obvious that if one applies Proposition 6.4 to the case of f =
(@-v)(v-w), or f = (&-v)(v-b), all the contributions are N'(Cpy). Thus, writing
v-w=|b>+9-b+v-w

we can replace f = (@ -v)(v-w) by f = ||b||*(&-v), up to terms that are N'(Cy).

The contribution of the terms I and III is zero as in the case of CJ(\}?F)I

Contribution of the terms II. This is

—34'3 Z §6E(M«’& )|b)|2(—t -4+ E0(0 -0 — 4 - v)

4
8 il chtY
FE6(0-w— ' ) + 05 - w))o)
th2Y

= =3B B( 5y ((@-v)(@-9)[[b]*)o)

Contribution of the terms IV. This is

-343'3 exp(d +0)Y

8 6,9§i1§5E((5+9)W<(ﬁ-v)||b||2(§11-b—§ﬁ’-b
+ 06 b+ 6 - b))o)
= —35'3E((Chiy + z}ﬁgf,)(( v) (@ - b)|[6]*)o)

Contribution of the term V. This is

124’3 T e exp(5 + 0)YthY

. S5y (@) Bl (@b~ @ -b)
£,0,0==%1
+ 0% - b+ dw - b))
th2Y

= 12/ B( G- ((6 - 0) @ B)[B]])o)-

We leave to the reader to perform a similar (but simpler) computation for 01(53-1

to find a total contribution for CI(\?_)H of

1 th2Y

OB By (@) — 3 (6 )*)o).

We regroup the terms, observing that ((@ - v)(% - b))o = ((@ - b)?)y, and observing
that, (using Lemma 10.11) we can replace ||v||? by (||u||?)o everywhere. We thus
have proved the following.
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Proposition 8.5. We have

/ 1 12 _ /2th2Y 2 . m)2
B6)0N 11 < BB (g + 87 o (2o = 357 s DI + 0 —3){(@ - ))0)
vo 1y ABth2Y > g ,th?Y B 1 o ath’Y.
438 BCE B — Sl — 8o 12 — Sa (@ )°)0)

+ An +N(AN)+N(CN)

Keeping the notation of Section 7, consider now Yy = f'(gv/Rn + un + R').
Using Propositions 10.5, 10.8, it should be clear that (8.6) implies

R of

32 ,th2Yy .
Y \E((@-
2y TN T ey, EE )0

1
. < BE _
(8.7) Cn+1 < BE( B2V + 2V Wn — 38

th2Y; th2Y; th2Y;
2 N . N N
+38°B (4, 2y, N~ Py W h2YN O‘ch2YN) {(

+An + N(An) + N(Cn) + KE({(@-v)*)op(|Ib]|* — Ry)

- b)*)o

where ¢ is a function valued in [0,1] such that lin%) o(x) = 0. We now show
z—

that the last term of (8.7) is N (Cyn). Applying Definition 8.1 to the random
function g = o(||b||> — E|[b||?), it then suffices to observe that I(g) goes to zero
as N — 0 and I(Cy) goes to zero by Propositions 10.5 and 10.7 (observe that

8117 = (llall® = f[l|*)o).

Now we appeal to Guerra’s identity (Proposition 10.9), that, with our notation
can be written as

(8-8) 4E((u-b)*)o = 3E[b* + E{(u-v)*)o + An

and we note that

(@ )*)o = 2((u-v)*)o — 2((u-b)*)o
((@-b)*)o = 2((u-)*)o — 2/b]|*

so that (8.7) implies

(8.9) E{(u-v)*)o =3E((a-b)*)0o + An.

Combining with (8.6), we now have

Proposition 8.6. We have

(8.10) Crva1 < (BE(g) + (BT + af?) B )C
+ Ay + N(Cn) + N(AN).

We can now prove the following precise version of Theorem 4.2.
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Theorem 8.7. Consider o, 3, h such that

1
ch*B(gv/r + p+h)

where p,r,q are as in (7.30) to (7.32). Under Conjecture 8.2, we can find J, Dg
small enough, we can find 6 < 1, we can find p > 0,¢9 > 0, and a sequence an — 0
such that, if one sets Dy = Cn + pAn + B, then for all o in J we have

af’E < (1-B(1-9)?

I(Dn) < €0, I(|[Rn —7|) < €0, I(|Un — u]) < €
= I(DN—H) < 9I(DN) +an.
Here u = (1 — ¢)/(1 — B(1 —q)).

Proof. First, we pick J and Dy small enough that for values of the parameters in
J x Dy we have

a2 5 1
1-B(1—q) ch*B(gyr+p+h)

(8.11) B(l—q)+ <6 <1

Next, we consider 07 < 03 < A3 < 6 < 1, and the (random) subset Dy of D
given by

Dy = {(B, h); ﬁE (62 +ap*>)E > 65}.

1
ch*Yy
Thus (8.10) implies
(8.12)[(01\[4_1) < 92I(CN) + KI(CNle) + I(.AN) + I(N(CN)) + I(N(AN))

Next, we observe that if in the expression

1
Ch2 YN

1
Ch4YN

BE g + (7 + af*)E

we substitute Ry = r and Uy = u, we find the left-hand side of (8.11). This implies
that, given p; > 0, we can find ¢y such that if

(8.13) I(|[Rny —7]) < €0, I(|[Un —u|) < €

then I(1p,) < pi. Using Definition 8.1, we see that ¢y can be found such that
(8.13) implies

(8.14) I(Cny1) < 031(Cn) + I(AN) + I(N(Cn)) + I(N (An)).
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Next, using the argument of Proposition 8.6, it follows from Lemma 8.4 that

Ant1 < BANE + BBNEth®Yy + An + N (AN)

ch? YN

Bny1 < BBNE

1
A2V + An + N(An).

so that

1
pAN+1+ By < B(Em + pEth®YN)(pAN + By) + An + N (An).

We fix p small enough that 8(1 — q) + pg < 6, for all values of the parameters in
J x Dy. The argument that led to (8.14) (together with the fact that By < Apn)
show that if ¢ is small enough, (8.13) implies

(8.15) I(pAN+1+ Bn11) < 031(pAn + Bn) + Av + N(An).
Combining with (8.14) we get

(8.16) I(Dy+1) < 631(Dn) + An + I(N(An)) + I(NV (Cn))-
Thus, if €p is small enough

I(CN) <€0,I(AN) <€0:>I(DN+1) SHI(DN)—}—G,N O
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9. Zero temperature.

In this section we study the random function

=0 3 mile)

k<M

Thus, (except in Proposition 9.2), we assume h = 0.
First, we prove the simple fact that, for o small, the minima are located close to

the prototypes.

Proposition 9.1. Given t < 1, there is y(t) > 0 such that, if o < ~(t), with
overwhelming probability we have

sup{ > _ mi(€);Vk < M, [my(€)| < t} < 1—(t).
k<M

Comment. Since, with overwhelming probability, the energy of each prototype is
about —N(a+1)/2, (mr(mr) = 1,3y, T (nx)? ~ @), the minimum of H is located
near a prototype.

Proof. First, we observe that if > 2% > b? and |xx| < t for each k < M, we

k<M
can find (ak)r<m with Y a2 =1, |ag| < ¢/b, such that > zrar > 1. (Indeed,
- k<M k<M

ar, = zx( Y 22)7Y/2 works). Thus, if b=1—(t) and ¢ =t/(1 — y(t)), it suffices

(<M
to show that
(9.1) sup{ Z army(€);€ € By, |ax| < ¥, Z ap <1} <1—~(t)

k<M k<M

with overwhelming probability. Using concentration of measure, and more specifi-
cally Theorem 6.6 of [T2], it suffices to prove that

(92)  Esup{ >  apmy(e) :€ € Ty, lap| <t, Y af <1} <1—29(b).
k<M k<M

We observe that

sup Z apmy(€) = SuD -~ Z € Z i, kQk)

€€EXN <M 1,<N k<M

= % DI minaxl

i<N k<M
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The key point, that is easy and left to the reader, is to show that there is a number
b(t) < 1 such that

1+t
Z a; < 1,Vk < M, |ag| < % = E| Z nikak| < b(t).

k<M k<M

Thus, assuming as we may, y(t) small enough that ¢’ < (1 + t)/2, we see that it
suffices to prove that

1
E = Esup{| 3 (Wil — ElVial)s0 = (), 3 a} <1} < 4V
i<N k<M

where Y; o, = " n; xax. To do this we introduce independent copies Y;
k<M

so that we can replace |Y; .| — E|Y; .| first by |Y; .| — [Y],|, then by n;|Y; | where

(mk)i<n is a fresh Bernoulli sequence. The comparison theorem for Bernoulli se-

quences [T1, Theorem 2.1] then allows to get rid of the absolute values, and one is

reduced to

of ¥j a,

!
»a

1
Esup{~| >, mmixakl; Y ai <1}

i<N,k<M k<M

= FE (X w2 < va

k<M i<N
using Cauchy-Schwarz. O

Here is a simple corollary, that was needed in Section 3. We use the notation of
this Section.

Proposition 9.2. Given § > 0 there is a(d) > 0,3(6) such that if B > B(6),a <
a(6), we have EG(C) < K exp(—N/K), where

C = {&:Vk < M, |m(e) £ m*es| > o).

Proof. Since Blim m* = 1, we can replace m*er by ex. We can then replace C by
— 00

O = {&Vk < M, |my(€)| < t}

for a certain t depending on ¢ only. Indeed, if, say, mg(e) > ¢, then all but a
proportion of (1—%)/2 of components of € differ from the corresponding components
of ng; It is then easily seen that, with overwhelming probability, for each such

€, Y. m7(e) < a(t), where a(t) goes to zero with ¢.
£k
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Now, by Proposition 9.1, if « is small enough,

3 exp(~BH(€) < 2 exp(o (1 4(1)) + BhV)

ecC’

while BN
exp(—BH(n1)) > eXP(T + BhN)

so that it suffices to ensure that Sy (t) > log4. O

Much of the rest of the present section is devoted to the study of the energy
function H (e) in the neighborhood of the prototype 9, (by symmetry, all prototypes
play the same role). It is very useful to think about a point € close to 97 as a small
perturbation of 9;. As 9; plays now a special role, it is convenient to assume that
M.,k = 1 for all k. This does not change the distribution of H, as is seen by the
transformation (€;);<n — (€i71,k)i<n. Given a subset I C {1,---, N}, we denote
by n; the point obtained from 7, by reversing the sign of all coordinates in I. Thus
nr; = —1if ¢ € I and = 1 otherwise. By elementary algebra, we have the following.

Lemma 9.3. Ifn = cardl, we have

(9.3) H(m)=H(m)+2n———— O miw)>+2> > mikma(m)

k:>2 i€l 1€l k>2

Looking at this formula, we think of the term before the last as a perturbation
term; To understand the last term we write

M—-1
Z Nikmi(N1) = N + Z M, kS k
k>2 k>2

zk— Z"bk

J?él

where

This provides motivation to study the sequence T; =  1; £S; k-
k>2

Proposition 9.4. The random distribution Y, N~167, converges weakly to N (0, cx)

i<N
with probability one as N — oo.

Comment. This result was obtained independently by the author [T3] and by Bovier
and Gayrard [B-G2].

Proof. Throughout the section, we set ®(¢) = P(g > t), where g is standard normal.
We fix t in R, and consider the set

Ai ={(njx); Ti > t}.
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We will prove that

log N
VN

(9.4) B(=Y 14 - 0(—2)? < K

N b Va

This is a quantitative version of what we want. The proof relies upon the Berry-
Essen theorem.

Lemma 9.5. [F, p. 542] If (X;)i<n are centered independent r.v. then

3

(9.5) sgp|P(ZXiZt) (-~ )\<3§3

where 0 = Y. EX2 p3 = Y E|X;]3.
i<N i<V

Since the variables (7;xS;k)k>2 are independent and centered, we first deduce
from the Berry-Essen theorem that

Thus, to prove (9.5) it suffices to prove that

t )+KlogN
Vo VN

(9.6) i # = P(A; N Ag) < B

The beautiful idea there, that I learned from [Lou] is to use the theory of nega-
tively associated r.v. [J-P]. Let us denote by P, the conditional probability given

m = (mg)k<m, where my = mg(91) = N1 Y 0, and by E,, the corresponding
i<N
expectation. The theory of [J-P] implies that

Pp(Ai N Aj) < Pp(A4;)Pr(A)).
Thus, for any event €2y, using Cauchy-Schwarz, we have
P(A;NAj) < P(QY) + E(la, Pn(AiNAj))
< P(Q5) + E(Pn(4i)*1a,)
Thus it suffices to show that we can choose ©; with P(Q2§) < 1/N and

log N
il

P, (A)lg, <®(—=)+ K

T
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We rewrite T; as

M-1
T, = migme — N
k>2

Given m, the variables (7; x)r>2 are independent with respect to Py,; moreover
Er(ni,k) = my by symmetry. The variables

2
Yi = ni ki — my,

for k > 2 are thus independent centered with respect to P,,, and

=Y Vit Yomp -

k>2 k>2
Moreover, we have
(9.7) o= ZEmYk2 = Z (mi —my)
k>2 2<k<M
(98) 0= 3" BV < sup el (3 md).
k>2 k<M k<M

Using the Berry-Essen theorem (conditionally in m) we then have

t— (Zkzz my, — %) p°
)+3§.

o
Thus it seems a good idea to define €2; by

M-1
|Zm,2€— N | < Cy; sup |my| < Cs.
k>2 k<M

Elementary exponential estimates show that we can achieve P(Q;) > 1 — 1/N

with Cy = L+/log N/\/N and C; = Ly/alog N/\/N The result follows by more
elementary estimates. g

Let us now try to explain the importance of Proposition 9.4. We rewrite (9.3)
as

2n? —
(9.9) H(np) = H(m) +2n— — +2 > T, — Ry =:H(nr) — R;
iel
where Ry = 2( Y (3 nix)?— (M —1)cardl). Let us now think conditionally upon
k>2 i€l

the sequence Tj, the distribution of which is more or less known by Proposition
9.4. Then (9.4) gives an explicit expression for H(nr), up to the error term Rj. It
should be apparent that, when card/ is small, Ry is small.

Throughout this section, we denote, for 0 < § < 1
1
1—6

I((S):élog%—i—(l—d)log

so that, by the Chernov bounds, as N — oo,
(9.10) card{I C {1,---,N};card] <IN} < exp NI(9).
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Lemma 9.6. If we have
21(6
z —log(l+z) > 20
Q
then, as N — oo, with overwhelming probability we have

VI c{l,--- ,N}, cardl <N = Ry < 2Nadz.

Proof. Lemma 2.1 shows that

1
< (— -2
p2cardIZ<ka) - —ﬂ)

k>2 i€l

and optimization over u in the inequality
P(Y >t) < exp(—ut)EexpuY
yields

P(card[ Z (Zm k) > (M —-1)(1+ x)) < exp(—

k>2 “iel

(x — log(1 + x)).

The result follows easily. 0

One popular topic about the Hopfield model at zero temperature is the study
of dynamics. A dynamic is a rule to construct, given a configuration €, a new
configuration €. The two most popular dynamics are as follows:

Rule 1. Change the sign of the spin for which the change creates the greatest
decrease for energy.

Rule 2. Select a spin at random. Flip the spin if this decreases the energy; do
nothing otherwise.

The idea is that the dynamics describes the spontaneous evaluation of the “mem-
ory”. The topic of interest is the evaluation of the dynamics upon starting with n;.
(Subsequent deviations from 7, are then errors made by the memory.)

Whichever of the previous rules we choose, the dynamics decreases the energy.
This motivates the notion of energy barriers, that are a way to insure that a dynamic
never strays far from ;.

Definition 9.7. We say there is an energy barrier at level n if

(9.11) VIC{l,---,N},cardl =n= H(nr) > H(n)-

Thus, the dynamics cannot cross the energy barrier, and hence can never reverse
more than n spins.
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Proposition 9.8. Consider s > 0, and § = ®(s). Let

mzl_(s— 1 6_52/2.

« 0V 2o
Assume that

(9.12) %(m —log(1 + z)) > I(5).

Then, for N large enough, with overwhelming probability there is an enerqy bar-
rier at level n = [0N].

Comment. Numerical computations (that carry absolutely no warranty) seem to
indicate that the Proposition proves that energy barriers exist up to values of «
larger than those of [Lou], [N].

Proof. The nicest feature of the proof is that it suffices to show that for some 6 > 0,
we have

lim P( inf (H(nr)— H(np))>0N)=0

N—oo cardI=m

and then the statement “with overwhelming probability” follows from concentration
of measure (This statement does not follow directly from the proof).

Certainly we can pretend that § = n/N. Using (9.9), we see that if card] = n,

(9.13 HCCORETN) BRI 3 B

so that
1

1 1
_— - >5—624+ — Ry,
2N(H(171) H(py))>0-96 —i-NiEEITz 2NRI

Consider s’ < s, and 6’ = ®(s’), so ¢’ > 4. Consider the set I* that consists of the
indexes 7 for which T; takes its smallest n values, and J = {i < N;T; < —/as'}.
Proposition 9.4 shows that for large N we have cardJ > n = 6N, so that I* C J.
Since T; < 0 for 7 € J, we have

1 1 1
N2 T2 2Tz 5 ) Tilir<-vasy-
i€l i€l i<N
We leave the reader to deduce from Proposition 9.4 that, for any v > 0,

1 < 1 2
Tiler «_ ygsny = — ue™" 2du + }
vz 2 Pmsvan 2| [ U ¥

6_312/2 + ’Y}

%
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with probability going to one as N — oo.

The result then follows easily from Lemma 9.6. O

Thus, the dynamics stays close to 9;. As it can only decrease the energy, the
dynamic can stop only at a local minimum, that is a configuration € such that
one cannot decrease the energy by changing the sign of a single coordinate. Since
H is (in the vicinity of ;) a small perturbation of the function H of (9.19), one
should expect that a local minima of H there will be close to the global minimum
of H (which is easy to identify). In order to prove this, it is not sufficient that
the remainder R; be small, it is also necessary that it should be smooth. What is
precisely needed that, given I, there are not too many 4 such that Rryq;) or Rp (4}
is rather different from R;. For example

Riugiy — Rr = % > ﬂi,k(Zﬂj,k)

2<k<M jEI

To control this difference, one works conditionally on Sy, = > 1, %. The indepen-
Jjer

dence of the sums > ;xS as ¢ varies the exponential inequality they satisfy,
2<k<M

and the control of ) 5’%, . allow to show that for all I, only few of these differ-
2<k<M

ences are not small. Optimization over the parameters, and a few pages of tedious

and totally standard estimates yield results such as [T3, Théoreme 9], the most

remarkable fact (to be traced back to Proposition 9.4) being that the accuracy of

the approximations become excellent as o — 0.

On the other hand, for large «, there are no local minima very close to the pro-
totypes (although simulation [A-G-S] indicates that there does exist local minima
€ with m4(e) > .1).

The best numerical results currently available seem to be given by the following.
Proposition 9.9. Consider 0 < § < 1, and assume that
Vu € R, ®(—8+/1(8) — 4u) exp(I(0) + f(u)) < 1
where f(u) = }1\2% exp(=Au + Elog(1 — § + de*9)), g standard normal.

Then, if N and o are large enough, with probability going to 1 as N — oo there
is no local minimum € of H such that |mq(€)| > 1 — 24.

Comment. Numerical computation (based on a previous, less elaborate version of
this result) indicates that one can take ¢ of values up to .16.

Proof. This proof is based on the observation that the arguments of the first version
of Loukianova’s work [Lou| greatly simplify if one lets & — oo rather than trying
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to study what happens at given «, a fact that was also used by this author in the
final version of her work.

Given € in X, denote by €’ the point obtained from € by changing the sign of
€;. By algebra
H(e) — H(e) =2N > e;n; pmx(e) — 2.
k<M

Thus, € is a local minimum if and only if

Vj <N, Z €;nj,kmi(€) > o
k<M

We denote by P, the probability given the sequence (my(€))r<ar. The key is
again negative association to get

(9.14) P, (€ local minimum) < H P ( Z €N, emi(€) > o)
JSN k<M

To evaluate the last term, we proceed as in Proposition 9.4. Given 5 < N, for
P, the variables (€;n;k)k<m are independent, the expectation of €;7; x is my(€)
so that, setting

o> =0(e) = Y (mj(e) — mi(e))

k<M

we have )
= <m mk(f)) n 6
o o

Pr( ) eminmi(e) > o) < B(
k<M

where we have used the fact that, for |Y| < 2, E|Y|? < 2EY?2.
We leave the reader to check that for large «, the event
O o= {(nin);Ve € S, Y mp(e) > a/2}
k<M

occurs with overwhelming probability. Now, for k > 2,
Nt?
P(lma(e)] > 1) < exp(=5 )

so that for any set J C {2,--- , M}

Nt2cardJ

Pk € T, lmi(e)| > 1) < exp(———

).
Thus given an integer p

Npt?

P(Je € Xn;card{k € {2,--- ,M}; |mg(e)| >t} > p} < MPoN exp(— )
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so that the set
Qo = {(Mi,x) € Q1;Ve € X, card{k < M;|mg(e)| > 2//p} < p}

has overwhelming probability for N large enough.

Now, on 25 we have

4
(9.15) ST mie)<p+- Y mie)
k<M pkgM
so that we have
4
(9.16) o?>(1-=) ) mi(e) —p.
p k<M

Concerning the term ®((a— Y. mj(e)/o), we bound it by 1/2if Y mi(e) < a.
k<M k<M
If > m2(e) > a, we bound it by
k<M

B= @(a _az(:lkfz\;)m_z%:)>

using (9.15) (Observe that in the denominator « could be replaced by Y~ m2(e)™;

k<M
we have not tried to refine the argument along this line). Finally, observing by
(9.16) that on Qq, for p > 8 and « large, we have 0 > a/16, we get from (9.14)

The dangerous situation is that k;M m2(e) can be large (so that B is close to
one). -

We now specialize to the case where € is close to 71, i.e. € = 7, I small. To
control >~ mZ(ns), we rewrite (9.3) as

k<M
4dn n 4 2
> ma(m)? = Y i)’ — 7+ A" - DTt A
k<M k<M iithT

In the proof of Lemma 9.6, we have seen that if y(«) is such that

%(y(a) —log(1 +y(a))) > I(5)
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then with overwhelming probability, when cardl < [0N], we have
ER < 4day(a)
NS Y

and thus, since (§)? <

7

23

4
mig(n1) < (1+ @) +40ay(e) = ~ > T,
k<M i<I

so that we get

P(31,cardl < n,n; local minimum)
N -1 -4y (c + 4 . Tz N
(A ) 1)
I 2 Va a(l - %) -D Vo

We want to show that this sum is < ¥, for some v < 1.

Suppose now that we have a sequence uq < -+ < u, = 44/1(J), and that we
know that if Uz = TZ/\/E,

1
~ ZU,- >u; VI
el

and that
1
Ve < q,card{I : cardl < n, N Z Us > g1 }O(—81/I(8) — dug)¥ <~V
icl
Then, taking p large enough, and then « large enough, and observing that we can
take y(a) ~ 24/1(0)/c, the result will follow.

Now consider independent r.v. &; € {0,1} with P(¢;) =1 =n/N. Using the fact
that the set {i;&; = 1} has cardinality n with probability of order 1/v/N, it suffices
to show that

exp NI((S)P(% SO EU; > ups1)B(—8y/1(6) — dug) ¥ < 4V,

i€l
Now, for each A

1 1 U,
P(+ ;&Ui > upy1) < exp—N (,\w+1 + KZNlog(l — 6+ be )).

Given any value of A, the last term, with large probability, is close to Elog((1 —
§) + 6e*9)). The result follows easily. O
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Remark. One can use large deviation estimates as in [Lou] to control the large
values of > m2(ny). This gives a smaller value of §, but the result then holds with
overwhelming probability.

As a last topic, we will consider the dilute Hopfield model. Consider a number
0 < p < 1, the “dilution parameter”. Consider independent r.v. 6;; € {0,1}, Ed;; =
p (that are independent of the quenched variables). The idea is that given spins
(or neurons...) ¢ and j interact directly if and only if ;; = 1. The point is that
no realistic model for the brain can assume that every pair of neurons interacts, so
one tries to show that the essential properties of the model remain valid when only
a small proportion of the connections do exist. The Hamiltonian is given by

1

2Np v

Hd(é) = GiGjJij(sij

where Ji; = Y 71,k The factor 1/p at the denominator is to ensure that the
k<M

expected value over the d;j is H(e). The key to the study of the dilute Hopfield
model is the following elementary fact.

Proposition 9.10. For every € in X, we have

0<t<NVM= P(|Hye) — H(€)| > t) < exp (— #1:@))

As a consequence, if ¥y C X has a cardinal < 2"V, with overwhelming proba-

bility, we have

sup |Ha(e) — H(e)| < LN,/ La(1 + )

ecYy p
with overwhelming probability. Taking v = 1, it is then simple to see that there
is Lo such that if p > Loa and o < 1/Lg, the dilute Hopfield model has an
energy barrier around each prototype, a result that was proved in [B-G1] by more
complicated estimates.

The proof of Proposition 9.9 relies upon the following observation, that is of
independent interest. Assume that (Jy),<r are independent, 6, € {0,1}, Ed; = p,
and consider numbers (as)scr- To bound

P(Z@e —p)ag > t>;P<Z(5e —plag < —t>

(<R (<R

one can use the Chernov bounds, replacing each ay by a = (R™1 e;R a2)t/2. To see

this, we write

Eexp ) Z(ég — p)ag = exp Z fp(Aay)

(<R (<R
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where
fp(@) = log((1 — p)e P + pelt 7))

and we observe by calculus that the function f,(y/z) is concave, so that

> fr(Xae) < Rfy(Xa)

(<R
so that

(9.18) P( > (60— pag > t) < (ir/{fexp(—)\t + fp()\a))>R.

(<R

Using the elementary fact that f,(z) < Lpz? for z < 1, we then see that if > a? <
(<R

A2 then for t < pA%2R, we have

P(Z(&e— )ag>t> <exp(—%12>,

and similarly

P(1> (60— plag| > 1) S2€Xp<— ﬁ)

(<R

In the situation of Proposition 9.9, we have a;; = €;€;J;;/2Np. In Lemma 11.3,
it is shown that with probability > 1 — exp —M, the operator norm of the matrix
(k) from RM to RN is at most Lv/N + M. Thus for any numbers (bg)r<m

Z(Zm,kbk> < L(N + M) (Zb2)
i<N “k<M k<M

Taking by = 7;k, and summing over j gives

> J <LNM(N+M)=LN3(l + a).
1,j<N

The proof is finished. O
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10. Appendix 1: Variance estimates.

A basic tool for the this section is that “the derivative of a random convex
function does not fluctuate more than the function itself”. This principle, when
applied to the derivatives of the free energy with respect to the various parameters
is very powerful. However, as simple examples show, this principle is not true at
each point, but only “in average”. A possible rigorous formulation is as follows.

Proposition 10.1. Consider a random conver function U defined on R. Then for
0 < v < xp, we have
Zo

d
(10.1) (Var—U)da: < 1270 sup VarU(z) + 12%(EU(—3$0) + EU(3xp)
2o dz U |g|<zo x5

—2EU(0))?

Proof. Replace U(z) by U(z) —U(0) — 2zEU’(0) to reduce to [T4, Proposition 4.3].

In order to use this result for U = F, the free energy for the Hamiltonian (4.16),
we need to control the variance of F'.

Proposition 10.2. [S-T]. We have VarF < KN.

Comment. Thus, the free energy per site F//N is of order 1 but has a variance of
order 1/N.

Proof. We fix N, M, 3, h,v. We indicate the dependence of F' in the random vari-
ables n; x, gr by writing F' = F(n,g), where 9 = (1, x)i<nk<m and g = (gx)2<r<M-

Considering independent copies 1,9’ of 9, g, we have

(102)  VarF(n.g) = ;E(F(n.9) ~ Fln',g))’
<E(F(n,9)—F(n',9))>+E(F(n'.9) — F(n',9))>.

Fixing %/, the function ¢ — F(n',g), as a function on R™~!, has a Lipschitz

constant at most By (N)sup ||m(e€)||?, as follows from Cauchy Schwarz. A general
€

property of RM provided with Gaussian measure [I-S-T], [L-T] show that the last
term of (10.2) is at most

LB*v*o(N)?Esup |[m(e)||> < LB?y*¢(N)* < LB>y*N.

To study the first term of (10.2), it is shown in [T2] that when h = v = 0, this
term is at most LB?N. Inspection of the proof shows however that the influence of
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the terms containing h,~y is at most the square of the Lipschitz constant of the real
valued function on RV XM given by

1
(10.3) z = Bye(N) Z 9k N Z zi k€ + Bh Z %1€
2<k<M i<N <N

Use of Cauchy Schwartz show that this Lipschitz constant is at most
By ‘p(N)( > ¢2)Y2 + BhV/N. Thus, finally using again that ¢?(N) < N, we see
2<k<M

that VarF < KN. O
A typical application is as follows.

Proposition 10.3. For all B,v, we have

ho K
Var{mi)dh <
o (imidhs Ty

Proof. We fix 3,~, and we apply Proposition 10.1 to the function U (h) = F(8, h,7),
so that %% = BN (m1). To control the last term of (4.11), we use that [(m)| < 1,
and that (easﬂy) [U(h) —U(0)| < B|h|N. O

Proposition 10.4. For each Bg, ho,

/ Var{||m|*)dBdhdy < K/VN.
B<Po,h<holv|<1

Proof. After one sees the proof of Proposition 10.3, one would like to consider %.
It is however more convenient to consider

U(p) = (5, 1) = log E. exp(BN[m(e)||* + hNma (€) +vo(N ) Y. gemae)),

2<k<M

BB

which is a convex function of 5. Thus

dU \
a5 = Nilm @),

the bracket being for the parameters (8, h/3,7v/8)-
To control the last term of (10.1) one uses simply that

U(B) - U(O)] < AN sup me) .

The result follows easily. O

Since ||m||? = ||u]|? + m?, we have
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Proposition 10.5. For each [y, hg,

K
/ Var(|ul]?)dBdhdy < .
B<Bo,h<ho,|v|<1 N

We have applied Proposition 10.1 to ‘Z—Z and (essentially) to g—g. To handle the

case of g—F, we need the following
v
Lemma 10.6. We have

(10.4)  EF(B,h,0) < EF(8,h,7) < EF(B,h,0) + K (a)B*y*o(N)*.

Proof. We integrate first in the variables g, using Jensen’s inequality to integrate
inside the log rather than outside, to get

EF(8,h,7) < E(F(,h,0) + 8°7°e(N)? 3 Imi(e)). O
2<k<M

A noteworthy consequence of (10.4) is the fact, already mentioned, that, as
N — oo, when ¢(N)2/N goes to zero, the perturbation term of the Hamiltonian
has a vanishing influence on the free energy per site.

We now consider a thermally independent copy v of u, and the parameter ((%-9)?)
(closely related to the parameter of (4.5)). The following is a rigorous version of
the claim “(4.4)=(4.5)".

Proposition 10.7. If N'/* < o(N) < N2, we have, for all B, h,

! 2 .12 KN ' 2 . \2
[ vty < Sios 2 [ AtEG o

-1 -1

Proof. We start with the formula

oF
(10.5) 5o = D Be(N)ge(mx)
v 2<k<M
so that
Boye(IN)“([lw]|*) WJrﬁw(N)R,
where
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Using the formula
Var(X +Y) < 2VarX + 2EY?,

we get

(10.6) By p(N)*Var(|Ja||?) < 2Varg—§ + 26%p(N)*ER2.

To control the integral of the first term, we appeal to Proposition 10.1, using
Lemma 10.6 to control the last term of (10.1).

To control the second term, one expends the square and eliminate all terms g,
by using the integration by part formula

(10.7) E((9rA)) = 7B8o(N)E((Amg) — (A){m4))

that hold for any smooth function A from X to R. After a few lines of straight
forward algebra, we find that

(10.8) ER*= Y (m)>+B°Yo(N)’E > (rigrng)’.
2<k<M 2<k <M
Now, expending w-4' = Y 71}, squaring and using the replica trick show
2<k<M
that the last expectation is E{(% - v)?). O

The previous arguments, based upon the control of the (average of) the variance
of partial derivatives of F' have brought us precious information. There are other
averages that can be controlled, this time in a trivial fashion; the averages of second
partial derivatives of F'. It is quite amazing that this brings equally interesting
information.

Proposition 10.8. For all By, hg, we have

(109 [ Bt — (m)?)aganay <
(10.10) [ EmI? = (m|*)?)dsanay <
(10.11) [ Bl ~ (i) dpanay < 7

where the integrals are over 0 < 8 < By, 0 < h < hp,—1 <y < 1.

Proof. We have, by a simple calculation

oF 0*F

O = N, S = N2 ((md) — (ma)?) = N26((ma — (ma))?)
This implies (10.9), since % < KN. To prove (10.10) one use similarly the function
U of Proposition 10.4; (10.10) (and hence (10.11)) follows. O

Trying to use the same idea for ?,2715 yields a remarkable consequence of adding

the perturbation term in (4.16). The following result is inspired by [G].
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Proposition 10.9. (Guerra’s identity). For each By, ho we have

VBE|4{(u-b)%) — 3b]1> — ((u-v)*)|dBdydh <

3=

/,BS,BQ,hShO,_].S’YS].
Here, b = (u) = ((mg))2<k<m, and v is an independent copy of u.

Proof. We start again with (10.5), so that, by the integration by part formula
(10.7), we have

Bl =18eNPEC Y (m) = (mi)?)
2<k<M
and thus

Eng = (Bo(N))*E((llull*) — Il (w)]1*)

+Y(Be(N)PE > ge((mime) — (mi)(me) — 2(ma) ((mrme) — (mi)(m))).
2<k (<M

Use of integration by part (10.7) to get rid of the factor g, yield after a straightfor-
ward but tedious computation

(10.12) Ea—f = (BN )" E({|lull*) — [l {w)]*)

oy
+72(Bp(N))*E(S + Ry + Ry + R3)

2<k <M
Ry=2 Y ((me)*(m})— (memi)(my))
2<k <M
Ry= Y ((mim}) — (mi)(m}))
2<k <M

Use of the replica trick show that

S =8((u-b)*) —6]b]|* — 2((u - v)?)
Ry=Ry=-2 > (mp)(m(|lul® - (|lul®)))
2<k<M
Rg = ([lull*) — (llul®)?
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Consider the function V = |[u]|?2 — (||u|?) defined on X . Use of Cauchy-Schwarz
show that (myV) < (m2)Y/2(V2)1/2 o that

[R1| < 2([lml|?)(V?)*/2

and Rz = (V?). Thus (10.12) implies

(10.13)/ 2% ES|dBdy < < / E82F

[ Qull?) = 1)) By
2 / E<<||m||2><v2>1/2 4 <V2>)d,6’d7
where all the integrals are for 8 < g, h < hg, —1 < v < 1. Now

P
/E rdy =By |l =g Il

where F is given by (10.5). Thus, using (10.6), and the bound 8F/dv(1) < F(2),
the first term on the right-hand side of (10.13) is bounded by K@(N)™2. This is
also the case for the second term. Use of Cauchy Schwarz show that the last term
is bounded by K (I + I'/2), where I = [(V2)dBdy. The result then follows from
(10.11). O
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11. Appendix 2: Random Matrices.

We recall 1; = (7;,x)k<M-
Lemma 11.1. Consider v,w in RM | with ||v|,|lw|| < 1. Then we have

P(Z((m )i -w) —v-w) > t) = (eXp_%min (t%»

i<N

for allt > 0.

Proof. We have

(11.1) M- 0)mi-w) —v-w=X; =) i kT eVEWE.
)

Now, EX; =0, EX? = Y viw? <1, so that, since X; is an order 2 chaos, we
)
have Fexp(|X;|/L) < 2 by [Bo]. Bernstein’s inequality then implies the result.

Lemma 11.2. If C is a bounded convex balanced set of RM | there is a subset R of
2C such that C C convR, cardR < 5M .

Proof. Tt is easy to show that if R is maximal with respect to the property z,y €
R=x—y ¢ C, then R works.

Lemma 11.3. There exists an event (g in the quenched variables such

(11.2) P(QS) < exp(—M)

On Qq, for each v,w in RM

(11.3) Z(m ) (1 - w) < Nv-w + LN max(a, vo)|v|[lw].

Comment. In particular, on
(11.4) Z(m -9)? < N(1 + Lmax(a, a))||v||?
i<N
which expresses that the operator norm of the matrix (»; ) from RM to RY is at

most VN(1 4+ Ly/a) if <1 and LV Na if a > 1.

Proof. Since

Y (- v) (i - w) —v-w)

i<N
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is bilinear in v, w, to ensure (11.3), it suffices that
> (- 0) (i - w) —v - w) < LN max(a, V)
i<N

for v,w in R, where R is the set constructed in Lemma 11.2 when C is the unit
ball of RM . Then Lemma 11.1 shows that the probability that this fails is at most

20 LI
5 (exp—zmln(zNa,NLla))

< exp(—M)
if L; is large enough.
The following is less important, and will be used only once for a secondary result.

Lemma 11.4. There is g > 0, and aqg such that, if a < aq there exists an event
Q1, with P(Q) < exp(—N/L), such that, on 1, for allv in RM | each subset J of
{1,---, N} with cardJ < 6gN we have

N
S i) < ol

ieJ

Proof. Using Lemma 11.1, and the method of Lemma 11.2, we see that, given J

i€J

for all w,w of norm of RN < 1, with probability at least 1 —exp(5M — L%) It then

suffices to take dg < 1/4 small enough that there are at most exp N/2Ls possible
sets J. O
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