Green Chemistry

PAPER

Cite this: Green Chem., 2015, 17, 945

Development of GSK's acid and base selection guides†

Richard K. Henderson,^a Alan P. Hill,^b Anikó M. Redman*^c and Helen F. Sneddon^b

Received 1st August 2014, Accepted 24th September 2014 DOI: 10.1039/c4qc01481b

www.rsc.org/greenchem

Further to the introduction of solvent and reagent guides at GSK, the reagent guide methodology has been adapted to score common acids and bases for use in situations where the chemistry is tolerant of a number of options. The pK_a of each acid and base, and information as to whether they are generally recognised as safe are included to enhance the utility of such guides.

1. Introduction

Scientists at GSK have been consulting an internal base guide for over ten years to aid selection of bases as reagents. A more recent internal survey resulted in an expanded list of 63 bases, and an additional set of 23 acids. Two new guides were then compiled using methodology consistent with that applied to generate our reagent guide.¹

Selecting the right acids or bases for a particular chemical transformation is influenced by a number of factors, including environmental, health and safety effects, reagent strength, solubility, boiling point, ease of removal and/or recovery, and ease of handling. These constraints may not always give rise to a variety of choices, but if there are multiple options, sustainability assessments can be consulted. Medicinal Chemistry timelines can sometimes hinder consideration of sustainability, but as projects progress, consulting these guides can be helpful before larger investments are made into the original Medicinal Chemistry routes and reagents.

2. Methodology

Assessments and calculations performed for the fifteen reagent guides published in early 2013¹ were followed to generate these acid and base guides (Tables 1 and 2). As before, the European Risk Phrases were used to assign an Environmental, Health and Safety Score for each reagent.² Additional concerns where acids and bases have large molecular weight, or generate gaseous, flammable or toxic by-products, or give

rise to disposal issues such as incineration of halogenated acids were addressed through the Chemistry Scores. When generating the reagent guides, the most typical procedures utilizing the reagents were taken into account, and the Chemistry Scores were additionally weighted based on the amounts of reagents and co-reagents used. Clearly individual acids and bases might be employed in a variety of different stoichiometries depending on the reaction being considered, so for the purpose of ranking it was assumed that 1.1 equivalents of acids or bases were being used with no additional co-reagents. Within the acid guide separate entries were created for concentrated and dilute acid in cases where using a more dilute formation resulted in a significantly higher ranking.

When acids or bases are used as solvents, other factors such as waste handling and life cycle assessment may need additional consideration. Solvent guides³ published by various pharmaceutical companies can help evaluate the possible choices. Acids and bases as potential salt partners for *in vivo* experiments will have to undergo more rigorous health assessments, however the inclusion of information as to which acids and bases are generally recognized as safe (GRAS) by the US Food and Drug Administration as of March 2014 may assist in some decision making.

Individual pK_a values are a key consideration when selecting acids and bases. Including pK_a data in the acid/base guides increases utility and may help encourage chemists to consult these guides, and related reagent guides. Experimental pK_a data were retrieved from ACD/ pK_a DB software.⁴ Where a range of experimental pK_a values were available in the literature, data obtained under aqueous conditions at 25 °C with an ionic strength approaching 0 were used wherever possible.

3. The benefits of selecting more sustainable conditions

In addition to their sustainability advantages, greener acids and bases often have additional benefits. Commonly used

View Article Online

^aGSK, Environmental Sustainability Centre of Excellence, Park Road, Ware, Herts, SG12 0DP, UK

^bGSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK ^cGSK, 5 Moore Drive, Research Triangle Park, NC 27709, USA.

E-mail: aniko.m.redman@gsk.com; Tel: +1-919-483-4638

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c4gc01481b

Inorganic acids	CAS number	EHS	Clean chemistry	Greenness	pKa ^a	GRAS ^b	Comment
Hydrochloric acid	7647-01-0	7	7	7.3	-8^{5}	YES	Waste disposal issues upon incineration.
Hydrobromic acid	10035-10-6	7	7	7.3	-9^{5}	NO	Waste disposal issues upon incineration. Halogenated waste
Phosphoric acid, dilute	7664-38-2	7	7	7.3	$1.90, 6.74, 11.74^6$	YES	Waste disposal issues upon incineration.
Sulfuric acid, dilute	7664-93-9	7	7	7.3	$-3.19, 1.98^7$	NO	Waste disposal issues upon incineration.
Hydroiodic acid	10034-85-2	7	5	6.4	-9.9^{8}	NO	Causes severe burns (R35). Waste disposal
	7664 20 2	_	2	<i>c</i> .	4 00 6 74 44 746	VDO	issues upon incineration. Halogenated waste.
Phosphoric acid	7664-38-2	7	5	6.4	$1.90, 6./4, 11./4^{-2}$	YES	Waste disposal issues upon incineration.
Sulfuric acid	/004-93-9	1	5	0.4	-3.19, 1.98	NO	issues upon incineration
Nitric acid	7697-37-2	5	3	4.3	-1.37^{9}	NO	Strong oxidant (R8). Causes severe burns (R35).
Hydrogen fluoride	7664-39-3	3	5	4.2	3.2^{8}	NO	Toxic (R26/27/28). Causes severe burns (R35).
							Special vessel necessary. Waste disposal issues
					10		upon incineration. Halogenated waste.
Perchloric acid	7601-90-3	3	3	3.0	~-510	NO	Strong oxidant (R8). Causes severe burns (R35).
							Halogenated waste
							Theorem waster
	CAS		Clean		<i>a</i>	h	
Organic acids	number	EHS	chemistry	Greenness	pK _a "	GRAS ^{<i>v</i>}	Comment
Glutaric acid	110-94-1	10	9	9.3	441552^{11}	NO	
Citric acid	77-92-9	10	7	8.5	2.93^{12}	YES	
Ascorbic acid	50-81-7	10	7	8.5	4.09^{12}	YES	
<i>p</i> -TsOH (monohydrate)	6192-52-5	10	7	8.5	-6.57^{13}	NO	
Benzoic acid	65-85-0	7	9	8.0	4.20 ¹⁴	YES	
Oxalic acid	144-62-7	7	9	8.0	$1.25, 4.23^{11}$	NO	
Pivalic acid	75-98-9	7	9	8.0	4.94^{12}	NO	
Succinic acid	110-15-6	7	9	8.0	4.24	YES	Courses servers humps (D25)
Propionic acid	54-19-7 79-09-4	7	9	7.5	4.70 1 70 ¹²	VES	Causes severe burns (R35).
Formic acid, dilute	64-18-6	7	9	7.5	3.75^{16}	YES	
Methanesulfonic acid	75-75-2	7	7	7.3	-1.92^{14}	NO	
Formic acid	64-18-6	7	7	6.9	3.75 ¹⁶	YES	Causes severe burns (R35).
Trifluoromethanesulfonic acid	1493-13-6	7	5	6.1	-12^{17}	NO	Causes severe burns (R35).
					19		Halogenated waste.
Trifluoroacetic acid	76-05-1	7	5	6.0	0.5018	NO	Causes severe burns (R35).
							waste disposal issues upon
Trichloroacetic acid	76-03-9	3	5	3.6	0.52^{18}	NO	Causes severe hurns (R35)
and a children actual	.0005			0.0	0.02	110	Waste disposal issues upon
							incineration. Halogenated waste.

 a pK_a numbers in italics are not experimentally obtained data. b GRAS (Generally Recognized as Safe) is an FDA designation that a chemical or substance added to food is considered safe by experts. http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm.

reactions found in the Medicinal Chemistry literature may have significant issues when employed on large scale. One such example is the use of NaH in DMF. Exposure of solid NaH to air and the release of highly flammable hydrogen gas on large scale have significant safety risks, and the combination of NaH and DMF has been implicated in runaway reactions.⁴² Using alkoxides such as potassium *tert*-butoxide instead can alleviate these concerns.

When it is not feasible to replace a class of acids or bases with significantly more sustainable counterparts, the guides can still point out differences within the available choices. For example, transformation requiring the use of alkyllithiums will likely proceed as well with hexyllithium as with its short-chain analogs, and the by-product will be liquid hexane instead of flammable alkane gases. Even this is not ideal as hexane has neurotoxicity concerns.⁴³ Currently there is still a need for new commercially available organolithium reagents to address these safety issues.

Reactions such as BOC-deprotections are generally carried out using strong acids. Replacing TFA in dichloromethane with HCl in cyclopentyl methyl ether (CPME),⁴⁴ minimizes the safety hazard of severe skin damage, and reduces the amounts of chlorinated materials.

Choosing more sustainable conditions by first intent in Medicinal Chemistry can result in safer reaction conditions, less hazardous waste, and significant time savings during subsequent scale up campaigns.

Table 2 Base selection guide

Carbonates	CAS number	EHS	Clean chemistry	Greenness	$p{K_a}^a$ (BH ⁺)	GRAS ^b	Comment
Sodium bicarbonate Potassium bicarbonate Sodium carbonate Potassium carbonate Cesium carbonate	144-55-8 298-14-6 497-19-8 584-08-7 534-17-8	10 10 10 9 10	9 9 9 9 5	9.3 9.3 9.3 8.8 7.4	5.95^{17} 5.95^{17} 9.1^{17} 9.1^{17} 9.1^{17}	YES YES YES NO NO	
Phosphates	CAS number	EHS	Clean chemistry	Greenness	$p{K_a}^a$ (BH ⁺)	GRAS ^b	Comment
Trisodium phosphate (anh.) Tripotassium phosphate (anh.)	7601-54-9 7778-53-2	10 7	8 7	9.0 7.3	$\frac{11.74^{18}}{11.74^{18}}$	YES YES	
Hydroxides	CAS number	EHS	Clean chemistry	Greenness	$p{K_a}^a$ (BH ⁺)	GRAS ^b	Comment
Potassium hydroxide Sodium hydroxide Calcium hydroxide Barium hydroxide Lithium hydroxide	1310-58-3 1310-73-2 1305-62-0 17194-00-2 1310-65-2	7 7 7 7 4	9 9 9 8 8	8.0 8.0 8.0 7.7 5.7	$15.74^{19} \\ 15.75^{10} \\ 15.$	YES YES YES NO NO	Causes severe burns (R35). Causes severe burns (R35).
Hydrides	CAS number	EHS	Clean chemistry	Greenness	pK_a^a (BH ⁺)	GRAS ^b	Comment
Sodium hydride Potassium hydride	7646-69-7 7693-26-7	5	5	5.0	35.0 ²⁰ 35.0 ²⁰	NO	May cause runaway reaction with certain solvents, such as DMF, DMA. Highly flammable gaseous by-product (hydrogen) needs abating. Use of mineral oil dispersions greatly reduces fire hazard. May cause runaway reaction with certain solvents, such as DMF, DMA. Highly flammable gaseous by-product (hydrogen) needs abating. Use of mineral oil dispersions greatly reduces fire hazard.
Acetates	CAS number	EHS	Clean chemistry	Greenness	$p{K_a}^a$ (BH ⁺)	GRAS ^b	Comment
Potassium acetate Sodium acetate	127-08-2 127-09-3	10 10	9 9	9.3 9.3	$4.76^{21} \\ 4.76^{21}$	NO YES	
Alkoxides	CAS number	EHS	Clean chemistry	Greenness	$pK_a^{\ a}$ (BH^+)	GRAS ^b	Comment
Sodium methoxide	124-41-4	5	9	6.9	15.1^{22}	NO	Highly flammable (R11). Toxic
Sodium ethoxide Sodium <i>tert-</i> butoxide	141-52-6 865-48-5	5 5	9 9	6.9 6.9	15.93^{22} 19.2^{22}	NO NO	(R23/24/25). Highly flammable (R11). Highly flammable (R11). Causes severe burns (R35).
Potassium <i>tert</i> -butoxide	865-47-4	5	9	6.9	19.2^{22}	NO	Highly flammable (R11). Causes severe burns (R35).
Lithium methoxide	865-34-9	4	8	5.7	15.1^{22}	NO	Highly flammable (R11). Toxic (R23/24/25).
Lithium ethoxide Lithium <i>tert</i> -butoxide	2388-07-0 1907-33-1	4 4	8 8	5.7 5.7	15.93^{22} 19.2^{22}	NO NO	Highly flammable (R11). Highly flammable (R11).
Phosphazanes	CAS number	EHS	Clean chemistry	Greenness	pK_a^a (BH ⁺)	GRAS ^b	Comment
Phosphazane BEMP Phosphazane P2-Et	98015-45-3 165535-45-5	7 7	5 5	6.0 6.0	27.58^{23} 32.66^{23}	NO NO	
Amines	CAS number	EHS	Clean chemistry	Greenness	pK_a^a (BH ⁺)	GRAS ^b	Comment
2-Methylpyridine 2,6-Lutidine DBN Pyridine	109-06-8 108-48-5 3001-72-7 110-86-1	8 8 7 7	9 9 9 9	8.3 8.3 8.0 7.5	5.97^{24} 6.75^{24} 13.5^{25} 5.17^{24}	NO NO NO NO	Highly flammable (R11).

Table 2 (Contd.)

Amines	CAS number	EHS	Clean chemistry	Greenness	pK_a^a (BH^+)	GRAS ^b	Comment
4-Methylpyridine	108-89-4	7	9	7 5	6.02^{24}	NO	Toxic (R24)
Morpholine	110-91-8	7	9	7.5	8 49 ²⁶	NO	10xic (124).
Diethylaminopropylamine	104-78-9	7	9	7.5	10.48^{27}	NO	
Tetramethylguanidine	80-70-6	7	9	7.5	13.6^{28}	NO	
DBU	6674-22-2	7	8	7.3	12.5^{25}	NO	Causes severe burns (R35).
2,2,6,6-Tetramethylpiperidine	768-66-1	7	8	7.3	11.1^{29}	NO	
Triethylamine	121-44-8	5	9	6.9	10.77 ³⁰	NO	Highly flammable (R11). Toxic (R23/24). Causes severe burns
							(R35).
Diisopropylamine Piperidine	108-18-9 110-89-4	5 5	9 9	6.9 6.9	11.05^{36} 11.22^{31}	NO NO	Highly flammable (R11). Highly flammable (R11). Toxic
Dim ethedethedene in e	500 FC 1	_	0	6.0	10 1 6 32	NO	(R23/24).
Dipropylamine	142-84-7	5	9	6.9 6.9	10.10 10.91^{29}	NO	Highly flammable (R11). Causes severe burns (R35).
<i>N</i> -Methylmorpholine	109-02-4	5	9	6.9	7.41^{29}	NO	Highly flammable (R11).
<i>n</i> -Butylamine	109-73-9	5	9	6.9	10.61 ³³	NO	Highly flammable (R11). Causes severe burns (R35).
Diethylamine	109-89-7	5	9	6.9	10.98 ³⁶	NO	Highly flammable (R11). Causes severe burns (R35).
Ammonia	7664-41-7	5	9	6.5	9.2134	NO	Toxic (R23).
Diisopropylethylamine	7087-68-5	5	9	6.5	10.75^{33}	NO	Highly flammable (R11).
<i>tert</i> -Butylamine	75-64-9	5	9	6.5	10.6350	NO	Highly flammable (R11). Toxic (R25). Causes severe
DABCO®	280-57-9	5	9	6.5	8 425	NO	Highly flammable (P11)
Cyclohexylamine	108-91-9	5	9	6.5	10.4^{36}	NO	mginy nanimable (K11).
Tributylamine	102-82-0	5	7	6.3	9 93 ³⁷	NO	Toxic (R23/24/25)
4-(Dimethylamino)pyridine	1122-58-3	3	9	5.2	9.93 9.60 ³⁸	NO	Toxic $(R25/24/25)$.
Dicyclohexylamine	101-83-7	3	7	4.3	11.25^{39}	NO	Toxic $(R23/27)$.
Imidazole	288-32-4	2	9	3.9	6.99^{39}	NO	Toxic (R61).
Disilazides	CAS number	FHS	Clean	Greenness	pK_a^a	GPAS ^b	Comment
	CAS IIUIIIDEI	LIID	chemistry	Greenness	(BII)	UIAS	Comment
KHMDS	40949-94-8	5	7	5.9	29.5^{40}	NO	Highly flammable (R11).
NaHMDS	1070-89-9	5	7	5.9	29.5^{40}	NO	Highly flammable (R11).
LiHMDS	4039-32-1	4	8	5.5	29.5^{40}	NO	Highly flammable (R11).
					0		
Amides	CAS number	EHS	Clean chemistry	Greenness	$pK_{a}^{\ u}$ (BH ⁺)	GRAS^{b}	Comment
I JTMD	20227 07 1	4	0		27 240	NO	
	38227-87-1	4	8 0	5.5	37.3	NO	Highly flammable (P11)
Sodium amide	7782-92-5		3	3.7	35.0^{20}	NO	Forms perovide Toxic
Sourdin annue	7762-92-5	4	5	5.7	55.0	NO	and flammable gaseous by-product (ammonia)
					20		needs abating.
Lithium amide	7782-89-0	4	3	3.7	35.0^{20}	NO	Forms peroxide. Toxic and
							hummable gaseous
							needs abating.
			Clean		pV ^a		2
Alkyllithiums	CAS number	EHS	chemistry	Greenness	$\left(\mathrm{BH}^{+}\right)$	GRAS^b	Comment
<i>n</i> -Hexyllithium	21369-64-2	2	8	4.0	40.0^{41}	NO	Highly flammable (R11).
n Butullithium	100-72.9	1	7	2.1	50 041	NO	Causes severe burns (R35).
<i>n</i> -Butymunum	109-72-8	1	/	3.1	50.0	NO	Highly flammable (R11).
							hyproduct (butane) needs
							abating.
sec-Butyllithium	598-30-1	1	7	3.1	51.0^{41}	NO	Highly flammable (R11).
							Causes severe burns (R35).
							Highly flammable gaseous
							by-product (butane) needs
							abating.
<i>tert-</i> Butyllithium	594-19-4	1	7	3.1	53.0^{41}	NO	Highly flammable (R11).
							Highly flammable gaseous
							by-product (isobutane) needs
							abating.

 a p K_{a} numbers in italics are not experimentally obtained data. b GRAS (Generally Recognized as Safe) is an FDA designation that a chemical or substance added to food is considered safe by experts. http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm

4. Conclusion and further work

Not all acids or bases are interchangeable for every purpose, but these guides can help examine multiple choices, and can also facilitate changing a culture, encouraging people to consider sustainability as one of many criteria when planning a reaction.

Acknowledgements

The authors wish to acknowledge Catherine Alder, Weichun Chen, David Constable, Virginia Cunningham, Alan Curzons, Andrew Dominey, John Hayler, Richard Henderson, Conchita Jiménez-González, Marie Catherine Salaun, Lena Shukla and Leanna Shuster for their support of the reagent guides.

Notes and references

- J. P. Adams, C. M. Alder, I. Andrews, A. M. Bullion, M. Campbell-Crawford, M. G. Darcy, J. D. Hayler, R. K. Henderson, C. A. Oare, I. Pendrak, A. M. Redman, L. E. Shuster, H. F. Sneddon and M. D. Walker, *Green Chem.*, 2013, 15, 1542–1549.
- 2 Conversion of EU Risk Phrases to Globally Harmonized System (GHS): http://ec.europa.eu/enterprise/sectors/chemicals/files/ghs/ghs_comparison_classifications_dec07_en.pdf.
- 3 For example: (a) R. K. Henderson, C. Jiménez-González, D. J. C. Constable, S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood, S. P. Binksa and A. D. Curzons, *Green Chem.*, 2011, 13, 854–862; (b) K. Alfonsi, J. Colberg, P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M. A. Nagy, D. A. Perry and M. Stefaniak, *Green Chem.*, 2008, 10, 31–36; (c) D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, V. Ducandas, P. Isnard, E. Guntrum, T. Senac, S. Ruisseau, P. Cruciani and P. Hosek, *Org. Process Res. Dev.*, 2013, 17(12), 1517–1525.
- 4 ACD/pKa DB Version 12.01, Advanced Chemistry Development inc, Toronto, On, Canada, http://www.acdlabs.com, 2009.
- 5 F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456-463.
- 6 A. Avdeef and J. J. Bucher, Anal. Chem., 1978, 50, 2137–2142.
- 7 A. K. Covington, J. V. Dobson and W. F. K. Wynne-Jones, *Trans. Faraday Soc.*, 1965, **61**, 2057–2062.
- 8 W. Brown, B. Iverson, E. Anslyn and C. Foote, *Organic Chemistry*, Cengage Learning, 7th edn, 2013.
- 9 A. Krawetz, Thesis, Univ. of Chicago, 1955.
- 10 C. E. Housecroft and A. G. Sharpe, *Inorganic Chemistry*, Prentice Hall, 2nd edn, 2004, p. 171.
- 11 J. C. Speakman, J. Chem. Soc., 1940, 855.
- 13 D. C. French and D. S. Crumrine, *J. Org. Chem.*, 1990, 55(20), 5494–5496.

- 14 E. J. King and J. E. Prue, J. Chem. Soc., 1961, 275–279.
- 15 J. R. Fisher and H. L. Barnes, J. Phys. Chem., 1972, 76, 90–99.
- 16 H. S. Harned and N. D. Embree, J. Am. Chem. Soc., 1934, 56(5), 1042–1044.
- 17 I. Hansson, Acta Chem. Scand., 1973, 27, 931-944.
- 18 A. Avdeef and J. J. Bucher, Anal. Chem., 1978, 50, 2137– 2142.
- 19 E. P. Serjeant and B. Dempsey, *Ionization Constants of Organic Acids in Solution*, IUPAC Chemical Data Series No. 23, Pergamon Press, Oxford, UK, 1979.
- 20 M. B. Smith and J. March, *March's advanced organic chemistry*, Wiley Interscience, 6th edn, 2007.
- 21 J. R. Fisher and H. L. Barnes, *J. Phys. Chem.*, 1972, **76**, 90–99.
- 22 J. Murto, Acta Chem., Scand., 1964, 18, 1043-1053.
- 23 R. Schwesinger and H. Schlemper, Angew. Chem., Int. Ed. Engl., 1987, 26(11), 1167–1169.
- 24 H. C. Brown and X. Mihm, J. Am. Chem. Soc., 1955, 77(7), 1723–1726.
- 25 T. Okuyama and H. Maskill, *Organic Chemistry: A Mechanistic Approach*, Oxford University Press, 2013, p. 130.
- 26 J. B. Czerminski, A. G. Dickson and R. G. Bates, Thermodynamics of the dissociation of morpholinium ion in seawater from 5 to 40 °C, *J. Solution Chem.*, 1982, **11**, 79.
- 27 Tissier and P. Barillier, Comput. Rend. C., 1969, 268, 1953.
- 28 S. J. Angyal and W. K. Warburton, J. Chem. Soc., 1951, 2492–2494.
- 29 J. K. Hall, J. Phys. Chem., 1956, 60, 63-70.
- 30 D. B. Rorabacher and C. A. Melendez-Cepeda, J. Am. Chem. Soc., 1971, 93, 6071–6076.
- 31 S. Searles, M. Tamres, F. Block and L. Quarterman, J. Am. Chem. Soc., 1956, 78(19), 4917–4920.
- 32 J. Hansson, Svensk. Kem. Tidskr., 1955, 67, 256.
- 33 N. F. Hall and M. R. Sprinkle, J. Am. Chem. Soc., 1932, 14, 3469–3485.
- 34 D. B. Rorabacher, W. J. MacKellar, F. R. Shu and M. Bonavita, *Anal. Chem.*, 1971, 43, 561–573.
- 35 D. D. Perrin, *Dissociation constants of organic acids and bases*, Butterworths, London, 1965. Supplement 1972.
- 36 R. D. Hancock, J. Chem. Soc., Dalton Trans., 1980, 416-418.
- 37 P. Damsgard-Sorensen and A. Unmack, Z. Phys. Chem., 1935, A172, 389–397.
- 38 F. Cruege, G. Girault, S. Coustal, J. Lascombe and P. Rumpf, Bull. Soc. Chim. Fr., 1970, 11, 3889–3894.
- 39 J. J. Christensen, R. M. Izatt, D. P. Wrathall and L. D. Hansen, *J. Chem. Soc. A*, 1969, 1212–1223.
- 40 R. R. Fraser and T. S. Mansour, J. Org. Chem., 1984, 49, 3442-3443.
- 41 Approximations based on standard alkane pK_a 's.
- 42 (a) J. Buckey, et al., Chem. Eng. News, 1982, 60(28), 5;
 (b) G. De Wall, Chem. Eng. News, 1982, 60(37), 5.
- 43 Toxicology Profile for *n*-Hexane, US Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry, July, 1999.
- 44 Available from Sigma-Aldrich as a 3 M solution.