PRO 5961 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro *Aula 7 - 2023*

Departamento de Engenharia de Produção Universidade de São Paulo

The problemGiven $x \in \mathbb{R}^n$ - variables $f : \mathbb{R}^n \to \mathbb{R}$ - objective function g_i e h_i constraints

$$\begin{array}{ll} \text{minimize } f(x) \\ \text{s.t} \quad g_i(x) \leq 0 \quad \quad \text{i} \in \{1, 2, \dots m\} \\ \quad h_i(x) = 0 \quad \quad \text{i} \in \{1, 2, \dots l\} \end{array}$$

Constrained optimization is a rather more difficult subject !!

Usually we write

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{bmatrix} \text{ and } h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_l(x) \end{bmatrix}$$

Constrained problems

Example: Univariate Constrained Optimization

$$\min_{x \in \mathbb{R}} (x - 2)^2 - 1$$

Constrained problems

Example: Univariate Constrained Optimization

$$\min_{x \in \mathbb{R}} (x - 2)^2 - 1$$

s.t $\frac{\sqrt{x} \le 1}{x > 0}$

Note:
$$\sqrt{x} \le 1 \iff \sqrt{x} - 1 \le 0 \implies -x \le 0$$

Constrained problems

Example: Univariate Constrained Optimization

$$\min_{x \in \mathbb{R}} (x - 2)^2 - 1$$

s.t $\sqrt{x} \le 1$
 $x > 0$

Feasible set : $0 \le x \le 1$

Some problems can be easily solved:

Example 1 - linear programming

$$\begin{array}{ll} \min & c^{t}x\\ s.a & Ax = b\\ Dx \leq d\\ Mx \geq f\\ x \geq 0 \end{array}$$

Some problems can be easily solved:

Example 2 - Quadratic programming

min	$x_1^2 + 9x_2^2 - 3x_3^2$				
s.a	<i>x</i> ₁	$+2x_{2}$	$+2x_{3}$		\leq 8
	3 <i>x</i> ₁	$+4x_{2}$	$+x_{3}$	$+x_{5}$	= 7
	$x_j \ge 0$	$\forall j$			

$$\begin{array}{ll} \min & \frac{1}{2}x^{t}Qx + c^{t}x\\ s.a & Ax = b_{e}\\ Dx \leq b_{i} \end{array}$$

• Constrained optimization is rather more difficult than unconstrained optimization

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated
- A possible approach is to **transform** the original problem in order to use unconstrained optimization techniques.

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated
- A possible approach is to **transform** the original problem in order to use unconstrained optimization techniques.

How to transform the problems?

Scaling Variables

Scaling by variable transformation

- Cannot be described precisely in general terms
- Converts the variables from units that typically reflect the physical nature of the problem to units that display certain desirable properties during the minimization process.
- The variables of the scaled problem should be of similar magnitude and of order unity in the region of interest.
- If typical values of all the variables are known, a problem can be transformed so that the variables are all of the same order of magnitude

Example

Var	Interpretation	Units	Typical value
<i>x</i> ₁	Gas flow	lb/hr	11000
<i>x</i> ₂	Water flow	lb/hr	1675
<i>X</i> 3	Sterm thermal resistance	$(BTU/(hrft^{2} \ ^{0}F))^{-1}$	100
x4 x5	Waste build-up Gas-side radiation	(BTU/(hrft ^{2 0} F)) ⁻¹ BTU/(hrft ^{2 0} R ⁴)	$\begin{array}{c} 6\times10^{-4}\\ 5.4\times10^{-10}\end{array}$

Use linear transformations of the variables x = Dy with x_i the original variables, y_i the transformed variables, and D is a constant diagonal matrix.

For instance, d_1 could be set to 1.1×10^4 .

advantages and disadvantages

Consider linear scaling:

• Some accuracy may be lost. Suppose $x_i \in [200.1242, 200.1806]$ and $y_i = x_i/200.1242$. Then $y_i \in [1.0, 1.000282]$ (suppose seven digit representation)

advantages and disadvantages

Consider linear scaling:

- Some accuracy may be lost. Suppose $x_i \in [200.1242, 200.1806]$ and $y_i = x_i/200.1242$. Then $y_i \in [1.0, 1.000282]$ (suppose seven digit representation)
- The magnitude of a variable may vary substantially during the minimization. What might be a good scaling at one point may prove harmful at another.

advantages and disadvantages

Consider linear scaling:

- Some accuracy may be lost. Suppose $x_i \in [200.1242, 200.1806]$ and $y_i = x_i/200.1242$. Then $y_i \in [1.0, 1.000282]$ (suppose seven digit representation)
- The magnitude of a variable may vary substantially during the minimization. What might be a good scaling at one point may prove harmful at another.
- if a realistic range of values for a variable is known, try to use the information Example: if $x_i \in [a_i, b_i]$, consider $y_i = \frac{2x_i}{b_i a_i} \frac{b_i + a_i}{b_i a_i}$ This transformation guarantees that $y_i \in [-1, 1]$

Be careful....

• The interval specifying the range of values for a given variable must be a realistic one.

Be careful....

- The interval specifying the range of values for a given variable must be a realistic one.
- When the variables are scaled by a linear transformations, the derivatives of the objective function are also scaled.

Be careful....

- The interval specifying the range of values for a given variable must be a realistic one.
- When the variables are scaled by a linear transformations, the derivatives of the objective function are also scaled.
- Even a mild scaling such as $x_j = 10y_j$ may have a substantial effect on the Hessian, and significantly alter the convergence rate of an optimization algorithm.

• Appropriate for linear constraints

- Appropriate for linear constraints
- Generalize the idea of scaling of variables

- Appropriate for linear constraints
- Generalize the idea of scaling of variables
- Multiply the coeficient matrix and the right hand side vector by a suitably matrix $\ensuremath{\mathsf{M}}$

- Appropriate for linear constraints
- Generalize the idea of scaling of variables
- Multiply the coeficient matrix and the right hand side vector by a suitably matrix $\ensuremath{\mathsf{M}}$
- Matrix M
 - does not change the set of feasible points
 - makes it easier to find feasible points

Let $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$. Consider the problems:

P1 $\min_{x \in \mathbb{R}^n} \{ f(x) | g(x) \le 0 \quad h(x) = 0 \}$

P2 $\min_{x \in \mathbb{R}^n, w \in \mathbb{R}^m} \{ f(x) | g(x) + w = 0 \quad h(x) = 0 \quad w \ge 0 \}$

Then we have:

Let $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$. Consider the problems:

P1 $\min_{x \in \mathbb{R}^n} \{ f(x) | g(x) \le 0 \quad h(x) = 0 \}$

P2 min_{x \in $\mathbb{R}^n, w \in \mathbb{R}^m \{ f(x) | g(x) + w = 0 \quad h(x) = 0 \quad w \ge 0 \}$}

Then we have:

(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

Let $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$. Consider the problems:

P1 $\min_{x \in \mathbb{R}^n} \{f(x) | g(x) \le 0 \quad h(x) = 0\}$

Then we have:

- (i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
- (ii) If one of the problems has a minimum, then the minima are equal

Let $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$. Consider the problems:

P1 $\min_{x \in \mathbb{R}^n} \{ f(x) | g(x) \le 0 \quad h(x) = 0 \}$ P2 $\min_{x \in \mathbb{R}^n, w \in \mathbb{R}^m} \{ f(x) | g(x) + w = 0 \quad h(x) = 0 \quad w \ge 0 \}$

Then we have:

- (i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
- (ii) If one of the problems has a minimum, then the minima are equal
- (iii) To each minimizer x^* of (P1) there corresponds a minimize $x^*r\begin{bmatrix} x^*\\ w^* \end{bmatrix}$ of (P2) and vice-versa

Entrega aula - Slack Variables

Coloque os problemas abaixo na forma

$$\begin{array}{ll} \min & f(x) \\ \text{s.a} & g(x) = 0 \end{array}$$

a)

max	3 <i>x</i> 1	$+ 2x_2$	$+7x_{3}$	
s.a	2 <i>x</i> ₁	$+ 3x_2$		\leq 42
	2 <i>x</i> ₁		- <i>x</i> 3	\leq 18
	3 <i>x</i> ₁	- x ₂	+ 4 x ₃	≥ 24
	$x_1 \ge 0$	$x_2 \leq 0$	$x_3 \in \mathbb{R}$	

Entrega aula - Slack Variables

b)

min	$x_1 \times x_2 \times x_3$			
s.a	2 <i>x</i> ₁	$+ 3x_2$		\leq 42
	x ₁ ⁴	$+x_{2}^{4}$		$= x_3$
	3 <i>x</i> ₁	- x ₂	+ 4 x ₃	≥ 24

3. Changing the functional form

Consider $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$, $d \in \mathbb{R}^l$. Let $\omega : \mathbb{R} \to \mathbb{R}$ and $\lambda : \mathbb{R} \to \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^1 . Consider the problems:

P1
$$\min_{x \in \mathbb{R}^n} \{f(x) | g(x) \le b \quad h(x) = d \}$$

P2 $\min_{x \in \mathbb{R}^n} \{f(x) | \Lambda(x) \le \beta \quad \Omega(x) = \theta \}$ with
 $\Lambda_i(x) = \lambda(g_i(x)) \quad \beta_i = \lambda(b_i)$
 $\Omega_i(x) = \omega(g_i(x)) \quad \theta_i = \omega(b_i)$

Then we have:

3. Changing the functional form

Consider $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$, $d \in \mathbb{R}^l$. Let $\omega : \mathbb{R} \to \mathbb{R}$ and $\lambda : \mathbb{R} \to \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^1 . Consider the problems:

P1 min_{$$x \in \mathbb{R}^n$$} { $f(x) | g(x) \le b$ $h(x) = d$ }
P2 min _{$x \in \mathbb{R}^n$} { $f(x) | \Lambda(x) \le \beta$ $\Omega(x) = \theta$ } with
 $\Lambda_i(x) = \lambda(g_i(x))$ $\beta_i = \lambda(b_i)$
 $\Omega_i(x) = \omega(g_i(x))$ $\theta_i = \omega(b_i)$

Then we have:

(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

3. Changing the functional form

Consider $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$, $d \in \mathbb{R}^l$. Let $\omega : \mathbb{R} \to \mathbb{R}$ and $\lambda : \mathbb{R} \to \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^1 . Consider the problems:

P1 min_{$$x \in \mathbb{R}^n$$} { $f(x) | g(x) \le b$ $h(x) = d$ }
P2 min _{$x \in \mathbb{R}^n$} { $f(x) | \Lambda(x) \le \beta$ $\Omega(x) = \theta$ } with
 $\Lambda_i(x) = \lambda(g_i(x))$ $\beta_i = \lambda(b_i)$
 $\Omega_i(x) = \omega(g_i(x))$ $\theta_i = \omega(b_i)$

Then we have:

- (i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
- (ii) If one of the problems has a minimum,then the minima are equal and they have the same minimizers

Example

Consider problem P1 with:

$$f: \mathbb{R}^{3} \to \mathbb{R}, f(x_{1}, x_{2}, x_{3}) = 2a^{x_{1}}b^{x_{2}}$$
$$g: \mathbb{R}^{3} \to \mathbb{R}^{2} g(x_{1}, x_{2}, x_{3}) = \begin{bmatrix} x_{1} + x_{2} + x_{3} \\ x_{1} \times x_{2} \end{bmatrix}$$
$$b = \begin{bmatrix} 13 \\ 1 \end{bmatrix}$$

Example

Consider problem P1 with:

$$f: \mathbb{R}^{3} \to \mathbb{R}, f(x_{1}, x_{2}, x_{3}) = 2a^{x_{1}}b^{x_{2}}$$
$$g: \mathbb{R}^{3} \to \mathbb{R}^{2} g(x_{1}, x_{2}, x_{3}) = \begin{bmatrix} x_{1} + x_{2} + x_{3} \\ x_{1} \times x_{2} \end{bmatrix}$$
$$b = \begin{bmatrix} 13 \\ 1 \end{bmatrix}$$

Possible solution: consider the logarithm in the objective function

Transformations of problems - Constraints

If possible, the objective function shall be non-linear and the constraints linear.

Consider

min	<i>x</i> ₁	$+ 2x_2$	
s.a	$x_1 \times x_2$		= 2
	<i>x</i> ₁		\geq 1
	<i>x</i> ₂		≥ 1

Transformations of problems - Constraints

If possible, the objective function shall be non-linear and the constraints linear.

Consider

min	<i>x</i> ₁	$+ 2x_2$	
s.a	$x_1 \times x_2$		= 2
	<i>x</i> ₁		\geq 1
	<i>x</i> ₂		\geq 1

Let $x_2 = 2/x_1$, you obtain:

$$\begin{array}{rll} \min & x_1 & + 4/x_1 \\ \text{s.a} & x_1 & & \geq 1 \\ & x_1 & & \leq 2 \end{array}$$

Transformations of problems - Constraints

Let $\mathbb{S}_1 \subseteq \mathbb{S} \subseteq \mathbb{S}_2 \subseteq \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ Consider the problems:

P1 $\min_{x \in \mathbb{S}_1} f(x)$

P2 $\min_{x \in S} f(x)$

P3 $\min_{x \in S_2} f(x)$

and assume that they all have minima and minimizers. Then:

Transformations of problems - Constraints

Let $\mathbb{S}_1 \subseteq \mathbb{S} \subseteq \mathbb{S}_2 \subseteq \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ Consider the problems:

P1 $\min_{x \in \mathbb{S}_1} f(x)$ P2 $\min_{x \in \mathbb{S}} f(x)$

```
P3 \min_{x \in \mathbb{S}_2} f(x)
```

and assume that they all have minima and minimizers. Then:

```
(i) \min_{x \in \mathbb{S}_1} f(x) \ge \min_{x \in \mathbb{S}} f(x) \ge \min_{x \in \mathbb{S}_2} f(x)
```

Transformations of problems - Constraints

Let $\mathbb{S}_1 \subseteq \mathbb{S} \subseteq \mathbb{S}_2 \subseteq \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ Consider the problems:

- P1 $\min_{x \in S_1} f(x)$ P2 $\min_{x \in S} f(x)$
- P3 $\min_{x \in S_2} f(x)$

and assume that they all have minima and minimizers. Then:

(i)
$$\min_{x \in \mathbb{S}_1} f(x) \ge \min_{x \in \mathbb{S}} f(x) \ge \min_{x \in \mathbb{S}_2} f(x)$$

- (ii) If $x^* \in \arg \min_{x \in \mathbb{S}_2} f(x)$ and $x^* \in \mathbb{S}$, then
 - $\min_{x\in\mathbb{S}} f(x) = \min_{x\in\mathbb{S}_2} f(x)$
 - $\arg \min_{x \in \mathbb{S}} f(x) = \left(\arg \min_{x \in \mathbb{S}_2} f(x)\right) \cap \mathbb{S}$

How to solve a problem?

Consider a problem with some objective but a larger feasible set.

If the solution of the *relaxed* problem lies in $\mathbb S$ a solution has been found!

How to solve a problem?

Consider a problem with some objective but a larger feasible set.

If the solution of the $\mathit{relaxed}$ problem lies in $\mathbb S$ a solution has been found!

Some nice cases:

- \mathbb{S}_2 is convex while \mathbb{S} is not
- S₂ temporarily ignores some constraints

How to solve a problem?

Alternative 1

Consider a problem with same objective but a larger feasible set.

If the solution of the $\mathit{relaxed}$ problem lies in $\mathbb S$ a solution has been found! Some nice cases:

- \mathbb{S}_2 is convex while \mathbb{S} is not
- \mathbb{S}_2 temporarily ignores some constraints

How to solve a problem?

Alternative 1

Consider a problem with same objective but a larger feasible set.

If the solution of the $\mathit{relaxed}$ problem lies in $\mathbb S$ a solution has been found! Some nice cases:

- \mathbb{S}_2 is convex while \mathbb{S} is not
- \mathbb{S}_2 temporarily ignores some constraints

Alternative 2

If the optimizer is known to lie in a subset of $\mathbb{S},$ confine the search to this subset

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

Alternatives

• Penalty functions: the function is large for values of the decision variables that violate the constraints

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

Alternatives

- Penalty functions: the function is large for values of the decision variables that violate the constraints
- Barrier functions: build a barrier to violating constraints. These methods are generally applicable only to inequality constrained optimization problems