PRO 5961 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro
Aula 7-2023

Departamento de Engenharia de Produção
Universidade de São Paulo

Constrained problems

```
The problem
Given
\(x \in \mathbb{R}^{n}\) - variables
\(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\) - objective function
\(g_{i}\) e \(h_{i}\) constraints
```

minimize $f(x)$
s.t $\quad g_{i}(x) \leq 0 \quad i \in\{1,2, \ldots m\}$
$h_{i}(x)=0 \quad i \in\{1,2, \ldots l\}$

Constrained optimization is a rather more difficult subject !!

Constrained problems

Usually we write

$$
g(x)=\left[\begin{array}{l}
g_{1}(x) \\
g_{2}(x) \\
\vdots \\
g_{m}(x)
\end{array}\right] \text { and } h(x)=\left[\begin{array}{l}
h_{1}(x) \\
h_{2}(x) \\
\vdots \\
h_{l}(x)
\end{array}\right]
$$

Constrained problems

Example: Univariate Constrained Optimization

$$
\min _{x \in \mathbb{R}}(x-2)^{2}-1
$$

Constrained problems

Example: Univariate Constrained Optimization

$$
\begin{gathered}
\min _{x \in \mathbb{R}}(x-2)^{2}-1 \\
\text { s.t } \quad \sqrt{x} \leq 1 \\
x>0
\end{gathered}
$$

Note: $\sqrt{x} \leq 1 \Longleftrightarrow \sqrt{x}-1 \leq 0 \quad x \geq 0 \Longleftrightarrow-x \leq 0$

Constrained problems

Example: Univariate Constrained Optimization

$$
\begin{gathered}
\min _{x \in \mathbb{R}}(x-2)^{2}-1 \\
\text { s.t } \quad \sqrt{x} \leq 1 \\
\\
\quad x \geq 0
\end{gathered}
$$

Feasible set : $0 \leq x \leq 1$

Constrained problems

Some problems can be easily solved:

Example 1 - linear programming

\min	$5 x_{1}$	$+2 x_{2}$	$+3 x_{3}$	$-x_{4}$	$+x_{5}$
s.a	x_{1}	$+2 x_{2}$	$+2 x_{3}$		
	$3 x_{1}$	$+4 x_{2}$	$+x_{3}$		
	$x_{j} \geq 0$	$\forall j$		$+x_{5}$	$=7$

$$
\begin{array}{ll}
\min & c^{t} x \\
\text { s.a } & A x=b \\
& D x \leq d \\
& M x \geq f \\
& x \geq 0
\end{array}
$$

Constrained problems

Some problems can be easily solved:
Example 2-Quadratic programming

$$
\begin{array}{lllll}
\min & x_{1}^{2}+9 x_{2}^{2}-3 x_{3}^{2} & & & \\
\text { s.a } & x_{1} & +2 x_{2} & +2 x_{3} & \\
& 3 x_{1} & +4 x_{2} & +x_{3} & +x_{5} \\
& x_{j} \geq 0 & \forall j & & \\
& =7
\end{array}
$$

$$
\begin{array}{ll}
\min & \frac{1}{2} x^{t} Q x+c^{t} x \\
s . a & A x=b_{e} \\
& D x \leq b_{i}
\end{array}
$$

Constrained problems

Some issues

- Constrained optimization is rather more difficult than unconstrained optimization

Constrained problems

Some issues

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated

Constrained problems

Some issues

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated
- A possible approach is to transform the original problem in order to use unconstrained optimization techniques.

Constrained problems

Some issues

- Constrained optimization is rather more difficult than unconstrained optimization
- Algorithms are generally more complicated
- A possible approach is to transform the original problem in order to use unconstrained optimization techniques.
How to transform the problems?

Transformation of problems

Scaling Variables

Scaling by variable transformation

- Cannot be described precisely in general terms
- Converts the variables from units that typically reflect the physical nature of the problem to units that display certain desirable properties during the minimization process.
- The variables of the scaled problem should be of similar magnitude and of order unity in the region of interest.
- If typical values of all the variables are known, a problem can be transformed so that the variables are all of the same order of magnitude

Example

Var	Interpretation	Units	Typical value
x_{1}	Gas flow	$\mathrm{lb} / \mathrm{hr}$	11000
x_{2}	Water flow	$\mathrm{lb} / \mathrm{hr}$	1675
x_{3}	Sterm thermal	$\left(B T U /\left(\mathrm{hrft}^{2}{ }^{0} F\right)\right)^{-1}$	100
	resistance		
x_{4}	Waste build-up	$\left(B T U /\left(\mathrm{hrft}^{2}{ }^{0} F\right)\right)^{-1}$	6×10^{-4}
x_{5}	Gas-side radiation	$B T U /\left(h r f t^{2}{ }^{0} R^{4}\right)$	5.4×10^{-10}

Use linear transformations of the variables $x=D y$ with x_{i} the original variables, y_{i} the transformed variables, and D is a constant diagonal matrix.
For instance, d_{1} could be set to 1.1×10^{4}.

Scaling variables

advantages and disadvantages
Consider linear scaling:

- Some accuracy may be lost.

Suppose $x_{i} \in[200.1242,200.1806]$ and $y_{i}=x_{i} / 200.1242$. Then $y_{i} \in[1.0,1.000282]$ (suppose seven digit representation)

Scaling variables

advantages and disadvantages
Consider linear scaling:

- Some accuracy may be lost.

Suppose $x_{i} \in[200.1242,200.1806]$ and $y_{i}=x_{i} / 200.1242$. Then $y_{i} \in[1.0,1.000282]$ (suppose seven digit representation)

- The magnitude of a variable may vary substantially during the minimization. What might be a good scaling at one point may prove harmful at another.

Scaling variables

advantages and disadvantages

Consider linear scaling:

- Some accuracy may be lost.

Suppose $x_{i} \in[200.1242,200.1806]$ and $y_{i}=x_{i} / 200.1242$. Then $y_{i} \in[1.0,1.000282]$ (suppose seven digit representation)

- The magnitude of a variable may vary substantially during the minimization. What might be a good scaling at one point may prove harmful at another.
- if a realistic range of values for a variable is known, try to use the information Example: if $x_{i} \in\left[a_{i}, b_{i}\right]$, consider $y_{i}=\frac{2 x_{i}}{b_{i}-a_{i}}-\frac{b_{i}+a_{i}}{b_{i}-a_{i}}$ This transformation guarantees that $y_{i} \in[-1,1]$

Scaling variables

Be careful....

- The interval specifying the range of values for a given variable must be a realistic one.

Scaling variables

Be careful....

- The interval specifying the range of values for a given variable must be a realistic one.
- When the variables are scaled by a linear transformations, the derivatives of the objective function are also scaled.

Scaling variables

Be careful....

- The interval specifying the range of values for a given variable must be a realistic one.
- When the variables are scaled by a linear transformations, the derivatives of the objective function are also scaled.
- Even a mild scaling such as $x_{j}=10 y_{j}$ may have a substantial effect on the Hessian, and significantly alter the convergence rate of an optimization algorithm.

Transformations of problems - Constraints

1. Scaling

Pre-conditioning

- Appropriate for linear constraints

Transformations of problems - Constraints

1. Scaling

Pre-conditioning

- Appropriate for linear constraints
- Generalize the idea of scaling of variables

Transformations of problems - Constraints

1. Scaling
 Pre-conditioning

- Appropriate for linear constraints
- Generalize the idea of scaling of variables
- Multiply the coeficient matrix and the right hand side vector by a suitably matrix M

Transformations of problems - Constraints

1. Scaling Pre-conditioning

- Appropriate for linear constraints
- Generalize the idea of scaling of variables
- Multiply the coeficient matrix and the right hand side vector by a suitably matrix M
- Matrix M
- does not change the set of feasible points
- makes it easier to find feasible points

Transformations of problems - Constraints

2. Slack Variables

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$. Consider the problems:
P1 $\min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq 0 \quad h(x)=0\}$
P2 $\min _{x \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}}\{f(x) \mid g(x)+w=0 \quad h(x)=0 \quad w \geq 0\}$
Then we have:

Transformations of problems - Constraints

2. Slack Variables

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$. Consider the problems:
P1 $\min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq 0 \quad h(x)=0\}$
P2 $\min _{x \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}}\{f(x) \mid g(x)+w=0 \quad h(x)=0 \quad w \geq 0\}$
Then we have:
(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

Transformations of problems - Constraints

2. Slack Variables

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$. Consider the problems:
P1 $\min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq 0 \quad h(x)=0\}$
P2 $\min _{x \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}}\{f(x) \mid g(x)+w=0 \quad h(x)=0 \quad w \geq 0\}$
Then we have:
(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
(ii) If one of the problems has a minimum, then the minima are equal

Transformations of problems - Constraints

2. Slack Variables

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}$. Consider the problems:
P1 $\min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq 0 \quad h(x)=0\}$
P2 $\min _{x \in \mathbb{R}^{n}, w \in \mathbb{R}^{m}}\{f(x) \mid g(x)+w=0 \quad h(x)=0 \quad w \geq 0\}$
Then we have:
(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
(ii) If one of the problems has a minimum, then the minima are equal
(iii) To each minimizer x^{*} of (P1) there corresponds a minimizex* $\left[\begin{array}{l}x^{*} \\ w^{*}\end{array}\right]$ of (P2) and vice-versa

Transformations of problems - Constraints

Entrega aula - Slack Variables
Coloque os problemas abaixo na forma

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.a } & g(x)=0
\end{array}
$$

a)

\max	$3 x_{1}$	$+2 x_{2}$	$+7 x_{3}$	
s.a	$2 x_{1}$	$+3 x_{2}$		≤ 42
	$2 x_{1}$		$-x_{3}$	≤ 18
	$3 x_{1}$	$-x_{2}$	$+4 x_{3}$	≥ 24
	$x_{1} \geq 0$	$x_{2} \leq 0$	$x_{3} \in \mathbb{R}$	

Transformations of problems - Constraints

Entrega aula - Slack Variables
b)

$$
\left.\begin{array}{llll}
\min & x_{1} \times x_{2} \times x_{3} & & \\
\text { s.a } & 2 x_{1} & +3 x_{2} & \\
& x_{1}^{4} & +x_{2}^{4} & \\
& 3 x_{1} & -x_{2} & +4 x_{3}
\end{array}\right) \geq 24
$$

Transformations of problems - Constraints

3. Changing the functional form

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}, d \in \mathbb{R}^{\prime}$. Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ and $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^{1}. Consider the problems:

$$
\begin{gathered}
\mathrm{P} 1 \min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq b \quad h(x)=d\} \\
\text { P2 } \min _{x \in \mathbb{R}^{n}}\{f(x) \mid \Lambda(x) \leq \beta \quad \Omega(x)=\theta\} \text { with } \\
\Lambda_{i}(x)=\lambda\left(g_{i}(x)\right) \quad \beta_{i}=\lambda\left(b_{i}\right) \\
\Omega_{i}(x)=\omega\left(g_{i}(x)\right) \quad \theta_{i}=\omega\left(b_{i}\right)
\end{gathered}
$$

Then we have:

Transformations of problems - Constraints

3. Changing the functional form

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}, d \in \mathbb{R}^{\prime}$. Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ and $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^{1}. Consider the problems:

$$
\begin{gathered}
\mathrm{P} 1 \min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq b \quad h(x)=d\} \\
\mathrm{P} 2 \min _{x \in \mathbb{R}^{n}}\{f(x) \mid \Lambda(x) \leq \beta \quad \Omega(x)=\theta\} \text { with } \\
\Lambda_{i}(x)=\lambda\left(g_{i}(x)\right) \quad \beta_{i}=\lambda\left(b_{i}\right) \\
\Omega_{i}(x)=\omega\left(g_{i}(x)\right) \quad \theta_{i}=\omega\left(b_{i}\right)
\end{gathered}
$$

Then we have:
(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

Transformations of problems - Constraints

3. Changing the functional form

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, b \in \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\prime}, d \in \mathbb{R}^{\prime}$. Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ and $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ be strictly monotonically increasing and continuous on \mathbb{R}^{1}. Consider the problems:

$$
\begin{gathered}
\mathrm{P} 1 \min _{x \in \mathbb{R}^{n}}\{f(x) \mid g(x) \leq b \quad h(x)=d\} \\
\text { P2 } \min _{x \in \mathbb{R}^{n}}\{f(x) \mid \Lambda(x) \leq \beta \quad \Omega(x)=\theta\} \text { with } \\
\Lambda_{i}(x)=\lambda\left(g_{i}(x)\right) \quad \beta_{i}=\lambda\left(b_{i}\right) \\
\Omega_{i}(x)=\omega\left(g_{i}(x)\right) \quad \theta_{i}=\omega\left(b_{i}\right)
\end{gathered}
$$

Then we have:
(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum
(ii) If one of the problems has a minimum, then the minima are equal and they have the same minimizers

Example

Consider problem P1 with:

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f\left(x_{1}, x_{2}, x_{3}\right)=2 a^{x_{1}} b^{x_{2}} \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} g\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
x_{1}+x_{2}+x_{3} \\
x_{1} \times x_{2}
\end{array}\right] \\
& b=\left[\begin{array}{l}
13 \\
1
\end{array}\right]
\end{aligned}
$$

Example

Consider problem P1 with:

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f\left(x_{1}, x_{2}, x_{3}\right)=2 a^{x_{1}} b^{x_{2}} \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} g\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
x_{1}+x_{2}+x_{3} \\
x_{1} \times x_{2}
\end{array}\right] \\
& b=\left[\begin{array}{l}
13 \\
1
\end{array}\right]
\end{aligned}
$$

Possible solution: consider the logarithm in the objective function

4. Altering the feasible region

Transformations of problems - Constraints
If possible, the objective function shall be non-linear and the constraints linear.
Consider

\min	x_{1}	$+2 x_{2}$
s.a	$x_{1} \times x_{2}$	
	x_{1}	$=2$
	x_{2}	≥ 1
		≥ 1

4. Altering the feasible region

Transformations of problems - Constraints
If possible, the objective function shall be non-linear and the constraints linear.
Consider

\min	x_{1}	$+2 x_{2}$
s.a	$x_{1} \times x_{2}$	
	x_{1}	$=2$
	x_{2}	≥ 1
		≥ 1

Let $x_{2}=2 / x_{1}$, you obtain:

\min	$x_{1}+4 / x_{1}$	
s.a	x_{1}	≥ 1
	x_{1}	≤ 2

4. Altering the feasible region

Transformations of problems - Constraints
Let $\mathbb{S}_{1} \subseteq \mathbb{S} \subseteq \mathbb{S}_{2} \subseteq \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Consider the problems:
P1 $\min _{x \in \mathbb{S}_{1}} f(x)$
P2 $\min _{x \in \mathbb{S}} f(x)$
P3 $\min _{x \in \mathbb{S}_{2}} f(x)$
and assume that they all have minima and minimizers. Then:
4. Altering the feasible region

Transformations of problems - Constraints
Let $\mathbb{S}_{1} \subseteq \mathbb{S} \subseteq \mathbb{S}_{2} \subseteq \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Consider the problems:
P1 $\min _{x \in \mathbb{S}_{1}} f(x)$
P2 $\min _{x \in \mathbb{S}} f(x)$
P3 $\min _{x \in \mathbb{S}_{2}} f(x)$
and assume that they all have minima and minimizers. Then:
(i) $\min _{x \in \mathbb{S}_{1}} f(x) \geq \min _{x \in \mathbb{S}} f(x) \geq \min _{x \in \mathbb{S}_{2}} f(x)$

4. Altering the feasible region

Transformations of problems - Constraints
Let $\mathbb{S}_{1} \subseteq \mathbb{S} \subseteq \mathbb{S}_{2} \subseteq \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ Consider the problems:
P1 $\min _{x \in \mathbb{S}_{1}} f(x)$
P2 $\min _{x \in \mathbb{S}} f(x)$
P3 $\min _{x \in \mathbb{S}_{2}} f(x)$
and assume that they all have minima and minimizers. Then:
(i) $\min _{x \in \mathbb{S}_{1}} f(x) \geq \min _{x \in \mathbb{S}} f(x) \geq \min _{x \in \mathbb{S}_{2}} f(x)$
(ii) If $x^{*} \in \arg \min _{x \in \mathbb{S}_{2}} f(x)$ and $x^{*} \in \mathbb{S}$, then

- $\min _{x \in \mathbb{S}} f(x)=\min _{x \in \mathbb{S}_{2}} f(x)$
- $\arg \min _{x \in \mathbb{S}} f(x)=\left(\arg \min _{x \in \mathbb{S}_{2}} f(x)\right) \cap \mathbb{S}$

Transformations of problems - Constraints

Relaxations
How to solve a problem?
Consider a problem with some objective but a larger feasible set.

If the solution of the relaxed problem lies in \mathbb{S} a solution has been found!

Transformations of problems - Constraints

Relaxations
How to solve a problem?
Consider a problem with some objective but a larger feasible set.
If the solution of the relaxed problem lies in \mathbb{S} a solution has been found!
Some nice cases:

- \mathbb{S}_{2} is convex while \mathbb{S} is not
- \mathbb{S}_{2} temporarily ignores some constraints

Transformations of problems - Constraints

Relaxations

> How to solve a problem?

Alternative 1
Consider a problem with same objective but a larger feasible set.

If the solution of the relaxed problem lies in \mathbb{S} a solution has been found! Some nice cases:

- \mathbb{S}_{2} is convex while \mathbb{S} is not
- \mathbb{S}_{2} temporarily ignores some constraints

Transformations of problems - Constraints

Relaxations

> How to solve a problem?

Alternative 1
Consider a problem with same objective but a larger feasible set.

If the solution of the relaxed problem lies in \mathbb{S} a solution has been found! Some nice cases:

- \mathbb{S}_{2} is convex while \mathbb{S} is not
- \mathbb{S}_{2} temporarily ignores some constraints

Alternative 2
If the optimizer is known to lie in a subset of \mathbb{S}, confine the search to this subset

Transformations of problems - Objective function

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

Transformations of problems - Objective function

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

Alternatives

- Penalty functions: the function is large for values of the decision variables that violate the constraints

Transformations of problems - Objective function

1. Adding terms

Main idea adding terms that depend on the constraints:

- do not consider the constraints explicitly
- make the constraints easier to deal with

Alternatives

- Penalty functions: the function is large for values of the decision variables that violate the constraints
- Barrier functions: build a barrier to violating constraints. These methods are generally applicable only to inequality constrained optimization problems

