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Constrained problems

The problem
Given

x ∈ Rn - variables

f : Rn → R - objective function

gi e hi constraints

minimize f (x)

s.t gi (x) ≤ 0 i ∈ {1, 2, . . .m}
hi (x) = 0 i ∈ {1, 2, . . . l}

Constrained optimization is a rather more difficult subject !!
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Constrained problems

Usually we write

g(x) =


g1(x)

g2(x)
...

gm(x)

 and h(x) =


h1(x)

h2(x)
...

hl (x)


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Constrained problems

Example: Univariate Constrained Optimization

min
x∈R

(x − 2)2 − 1
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Constrained problems

Example: Univariate Constrained Optimization

min
x∈R

(x − 2)2 − 1

s.t

√
x ≤ 1

x ≥ 0

Note:
√
x ≤ 1 ⇐⇒

√
x − 1 ≤ 0 x ≥ 0 ⇐⇒ −x ≤ 0
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Constrained problems

Example: Univariate Constrained Optimization

min
x∈R

(x − 2)2 − 1

s.t

√
x ≤ 1

x ≥ 0

Feasible set : 0 ≤ x ≤ 1
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Constrained problems

Some problems can be easily solved:

Example 1 - linear programming

min 5x1 + 2x2 + 3x3 - x4 + x5
s.a x1 + 2x2 + 2x3 ≤ 8

3x1 + 4x2 + x3 + x5 = 7

xj ≥ 0 ∀j

min ctx

s.a Ax = b

Dx ≤ d

Mx ≥ f

x ≥ 0
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Constrained problems

Some problems can be easily solved:

Example 2 - Quadratic programming

min x21 + 9x22 − 3x23
s.a x1 +2x2 +2x3 ≤ 8

3x1 +4x2 +x3 +x5 = 7

xj ≥ 0 ∀j

min 1
2
x tQx + ctx

s.a Ax = be
Dx ≤ bi
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Constrained problems

Some issues

• Constrained optimization is rather more difficult than unconstrained optimization

• Algorithms are generally more complicated

• A possible approach is to transform the original problem in order to use

unconstrained optimization techniques.

How to transform the problems?
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Transformation of problems

Scaling Variables
Scaling by variable transformation

• Cannot be described precisely in general terms

• Converts the variables from units that typically reflect the physical nature of the

problem to units that display certain desirable properties during the minimization

process.

• The variables of the scaled problem should be of similar magnitude and of order

unity in the region of interest.

• If typical values of all the variables are known, a problem can be transformed so

that the variables are all of the same order of magnitude
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Example

Var Interpretation Units Typical

value

x1 Gas flow lb/hr 11000

x2 Water flow lb/hr 1675

x3 Sterm thermal (BTU/(hrft2 0F ))−1 100

resistance

x4 Waste build-up (BTU/(hrft2 0F ))−1 6× 10−4

x5 Gas-side radiation BTU/(hrft2 0R4) 5.4× 10−10

Use linear transformations of the variables x = Dy with xi the original variables,

yi the transformed variables, and D is a constant diagonal matrix.

For instance, d1 could be set to 1.1× 104.
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Scaling variables

advantages and disadvantages
Consider linear scaling:

• Some accuracy may be lost.

Suppose xi ∈ [200.1242, 200.1806] and yi = xi/200.1242. Then

yi ∈ [1.0, 1.000282] (suppose seven digit representation )

• The magnitude of a variable may vary substantially during the minimization.

What might be a good scaling at one point may prove harmful at another.

• if a realistic range of values for a variable is known, try to use the information

Example: if xi ∈ [ai , bi ], consider yi =
2xi

bi−ai
− bi+ai

bi−ai
This transformation

guarantees that yi ∈ [−1, 1]
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Scaling variables

Be careful....

• The interval specifying the range of values for a given variable must be a realistic

one.

• When the variables are scaled by a linear transformations, the derivatives of the

objective function are also scaled.

• Even a mild scaling such as xj = 10yj may have a substantial effect on the

Hessian, and significantly alter the convergence rate of an optimization algorithm.
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Transformations of problems - Constraints

1. Scaling
Pre-conditioning

• Appropriate for linear constraints

• Generalize the idea of scaling of variables

• Multiply the coeficient matrix and the right hand side vector by a suitably matrix

M

• Matrix M

• does not change the set of feasible points

• makes it easier to find feasible points
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Transformations of problems - Constraints

2. Slack Variables

Let f : Rn → R, g : Rn → Rm, h : Rn → Rl . Consider the problems:

P1 minx∈Rn {f (x) |g(x) ≤ 0 h(x) = 0}

P2 minx∈Rn,w∈Rm {f (x) |g(x) + w = 0 h(x) = 0 w ≥ 0}

Then we have:

(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

(ii) If one of the problems has a minimum,then the minima are equal

(iii) To each minimizer x∗ of (P1) there corresponds a minimizex∗r

[
x∗

w∗

]
of (P2)

and vice-versa
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Transformations of problems - Constraints

Entrega aula - Slack Variables
Coloque os problemas abaixo na forma

min f(x)

s.a g(x) = 0

a)

max 3x1 + 2x2 + 7x3
s.a 2x1 + 3x2 ≤ 42

2x1 - x3 ≤ 18

3x1 - x2 + 4 x3 ≥ 24

x1 ≥ 0 x2 ≤ 0 x3 ∈ R
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Transformations of problems - Constraints

Entrega aula - Slack Variables

b)

min x1 × x2 × x3
s.a 2x1 + 3x2 ≤ 42

x41 +x42 = x3
3x1 - x2 + 4 x3 ≥ 24
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Transformations of problems - Constraints

3. Changing the functional form

Consider f : Rn → R, g : Rn → Rm,b ∈ Rm, h : Rn → Rl , d ∈ Rl . Let ω : R → R
and λ : R → R be strictly monotonically increasing and continuous on R1. Consider

the problems:

P1 minx∈Rn {f (x) |g(x) ≤ b h(x) = d }

P2 minx∈Rn {f (x) |Λ(x) ≤ β Ω(x) = θ } with

Λi (x) = λ(gi (x)) βi = λ(bi )

Ωi (x) = ω(gi (x)) θi = ω(bi )

Then we have:

(i) Problem (P1) has a minimum if and only if Problem (P2) has a minimum

(ii) If one of the problems has a minimum,then the minima are equal and they have

the same minimizers
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Example
Consider problem P1 with:

f : R3 → R, f (x1, x2, x3) = 2ax1bx2

g : R3 → R2 g (x1, x2, x3) =

[
x1 + x2 + x3
x1 × x2

]

b =

[
13

1

]

Possible solution: consider the logarithm in the objective function
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4. Altering the feasible region
Transformations of problems - Constraints

If possible, the objective function shall be non-linear and the constraints linear.

Consider

min x1 + 2x2
s.a x1 × x2 = 2

x1 ≥ 1

x2 ≥ 1

Let x2 = 2/x1, you obtain:

min x1 + 4/x1
s.a x1 ≥ 1

x1 ≤ 2
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4. Altering the feasible region
Transformations of problems - Constraints

Let S1 ⊆ S ⊆ S2 ⊆ Rn and f : Rn → R Consider the problems:

P1 minx∈S1 f (x)

P2 minx∈S f (x)

P3 minx∈S2 f (x)

and assume that they all have minima and minimizers. Then:

(i) minx∈S1 f (x) ≥ minx∈S f (x) ≥ minx∈S2 f (x)

(ii) If x∗ ∈ argminx∈S2 f (x) and x∗ ∈ S, then
• minx∈S f (x) = minx∈S2 f (x)

• arg minx∈S f (x) =
(
arg minx∈S2 f (x)

)
∩ S
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Transformations of problems - Constraints

Relaxations

How to solve a problem?

Consider a problem with some objective but a larger feasible set.

If the solution of the relaxed problem lies in S a solution has been found!

Some nice cases:

• S2 is convex while S is not

• S2 temporarily ignores some constraints
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Transformations of problems - Constraints

Relaxations

How to solve a problem?

Alternative 1
Consider a problem with same objective but a larger feasible set.

If the solution of the relaxed problem lies in S a solution has been found! Some nice

cases:

• S2 is convex while S is not

• S2 temporarily ignores some constraints

Alternative 2
If the optimizer is known to lie in a subset of S, confine the search to this

subset
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Transformations of problems - Objective function

1. Adding terms
Main idea adding terms that depend on the constraints:

• do not consider the constraints explicitly

• make the constraints easier to deal with

Alternatives

• Penalty functions: the function is large for values of the decision variables that

violate the constraints

• Barrier functions: build a barrier to violating constraints. These methods are

generally applicable only to inequality constrained optimization problems
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