Física IV (IFUSP 2023)

Prof. José Roberto Brandão de Oliveira jooliveira@usp.br

(zero@if.usp.br)

Apresentação da disciplina

Moodle (https://edisciplinas.usp.br/course/view.php?id=112417)

- Programa
 - * Ondas Eletromagnéticas
 - * Princípio de Fermat, Polarização, Interferência e Difração.
 - * Relatividade Restrita.
 - * Quadrivetores e Covariância das Equações de Maxwell.
- Bibliografia: H. Moysés Nussenzveig, Curso de Física Básica, vols. 3, 4
- (R. A. Serway, R. A. Jewett Jr., Princípios de Física, vol. 3,4)
- (D. J. Griffiths, Eletrodinâmica)
- Provas (2) e provinhas (4)
- Presença

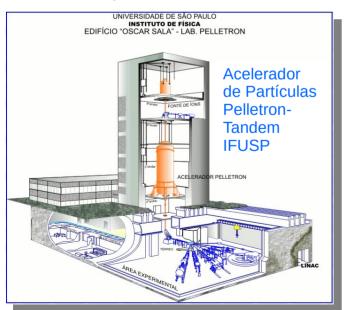
Prof. José Roberto Brandão de Oliveira IFUSP/DEN

Área de pesquisa:

Estrutura e reações nucleares (FN de baixa energia)

Espectroscopia gama/Instrumentação

Colaborações internacionais (NUMEN/LNS – DTC/v, ...)



"Nossa Caixa" (fase 1) Câmara de espalhamento no Acelerador Pelletron/LINAC



Espectrômetro gama - "Saci-Perere"

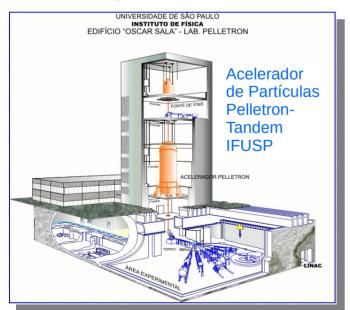
G-NUMEN LNS INFN Itália

Prof. José Roberto Brandão de Oliveira IFUSP/DEN

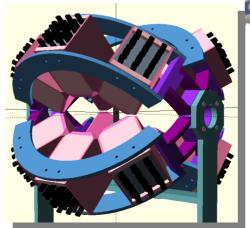
Área de pesquisa:

- Estrutura e reações nucleares (FN de baixa energia)
- Espectroscopia gama/Instrumentação

Colaborações internacionais (NUMEN/LNS – DTC/v, ...)



"Nossa Caixa" (em construção) Câmara de espalhamento no Acelerador Pelletron/LINAC



Espectrômetro gama - "Saci-Perere"

G-NUMEN LNS INFN Itália

Aprendizagem ativa

Obs.: Não levar estas porcentagens muito a sério...

Física IV (IF 2023) Aula 1

- Objetivos de aprendizagem:
 - Listar as leis de Maxwell nas formas diferencial e integral, e explicar seu significado
 - Apresentar as equações de Maxwell na ausência de cargas e correntes
 - Usar uma identidade de cálculo vetorial para deduzir a equação de ondas eletromagnéticas no vácuo

As 4 Equações de Maxwell

nome	conceito	forma integral	forma diferencial
Gauss elétrica	$q \to \mathbf{E}$	$\oint \oint_S \mathbf{E} \cdot \vec{n} dS = \int \int \int_V \frac{\rho}{\epsilon_0} dV$	$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$
Faraday	Ot		$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
Ampère Maxwell	$\frac{I \to \mathbf{B}}{\partial \mathbf{E}} \to \mathbf{B}$	$\oint_C \mathbf{B} \cdot \mathbf{d}l = \iint_S \left[\mu_0 \mathbf{j} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right] \vec{n} dS$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$
Gauss magnética	$ ot \equiv q_{{ m\scriptscriptstyle M}AG}$	$ \oint S \mathbf{B} \cdot \hat{\mathbf{n}} dS = 0 $	$\nabla \cdot \mathbf{B} = 0$

Equações de Maxwell na forma diferencial

Geral
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

No "vácuo" i.e. na "ausência de cargas e correntes"

• Eqs. Maxwell ficam mais simples (e "simétricas"!):

Geral
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\rho = 0, \vec{J} = 0 \rightarrow$$

Vácuo
$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

Identidade matemática

$$\vec{\nabla} \times \vec{\nabla} \times \vec{F} = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) - \nabla^2 \vec{F}$$

→ Aplicar nas Eq. Maxwell (no vácuo) para mostrar que o campo elétrico (ou o magnético) obedece a equação de onda:

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$
, com $c = \frac{1}{\sqrt{\mu_0 \, \varepsilon_0}}$