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Preface

What This Book Is About

The most visible use of computers and software is processing information for human
consumption. We use them to write books (like this one), search for information on
the web, communicate via email, and keep track of financial data. The vast majority of
computers in use, however, are much less visible. They run the engine, brakes, seatbelts,
airbag, and audio system in your car. They digitally encode your voice and construct a
radio signal to send it from your cell phone to a base station. They control your microwave
oven, refrigerator, and dishwasher. They run printers ranging from desktop inkjet printers
to large industrial high-volume printers. They command robots on a factory floor, power
generation in a power plant, processes in a chemical plant, and traffic lights in a city. They
search for microbes in biological samples, construct images of the inside of a human body,
and measure vital signs. They process radio signals from space looking for supernovae
and for extraterrestrial intelligence. They bring toys to life, enabling them to react to
human touch and to sounds. They control aircraft and trains. These less visible computers
are called embedded systems, and the software they run is called embedded software.

Despite this widespread prevalence of embedded systems, computer science has, through-
out its relatively short history, focused primarily on information processing. Only recently
have embedded systems received much attention from researchers. And only recently has
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the community recognized that the engineering techniques required to design and ana-
lyze these systems are distinct. Although embedded systems have been in use since the
1970s, for most of their history they were seen simply as small computers. The principal
engineering problem was understood to be one of coping with limited resources (limited
processing power, limited energy sources, small memories, etc.). As such, the engineer-
ing challenge was to optimize the designs. Since all designs benefit from optimization,
the discipline was not distinct from anything else in computer science. It just had to be
more aggressive about applying the same optimization techniques.

Recently, the community has come to understand that the principal challenges in em-
bedded systems stem from their interaction with physical processes, and not from their
limited resources. The term cyber-physical systems (CPS) was coined by Helen Gill at the
National Science Foundation in the U.S. to refer to the integration of computation with
physical processes. In CPS, embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes affect compu-
tations and vice versa. The design of such systems, therefore, requires understanding the
joint dynamics of computers, software, networks, and physical processes. It is this study
of joint dynamics that sets this discipline apart.

When studying CPS, certain key problems emerge that are rare in so-called general-
purpose computing. For example, in general-purpose software, the time it takes to per-
form a task is an issue of performance, not correctness. It is not incorrect to take longer
to perform a task. It is merely less convenient and therefore less valuable. In CPS, the
time it takes to perform a task may be critical to correct functioning of the system. In the
physical world, as opposed to the cyber world, the passage of time is inexorable.

In CPS, moreover, many things happen at once. Physical processes are compositions
of many things going on at once, unlike software processes, which are deeply rooted
in sequential steps. Abelson and Sussman (1996) describe computer science as “proce-
dural epistemology,” knowledge through procedure. In the physical world, by contrast,
processes are rarely procedural. Physical processes are compositions of many parallel
processes. Measuring and controlling the dynamics of these processes by orchestrating
actions that influence the processes are the main tasks of embedded systems. Conse-
quently, concurrency is intrinsic in CPS. Many of the technical challenges in designing
and analyzing embedded software stem from the need to bridge an inherently sequential
semantics with an intrinsically concurrent physical world.
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PREFACE

Why We Wrote This Book

The mechanisms by which software interacts with the physical world are changing rapidly.
Today, the trend is towards “smart” sensors and actuators, which carry microprocessors,
network interfaces, and software that enables remote access to the sensor data and remote
activation of the actuator. Called variously the Internet of Things (IoT), Industry 4.0, the
Industrial Internet, Machine-to-Machine (M2M), the Internet of Everything, the Smarter
Planet, TSensors (Trillion Sensors), or The Fog (like The Cloud, but closer to the ground),
the vision is of a technology that deeply connects our physical world with our information
world. In the IoT world, the interfaces between these worlds are inspired by and derived
from information technology, particularly web technology.

IoT interfaces are convenient, but not yet suitable for tight interactions between the two
worlds, particularly for real-time control and safety-critical systems. Tight interactions
still require technically intricate, low-level design. Embedded software designers are
forced to struggle with interrupt controllers, memory architectures, assembly-level pro-
gramming (to exploit specialized instructions or to precisely control timing), device driver
design, network interfaces, and scheduling strategies, rather than focusing on specifying
desired behavior.

The sheer mass and complexity of these technologies (at both the high level and the low
level) tempts us to focus an introductory course on mastering them. But a better intro-
ductory course would focus on how to model and design the joint dynamics of software,
networks, and physical processes. Such a course would present the technologies only as
today’s (rather primitive) means of accomplishing those joint dynamics. This book is our
attempt at a textbook for such a course.

Most texts on embedded systems focus on the collection of technologies needed to get
computers to interact with physical systems (Barr and Massa, 2006; Berger, 2002; Burns
and Wellings, 2001; Kamal, 2008; Noergaard, 2005; Parab et al., 2007; Simon, 2006; Val-
vano, 2007; Wolf, 2000). Others focus on adaptations of computer-science techniques
(like programming languages, operating systems, networking, etc.) to deal with techni-
cal problems in embedded systems (Buttazzo, 2005a; Edwards, 2000; Pottie and Kaiser,
2005). While these implementation technologies are (today) necessary for system de-
signers to get embedded systems working, they do not form the intellectual core of the
discipline. The intellectual core is instead in models and abstractions that conjoin com-
putation and physical dynamics.

xii Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


PREFACE

A few textbooks offer efforts in this direction. Jantsch (2003) focuses on concurrent mod-
els of computation, Marwedel (2011) focuses on models of software and hardware behav-
ior, and Sriram and Bhattacharyya (2009) focus on dataflow models of signal processing
behavior and their mapping onto programmable DSPs. Alur (2015) focuses on formal
modeling, specification, and verification of cyber-physical systems. These are excellent
textbooks that cover certain topics in depth. Models of concurrency (such as dataflow)
and abstract models of software (such as Statecharts) provide a better starting point than
imperative programming languages (like C), interrupts and threads, and architectural an-
noyances that a designer must work around (like caches). These texts, however, do not
address all the needs of an introductory course. They are either too specialized or too
advanced or both. This book is our attempt to provide an introductory text that follows
the spirit of focusing on models and their relationship to realizations of systems.

The major theme of this book is on models and their relationship to realizations of sys-
tems. The models we study are primarily about dynamics, the evolution of a system state
in time. We do not address structural models, which represent static information about the
construction of a system, although these too are important to embedded system design.

Working with models has a major advantage. Models can have formal properties. We can
say definitive things about models. For example, we can assert that a model is determinate,
meaning that given the same inputs it will always produce the same outputs. No such
absolute assertion is possible with any physical realization of a system. If our model is
a good abstraction of the physical system (here, “good abstraction” means that it omits
only inessential details), then the definitive assertion about the model gives us confidence
in the physical realization of the system. Such confidence is hugely valuable, particularly
for embedded systems where malfunctions can threaten human lives. Studying models of
systems gives us insight into how those systems will behave in the physical world.

Our focus is on the interplay of software and hardware with the physical environment in
which they operate. This requires explicit modeling of the temporal dynamics of soft-
ware and networks and explicit specification of concurrency properties intrinsic to the
application. The fact that the implementation technologies have not yet caught up with
this perspective should not cause us to teach the wrong engineering approach. We should
teach design and modeling as it should be, and enrich this with a critical presentation
of how it is. Embedded systems technologies today, therefore, should not be presented
dispassionately as a collection of facts and tricks, as they are in many of the above cited
books, but rather as stepping stones towards a sound design practice. The focus should be
on what that sound design practice is, and on how today’s technologies both impede and
achieve it.
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Stankovic et al. (2005) support this view, stating that “existing technology for RTES [real-
time embedded systems] design does not effectively support the development of reliable
and robust embedded systems.” They cite a need to “raise the level of programming
abstraction.” We argue that raising the level of abstraction is insufficient. We also have
to fundamentally change the abstractions that are used. Timing properties of software,
for example, cannot be effectively introduced at higher levels of abstraction if they are
entirely absent from the lower levels of abstraction on which these are built.

We require robust and predictable designs with repeatable temporal dynamics (Lee, 2009a).
We must do this by building abstractions that appropriately reflect the realities of cyber-
physical systems. The result will be CPS designs that can be much more sophisticated,
including more adaptive control logic, evolvability over time, and improved safety and re-
liability, all without suffering from the brittleness of today’s designs, where small changes
have big consequences.

In addition to dealing with temporal dynamics, CPS designs invariably face challenging
concurrency issues. Because software is so deeply rooted in sequential abstractions, con-
currency mechanisms such as interrupts and multitasking, using semaphores and mutual
exclusion, loom large. We therefore devote considerable effort in this book to developing
a critical understanding of threads, message passing, deadlock avoidance, race conditions,
and data determinism.

Note about This Edition

This is the second edition of the textbook. In addition to several bug fixes and improve-
ments to presentation and wording, it includes two new chapters. Chapter 7 covers sensors
and actuators with an emphasis on modeling. Chapter 17 covers the basics of security and
privacy for embedded systems.

What Is Missing

Even with the new additions, this version of the book is not complete. It is arguable, in
fact, that complete coverage of embedded systems in the context of CPS is impossible.
Specific topics that we cover in the undergraduate Embedded Systems course at Berkeley
(see http://LeeSeshia.org) and hope to include in future versions of this book include
networking, fault tolerance, simulation techniques, control theory, and hardware/software
codesign.
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Figure 1: Map of the book with strong and weak dependencies between chapters.
Strong dependencies between chapters are shown with arrows in black. Weak
dependencies are shown in grey. When there is a weak dependency from chapter
i to chapter j, then j may mostly be read without reading i, at most requiring
skipping some examples or specialized analysis techniques.
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How to Use This Book

This book is divided into three major parts, focused on modeling, design, and analysis, as
shown in Figure 1. The three parts of the book are relatively independent of one another
and are largely meant to be read concurrently. A systematic reading of the text can be
accomplished in eight segments, shown with dashed outlines. Most segments include two
chapters, so complete coverage of the text is possible in a 15 week semester, allowing two
weeks for most modules.

The appendices provide background material that is well covered in other textbooks, but
which can be quite helpful in reading this text. Appendix A reviews the notation of
sets and functions. This notation enables a higher level of precision than is common
in the study of embedded systems. Appendix B reviews basic results in the theory of
computability and complexity. This facilitates a deeper understanding of the challenges
in modeling and analysis of systems. Note that Appendix B relies on the formalism of
state machines covered in Chapter 3, and hence should be read after reading Chapter 3.

In recognition of recent advances in technology that are fundamentally changing the tech-
nical publishing industry, this book is published in a non-traditional way. At least the
present version is available free in the form of PDF file designed specifically for reading
on tablet computers. It can be obtained from the website http://LeeSeshia.org. The layout
is optimized for medium-sized screens, particularly laptop computers and the iPad and
other tablets. Extensive use of hyperlinks and color enhance the online reading experi-
ence.

We attempted to adapt the book to e-book formats, which, in theory, enable reading on
various sized screens, attempting to take best advantage of the available screen. However,
like HTML documents, e-book formats use a reflow technology, where page layout is
recomputed on the fly. The results are highly dependent on the screen size and prove
ludicrous on many screens and suboptimal on all. As a consequence, we have opted
for controlling the layout, and we do not recommend attempting to read the book on an
smartphone.

Although the electronic form is convenient, we recognize that there is real value in a
tangible manifestation on paper, something you can thumb through, something that can
live on a bookshelf to remind you of its existence. This edition is published by MIT Press,
who has assured us that they will keep the book affordable.
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Two disadvantages of print media compared to electronic media are the lack of hyperlinks
and the lack of text search. We have attempted to compensate for those limitations by
providing page number references in the margins whenever a term is used that is defined
elsewhere. The term that is defined elsewhere is underlined with a discrete light gray line.
In addition, we have provided an extensive index, with more than 2,000 entries.

There are typographic conventions worth noting. When a term is being defined, it will ap-
pear in bold face, and the corresponding index entry will also be in bold face. Hyperlinks
are shown in blue in the electronic version. The notation used in diagrams, such as those
for finite-state machines, is intended to be familiar, but not to conform with any particular
programming or modeling language.

Intended Audience

This book is intended for students at the advanced undergraduate level or introductory
graduate level, and for practicing engineers and computer scientists who wish to under-
stand the engineering principles of embedded systems. We assume that the reader has
some exposure to machine structures (e.g., should know what an ALU is), computer pro-
gramming (we use C throughout the text), basic discrete mathematics and algorithms, and
at least an appreciation for signals and systems (what it means to sample a continuous-
time signal, for example).

Reporting Errors

If you find errors or typos in this book, or if you have suggestions for improvements or
other comments, please send email to:

authors@leeseshia.org

Please include the version number of the book, whether it is the electronic or the hard-
copy distribution, and the relevant page numbers. Thank you!
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Further Reading

Many textbooks on embedded systems have appeared in recent years. These books
approach the subject in surprisingly diverse ways, often reflecting the perspective of
a more established discipline that has migrated into embedded systems, such as VLSI
design, control systems, signal processing, robotics, real-time systems, or software
engineering. Some of these books complement the present one nicely. We strongly
recommend them to the reader who wishes to broaden his or her understanding of the
subject.

Specifically, Patterson and Hennessy (1996), although not focused on embedded pro-
cessors, is the canonical reference for computer architecture, and a must-read for any-
one interested embedded processor architectures. Sriram and Bhattacharyya (2009) fo-
cus on signal processing applications, such as wireless communications and digital me-
dia, and give particularly thorough coverage to dataflow programming methodologies.
Wolf (2000) gives an excellent overview of hardware design techniques and micropro-
cessor architectures and their implications for embedded software design. Mishra and
Dutt (2005) give a view of embedded architectures based on architecture description
languages (ADLs). Oshana (2006) specializes in DSP processors from Texas Instru-
ments, giving an overview of architectural approaches and a sense of assembly-level
programming.

Focused more on software, Buttazzo (2005a) is an excellent overview of schedul-
ing techniques for real-time software. Liu (2000) gives one of the best treatments
yet of techniques for handling sporadic real-time events in software. Edwards (2000)
gives a good overview of domain-specific higher-level programming languages used
in some embedded system designs. Pottie and Kaiser (2005) give a good overview
of networking technologies, particularly wireless, for embedded systems. Koopman
(2010) focuses on design process for embedded software, including requirements man-
agement, project management, testing plans, and security plans. Alur (2015) provides
an excellent, in-depth treatment of formal modeling and verification of cyber-physical
systems.

No single textbook can comprehensively cover the breadth of technologies available
to the embedded systems engineer. We have found useful information in many of the
books that focus primarily on today’s design techniques (Barr and Massa, 2006; Berger,
2002; Burns and Wellings, 2001; Gajski et al., 2009; Kamal, 2008; Noergaard, 2005;
Parab et al., 2007; Simon, 2006; Schaumont, 2010; Vahid and Givargis, 2010).
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Notes for Instructors

At Berkeley, we use this text for an advanced undergraduate course called Introduction
to Embedded Systems. A great deal of material for lectures and labs can be found via
the main web page for this text:

http://leeseshia.org

In addition, a solutions manual and other instructional material are available to qualified
instructors at bona fide teaching institutions. See

http://chess.eecs.berkeley.edu/instructors/

or contact authors@leeseshia.org.
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A cyber-physical system (CPS) is an integration of computation with physical processes
whose behavior is defined by both cyber and physical parts of the system. Embedded com-
puters and networks monitor and control the physical processes, usually with feedback
loops where physical processes affect computations and vice versa. As an intellectual
challenge, CPS is about the intersection, not the union, of the physical and the cyber. It
is not sufficient to separately understand the physical components and the computational
components. We must instead understand their interaction.

In this chapter, we use a few CPS applications to outline the engineering principles of
such systems and the processes by which they are designed.



1.1. APPLICATIONS

1.1 Applications

CPS applications arguably have the potential to eclipse the 20th century information tech-
nology (IT) revolution. Consider the following examples.

Example 1.1: Heart surgery often requires stopping the heart, performing the
surgery, and then restarting the heart. Such surgery is extremely risky and carries
many detrimental side effects. A number of research teams have been working on
an alternative where a surgeon can operate on a beating heart rather than stopping
the heart. There are two key ideas that make this possible. First, surgical tools
can be robotically controlled so that they move with the motion of the heart (Kre-
men, 2008). A surgeon can therefore use a tool to apply constant pressure to a
point on the heart while the heart continues to beat. Second, a stereoscopic video
system can present to the surgeon a video illusion of a still heart (Rice, 2008). To
the surgeon, it looks as if the heart has been stopped, while in reality, the heart
continues to beat. To realize such a surgical system requires extensive modeling
of the heart, the tools, the computational hardware, and the software. It requires
careful design of the software that ensures precise timing and safe fallback be-
haviors to handle malfunctions. And it requires detailed analysis of the models
and the designs to provide high confidence.

Example 1.2: Consider a city where traffic lights and cars cooperate to ensure
efficient flow of traffic. In particular, imagine never having to stop at a red light
unless there is actual cross traffic. Such a system could be realized with expensive
infrastructure that detects cars on the road. But a better approach might be to
have the cars themselves cooperate. They track their position and communicate
to cooperatively use shared resources such as intersections. Making such a system
reliable, of course, is essential to its viability. Failures could be disastrous.
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Example 1.3: Imagine an airplane that refuses to crash. While preventing all
possible causes of a crash is not possible, a well-designed flight control system
can prevent certain causes. The systems that do this are good examples of cyber-
physical systems.

In traditional aircraft, a pilot controls the aircraft through mechanical and hy-
draulic linkages between controls in the cockpit and movable surfaces on the
wings and tail of the aircraft. In a fly-by-wire aircraft, the pilot commands are
mediated by a flight computer and sent electronically over a network to actuators
in the wings and tail. Fly-by-wire aircraft are much lighter than traditional air-
craft, and therefore more fuel efficient. They have also proven to be more reliable.
Virtually all new aircraft designs are fly-by-wire systems.

In a fly-by-wire aircraft, since a computer mediates the commands from the pilot,
the computer can modify the commands. Many modern flight control systems
modify pilot commands in certain circumstances. For example, commercial air-
planes made by Airbus use a technique called flight envelope protection to pre-
vent an airplane from going outside its safe operating range. They can prevent a
pilot from causing a stall, for example.

The concept of flight envelope protection could be extended to help prevent cer-
tain other causes of crashes. For example, the soft walls system proposed by Lee
(2001), if implemented, would track the location of the aircraft on which it is
installed and prevent it from flying into obstacles such as mountains and build-
ings. In Lee’s proposal, as an aircraft approaches the boundary of an obstacle,
the fly-by-wire flight control system creates a virtual pushing force that forces the
aircraft away. The pilot feels as if the aircraft has hit a soft wall that diverts it.
There are many challenges, both technical and non-technical, to designing and
deploying such a system. See Lee (2003) for a discussion of some of these issues.

Although the soft walls system of the previous example is rather futuristic, there are mod-
est versions in automotive safety that have been deployed or are in advanced stages of
research and development. For example, many cars today detect inadvertent lane changes
and warn the driver. Consider the much more challenging problem of automatically cor-
recting the driver’s actions. This is clearly much harder than just warning the driver.
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How can you ensure that the system will react and take over only when needed, and only
exactly to the extent to which intervention is needed?

It is easy to imagine many other applications, such as systems that assist the elderly;
telesurgery systems that allow a surgeon to perform an operation at a remote location;
and home appliances that cooperate to smooth demand for electricity on the power grid.
Moreover, it is easy to envision using CPS to improve many existing systems, such as
robotic manufacturing systems; electric power generation and distribution; process con-
trol in chemical factories; distributed computer games; transportation of manufactured
goods; heating, cooling, and lighting in buildings; people movers such as elevators; and
bridges that monitor their own state of health. The impact of such improvements on safety,
energy consumption, and the economy is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that is not
realized with computers or digital networks. It can include mechanical parts, biological
or chemical processes, or human operators. Second, there are one or more computational
platforms, which consist of sensors, actuators, one or more computers, and (possibly)
one or more operating systems. Third, there is a network fabric, which provides the
mechanisms for the computers to communicate. Together, the platforms and the network
fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actuators.
The action taken by the actuators affects the data provided by the sensors through the
physical plant. In the figure, Platform 2 controls the physical plant via Actuator 1. It mea-
sures the processes in the physical plant using Sensor 2. The box labeled Computation 2
implements a control law, which determines based on the sensor data what commands to
issue to the actuator. Such a loop is called a feedback control loop. Platform 1 makes
additional measurements using Sensor 1, and sends messages to Platform 2 via the net-
work fabric. Computation 3 realizes an additional control law, which is merged with that
of Computation 2, possibly preempting it.

Example 1.4: Consider a high-speed printing press for a print-on-demand ser-
vice. This might be structured similarly to Figure 1.1, but with many more plat-
forms, sensors, and actuators. The actuators may control motors that drive paper
through the press and ink onto the paper. The control laws may include a strategy
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About the Term “Cyber-Physical Systems”
The term “cyber-physical systems” emerged in 2006, coined by Helen Gill at the
National Science Foundation in the US. We may be tempted to associate the term
“cyberspace” with CPS, but the roots of the term CPS are older and deeper. It would be
more accurate to view the terms “cyberspace” and “cyber-physical systems” as stem-
ming from the same root, “cybernetics,” rather than viewing one as being derived from
the other.

The term “cybernetics” was coined by Norbert Wiener (Wiener, 1948), an Amer-
ican mathematician who had a huge impact on the development of control systems
theory. During World War II, Wiener pioneered technology for the automatic aim-
ing and firing of anti-aircraft guns. Although the mechanisms he used did not involve
digital computers, the principles involved are similar to those used today in a huge
variety of computer-based feedback control systems. Wiener derived the term from
the Greek κυβερνητης (kybernetes), meaning helmsman, governor, pilot, or rudder.
The metaphor is apt for control systems. Wiener described his vision of cybernetics
as the conjunction of control and communication. His notion of control was deeply
rooted in closed-loop feedback, where the control logic is driven by measurements of
physical processes, and in turn drives the physical processes. Even though Wiener did
not use digital computers, the control logic is effectively a computation, and therefore
cybernetics is the conjunction of physical processes, computation, and communica-
tion. Wiener could not have anticipated the powerful effects of digital computation
and networks. The fact that the term “cyber-physical systems” may be ambiguously
interpreted as the conjunction of cyberspace with physical processes, therefore, helps
to underscore the enormous impact that CPS will have. CPS leverages an information
technology that far outstrips even the wildest dreams of Wiener’s era.

The term CPS relates to the currently popular terms Internet of Things (IoT), Indus-
try 4.0, the Industrial Internet, Machine-to-Machine (M2M), the Internet of Everything,
TSensors (trillion sensors), and the Fog (like the Cloud, but closer to the ground). All of
these reflect a vision of a technology that deeply connects our physical world with our
information world. In our view, the term CPS is more foundational and durable than all
of these, because it does not directly reference either implementation approaches (e.g.,
the “Internet” in IoT) nor particular applications (e.g., “Industry” in Industry 4.0). It
focuses instead on the fundamental intellectual problem of conjoining the engineering
traditions of the cyber and the physical worlds.
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Figure 1.1: Example structure of a cyber-physical system.

for compensating for paper stretch, which will typically depend on the type of pa-
per, the temperature, and the humidity. A networked structure like that in Figure
1.1 might be used to induce rapid shutdown to prevent damage to the equipment
in case of paper jams. Such shutdowns need to be tightly orchestrated across the
entire system to prevent disasters. Similar situations are found in high-end in-
strumentation systems and in energy production and distribution (Eidson et al.,
2009).

1.2 Motivating Example

In this section, we describe a motivating example of a cyber-physical system. Our goal is
to use this example to illustrate the importance of the breadth of topics covered in this text.
The specific application is the Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC), developed by Claire Tomlin and colleagues as a cooperative effort
at Stanford and Berkeley (Hoffmann et al., 2004). The STARMAC is a small quadrotor
aircraft; it is shown in flight in Figure 1.2. Its primary purpose is to serve as a testbed for
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Figure 1.2: The STARMAC quadrotor aircraft in flight (reproduced with permis-
sion).

experimenting with multi-vehicle autonomous control techniques. The objective is to be
able to have multiple vehicles cooperate on a common task.

There are considerable challenges in making such a system work. First, controlling the
vehicle is not trivial. The main actuators are the four rotors, which produce a variable
amount of downward thrust. By balancing the thrust from the four rotors, the vehicle can
take off, land, turn, and even flip in the air. How do we determine what thrust to apply?
Sophisticated control algorithms are required.

Second, the weight of the vehicle is a major consideration. The heavier it is, the more
stored energy it needs to carry, which of course makes it even heavier. The heavier it
is, the more thrust it needs to fly, which implies bigger and more powerful motors and
rotors. The design crosses a major threshold when the vehicle is heavy enough that the
rotors become dangerous to humans. Even with a relatively light vehicle, safety is a
considerable concern, and the system needs to be designed with fault handling.

Third, the vehicle needs to operate in a context, interacting with its environment. It might,
for example, be under the continuous control of a watchful human who operates it by re-
mote control. Or it might be expected to operate autonomously, to take off, perform some
mission, return, and land. Autonomous operation is enormously complex and challeng-
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ing because it cannot benefit from the watchful human. Autonomous operation demands
more sophisticated sensors. The vehicle needs to keep track of where it is (it needs to
perform localization). It needs to sense obstacles, and it needs to know where the ground
is. With good design, it is even possible for such vehicles to autonomously land on the
pitching deck of a ship. The vehicle also needs to continuously monitor its own health, to
detect malfunctions and react to them so as to contain the damage.

It is not hard to imagine many other applications that share features with the quadrotor
problem. The problem of landing a quadrotor vehicle on the deck of a pitching ship is sim-
ilar to the problem of operating on a beating heart (see Example 1.1). It requires detailed
modeling of the dynamics of the environment (the ship, the heart), and a clear understand-
ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.
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1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

As suggested in Figure 1.3, these three parts of the process overlap, and the design process
iteratively moves among the three parts. Normally, the process will begin with modeling,
where the goal is to understand the problem and to develop solution strategies.

Example 1.5: For the quadrotor problem of Section 1.2, we might begin by
constructing models that translate commands from a human to move vertically or
laterally into commands to the four motors to produce thrust. A model will reveal
that if the thrust is not the same on the four rotors, then the vehicle will tilt and
move laterally.

Such a model might use techniques like those in Chapter 2 (Continuous Dynam-
ics), constructing differential equations to describe the dynamics of the vehicle.
It would then use techniques like those in Chapter 3 (Discrete Dynamics) to build
state machines that model the modes of operation such as takeoff, landing, hov-
ering, and lateral flight. It could then use the techniques of Chapter 4 (Hybrid
Systems) to blend these two types of models, creating hybrid system models of
the system to study the transitions between modes of operation. The techniques
of Chapters 5 (Composition of State Machines) and 6 (Concurrent Models of
Computation) would then provide mechanisms for composing models of multi-
ple vehicles, models of the interactions between a vehicle and its environment,
and models of the interactions of components within a vehicle.

The process may progress quickly to the design phase, where we begin selecting com-
ponents and putting them together (motors, batteries, sensors, microprocessors, memory
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WiFi 

802.11b 
 5 Mbps 

ESC & Motors 
Phoenix-25, Axi 2208/26 

IMU 
3DMG-X1 

76 or 100 Hz 

 Ranger 
SRF08 

13 Hz Altitude 

GPS 
Superstar II 

10 Hz 

I2C 
400 kbps 

PPM 
100 Hz 

UART 
19.2 kbps 

Robostix 
Atmega128 

Low level control 

UART 
115 kbps 

CF 
100 Mbps 

Stereo Cam 
Videre STOC 

30 fps 320x240 

Firewire 
480 Mbps 

UART 
115 Kbps 

LIDAR 
URG-04LX 

10 Hz ranges 

Ranger 
Mini-AE 

10-50 Hz Altitude 

Beacon 
Tracker/DTS 

1 Hz 

WiFi 

802.11g+ 
 54 Mbps 

USB 2 
480 Mbps 

RS232 
115 kbps 

Timing/ 
Analog 

Analog 

RS232 

UART 

Stargate 1.0 

Intel PXA255 
64MB RAM, 400MHz 

Supervisor, GPS 

PC/104 

Pentium M 
1GB RAM, 1.8GHz 

Est. & control 

Figure 1.4: The STARMAC architecture (reproduced with permission).

systems, operating systems, wireless networks, etc.). An initial prototype may reveal
flaws in the models, causing a return to the modeling phase and revision of the models.

Example 1.6: The hardware architecture of the first generation STARMAC
quadrotor is shown in Figure 1.4. At the left and bottom of the figure are a number
of sensors used by the vehicle to determine where it is (localization) and what is
around it. In the middle are three boxes showing three distinct microprocessors.
The Robostix is an Atmel AVR 8-bit microcontroller that runs with no operat-
ing system and performs the low-level control algorithms to keep the craft flying.
The other two processors perform higher-level tasks with the help of an operating
system. Both processors include wireless links that can be used by cooperating
vehicles and ground controllers.
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Chapter 7 (Sensors and Actuators) considers sensors and actuators, including the IMU and
rangers shown in Figure 1.4. Chapter 8 (Embedded Processors) considers processor ar-
chitectures, offering some basis for comparing the relative advantages of one architecture
or another. Chapter 9 (Memory Architectures) considers the design of memory systems,
emphasizing the impact that they can have on overall system behavior. Chapter 10 (Input
and Output) considers the interfacing of processors with sensors and actuators. Chap-
ters 11 (Multitasking) and 12 (Scheduling) focus on software architecture, with particular
emphasis on how to orchestrate multiple real-time tasks.

In a healthy design process, analysis figures prominently early in the process. Analysis
will be applied to the models and to the designs. The models may be analyzed for safety
conditions, for example to ensure an invariant that asserts that if the vehicle is within one
meter of the ground, then its vertical speed is no greater than 0.1 meter/sec. The designs
may be analyzed for the timing behavior of software, for example to determine how long
it takes the system to respond to an emergency shutdown command. Certain analysis
problems will involve details of both models and designs. For the quadrotor example, it
is important to understand how the system will behave if network connectivity is lost and
it becomes impossible to communicate with the vehicle. How can the vehicle detect that
communication has been lost? This will require accurate modeling of the network and the
software.

Example 1.7: For the quadrotor problem, we use the techniques of Chapter 13
(Invariants and Temporal Logic) to specify key safety requirements for operation
of the vehicles. We would then use the techniques of Chapters 14 (Equivalence
and Refinement) and 15 (Reachability Analysis and Model Checking) to verify
that these safety properties are satisfied by implementations of the software. The
techniques of Chapter 16 (Quantitative Analysis) would be used to determine
whether real-time constraints are met by the software. Finally, the techniques of
Chapter 17 would be used to ensure that malicious parties cannot take control of
the quadrotor and that any confidential data it may be gathering is not leaked to
an adversary.

Corresponding to a design process structured as in Figure 1.3, this book is divided into
three major parts, focused on modeling, design, and analysis (see Figure 1 on page xv).
We now describe the approach taken in the three parts.
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1.3.1 Modeling

The modeling part of the book, which is the first part, focuses on models of dynamic
behavior. It begins with a light coverage of the big subject of modeling of physical dy-
namics in Chapter 2, specifically focusing on continuous dynamics in time. It then talks
about discrete dynamics in Chapter 3, using state machines as the principal formalism.
It then combines the two, continuous and discrete dynamics, with a discussion of hybrid
systems in Chapter 4. Chapter 5 (Composition of State Machines) focuses on concurrent
composition of state machines, emphasizing that the semantics of composition is a critical
issue with which designers must grapple. Chapter 6 (Concurrent Models of Computation)
gives an overview of concurrent models of computation, including many of those used in
design tools that practitioners frequently leverage, such as Simulink and LabVIEW.

In the modeling part of the book, we define a system to be simply a combination of parts
that is considered as a whole. A physical system is one realized in matter, in contrast
to a conceptual or logical system such as software and algorithms. The dynamics of a
system is its evolution in time: how its state changes. A model of a physical system is a
description of certain aspects of the system that is intended to yield insight into properties
of the system. In this text, models have mathematical properties that enable systematic
analysis. The model imitates properties of the system, and hence yields insight into that
system.

A model is itself a system. It is important to avoid confusing a model and the system that it
models. These are two distinct artifacts. A model of a system is said to have high fidelity
if it accurately describes properties of the system. It is said to abstract the system if it
omits details. Models of physical systems inevitably do omit details, so they are always
abstractions of the system. A major goal of this text is to develop an understanding of
how to use models, of how to leverage their strengths and respect their weaknesses.

A cyber-physical system (CPS) is a system composed of physical subsystems together
with computing and networking. Models of cyber-physical systems normally include
all three parts. The models will typically need to represent both dynamics and static
properties (those that do not change during the operation of the system). It is important
to note that a model of a cyber-physical system need not have both discrete and continuous
parts. It is possible for a purely discrete (or purely continuous) model to have high fidelity
for the properties of interest.

Each of the modeling techniques described in this part of the book is an enormous subject,
much bigger than one chapter, or even one book. In fact, such models are the focus of
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many branches of engineering, physics, chemistry, and biology. Our approach is aimed at
engineers. We assume some background in mathematical modeling of dynamics (calculus
courses that give some examples from physics are sufficient), and then focus on how to
compose diverse models. This will form the core of the cyber-physical system problem,
since joint modeling of the cyber side, which is logical and conceptual, with the physical
side, which is embodied in matter, is the core of the problem. We therefore make no
attempt to be comprehensive, but rather pick a few modeling techniques that are widely
used by engineers and well understood, review them, and then compose them to form a
cyber-physical whole.

1.3.2 Design

The second part of the book has a very different flavor, reflecting the intrinsic heterogene-
ity of the subject. This part focuses on the design of embedded systems, with emphasis
on the role they play within a CPS. Chapter 7 (Sensors and Actuators) considers sensors
and actuators, with emphasis on how to model them so that their role in overall system
dynamics is understood. Chapter 8 (Embedded Processors) discusses processor architec-
tures, with emphasis on specialized properties most suited to embedded systems. Chapter
9 (Memory Architectures) describes memory architectures, including abstractions such
as memory models in programming languages, physical properties such as memory tech-
nologies, and architectural properties such as memory hierarchy (caches, scratchpads,
etc.). The emphasis is on how memory architecture affects dynamics. Chapter 10 (Input
and Output) is about the interface between the software world and the physical world. It
discusses input/output mechanisms in software and computer architectures, and the digi-
tal/analog interface, including sampling. Chapter 11 (Multitasking) introduces the notions
that underlie operating systems, with particular emphasis on multitasking. The emphasis
is on the pitfalls of using low-level mechanisms such as threads, with a hope of convinc-
ing the reader that there is real value in using the modeling techniques covered in the first
part of the book. Those modeling techniques help designers build confidence in system
designs. Chapter 12 (Scheduling) introduces real-time scheduling, covering many of the
classic results in the area.

In all chapters in the design part, we particularly focus on the mechanisms that provide
concurrency and control over timing, because these issues loom large in the design of
cyber-physical systems. When deployed in a product, embedded processors typically
have a dedicated function. They control an automotive engine or measure ice thickness
in the Arctic. They are not asked to perform arbitrary functions with user-defined soft-
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ware. Consequently, the processors, memory architectures, I/O mechanisms, and operat-
ing systems can be more specialized. Making them more specialized can bring enormous
benefits. For example, they may consume far less energy, and consequently be usable
with small batteries for long periods of time. Or they may include specialized hardware
to perform operations that would be costly to perform on general-purpose hardware, such
as image analysis. Our goal in this part is to enable the reader to critically evaluate the
numerous available technology offerings.

One of the goals in this part of the book is to teach students to implement systems while
thinking across traditional abstraction layers — e.g., hardware and software, computa-
tion and physical processes. While such cross-layer thinking is valuable in implementing
systems in general, it is particularly essential in embedded systems given their heteroge-
neous nature. For example, a programmer implementing a control algorithm expressed
in terms of real-valued quantities must have a solid understanding of computer arithmetic
(e.g., of fixed-point numbers) in order to create a reliable implementation. Similarly, an
implementor of automotive software that must satisfy real-time constraints must be aware
of processor features – such as pipelines and caches – that can affect the execution time
of tasks and hence the real-time behavior of the system. Likewise, an implementor of
interrupt-driven or multi-threaded software must understand the atomic operations pro-
vided by the underlying software-hardware platform and use appropriate synchronization
constructs to ensure correctness. Rather than doing an exhaustive survey of different im-
plementation methods and platforms, this part of the book seeks to give the reader an ap-
preciation for such cross-layer topics, and uses homework exercises to facilitate a deeper
understanding of them.

1.3.3 Analysis

Every system must be designed to meet certain requirements. For embedded systems,
which are often intended for use in safety-critical, everyday applications, it is essential
to certify that the system meets its requirements. Such system requirements are also
called properties or specifications. The need for specifications is aptly captured by the
following quotation, paraphrased from Young et al. (1985):

“A design without specifications cannot be right or wrong, it can only be
surprising!”
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The analysis part of the book focuses on precise specifications of properties, on tech-
niques for comparing specifications, and on techniques for analyzing specifications and
the resulting designs. Reflecting the emphasis on dynamics in the text, Chapter 13 (Invari-
ants and Temporal Logic) focuses on temporal logics, which provide precise descriptions
of dynamic properties of systems. These descriptions are treated as models. Chapter 14
(Equivalence and Refinement) focuses on the relationships between models. Is one model
an abstraction of another? Is it equivalent in some sense? Specifically, that chapter intro-
duces type systems as a way of comparing static properties of models, and language con-
tainment and simulation relations as a way of comparing dynamic properties of models.
Chapter 15 (Reachability Analysis and Model Checking) focuses on techniques for ana-
lyzing the large number of possible dynamic behaviors that a model may exhibit, with par-
ticular emphasis on model checking as a technique for exploring such behaviors. Chapter
16 (Quantitative Analysis) is about analyzing quantitative properties of embedded soft-
ware, such as finding bounds on resources consumed by programs. It focuses particularly
on execution time analysis, with some introduction to other quantitative properties such
as energy and memory usage. Chapter 17 (Security and Privacy) introduces the basics
of security and privacy for embedded systems design, including cryptographic primitives,
protocol security, software security, secure information flow, side channels, and sensor
security.

In present engineering practice, it is common to have system requirements stated in a
natural language such as English. It is important to precisely state requirements to avoid
ambiguities inherent in natural languages. The goal of this part of the book is to help
replace descriptive techniques with formal ones, which we believe are less error prone.

Importantly, formal specifications also enable the use of automatic techniques for formal
verification of both models and implementations. The analysis part of the book introduces
readers to the basics of formal verification, including notions of equivalence and refine-
ment checking, as well as reachability analysis and model checking. In discussing these
verification methods, we attempt to give users of verification tools an appreciation of what
is “under the hood” so that they may derive the most benefit from them. This user’s view
is supported by examples discussing, for example, how model checking can be applied
to find subtle errors in concurrent software, or how reachability analysis can be used in
computing a control strategy for a robot to achieve a particular task.
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1.4 Summary

Cyber-physical systems are heterogeneous blends by nature. They combine computation,
communication, and physical dynamics. They are harder to model, harder to design,
and harder to analyze than homogeneous systems. This chapter gives an overview of the
engineering principles addressed in this book for modeling, designing, and analyzing such
systems.

16 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


Part I

Modeling Dynamic Behaviors

This part of this text studies modeling of embedded systems, with emphasis on joint
modeling of software and physical dynamics. We begin in Chapter 2 with a discussion
of established techniques for modeling the dynamics of physical systems, with emphasis
on their continuous behaviors. In Chapter 3, we discuss techniques for modeling discrete
behaviors, which reflect better the behavior of software. In Chapter 4, we bring these two
classes of models together and show how discrete and continuous behaviors are jointly
modeled by hybrid systems. Chapters 5 and 6 are devoted to reconciling the inherently
concurrent nature of the physical world with the inherently sequential world of software.
Chapter 5 shows how state machine models, which are fundamentally sequential, can be
composed concurrently. That chapter specifically introduces the notion of synchronous
composition. Chapter 6 shows that synchronous composition is but one of the ways to
achieve concurrent composition.



2
Continuous Dynamics

2.1 Newtonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Actor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Properties of Systems . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Causal Systems . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Memoryless Systems . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Linearity and Time Invariance . . . . . . . . . . . . . . . . . 29
2.3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

This chapter reviews a few of the many modeling techniques for studying dynamics of
a physical system. We begin by studying mechanical parts that move (this problem is
known as classical mechanics). The techniques used to study the dynamics of such parts
extend broadly to many other physical systems, including circuits, chemical processes,
and biological processes. But mechanical parts are easiest for most people to visualize, so
they make our example concrete. Motion of mechanical parts can often be modeled us-
ing differential equations, or equivalently, integral equations. Such models really only
work well for “smooth” motion (a concept that we can make more precise using notions
of linearity, time invariance, and continuity). For motions that are not smooth, such as
those modeling collisions of mechanical parts, we can use modal models that represent
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distinct modes of operation with abrupt (conceptually instantaneous) transitions between
modes. Collisions of mechanical objects can be usefully modeled as discrete, instanta-
neous events. The problem of jointly modeling smooth motion and such discrete events
is known as hybrid systems modeling and is studied in Chapter 4. Such combinations of
discrete and continuous behaviors bring us one step closer to joint modeling of cyber and
physical processes.

We begin with simple equations of motion, which provide a model of a system in the
form of ordinary differential equations (ODEs). We then show how these ODEs can
be represented in actor models, which include the class of models in popular model-
ing languages such as LabVIEW (from National Instruments) and Simulink (from The
MathWorks, Inc.). We then consider properties of such models such as linearity, time in-
variance, and stability, and consider consequences of these properties when manipulating
models. We develop a simple example of a feedback control system that stabilizes an
unstable system. Controllers for such systems are often realized using software, so such
systems can serve as a canonical example of a cyber-physical system. The properties of
the overall system emerge from properties of the cyber and physical parts.

2.1 Newtonian Mechanics

In this section, we give a brief working review of some principles of classical mechanics.
This is intended to be just enough to be able to construct interesting models, but is by
no means comprehensive. The interested reader is referred to many excellent texts on
classical mechanics, including Goldstein (1980); Landau and Lifshitz (1976); Marion and
Thornton (1995).

Motion in space of physical objects can be represented with six degrees of freedom,
illustrated in Figure 2.1. Three of these represent position in three dimensional space,
and three represent orientation in space. We assume three axes, x, y, and z, where by
convention x is drawn increasing to the right, y is drawn increasing upwards, and z is
drawn increasing out of the page. Roll θx is an angle of rotation around the x axis, where
by convention an angle of 0 radians represents horizontally flat along the z axis (i.e., the
angle is given relative to the z axis). Yaw θy is the rotation around the y axis, where
by convention 0 radians represents pointing directly to the right (i.e., the angle is given
relative to the x axis). Pitch θz is rotation around the z axis, where by convention 0
radians represents pointing horizontally (i.e., the angle is given relative to the x axis).

Lee & Seshia, Introduction to Embedded Systems 19

http://LeeSeshia.org


2.1. NEWTONIAN MECHANICS

z y

x

Roll

Yaw
Pitch

Figure 2.1: Modeling position with six degrees of freedom requires including pitch,
roll, and yaw, in addition to position.

The position of an object in space, therefore, is represented by six functions of the form
f : R → R, where the domain represents time and the codomain represents either dis-
tance along an axis or angle relative to an axis.1 Functions of this form are known
as continuous-time signals.2 These are often collected into vector-valued functions
x : R→ R3 and θ : R→ R3, where x represents position, and θ represents orientation.

Changes in position or orientation are governed by Newton’s second law, relating force
with acceleration. Acceleration is the second derivative of position. Our first equation
handles the position information,

F(t) = M ẍ(t), (2.1)

where F is the force vector in three directions, M is the mass of the object, and ẍ is the
second derivative of x with respect to time (i.e., the acceleration). Velocity is the integral

1If the notation is unfamiliar, see Appendix A.
2The domain of a continuous-time signal may be restricted to a connected subset of R, such as R+, the

non-negative reals, or [0, 1], the interval between zero and one, inclusive. The codomain may be an arbitrary
set, though when representing physical quantities, real numbers are most useful.
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of acceleration, given by

∀ t > 0, ẋ(t) = ẋ(0) +

t∫
0

ẍ(τ)dτ

where ẋ(0) is the initial velocity in three directions. Using (2.1), this becomes

∀ t > 0, ẋ(t) = ẋ(0) +
1

M

t∫
0

F(τ)dτ,

Position is the integral of velocity,

x(t) = x(0) +

t∫
0

ẋ(τ)dτ

= x(0) + tẋ(0) +
1

M

t∫
0

τ∫
0

F(α)dαdτ,

where x(0) is the initial position. Using these equations, if you know the initial position
and initial velocity of an object and the forces on the object in all three directions as a
function of time, you can determine the acceleration, velocity, and position of the object
at any time.

The versions of these equations of motion that affect orientation use torque, the rotational
version of force. It is again a three-element vector as a function of time, representing the
net rotational force on an object. It can be related to angular velocity in a manner similar
to equation (2.1),

T(t) =
d

dt

(
I(t)θ̇(t)

)
, (2.2)

where T is the torque vector in three axes and I(t) is the moment of inertia tensor of
the object. The moment of inertia is a 3 × 3 matrix that depends on the geometry and
orientation of the object. Intuitively, it represents the reluctance that an object has to
spin around any axis as a function of its orientation along the three axes. If the object
is spherical, for example, this reluctance is the same around all axes, so it reduces to a
constant scalar I (or equivalently, to a diagonal matrix I with equal diagonal elements I).
The equation then looks much more like (2.1),

T(t) = Iθ̈(t). (2.3)
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To be explicit about the three dimensions, we might write (2.2) as Tx(t)
Ty(t)
Tz(t)

 =
d

dt

 Ixx(t) Ixy(t) Ixz(t)
Iyx(t) Iyy(t) Iyz(t)
Izx(t) Izy(t) Izz(t)

 θ̇x(t)

θ̇y(t)

θ̇z(t)

 .

Here, for example, Ty(t) is the net torque around the y axis (which would cause changes
in yaw), Iyx(t) is the inertia that determines how acceleration around the x axis is related
to torque around the y axis.

Rotational velocity is the integral of acceleration,

θ̇(t) = θ̇(0) +

t∫
0

θ̈(τ)dτ,

where θ̇(0) is the initial rotational velocity in three axes. For a spherical object, using
(2.3), this becomes

θ̇(t) = θ̇(0) +
1

I

t∫
0

T(τ)dτ.

Orientation is the integral of rotational velocity,

θ(t) = θ(0) +

∫ t

0
θ̇(τ)dτ

= θ(0) + tθ̇(0) +
1

I

t∫
0

τ∫
0

T(α)dαdτ

where θ(0) is the initial orientation. Using these equations, if you know the initial orien-
tation and initial rotational velocity of an object and the torques on the object in all three
axes as a function of time, you can determine the rotational acceleration, velocity, and
orientation of the object at any time.

Often, as we have done for a spherical object, we can simplify by reducing the number of
dimensions that are considered. In general, such a simplification is called a model-order
reduction. For example, if an object is a moving vehicle on a flat surface, there may be
little reason to consider the y axis movement or the pitch or roll of the object.
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M
body

tail

main rotor shaft

Figure 2.2: Simplified model of a helicopter.

Example 2.1: Consider a simple control problem that admits such reduction of
dimensionality. A helicopter has two rotors, one above, which provides lift, and
one on the tail. Without the rotor on the tail, the body of the helicopter would spin.
The rotor on the tail counteracts that spin. Specifically, the force produced by the
tail rotor must counter the torque produced by the main rotor. Here we consider
this role of the tail rotor independently from all other motion of the helicopter.

A simplified model of the helicopter is shown in Figure 2.2. Here, we assume
that the helicopter position is fixed at the origin, so there is no need to consider
equations describing position. Moreover, we assume that the helicopter remains
vertical, so pitch and roll are fixed at zero. These assumptions are not as unrealis-
tic as they may seem since we can define the coordinate system to be fixed to the
helicopter.

With these assumptions, the moment of inertia reduces to a scalar that represents
a torque that resists changes in yaw. The changes in yaw will be due to Newton’s
third law, the action-reaction law, which states that every action has an equal
and opposite reaction. This will tend to cause the helicopter to rotate in the oppo-
site direction from the rotor rotation. The tail rotor has the job of countering that
torque to keep the body of the helicopter from spinning.

We model the simplified helicopter by a system that takes as input a continuous-
time signal Ty, the torque around the y axis (which causes changes in yaw). This
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torque is the sum of the torque caused by the main rotor and that caused by the
tail rotor. When these are perfectly balanced, that sum is zero. The output of
our system will be the angular velocity θ̇y around the y axis. The dimensionally-
reduced version of (2.2) can be written as

θ̈y(t) = Ty(t)/Iyy.

Integrating both sides, we get the output θ̇ as a function of the input Ty,

θ̇y(t) = θ̇y(0) +
1

Iyy

t∫
0

Ty(τ)dτ. (2.4)

The critical observation about this example is that if we were to choose to model the
helicopter by, say, letting x : R → R3 represent the absolute position in space of the tail
of the helicopter, we would end up with a far more complicated model. Designing the
control system would also be much more difficult.

2.2 Actor Models

In the previous section, a model of a physical system is given by a differential or an
integral equation that relates input signals (force or torque) to output signals (position,
orientation, velocity, or rotational velocity). Such a physical system can be viewed as a
component in a larger system. In particular, a continuous-time system (one that operates
on continuous-time signals) may be modeled by a box with an input port and an output
port as follows:

parameters:

where the input signal x and the output signal y are functions of the form

x : R→ R, y : R→ R.
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Here the domain represents time and the codomain represents the value of the signal at a
particular time. The domain R may be replaced by R+, the non-negative reals, if we wish
to explicitly model a system that comes into existence and starts operating at a particular
point in time.

The model of the system is a function of the form

S : X → Y, (2.5)

where X = Y = RR, the set of functions that map the reals into the reals, like x and
y above.3 The function S may depend on parameters of the system, in which case the
parameters may be optionally shown in the box, and may be optionally included in the
function notation. For example, in the above figure, if there are parameters p and q,
we might write the system function as Sp,q or even S(p, q), keeping in mind that both
notations represent functions of the form in 2.5. A box like that above, where the inputs
are functions and the outputs are functions, is called an actor.

Example 2.2: The actor model for the helicopter of example 2.1 can be depicted
as follows:

The input and output are both continuous-time functions. The parameters of the
actor are the initial angular velocity θ̇y(0) and the moment of inertia Iyy. The
function of the actor is defined by (2.4).

Actor models are composable. In particular, given two actors S1 and S2, we can form a
cascade composition as follows:

3As explained in Appendix A, the notation RR (which can also be written (R→ R)) represents the set of
all functions with domain R and codomain R.
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In the diagram, the “wire” between the output of S1 and the input of S2 means precisely
that y1 = x2, or more pedantically,

∀ t ∈ R, y1(t) = x2(t).

Example 2.3: The actor model for the helicopter can be represented as a cascade
composition of two actors as follows:

The left actor represents a Scale actor parameterized by the constant a defined by

∀ t ∈ R, y1(t) = ax1(t). (2.6)

More compactly, we can write y1 = ax1, where it is understood that the product
of a scalar a and a function x1 is interpreted as in (2.6). The right actor represents
an integrator parameterized by the initial value i defined by

∀ t ∈ R, y2(t) = i+

t∫
0

x2(τ)dτ.

If we give the parameter values a = 1/Iyy and i = θ̇y(0), we see that this system
represents (2.4) where the input x1 = Ty is torque and the output y2 = θ̇y is
angular velocity.
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In the above figure, we have customized the icons, which are the boxes representing
the actors. These particular actors (scaler and integrator) are particularly useful build-
ing blocks for building up models of physical dynamics, so assigning them recognizable
visual notations is useful.

We can have actors that have multiple input signals and/or multiple output signals. These
are represented similarly, as in the following example, which has two input signals and
one output signal:

A particularly useful building block with this form is a signal adder, defined by

∀ t ∈ R, y(t) = x1(t) + x2(t).

This will often be represented by a custom icon as follows:

Sometimes, one of the inputs will be subtracted rather than added, in which case the icon
is further customized with minus sign near that input, as below:

This actor represents a function S : (R→ R)2 → (R→ R) given by

∀ t ∈ R, ∀ x1, x2 ∈ (R→ R), (S(x1, x2))(t) = y(t) = x1(t)− x2(t).

Notice the careful notation. S(x1, x2) is a function in RR. Hence, it can be evaluated at a
t ∈ R.
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In the rest of this chapter, we will not make a distinction between a system and its actor
model, unless the distinction is essential to the argument. We will assume that the actor
model captures everything of interest about the system. This is an admittedly bold as-
sumption. Generally the properties of the actor model are only approximate descriptions
of the actual system.

2.3 Properties of Systems

In this section, we consider a number of properties that actors and the systems they com-
pose may have, including causality, memorylessness, linearity, time invariance, and sta-
bility.

2.3.1 Causal Systems

Intuitively, a system is causal if its output depends only on current and past inputs. Mak-
ing this notion precise is a bit tricky, however. We do this by first giving a notation for
“current and past inputs.” Consider a continuous-time signal x : R→ A, for some set A.
Let x|t≤τ represent a function called the restriction in time that is only defined for times
t ≤ τ , and where it is defined, x|t≤τ (t) = x(t). Hence if x is an input to a system, then
x|t≤τ is the “current and past inputs” at time τ .

Consider a continuous-time system S : X → Y , where X = AR and Y = BR for some
sets A and B. This system is causal if for all x1, x2 ∈ X and τ ∈ R,

x1|t≤τ = x2|t≤τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is causal if for two possible inputs x1 and x2 that are identical up to
(and including) time τ , the outputs are identical up to (and including) time τ . All systems
we have considered so far are causal.

A system is strictly causal if for all x1, x2 ∈ X and τ ∈ R,

x1|t<τ = x2|t<τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is strictly causal if for two possible inputs x1 and x2 that are identical
up to (and not including) time τ , the outputs are identical up to (and including) time τ .
The output at time t of a strictly causal system does not depend on its input at time t.
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It only depends on past inputs. A strictly causal system, of course, is also causal. The
Integrator actor is strictly causal. The adder is not strictly causal, but it is causal. Strictly
causal actors are useful for constructing feedback systems.

2.3.2 Memoryless Systems

Intuitively, a system has memory if the output depends not only on the current inputs, but
also on past inputs (or future inputs, if the system is not causal). Consider a continuous-
time system S : X → Y , where X = AR and Y = BR for some sets A and B. Formally,
this system is memoryless if there exists a function f : A→ B such that for all x ∈ X ,

(S(x))(t) = f(x(t))

for all t ∈ R. That is, the output (S(x))(t) at time t depends only on the input x(t) at
time t.

The Integrator considered above is not memoryless, but the adder is. Exercise 2 shows
that if a system is strictly causal and memoryless then its output is constant for all inputs.

2.3.3 Linearity and Time Invariance

Systems that are linear and time invariant (LTI) have particularly nice mathematical prop-
erties. Much of the theory of control systems depends on these properties. These proper-
ties form the main body of courses on signals and systems, and are beyond the scope of
this text. But we will occasionally exploit simple versions of the properties, so it is useful
to determine when a system is LTI.

A system S : X → Y , where X and Y are sets of signals, is linear if it satisfies the
superposition property:

∀ x1, x2 ∈ X and ∀ a, b ∈ R, S(ax1 + bx2) = aS(x1) + bS(x2).

It is easy to see that the helicopter system defined in Example 2.1 is linear if and only if
the initial angular velocity θ̇y(0) = 0 (see Exercise 3).

More generally, it is easy to see that an integrator as defined in Example 2.3 is linear if and
only if the initial value i = 0, that the Scale actor is always linear, and that the cascade of
any two linear actors is linear. We can trivially extend the definition of linearity to actors
with more than one input or output signal and then determine that the adder is also linear.
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To define time invariance, we first define a specialized continuous-time actor called a
delay. Let Dτ : X → Y , where X and Y are sets of continuous-time signals, be defined
by

∀ x ∈ X and ∀ t ∈ R, (Dτ (x))(t) = x(t− τ). (2.7)

Here, τ is a parameter of the delay actor. A system S : X → Y is time invariant if

∀ x ∈ X and ∀ τ ∈ R, S(Dτ (x)) = Dτ (S(x)).

The helicopter system defined in Example 2.1 and (2.4) is not time invariant. A minor
variant, however, is time invariant:

θ̇y(t) =
1

Iyy

t∫
−∞

Ty(τ)dτ.

This version does not allow for an initial angular rotation.

A linear time-invariant system (LTI) is a system that is both linear and time invariant.
A major objective in modeling physical dynamics is to choose an LTI model whenever
possible. If a reasonable approximation results in an LTI model, it is worth making this
approximation. It is not always easy to determine whether the approximation is reason-
able, or to find models for which the approximation is reasonable. It is often easy to
construct models that are more complicated than they need to be (see Exercise 4).

2.3.4 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just
stable) if the output signal is bounded for all input signals that are bounded.

Consider a continuous-time system with input w and output v. The input is bounded if
there is a real number A <∞ such that |w(t)| ≤ A for all t ∈ R. The output is bounded
if there is a real number B < ∞ such that |v(t)| ≤ B for all t ∈ R. The system is stable
if for any input bounded by some A, there is some bound B on the output.

Example 2.4: It is now easy to see that the helicopter system developed in
Example 2.1 is unstable. Let the input be Ty = u, where u is the unit step, given
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by

∀ t ∈ R, u(t) =

{
0, t < 0
1, t ≥ 0

. (2.8)

This means that prior to time zero, there is no torque applied to the system, and
starting at time zero, we apply a torque of unit magnitude. This input is clearly
bounded. It never exceeds one in magnitude. However, the output grows without
bound. In practice, a helicopter uses a feedback system to determine how much
torque to apply at the tail rotor to keep the body of the helicopter straight. We
study how to do that next.

2.4 Feedback Control

A system with feedback has directed cycles, where an output from an actor is fed back
to affect an input of the same actor. An example of such a system is shown in Figure
2.3. Most control systems use feedback. They make measurements of an error (e in
the figure), which is a discrepancy between desired behavior (ψ in the figure) and actual
behavior (θ̇y in the figure), and use that measurement to correct the behavior. The er-
ror measurement is feedback, and the corresponding correction signal (Ty in the figure)
should compensate to reduce future error. Note that the correction signal normally can
only affect future errors, so a feedback system must normally include at least one strictly
causal actor (the Helicopter in the figure) in every directed cycle.

Feedback control is a sophisticated topic, easily occupying multiple texts and complete
courses. Here, we only barely touch on the subject, just enough to motivate the interac-
tions between software and physical systems. Feedback control systems are often imple-
mented using embedded software, and the overall physical dynamics is a composition of
the software and physical dynamics. More detail can be found in Chapters 12-14 of Lee
and Varaiya (2011).

Example 2.5: Recall that the helicopter model of Example 2.1 is not stable. We
can stabilize it with a simple feedback control system, as shown in Figure 2.3.
The input ψ to this system is a continuous-time system specifying the desired
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e
K

ψ

Figure 2.3: Proportional control system that stabilizes the helicopter.

angular velocity. The error signal e represents the difference between the actual
and the desired angular velocity. In the figure, the controller simply scales the
error signal by a constant K, providing a control input to the helicopter. We use
(2.4) to write

θ̇y(t) = θ̇y(0) +
1

Iyy

t∫
0

Ty(τ)dτ (2.9)

= θ̇y(0) +
K

Iyy

t∫
0

(ψ(τ)− θ̇y(τ))dτ, (2.10)

where we have used the facts (from the figure),

e(t) = ψ(t)− θ̇y(t), and

Ty(t) = Ke(t).

Equation (2.10) has θ̇y(t) on both sides, and therefore is not trivial to solve. The
easiest solution technique uses Laplace transforms (see Lee and Varaiya (2011)
Chapter 14). However, for our purposes here, we can use a more brute-force
technique from calculus. To make this as simple as possible, we assume that
ψ(t) = 0 for all t; i.e., we wish to control the helicopter simply to keep it from
rotating at all. The desired angular velocity is zero. In this case, (2.10) simplifies
to

θ̇y(t) = θ̇y(0)− K

Iyy

t∫
0

θ̇y(τ)dτ. (2.11)
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Using the fact from calculus that, for t ≥ 0,

t∫
0

aeaτdτ = eatu(t)− 1,

where u is given by (2.8), we can infer that the solution to (2.11) is

θ̇y(t) = θ̇y(0)e−Kt/Iyyu(t). (2.12)

(Note that although it is easy to verify that this solution is correct, deriving the
solution is not so easy. For this purpose, Laplace transforms provide a far better
mechanism.)

We can see from (2.12) that the angular velocity approaches the desired angular
velocity (zero) as t gets large as long as K is positive. For larger K, it will ap-
proach more quickly. For negativeK, the system is unstable, and angular velocity
will grow without bound.

The previous example illustrates a proportional control feedback loop. It is called this
because the control signal is proportional to the error. We assumed a desired signal of
zero. It is equally easy to assume that the helicopter is initially at rest (the angular velocity
is zero) and then determine the behavior for a particular non-zero desired signal, as we do
in the following example.

Example 2.6: Assume that the helicopter is initially at rest, meaning that

θ̇(0) = 0,

and that the desired signal is
ψ(t) = au(t)

for some constant a. That is, we wish to control the helicopter to get it to rotate
at a fixed rate.
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We use (2.4) to write

θ̇y(t) =
1

Iyy

t∫
0

Ty(τ)dτ

=
K

Iyy

t∫
0

(ψ(τ)− θ̇y(τ))dτ

=
K

Iyy

t∫
0

adτ − K

Iyy

t∫
0

θ̇y(τ)dτ

=
Kat

Iyy
− K

Iyy

t∫
0

θ̇y(τ)dτ.

Using the same (black magic) technique of inferring and then verifying the solu-
tion, we can see that the solution is

θ̇y(t) = au(t)(1− e−Kt/Iyy). (2.13)

Again, the angular velocity approaches the desired angular velocity as t gets large
as long asK is positive. For largerK, it will approach more quickly. For negative
K, the system is unstable, and angular velocity will grow without bound.

Note that the first term in the above solution is exactly the desired angular veloc-
ity. The second term is an error called the tracking error, that for this example
asymptotically approaches zero.

The above example is somewhat unrealistic because we cannot independently control the
net torque of the helicopter. In particular, the net torque Ty is the sum of the torque Tt
due to the top rotor and the torque Tr due to the tail rotor,

∀ t ∈ R, Ty(t) = Tt(t) + Tr(t) .

Tt will be determined by the rotation required to maintain or achieve a desired altitude,
quite independent of the rotation of the helicopter. Thus, we will actually need to design a
control system that controls Tr and stabilizes the helicopter for any Tt (or, more precisely,
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any Tt within operating parameters). In the next example, we study how this changes the
performance of the control system.

Example 2.7: In Figure 2.4(a), we have modified the helicopter model so that it
has two inputs, Tt and Tr, the torque due to the top rotor and tail rotor respectively.
The feedback control system is now controlling only Tr, and Tt is treated as an
external (uncontrolled) input signal. How well will this control system behave?

Again, a full treatment of the subject is beyond the scope of this text, but we will
study a specific example. Suppose that the torque due to the top rotor is given by

Tt = bu(t)

for some constant b. That is, at time zero, the top rotor starts spinning a constant
velocity, and then holds that velocity. Suppose further that the helicopter is ini-
tially at rest. We can use the results of Example 2.6 to find the behavior of the
system.

First, we transform the model into the equivalent model shown in Figure 2.4(b).
This transformation simply relies on the algebraic fact that for any real numbers
a1, a2,K,

Ka1 + a2 = K(a1 + a2/K).

We further transform the model to get the equivalent model shown in Figure
2.4(c), which has used the fact that addition is commutative. In Figure 2.4(c),
we see that the portion of the model enclosed in the box is exactly the same as
the control system analyzed in Example 2.6, shown in Figure 2.3. Thus, the same
analysis as in Example 2.6 still applies. Suppose that desired angular rotation is

ψ(t) = 0.

Then the input to the original control system will be

x(t) = ψ(t) + Tt(t)/K = (b/K)u(t).

From (2.13), we see that the solution is

θ̇y(t) = (b/K)u(t)(1− e−Kt/Iyy). (2.14)

Lee & Seshia, Introduction to Embedded Systems 35

http://LeeSeshia.org


2.4. FEEDBACK CONTROL

(c)

(a)

(b)

Figure 2.4: (a) Helicopter model with separately controlled torques for the top
and tail rotors. (b) Transformation to an equivalent model (assuming K > 0). (c)
Further transformation to an equivalent model that we can use to understand the
behavior of the controller.
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The desired angular rotation is zero, but the control system asymptotically ap-
proaches a non-zero angular rotation of b/K. This tracking error can be made
arbitrarily small by increasing the control system feedback gain K, but with this
controller design, it cannot be made to go to zero. An alternative controller design
that yields an asymptotic tracking error of zero is studied in Exercise 7.

2.5 Summary

This chapter has described two distinct modeling techniques that describe physical dy-
namics. The first is ordinary differential equations, a venerable toolkit for engineers, and
the second is actor models, a newer technique driven by software modeling and simu-
lation tools. The two are closely related. This chapter has emphasized the relationship
between these models, and the relationship of those models to the systems being modeled.
These relationships, however, are quite a deep subject that we have barely touched upon.
Our objective is to focus the attention of the reader on the fact that we may use multiple
models for a system, and that models are distinct from the systems being modeled. The
fidelity of a model (how well it approximates the system being modeled) is a strong factor
in the success or failure of any engineering effort.
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Exercises

1. A tuning fork, shown in Figure 2.5, consists of a metal finger (called a tine) that
is displaced by striking it with a hammer. After being displaced, it vibrates. If
the tine has no friction, it will vibrate forever. We can denote the displacement of
the tine after being struck at time zero as a function y : R+ → R. If we assume
that the initial displacement introduced by the hammer is one unit, then using our
knowledge of physics we can determine that for all t ∈ R+, the displacement
satisfies the differential equation

ÿ(t) = −ω2
0y(t)

where ω2
0 is a constant that depends on the mass and stiffness of the tine, and where

ÿ(t) denotes the second derivative with respect to time of y. It is easy to verify that
y given by

∀ t ∈ R+, y(t) = cos(ω0t)

is a solution to the differential equation (just take its second derivative). Thus, the
displacement of the tuning fork is sinusoidal. If we choose materials for the tuning
fork so that ω0 = 2π × 440 radians/second, then the tuning fork will produce the
tone of A-440 on the musical scale.

displacement restorative force

tine

Figure 2.5: A tuning fork.
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(a) Is y(t) = cos(ω0t) the only solution? If not, give some others.

(b) Assuming the solution is y(t) = cos(ω0t), what is the initial displacement?

(c) Construct a model of the tuning fork that produces y as an output using generic
actors like Integrator, adder, scaler, or similarly simple actors. Treat the initial
displacement as a parameter. Carefully label your diagram.

2. Show that if a system S : AR → BR is strictly causal and memoryless then its
output is constant. Constant means that the output (S(x))(t) at time t does not
depend on t.

3. This exercise studies linearity.

(a) Show that the helicopter model defined in Example 2.1 is linear if and only if
the initial angular velocity θ̇y(0) = 0.

(b) Show that the cascade of any two linear actors is linear.

(c) Augment the definition of linearity so that it applies to actors with two input
signals and one output signal. Show that the adder actor is linear.

4. Consider the helicopter of Example 2.1, but with a slightly different definition of
the input and output. Suppose that, as in the example, the input is Ty : R → R, as
in the example, but the output is the position of the tail relative to the main rotor
shaft. Specifically, let the x-y plane be the plane orthogonal to the rotor shaft, and
let the position of the tail at time t be given by a tuple ((x(t), y(t)). Is this model
LTI? Is it BIBO stable?

5. Consider a rotating robot where you can control the angular velocity around a fixed
axis.

(a) Model this as a system where the input is angular velocity θ̇ and the output
is angle θ. Give your model as an equation relating the input and output as
functions of time.

(b) Is this model BIBO stable?

(c) Design a proportional controller to set the robot onto a desired angle. That
is, assume that the initial angle is θ(0) = 0, and let the desired angle be
ψ(t) = au(t), where u is the unit step function. Find the actual angle as a
function of time and the proportional controller feedback gain K. What is
your output at t = 0? What does it approach as t gets large?
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6. A DC motor produces a torque that is proportional to the current through the wind-
ings of the motor. Neglecting friction, the net torque on the motor, therefore, is
this torque minus the torque applied by whatever load is connected to the motor.
Newton’s second law (the rotational version) gives

kT i(t)− x(t) = I
d

dt
ω(t), (2.15)

where kT is the motor torque constant, i(t) is the current at time t, x(t) is the torque
applied by the load at time t, I is the moment of inertia of the motor, and ω(t) is
the angular velocity of the motor.

(a) Assuming the motor is initially at rest, rewrite (2.15) as an integral equation.

(b) Assuming that both x and i are inputs and ω is an output, construct an actor
model (a block diagram) that models this motor. You should use only prim-
itive actors such as integrators and basic arithmetic actors such as scale and
adder.

(c) In reality, the input to a DC motor is not a current, but is rather a voltage. If
we assume that the inductance of the motor windings is negligible, then the
relationship between voltage and current is given by

v(t) = Ri(t) + kbω(t),

whereR is the resistance of the motor windings and kb is a constant called the
motor back electromagnetic force constant. The second term appears because
a rotating motor also functions as an electrical generator, where the voltage
generated is proportional to the angular velocity.
Modify your actor model so that the inputs are v and x rather than i and x.

7. (a) Using your favorite continuous-time modeling software (such as LabVIEW,
Simulink, or Ptolemy II), construct a model of the helicopter control system
shown in Figure 2.4. Choose some reasonable parameters and plot the actual
angular velocity as a function of time, assuming that the desired angular veloc-
ity is zero, ψ(t) = 0, and that the top-rotor torque is non-zero, Tt(t) = bu(t).
Give your plot for several values of K and discuss how the behavior varies
with K.

(b) Modify the model of part (a) to replace the Controller of Figure 2.4 (the sim-
ple scale-by-K actor) with the alternative controller shown in Figure 2.6. This
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K1

K2KK

Figure 2.6: A PI controller for the helicopter.

alternative controller is called a proportional-integrator (PI) controller. It
has two parameter K1 and K2. Experiment with the values of these parame-
ters, give some plots of the behavior with the same inputs as in part (a), and
discuss the behavior of this controller in contrast to the one of part (a).
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3. DISCRETE DYNAMICS

Models of embedded systems include both discrete and continuous components. Loosely
speaking, continuous components evolve smoothly, while discrete components evolve
abruptly. The previous chapter considered continuous components, and showed that the
physical dynamics of the system can often be modeled with ordinary differential or in-
tegral equations, or equivalently with actor models that mirror these equations. Discrete
components, on the other hand, are not conveniently modeled by ODEs. In this chapter,
we study how state machines can be used to model discrete dynamics. In the next chap-
ter, we will show how these state machines can be combined with models of continuous
dynamics to get hybrid system models.

3.1 Discrete Systems

A discrete system operates in a sequence of discrete steps and is said to have discrete
dynamics. Some systems are inherently discrete.

Example 3.1: Consider a system that counts the number of cars that enter and
leave a parking garage in order to keep track of how many cars are in the garage
at any time. It could be modeled as shown in Figure 3.1. We ignore for now
how to design the sensors that detect the entry or departure of cars. We simply
assume that the ArrivalDetector actor produces an event when a car arrives, and
the DepartureDetector actor produces an event when a car departs. The Counter

Figure 3.1: Model of a system that keeps track of the number of cars in a parking
garage.
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Figure 3.2: Icon for the Integrator actor used in the previous chapter.

actor keeps a running count, starting from an initial value i. Each time the count
changes, it produces an output event that updates a display.

In the above example, each entry or departure is modeled as a discrete event. A discrete
event occurs at an instant of time rather than over time. The Counter actor in Figure 3.1 is
analogous to the Integrator actor used in the previous chapter, shown here in Figure 3.2.
Like the Counter actor, the Integrator accumulates input values. However, it does so very
differently. The input of an Integrator is a function of the form x : R→ R or x : R+ → R,
a continuous-time signal. The signal u going into the up input port of the Counter, on the
other hand, is a function of the form

u : R→ {absent, present}.

This means that at any time t ∈ R, the input u(t) is either absent, meaning that there is
no event at that time, or present, meaning that there is. A signal of this form is known as
a pure signal. It carries no value, but instead provides all its information by being either
present or absent at any given time. The signal d in Figure 3.1 is also a pure signal.

Assume our Counter operates as follows. When an event is present at the up input port,
it increments its count and produces on the output the new value of the count. When an
event is present at the down input, it decrements its count and produces on the output the
new value of the count.1 At all other times (when both inputs are absent), it produces no
output (the count output is absent). Hence, the signal c in Figure 3.1 can be modeled by a
function of the form

c : R→ {absent} ∪ Z .
(See Appendix A for notation.) This signal is not pure, but like u and d, it is either absent
or present. Unlike u and d, when it is present, it has a value (an integer).

1It would be wise to design this system with a fault handler that does something reasonable if the count
drops below zero, but we ignore this for now.
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Assume further that the inputs are absent most of the time, or more technically, that the
inputs are discrete (see the sidebar on page 45). Then the Counter reacts in sequence to
each of a sequence of input events. This is very different from the Integrator, which reacts
continuously to a continuum of inputs.

The input to the Counter is a pair of discrete signals that at certain times have an event (are
present), and at other times have no event (are absent). The output also is a discrete signal
that, when an input is present, has a value that is a natural number, and at other times is
absent.2 Clearly, there is no need for this Counter to do anything when the input is absent.
It only needs to operate when inputs are present. Hence, it has discrete dynamics.

2As shown in Exercise 8, the fact that input signals are discrete does not necessarily imply that the output
signal is discrete. However, for this application, there are physical limitations on the rates at which cars can
arrive and depart that ensure that these signals are discrete. So it is safe to assume that they are discrete.

Probing Further: Discrete Signals

Discrete signals consist of a sequence of instantaneous events in time. Here, we make
this intuitive concept precise.

Consider a signal of the form e : R → {absent} ∪X , where X is any set of values.
This signal is a discrete signal if, intuitively, it is absent most of the time and we can
count, in order, the times at which it is present (not absent). Each time it is present, we
have a discrete event.

This ability to count the events in order is important. For example, if e is present at
all rational numbers t, then we do not call this signal discrete. The times at which it
is present cannot be counted in order. It is not, intuitively, a sequence of instantaneous
events in time (it is a set of instantaneous events in time, but not a sequence).

To define this formally, let T ⊆ R be the set of times where e is present. Specifically,

T = {t ∈ R : e(t) 6= absent}.

Then e is discrete if there exists a one-to-one function f : T → N that is order pre-
serving. Order preserving simply means that for all t1, t2 ∈ T where t1 ≤ t2, we have
that f(t1) ≤ f(t2). The existence of such a one-to-one function ensures that we can
count off the events in temporal order. Some properties of discrete signals are studied
in Exercise 8.
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The dynamics of a discrete system can be described as a sequence of steps that we call
reactions, each of which we assume to be instantaneous. Reactions of a discrete system
are triggered by the environment in which the discrete system operates. In the case of
the example of Figure 3.1, reactions of the Counter actor are triggered when one or more
input events are present. That is, in this example, reactions are event triggered. When
both inputs to the Counter are absent, no reaction occurs.

Probing Further: Modeling Actors as Functions

As in Section 2.2, the Integrator actor of Figure 3.2 can be modeled by a function of
the form

Ii : RR+ → RR+ ,

which can also be written

Ii : (R+ → R)→ (R+ → R).

(See Appendix A if the notation is unfamiliar.) In the figure,

y = Ii(x) ,

where i is the initial value of the integration and x and y are continuous-time signals.
For example, if i = 0 and for all t ∈ R+, x(t) = 1, then

y(t) = i+

∫ t

0
x(τ)dτ = t .

Similarly, the Counter in Figure 3.1 can be modeled by a function of the form

Ci : (R+ → {absent, present})P → (R+ → {absent} ∪ Z),

where Z is the integers and P is the set of input ports, P = {up, down}. Recall that
the notation AB denotes the set of all functions from B to A. Hence, the input to the
function C is a function whose domain is P that for each port p ∈ P yields a function
in (R+ → {absent, present}). That latter function, in turn, for each time t ∈ R+ yields
either absent or present.
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A particular reaction will observe the values of the inputs at a particular time t and
calculate output values for that same time t. Suppose an actor has input ports P =
{p1, · · · , pN}, where pi is the name of the i-th input port. Assume further that for each
input port p ∈ P , a set Vp denotes the values that may be received on port p when the
input is present. Vp is called the type of port p. At a reaction we treat each p ∈ P as
a variable that takes on a value p ∈ Vp ∪ {absent}. A valuation of the inputs P is an
assignment of a value in Vp to each variable p ∈ P or an assertion that p is absent.

If port p receives a pure signal, then Vp = {present}, a singleton set (set with only one
element). The only possible value when the signal is not absent is present. Hence, at a
reaction, the variable p will have a value in the set {present, absent}.

Example 3.2: For the garage counter, the set of input ports is P = {up, down}.
Both receive pure signals, so the types are Vup = Vdown = {present}. If a car is
arriving at time t and none is departing, then at that reaction, up = present and
down = absent. If a car is arriving and another is departing at the same time, then
up = down = present. If neither is true, then both are absent.

Outputs are similarly designated. Consider a discrete system with output ports Q =
{q1, · · · , qM} with types Vq1 , · · · , VqM . At each reaction, the system assigns a value
q ∈ Vq ∪ {absent} to each q ∈ Q, producing a valuation of the outputs. In this chapter,
we will assume that the output is absent at times t where a reaction does not occur. Thus,
outputs of a discrete system are discrete signals. Chapter 4 describes systems whose
outputs are not constrained to be discrete (see also box on page 58).

Example 3.3: The Counter actor of Figure 3.1 has one output port named count,
so Q = {count}. Its type is Vcount = Z. At a reaction, count is assigned the count
of cars in the garage.
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3.2 The Notion of State

Intuitively, the state of a system is its condition at a particular point in time. In general,
the state affects how the system reacts to inputs. Formally, we define the state to be an
encoding of everything about the past that has an effect on the system’s reaction to current
or future inputs. The state is a summary of the past.

Consider the Integrator actor shown in Figure 3.2. This actor has state, which in this case
happens to have the same value as the output at any time t. The state of the actor at a time
t is the value of the integral of the input signal up to time t. In order to know how the
subsystem will react to inputs at and beyond time t, we have to know what this value is at
time t. We do not need to know anything more about the past inputs. Their effect on the
future is entirely captured by the current value at t. The icon in Figure 3.2 includes i, an
initial state value, which is needed to get things started at some starting time.

An Integrator operates in a time continuum. It integrates a continuous-time input signal,
generating as output at each time the cumulative area under the curve given by the input
plus the initial state. Its state at any given time is that accumulated area plus the initial
state. The Counter actor in the previous section also has state, and that state is also an
accumulation of past input values, but it operates discretely.

The state y(t) of the Integrator at time t is a real number. Hence, we say that the state
space of the Integrator is States = R. For the Counter used in Figure 3.1, the state s(t)
at time t is an integer, so States ⊂ Z. A practical parking garage has a finite and non-
negative number M of spaces, so the state space for the Counter actor used in this way
will be

States = {0, 1, 2, · · · ,M} .
(This assumes the garage does not let in more cars than there are spaces.) The state space
for the Integrator is infinite (uncountably infinite, in fact). The state space for the garage
counter is finite. Discrete models with finite state spaces are called finite-state machines
(FSMs). There are powerful analysis techniques available for such models, so we consider
them next.

3.3 Finite-State Machines

A state machine is a model of a system with discrete dynamics that at each reaction
maps valuations of the inputs to valuations of the outputs, where the map may depend on
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its current state. A finite-state machine (FSM) is a state machine where the set States of
possible states is finite.

If the number of states is reasonably small, then FSMs can be conveniently drawn using a
graphical notation like that in Figure 3.3. Here, each state is represented by a bubble, so
for this diagram, the set of states is given by

States = {State1,State2,State3}.

At the beginning of each sequence of reactions, there is an initial state, State1, indicated
in the diagram by a dangling arrow into it.

3.3.1 Transitions

Transitions between states govern the discrete dynamics of the state machine and the
mapping of input valuations to output valuations. A transition is represented as a curved
arrow, as shown in Figure 3.3, going from one state to another. A transition may also
start and end at the same state, as illustrated with State3 in the figure. In this case, the
transition is called a self transition.

In Figure 3.3, the transition from State1 to State2 is labeled with “guard / action.” The
guard determines whether the transition may be taken on a reaction. The action specifies
what outputs are produced on each reaction.

A guard is a predicate (a boolean-valued expression) that evaluates to true when the
transition should be taken, changing the state from that at the beginning of the transition
to that at the end. When a guard evaluates to true we say that the transition is enabled.
An action is an assignment of values (or absent) to the output ports. Any output port not

Figure 3.3: Visual notation for a finite state machine.
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mentioned in a transition that is taken is implicitly absent. If no action at all is given, then
all outputs are implicitly absent.

Example 3.4: Figure 3.4 shows an FSM model for the garage counter. The
inputs and outputs are shown using the notation name : type. The set of states is
States = {0, 1, 2, · · · ,M}. The transition from state 0 to 1 has a guard written
as up ∧ ¬down. This is a predicate that evaluates to true when up is present and
down is absent. If at a reaction the current state is 0 and this guard evaluates to
true, then the transition will be taken and the next state will be 1. Moreover, the
action indicates that the output should be assigned the value 1. The output port
count is not explicitly named because there is only one output port, and hence
there is no ambiguity.

If the guard expression on the transition from 0 to 1 had been simply up, then this
could evaluate to true when down is also present, which would incorrectly count
cars when a car was arriving at the same time that another was departing.

If p1 and p2 are pure inputs to a discrete system, then the following are examples of valid
guards:

Figure 3.4: FSM model for the garage counter of Figure 3.1.
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true Transition is always enabled.
p1 Transition is enabled if p1 is present.
¬p1 Transition is enabled if p1 is absent.

p1 ∧ p2 Transition is enabled if both p1 and p2 are present.
p1 ∨ p2 Transition is enabled if either p1 or p2 is present.
p1 ∧ ¬p2 Transition is enabled if p1 is present and p2 is absent.

These are standard logical operators where present is taken as a synonym for true and
absent as a synonym for false. The symbol ¬ represents logical negation. The operator
∧ is logical conjunction (logical AND), and ∨ is logical disjunction (logical OR).

Suppose that in addition the discrete system has a third input port p3 with type Vp3 = N.
Then the following are examples of valid guards:

p3 Transition is enabled if p3 is present (not absent).
p3 = 1 Transition is enabled if p3 is present and has value 1.

p3 = 1 ∧ p1 Transition is enabled if p3 has value 1 and p1 is present.
p3 > 5 Transition is enabled if p3 is present with value greater than 5.

Example 3.5: A major use of energy worldwide is in heating, ventilation, and
air conditioning (HVAC) systems. Accurate models of temperature dynamics
and temperature control systems can significantly improve energy conservation.
Such modeling begins with a modest thermostat, which regulates temperature to
maintain a setpoint, or target temperature. The word “thermostat” comes from
Greek words for “hot” and “to make stand.”

Figure 3.5: A model of a thermostat with hysteresis.
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Consider a thermostat modeled by an FSM with States = {heating, cooling} as
shown in Figure 3.5. Suppose the setpoint is 20 degrees Celsius. If the heater
is on, then the thermostat allows the temperature to rise past the setpoint to 22
degrees. If the heater is off, then it allows the temperature to drop past the setpoint
to 18 degrees. This strategy is called hysteresis (see box on page 53). It avoids
chattering, where the heater would turn on and off rapidly when the temperature
is close to the setpoint temperature.

There is a single input temperature with type R and two pure outputs heatOn and
heatOff. These outputs will be present only when a change in the status of the
heater is needed (i.e., when it is on and needs to be turned off, or when it is off
and needs to be turned on).

The FSM in Figure 3.5 could be event triggered, like the garage counter, in which case
it will react whenever a temperature input is provided. Alternatively, it could be time
triggered, meaning that it reacts at regular time intervals. The definition of the FSM does
not change in these two cases. It is up to the environment in which an FSM operates when
it should react.

On a transition, the action (which is the portion after the slash) specifies the resulting
valuation on the output ports when a transition is taken. If q1 and q2 are pure outputs and
q3 has type N, then the following are examples of valid actions:

q1 q1 is present and q2 and q3 are absent.
q1, q2 q1 and q2 are both present and q3 is absent.
q3 := 1 q1 and q2 are absent and q3 is present with value 1.

q3 := 1, q1 q1 is present, q2 is absent, and q3 is present with value 1.
(nothing) q1, q2, and q3 are all absent.

Any output port that is not mentioned in a transition that is taken is implicitly absent.
When assigning a value to an output port, we use the notation name := value to distinguish
the assignment from a predicate, which would be written name = value. As in Figure
3.4, if there is only one output, then the assignment need not mention the port name.

3.3.2 When a Reaction Occurs

Nothing in the definition of a state machine constrains when it reacts. The environment
determines when the machine reacts. Chapters 5 and 6 describe a variety of mechanisms
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and give a precise meaning to terms like event triggered and time triggered. For now,
however, we just focus on what the machine does when it reacts.

When the environment determines that a state machine should react, the inputs will have
a valuation. The state machine will assign a valuation to the output ports and (possibly)

Probing Further: Hysteresis

The thermostat in Example 3.5 exhibits a particular form of state-dependent behavior
called hysteresis. Hysteresis is used to prevent chattering. A system with hysteresis
has memory, but in addition has a useful property called time-scale invariance. In
Example 3.5, the input signal as a function of time is a signal of the form

temperature : R→ {absent} ∪ R .

Hence, temperature(t) is the temperature reading at time t, or absent if there is no
temperature reading at that time. The output as a function of time has the form

heatOn,heatOff : R→ {absent, present} .

Suppose that instead of temperature the input is given by

temperature′(t) = temperature(α · t)

for some α > 0. If α > 1, then the input varies faster in time, whereas if α < 1 then
the input varies more slowly, but in both cases, the input pattern is the same. Then for
this FSM, the outputs heatOn′ and heatOff ′ are given by

heatOn′(t) = heatOn(α · t) heatOff ′(t) = heatOff (α · t) .

Time-scale invariance means that scaling the time axis at the input results in scaling the
time axis at the output, so the absolute time scale is irrelevant.

An alternative implementation for the thermostat would use a single temperature
threshold, but instead would require that the heater remain on or off for at least a
minimum amount of time, regardless of the temperature. The consequences of this
design choice are explored in Exercise 2.
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change to a new state. If no guard on any transition out of the current state evaluates to
true, then the machine will remain in the same state.

It is possible for all inputs to be absent at a reaction. Even in this case, it may be possible
for a guard to evaluate to true, in which case a transition is taken. If the input is absent
and no guard on any transition out of the current state evaluates to true, then the machine
will stutter. A stuttering reaction is one where the inputs and outputs are all absent and
the machine does not change state. No progress is made and nothing changes.

Example 3.6: In Figure 3.4, if on any reaction both inputs are absent, then the
machine will stutter. If we are in state 0 and the input down is present, then the
guard on the only outgoing transition is false, and the machine remains in the
same state. However, we do not call this a stuttering reaction because the inputs
are not all absent.

Our informal description of the garage counter in Example 3.1 did not explicitly state
what would happen if the count was at 0 and a car departed. A major advantage of FSM
models is that they define all possible behaviors. The model in Figure 3.4 defines what
happens in this circumstance. The count remains at 0. As a consequence, FSM models
are amenable to formal checking, which determines whether the specified behaviors are
in fact desirable behaviors. The informal specification cannot be subjected to such tests,
or at least, not completely.

Figure 3.6: A default transition that need not be shown explicitly because it returns
to the same state and produces no output.
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Although it may seem that the model in Figure 3.4 does not define what happens if the
state is 0 and down is present, it does so implicitly — the state remains unchanged and
no output is generated. The reaction is not shown explicitly in the diagram. Sometimes
it is useful to emphasize such reactions, in which case they can be shown explicitly. A
convenient way to do this is using a default transition, shown in Figure 3.6. In that figure,
the default transition is denoted with dashed lines and is labeled with “true / ”. A default
transition is enabled if no non-default transition is enabled and if its guard evaluates to
true. In Figure 3.6, therefore, the default transition is enabled if up ∧ ¬down evaluates to
false, and when the default transition is taken the output is absent.

Default transitions provide a convenient notation, but they are not really necessary. Any
default transition can be replaced by an ordinary transition with an appropriately chosen
guard. For example, in Figure 3.6 we could use an ordinary transition with guard ¬(up ∧
¬down).

The use of both ordinary transitions and default transitions in a diagram can be thought
of as a way of assigning priority to transitions. An ordinary transition has priority over
a default transition. When both have guards that evaluate to true, the ordinary transition
prevails. Some formalisms for state machines support more than two levels of priority.
For example SyncCharts (André, 1996) associates with each transition an integer priority.
This can make guard expressions simpler, at the expense of having to indicate priorities
in the diagrams.

3.3.3 Update Functions

The graphical notation for FSMs defines a specific mathematical model of the dynamics
of a state machine. A mathematical notation with the same meaning as the graphical
notation sometimes proves convenient, particularly for large state machines where the
graphical notation becomes cumbersome. In such a mathematical notation, a finite-state
machine is a five-tuple

(States, Inputs,Outputs, update, initialState)

where

• States is a finite set of states;
• Inputs is a set of input valuations;
• Outputs is a set of output valuations;
• update : States × Inputs → States × Outputs is an update function, mapping a state

and an input valuation to a next state and an output valuation;
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• initialState is the initial state.

The FSM reacts in a sequence of reactions. At each reaction, the FSM has a current state,
and the reaction may transition to a next state, which will be the current state of the next
reaction. We can number these states starting with 0 for the initial state. Specifically, let
s : N → States be a function that gives the state of an FSM at reaction n ∈ N. Initially,
s(0) = initialState.

Let x : N → Inputs and y : N → Outputs denote that input and output valuations at each
reaction. Hence, x(0) ∈ Inputs is the first input valuation and y(0) ∈ Outputs is the first
output valuation. The dynamics of the state machine are given by the following equation:

(s(n+ 1), y(n)) = update(s(n), x(n)) (3.1)

This gives the next state and output in terms of the current state and input. The update
function encodes all the transitions, guards, and output specifications in an FSM. The term
transition function is often used in place of update function.

The input and output valuations also have a natural mathematical form. Suppose an FSM
has input ports P = {p1, · · · , pN}, where each p ∈ P has a corresponding type Vp. Then

Software Tools Supporting FSMs

FSMs have been used in theoretical computer science and software engineering for
quite some time (Hopcroft and Ullman, 1979). A number of software tools support
design and analysis of FSMs. Statecharts (Harel, 1987), a notation for concurrent com-
position of hierarchical FSMs, has influenced many of these tools. One of the first tools
supporting the Statecharts notation is STATEMATE (Harel et al., 1990), which subse-
quently evolved into Rational Rhapsody, sold by IBM. Many variants of Statecharts
have arisen (von der Beeck, 1994), and some variant is now supported by nearly every
software engineering tool that provides UML (unified modeling language) capabili-
ties (Booch et al., 1998). SyncCharts (André, 1996) is a particularly nice variant in that
it borrows the rigorous semantics of Esterel (Berry and Gonthier, 1992) for composi-
tion of concurrent FSMs. LabVIEW supports a variant of Statecharts that can operate
within dataflow diagrams, and Simulink with its Stateflow extension supports a variant
that can operate within continuous-time models.
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Inputs is a set of functions of the form

i : P → Vp1 ∪ · · · ∪ VpN ∪ {absent} ,

where for each p ∈ P , i(p) ∈ Vp ∪ {absent} gives the value of port p. Thus, a function
i ∈ Inputs is a valuation of the input ports.

Example 3.7: The FSM in Figure 3.4 can be mathematically represented as
follows:

States = {0, 1, · · · ,M}
Inputs = ({up, down} → {present, absent})

Outputs = ({count} → {0, 1, · · · ,M, absent})
initialState = 0

The update function is given by

update(s, i) =



(s+ 1, s+ 1) if s < M
∧ i(up) = present
∧ i(down) = absent

(s− 1, s− 1) if s > 0
∧ i(up) = absent
∧ i(down) = present

(s, absent) otherwise

(3.2)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs is
a function of the form o : {count} → {0, 1, · · · ,M, absent}. In (3.2), the first
alternative gives the output valuation as o = s + 1, which we take to mean the
constant function that for all q ∈ Q = {count} yields o(q) = s + 1. When
there is more than one output port we will need to be more explicit about which
output value is assigned to which output port. In such cases, we can use the same
notation that we use for actions in the diagrams.
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Moore Machines and Mealy Machines

The state machines we describe in this chapter are known as Mealy machines, named
after George H. Mealy, a Bell Labs engineer who published a description of these ma-
chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing outputs
when a transition is taken. An alternative, known as a Moore machine, produces out-
puts when the machine is in a state, rather than when a transition is taken. That is,
the output is defined by the current state rather than by the current transition. Moore
machines are named after Edward F. Moore, another Bell Labs engineer who described
them in a 1956 paper (Moore, 1956).

The distinction between these machines is subtle but important. Both are discrete
systems, and hence their operation consists of a sequence of discrete reactions. For a
Moore machine, at each reaction, the output produced is defined by the current state
(at the start of the reaction, not at the end). Thus, the output at the time of a reaction
does not depend on the input at that same time. The input determines which transition
is taken, but not what output is produced by the reaction. Hence, a Moore machine is
strictly causal.

A Moore machine version of the garage counter is shown in Figure 3.7. The outputs
are shown in the state rather than on the transitions using a similar notation with a slash.
Note, however, that this machine is not equivalent to the machine in Figure 3.4. To see
that, suppose that on the first reaction, up = present and down = absent. The output at
that time will be 0 in Figure 3.7 and 1 in Figure 3.4. The output of the Moore machine
represents the number of cars in the garage at the time of the arrival of a new car, not the
number of cars after the arrival of the new car. Suppose instead that at the first reaction,
up = down = absent. Then the output at that time is 0 in Figure 3.7 and absent in
Figure 3.4. The Moore machine, when it reacts, always reports the output associated
with the current state. The Mealy machine does not produce any output unless there is
a transition explicitly denoting that output.

Any Moore machine may be converted to an equivalent Mealy machine. A Mealy
machine may be converted to an almost equivalent Moore machine that differs only
in that the output is produced on the next reaction rather than on the current one. We
use Mealy machines because they tend to be more compact (requiring fewer states to
represent the same functionality), and because it is convenient to be able to produce an
output that instantaneously responds to the input.
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Figure 3.7: Moore machine for a system that keeps track of the number of cars in
a parking garage. Note this machine is not equivalent to that in Figure 3.4.

3.3.4 Determinacy and Receptiveness

The state machines presented in this section have two important properties:

Determinacy: A state machine is said to be deterministic if, for each state, there is at
most one transition enabled by each input value. The formal definition of an FSM
given above ensures that it is deterministic, since update is a function, not a one-to-
many mapping. The graphical notation with guards on the transitions, however, has
no such constraint. Such a state machine will be deterministic only if the guards
leaving each state are non-overlapping. Note that a deterministic state machine is
determinate, meaning that given the same inputs it will always produce the same
outputs. However, not every determinate state machine is deterministic.

Receptiveness: A state machine is said to be receptive if, for each state, there is at least
one transition possible on each input symbol. In other words, receptiveness en-
sures that a state machine is always ready to react to any input, and does not “get
stuck” in any state. The formal definition of an FSM given above ensures that it is
receptive, since update is a function, not a partial function. It is defined for every
possible state and input value. Moreover, in our graphical notation, since we have
implicit default transitions, we have ensured that all state machines specified in our
graphical notation are also receptive.

It follows that if a state machine is both deterministic and receptive, for every state, there
is exactly one transition possible on each input value.
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3.4 Extended State Machines

The notation for FSMs becomes awkward when the number of states gets large. The
garage counter of Figure 3.4 illustrates this point clearly. If M is large, the bubble-and-
arc notation becomes unwieldy, which is why we resort to a less formal use of “...” in the
figure.

An extended state machine solves this problem by augmenting the FSM model with
variables that may be read and written as part of taking a transition between states.

Example 3.8: The garage counter of Figure 3.4 can be represented more com-
pactly by the extended state machine in Figure 3.8.

That figure shows a variable c, declared explicitly at the upper left to make it
clear that c is a variable and not an input or an output. The transition indicating
the initial state initializes the value of this variable to zero.

The upper self-loop transition is then taken when the input up is present, the input
down is absent, and the variable c is less than M . When this transition is taken,
the state machine produces an output count with value c + 1, and then the value
of c is incremented by one.

The lower self-loop transition is taken when the input down is present, the input
up is absent, and the variable c is greater than zero. Upon taking the transition,

Figure 3.8: Extended state machine for the garage counter of Figure 3.4.
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the state machine produces an output with value c − 1, and then decrements the
value of c.

Note that M is a parameter, not a variable. Specifically, it is assumed to be
constant throughout execution.

The general notation for extended state machines is shown in Figure 3.9. This differs
from the basic FSM notation of Figure 3.3 in three ways. First, variable declarations are
shown explicitly to make it easy to determine whether an identifier in a guard or action
refers to a variable or to an input or an output. Second, upon initialization, variables that
have been declared may be initialized. The initial value will be shown on the transition
that indicates the initial state. Third, transition annotations now have the form

guard / output action
set action(s)

The guard and output action are the same as for standard FSMs, except they may now
refer to variables. The set actions are new. They specify assignments to variables that
are made when the transition is taken. These assignments are made after the guard has
been evaluated and the outputs have been produced. Thus, if the guard or output actions
reference a variable, the value of the variable is that before the assignment in the set action.
If there is more than one set action, then the assignments are made in sequence.

Figure 3.9: Notation for extended state machines.
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Extended state machines can provide a convenient way to keep track of the passage of
time.

Example 3.9: An extended state machine describing a traffic light at a pedestrian
crosswalk is shown in Figure 3.10. This is a time triggered machine that assumes
it will react once per second. It starts in the red state and counts 60 seconds
with the help of the variable count. It then transitions to green, where it will
remain until the pure input pedestrian is present. That input could be generated,
for example, by a pedestrian pushing a button to request a walk light. When
pedestrian is present, the machine transitions to yellow if it has been in state green
for at least 60 seconds. Otherwise, it transitions to pending, where it stays for the
remainder of the 60 second interval. This ensures that once the light goes green,
it stays green for at least 60 seconds. At the end of 60 seconds, it will transition
to yellow, where it will remain for 5 seconds before transitioning back to red.

The outputs produced by this machine are sigG to turn on the green light, sigY to
change the light to yellow, and sigR to change the light to red.

Figure 3.10: Extended state machine model of a traffic light controller that keeps
track of the passage of time, assuming it reacts at regular intervals.
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The state of an extended state machine includes not only the information about which
discrete state (indicated by a bubble) the machine is in, but also what values any variables
have. The number of possible states can therefore be quite large, or even infinite. If there
are n discrete states (bubbles) and m variables each of which can have one of p possible
values, then the size of the state space of the state machine is

|States| = npm .

Example 3.10: The garage counter of Figure 3.8 has n = 1, m = 1, and
p = M + 1, so the total number of states is M + 1.

Extended state machines may or may not be FSMs. In particular, it is not uncommon for
p to be infinite. For example, a variable may have values in N, the natural numbers, in
which case, the number of states is infinite.

Example 3.11: If we modify the state machine of Figure 3.8 so that the guard
on the upper transition is

up ∧ ¬down

instead of
up ∧ ¬down ∧ c < M

then the state machine is no longer an FSM.

Some state machines will have states that can never be reached, so the set of reachable
states — comprising all states that can be reached from the initial state on some input
sequence — may be smaller than the set of states.
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Example 3.12: Although there are only four bubbles in Figure 3.10, the number
of states is actually much larger. The count variable has 61 possible values and
there are 4 bubbles, so the total number of combinations is 61×4 = 244. The size
of the state space is therefore 244. However, not all of these states are reachable.
In particular, while in the yellow state, the count variable will have only one of 6
values in {0, · · · , 5}. The number of reachable states, therefore, is 61× 3 + 6 =
189.

3.5 Nondeterminism

Most interesting state machines react to inputs and produce outputs. These inputs must
come from somewhere, and the outputs must go somewhere. We refer to this “some-
where” as the environment of the state machine.

Example 3.13: The traffic light controller of Figure 3.10 has one pure input sig-
nal, pedestrian. This input is present when a pedestrian arrives at the crosswalk.
The traffic light will remain green unless a pedestrian arrives. Some other sub-
system is responsible for generating the pedestrian event, presumably in response
to a pedestrian pushing a button to request a cross light. That other subsystem is
part of the environment of the FSM in Figure 3.10.

A question becomes how to model the environment. In the traffic light example, we could
construct a model of pedestrian flow in a city to serve this purpose, but this would likely
be a very complicated model, and it is likely much more detailed than necessary. We want
to ignore inessential details, and focus on the design of the traffic light. We can do this
using a nondeterministic state machine.
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Figure 3.11: Nondeterministic model of pedestrians that arrive at a crosswalk.

Example 3.14: The FSM in Figure 3.11 models arrivals of pedestrians at a
crosswalk with a traffic light controller like that in Figure 3.10. This FSM has
three inputs, which are presumed to come from the outputs of Figure 3.10. Its
single output, pedestrian, will provide the input for Figure 3.10.

The initial state is crossing. (Why? See Exercise 6.) When sigG is received,
the FSM transitions to none. Both transitions from this state have guard true,
indicating that they are always enabled. Since both are enabled, this machine is
nondeterministic. The FSM may stay in the same state and produce no output, or
it may transition to waiting and produce pure output pedestrian.

The interaction between this machine and that of Figure 3.10 is surprisingly sub-
tle. Variations on the design are considered in Exercise 6, and the composition of
the two machines is studied in detail in Chapter 5.

If for any state of a state machine, there are two distinct transitions with guards that can
evaluate to true in the same reaction, then the state machine is nondeterministic. In a
diagram for such a state machine, the transitions that make the state machine nondeter-
ministic may be colored red. In the example of Figure 3.11, the transitions exiting state
none are the ones that make the state machine nondeterministic.
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It is also possible to define state machines where there is more than one initial state. Such
a state machine is also nondeterministic. An example is considered in Exercise 6.

In both cases, a nondeterministic FSM specifies a family of possible reactions rather than
a single reaction. Operationally, all reactions in the family are possible. The nondeter-
ministic FSM makes no statement at all about how likely the various reactions are. It is
perfectly correct, for example, to always take the self loop in state none in Figure 3.11. A
model that specifies likelihoods (in the form of probabilities) is a stochastic model, quite
distinct from a nondeterministic model.

3.5.1 Formal Model

Formally, a nondeterministic FSM is represented as a five-tuple, similar to a determinis-
tic FSM,

(States, Inputs,Outputs, possibleUpdates, initialStates)

The first three elements are the same as for a deterministic FSM, but the last two are not
the same:

• States is a finite set of states;

• Inputs is a set of input valuations;

• Outputs is a set of output valuations;

• possibleUpdates : States× Inputs→ 2States×Outputs is an update relation, map-
ping a state and an input valuation to a set of possible (next state, output valuation)
pairs;

• initialStates is a set of initial states.

The form of the function possibleUpdates indicates there can be more than one next state
and/or output valuation given a current state and input valuation. The codomain is the
powerset of States × Outputs. We refer to the possibleUpdates function as an update
relation, to emphasize this difference. The term transition relation is also often used in
place of update relation.

To support the fact that there can be more than one initial state for a nondeterministic
FSM, initialStates is a set rather than a single element of States.
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Example 3.15: The FSM in Figure 3.11 can be formally represented as follows:

States = {none,waiting, crossing}
Inputs = ({sigG, sigY, sigR} → {present, absent})

Outputs = ({pedestrian} → {present, absent})
initialStates = {crossing}

The update relation is given below:

possibleUpdates(s, i) =



{(none, absent)}
if s = crossing
∧ i(sigG) = present

{(none, absent), (waiting, present)}
if s = none

{(crossing, absent)}
if s = waiting
∧ i(sigR) = present

{(s, absent)} otherwise

(3.3)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs
is a function of the form o : {pedestrian} → {present, absent}. In (3.3), the
second alternative gives two possible outcomes, reflecting the nondeterminism of
the machine.

3.5.2 Uses of Nondeterminism

While nondeterminism is an interesting mathematical concept in itself, it has two major
uses in modeling embedded systems:

Environment Modeling: It is often useful to hide irrelevant details about how an envi-
ronment operates, resulting in a nondeterministic FSM model. We have already
seen one example of such environment modeling in Figure 3.11.
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Figure 3.12: Nondeterministic FSM specifying order of signal lights, but not their
timing. Notice that it ignores the pedestrian input.

Specifications: System specifications impose requirements on some system features,
while leaving other features unconstrained. Nondeterminism is a useful model-
ing technique in such settings as well. For example, consider a specification that
the traffic light cycles through red, green, yellow, in that order, without regard for
the timing between the outputs. The nondeterministic FSM in Figure 3.12 models
this specification. The guard true on each transition indicates that the transition can
be taken at any step. Technically, it means that each transition is enabled for any
input valuation in Inputs.

3.6 Behaviors and Traces

An FSM has discrete dynamics. As we did in Section 3.3.3, we can abstract away the
passage of time and consider only the sequence of reactions, without concern for when in
time each reaction occurs. We do not need to talk explicitly about the amount of time that
passes between reactions, since this is actually irrelevant to the behavior of an FSM.

Consider a port p of a state machine with type Vp. This port will have a sequence of values
from the set Vp ∪ {absent}, one value at each reaction. We can represent this sequence as
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a function of the form
sp : N→ Vp ∪ {absent} .

This is the signal received on that port (if it is an input) or produced on that port (if it is
an output).

A behavior of a state machine is an assignment of such a signal to each port such that the
signal on any output port is the output sequence produced for the given input signals.

Example 3.16: The garage counter of Figure 3.4 has input port set P =
{up, down}, with types Vup = Vdown = {present}, and output port set Q =
{count} with type Vcount = {0, · · · ,M}. An example of input sequences is

sup = (present, absent, present, absent, present, · · · )
sdown = (present, absent, absent, present, absent, · · · )

The corresponding output sequence is

scount = (absent, absent, 1, 0, 1, · · · ) .

These three signals sup, sdown, and scount together are a behavior of the state ma-
chine. If we let

s′count = (1, 2, 3, 4, 5, · · · ) ,

then sup, sdown, and s′count together are not a behavior of the state machine. The
signal s′count is not produced by reactions to those inputs.

Deterministic state machines have the property that there is exactly one behavior for each
set of input sequences. That is, if you know the input sequences, then the output sequence
is fully determined. That is, the machine is determinate. Such a machine can be viewed
as a function that maps input sequences to output sequences. Nondeterministic state ma-
chines can have more than one behavior sharing the same input sequences, and hence
cannot be viewed as a function mapping input sequences to output sequences.

Lee & Seshia, Introduction to Embedded Systems 69

http://LeeSeshia.org


3.6. BEHAVIORS AND TRACES

The set of all behaviors of a state machine M is called its language, written L(M).
Since our state machines are receptive, their languages always include all possible input
sequences.

A behavior may be more conveniently represented as a sequence of valuations called an
observable trace. Let xi represent the valuation of the input ports and yi the valuation of
the output ports at reaction i. Then an observable trace is a sequence

((x0, y0), (x1, y1), (x2, y2), · · · ) .

An observable trace is really just another representation of a behavior.

It is often useful to be able to reason about the states that are traversed in a behavior. An
execution trace includes the state trajectory, and may be written as a sequence

((x0, s0, y0), (x1, s1, y1), (x2, s2, y2), · · · ) ,

where s0 = initialState. This can be represented a bit more graphically as follows,

s0
x0/y0−−−→ s1

x1/y1−−−→ s2
x2/y2−−−→ · · ·

This is an execution trace if for all i ∈ N, (si+1, yi) = update(si, xi) (for a deterministic
machine), or (si+1, yi) ∈ possibleUpdates(si, xi) (for a nondeterministic machine).

Example 3.17: Consider again the garage counter of Figure 3.4 with the same
input sequences sup and sdown from Example 3.16. The corresponding execution
trace may be written

0
up∧down /−−−−−−→ 0

/−−−−→ 0
up / 1−−−→ 1

down / 0−−−−−→ 0
up / 1−−−→ · · ·

Here, we have used the same shorthand for valuations that is used on transitions
in Section 3.3.1. For example, the label “up / 1” means that up is present, down
is absent, and count has value 1. Any notation that clearly and unambiguously
represents the input and output valuations is acceptable.

For a nondeterministic machine, it may be useful to represent all the possible traces that
correspond to a particular input sequence, or even all the possible traces that result from
all possible input sequences. This may be done using a computation tree.

70 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


3. DISCRETE DYNAMICS

Figure 3.13: A computation tree for the FSM in Figure 3.12.

Example 3.18: Consider the nondeterministic FSM in Figure 3.12. Figure 3.13
shows the computation tree for the first three reactions with any input sequence.
Nodes in the tree are states and edges are labeled by the input and output valua-
tions, where the notation true means any input valuation.

Traces and computation trees can be valuable for developing insight into the behaviors of
a state machine and for verifying that undesirable behaviors are avoided.

3.7 Summary

This chapter has given an introduction to the use of state machines to model systems with
discrete dynamics. It gives a graphical notation that is suitable for finite state machines,
and an extended state machine notation that can compactly represent large numbers of
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states. It also gives a mathematical model that uses sets and functions rather than visual
notations. The mathematical notation can be useful to ensure precise interpretations of
a model and to prove properties of a model. This chapter has also discussed nondeter-
minism, which can provide convenient abstractions that compactly represent families of
behaviors.

72 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


3. DISCRETE DYNAMICS

Exercises

1. Consider an event counter that is a simplified version of the counter in Section 3.1.
It has an icon like this:

This actor starts with state i and upon arrival of an event at the input, increments the
state and sends the new value to the output. Thus, e is a pure signal, and c has the
form c : R→ {absent}∪N, assuming i ∈ N. Suppose you are to use such an event
counter in a weather station to count the number of times that a temperature rises
above some threshold. Your task in this exercise is to generate a reasonable input
signal e for the event counter. You will create several versions. For all versions,
you will design a state machine whose input is a signal τ : R→ {absent} ∪ Z that
gives the current temperature (in degrees centigrade) once per hour. The output
e : R→ {absent, present} will be a pure signal that goes to an event counter.

(a) For the first version, your state machine should simply produce a present out-
put whenever the input is present and greater than 38 degrees. Otherwise, the
output should be absent.

(b) For the second version, your state machine should have hysteresis. Specifi-
cally, it should produce a present output the first time the input is greater than
38 degrees, and subsequently, it should produce a present output anytime the
input is greater than 38 degrees but has dropped below 36 degrees since the
last time a present output was produced.

(c) For the third version, your state machine should implement the same hystere-
sis as in part (b), but also produce a present output at most once per day.

2. Consider a variant of the thermostat of example 3.5. In this variant, there is only one
temperature threshold, and to avoid chattering the thermostat simply leaves the heat
on or off for at least a fixed amount of time. In the initial state, if the temperature is
less than or equal to 20 degrees Celsius, it turns the heater on, and leaves it on for
at least 30 seconds. After that, if the temperature is greater than 20 degrees, it turns
the heater off and leaves it off for at least 2 minutes. It turns it on again only if the
temperature is less than or equal to 20 degrees.
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(a) Design an FSM that behaves as described, assuming it reacts exactly once
every 30 seconds.

(b) How many possible states does your thermostat have? Is this the smallest
number of states possible?

(c) Does this model thermostat have the time-scale invariance property?

3. Consider the following state machine:

Determine whether the following statement is true or false, and give a supporting
argument:

The output will eventually be a constant 0, or it will eventually be a
constant 1. That is, for some n ∈ N, after the n-th reaction, either the
output will be 0 in every subsequent reaction, or it will be 1 in every
subsequent reaction.

Note that Chapter 13 gives mechanisms for making such statements precise and for
reasoning about them.

4. How many reachable states does the following state machine have?

5. Consider the deterministic finite-state machine in Figure 3.14 that models a simple
traffic light.
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Figure 3.14: Deterministic finite-state machine for Exercise 5

(a) Formally write down the description of this FSM as a 5-tuple:

(States, Inputs,Outputs, update, initialState).

(b) Give an execution trace of this FSM of length 4 assuming the input tick is
present on each reaction.

(c) Now consider merging the red and yellow states into a single stop state. Tran-
sitions that pointed into or out of those states are now directed into or out of
the new stop state. Other transitions and the inputs and outputs stay the same.
The new stop state is the new initial state. Is the resulting state machine de-
terministic? Why or why not? If it is deterministic, give a prefix of the trace
of length 4. If it is nondeterministic, draw the computation tree up to depth 4.

6. This problem considers variants of the FSM in Figure 3.11, which models arrivals
of pedestrians at a crosswalk. We assume that the traffic light at the crosswalk is
controlled by the FSM in Figure 3.10. In all cases, assume a time triggered model,
where both the pedestrian model and the traffic light model react once per second.
Assume further that in each reaction, each machine sees as inputs the output pro-
duced by the other machine in the same reaction (this form of composition, which
is called synchronous composition, is studied further in Chapter 6).

(a) Suppose that instead of Figure 3.11, we use the following FSM to model the
arrival of pedestrians:
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Find a trace whereby a pedestrian arrives (the above machine transitions to
waiting) but the pedestrian is never allowed to cross. That is, at no time after
the pedestrian arrives is the traffic light in state red.

(b) Suppose that instead of Figure 3.11, we use the following FSM to model the
arrival of pedestrians:

Here, the initial state is nondeterministically chosen to be one of none or
crossing. Find a trace whereby a pedestrian arrives (the above machine tran-
sitions from none to waiting) but the pedestrian is never allowed to cross. That
is, at no time after the pedestrian arrives is the traffic light in state red.

7. Consider the state machine in Figure 3.15. State whether each of the following is
a behavior for this machine. In each of the following, the ellipsis “· · · ” means that
the last symbol is repeated forever. Also, for readability, absent is denoted by the
shorthand a and present by the shorthand p.

(a) x = (p, p, p, p, p, · · · ), y = (0, 1, 1, 0, 0, · · · )
(b) x = (p, p, p, p, p, · · · ), y = (0, 1, 1, 0, a, · · · )
(c) x = (a, p, a, p, a, · · · ), y = (a, 1, a, 0, a, · · · )
(d) x = (p, p, p, p, p, · · · ), y = (0, 0, a, a, a, · · · )
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(e) x = (p, p, p, p, p, · · · ), y = (0, a, 0, a, a, · · · )

8. (NOTE: This exercise is rather advanced.) This exercise studies properties of dis-
crete signals as formally defined in the sidebar on page 45. Specifically, we will
show that discreteness is not a compositional property. That is, when combining
two discrete behaviors in a single system, the resulting combination is not neces-
sarily discrete.

(a) Consider a pure signal x : R→ {present, absent} given by

x(t) =

{
present if t is a non-negative integer
absent otherwise

for all t ∈ R. Show that this signal is discrete.

(b) Consider a pure signal y : R→ {present, absent} given by

y(t) =

{
present if t = 1− 1/n for any positive integer n
absent otherwise

for all t ∈ R. Show that this signal is discrete.

(c) Consider a signal w that is the merge of x and y in the previous two parts.
That is, w(t) = present if either x(t) = present or y(t) = present, and is
absent otherwise. Show that w is not discrete.

(d) Consider the example shown in Figure 3.1. Assume that each of the two
signals arrival and departure is discrete. Show that this does not imply that
the output count is a discrete signal.

Figure 3.15: State machine for Exercise 7.
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Chapters 2 and 3 describe two very different modeling strategies, one focused on continu-
ous dynamics and one on discrete dynamics. For continuous dynamics, we use differential
equations and their corresponding actor models. For discrete dynamics, we use state ma-
chines.

Cyber-physical systems integrate physical dynamics and computational systems, so they
commonly combine both discrete and continuous dynamics. In this chapter, we show that
the modeling techniques of Chapters 2 and 3 can be combined, yielding what are known as
hybrid systems. Hybrid system models are often much simpler and more understandable
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than brute-force models that constrain themselves to only one of the two styles in Chapters
2 and 3. They are a powerful tool for understanding real-world systems.

4.1 Modal Models

In this section, we show that state machines can be generalized to admit continuous inputs
and outputs and to combine discrete and continuous dynamics.

4.1.1 Actor Model for State Machines

In Section 3.3.1 we explain that state machines have inputs defined by the set Inputs that
may be pure signals or may carry a value. In either case, the state machine has a number
of input ports, which in the case of pure signals are either present or absent, and in the
case of valued signals have a value at each reaction of the state machine.

We also explain in Section 3.3.1 that actions on transitions set the values of outputs. The
outputs can also be represented by ports, and again the ports can carry pure signals or
valued signals. In the case of pure signals, a transition that is taken specifies whether the
output is present or absent, and in the case of valued signals, it assigns a value or asserts
that the signal is absent. Outputs are presumed to be absent between transitions.

Given this input/output view of state machines, it is natural to think of a state machine as
an actor, as illustrated in Figure 4.1. In that figure, we assume some number n of input
ports named i1 · · · in. At each reaction, these ports have a value that is either present or
absent (if the port carries a pure signal) or a member of some set of values (if the port
carries a valued signal). The outputs are similar. The guards on the transitions define
subsets of possible values on input ports, and the actions assign values to output ports.
Given such an actor model, it is straightforward to generalize FSMs to admit continuous-
time signals as inputs.

4.1.2 Continuous Inputs

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions. We will now
generalize this to allow inputs and outputs to be continuous-time signals.
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i1

in om

o1
... ...

Figure 4.1: An FSM represented as an actor.

In order to get state machine models to coexist with time-based models, we need to inter-
pret state transitions to occur on the same timeline used for the time-based portion of the
system. The notion of discrete reactions described in Section 3.1 suffices for this purpose,
but we will no longer require inputs and outputs to be absent between reactions. Instead,
we will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled. As before, during the time between reactions, a state machine
is understood to not transition between modes. But the inputs and outputs are no longer
required to be absent during that time.

Example 4.1: Consider a thermostat modeled as a state machine with states
Σ = {heating, cooling}, shown in Figure 4.2. This is a variant of the model of
Example 3.5 where instead of a discrete input that provides a temperature at each
reaction, the input is a continuous-time signal τ : R → R where τ(t) represents
the temperature at time t. The initial state is cooling, and the transition out of this
state is enabled at the earliest time t after the start time when τ(t) ≤ 18. In this
example, we assume the outputs are pure signals heatOn and heatOff.
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In the above example, the outputs are present only at the times the transitions are taken.
We can also generalize FSMs to support continuous-time outputs, but to do this, we need
the notion of state refinements.

4.1.3 State Refinements

A hybrid system associates with each state of an FSM a dynamic behavior. Our first (very
simple) example uses this capability merely to produce continuous-time outputs.

Example 4.2: Suppose that instead of discrete outputs as in Example 4.1 we
wish to produce a control signal whose value is 1 when the heat is on and 0 when
the heat is off. Such a control signal could directly drive a heater. The thermostat
in Figure 4.3 does this. In that figure, each state has a refinement that gives the
value of the output h while the state machine is in that state.

In a hybrid system, the current state of the state machine has a state refinement that
gives the dynamic behavior of the output as a function of the input. In the above simple
example, the output is constant in each state, which is rather trivial dynamics. Hybrid
systems can get much more elaborate.

The general structure of a hybrid system model is shown in Figure 4.4. In that figure,
there is a two-state finite-state machine. Each state is associated with a state refinement

Figure 4.2: A thermostat modeled as an FSM with a continuous-time input signal.
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labeled in the figure as a “time-based system.” The state refinement defines dynamic
behavior of the outputs and (possibly) additional continuous state variables. In addition,
each transition can optionally specify set actions, which set the values of such additional
state variables when a transition is taken. The example of Figure 4.3 is rather trivial, in
that it has no continuous state variables, no output actions, and no set actions.

A hybrid system is sometimes called a modal model because it has a finite number of
modes, one for each state of the FSM, and when it is in a mode, it has dynamics specified
by the state refinement. The states of the FSM may be referred to as modes rather than
states, which as we will see, helps prevent confusion with states of the refinements.

The next simplest such dynamics, besides the rather trivial constant outputs of Example
4.2 is found in timed automata, which we discuss next.

4.2 Classes of Hybrid Systems

Hybrid systems can be quite elaborate. In this section, we first describe a relatively sim-
ple form known as timed automata. We then illustrate more elaborate forms that model
nontrivial physical dynamics and nontrivial control systems.

h

Figure 4.3: A thermostat with continuous-time output.
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i1

in om

o1
... ...

time-based system time-based system

Figure 4.4: Notation for hybrid systems.

4.2.1 Timed Automata

Most cyber-physical systems require measuring the passage of time and performing ac-
tions at specific times. A device that measures the passage of time, a clock, has a partic-
ularly simple dynamics: its state progresses linearly in time. In this section, we describe
timed automata, a formalism introduced by Alur and Dill (1994), which enable the con-
struction of more complicated systems from such simple clocks.

Timed automata are the simplest non-trivial hybrid systems. They are modal models
where the time-based refinements have very simple dynamics; all they do is measure the
passage of time. A clock is modeled by a first-order differential equation,

∀ t ∈ Tm, ṡ(t) = a,

where s : R → R is a continuous-time signal, s(t) is the value of the clock at time t, and
Tm ⊂ R is the subset of time during which the hybrid system is in mode m. The rate of
the clock, a, is a constant while the system is in this mode.1

1The variant of timed automata we describe in this chapter differs from the original model of Alur and
Dill (1994) in that the rates of clocks in different modes can be different. This variant is sometimes described
in the literature as multi-rate timed automata.
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Example 4.3: Recall the thermostat of Example 4.1, which uses hysteresis to
prevent chattering. An alternative implementation that would also prevent chat-
tering would use a single temperature threshold, but instead would require that
the heater remain on or off for at least a minimum amount of time, regardless of
the temperature. This design would not have the hysteresis property, but may be
useful nonetheless. This can be modeled as a timed automaton as shown in Figure
4.5. In that figure, each state refinement has a clock, which is a continuous-time
signal s with dynamics given by

ṡ(t) = 1 .

The value s(t) increases linearly with t. Note that in that figure, the state re-
finement is shown directly with the name of the state in the state bubble. This
shorthand is convenient when the refinement is relatively simple.

Notice that the initial state cooling has a set action on the dangling transition
indicating the initial state, written as

s(t) := Tc .

As we did with extended state machines, we use the notation “:=” to emphasize
that this is an assignment, not a predicate. This action ensures that when the
thermostat starts, it can immediately transition to the heating mode if the temper-
ature τ(t) is less than or equal to 20 degrees. The other two transitions each have
set actions that reset the clock s to zero. The portion of the guard that specifies
s(t) ≥ Th ensures that the heater will always be on for at least time Th. The
portion of the guard that specifies s(t) ≥ Tc specifies that once the heater goes
off, it will remain off for at least time Tc.

A possible execution of this timed automaton is shown in Figure 4.6. In that fig-
ure, we assume that the temperature is initially above the setpoint of 20 degrees,
so the FSM remains in the cooling state until the temperature drops to 20 degrees.
At that time t1, it can take the transition immediately because s(t1) > Tc. The
transition resets s to zero and turns on the heater. The heater will remain on until
time t1 + Th, assuming that the temperature only rises when the heater is on. At
time t1 + Th, it will transition back to the cooling state and turn the heater off.
(We assume here that a transition is taken as soon as it is enabled. Other transi-
tion semantics are possible.) It will cool until at least time Tc elapses and until
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h

Figure 4.5: A timed automaton modeling a thermostat with a single temperature
threshold, 20, and minimum times Tc and Th in each mode.

the temperature drops again to 20 degrees, at which point it will turn the heater
back on.

In the previous example the state of the system at any time t is not only the mode, heat-
ing or cooling, but also the current value s(t) of the clock. We call s a continuous state
variable, whereas heating and cooling are discrete states. Thus, note that the term “state”
for such a hybrid system can become confusing. The FSM has states, but so do the refine-
ment systems (unless they are memoryless). When there is any possibility of confusion
we explicitly refer to the states of the machine as modes.

Transitions between modes have actions associated with them. Sometimes, it is useful to
have transitions from one mode back to itself, just so that the action can be realized. This
is illustrated in the next example, which also shows a timed automaton that produces a
pure output.

Example 4.4: The timed automaton in Figure 4.7 produces a pure output that
will be present every T time units, starting at the time when the system begins
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h(t)

t...

(a)

(b)

(c)

s(t)

t...

τ(t)

t...
20 t1 t1 + Th

0

Tc

0
1

Figure 4.6: (a) A temperature input to the hybrid system of Figure 4.5, (b) the
output h, and (c) the refinement state s.

executing. Notice that the guard on the transition, s(t) ≥ T , is followed by an
output action, tick, and a set action, s(t) := 0.

Figure 4.7 shows another notational shorthand that works well for simple diagrams. The
automaton is shown directly inside the icon for its actor model.

Example 4.5: The traffic light controller of Figure 3.10 is a time triggered
machine that assumes it reacts once each second. Figure 4.8 shows a timed
automaton with the same behavior. It is more explicit about the passage of time
in that its temporal dynamics do not depend on unstated assumptions about when
the machine will react.
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Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.
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Figure 4.9: Sticky masses system considered in Example 4.6.

4.2.2 Higher-Order Dynamics

In timed automata, all that happens in the time-based refinement systems is that time
passes. Hybrid systems, however, are much more interesting when the behavior of the
refinements is more complex. Specifically,

Example 4.6: Consider the physical system depicted in Figure 4.9. Two sticky
round masses are attached to springs. The springs are compressed or extended

88 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


4. HYBRID SYSTEMS

Figure 4.10: Hybrid system model for the sticky masses system considered in
Example 4.6.

and then released. The masses oscillate on a frictionless table. If they collide,
they stick together and oscillate together. After some time, the stickiness decays,
and masses pull apart again.

A plot of the displacement of the two masses as a function of time is shown in
Figure 4.9. Both springs begin compressed, so the masses begin moving towards
one another. They almost immediately collide, and then oscillate together for a
brief period until they pull apart. In this plot, they collide two more times, and
almost collide a third time.

The physics of this problem is quite simple if we assume idealized springs. Let
y1(t) denote the right edge of the left mass at time t, and y2(t) denote the left
edge of the right mass at time t, as shown in Figure 4.9. Let p1 and p2 denote the
neutral positions of the two masses, i.e., when the springs are neither extended
nor compressed, so the force is zero. For an ideal spring, the force at time t on
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the mass is proportional to p1 − y1(t) (for the left mass) and p2 − y2(t) (for the
right mass). The force is positive to the right and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the left
spring is k1(p1 − y1(t)), and the force on the right spring is k2(p2 − y2(t)). Let
the masses be m1 and m2 respectively. Now we can use Newton’s second law,
which relates force, mass, and acceleration,

f = ma.

The acceleration is the second derivative of the position with respect to time,
which we write ÿ1(t) and ÿ2(t). Thus, as long as the masses are separate, their
dynamics are given by

ÿ1(t) = k1(p1 − y1(t))/m1 (4.1)

ÿ2(t) = k2(p2 − y2(t))/m2. (4.2)

When the masses collide, however, the situation changes. With the masses stuck
together, they behave as a single object with mass m1 +m2. This single object is
pulled in opposite directions by two springs. While the masses are stuck together,
y1(t) = y2(t). Let

y(t) = y1(t) = y2(t).

The dynamics are then given by

ÿ(t) =
k1p1 + k2p2 − (k1 + k2)y(t)

m1 +m2
. (4.3)

It is easy to see now how to construct a hybrid systems model for this physical
system. The model is shown in Figure 4.10. It has two modes, apart and together.
The refinement of the apart mode is given by (4.1) and (4.2), while the refinement
of the together mode is given by (4.3).

We still have work to do, however, to label the transitions. The initial transition is
shown in Figure 4.10 entering the apart mode. Thus, we are assuming the masses
begin apart. Moreover, this transition is labeled with a set action that sets the
initial positions of the two masses to i1 and i2 and the initial velocities to zero.

The transition from apart to together has the guard

y1(t) = y2(t) .
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This transition has a set action which assigns values to two continuous state vari-
ables y(t) and ẏ(t), which will represent the motion of the two masses stuck
together. The value it assigns to ẏ(t) conserves momentum. The momentum of
the left mass is ẏ1(t)m1, the momentum of the right mass is ẏ2(t)m2, and the
momentum of the combined masses is ẏ(t)(m1 + m2). To make these equal, it
sets

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

m1 +m2
.

The refinement of the together mode gives the dynamics of y and simply sets
y1(t) = y2(t) = y(t), since the masses are moving together. The transition from
apart to together sets y(t) equal to y1(t) (it could equally well have chosen y2(t),
since these are equal).

The transition from together to apart has the more complicated guard

(k1 − k2)y(t) + k2p2 − k1p1 > s,

where s represents the stickiness of the two masses. This guard is satisfied when
the right-pulling force on the right mass exceeds the right-pulling force on the
left mass by more than the stickiness. The right-pulling force on the right mass is
simply

f2(t) = k2(p2 − y(t))

and the right-pulling force on the left mass is

f1(t) = k1(p1 − y(t)).

Thus,
f2(t)− f1(t) = (k1 − k2)y(t) + k2p2 − k1p1.

When this exceeds the stickiness s, then the masses pull apart.

An interesting elaboration on this example, considered in problem 11, modifies
the together mode so that the stickiness is initialized to a starting value, but then
decays according to the differential equation

ṡ(t) = −as(t)

where s(t) is the stickiness at time t, and a is some positive constant. In fact, it is
the dynamics of such an elaboration that is plotted in Figure 4.9.
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As in Example 4.4, it is sometimes useful to have hybrid system models with only one
state. The actions on one or more state transitions define the discrete event behavior that
combines with the time-based behavior.

Example 4.7: Consider a bouncing ball. At time t = 0, the ball is dropped from
a height y(0) = h0, where h0 is the initial height in meters. It falls freely. At
some later time t1 it hits the ground with a velocity ẏ(t1) < 0 m/s (meters per
second). A bump event is produced when the ball hits the ground. The collision is
inelastic (meaning that kinetic energy is lost), and the ball bounces back up with
velocity −aẏ(t1), where a is constant with 0 < a < 1. The ball will then rise to
a certain height and fall back to the ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system of Figure
4.11. There is only one mode, called free. When it is not in contact with the
ground, we know that the ball follows the second-order differential equation,

ÿ(t) = −g, (4.4)

where g = 9.81 m/sec2 is the acceleration imposed by gravity. The continuous
state variables of the free mode are

s(t) =

[
y(t)
ẏ(t)

]
with the initial conditions y(0) = h0 and ẏ(0) = 0. It is then a simple matter to
rewrite (4.4) as a first-order differential equation,

ṡ(t) = f(s(t)) (4.5)

for a suitably chosen function f .

At the time t = t1 when the ball first hits the ground, the guard

y(t) = 0

is satisfied, and the self-loop transition is taken. The output bump is produced,
and the set action ẏ(t) := −aẏ(t) changes ẏ(t1) to have value −aẏ(t1). Then
(4.4) is followed again until the guard becomes true again.
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t1 t2

t

t1 t2

t

Figure 4.11: The motion of a bouncing ball may be described as a hybrid system
with only one mode. The system outputs a bump each time the ball hits the
ground, and also outputs the position of the ball. The position and velocity are
plotted versus time at the right.

By integrating (4.4) we get, for all t ∈ (0, t1),

ẏ(t) = −gt,

y(t) = y(0) +

∫ t

0
ẏ(τ)dτ = h0 −

1

2
gt2.

So t1 > 0 is determined by y(t1) = 0. It is the solution to the equation

h0 −
1

2
gt2 = 0.

Thus,
t1 =

√
2h0/g.

Figure 4.11 plots the continuous state versus time.

The bouncing ball example above has an interesting difficulty that is explored in Exercise
10. Specifically, the time between bounces gets smaller as time increases. In fact, it

Lee & Seshia, Introduction to Embedded Systems 93

http://LeeSeshia.org


4.2. CLASSES OF HYBRID SYSTEMS

gets smaller fast enough that an infinite number of bounces occur in a finite amount of
time. A system with an infinite number of discrete events in a finite amount of time is
called a Zeno system, after Zeno of Elea, a pre-Socratic Greek philosopher famous for
his paradoxes. In the physical world, of course, the ball will eventually stop bouncing;
the Zeno behavior is an artifact of the model. Another example of a Zeno hybrid system
is considered in Exercise 13.

4.2.3 Supervisory Control

A control system involves four components: a system called the plant, the physical pro-
cess that is to be controlled; the environment in which the plant operates; the sensors that
measure some variables of the plant and the environment; and the controller that deter-
mines the mode transition structure and selects the time-based inputs to the plant. The
controller has two levels: the supervisory control that determines the mode transition
structure, and the low-level control that determines the time-based inputs to the plant.
Intuitively, the supervisory controller determines which of several strategies should be
followed, and the low-level controller implements the selected strategy. Hybrid systems
are ideal for modeling such two-level controllers. We show how through a detailed exam-
ple.

Example 4.8: Consider an automated guided vehicle (AGV) that moves along
a closed track painted on a warehouse or factory floor. We will design a controller
so that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time t, it can move forward along
its body axis with speed u(t) with the restriction that 0 ≤ u(t) ≤ 10 mph (miles
per hour). It can also rotate about its center of gravity with an angular speed ω(t)
restricted to−π ≤ ω(t) ≤ π radians/second. We ignore the inertia of the vehicle,
so we assume that we can instantaneously change the velocity or angular speed.

Let (x(t), y(t)) ∈ R2 be the position relative to some fixed coordinate frame and
θ(t) ∈ (−π, π] be the angle (in radians) of the vehicle at time t, as shown in
Figure 4.12. In terms of this coordinate frame, the motion of the vehicle is given
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track

AG
V

global
coordinate
frame

Figure 4.12: Illustration of the automated guided vehicle of Example 4.8. The
vehicle is following a curved painted track, and has deviated from the track by a
distance e(t). The coordinates of the vehicle at time t with respect to the global
coordinate frame are (x(t), y(t), θ(t)).

by a system of three differential equations,

ẋ(t) = u(t) cos θ(t),

ẏ(t) = u(t) sin θ(t), (4.6)

θ̇(t) = ω(t).

Equations (4.6) describe the plant. The environment is the closed painted track. It
could be described by an equation. We will describe it indirectly below by means
of a sensor.
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Figure 4.13: The automatic guided vehicle of Example 4.8 has four modes: stop,
straight, left, right.
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The two-level controller design is based on a simple idea. The vehicle always
moves at its maximum speed of 10 mph. If the vehicle strays too far to the left
of the track, the controller steers it towards the right; if it strays too far to the
right of the track, the controller steers it towards the left. If the vehicle is close
to the track, the controller maintains the vehicle in a straight direction. Thus the
controller guides the vehicle in four modes, left, right, straight, and stop. In stop
mode, the vehicle comes to a halt.

The following differential equations govern the AGV’s motion in the refinements
of the four modes. They describe the low-level controller, i.e., the selection of the
time-based plant inputs in each mode.

straight

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = 0

left

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = π

right

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = −π

stop

ẋ(t) = 0

ẏ(t) = 0

θ̇(t) = 0

In the stop mode, the vehicle is stopped, so x(t), y(t), and θ(t) are constant. In
the left mode, θ(t) increases at the rate of π radians/second, so from Figure 4.12
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we see that the vehicle moves to the left. In the right mode, it moves to the right.
In the straight mode, θ(t) is constant, and the vehicle moves straight ahead with
a constant heading. The refinements of the four modes are shown in the boxes of
Figure 4.13.

We design the supervisory control governing transitions between modes in such
a way that the vehicle closely follows the track, using a sensor that determines
how far the vehicle is to the left or right of the track. We can build such a sensor
using photodiodes. Let’s suppose the track is painted with a light-reflecting color,
whereas the floor is relatively dark. Underneath the AGV we place an array of
photodiodes as shown in Figure 4.14. The array is perpendicular to the AGV
body axis. As the AGV passes over the track, the diode directly above the track
generates more current than the other diodes. By comparing the magnitudes of
the currents through the different diodes, the sensor estimates the displacement
e(t) of the center of the array (hence, the center of the AGV) from the track. We
adopt the convention that e(t) < 0 means that the AGV is to the right of the track
and e(t) > 0 means it is to the left. We model the sensor output as a function f
of the AGV’s position,

∀t, e(t) = f(x(t), y(t)).

The function f of course depends on the environment—the track. We now specify
the supervisory controller precisely. We select two thresholds, 0 < ε1 < ε2, as
shown in Figure 4.14. If the magnitude of the displacement is small, |e(t)| < ε1,
we consider that the AGV is close enough to the track, and the AGV can move
straight ahead, in straight mode. If e(t) > ε2 (e(t) is large and positive), the AGV
has strayed too far to the left and must be steered to the right, by switching to
right mode. If e(t) < −ε2 (e(t) is large and negative), the AGV has strayed too
far to the right and must be steered to the left, by switching to left mode. This
control logic is captured in the mode transitions of Figure 4.13. The inputs are
pure signals stop and start. These model an operator that can stop or start the
AGV. There is no continuous-time input. The outputs represent the position of
the vehicle, x(t) and y(t). The initial mode is stop, and the initial values of its
refinement are (x0, y0, θ0).

We analyze how the AGV will move. Figure 4.15 sketches one possible trajectory.
Initially the vehicle is within distance ε1 of the track, so it moves straight. At some
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photodiode trackAGV

Figure 4.14: An array of photodiodes under the AGV is used to estimate the
displacement e of the AGV relative to the track. The photodiode directly above
the track generates more current.

later time, the vehicle goes too far to the left, so the guard

¬stop ∧ e(t) > ε2

is satisfied, and there is a mode switch to right. After some time, the vehicle will
again be close enough to the track, so the guard

¬stop ∧ |e(t)| < ε1

is satisfied, and there is a mode switch to straight. Some time later, the vehicle is
too far to the right, so the guard

¬stop ∧ e(t) < −ε2

is satisfied, and there is a mode switch to left. And so on.

The example illustrates the four components of a control system. The plant is described
by the differential equations (4.6) that govern the evolution of the continuous state at
time t, (x(t), y(t), θ(t)), in terms of the plant inputs u and ω. The second component
is the environment—the closed track. The third component is the sensor, whose output
at time t, e(t) = f(x(t), y(t)), gives the position of the AGV relative to the track. The
fourth component is the two-level controller. The supervisory controller comprises the
four modes and the guards that determine when to switch between modes. The low-level
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initial 
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straight

right

straight
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Figure 4.15: A trajectory of the AGV, annotated with modes.

controller specifies how the time-based inputs to the plant, u and ω, are selected in each
mode.

4.3 Summary

Hybrid systems provide a bridge between time-based models and state-machine models.
The combination of the two families of models provides a rich framework for describing
real-world systems. There are two key ideas. First, discrete events (state changes in a state
machine) get embedded in a time base. Second, a hierarchical description is particularly
useful, where the system undergoes discrete transitions between different modes of opera-
tion. Associated with each mode of operation is a time-based system called the refinement
of the mode. Mode transitions are taken when guards that specify the combination of in-
puts and continuous states are satisfied. The action associated with a transition, in turn,
sets the continuous state in the destination mode.
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The behavior of a hybrid system is understood using the tools of state machine analysis
for mode transitions and the tools of time-based analysis for the refinement systems. The
design of hybrid systems similarly proceeds on two levels: state machines are designed to
achieve the appropriate logic of mode transitions, and continuous refinement systems are
designed to secure the desired time-based behavior in each mode.
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Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7
which produces tick at times 1, 2, 3, 5, 6, 7, 8, 10, 11, · · · . That is, ticks are produced
with intervals between them of 1 second (three times) and 2 seconds (once).

2. The objective of this problem is to understand a timed automaton, and then to mod-
ify it as specified.

(a) For the timed automaton shown below, describe the output y. Avoid imprecise
or sloppy notation.

(b) Assume there is a new pure input reset, and that when this input is present,
the hybrid system starts over, behaving as if it were starting at time 0 again.
Modify the hybrid system from part (a) to do this.

3. In Exercise 6 of Chapter 2, we considered a DC motor that is controlled by an in-
put voltage. Controlling a motor by varying an input voltage, in reality, is often
not practical. It requires analog circuits that are capable of handling considerable
power. Instead, it is common to use a fixed voltage, but to turn it on and off period-
ically to vary the amount of power delivered to the motor. This technique is called
pulse width modulation (PWM).

Construct a timed automaton that provides the voltage input to the motor model
from Exercise 6. Your hybrid system should assume that the PWM circuit delivers
a 25 kHz square wave with a duty cycle between zero and 100%, inclusive. The
input to your hybrid system should be the duty cycle, and the output should be the
voltage.
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4. Consider the following timed automaton:

Assume that the input signals a and b are discrete continuous-time signals, meaning
that each can be given as a function of form a : R → {present, absent}, where at
almost all times t ∈ R, a(t) = absent. Assume that the state machine can take
at most one transition at each distinct time t, and that machine begins executing at
time t = 0.

(a) Sketch the output b if the input a is present only at times

t = 0.75, 1.5, 2.25, 3, 3.75, 4.5, · · ·

Include at least times from t = 0 to t = 5.

(b) Sketch the output b if the input a is present only at times t = 0, 1, 2, 3, · · · .
(c) Assuming that the input a can be any discrete signal at all, find a lower bound

on the amount of time between events b. What input signal a (if any) achieves
this lower bound?

5. You have an analog source that produces a pure tone. You can switch the source on
or off by the input event on or off. Construct a timed automaton that provides the on
and off signals as outputs, to be connected to the inputs of the tone generator. Your
system should behave as follows. Upon receiving an input event ring, it should
produce an 80 ms-long sound consisting of three 20 ms-long bursts of the pure tone
separated by two 10 ms intervals of silence. What does your system do if it receives
two ring events that are 50 ms apart?
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6. Automobiles today have the features listed below. Implement each feature as a
timed automaton.

(a) The dome light is turned on as soon as any door is opened. It stays on for 30
seconds after all doors are shut. What sensors are needed?

(b) Once the engine is started, a beeper is sounded and a red light warning is
indicated if there are passengers that have not buckled their seat belt. The
beeper stops sounding after 30 seconds, or as soon the seat belts are buckled,
whichever is sooner. The warning light is on all the time the seat belt is un-
buckled. Hint: Assume the sensors provide a warn event when the ignition
is turned on and there is a seat with passenger not buckled in, or if the igni-
tion is already on and a passenger sits in a seat without buckling the seatbelt.
Assume further that the sensors provide a noWarn event when a passenger de-
parts from a seat, or when the buckle is buckled, or when the ignition is turned
off.

7. A programmable thermostat allows you to select 4 times, 0 ≤ T1 ≤ · · · ≤ T4 < 24
(for a 24-hour cycle) and the corresponding setpoint temperatures a1, · · · , a4. Con-
struct a timed automaton that sends the event ai to the heating systems controller.
The controller maintains the temperature close to the value ai until it receives the
next event. How many timers and modes do you need?

8. Consider the following timed automaton:

Assume t1 and t2 are positive real numbers. What is the minimum amount of time
between events a? That is, what is the smallest possible time between two times
when the signal a is present?
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9. Figure 4.16 depicts the intersection of two one-way streets, called Main and Sec-
ondary. A light on each street controls its traffic. Each light goes through a cycle
consisting of a red (R), green (G), and yellow (Y) phases. It is a safety requirement
that when one light is in its green or yellow phase, the other is in its red phase. The
yellow phase is always 5 seconds long.

The traffic lights operate as follows. A sensor in the secondary road detects a ve-
hicle. While no vehicle is detected, there is a 4 minute-long cycle with the main
light having 3 minutes of green, 5 seconds of yellow, and 55 seconds of red. The
secondary light is red for 3 minutes and 5 seconds (while the main light is green
and yellow), green for 50 seconds, then yellow for 5 seconds.

If a vehicle is detected on the secondary road, the traffic light quickly gives a right
of way to the secondary road. When this happens, the main light aborts its green
phase and immediately switches to its 5 second yellow phase. If the vehicle is
detected while the main light is yellow or red, the system continues as if there were
no vehicle.

Design a hybrid system that controls the lights. Let this hybrid system have six
pure outputs, one for each light, named mG, mY, and mR, to designate the main

Main

S
ec

on
da

ry

light

detector

R

R G

G Y

Y

Figure 4.16: Traffic lights control the intersection of a main street and a secondary
street. A detector senses when a vehicle crosses it. The red phase of one light
must coincide with the green and yellow phases of the other light.
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light being green, yellow, or red, respectively, and sG, sY, and sR, to designate the
secondary light being green, yellow, or red, respectively. These signals should be
generated to turn on a light. You can implicitly assume that when one light is turned
on, whichever has been on is turned off.

10. For the bouncing ball of Example 4.7, let tn be the time when the ball hits the
ground for the n-th time, and let vn = ẏ(tn) be the velocity at that time.

(a) Find a relation between vn+1 and vn for n > 1, and then calculate vn in terms
of v1.

(b) Obtain tn in terms of v1 and a. Use this to show that the bouncing ball is a
Zeno system. Hint: The geometric series identity might be useful, where
for |b| < 1,

∞∑
m=0

bm =
1

1− b
.

(c) Calculate the maximum height reached by the ball after successive bumps.

11. Elaborate the hybrid system model of Figure 4.10 so that in the together mode, the
stickiness decays according to the differential equation

ṡ(t) = −as(t)

where s(t) is the stickiness at time t, and a is some positive constant. On the tran-
sition into this mode, the stickiness should be initialized to some starting stickiness
b.

12. Show that the trajectory of the AGV of Figure 4.13 while it is in left or right mode
is a circle. What is the radius of this circle, and how long does it take to complete a
circle?

13. Consider Figure 4.17 depicting a system comprising two tanks containing water.
Each tank is leaking at a constant rate. Water is added at a constant rate to the
system through a hose, which at any point in time is filling either one tank or the
other. It is assumed that the hose can switch between the tanks instantaneously.
For i ∈ {1, 2}, let xi denote the volume of water in Tank i and vi > 0 denote the
constant flow of water out of Tank i. Letw denote the constant flow of water into the
system. The objective is to keep the water volumes above r1 and r2, respectively,
assuming that the water volumes are above r1 and r2 initially. This is to be achieved
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x1
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w

Figure 4.17: Water tank system.

by a controller that switches the inflow to Tank 1 whenever x1(t) ≤ r1(t) and to
Tank 2 whenever x2(t) ≤ r2(t).

The hybrid automaton representing this two-tank system is given in Figure 4.18.

Answer the following questions:

(a) Construct a model of this hybrid automaton in Ptolemy II, LabVIEW, or
Simulink. Use the following parameter values: r1 = r2 = 0, v1 = v2 = 0.5,
and w = 0.75. Set the initial state to be (q1, (0, 1)). (That is, initial value
x1(0) is 0 and x2(0) is 1.)
Verify that this hybrid automaton is Zeno. What is the reason for this Zeno
behavior? Simulate your model and plot how x1 and x2 vary as a function of
time t, simulating long enough to illustrate the Zeno behavior.

(b) A Zeno system may be regularized by ensuring that the time between tran-
sitions is never less than some positive number ε. This can be emulated by
inserting extra modes in which the hybrid automaton dwells for time ε. Use
regularization to make your model from part (a) non-Zeno. Again, plot x1
and x2 for the same length of time as in the first part. State the value of ε that
you used.

Include printouts of your plots with your answer.
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Figure 4.18: Hybrid automaton representing water tank system.
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State machines provide a convenient way to model behaviors of systems. One disadvan-
tage that they have is that for most interesting systems, the number of states is very large,
often even infinite. Automated tools can handle large state spaces, but humans have more
difficulty with any direct representation of a large state space.

A time-honored principle in engineering is that complicated systems should be described
as compositions of simpler systems. This chapter gives a number of ways to do this with



state machines. The reader should be aware, however, that there are many subtly different
ways to compose state machines. Compositions that look similar on the surface may mean
different things to different people. The rules of notation of a model are called its syntax,
and the meaning of the notation is called its semantics.

Example 5.1: In the standard syntax of arithmetic, a plus sign + has a number or
expression before it, and a number or expression after it. Hence, 1+2, a sequence
of three symbols, is a valid arithmetic expression, but 1+ is not. The semantics of
the expression 1 + 2 is the addition of two numbers. This expression means “the
number three, obtained by adding 1 and 2.” The expression 2 + 1 is syntactically
different, but semantically identical (because addition is commutative).

The models in this book predominantly use a visual syntax, where the elements are boxes,
circles, arrows, etc., rather than characters in a character set, and where the positioning
of the elements is not constrained to be a sequence. Such syntaxes are less standardized
than, for example, the syntax of arithmetic. We will see that the same syntax can have
many different semantics, which can cause no end of confusion.

Example 5.2: A now popular notation for concurrent composition of state
machines called Statecharts was introduced by Harel (1987). Although they
are all based on the same original paper, many variants of Statecharts have
evolved (von der Beeck, 1994). These variants often assign different semantics to
the same syntax.

In this chapter, we assume an actor model for extended state machines using the syntax
summarized in Figure 5.1. The semantics of a single such state machine is described in
Chapter 3. This chapter will discuss the semantics that can be assigned to compositions
of multiple such machines.

The first composition technique we consider is concurrent composition. Two or more
state machines react either simultaneously or independently. If the reactions are simul-
taneous, we call it synchronous composition. If they are independent, then we call it

110 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


5. COMPOSITION OF STATE MACHINES

asynchronous composition. But even within these classes of composition, many subtle
variations in the semantics are possible. These variations mostly revolve around whether
and how the state machines communicate and share variables.

The second composition technique we will consider is hierarchy. Hierarchical state ma-
chines can also enable complicated systems to be described as compositions of simpler
systems. Again, we will see that subtle differences in semantics are possible.

5.1 Concurrent Composition

To study concurrent composition of state machines, we will proceed through a sequence
of patterns of composition. These patterns can be combined to build arbitrarily compli-
cated systems. We begin with the simplest case, side-by-side composition, where the
state machines being composed do not communicate. We then consider allowing com-
munication through shared variables, showing that this creates significant subtleties that
can complicate modeling. We then consider communication through ports, first looking
at serial composition, then expanding to arbitrary interconnections. We consider both
synchronous and asynchronous composition for each type of composition.

i1

in om

o1
... ...

Figure 5.1: Summary of notation for state machines used in this chapter.
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About Synchrony
The term synchronous means (1) occurring or existing at the same time or (2) moving
or operating at the same rate. In engineering and computer science, the term has a num-
ber of meanings that are mostly consistent with these definitions, but oddly inconsistent
with one another. In referring to concurrent software constructed using threads or pro-
cesses, synchronous communication refers to a rendezvous style of communication,
where the sender of a message must wait for the receiver to be ready to receive, and
the receiver must wait for the sender. Conceptually, the two threads see the communi-
cation occurring at the same time, consistent with definition (1). In Java, the keyword
synchronized defines blocks of code that are not permitted to execute simultane-
ously. Oddly, two code blocks that are synchronized cannot “occur” (execute) at the
same time, which is inconsistent with both definitions.

In the world of software, there is yet a third meaning of the word synchronous, and
it is this third meaning that we use in this chapter. This third meaning underlies the
synchronous languages (see box on page 148). Two key ideas govern these languages.
First, the outputs of components in a program are (conceptually) simultaneous with
their inputs (this is called the synchrony hypothesis). Second, components in a pro-
gram execute (conceptually) simultaneously and instantaneously. Real executions do
not literally occur simultaneously nor instantaneously, and outputs are not really si-
multaneous with the inputs, but a correct execution must behave as if they were. This
use of the word synchronous is consistent with both definitions above; executions of
components occur at the same time and operate at the same rate.

In circuit design, the word synchronous refers to a style of design where a clock that
is distributed throughout a circuit drives latches that record their inputs on edges of the
clock. The time between clock edges needs to be sufficient for circuits between latches
to settle. Conceptually, this model is similar to the model in synchronous languages.
Assuming that the circuits between latches have zero delay is equivalent to the syn-
chrony hypothesis, and global clock distribution gives simultaneous and instantaneous
execution.

In power systems engineering, synchronous means that electrical waveforms have
the same frequency and phase. In signal processing, synchronous means that signals
have the same sample rate, or that their sample rates are fixed multiples of one an-
other. The term synchronous dataflow, described in Section 6.3.2, is based on this
latter meaning of the word synchronous. This usage is consistent with definition (2).
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5.1.1 Side-by-Side Synchronous Composition

The first pattern of composition that we consider is side-by-side composition, illustrated
for two actors in Figure 5.2. In this pattern, we assume that the inputs and outputs of the
two actors are disjoint, i.e., that the state machines do not communicate. In the figure, ac-
tor A has input i1 and output o1, and actor B has input i2 and output o2. The composition
of the two actors is itself an actor C with inputs i1 and i2 and outputs o1 and o2.1

In the simplest scenario, if the two actors are extended state machines with variables,
then those variables are also disjoint. We will later consider what happens when the two
state machines share variables. Under synchronous composition, a reaction of C is a
simultaneous reaction of A and B.

Example 5.3: Consider FSMsA andB in Figure 5.3. A has a single pure output
a, andB has a single pure output b. The side-by-side composition C has two pure
outputs, a and b. If the composition is synchronous, then on the first reaction, a
will be absent and b will be present. On the second reaction, it will be the reverse.
On subsequent reactions, a and b will continue to alternate being present.

1The composition actor C may rename these input and output ports, but here we assume it uses the same
names as the component actors.

Figure 5.2: Side-by-side composition of two actors.
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Figure 5.3: Example of side-by-side composition of two actors.

Synchronous side-by-side composition is simple for several reasons. First, recall from
Section 3.3.2 that the environment determines when a state machine reacts. In syn-
chronous side-by-side composition, the environment need not be aware that C is a com-
position of two state machines. Such compositions are modular in the sense that the
composition itself becomes a component that can be further composed as if it were itself
an atomic component.

Moreover, if the two state machines A and B are deterministic, then the synchronous
side-by-side composition is also deterministic. We say that a property is compositional if
a property held by the components is also a property of the composition. For synchronous
side-by-side composition, determinism is a compositional property.

In addition, a synchronous side-by-side composition of finite state machines is itself an
FSM. A rigorous way to give the semantics of the composition is to define a single state
machine for the composition. Suppose that as in Section 3.3.3, state machines A and B
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are given by the five tuples,

A = (StatesA, InputsA,OutputsA, updateA, initialStateA)

B = (StatesB, InputsB,OutputsB, updateB, initialStateB) .

Then the synchronous side-by-side composition C is given by

StatesC = StatesA × StatesB (5.1)

InputsC = InputsA × InputsB (5.2)

OutputsC = OutputsA × OutputsB (5.3)

initialStateC = (initialStateA, initialStateB) (5.4)

and the update function is defined by

updateC((sA, sB), (iA, iB)) = ((s′A, s
′
B), (oA, oB)),

where
(s′A, oA) = updateA(sA, iA),

and
(s′B, oB) = updateB(sB, iB),

for all sA ∈ StatesA, sB ∈ StatesB , iA ∈ InputsA, and iB ∈ InputsB .

Recall that InputsA and InputsB are sets of valuations. Each valuation in the set is an
assignment of values to ports. What we mean by

InputsC = InputsA × InputsB

is that a valuation of the inputs of C must include both valuations for the inputs of A and
the inputs of B.

As usual, the single FSMC can be given pictorially rather than symbolically, as illustrated
in the next example.

Example 5.4: The synchronous side-by-side composition C in Figure 5.3 is
given as a single FSM in Figure 5.4. Notice that this machine behaves exactly as
described in Example 5.3. The outputs a and b alternate being present. Notice
further that (s1, s4) and (s2, s3) are not reachable states.
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Figure 5.4: Single state machine giving the semantics of synchronous side-by-
side composition of the state machines in Figure 5.3.

5.1.2 Side-by-Side Asynchronous Composition

In an asynchronous composition of state machines, the component machines react inde-
pendently. This statement is rather vague, and in fact, it has several different interpreta-
tions. Each interpretation gives a semantics to the composition. The key to each semantics
is how to define a reaction of the composition C in Figure 5.2. Two possibilities are:

• Semantics 1. A reaction of C is a reaction of one of A or B, where the choice is
nondeterministic.

• Semantics 2. A reaction of C is a reaction of A, B, or both A and B, where the
choice is nondeterministic. A variant of this possibility might allow neither to react.

Semantics 1 is referred to as an interleaving semantics, meaning that A or B never react
simultaneously. Their reactions are interleaved in some order.

A significant subtlety is that under these semantics machines A and B may completely
miss input events. That is, an input to C destined for machine A may be present in a
reaction where the nondeterministic choice results in B reacting rather than A. If this is
not desirable, then some control over scheduling (see sidebar on page 118) or synchronous
composition becomes a better choice.
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Figure 5.5: State machine giving the semantics of asynchronous side-by-side
composition of the state machines in Figure 5.3.

Example 5.5: For the example in Figure 5.3, semantics 1 results in the composi-
tion state machine shown in Figure 5.5. This machine is nondeterministic. From
state (s1, s3), when C reacts, it can move to (s2, s3) and emit no output, or it
can move to (s1, s4) and emit b. Note that if we had chosen semantics 2, then it
would also be able to move to (s2, s4).

For asynchronous composition under semantics 1, the symbolic definition of C has the
same definitions of StatesC , InputsC , OutputsC , and initialStateC as for synchronous
composition, given in (5.1) through (5.4). But the update function differs, becoming

updateC((sA, sB), (iA, iB)) = ((s′A, s
′
B), (o′A, o

′
B)),

where either

(s′A, o
′
A) = updateA(sA, iA) and s′B = sB and o′B = absent

or
(s′B, o

′
B) = updateB(sB, iB) and s′A = sA and o′A = absent
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for all sA ∈ StatesA, sB ∈ StatesB , iA ∈ InputsA, and iB ∈ InputsB . What we mean by
o′B = absent is that all outputs of B are absent. Semantics 2 can be similarly defined (see
Exercise 2).

Scheduling Semantics for Asynchronous Composition

In the case of semantics 1 and 2 given in Section 5.1.2, the choice of which compo-
nent machine reacts is nondeterministic. The model does not express any particular
constraints. It is often more useful to introduce some scheduling policies, where the
environment is able to influence or control the nondeterministic choice. This leads to
two additional possible semantics for asynchronous composition:

• Semantics 3. A reaction of C is a reaction of one of A or B, where the environ-
ment chooses which of A or B reacts.

• Semantics 4. A reaction of C is a reaction of A, B, or both A and B, where the
choice is made by the environment.

Like semantics 1, semantics 3 is an interleaving semantics.
In one sense, semantics 1 and 2 are more compositional than semantics 3 and 4.

To implement semantics 3 and 4, a composition has to provide some mechanism for
the environment to choose which component machine should react (for scheduling the
component machines). This means that the hierarchy suggested in Figure 5.2 does not
quite work. Actor C has to expose more of its internal structure than just the ports and
the ability to react.

In another sense, semantics 1 and 2 are less compositional than semantics 3 and 4
because determinism is not preserved by composition. A composition of deterministic
state machines is not a deterministic state machine.

Notice further that semantics 1 is an abstraction of semantics 3 in the sense that
every behavior under semantics 3 is also a behavior under semantics 1. This notion of
abstraction is studied in detail in Chapter 14.

The subtle differences between these choices make asynchronous composition
rather treacherous. Considerable care is required to ensure that it is clear which
semantics is used.
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Figure 5.6: Model of two servers with a shared task queue, assuming asyn-
chronous composition under semantics 1.

5.1.3 Shared Variables

An extended state machine has local variables that can be read and written as part of
taking a transition. Sometimes it is useful when composing state machines to allow these
variables to be shared among a group of machines. In particular, such shared variables can
be useful for modeling interrupts, studied in Chapter 10, and threads, studied in Chapter
11. However, considerable care is required to ensure that the semantics of the model
conforms with that of the program containing interrupts or threads. Many complications
arise, including the memory consistency model and the notion of atomic operations.
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Example 5.6: Consider two servers that can receive requests from a network.
Each request requires an unknown amount of time to service, so the servers share
a queue of requests. If one server is busy, the other server can respond to a request,
even if the request arrives at the network interface of the first server.

This scenario fits a pattern similar to that in Figure 5.2, where A and B are the
servers. We can model the servers as state machines as shown in Figure 5.6. In
this model, a shared variable pending counts the number of pending job requests.
When a request arrives at the composite machine C, one of the two servers is
nondeterministically chosen to react, assuming asynchronous composition under
semantics 1. If that server is idle, then it proceeds to serve the request. If the
server is serving another request, then one of two things can happen: it can co-
incidentally finish serving the request it is currently serving, issuing the output
done, and proceed to serve the new one, or it can increment the count of pending
requests and continue to serve the current request. The choice between these is
nondeterministic, to model the fact that the time it takes to service a request is
unknown.

If C reacts when there is no request, then again either server A or B will be se-
lected nondeterministically to react. If the server that reacts is idle and there are
one or more pending requests, then the server transitions to serving and decre-
ments the variable pending. If the server that reacts is not idle, then one of three
things can happen. It may continue serving the current request, in which case it
simply transitions on the self transition back to serving. Or it may finish serving
the request, in which case it will transition to idle if there are no pending requests,
or transition back to serving and decrement pending if there are pending requests.

The model in the previous example exhibits many subtleties of concurrent systems. First,
because of the interleaving semantics, accesses to the shared variable are atomic opera-
tions, something that is quite challenging to guarantee in practice, as discussed in Chapters
10 and 11. Second, the choice of semantics 1 is reasonable in this case because the input
goes to both of the component machines, so regardless of which component machine re-
acts, no input event will be missed. However, this semantics would not work if the two
machines had independent inputs, because then requests could be missed. Semantics 2
can help prevent that, but what strategy should be used by the environment to determine
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which machine reacts? What if the two independent inputs both have requests present at
the same reaction ofC? If we choose semantics 4 in the sidebar on page 118 to allow both
machines to react simultaneously, then what is the meaning when both machines update
the shared variable? The updates are no longer atomic, as they are with an interleaving
semantics.

Note further that choosing asynchronous composition under semantics 1 allows behaviors
that do not make good use of idle machines. In particular, suppose that machine A is
serving, machine B is idle, and a request arrives. If the nondeterministic choice results in
machineA reacting, then it will simply increment pending. Not until the nondeterministic
choice results inB reacting will the idle machine be put to use. In fact, semantics 1 allows
behaviors that never use one of the machines.

Shared variables may be used in synchronous compositions as well, but sophisticated
subtleties again emerge. In particular, what should happen if in the same reaction one ma-
chine reads a shared variable to evaluate a guard and another machine writes to the shared
variable? Do we require the write before the read? What if the transition doing the write
to the shared variable also reads the same variable in its guard expression? One possibil-
ity is to choose a synchronous interleaving semantics, where the component machines
react in arbitrary order, chosen nondeterministically. This strategy has the disadvantage
that a composition of two deterministic machines may be nondeterministic. An alterna-
tive version of the synchronous interleaving semantics has the component machines react
in a fixed order determined by the environment or by some additional mechanism such as
priority.

The difficulties of shared variables, particularly with asynchronous composition, reflect
the inherent complexity of concurrency models with shared variables. Clean solutions
require a more sophisticated semantics, to be discussed in Chapter 6. In that chapter, we
will explain the synchronous-reactive model of computation, which gives a synchronous
composition semantics that is reasonably compositional.

So far, we have considered composition of machines that do not directly communicate.
We next consider what happens when the outputs of one machine are the inputs of another.
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5.1.4 Cascade Composition

Consider two state machines A and B that are composed as shown in Figure 5.7. The
output of machine A feeds the input of B. This style of composition is called cascade
composition or serial composition.

In the figure, output port o1 from A feeds events to input port i2 of B. Assume the data
type of o1 is V1 (meaning that o1 can take values from V1 or be absent), and the data type
of i2 is V2. Then a requirement for this composition to be valid is that

V1 ⊆ V2 .

This asserts that any output produced by A on port o1 is an acceptable input to B on port
i2. The composition type checks.

For cascade composition, if we wish the composition to be asynchronous, then we need
to introduce some machinery for buffering the data that is sent from A to B. We defer
discussion of such asynchronous composition to Chapter 6, where dataflow and process
network models of computation will provide such asynchronous composition. In this
chapter, we will only consider synchronous composition for cascade systems.

In synchronous composition of the cascade structure of Figure 5.7, a reaction ofC consists
of a reaction of both A and B, where A reacts first, produces its output (if any), and then
B reacts. Logically, we view this as occurring in zero time, so the two reactions are in a
sense simultaneous and instantaneous. But they are causally related in that the outputs
of A can affect the behavior of B.

Figure 5.7: Cascade composition of two actors.
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Figure 5.8: Example of a cascade composition of two FSMs.

Figure 5.9: Semantics of the cascade composition of Figure 5.8, assuming syn-
chronous composition.

Example 5.7: Consider the cascade composition of the two FSMs in Figure
5.8. Assuming synchronous semantics, the meaning of a reaction of C is given in
Figure 5.9. That figure makes it clear that the reactions of the two machines are
simultaneous and instantaneous. When moving from the initial state (s1, s3) to
(s2, s4) (which occurs when the input a is absent), the composition machine C
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does not pass through (s2, s3)! In fact, (s2, s3) is not a reachable state! In this
way, a single reaction of C encompasses a reaction of both A and B.

To construct the composition machine as in Figure 5.9, first form the state space as the
cross product of the state spaces of the component machines, and then determine which
transitions are taken under what conditions. It is important to remember that the transi-
tions are simultaneous, even when one logically causes the other.

Example 5.8: Recall the traffic light model of Figure 3.10. Suppose that we
wish to compose this with a model of a pedestrian crossing light, like that shown
in Figure 5.10. The output sigR of the traffic light can provide the input sigR
of the pedestrian light. Under synchronous cascade composition, the meaning of
the composite is given in Figure 5.11. Note that unsafe states, such as (green,
green), which is the state when both cars and pedestrians have a green light, are
not reachable states, and hence are not shown.

In its simplest form, cascade composition implies an ordering of the reactions of the

Figure 5.10: A model of a pedestrian crossing light, to be composed in a syn-
chronous cascade composition with the traffic light model of Figure 3.10.
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Figure 5.11: Semantics of a synchronous cascade composition of the traffic light
model of Figure 3.10 with the pedestrian light model of Figure 5.10.

components. Since this ordering is well defined, we do not have as much difficulty with
shared variables as we did with side-by-side composition. However, we will see that in
more general compositions, the ordering is not so simple.

5.1.5 General Composition

Side-by-side and cascade composition provide the basic building blocks for building more
complex compositions of machines. Consider for example the composition in Figure 5.12.
A1 and A3 are a side-by-side composition that together define a machine B. B and A2

are a cascade composition, with B feeding events to A2. However, B and A2 are also
a cascade composition in the opposite order, with A2 feeding events to B. Cycles like
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Figure 5.12: Arbitrary interconnections of state machines are combinations of
side-by-side and cascade compositions, possibly creating cycles, as in this ex-
ample.

this are called feedback, and they introduce a conundrum; which machine should react
first, B or A2? This conundrum will be resolved in the next chapter when we explain the
synchronous-reactive model of computation.

5.2 Hierarchical State Machines

In this section, we consider hierarchical FSMs, which date back to Statecharts (Harel,
1987). There are many variants of Statecharts, often with subtle semantic differences
between them (von der Beeck, 1994). Here, we will focus on some of the simpler aspects
only, and we will pick a particular semantic variant.

The key idea in hierarchical state machines is state refinement. In Figure 5.13, state B has
a refinement that is another FSM with two states, C and D. What it means for the machine
to be in state B is that it is in one of states C or D.

The meaning of the hierarchy in Figure 5.13 can be understood by comparing it to the
equivalent flattened FSM in Figure 5.14. The machine starts in state A. When guard g2
evaluates to true, the machine transitions to state B, which means a transition to state C,
the initial state of the refinement. Upon taking this transition to C, the machine performs
action a2, which may produce an output event or set a variable (if this is an extended state
machine).

There are then two ways to exit C. Either guard g1 evaluates to true, in which case the
machine exits B and returns to A, or guard g4 evaluates to true and the machine transitions
to D. A subtle question is what happens if both guards g1 and g4 evaluate to true. Different
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Figure 5.13: In a hierarchical FSM, a state may have a refinement that is another
state machine.

Figure 5.14: Semantics of the hierarchical FSM in Figure 5.13.

variants of Statecharts may make different choices at this point. It seems reasonable that
the machine should end up in state A, but which of the actions should be performed, a4,
a1, or both? Such subtle questions help account for the proliferation of different variants
of Statecharts.

We choose a particular semantics that has attractive modularity properties (Lee and Tri-
pakis, 2010). In this semantics, a reaction of a hierarchical FSM is defined in a depth-first
fashion. The deepest refinement of the current state reacts first, then its container state
machine, then its container, etc. In Figure 5.13, this means that if the machine is in state
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Figure 5.15: Variant of Figure 5.13 that uses a preemptive transition.

Figure 5.16: Semantics of Figure 5.15 with a preemptive transition.

B (which means that it is in either C or D), then the refinement machine reacts first. If
it is C, and guard g4 is true, the transition is taken to D and action a4 is performed. But
then, as part of the same reaction, the top-level FSM reacts. If guard g1 is also true, then
the machine transitions to state A. It is important that logically these two transitions are
simultaneous and instantaneous, so the machine does not actually go to state D. Nonethe-
less, action a4 is performed, and so is action a1. This combination corresponds to the
topmost transition of Figure 5.14.

Another subtlety is that if two (non-absent) actions are performed in the same reaction,
they may conflict. For example, two actions may write different values to the same output
port. Or they may set the same variable to different values. Our choice is that the actions
are performed in sequence, as suggested by the semicolon in the action a4; a1. As in an
imperative language like C, the semicolon denotes a sequence. If the two actions conflict,
the later one dominates.
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Figure 5.17: Variant of the hierarchical state machine of Figure 5.13 that has a
history transition.

Such subtleties can be avoided by using a preemptive transition, shown in Figure 5.15,
which has the semantics shown in Figure 5.16. The guards of a preemptive transition are
evaluated before the refinement reacts, and if any guard evaluates to true, the refinement
does not react. As a consequence, if the machine is in state B and g1 is true, then neither
action a3 nor a4 is performed. A preemptive transition is shown with a (red) circle at the
originating end of the transition.

Notice in Figures 5.13 and 5.14 that whenever the machine enters B, it always enters C,
never D, even if it was previously in D when leaving B. The transition from A to B is called
a reset transition because the destination refinement is reset to its initial state, regardless
of where it had previously been. A reset transition is indicated in our notation with a
hollow arrowhead at the destination end of a transition.

In Figure 5.17, the transition from A to B is a history transition, an alternative to a reset
transition. In our notation, a solid arrowhead denotes a history transition. It may also
be marked with an “H” for emphasis. When a history transition is taken, the destination
refinement resumes in whatever state it was last in (or its initial state on the first entry).

The semantics of the history transition is shown in Figure 5.18. The initial state is labeled
(A, C) to indicate that the machine is in state A, and if and when it next enters B it will go
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Figure 5.18: Semantics of the hierarchical state machine of Figure 5.17 that has
a history transition.

to C. The first time it goes to B, it will be in the state labeled (B, C) to indicate that it is
in state B and, more specifically, C. If it then transitions to (B, D), and then back to A, it
will end up in the state labeled (A, D), which means it is in state A, but if and when it next
enters B it will go to D. That is, it remembers its history, specifically where it was when it
left B.

As with concurrent composition, hierarchical state machines admit many possible mean-
ings. The differences can be subtle. Considerable care is required to ensure that models
are clear and that their semantics match what is being modeled.

5.3 Summary

Any well-engineered system is a composition of simpler components. In this chapter, we
have considered two forms of composition of state machines, concurrent composition and
hierarchical composition.

For concurrent composition, we introduced both synchronous and asynchronous compo-
sition, but did not complete the story. We have deferred dealing with feedback to the
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next chapter, because for synchronous composition, significant subtleties arise. For asyn-
chronous composition, communication via ports requires additional mechanisms that are
not (yet) part of our model of state machines. Even without communication via ports,
significant subtleties arise because there are several possible semantics for asynchronous
composition, and each has strengths and weaknesses. One choice of semantics may be
suitable for one application and not for another. These subtleties motivate the topic of the
next chapter, which provides more structure to concurrent composition and resolves most
of these questions (in a variety of ways).

For hierarchical composition, we focus on a style originally introduced by Harel (1987)
known as Statecharts. We specifically focus on the ability for states in an FSM to have
refinements that are themselves state machines. The reactions of the refinement FSMs are
composed with those of the machine that contains the refinements. As usual, there are
many possible semantics.
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Exercises

1. Consider the extended state machine model of Figure 3.8, the garage counter. Sup-
pose that the garage has two distinct entrance and exit points. Construct a side-by-
side concurrent composition of two counters that share a variable c that keeps track
of the number of cars in the garage. Specify whether you are using synchronous or
asynchronous composition, and define exactly the semantics of your composition
by giving a single machine modeling the composition. If you choose synchronous
semantics, explain what happens if the two machines simultaneously modify the
shared variable. If you choose asynchronous composition, explain precisely which
variant of asynchronous semantics you have chosen and why. Is your composition
machine deterministic?

2. For semantics 2 in Section 5.1.2, give the five tuple for a single machine represent-
ing the composition C,

(StatesC , InputsC ,OutputsC , updateC , initialStateC)

for the side-by-side asynchronous composition of two state machines A and B.
Your answer should be in terms of the five-tuple definitions for A and B,

(StatesA, InputsA,OutputsA, updateA, initialStateA)

and
(StatesB, InputsB,OutputsB, updateB, initialStateB)

3. Consider the following synchronous composition of two state machines A and B:
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Construct a single state machine C representing the composition. Which states of
the composition are unreachable?

4. Consider the following synchronous composition of two state machines A and B:

Construct a single state machine C representing the composition. Which states of
the composition are unreachable?

5. Consider the following hierarchical state machine:

Construct an equivalent flat FSM giving the semantics of the hierarchy. Describe
in words the input/output behavior of this machine. Is there a simpler machine
that exhibits the same behavior? (Note that equivalence relations between state
machines are considered in Chapter 14, but here, you can use intuition and just
consider what the state machine does when it reacts.)

6. How many reachable states does the following state machine have?
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7. Suppose that the machine of Exercise 8 of Chapter 4 is composed in a synchronous
side-by-side composition with the following machine:

Find a tight lower bound on the time between events a and b. That is, find a lower
bound on the time gap during which there are no events in signals a or b. Give an
argument that your lower bound is tight.
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In sound engineering practice, systems are built by composing components. In order for
the composition to be well understood, we need first for the individual components to be
well understood, and then for the meaning of the interaction between components to be
well understood. The previous chapter dealt with composition of finite state machines.
With such composition, the components are well defined (they are FSMs), but there are
many possible interpretations for the interaction between components. The meaning of a
composition is referred to as its semantics.

This chapter focuses on the semantics of concurrent composition. The word “concurrent”
literally means “running together.” A system is said to be concurrent if different parts of
the system (components) conceptually operate at the same time. There is no particular
order to their operations. The semantics of such concurrent operation can be quite subtle,
however.

The components we consider in this chapter are actors, which react to stimuli at input
ports and produce stimuli on output ports. In this chapter, we will be only minimally
concerned with how the actors themselves are defined. They may be FSMs, hardware,
or programs specified in an imperative programming language. We will need to impose
some constraints on what these actors can do, but we need not constrain how they are
specified.

The semantics of a concurrent composition of actors is governed by three sets of rules that
we collectively call a model of computation (MoC). The first set of rules specifies what
constitutes a component. The second set specifies the concurrency mechanisms. The third
specifies the communication mechanisms.

In this chapter, a component will be an actor with ports and a set of execution actions.
An execution action defines how the actor reacts to inputs to produce outputs and change
state. The ports will be interconnected to provide for communication between actors,
and the execution actions will be invoked by the environment of the actor to cause the
actor to perform its function. For example, for FSMs, one action is provided that causes
a reaction. The focus of this chapter is on introducing a few of the possible concurrency
and communication mechanisms that can govern the interactions between such actors.

We begin by laying out the common structure of models that applies to all MoCs studied
in this chapter. We then proceed to describe a suite of MoCs.
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Figure 6.1: Any interconnection of actors can be modeled as a single (side-by-
side composite) actor with feedback.

6.1 Structure of Models

In this chapter, we assume that models consist of fixed interconnections of actors like
that shown in Figure 6.1(a). The interconnections between actors specify communication
paths. The communication itself takes the form of a signal, which consists of one or more
communication events. For the discrete signals of Section 3.1, for example, a signal s
has the form of a function

s : R→ Vs ∪ {absent},

where Vs is a set of values called the type of the signal s. A communication event in this
case is a non-absent value of s.
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Example 6.1: Consider a pure signal s that is a discrete signal given by

s(t) =

{
present if t is a multiple of P
absent otherwise

for all t ∈ R and some P ∈ R. Such a signal is called a clock signal with period
P . Communication events occur every P time units.

In Chapter 2, a continuous-time signal has the form of a function

s : R→ Vs,

in which case every one of the (uncountably) infinite set of values s(t), for all t ∈ R, is a
communication event. In this chapter, we will also encounter signals of the form

s : N→ Vs,

where there is no time line. The signal is simply a sequence of values.

A communication event has a type, and we require that a connection between actors type
check. That is, if an output port y with type Vy is connected to an input port x with type
Vx, then

Vy ⊆ Vx.

As suggested in Figure 6.1(b-d), any actor network can be reduced to a rather simple
form. If we rearrange the actors as shown in Figure 6.1(b), then the actors form a side-by-
side composition indicated by the box with rounded corners. This box is itself an actor
F as shown in Figure 6.1(c) whose input is a three-tuple (s1, s2, s3) of signals and whose
output is the same three-tuple of signals. If we let s = (s1, s2, s3), then the actor can be
depicted as in Figure 6.1(d), which hides all the complexity of the model.

Notice that Figure 6.1(d) is a feedback system. By following the procedure that we used
to build it, every interconnection of actors can be structured as a similar feedback system
(see Exercise 1).
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Actor Networks as a System of Equations

In a model, if the actors are determinate, then each actor is a function that maps input
signals to output signals. For example, in Figure 6.1(a), actor A may be a function
relating signals s1 and s2 as follows,

s2 = A(s1).

Similarly, actor B relates three signals by

s1 = B(s2, s3).

Actor C is a bit more subtle, since it has no input ports. How can it be a function?
What is the domain of the function? If the actor is determinate, then its output signal
s3 is a constant signal. The function C needs to be a constant function, one that yields
the same output for every input. A simple way to ensure this is to define C so that its
domain is a singleton set (a set with only one element). Let {∅} be the singleton set, so
C can only be applied to ∅. The function C is then given by

C(∅) = s3.

Hence, Figure 6.1(a) gives a system of equations

s1 = B(s2, s3)

s2 = A(s1)

s3 = C(∅).

The semantics of such a model, therefore, is a solution to such a system of equations.
This can be represented compactly using the function F in Figure 6.1(d), which is

F (s1, s2, s3) = (B(s2, s3), A(s1), C(∅)).

All actors in Figure 6.1(a) have output ports; if we had an actor with no output port,
then we could similarly define it as a function whose codomain is {∅}. The output of
such function is ∅ for all inputs.
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Fixed-Point Semantics

In a model, if the actors are determinate, then each actor is a function that maps input
signals to output signals. The semantics of such a model is a system of equations (see
sidebar on page 139) and the reduced form of Figure 6.1(d) becomes

s = F (s), (6.1)

where s = (s1, s2, s3). Of course, this equation only looks simple. Its complexity lies
in the definition of the function F and the structure of the domain and range of F .

Given any function F : X → X for any set X , if there is an x ∈ X such that
F (x) = x, then x is called a fixed point. Equation (6.1) therefore asserts that the
semantics of a determinate actor network is a fixed point. Whether a fixed point exists,
whether the fixed point is unique, and how to find the fixed point, all become interesting
questions that are central to the model of computation.

In the SR model of computation, the execution of all actors is simultaneous and
instantaneous and occurs at ticks of the global clock. If the actor is determinate, then
each such execution implements a function called a firing function. For example, in
the n-th tick of the global clock, actor A in Figure 6.1 implements a function of the
form

an : V1 ∪ {absent} → V2 ∪ {absent}

where Vi is the type of signal si. Hence, if si(n) is the value of si at the n-th tick, then

s2(n) = an(s1(n)).

Given such a firing function fn for each actor F we can, just as in Figure 6.1(d) define
the execution at a single tick by a fixed point,

s(n) = fn(s(n)),

where s(n) = (s1(n), s2(n), s3(n)) and fn is a function where

fn(s1(n), s2(n), s3(n)) = (bn(s2(n), s3(n)), an(s1(n)), cn(∅)).

Thus, for SR, the semantics at each tick of the global clock is a fixed point of the
function fn, just as its execution over all ticks is a fixed point of the function F .
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6.2 Synchronous-Reactive Models

In Chapter 5 we studied synchronous composition of state machines, but we avoided the
nuances of feedback compositions. For a model described as the feedback system of
Figure 6.1(d), the conundrum discussed in Section 5.1.5 takes a particularly simple form.
If F in Figure 6.1(d) is realized by a state machine, then in order for it to react, we need
to know its inputs at the time of the reaction. But its inputs are the same as its outputs, so
in order for F to react, we need to know its outputs. But we cannot know its outputs until
after it reacts.

As shown in Section 6.1 above and Exercise 1, all actor networks can be viewed as feed-
back systems, so we really do have to resolve the conundrum. We do that now by giving
a model of computation known as the synchronous-reactive (SR) MoC.

An SR model is a discrete system where signals are absent at all times except (possibly)
at ticks of a global clock. Conceptually, execution of a model is a sequence of global
reactions that occur at discrete times, and at each such reaction, the reaction of all actors
is simultaneous and instantaneous.

6.2.1 Feedback Models

We focus first on feedback models of the form of Figure 6.1(d), where F in the figure is
realized as a state machine. At the n-th tick of the global clock, we have to find the value
of the signal s so that it is both a valid input and a valid output of the state machine, given
its current state. Let s(n) denote the value of the signal s at the n-th reaction. The goal is
to determine, at each tick of the global clock, the value of s(n).

Example 6.2: Consider first a simpler example shown in Figure 6.2. (This is
simpler than Figure 6.1(d) because the signal s is a single pure signal rather than
an aggregation of three signals.) If A is in state s1 when that reaction occurs,
then the only possible value for s(n) is s(n) = absent because a reaction must
take one of the transitions out of s1, and both of these transitions emit absent.
Moreover, once we know that s(n) = absent, we know that the input port x has
value absent, so we can determine that A will transition to state s2.
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Figure 6.2: A simple well-formed feedback model.

Figure 6.3: The semantics of the model in Figure 6.2.

IfA is in state s2 when the reaction occurs, then the only possible value for s(n) is
s(n) = present, and the machine will transition to state s1. Therefore, s alternates
between absent and present. The semantics of machine A in the feedback model
is therefore given by Figure 6.3.

In the previous example, it is important to note that the input x and output y have the
same value in every reaction. This is what is meant by the feedback connection. Any
connection from an output port to an input port means that the value at the input port is
the same as the value at the output port at all times.
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Given a deterministic state machine in a feedback model like that of Figure 6.2, in each
state i we can define a function ai that maps input values to output values,

ai : {present, absent} → {present, absent},

where the function depends on the state the machine is in. This function is defined by the
update function.

Example 6.3: For the example in Figure 6.2, if the machine is in state s1, then
as1(x) = absent for all x ∈ {present, absent}.

The function ai is called the firing function for state i (see box on page 140). Given a
firing function, to find the value s(n) at the n-th reaction, we simply need to find a value
s(n) such that

s(n) = ai(s(n)).

Such a value s(n) is called a fixed point of the function ai. It is easy to see how to
generalize this so that the signal s can have any type. Signal s can even be an aggregation
of signals, as in Figure 6.1(d) (see box on page 140).

6.2.2 Well-Formed and Ill-Formed Models

There are two potential problems that may occur when seeking a fixed point. First, there
may be no fixed point. Second, there may be more than one fixed point. If either case
occurs in a reachable state, we call the system ill formed. Otherwise, it is well formed.

Example 6.4: Consider machine B shown in Figure 6.4. In state s1, we get the
unique fixed point s(n) = absent. In state s2, however, there is no fixed point. If
we attempt to choose s(n) = present, then the machine will transition to s1 and
its output will be absent. But the output has to be the same as the input, and the
input is present, so we get a contradiction. A similar contradiction occurs if we
attempt to choose s(n) = absent.

Since state s2 is reachable, this feedback model is ill formed.
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Figure 6.4: An ill-formed feedback model that has no fixed point in state s2.

Figure 6.5: An ill-formed feedback model that has more than one fixed point in
state s1.

Example 6.5: Consider machineC shown in Figure 6.5. In state s1, both s(n) =
absent and s(n) = present are fixed points. Either choice is valid. Since state s1
is reachable, this feedback model is ill formed.

If in a reachable state there is more than one fixed point, we declare the machine to be
ill formed. An alternative semantics would not reject such a model, but rather would de-
clare it to be nondeterministic. This would be a valid semantics, but it would have the
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disadvantage that a composition of deterministic state machines is not assured of being
deterministic. In fact, C in Figure 6.5 is deterministic, and under this alternative seman-
tics, the feedback composition in the figure would not be deterministic. Determinism
would not be a compositional property. Hence, we prefer to reject such models.

6.2.3 Constructing a Fixed Point

If the type Vs of the signal s or the signals it is an aggregate of is finite, then one way to find
a fixed point is by exhaustive search, which means to try all values. If exactly one fixed
point is found, then the model is well formed. However, exhaustive search is expensive
(and impossible if the types are not finite). We can develop instead a systematic procedure
that for most, but not all, well-formed models will find a fixed point. The procedure is as
follows. For each reachable state i,

1. Start with s(n) unknown.

2. Determine as much as you can about fi(s(n)), where fi is the firing function in
state i. Note that in this step, you should use only the firing function, which is given
by the state machine; you should not use knowledge of how the state machine is
connected on the outside.

3. Repeat step 2 until all values in s(n) become known (whether they are present and
what their values are), or until no more progress can be made.

4. If unknown values remain, then reject the model.

This procedure may reject models that have a unique fixed point, as illustrated by the
following example.

Example 6.6: Consider machine D shown in Figure 6.6. In state s1, if the input
is unknown, we cannot immediately tell what the output will be. We have to try
all the possible values for the input to determine that in fact s(n) = absent for all
n.
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Figure 6.6: A well-formed feedback model that is not constructive.

A state machine for which the procedure works in all reachable states is said to be
constructive (Berry, 1999). The example in Figure 6.6 is not constructive. For non-
constructive machines, we are forced to do exhaustive search or to invent some more
elaborate solution technique. Since exhaustive search is often too expensive for practical
use, many SR languages and modeling tools (see box on page 148) reject non-constructive
models.

Step 2 of the above procedure is key. How exactly can we determine the outputs if the
inputs are not all known? This requires what is called a must-may analysis of the model.
Examining the machine, we can determine what must be true of the outputs and what may
be true of the outputs.

Example 6.7: The model in Figure 6.2 is constructive. In state s1, we can
immediately determine that the machine may not produce an output. Therefore,
we can immediately conclude that the output is absent, even though the input is
unknown. Of course, once we have determined that the output is absent, we now
know that the input is absent, and hence the procedure concludes.

In state s2, we can immediately determine that the machine must produce an
output, so we can immediately conclude that the output is present.
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The above procedure can be generalized to an arbitrary model structure. Consider for
example Figure 6.1(a). There is no real need to convert it to the form of Figure 6.1(d).
Instead, we can just begin by labeling all signals unknown, and then in arbitrary order,
examine each actor to determine whatever can be determined about the outputs, given its
initial state. We repeat this until no further progress can be made, at which point either all
signals become known, or we reject the model as either ill-formed or non-constructive.
Once we know all signals, then all actors can make state transitions, and we repeat the
procedure in the new state for the next reaction.

The constructive procedure above can be adapted to support nondeterministic machines
(see Exercise 4). But now, things become even more subtle, and there are variants to the
semantics. One way to handle nondeterminism is that when executing the constructive
procedure, when encountering a nondeterministic choice, make an arbitrary choice. If
the result leads to a failure of the procedure to find a fixed point, then we could either
reject the model (not all choices lead to a well-formed or constructive model) or reject the
choice and try again.

In the SR model of computation, actors react simultaneously and instantaneously, at least
conceptually. Achieving this with realistic computation requires tight coordination of
the computation. We consider next a family of models of computation that require less
coordination.

6.3 Dataflow Models of Computation

In this section, we consider MoCs that are much more asynchronous than SR. Reactions
may occur simultaneously, or they may not. Whether they do or do not is not an essential
part of the semantics. The decision as to when a reaction occurs can be much more decen-
tralized, and can in fact reside with each individual actor. When reactions are dependent
on one another, the dependence is due to the flow of data, rather than to the synchrony of
events. If a reaction of actor A requires data produced by a reaction of actor B, then the
reaction of A must occur after the reaction of B. A MoC where such data dependencies
are the key constraints on reactions is called a dataflow model of computation. There are
several variants of dataflow MoCs, a few of which we consider here.
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Synchronous-Reactive Languages

The synchronous-reactive MoC has a history dating at least back to the mid 1980s
when a suite of programming languages were developed. The term “reactive” comes
from a distinction in computational systems between transformational systems,
which accept input data, perform computation, and produce output data, and reac-
tive systems, which engage in an ongoing dialog with their environment (Harel and
Pnueli, 1985). Manna and Pnueli (1992) state

“The role of a reactive program ... is not to produce a final result but to
maintain some ongoing interaction with its environment.”

The distinctions between transformational and reactive systems led to the development
of a number of innovative programming languages. The synchronous languages (Ben-
veniste and Berry, 1991) take a particular approach to the design of reactive systems, in
which pieces of the program react simultaneously and instantaneously at each tick of a
global clock. First among these languages are Lustre (Halbwachs et al., 1991), Esterel
(Berry and Gonthier, 1992), and Signal (Le Guernic et al., 1991). Statecharts (Harel,
1987) and its implementation in Statemate (Harel et al., 1990) also have a strongly
synchronous flavor.

SCADE (Berry, 2003) (Safety Critical Application Development Environment), a
commercial product of Esterel Technologies, builds on Lustre, borrows concepts from
Esterel, and provides a graphical syntax, where state machines are drawn and actor
models are composed in a similar manner to the figures in this text. One of the main
attractions of synchronous languages is their strong formal properties that yield quite
effectively to formal analysis and verification techniques. For this reason, SCADE
models are used in the design of safety-critical flight control software systems for com-
mercial aircraft made by Airbus.

The principles of synchronous languages can also be used in the style of a coordi-
nation language rather than a programming language, as done in Ptolemy II (Edwards
and Lee, 2003) and ForSyDe (Sander and Jantsch, 2004). This allows for “primi-
tives” in a system to be complex components rather than built-in language primitives.
This approach allows heterogeneous combinations of MoCs, since the complex compo-
nents may themselves be given as compositions of further subcomponents under some
other MoC.

148 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


6. CONCURRENT MODELS OF COMPUTATION

6.3.1 Dataflow Principles

In dataflow models, the signals providing communication between the actors are se-
quences of message, where each message is called a token. That is, a signal s is a partial
function of the form

s : N⇀ Vs,

where Vs is the type of the signal, and where the signal is defined on an initial segment
{0, 1, · · · , n} ⊂ N, or (for infinite executions) on the entire set N. Each element s(n)
of this sequence is a token. A (determinate) actor will be described as a function that
maps input sequences to output sequences. We will actually use two functions, an actor
function, which maps entire input sequences to entire output sequences, and a firing
function, which maps a finite portion of the input sequences to output sequences, as
illustrated in the following example.

Example 6.8: Consider an actor that has one input and one output port as shown
below

Suppose that the input type is Vx = R. Suppose that this is a Scale actor parame-
terized by a parameter a ∈ R, similar to the one in Example 2.3, which multiplies
inputs by a. Then

F (x1, x2, x3, · · · ) = (ax1, ax2, ax3, · · · ).

Suppose that when the actor fires, it performs one multiplication in the firing.
Then the firing function f operates only on the first element of the input sequence,
so

f(x1, x2, x3, · · · ) = f(x1) = (ax1).

The output is a sequence of length one.
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As illustrated in the previous example, the actor function F combines the effects of multi-
ple invocations of the firing function f . Moreover, the firing function can be invoked with
only partial information about the input sequence to the actor. In the above example, the
firing function can be invoked if one or more tokens are available on the input. The rule
requiring one token is called a firing rule for the Scale actor. A firing rule specifies the
number of tokens required on each input port in order to fire the actor.

The Scale actor in the above example is particularly simple because the firing rule and
the firing function never vary. Not all actors are so simple.

Example 6.9: Consider now a different actor Delay with parameter d ∈ R. The
actor function is

D(x1, x2, x3, · · · ) = (d, x1, x2, x3, · · · ).

This actor prepends a sequence with a token with value d. This actor has two
firing functions, d1 and d2, and two firing rules. The first firing rule requires no
input tokens at all and produces an output sequence of length one, so

d1(s) = (d),

where s is a sequence of any length, including length zero (the empty sequence).
This firing rule is initially the one used, and it is used exactly once. The sec-
ond firing rule requires one input token and is used for all subsequent firings. It
triggers the firing function

d2(x1, · · · ) = (x1).

The actor consumes one input token and produces on its output the same token.
The actor can be modeled by a state machine, as shown in Figure 6.7. In that
figure, the firing rules are implicit in the guards. The tokens required to fire are
exactly those required to evaluate the guards. The firing function d1 is associated
with state s1, and d2 with s2.

When dataflow actors are composed, with an output of one going to an input of another,
the communication mechanism is quite different from that of the previous MoCs consid-
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Figure 6.7: An FSM model for the Delay actor in Example 6.9.

ered in this chapter. Since the firing of the actors is asynchronous, a token sent from one
actor to another must be buffered; it needs to be saved until the destination actor is ready
to consume it. When the destination actor fires, it consumes one or more input tokens.
After being consumed, a token may be discarded (meaning that the memory in which it is
buffered can be reused for other purposes).

Dataflow models pose a few interesting problems. One question is how to ensure that
the memory devoted to buffering of tokens is bounded. A dataflow model may be able
to execute forever (or for a very long time); this is called an unbounded execution.
For an unbounded execution, we may have to take measures to ensure that buffering of
unconsumed tokens does not overflow the available memory.

Example 6.10: Consider the following cascade composition of dataflow actors:

SinceA has no input ports, its firing rule is simple. It can fire at any time. Suppose
that on each firing, A produces one token. What is to keep A from firing at a
faster rate than B? Such faster firing could result in an unbounded build up of
unconsumed tokens on the buffer between A and B. This will eventually exhaust
available memory.
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Figure 6.8: SDF actor A produces M tokens when it fires, and actor B consumes
N tokens when it fires.

In general, for dataflow models that are capable of unbounded execution, we will need
scheduling policies that deliver bounded buffers.

A second problem that may arise is deadlock. Deadlock occurs when there are cycles, as
in Figure 6.1, and a directed loop has insufficient tokens to satisfy any of the firing rules of
the actors in the loop. The Delay actor of Example 6.9 can help prevent deadlock because
it is able to produce an initial output token without having any input tokens available.
Dataflow models with feedback will generally require Delay actors (or something similar)
in every cycle.

For general dataflow models, it can be difficult to tell whether the model will deadlock,
and whether there exists an unbounded execution with bounded buffers. In fact, these
two questions are undecidable, meaning that there is no algorithm that can answer the
question in bounded time for all dataflow models (Buck, 1993). Fortunately, there are
useful constraints that we can impose on the design of actors that make these questions
decidable. We examine those constraints next.

6.3.2 Synchronous Dataflow

Synchronous dataflow (SDF) is a constrained form of dataflow where for each actor,
every firing consumes a fixed number of input tokens on each input port and produces a
fixed number of output tokens on each output port (Lee and Messerschmitt, 1987).1

1Despite the term, synchronous dataflow is not synchronous in the sense of SR. There is no global clock
in SDF models, and firings of actors are asynchronous. For this reason, some authors use the term static
dataflow rather than synchronous dataflow. This does not avoid all confusion, however, because Dennis
(1974) had previously coined the term “static dataflow” to refer to dataflow graphs where buffers could hold
at most one token. Since there is no way to avoid a collision of terminology, we stick with the original “syn-
chronous dataflow” terminology used in the literature. The term SDF arose from a signal processing concept,
where two signals with sample rates that are related by a rational multiple are deemed to be synchronous.
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Consider a single connection between two actors, A and B, as shown in Figure 6.8. The
notation here means that when A fires, it produces M tokens on its output port, and when
B fires, it consumes N tokens on its input port. M and N are positive integers. Suppose
that A fires qA times and B fires qB times. All tokens that A produces are consumed by
B if and only if the following balance equation is satisfied,

qAM = qBN. (6.2)

Given values qA and qB satisfying (6.2), we can find a schedule that delivers unbounded
execution with bounded buffers. An example of such a schedule fires A repeatedly, qA
times, followed by B repeatedly, qB times. It can repeat this sequence forever without
exhausting available memory.

Example 6.11: Suppose that in Figure 6.8, M = 2 and N = 3. Then qA = 3
and qB = 2 satisfy (6.2). Hence, the following schedule can be repeated forever,

A,A,A,B,B.

An alternative schedule is also available,

A,A,B,A,B.

In fact, this latter schedule has an advantage over the former one in that it requires
less memory. B fires as soon as there are enough tokens, rather than waiting for
A to complete its entire cycle.

Another solution to (6.2) is qA = 6 and qB = 4. This solution includes more
firings in the schedule than are strictly needed to keep the system in balance.

The equation is also satisfied by qA = 0 and qB = 0, but if the number of firings
of actors is zero, then no useful work is done. Clearly, this is not a solution we
want. Negative solutions are also not desirable.

Generally we will be interested in finding the least positive integer solution to the
balance equations.

In a more complicated SDF model, every connection between actors results in a balance
equation. Hence, the model defines a system of equations.
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Figure 6.9: A consistent SDF model.

Figure 6.10: An inconsistent SDF model.

Example 6.12: Figure 6.9 shows a network with three SDF actors. The connec-
tions x, y, and z, result in the following system of balance equations,

qA = qB

2qB = qC

2qA = qC .

The least positive integer solution to these equations is qA = qB = 1, and qC = 2,
so the following schedule can be repeated forever to get an unbounded execution
with bounded buffers,

A,B,C,C.

The balance equations do not always have a non-trivial solution, as illustrated in the fol-
lowing example.
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Figure 6.11: An SDF model with initial tokens on a feedback loop.

Example 6.13: Figure 6.10 shows a network with three SDF actors where the
only solution to the balance equations is the trivial one, qA = qB = qC = 0.
A consequence is that there is no unbounded execution with bounded buffers for
this model. It cannot be kept in balance.

An SDF model that has a non-zero solution to the balance equations is said to be consis-
tent. If the only solution is zero, then it is inconsistent. An inconsistent model has no
unbounded execution with bounded buffers.

Lee and Messerschmitt (1987) showed that if the balance equations have a non-zero solu-
tion, then they also have a solution where qi is a positive integer for all actors i. Moreover,
for connected models (where there is a communication path between any two actors), they
gave a procedure for finding the least positive integer solution. Such a procedure forms
the foundation for a scheduler for SDF models.

Consistency is sufficient to ensure bounded buffers, but it is not sufficient to ensure that
an unbounded execution exists. In particular, when there is feedback, as in Figure 6.1,
then deadlock may occur. Deadlock bounds an execution.

To allow for feedback, the SDF model treats Delay actors specially. Recall from Exam-
ple 6.9, that the Delay actor is able to produce output tokens before it receives any input
tokens, and then it subsequently behaves like a trivial SDF actor that copies inputs to
outputs. But such a trivial actor is not really needed, and the cost of copying inputs to out-
puts is unnecessary. The Delay actor can be implemented very efficiently as a connection
with initial tokens (those tokens that the actor is able to produce before receiving inputs).
No actor is actually needed at run time. The scheduler must take the initial tokens into
account.
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Figure 6.12: Dynamic dataflow actors.

Example 6.14: Figure 6.11 shows an SDF model with initial tokens on a feed-
back loop. These replace a Delay actor that is able to initially produce four tokens.
The balance equations are

3qA = 2qB

2qB = 3qA.

The least positive integer solution is qA = 2, and qB = 3, so the model is consis-
tent. With four initial tokens on the feedback connection, as shown, the following
schedule can be repeated forever,

A,B,A,B,B.

Were there any fewer than four initial tokens, however, the model would deadlock.
If there were only three tokens, for example, then A could fire, followed by B,
but in the resulting state of the buffers, neither could fire again.

In addition to the procedure for solving the balance equations, Lee and Messerschmitt
(1987) gave a procedure that will either provide a schedule for an unbounded execution
or will prove that no such schedule exists. Hence, both bounded buffers and deadlock are
decidable for SDF models.
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6.3.3 Dynamic Dataflow

Although the ability to guarantee bounded buffers and rule out deadlock is valuable, it
comes at a price. SDF is not very expressive. It cannot directly express, for example,
conditional firing, where an actor fires only if, for example, a token has a particular value.
Such conditional firing is supported by a more general dataflow MoC known as dynamic
dataflow (DDF). Unlike SDF actors, DDF actors can have multiple firing rules, and they
are not constrained to produce the same number of output tokens on each firing. The
Delay actor of Example 6.9 is directly supported by the DDF MoC, without any need for
special treatment of initial tokens. So are two basic actors known as Switch and Select,
shown in Figure 6.12.

The Select actor on the left has three firing rules. Initially, it requires one token on the
bottom input port. The type of that port is Boolean, so the value of the token must be true
or false. If a token with value true is received on that input port, then the actor produces
no output, but instead activates the next firing rule, which requires one token for the top
left input port, labeled T. When the actor next fires, it consumes the token on the T port
and sends it to the output port. If a token with value false is received on the bottom input
port, then the actor activates a firing rule that requires a token on the bottom left input port
labeled F. When it consumes that token, it again sends it to the output port. Thus, it fires
twice to produce one output.

The Switch actor performs a complementary function. It has only one firing rule, which
requires a single token on both input ports. The token on the left input port will be sent
to either the T or the F output port, depending on the Boolean value of the token received
on the bottom input port. Hence, Switch and Select accomplish conditional routing of
tokens, as illustrated in the following example.

Example 6.15: Figure 6.13 uses Switch and Select to accomplish conditional
firing. Actor B produces a stream of Boolean-valued tokens x. This stream is
replicated by the fork to provide the control inputs y and z to the Switch and
Select actors. Based on the value of the control tokens on these streams, the
tokens produced by actor A are sent to either C or D, and the resulting outputs
are collected and sent to E. This model is the DDF equivalent of the familiar
if-then-else programming construct in imperative languages.
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Figure 6.13: A DDF model that accomplishes conditional firing.

Addition of Switch and Select to the actor library means that we can no longer always
find a bounded buffer schedule, nor can we provide assurances that the model will not
deadlock. Buck (1993) showed that bounded buffers and deadlock are undecidable for
DDF models. Thus, in exchange for the increased expressiveness and flexibility, we have
paid a price. The models are not as readily analyzed.

Switch and Select are dataflow analogs of the goto statement in imperative languages.
They provide low-level control over execution by conditionally routing tokens. Like goto
statements, using them can result in models that are very difficult to understand. Dijk-
stra (1968) indicted the goto statement, discouraging its use, advocating instead the use
of structured programming. Structured programming replaces goto statements with
nested for loops, if-then-else, do-while, and recursion. Fortunately, structured
programming is also available for dataflow models, as we discuss next.

6.3.4 Structured Dataflow

Figure 6.14 shows an alternative way to accomplish conditional firing that has many ad-
vantages over the DDF model in Figure 6.13. The grey box in the figure is an example of
a higher-order actor called Conditional. A higher-order actor is an actor that has one or
more models as parameters. In the example in the figure, Conditional is parameterized by
two sub-models, one containing the actor C and the other containing the actor D. When
Conditional fires, it consumes one token from each input port and produces one token on
its output port, so it is an SDF actor. The action it performs when it fires, however, is
dependent on the value of the token that arrives at the lower input port. If that value is
true, then actor C fires. Otherwise, actor D fires.
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Figure 6.14: Structured dataflow approach to conditional firing.

This style of conditional firing is called structured dataflow, because, much like struc-
tured programming, control constructs are nested hierarchically. Arbitrary data-dependent
token routing is avoided (which is analogous to avoiding arbitrary branches using goto
instructions). Moreover, when using such Conditional actors, the overall model is still
an SDF model. In the example in Figure 6.14, every actor consumes and produces ex-
actly one token on every port. Hence, the model is analyzable for deadlock and bounded
buffers.

This style of structured dataflow was introduced in LabVIEW, a design tool developed by
National Instruments (Kodosky et al., 1991). In addition to a conditional similar to that in
Figure 6.14, LabVIEW provides structured dataflow constructs for iterations (analogous
to for and do-while loops in an imperative language), for case statements (which
have an arbitrary number of conditionally executed submodels), and for sequences (which
cycle through a finite set of submodels). It is also possible to support recursion using
structured dataflow (Lee and Parks, 1995), but without careful constraints, boundedness
again becomes undecidable.

6.3.5 Process Networks

A model of computation that is closely related to dataflow models is Kahn process net-
works (or simply, process networks or PN), named after Gilles Kahn, who introduced
them (Kahn, 1974). The relationship between dataflow and PN is studied in detail by
Lee and Parks (1995) and Lee and Matsikoudis (2009), but the short story is quite sim-

Lee & Seshia, Introduction to Embedded Systems 159

http://LeeSeshia.org


6.3. DATAFLOW MODELS OF COMPUTATION

ple. In PN, each actor executes concurrently in its own process. That is, instead of being
defined by its firing rules and firing functions, a PN actor is defined by a (typically non-
terminating) program that reads data tokens from input ports and writes data tokens to
output ports. All actors execute simultaneously (conceptually, whether they actually exe-
cute simultaneously or are interleaved is irrelevant).

In the original paper, Kahn (1974) gave very elegant mathematical conditions on the ac-
tors that would ensure that a network of such actors was determinate in the sense that
the sequence of tokens on every connection between actors is unique, and specifically
independent of how the processes are scheduled. Thus, Kahn showed that concurrent
execution was possible without nondeterminacy.

Three years later, Kahn and MacQueen (1977) gave a simple, easily implemented mech-
anism for programs that ensures that the mathematical conditions are met to ensure de-
terminacy. A key part of the mechanism is to perform blocking reads on input ports
whenever a process is to read input data. Specifically, blocking reads mean that if the
process chooses to access data through an input port, it issues a read request and blocks
until the data becomes available. It cannot test the input port for the availability of data
and then perform a conditional branch based on whether data are available, because such
a branch would introduce schedule-dependent behavior.

Blocking reads are closely related to firing rules. Firing rules specify the tokens required
to continue computing (with a new firing function). Similarly, a blocking read specifies a
single token required to continue computing (by continuing execution of the process).

When a process writes to an output port, it performs a nonblocking write, meaning that
the write succeeds immediately and returns. The process does not block to wait for the
receiving process to be ready to receive data. This is exactly how writes to output ports
work in dataflow MoCs as well. Thus, the only material difference between dataflow and
PN is that with PN, the actor is not broken down into firing functions. It is designed as a
continuously executing program.

Kahn and MacQueen (1977) called the processes in a PN network coroutines for an
interesting reason. A routine or subroutine is a program fragment that is “called” by
another program. The subroutine executes to completion before the calling fragment
can continue executing. The interactions between processes in a PN model are more
symmetric, in that there is no caller and callee. When a process performs a blocking read,
it is in a sense invoking a routine in the upstream process that provides the data. Similarly,
when it performs a write, it is in a sense invoking a routine in the downstream process to
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Figure 6.15: A Petri net model of two concurrent programs with a mutual exclusion
protocol.

process the data. But the relationship between the producer and consumer of the data is
much more symmetric than with subroutines.

Just like dataflow, the PN MoC poses challenging questions about boundedness of buffers
and about deadlock. PN is expressive enough that these questions are undecidable. An
elegant solution to the boundedness question is given by Parks (1995) and elaborated by
Geilen and Basten (2003).

An interesting variant of process networks performs blocking writes rather than non-
blocking writes. That is, when a process writes to an output port, it blocks until the
receiving process is ready to receive the data. Such an interaction between processes is
called a rendezvous. Rendezvous forms the basis for well known process formalisms
such as communicating sequential processes (CSP) (Hoare, 1978) and the calculus of
communicating systems (CCS) (Milner, 1980). It also forms the foundation for the Oc-
cam programming language (Galletly, 1996), which enjoyed some success for a period
of time in the 1980s and 1990s for programming parallel computers.

In both the SR and dataflow models of computation considered so far, time plays a minor
role. In dataflow, time plays no role. In SR, computation occurs simultaneously and
instantaneously at each of a sequence of ticks of a global clock. Although the term “clock”
implies that time plays a role, it actually does not. In the SR MoC, all that matters is the
sequence. The physical time at which the ticks occur is irrelevant to the MoC. It is just a
sequence of ticks. Many modeling tasks, however, require a more explicit notion of time.
We examine next MoCs that have such a notion.
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6.4 Timed Models of Computation

For cyber-physical systems, the time at which things occur in software can matter, be-
cause the software interacts with physical processes. In this section, we consider a few
concurrent MoCs that explicitly refer to time. We describe three timed MoCs, each of
which have many variants. Our treatment here is necessarily brief. A complete study of
these MoCs would require a much bigger volume.

6.4.1 Time-Triggered Models

Kopetz and Grunsteidl (1994) introduced mechanisms for periodically triggering dis-
tributed computations according to a distributed clock that measures the passage of time.
The result is a system architecture called a time-triggered architecture (TTA). A key
contribution was to show how a TTA could tolerate certain kinds of faults, such that fail-
ures in part of the system could not disrupt the behaviors in other parts of the system (see
also Kopetz (1997) and Kopetz and Bauer (2003)). Henzinger et al. (2003) lifted the key
idea of TTA to the programming language level, providing a well-defined semantics for
modeling distributed time-triggered systems. Since then, these techniques have come into
practical use in the design of safety-critical avionics and automotive systems, becoming a
key part of standards such as FlexRay, a networking standard developed by a consortium
of automotive companies.

A time-triggered MoC is similar to SR in that there is a global clock that coordinates
the computation. But computations take time instead of being simultaneous and instan-
taneous. Specifically, time-triggered MoCs associate with a computation a logical exe-
cution time. The inputs to the computation are provided at ticks of the global clock, but
the outputs are not visible to other computations until the next tick of the global clock.
Between ticks, there is no interaction between the computations, so concurrency diffi-
culties such as race conditions do not exist. Since the computations are not (logically)
instantaneous, there are no difficulties with feedback, and all models are constructive.

The Simulink modeling system, sold by The MathWorks, supports a time-triggered MoC,
and in conjunction with another product called Real-Time Workshop, can translate such
models in embedded C code. In LabVIEW, from National Instruments, timed loops ac-
complish a similar capability within a dataflow MoC.
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In the simplest form, a time-triggered model specifies periodic computation with a fixed
time interval (the period) between ticks of the clock. Giotto (Henzinger et al., 2003)
supports modal models, where the periods differ in different modes. Some authors have
further extended the concept of logical execution time to non-periodic systems (Liu and
Lee, 2003; Ghosal et al., 2004).

Time triggered models are conceptually simple, but computations are tied closely to a
periodic clock. The model becomes awkward when actions are not periodic. DE systems,
considered next, encompass a richer set of timing behaviors.

6.4.2 Discrete Event Systems

Discrete-event systems (DE systems) have been used for decades as a way to build sim-
ulations for an enormous variety of applications, including for example digital networks,
military systems, and economic systems. A pioneering formalism for DE models is due
to Zeigler (1976), who called the formalism DEVS, abbreviating discrete event system
specification. DEVS is an extension of Moore machines that associates a non-zero lifes-
pan with each state, thus endowing the Moore machines with an explicit notion of the
passage of time (vs. a sequence of reactions).

The key idea in a DE MoC is that events are endowed with a time stamp, a value in
some model of time (see box on page 169). Normally, two distinct time stamps must be
comparable. That is, they are either equal, or one is earlier than the other. A DE model
is a network of actors where each actor reacts to input events in time-stamp order and
produces output events in time-stamp order.

Example 6.16: The clock signal with period P of Example 6.1 consists of events
with time stamps nP for all n ∈ Z.

To execute a DE model, we can use an event queue, which is a list of events sorted by
time stamp. The list begins empty. Each actor in the network is interrogated for any initial
events it wishes to place on the event queue. These events may be destined for another
actor, or they may be destined for the actor itself, in which case they will cause a reaction
of the actor to occur at the appropriate time. The execution continues by selecting the
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earliest event in the event queue and determining which actor should receive that event.
The value of that event (if any) is presented as an input to the actor, and the actor reacts
(“fires”). The reaction can produce output events, and also events that simply request a
later firing of the same actor at some specified time stamp.

At this point, variants of DE MoCs behave differently. Some variants, such as DEVS,
require that outputs produced by the actor have a strictly larger time stamp than that of the
input just presented. From a modeling perspective, every actor imposes some non-zero
delay, in that its reactions (the outputs) become visible to other actors strictly later than
the inputs that triggered the reaction. Other variants permit the actor to produce output
events with the same time stamp as the input. That is, they can react instantaneously.
As with SR models of computation, such instantaneous reactions can create significant
subtleties because inputs become simultaneous with outputs.

The subtleties introduced by simultaneous events can be resolved by treating DE as a
generalization of SR (Lee and Zheng, 2007). In this variant of a DE semantics, execution
proceeds as follows. Again, we use an event queue and interrogate the actors for initial
events to place on the queue. We select the event from the queue with the least time stamp,
and all other events with the same time stamp, present those events to actors in the model
as inputs, and then fire all actors in the manner of a constructive fixed-point iteration, as
normal with SR. In this variant of the semantics, any outputs produced by an actor must
be simultaneous with the inputs (they have the same time stamp), so they participate in
the fixed point. If the actor wishes to produce an output event at a later time, it does so
by requesting a firing at a later time (which results in the posting of an event on the event
queue).

6.4.3 Continuous-Time Systems

In Chapter 2 we consider models of continuous-time systems based on ordinary differen-
tial equations (ODEs). Specifically, we consider equations of the form

ẋ(t) = f(x(t), t),

where x : R → Rn is a vector-valued continuous-time function. An equivalent model is
an integral equation of the form

x(t) = x(0) +

∫ t

0
ẋ(τ)dτ (6.3)

= x(0) +

∫ t

0
f(x(τ), τ)dτ. (6.4)
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In Chapter 2, we show that a model of a system given by such ODEs can be described as
an interconnection of actors, where the communication between actors is via continuous-
time signals. Equation (6.4) can be represented as the interconnection shown in Figure
6.16, which conforms to the feedback pattern of Figure 6.1(d).

Example 6.17: The feedback control system of Figure 2.3, using the helicopter
model of Example 2.3, can be redrawn as shown in Figure 6.17, which conforms
to the pattern of Figure 6.16. In this case, x = θ̇y is a scalar-valued continuous-
time function (or a vector of length one). The function f is defined as follows,

f(x(t), t) = (K/Iyy)(ψ(t)− x(t)),

and the initial value of the integrator is

x(0) = θ̇y(0).

Such models, in fact, are actor compositions under a continuous-time model of com-
putation, but unlike the previous MoCs, this one cannot strictly be executed on a digital
computer. A digital computer cannot directly deal with the time continuum. It can, how-
ever, be approximated, often quite accurately.

The approximate execution of a continuous-time model is accomplished by a solver,
which constructs a numerical approximation to the solution of an ODE. The study of
algorithms for solvers is quite old, with the most commonly used techniques dating back
to the 19th century. Here, we will consider only one of the simplest of solvers, which is
known as a forward Euler solver.

A forward Euler solver estimates the value of x at time points 0, h, 2h, 3h, · · · , where h is
called the step size. The integration is approximated as follows,

x(h) = x(0) + hf(x(0), 0)

x(2h) = x(h) + hf(x(h), h)

x(3h) = x(2h) + hf(x(2h), 2h)

· · ·
x((k + 1)h) = x(kh) + hf(x(kh), kh).
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This process is illustrated in Figure 6.18(a), where the “true” value of ẋ is plotted as a
function of time. The true value of x(t) is the area under that curve between 0 and t,
plus the initial value x(0). At the first step of the algorithm, the increment in area is
approximated as the area of a rectangle of width h and height f(x(0), 0). This increment
yields an estimate for x(h), which can be used to calculate ẋ(h) = f(x(h), h), the height
of the second rectangle. And so on.

You can see that the errors in approximation will accumulate over time. The algorithm
can be improved considerably by two key techniques. First, a variable-step solver will
vary the step size based on estimates of the error to keep the error small. Second, a
more sophisticated solver will take into account the slope of the curve and use trapezoidal
approximations as suggested in Figure 6.18(b). A family of such solvers known as Runge-
Kutta solvers are widely used. But for our purposes here, it does not matter what solver is
used. All that matters is that (a) the solver determines the step size, and (b) at each step,
the solver performs some calculation to update the approximation to the integral.

When using such a solver, we can interpret the model in Figure 6.16 in a manner similar
to SR and DE models. The f actor is memoryless, so it simply performs a calculation to
produce an output that depends only on the input and the current time. The integrator is a
state machine whose state is updated at each reaction by the solver, which uses the input
to determine what the update should be. The state space of this state machine is infinite,
since the state variable x(t) is a vector of real numbers.

Hence, a continuous-time model can be viewed as an SR model with a time step be-
tween global reactions determined by a solver (Lee and Zheng, 2007). Specifically, a
continuous-time model is a network of actors, each of which is a cascade composition of
a simple memoryless computation actor and a state machine, and the actor reactions are
simultaneous and instantaneous. The times of the reactions are determined by a solver.
The solver will typically consult the actors in determining the time step, so that for ex-
ample events like level crossings (when a continuous signal crosses a threshold) can be
captured precisely. Hence, despite the additional complication of having to provide a
solver, the mechanisms required to achieve a continuous-time model of computation are
not much different from those required to achieve SR and DE.

A popular software tool that uses a continuous-time MoC is Simulink, from The Math-
Works. Simulink represents models similarly as block diagrams, which are interconnec-
tions of actors. Continuous-time models can also be simulated using the textual tool MAT-
LAB from the same vendor. MATRIXx, from National Instruments, also supports graph-
ical continuous-time modeling. Continuous-time models can also be integrated within
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LabVIEW models, either graphically using the Control Design and Simulation Module or
textually using the programming language MathScript.

6.5 Summary

This chapter provides a whirlwind tour of a rather large topic, concurrent models of
computation. It begins with synchronous-reactive models, which are closest to the syn-
chronous composition of state machines considered in the previous chapter. It then con-
siders dataflow models, where execution can be more loosely coordinated. Only data
precedences impose constraints on the order of actor computations. The chapter then
concludes with a quick view of a few models of computation that explicitly include a
notion of time. Such MoCs are particularly useful for modeling cyber-physical systems.
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Petri Nets

Petri nets, named after Carl Adam Petri, are a popular modeling formalism related to
dataflow (Murata, 1989). They have two types of elements, places and transitions,
depicted as white circles and rectangles, respectively:

A place can contain any number of tokens, depicted as black circles. A transition
is enabled if all places connected to it as inputs contain at least one token. Once
a transition is enabled, it can fire, consuming one token from each input place and
putting one token on each output place. The state of a network, called its marking, is
the number of tokens on each place in the network. The figure above shows a simple
network with its marking before and after the firing of the transition. If a place provides
input to more than one transition, then the network is nondeterministic. A token on that
place may trigger a firing of either destination transition.

An example of a Petri net model is shown in Figure 6.15, which models two con-
current programs with a mutual exclusion protocol. Each of the two programs has a
critical section, meaning that only one of the programs can be in its critical section at
any time. In the model, program A is in its critical section if there is a token on place
a2, and program B is in its critical section if there is a token on place b1. The job of
the mutual exclusion protocol is to ensure that these two places cannot simultaneously
have a token.

If the initial marking of the model is as shown in the figure, then both top transitions
are enabled, but only one can fire (there is only one token in the place labeled mutex).
Which one fires is chosen nondeterministically. Suppose program A fires. After this
firing, there will be a token in place a2, so the corresponding bottom transition becomes
enabled. Once that transition fires, the model returns to its initial marking. It is easy to
see that the mutual exclusion protocol is correct in this model.

Unlike dataflow buffers, places do not preserve an ordering of tokens. Petri nets with
a finite number of markings are equivalent to FSMs.
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Models of Time
How to model physical time is surprisingly subtle. How should we define simultaneity
across a distributed system? A thoughtful discussion of this question is considered by
Galison (2003). What does it mean for one event to cause another? Can an event that
causes another be simultaneous with it? Several thoughtful essays on this topic are
given in Price and Corry (2007).

In Chapter 2, we assume time is represented by a variable t ∈ R or t ∈ R+. This
model is sometimes referred to as Newtonian time. It assumes a globally shared ab-
solute time, where any reference anywhere to the variable t will yield the same value.
This notion of time is often useful for modeling even if it does not perfectly reflect
physical realities, but it has its deficiencies. Consider for example Newton’s cradle,
a toy with five steel balls suspended by strings. If you lift one ball and release it, it
strikes the second ball, which does not move. Instead, the fifth ball reacts by rising.
Consider the momentum of the middle ball as a function of time. The middle ball does
not move, so its momentum must be everywhere zero. But the momentum of the first
ball is somehow transfered to the fifth ball, passing through the middle ball. So the
momentum cannot be always zero. Let m : R → R represent the momentum of this
ball and τ be the time of the collision. Then

m(t) =

{
M if t = τ
0 otherwise

for all t ∈ R. In a cyber-physical system, we may, however, want to represent this
function in software, in which case a sequence of samples will be needed. But how can
such sample unambiguously represent the rather unusual structure of this signal?

One option is to use superdense time (Manna and Pnueli, 1993; Maler et al., 1992;
Lee and Zheng, 2005; Cataldo et al., 2006), where instead of R, time is represented by
a set R × N. A time value is a tuple (t, n), where t represents Newtonian time and n
represents a sequence index within an instant. In this representation, the momentum of
the middle ball can be unambiguously represented by a sequence where m(τ, 0) = 0,
m(τ, 1) = M , and m(τ, 2) = 0. Such a representation also handles events that are
simultaneous and instantaneous but also causally related.

Another alternative is partially ordered time, where two time values may or may
not be ordered relative to each other. When there is a chain of causal relationships
between them, then they must be ordered, and otherwise not.
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Probing Further: Discrete Event Semantics

Discrete-event models of computation have been a subject of study for many years,
with several textbooks available (Zeigler et al., 2000; Cassandras, 1993; Fishman,
2001). The subtleties in the semantics are considerable (see Lee (1999); Cataldo et al.
(2006); Liu et al. (2006); Liu and Lee (2008)). Instead of discussing the formal seman-
tics here, we describe how a DE model is executed. Such a description is, in fact, a
valid way of giving the semantics of a model. The description is called an operational
semantics (Scott and Strachey, 1971; Plotkin, 1981).

DE models are often quite large and complex, so execution performance becomes
very important. Because of the use of a single event queue, parallelizing or distributing
execution of DE models can be challenging (Misra, 1986; Fujimoto, 2000). A recently
proposed strategy called PTIDES (for programming temporally integrated distributed
embedded systems), leverages network time synchronization to provide efficient dis-
tributed execution (Zhao et al., 2007; Lee et al., 2009). The claim is that the execution
is efficient enough that DE can be used not only as a simulation technology, but also
as an implementation technology. That is, the DE event queue and execution engine
become part of the deployed embedded software. As of this writing, that claim has not
been proven on any practical examples.

Figure 6.16: Actor model of a system described by equation (6.4).
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Figure 6.17: The feedback control system of Figure 2.3, using the helicopter
model of Example 2.3, redrawn to conform to the pattern of Figure 6.16.

...

h

t

x(t).

f (x(t), t)

h 2h 3h

(a)

t

x(t).

f (x(t), t)

(b)

...

f (x(0), 0)

Figure 6.18: (a) Forward Euler approximation to the integration in (6.4), where x
is assumed to be a scalar. (b) A better approximation that uses a variable step
size and takes into account the slope of the curve.
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Exercises

1. Show how each of the following actor models can be transformed into a feedback
system by using a reorganization similar to that in Figure 6.1(b). That is, the actors
should be aggregated into a single side-by-side composite actor.

(a)

(b)

(c)

2. Consider the following state machine in a synchronous feedback composition:
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(a) Is it well-formed? Is it constructive?

(b) If it is well-formed and constructive, then find the output symbols for the first
10 reactions. If not, explain where the problem is.

(c) Show the composition machine, assuming that the composition has no input
and that the only output is y.

3. For the following synchronous model, determine whether it is well formed and
constructive, and if so, determine the sequence of values of the signals s1 and s2.

4. For the following synchronous model, determine whether it is well formed and
constructive, and if so, determine the possible sequences of values of the signals s1
and s2. Note that machine A is nondeterministic.

5. (a) Determine whether the following synchronous model is well formed and con-
structive:
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Explain.

(b) For the model in part (a), give the semantics by giving an equivalent flat state
machine with no inputs and two outputs.

6. Consider the following synchronous feedback composition:

w

Notice that the FSM A is nondeterministic.

(a) Is this composition well formed? Constructive? Explain.

(b) Give an equivalent flat FSM (with no input and no connections) that produces
exactly the same possible sequences w.

7. Recall the traffic light controller of Figure 3.10. Consider connecting the outputs
of this controller to a pedestrian light controller, whose FSM is given in Figure
5.10. Using your favorite modeling software that supports state machines (such
as Ptolemy II, LabVIEW Statecharts, or Simulink/Stateflow), construct the compo-
sition of the above two FSMs along with a deterministic extended state machine
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modeling the environment and generating input symbols timeR, timeG, timeY , and
isCar. For example, the environment FSM can use an internal counter to decide
when to generate these symbols.

8. Consider the following SDF model:

The numbers adjacent to the ports indicate the number of tokens produced or con-
sumed by the actor when it fires. Answer the following questions about this model.

(a) Let qA, qB , and qC denote the number of firings of actors A, B, and C, respec-
tively. Write down the balance equations and find the least positive integer
solution.

(b) Find a schedule for an unbounded execution that minimizes the buffer sizes on
the two communication channels. What is the resulting size of the buffers?

9. For each of the following dataflow models, determine whether there is an un-
bounded execution with bounded buffers. If there is, determine the minimum buffer
size.

(a)
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(b)

where n is some integer.
(c)

where D produces an arbitrary boolean sequence.
(d) For the same dataflow model as in part (c), assume you can specify a periodic

boolean output sequence produced by D. Find such a sequence that yields
bounded buffers, give a schedule that minimizes buffer sizes, and give the
buffer sizes.

10. Consider the SDF graph shown below:

In this figure, A, B, and C are actors. Adjacent to each port is the number of
tokens consumed or produced by a firing of the actor on that port, where N and
M are variables with positive integer values. Assume the variables w, x, y, and
z represent the number of initial tokens on the connection where these variables
appear in the diagram. These variables have non-negative integer values.
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(a) Derive a simple relationship between N and M such that the model is con-
sistent, or show that no positive integer values of N and M yield a consistent
model.

(b) Assume that w = x = y = 0 and that the model is consistent and find the
minimum value of z (as a function N and M ) such that the model does not
deadlock.

(c) Assume that z = 0 and that the model is consistent. Find values for w, x, and
y such that the model does not deadlock and w + x+ y is minimized.

(d) Assume that w = x = y = 0 and z is whatever value you found in part
(b). Let bw, bx, by, and bz be the buffer sizes for connections w, x, y, and z,
respectively. What is the minimum for these buffer sizes?
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Part II

Design of Embedded Systems

This part of this text studies the design of embedded systems, with emphasis on the tech-
niques used to build concurrent, real-time embedded software. We proceed bottom up,
discussing first in Chapter 7 sensors and actuators, with emphasis on how to model them.
Chapter 8 covers the design of embedded processors, with emphasis on parallelism in the
hardware and its implications for programmers. Chapter 9 covers memory architectures,
with particular emphasis on the effect they have on program timing. Chapter 10 covers
the input and output mechanisms that enable programs to interact with the external phys-
ical world, with emphasis on how to reconcile the sequential nature of software with the
concurrent nature of the physical world. Chapter 11 describes mechanisms for achiev-
ing concurrency in software, threads and processes, and synchronization of concurrent
software tasks, including semaphores and mutual exclusion. Finally, Chapter 12 covers
scheduling, with particular emphasis on controlling timing in concurrent programs.
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A sensor is a device that measures a physical quantity. An actuator is a device that
alters a physical quantity. In electronic systems, sensors often produce a voltage that is
proportional to the physical quantity being measured. The voltage may then be converted



to a number by an analog-to-digital converter (ADC). A sensor that is packaged with
an ADC is called a digital sensor, whereas a sensor without an ADC is called an analog
sensor. A digital sensor will have a limited precision, determined by the number of bits
used to represent the number (this can be as few as one!). Conversely, an actuator is
commonly driven by a voltage that may be converted from a number by a digital-to-
analog converter (DAC). An actuator that is packaged with a DAC is called a digital
actuator.

Today, sensors and actuators are often packaged with microprocessors and network in-
terfaces, enabling them to appear on the Internet as services. The trend is towards a
technology that deeply connects our physical world with our information world through
such smart sensors and actuators. This integrated world is variously called the Internet of
Things (IoT), Industry 4.0, the Industrial Internet, Machine-to-Machine (M2M), the
Internet of Everything, the Smarter Planet, TSensors (Trillion Sensors), or The Fog
(like The Cloud, but closer to the ground).

Some technologies for interfacing to sensors and actuators have emerged that leverage
established mechanisms originally developed for ordinary Internet usage. For example,
a sensor or actuator may be accessible via a web server using the so-called Represen-
tational State Transfer (REST) architectural style (Fielding and Taylor, 2002). In this
style, data may be retrieved from a sensor or commands may be issued to an actuator by
constructing a URL (uniform resource locator), as if you were accessing an ordinary web
page from a browser, and then transmitting the URL directly to the sensor or actuator
device, or to a web server that serves as an intermediary.

In this chapter, we focus not on such high-level interfaces, but rather on foundational
properties of sensors and actuators as bridges between the physical and the cyber worlds.
Key low-level properties include the rate at which measurements are taken or actuations
are performed, the proportionality constant that relates the physical quantity to the mea-
surement or control signal, the offset or bias, and the dynamic range. For many sensors
and actuators, it is useful to model the degree to which a sensor or actuator deviates from
a proportional measurement (its nonlinearity), and the amount of random variation intro-
duced by the measurement process (its noise).

A key concern for sensors and actuators is that the physical world functions in a multidi-
mensional continuum of time and space. It is an analog world. The world of software,
however, is digital, and strictly quantized. Measurements of physical phenomena must
be quantized in both magnitude and time before software can operate on them. And
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commands to the physical world that originate from software will also be intrinsically
quantized. Understanding the effects of this quantization is essential.

This chapter begins in Section 7.1 with an outline of how to construct models of sen-
sors and actuators, specifically focusing on linearity (and nonlinearity), bias, dynamic
range, quantization, noise, and sampling. That section concludes with a brief introduc-
tion to signal conditioning, a signal processing technique to improve the quality of sen-
sor data and actuator controls. Section 7.2 then discusses a number of common sensing
problems, including measuring tilt and acceleration (accelerometers), measuring position
and velocity (anemometers, inertial navigation, GPS, and other ranging and triangulation
techniques), measuring rotation (gyroscopes), measuring sound (microphones), and mea-
suring distance (rangefinders). The chapter concludes with Section 7.3, which shows how
to apply the modeling techniques to actuators, focusing specifically on LEDs and motor
controllers.

Higher-level properties that are not addressed in this chapter, but are equally important,
include security (specifically access control), privacy (particularly for data flowing over
the open Internet), name-space management, and commissioning. The latter is particu-
larly big issue when the number of sensors or actuators get large. Commissioning is the
process of associating a sensor or actuator device with a physical location (e.g., a tempera-
ture sensor gives the temperature of what?), enabling and configuring network interfaces,
and possibly calibrating the device for its particular environment.

7.1 Models of Sensors and Actuators

Sensors and actuators connect the cyber world with the physical world. Numbers in the
cyber world bear a relationship with quantities in the physical world. In this section,
we provide models of that relationship. Having a good model of a sensor or actuator is
essential to effectively using it.

7.1.1 Linear and Affine Models

Many sensors may be approximately modeled by an affine function. Suppose that a
physical quantity x(t) at time t is reported by the sensor to have value f(x(t)), where
f : R → R is a function. The function f is linear if there exists a proportionality con-

Lee & Seshia, Introduction to Embedded Systems 181

http://LeeSeshia.org


7.1. MODELS OF SENSORS AND ACTUATORS

stant a ∈ R such that for all x(t) ∈ R

f(x(t)) = ax(t).

It is an affine function if there exists a proportionality constant a ∈ R and a bias b ∈ R
such that

f(x(t)) = ax(t) + b. (7.1)

Clearly, every linear function is an affine function (with b = 0), but not vice versa.

Interpreting the readings of such a sensor requires knowledge of the proportionality con-
stant and bias. The proportionality constant represents the sensitivity of the sensor, since
it specifies the degree to which the measurement changes when the physical quantity
changes.

Actuators may also be modeled by affine functions. The affect that a command to the
actuator has on the physical environment may be reasonably approximated by a relation
like (7.1).

7.1.2 Range

No sensor or actuator truly realizes an affine function. In particular, the range of a sensor,
the set of values of a physical quantity that it can measure, is always limited. Similarly for
an actuator. Outside that range, an affine function model is no longer valid. For example,
a thermometer designed for weather monitoring may have a range of−20◦ to 50◦ Celsius.
Physical quantities outside this range will typically saturate, meaning that they yield a
maximum or a minimum reading outside their range. An affine function model of a sensor
may be augmented to take this into account as follows,

f(x(t)) =


ax(t) + b if L ≤ x(t) ≤ H
aH + b if x(t) > H
aL+ b if x(t) < L,

(7.2)

where L,H ∈ R, L < H , are the low and high end of the sensor range, respectively.

A relation between a physical quantity x(t) and a measurement given by (7.2) is not an
affine relation (it is, however, piecewise affine). In fact, this is a simple form of non-
linearity that is shared by all sensors. The sensor is reasonably modeled by an affine
function within an operating range (L,H), but outside that operating range, its behavior
is distinctly different.
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7.1.3 Dynamic Range

Digital sensors are unable to distinguish between two closely-spaced values of the physi-
cal quantity. The precision p of a sensor is the smallest absolute difference between two
values of a physical quantity whose sensor readings are distinguishable. The dynamic
range D ∈ R+ of a digital sensor is the ratio

D =
H − L
p

,

where H and L are the limits of the range in (7.2). Dynamic range is usually measured in
decibels (see sidebar on page 189), as follows:

DdB = 20 log10

(
H − L
p

)
. (7.3)

7.1.4 Quantization

A digital sensor represents a physical quantity using an n-bit number, where n is a small
integer. There are only 2n distinct such numbers, so such a sensor can produce only 2n

distinct measurements. The actual physical quantity may be represented by a real number
x(t) ∈ R, but for each such x(t), the sensor must pick one of the 2n numbers to represent
it. This process is called quantization. For an ideal digital sensor, two physical quantities
that differ by the precision p will be represented by digital quantities that differ by one
bit, so precision and quantization become intertwined.

We can further augment the function f in (7.2) to include quantization, as illustrated in
the following example.

Example 7.1: Consider a 3-bit digital sensor that can measure a voltage
between zero and one volt. Such a sensor may be modeled by the function
f : R → {0, 1, · · · , 7} shown in Figure 7.1. The horizontal axis is the input
to the sensor (in volts), and the vertical axis is the output, with the value shown
in binary to emphasize that this is a 3-bit digital sensor.

In the figure, the low end of the measurable range is L = 0, and the high end
is H = 1. The precision is p = 1/8, because within the operating range, any
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Figure 7.1: Sensor distortion function for a 3-bit digital sensor capable of measur-
ing a range of zero to one volt, where the precision p = 1/8.

two inputs that differ by more than 1/8 of a volt will yield different outputs. The
dynamic range, therefore, is

DdB = 20 log10

(
H − L
p

)
≈ 18dB.

A function f like the one in Figure 7.1 that defines the output of a sensor as a function of
its input is called the sensor distortion function. In general, an ideal n-bit digital sensor
with a sensor distortion function like that shown in Figure 7.1 will have a precision given
by

p = (H − L)/2n

and a dynamic range of

DdB = 20 log10

(
H − L
p

)
20 log10(2

n) = 20n log10(2) ≈ 6n dB. (7.4)

Each additional bit yields approximately 6 decibels of dynamic range.

184 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


7. SENSORS AND ACTUATORS

Example 7.2: An extreme form of quantization is performed by an analog
comparator, which compares a signal value against a threshold and produces a
binary value, zero or one. Here, the sensor function f : R→ {0, 1} is given by

f(x(t)) =

{
0 if x(t) ≤ 0
1 otherwise

Such extreme quantization is often useful, because the resulting signal is a very
simple digital signal that can be connected directly to a GPIO input pin of a
microprocessor, as discussed in Chapter 10.

The analog comparator of the previous example is a one-bit ADC. The quantization error
is high for such a converter, but using signal conditioning, as described below in Section
7.1.8, if the sample rate is high enough, the noise can be reduced considerably by digital
low-pass filtering. Such a process is called oversampling; it is commonly used today
because processing signals digitally is often less costly than analog processing.

Actuators are also subject to quantization error. A digital actuator takes a digital command
and converts it to an analog physical action. A key part of this is the digital to analog
converter (DAC). Because the command is digital, it has only a finite number of possible
values. The precision with which an analog action can be taken, therefore, will depend on
the number of bits of the digital signal and the range of the actuator.

As with ADCs, however, it is possible to trade off precision and speed. A bang-bang
controller, for example, uses a one-bit digital actuation signal to drive an actuator, but
updates that one-bit command very quickly. An actuator with a relatively slow response
time, such as a motor, does not have much time to react to each bit, so the reaction to
each bit is small. The overall reaction will be an average of the bits over time, much
smoother than what you would expect from a one-bit control. This is the mirror image of
oversampling.

The design of ADC and DAC hardware is itself quite an art. The effects of choices of
sampling interval and number of bits are quite nuanced. Considerable expertise in signal
processing is required to fully understand the implications of choices (see Lee and Varaiya
(2011)). Below, we give a cursory view of this rather sophisticated topic. Section 7.1.8
discusses how to mitigate the noise in the environment and noise due to quantization,
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showing the intuitive result that it is beneficial to filter out frequency ranges that are not
of interest. These frequency ranges are related to the sample rate. Hence, noise and
sampling are the next topics.

7.1.5 Noise

By definition, noise is the part of a signal that we do not want. If we want to measure x(t)
at time t, but we actually measure x′(t)), then the noise is the difference,

n(t) = x′(t)− x(t).

Equivalently, the actual measurement is

x′(t) = x(t) + n(t), (7.5)

a sum of what we want plus the noise.

Example 7.3: Consider using an accelerometer to measure the orientation of
a slowly moving object (see Section 7.2.1 below for an explanation of why an
accelerometer can measure orientation). The accelerometer is attached to the
moving object and reacts to changes in orientation, which change the direction
of the gravitational field with respect to the axis of the accelerometer. But it will
also report acceleration due to vibration. Let x(t) be the signal due to orientation
and n(t) be the signal due to vibration. The accelerometer measures the sum.

In the above example, noise is a side effect of the fact that the sensor is not measuring
exactly what we want. We want orientation, but it is measuring acceleration. We can
also model sensor imperfections and quantization as noise. In general, a sensor distortion
function can be modeled as additive noise,

f(x(t)) = x(t) + n(t), (7.6)

where n(t) by definition is just f(x(t))− x(t).
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It is useful to be able to characterize how much noise there is in a measurement. The root
mean square (RMS)N ∈ R+ of the noise is equal to the square root of the average value
of n(t)2. Specifically,

N = lim
T→∞

√
1

2T

∫ T

−T
(n(τ))2dτ. (7.7)

This is a measure of (the square root of) noise power. An alternative (statistical) definition
of noise power is the square root of the expected value of the square of n(t). Formula (7.7)
defines the noise power as an average over time rather than an expected value.

The signal to noise ratio (SNR, in decibels) is defined in terms of RMS noise,

SNRdB = 20 log10

(
X

N

)
,

where X is the RMS value of the input signal x (again, defined either as a time average as
in (7.7) or using the expected value). In the next example, we illustrate how to calculate
SNR using expected values, leveraging elementary probability theory.

Example 7.4: We can find the SNR that results from quantization by using (7.6)
as a model of the quantizer. Consider Example 7.1 and Figure 7.1, which show
a 3-bit digital sensor with an operating range of zero to one volt. Assume that
the input voltage is equally likely to be anywhere in the range of zero to one volt.
That is, x(t) is a random variable with uniform distribution ranging from 0 to 1.
Then the RMS value of the input x is given by the square root of the expected
value of the square of x(t), or

X =

√∫ 1

0
x2dx =

1√
3
.

Examining Figure 7.1, we see that if x(t) is a random variable with uniform
distribution ranging from 0 to 1, then the error n(t) in the measurement (7.6) is
equally likely to be anywhere in the range from −1/8 to 0. The RMS noise is
therefore given by

N =

√∫ 0

−1/8
8n2dn =

√
1

3 · 64
=

1

8
√

3
.
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The SNR is therefore

SNRdB = 20 log10

(
X

N

)
= 20 log10 (8) ≈ 18dB.

Notice that this matches the 6 dB per bit dynamic range predicted by (7.4)!

To calculate the SNR in the previous example, we needed a statistical model of the input
x (uniformly distributed from 0 to 1) and the quantization function. In practice, it is
difficult to calibrate ADC hardware so that the input xmakes full use of its range. That is,
the input is likely to be distributed over less than the full range 0 to 1. It is also unlikely
to be uniformly distributed. Hence, the actual SNR achieved in a system will likely be
considerably less than the 6 dB per bit predicted by (7.4).

7.1.6 Sampling

A physical quantity x(t) is a function of time t. A digital sensor will sample the physical
quantity at particular points in time to create a discrete signal. In uniform sampling,
there is a fixed time interval T between samples; T is called the sampling interval. The
resulting signal may be modeled as a function s : Z→ R defined as follows,

∀ n ∈ Z, s(n) = f(x(nT )), (7.8)

where Z is the set of integers. That is, the physical quantity x(t) is observed only at
times t = nT , and the measurement is subjected to the sensor distortion function. The
sampling rate is 1/T , which has units of samples per second, often given as Hertz
(written Hz, meaning cycles per second).

In practice, the smaller the sampling interval T , the more costly it becomes to provide
more bits in an ADC. At the same cost, faster ADCs typically produce fewer bits and
hence have either higher quantization error or smaller range.

Example 7.5: The ATSC digital video coding standard includes a format where
the frame rate is 30 frames per second and each frame contains 1080 × 1920 =
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Decibels

The term “decibel” is literally one tenth of a bel, which is named after Alexander
Graham Bell. This unit of measure was originally developed by telephone engineers at
Bell Telephone Labs to designate the ratio of the power of two signals.

Power is a measure of energy dissipation (work done) per unit time. It is measured
in watts for electronic systems. One bel is defined to be a factor of 10 in power. Thus,
a 1000 watt hair dryer dissipates 1 bel, or 10 dB, more power than a 100 watt light bulb.
Let p1 = 1000 watts be the power of the hair dryer and p2 = 100 be the power of the
light bulb. Then the ratio is

log10(p1/p2) = 1 bel, or

10 log10(p1/p2) = 10 dB.

Comparing against (7.3) we notice a discrepancy. There, the multiplying factor is 20,
not 10. That is because the ratio in (7.3) is a ratio of amplitude (magnitude), not powers.
In electronic circuits, if an amplitude represents the voltage across a resistor, then the
power dissipated by the resistor is proportional to the square of the amplitude. Let a1
and a2 be two such amplitudes. Then the ratio of their powers is

10 log10(a
2
1/a

2
2) = 20 log10(a1/a2).

Hence the multiplying factor of 20 instead of 10 in (7.3). A 3 dB power ratio amounts
to a factor of 2 in power. In amplitudes, this is a ratio of

√
2.

In audio, decibels are used to measure sound pressure. A statement like “a jet engine
at 10 meters produces 120 dB of sound,” by convention, compares sound pressure to
a defined reference of 20 micropascals, where a pascal is a pressure of 1 newton per
square meter. For most people, this is approximately the threshold of hearing at 1 kHz.
Thus, a sound at 0 dB is barely audible. A sound at 10 dB has 10 times the power. A
sound at 100 dB has 1010 times the power. The jet engine, therefore, would probably
make you deaf without ear protection.
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2,073,600 pixels. An ADC that is converting one color channel to a digital rep-
resentation must therefore perform 2,073,600× 30 = 62,208,000 conversions per
second, which yields a sampling interval T of approximately 16 nsec. With such
a short sampling interval, increasing the number of bits in the ADC becomes ex-
pensive. For video, a choice of b = 8 bits is generally adequate to yield good
visual fidelity and can be realized at reasonable cost.

An important concern when sampling signals is that there are many distinct functions x
that when sampled will yield the same signal s. This phenomenon is known as aliasing.

Example 7.6: Consider a sinusoidal sound signal at 1 kHz (kilohertz, or thou-
sands of cycles per second),

x(t) = cos(2000πt).

Suppose there is no sensor distortion, so the function f in (7.8) is the identity
function. If we sample at 8000 samples per second (a rate commonly used in
telephony), we get a sampling interval of T = 1/8000, which yields the samples

s(n) = f(x(nT )) = cos(πn/4).

Suppose instead that we are given a sound signal at 9 kHz,

x′(t) = cos(18, 000πt).

Sampling at the same 8kHz rate yields

s′(n) = cos(9πn/4) = cos(πn/4 + 2πn) = cos(πn/4) = s(n).

The 1 kHz and 9 kHz sound signals yield exactly the same samples, as illustrated
in Figure 7.2. Hence, at this sampling rate, these two signals are aliases of one
another. They cannot be distinguished.
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Aliasing is a complex and subtle phenomenon (see Lee and Varaiya (2011) for details),
but a useful rule of thumb for uniform sampling is provided by the Nyquist-Shannon
sampling theorem. A full study of the subject requires the machinery of Fourier trans-
forms, and is beyond the scope of this text. Informally, this theorem states that a set of
samples at sample rate R = 1/T uniquely defines a continuous-time signal that is a sum
of sinusoidal components with frequencies less than R/2. That is, among all continuous-
time signals that are sums of sinusoids with frequencies less than R/2, there is only one
that matches any given set of samples taken at rateR. The rule of thumb, therefore, is that
if you sample a signal where the most rapid expected variation occurs at frequency R/2,
then sampling the signal at a rate at least R will result in samples that uniquely represent
the signal.

Example 7.7: In traditional telephony, engineers have determined that intelligi-
ble human speech signals do not require frequencies higher than 4 kHz. Hence,
removing the frequencies above 4 kHz and sampling an audio signal with human
speech at 8kHz is sufficient to enable reconstruction of an intelligible audio signal
from the samples. The removal of the high frequencies is accomplished by a fre-
quency selective filter called an anti-aliasing filter, because it prevents frequency
components above 4 kHz from masquerading as frequency components below 4
kHz.

The human ear, however, can easily discern frequencies up to about 15 kHz, or
20 kHz in young people. Digital audio signals intended for music, therefore,
are sampled at frequencies above 40 kHz; 44.1 kHz is a common choice, a rate
defined originally for use in compact discs (CDs).

t

1

−1

0.001

Figure 7.2: Illustration of aliasing, where samples of a 9 kHz sinusoid taken at 8,000
samples per second are the same as samples of a 1 kHz sinusoid taken at 8,000 samples
per second.
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Example 7.8: Air temperature in a room varies quite slowly compared to sound
pressure. We might assume, for example, that the most rapid expected air tem-
perature variations occur at rates measured in minutes, not seconds. If we want
to capture variations on the scale of a minute or so, then we should take at least
two samples per minute of the temperature measurement.

7.1.7 Harmonic Distortion

A form of nonlinearity that occurs even within the operating range of sensors and actuators
is harmonic distortion. It typically occurs when the sensitivity of the sensor or actuator
is not constant and depends on the magnitude of the signal. For example, a microphone
may be less responsive to high sound pressure than to lower sound pressure.

Harmonic distortion is a nonlinear effect that can be modeled by powers of the physical
quantity. Specifically, second harmonic distortion is a dependence on the square of the
physical quantity. That is, given a physical quantity x(t), the measurement is modeled as

f(x(t)) = ax(t) + b+ d2(x(t))2, (7.9)

where d2 is the amount of second harmonic distortion. If d2 is small, then the model is
nearly affine. If d2 is large, then it is far from affine. The d2(x(t))2 term is called second
harmonic distortion because of the effect it has the frequency content of a signal x(t) that
is varying in time.

Example 7.9: Suppose that a microphone is stimulated by a purely sinusoidal
input sound

x(t) = cos(ω0t),

where t is time in seconds and ω0 is the frequency of the sinusoid in radians per
second. If the frequency is within the human auditory range, then this will sound
like a pure tone.
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A sensor modeled by (7.9) will produce at time t the measurement

x′(t) = ax(t) + b+ d2(x(t))2

= a cos(ω0t) + b+ d2 cos2(ω0t)

= a cos(ω0t) + b+
d2
2

+
d2
2

cos(2ω0t),

where we have used the trigonometric identity

cos2(θ) =
1

2
(1 + cos(2θ)).

To humans, the bias term b + d2/2 is not audible. Hence, this signal consists of
a pure tone, scaled by a, and a distortion term at twice the frequency, scaled by
d2/2. This distortion term is audible as harmonic distortion as long as 2ω0 is in
the human auditory range.

A cubic term will introduce third harmonic distortion, and higher powers will introduce
higher harmonics.

The importance of harmonic distortion depends on the application. The human auditory
system is very sensitive to harmonic distortion, but the human visual system much less
so, for example.

7.1.8 Signal Conditioning1

Noise and harmonic distortion often have significant differences from the desired signal.
We can exploit those differences to reduce or even eliminate the noise or distortion. The
easiest way to do this is with frequency selective filtering. Such filtering relies on Fourier
theory, which states that a signal is an additive composition of sinusoidal signals of dif-
ferent frequencies. While Fourier theory is beyond the scope of this text (see Lee and
Varaiya (2003) for details), it may be useful to some readers who have some background
to see how to apply that theory in the context of embedded systems. We do that in this
section.

1This section may be skipped on a first reading. It requires a background in signals and systems at the
level typically covered in a sophomore or junior engineering course.
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Example 7.10: The accelerometer discussed in Example 7.3 is being used to
measure the orientation of a slowly moving object. But instead it measures the
sum of orientation and vibration. We may be able to reduce the effect of the
vibration by signal conditioning. If we assume that the vibration n(t) has higher
frequency content than the orientation x(t), then frequency-selective filtering will
reduce the effects of vibration. Specifically, vibration may be mostly rapidly
changing acceleration, whereas orientation changes more slowly, and filtering can
remove the rapidly varying components, leaving behind only the slowly varying
components.

To understand the degree to which frequency-selective filtering helps, we need to have
a model of both the desired signal x and the noise n. Reasonable models are usually
statistical, and analysis of the signals requires using the techniques of random processes,
estimation, and machine learning. Although such analysis is beyond the scope of this
text, we can gain insight that is useful in many practical circumstances through a purely
deterministic analysis.

Our approach will be to condition the signal x′ = x+n by filtering it with an LTI system
S called a conditioning filter. Let the output of the conditioning filter be given by

y = S(x′) = S(x+ n) = S(x) + S(n),

where we have used the linearity assumption on S. Let the residual error signal after
filtering be defined to be

r = y − x = S(x) + S(n)− x. (7.10)

This signal tells us how far off the filtered output is from the desired signal. Let R denote
the RMS value of r, and X the RMS value of x. Then the SNR after filtering is

SNRdB = 20 log10

(
X

R

)
,

We would like to design the conditioning filter S to maximize this SNR. SinceX does not
depend on S, we maximize this SNR if we minimizeR. That is, we choose S to minimize
the RMS value of r in (7.10).

194 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


7. SENSORS AND ACTUATORS

Although determination of this filter requires statistical methods beyond the scope of this
text, we can draw some intuitively appealing conclusions by examining (7.10). It is easy
to show that the denominator is bounded as follows,

R = RMS(r) ≤ RMS(S(x)− x) + RMS(n) (7.11)

where RMS is the function defined by (7.7). This suggests that we may be able to mini-
mize R by making S(x) close to x (i.e., make S(x) ≈ x) while making RMS(n) small.
That is, the filter S should do minimal damage to the desired signal x while filtering out
as much as possible of the noise.

As illustrated in Example 7.3, x and n often differ in frequency content. In that example,
x contains only low frequencies, and n contains only higher frequencies. Therefore, the
best choice for S will be a lowpass filter.

7.2 Common Sensors

In this section, we describe a few sensors and show how to obtain and use reasonable
models of these sensors.

7.2.1 Measuring Tilt and Acceleration

An accelerometer is a sensor that measures proper acceleration, which is the accelera-
tion of an object as observed by an observer in free fall. As we explain here, gravitational
force is indistinguishable from acceleration, and therefore an accelerometer measures not
just acceleration, but also gravitational force. This result is a precursor to Albert Ein-
stein’s Theory of General Relativity and is known as Einstein’s equivalence principle
(Einstein, 1907).

A schematic view of an accelerometer is shown in Figure 7.3. A movable mass is attached
via a spring to a fixed frame. Assume that the sensor circuitry can measure the position of
the movable mass relative to the fixed frame (this can be done, for example, by measuring
capacitance). When the frame accelerates in the direction of the double arrow in the figure,
the acceleration results in displacement of the movable mass, and hence this acceleration
can be measured.

The movable mass has a neutral position, which is its position when the spring is not
deformed at all. It will occupy this neutral position if the entire assembly is in free fall,
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Figure 7.3: A schematic of an accelerometer as a spring-mass system.

or if the assembly is lying horizontally. If the assembly is instead aligned vertically, then
gravitational force will compress the spring and displace the mass. To an observer in free
fall, this looks exactly as if the assembly were accelerating upwards at the acceleration
of gravity, which is approximately g = 9.8 meters/second2.

An accelerometer, therefore, can measure the tilt (relative to gravity) of the fixed frame.
Any acceleration experienced by the fixed frame will add or subtract from this measure-
ment. It can be challenging to separate these two effects, gravity and acceleration. The
combination of the two is what we call proper acceleration.

Assume x is the proper acceleration of the fixed frame of an accelerometer at a particular
time. A digital accelerometer will produce a measurement f(x) where

f : (L,H)→ {0, . . . , 2b − 1}

where L ∈ R is the minimum measurable proper acceleration and H ∈ R is the maxi-
mum, and b ∈ N is the number of bits of the ADC.
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Figure 7.4: A silicon accelerometer consists of flexible silicon fingers that deform
under gravitational pull or acceleration (Lemkin and Boser, 1999).

Today, accelerometers are typically implemented in silicon (see Figure 7.4), where silicon
fingers deform under gravitational pull or acceleration (see for example Lemkin and Boser
(1999)). Circuitry measures the deformation and provides a digital reading. Often, three
accelerometers are packaged together, giving a three-axis accelerometer. This can be used
to measure orientation of an object relative to gravity, plus acceleration in any direction
in three-dimensional space.

7.2.2 Measuring Position and Velocity

In theory, given a measurement x of acceleration over time, it is possible to determine the
velocity and location of an object. Consider an object moving in a one-dimensional space.
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Let the position of the object over time be p : R+ → R, with initial position p(0). Let the
velocity of the object be v : R+ → R, with initial velocity v(0). And let the acceleration
be x : R+ → R. Then

p(t) = p(0) +

∫ t

0
v(τ)dτ,

and

v(t) = v(0) +

∫ t

0
x(τ)dτ.

Note, however, that if there is a non-zero bias in the measurement of acceleration, then
p(t) will have an error that grows proportionally to t2. Such an error is called drift, and
it makes using an accelerometer alone to determine position not very useful. However,
if the position can be periodically reset to a known-good value, using for example GPS,
then an accelerometer becomes useful to approximate the position between such settings.

In some circumstances, we can measure velocity of an object moving through a medium.
For example, an anemometer (which measures air flow) can estimate the velocity of an
aircraft relative to the surrounding air. But using this measurement to estimate position is
again subject to drift, particularly since the movement of the surrounding air ensures bias.

Direct measurements of position are difficult. The global positioning system (GPS)
is a sophisticated satellite-based navigation system using triangulation. A GPS receiver
listens for signals from four or more GPS satellites that carry extremely precise clocks.
The satellites transmit a signal that includes the time of transmission and the location of
the satellite at the time of transmission. If the receiver were to have an equally precise
clock, then upon receiving such a signal from a satellite, it would be able to calculate
its distance from the satellite using the speed of light. Given three such distances, it
would be able to calculate its own position. However, such precise clocks are extremely
expensive. Hence, the receiver uses a fourth such distance measurement to get a system
of four equations with four unknowns, the three dimensions of its location and the error
in its own local clock.

The signal from GPS satellites is relatively weak and is easily blocked by buildings and
other obstacles. Other mechanisms must be used, therefore, for indoor localization. One
such mechanism is WiFi fingerprinting, where a device uses the known location of WiFi
access points, the signal strength from those access points, and other local information.
Another technology that is useful for indoor localization is bluetooth, a short-distance
wireless communication standard. Bluetooth signals can be used as beacons, and signal
strength can give a rough indication of distance to the beacon.
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Strength of a radio signal is a notoriously poor measure of distance because it is subject
to local diffraction and reflection effects on the radio signal. In an indoor environment, a
radio signal is often subject to multipath, where it propagates along more than one path
to a target, and at the target experiences either constructive or destructive interference.
Such interference introduces wide variability in signal strength that can lead to mislead-
ing measures of distance. As of this writing, mechanisms for accurate indoor localization
are not widely available, in notable contrast to outdoor localization, where GPS is avail-
able worldwide.

7.2.3 Measuring Rotation

A gyroscope is a device that measures changes in orientation (rotation). Unlike an ac-
celerometer, it is (mostly) unaffected by a gravitational field. Traditional gyroscopes are
bulky rotating mechanical devices on a double gimbal mount. Modern gyroscopes are ei-
ther MEMS devices (microelectromechanical systems) using small resonating structures,
or optical devices that measure the difference in distance traveled by a laser beam around a
closed path in opposite directions, or (for extremely high precision) devices that leverage
quantum effects.

Gyroscopes and accelerometers may be combined to improve the accuracy of inertial
navigation, where position is estimated by dead reckoning. Also called ded reckoning
(for deduced reckoning), dead reckoning starts from a known initial position and orienta-
tion, and then uses measurements of motion to estimate subsequent position and orienta-
tion. An inertial measurement unit (IMU) or inertial navigation system (INS) uses a
gyroscope to measure changes in orientation and an accelerometer to measure changes in
velocity. Such units are subject to drift, of course, so they are often combined with GPS
units, which can periodically provided “known good” location information (though not
orientation). IMUs can get quite sophisticated and expensive.

7.2.4 Measuring Sound

A microphone measures changes in sound pressure. A number of techniques are used,
including electromagnetic induction (where the sound pressure causes a wire to move in
a magnetic field), capacitance (where the distance between a plate deformed by the sound
pressure and a fixed plate varies, causing a measurable change in capacitance), or the
piezoelectric effect (where charge accumulates in a crystal due to mechanical stress).
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Microphones for human audio are designed to give low distortion and low noise within
the human hearing frequency range, about 20 to 20,000 Hz. But microphones are also
used outside this range. For example, an ultrasonic rangefinder emits a sound outside
the human hearing range and listens for an echo. It can be used to measure the distance
to a sound-reflecting surface.

7.2.5 Other Sensors

There are many more types of sensors. For example, measuring temperature is central
to HVAC systems, automotive engine controllers, overcurrent protectection, and many
industrial chemical processes. Chemical sensors can pick out particular pollutants, mea-
sure alcohol concentration, etc. Cameras and photodiodes measure light levels and color.
Clocks measure the passage of time.

A switch is a particularly simple sensor. Properly designed, it can sense pressure, tilt, or
motion, for example, and it can often be directly connected to the GPIO pins of a micro-
controller. One issue with switches, however, is that they may bounce. A mechanical
switch that is based on closing an electrical contact has metal colliding with metal, and
the establishment of the contact may not occur cleanly in one step. As a consequence,
system designers need to be careful when reacting to the establishment of an electrical
contact or they may inadvertently react several times to a single throwing of the switch.

7.3 Actuators

As with sensors, the variety of available actuators is enormous. Since we cannot pro-
vide comprehensive coverage here, we discuss two common examples, LEDs and motor
control. Further details may be found in Chapter 10, which discusses particular micro-
controller I/O designs.

7.3.1 Light-Emitting Diodes

Very few actuators can be driven directly from the digital I/O pins (GPIO pins) of a micro-
controller. These pins can source or sink a limited amount of current, and any attempt to
exceed this amount risks damaging the circuits. One exception is light-emitting diodes
(LEDs), which when put in series with a resistor, can often be connected directly to a
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GPIO pin. This provides a convenient way for an embedded system to provide a visual
indication of some activity.

Example 7.11: Consider a microcontroller that operates at 3 volts from a coin-
cell battery and specifies that its GPIO pins can sink up to 18 mA. Suppose that
you wish to turn on and off an LED under software control (see Chapter 10 for
how to do this). Suppose you use an LED that, when forward biased (turned on),
has a voltage drop of 2 volts. Then what is the smallest resistor you can put in
series with the LED to safely keep the current within the 18 mA limit? Ohm’s
law states

VR = IR, (7.12)

where VR is the voltage across the resistor, I is the current, andR is the resistance.
The resistor will have a voltage drop of VR = 3− 2 = 1 volt across it (two of the
3 supply volts drop across the LED), so the current flowing through it will be

I = 1/R.

To limit this current to 18 mA, we require a resistance

R ≥ 1/0.018 ≈ 56 ohms.

If you choose a 100 ohm resistor, then the current flowing through the resistor
and the LED is

I = VR/100 = 10mA.

If the battery capacity is 200 mAh (milliamp-hours), then driving the LED for 20
hours will completely deplete the battery, not counting any power dissipation in
the microcontroller or other circuits. The power dissipated in the resistor will be

PR = VRI = 10mW.

The power dissipated in the LED will be

PL = 2I = 20mW.

These numbers give an indication of the heat generated by the LED circuit (which
will be modest).
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The calculations in the previous example are typical of what you need to do to connect
any device to a micro controller.

7.3.2 Motor Control

A motor applies a torque (angular force) to a load proportional to the current through
the motor windings. It might be tempting, therefore, to apply a voltage to the motor
proportional to the desired torque. However, this is rarely a good idea. First, if the voltage
is digitally controlled through a DAC, then we have to be very careful to not exceed the
current limits of the DAC. Most DACs cannot deliver much power, and require a power
amplifier between the DAC and the device being powered. The input to a power amplifier
has high impedance, meaning that at a given voltage, it draws very little current, so it can
usually be connected directly to a DAC. The output, however, may involve substantial
current.

Example 7.12: An audio amplifier designed to drive 8 ohm speakers can often
deliver 100 watts (peak) to the speaker. Power is equal to the product of voltage
and current. Combining that with Ohm’s law, we get that power is proportional
to the square of current,

P = RI2,

where R is the resistance. Hence, at 100 watts, the current through an 8 ohm
speaker is

I =
√
P/R =

√
100/8 ≈ 3.5amps,

which is a substantial current. The circuitry in the power amplifier that can
deliver such a current without overheating and without introducing distortion is
quite sophisticated.

Power amplifiers with good linearity (where the output voltage and current are propor-
tional to the input voltage) can be expensive, bulky, and inefficient (the amplifier itself
dissipates significant energy). Fortunately, when driving a motor, we do not usually need
such a power amplifier. It is sufficient to use a switch that we can turn on and off with a
digital signal from a microcontroller. Making a switch that tolerates high currents is much
easier than making a power amplifier.
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Figure 7.5: PWM control of a DC motor.

We use a technique called pulse width modulation (PWM), which can efficiently deliver
large amounts of power under digital control, as long as the device to which the power
is being delivered can tolerate rapidly switching on and off its power source. Devices
that tolerate this include LEDs, incandescent lamps (this is how dimmers work), and DC
motors. A PWM signal, as shown on the bottom of Figure 7.5, switches between a high
level and a low level at a specified frequency. It holds the signal high for a fraction of the
cycle period. This fraction is called the duty cycle, and in Figure 7.5, is 0.1, or 10%.

A DC motor consists of an electromagnet made by winding wires around a core placed
in a magnetic field made with permanent magnets or electromagnets. When current flows
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through the wires, the core spins. Such a motor has both inertia and inductance that
smooth its response when the current is abruptly turned on and off, so such motors tolerate
PWM signals well.

Let ω : R→ R represent the angular velocity of the motor as a function of time. Assume
we apply a voltage v to the motor, also a function of time. Then using basic circuit theory,
we expect the voltage and current through the motor to satisfy the following equation,

v(t) = Ri(t) + L
di(t)

dt
,

where R is the resistance and L the inductance of the coils in the motor. That is, the coils
of the motor are modeled as series connection of a resistor and an inductor. The voltage
drop across the resistor is proportional to current, and the voltage drop across the inductor
is proportional to the rate of change of current.

However, motors exhibit a phenomenon that when a coil rotates in a magnetic field, it
generates a current (and corresponding voltage). In fact, a motor can also function as an
electrical generator; if instead of mechanically coupling it to a passive load, you couple
it to a source of power that applies a torque to the motor, then the motor will generate
electricity. Even when the motor is being used a motor rather than a generator, there will
be some torque resisting the rotation, called the back electromagnetic force, due to this
tendency to generate electricity when rotated. To account for this, the above equation
becomes

v(t) = Ri(t) + L
di(t)

dt
+ kbω(t), (7.13)

where kb is an empirically determined back electromagnetic force constant, typically
expressed in units of volts/RPM ( volts per revolutions per minute).

Having described the electrical behavior of the motor in (7.13), we can use the techniques
of Section 2.1 to describe the mechanical behavior. We can use the rotational version of
Newton’s second law, F = ma, which replaces the force F with torque, the mass m with
moment of inertia and the acceleration a with angular acceleration. The torque T on the
motor is proportional to the current flowing through the motor, adjusted by friction and
any torque that might be applied by the mechanical load,

T (t) = kT i(t)− ηω(t)− τ(t),

where kT is an empirically determined motor torque constant, η is the kinetic friction
of the motor, and τ is the torque applied by the load. By Newton’s second law, this needs
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to be equal to the moment of inertia I times the angular acceleration, so

I
dω(t)

dt
= kT i(t)− ηω(t)− τ(t). (7.14)

Together, (7.14) and (7.13) describe how the motor responds to an applied voltage and
mechanical torque.

Example 7.13: Consider a particular motor with the following parameters,

I = 3.88× 10−7 kg·meters2

kb = 2.75× 10−4 volts/RPM

kT = 5.9× 10−3 newton·meters/amp

R = 1.71 ohms

L = 1.1× 10−4 henrys

Assume that there is no additional load on the motor, and we apply a PWM signal
with frequency 1 kHz and duty cycle 0.1. Then the response of the motor is
as shown in Figure 7.5, which has been calculated by numerically simulating
according to equations (7.14) and (7.13). Notice that the motor settles at a bit
more than 350 RPM after 2 seconds. As shown in the detailed plot, the angular
velocity of the motor jitters at a rate of 1 kHz. It accelerates rapidly when the
PWM signal is high, and decelerates when it is low, the latter due to friction and
back electromagnetic force. If we increase the frequency of the PWM signal, then
we can reduce the magnitude of this jitter.

In a typical use of a PWM controller to drive a motor, we will use the feedback control
techniques of Section 2.4 to set the speed of the motor to a desired RPM. To do this, we
require a measurement of the speed of the motor. We can use a sensor called a rotary
encoder, or just encoder, which reports either the angular position or velocity (or both)
of a rotary shaft. There are many different designs for such encoders. A very simple one
provides an electrical pulse each time the shaft rotates by a certain angle, so that counting
pulses per unit time will provide a measurement of the angular velocity.
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7.4 Summary

The variety of sensors and actuators that are available to engineers is enormous. In this
chapter, we emphasize models of these sensors and actuators. Such models are an essen-
tial part of the toolkit of embedded systems designers. Without such models, engineers
would be stuck with guesswork and experimentation.
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Exercises

1. Show that the composition f ◦ g of two affine functions f and g is affine.

2. The dynamic range of human hearing is approximately 100 decibels. Assume that
the smallest difference in sound levels that humans can effectively discern is a sound
pressure of about 20 µPa (micropascals).

(a) Assuming a dynamic range of 100 decibels, what is the sound pressure of the
loudest sound that humans can effectively discriminate?

(b) Assume a perfect microphone with a range that matches the human hearing
range. What is the minimum number of bits that an ADC should have to
match the dynamic range of human hearing?

3. The following questions are about how to determine the function

f : (L,H)→ {0, . . . , 2B − 1},

for an accelerometer, which given a proper acceleration x yields a digital number
f(x). We will assume that x has units of “g’s,” where 1g is the acceleration of
gravity, approximately g = 9.8meters/second2.

(a) Let the bias b ∈ {0, . . . , 2B − 1} be the output of the ADC when the ac-
celerometer measures no proper acceleration. How can you measure b?

(b) Let a ∈ {0, . . . , 2B − 1} be the difference in output of the ADC when the ac-
celerometer measures 0g and 1g of acceleration. This is the ADC conversion
of the sensitivity of the accelerometer. How can you measure a?

(c) Suppose you have measurements of a and b from parts (3b) and (3a). Give an
affine function model for the accelerometer, assuming the proper acceleration
is x in units of g’s. Discuss how accurate this model is.

(d) Given a measurement f(x) (under the affine model), find x, the proper accel-
eration in g’s.

(e) The process of determining a and b by measurement is called calibration
of the sensor. Discuss why it might be useful to individually calibrate each
particular accelerometer, rather than assume fixed calibration parameters a
and b for a collection of accelerometers.
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(f) Suppose you have an ideal 8-bit digital accelerometer that produces the value
f(x) = 128 when the proper acceleration is 0g, value f(x) = 1 when the
proper acceleration is 3g to the right, and value f(x) = 255 when the proper
acceleration is 3g to the left. Find the sensitivity a and bias b. What is the
dynamic range (in decibels) of this accelerometer? Assume the accelerometer
never yields f(x) = 0.

4. (this problem is due to Eric Kim)

You are a Rebel Alliance fighter pilot evading pursuit from the Galactic Empire by
hovering your space ship beneath the clouds of the planet Cory. Let the positive z
direction point upwards and be your ship’s position relative to the ground and v be
your vertical velocity. The gravitational force is strong with this planet and induces
an acceleration (in a vacuum) with absolute value g. The force from air resistance
is linear with respect to velocity and is equal to rv, where the drag coefficient r ≤ 0
is a constant parameter of the model. The ship has mass M . Your engines provide
a vertical force.

(a) Let L(t) be the input be the vertical lift force provided from your engines.
Write down the dynamics for your ship for the position z(t) and velocity
v(t). Ignore the scenario when your ship crashes. The right hand sides should
contain v(t) and L(t).

(b) Given your answer to the previous problem, write down the explicit solution
to z(t) and v(t) when the air resistance force is negligible and r = 0. At
initial time t = 0, you are 30m above the ground and have an initial velocity
of −10ms . Hint: Write v(t) first then write z(t) in terms of v(t).

(c) Draw an actor model using integrators, adders, etc. for the system that gen-
erates your vertical position and velocity. Make sure to label all variables in
your actor model.

(d) Your engine is slightly damaged and you can only control it by giving a pure
input, switch, that when present instantaneously switches the state of the en-
gine from on to off and vice versa. When on, the engine creates a positive
lift force L and when off L = 0. Your instrumentation panel contains an
accelerometer. Assume your spaceship is level (i.e. zero pitch angle) and
the accelerometer’s positive z axis points upwards. Let the input sequence of
engine switch commands be

switch(t) =

{
present if t ∈ {.5, 1.5, 2.5, . . .}
absent otherwise

}
.
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To resolve ambiguity at switching times t = .5, 1.5, 2.5, . . ., at the moment of
transition the engine’s force takes on the new value instantaneously. Assume
that air resistance is negligible (i.e. r = 0), ignore a crashed state, and the
engine is on at t = 0.
Sketch the vertical component of the accelerometer reading as a function of
time t ∈ R. Label important values on the axes. Hint: Sketching the graph
for force first would be helpful.

(e) If the spaceship is flying at a constant height, what is the value read by the
accelerometer?
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In general-purpose computing, the variety of instruction set architectures today is lim-
ited, with the Intel x86 architecture overwhelmingly dominating all. There is no such
dominance in embedded computing. On the contrary, the variety of processors can be
daunting to a system designer. Our goal in this chapter is to give the reader the tools and
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vocabulary to understand the options and to critically evaluate the properties of proces-
sors. We particularly focus on the mechanisms that provide concurrency and control over
timing, because these issues loom large in the design of cyber-physical systems.

When deployed in a product, embedded processors typically have a dedicated function.
They control an automotive engine or measure ice thickness in the Arctic. They are not
asked to perform arbitrary functions with user-defined software. Consequently, the pro-
cessors can be more specialized. Making them more specialized can bring enormous
benefits. For example, they may consume far less energy, and consequently be usable
with small batteries for long periods of time. Or they may include specialized hardware
to perform operations that would be costly to perform on general-purpose hardware, such
as image analysis.

When evaluating processors, it is important to understand the difference between an in-
struction set architecture (ISA) and a processor realization or a chip. The latter is a
piece of silicon sold by a semiconductor vendor. The former is a definition of the in-
structions that the processor can execute and certain structural constraints (such as word
size) that realizations must share. x86 is an ISA. There are many realizations. An ISA is
an abstraction shared by many realizations. A single ISA may appear in many different
chips, often made by different manufacturers, and often having widely varying perfor-
mance profiles.

The advantage of sharing an ISA in a family of processors is that software tools, which are
costly to develop, may be shared, and (sometimes) the same programs may run correctly
on multiple realizations. This latter property, however, is rather treacherous, since an ISA
does not normally include any constraints on timing. Hence, although a program may
execute logically the same way on multiple chips, the system behavior may be radically
different when the processor is embedded in a cyber-physical system.

8.1 Types of Processors

As a consequence of the huge variety of embedded applications, there is a huge variety
of processors that are used. They range from very small, slow, inexpensive, low-power
devices, to high-performance, special-purpose devices. This section gives an overview of
some of the available types of processors.
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8.1.1 Microcontrollers

A microcontroller (µC) is a small computer on a single integrated circuit consisting of a
relatively simple central processing unit (CPU) combined with peripheral devices such
as memories, I/O devices, and timers. By some accounts, more than half of all CPUs sold
worldwide are microcontrollers, although such a claim is hard to substantiate because
the difference between microcontrollers and general-purpose processors is indistinct. The
simplest microcontrollers operate on 8-bit words and are suitable for applications that re-
quire small amounts of memory and simple logical functions (vs. performance-intensive
arithmetic functions). They may consume extremely small amounts of energy, and often
include a sleep mode that reduces the power consumption to nanowatts. Embedded com-
ponents such as sensor network nodes and surveillance devices have been demonstrated
that can operate on a small battery for several years.

Microcontrollers can get quite elaborate. Distinguishing them from general-purpose pro-
cessors can get difficult. The Intel Atom, for example, is a family of x86 CPUs used
mainly in netbooks and other small mobile computers. Because these processors are
designed to use relatively little energy without losing too much performance relative to
processors used in higher-end computers, they are suitable for some embedded applica-
tions and in servers where cooling is problematic. AMD’s Geode is another example of
a processor near the blurry boundary between general-purpose processors and microcon-
trollers.

8.1.2 DSP Processors

Many embedded applications do quite a bit of signal processing. A signal is a collection
of sampled measurements of the physical world, typically taken at a regular rate called
the sample rate. A motion control application, for example, may read position or location
information from sensors at sample rates ranging from a few Hertz (Hz, or samples per
second) to a few hundred Hertz. Audio signals are sampled at rates ranging from 8,000 Hz
(or 8 kHz, the sample rate used in telephony for voice signals) to 44.1 kHz (the sample rate
of CDs). Ultrasonic applications (such as medical imaging) and high-performance music
applications may sample sound signals at much higher rates. Video typically uses sample
rates of 25 or 30 Hz for consumer devices to much higher rates for specialty measurement
applications. Each sample, of course, contains an entire image (called a frame), which
itself has many samples (called pixels) distributed in space rather than time. Software-
defined radio applications have sample rates that can range from hundreds of kHz (for
baseband processing) to several GHz (billions of Hertz). Other embedded applications
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Microcontrollers

Most semiconductor vendors include one or more families of microcontrollers in their
product line. Some of the architectures are quite old. The Motorola 6800 and Intel
8080 are 8-bit microcontrollers that appeared on the market in 1974. Descendants of
these architectures survive today, for example in the form of the Freescale 6811. The
Zilog Z80 is a fully-compatible descendant of the 8080 that became one of the most
widely manufactured and widely used microcontrollers of all time. A derivative of the
Z80 is the Rabbit 2000 designed by Rabbit Semiconductor.

Another very popular and durable architecture is the Intel 8051, an 8-bit microcon-
troller developed by Intel in 1980. The 8051 ISA is today supported by many vendors,
including Atmel, Infineon Technologies, Dallas Semiconductor, NXP, ST Microelec-
tronics, Texas Instruments, and Cypress Semiconductor. The Atmel AVR 8-bit mi-
crocontroller, developed by Atmel in 1996, was one of the first microcontrollers to
use on-chip flash memory for program storage. Although Atmel says AVR is not an
acronym, it is believed that the architecture was conceived by two students at the Nor-
wegian Institute of Technology, Alf-Egil Bogen and Vegard Wollan, so it may have
originated as Alf and Vegard’s RISC.

Many 32-bit microcontrollers implement some variant of an ARM instruction set,
developed by ARM Limited. ARM originally stood for Advanced RISC Machine, and
before that Acorn RISC Machine, but today it is simply ARM. Processors that im-
plement the ARM ISA are widely used in mobile phones to realize the user interface
functions, as well as in many other embedded systems. Semiconductor vendors license
the instruction set from ARM Limited and produce their own chips. ARM processors
are currently made by Alcatel, Atmel, Broadcom, Cirrus Logic, Freescale, LG, Mar-
vell Technology Group, NEC, NVIDIA, NXP, Samsung, Sharp, ST Microelectronics,
Texas Instruments, VLSI Technology, Yamaha, and others.

Other notable embedded microcontroller architectures include the Motorola Cold-
Fire (later the Freescale ColdFire), the Hitachi H8 and SuperH, the MIPS (originally
developed by a team led by John Hennessy at Stanford University), the PIC (originally
Programmable Interface Controller, from Microchip Technology), and the PowerPC
(created in 1991 by an alliance of Apple, IBM, and Motorola).
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Programmable Logic Controllers

A programmable logic controller
(PLC) is a specialized form of a micro-
controller for industrial automation. PLCs
originated as replacements for control
circuits using electrical relays to control
machinery. They are typically designed for
continuous operation in hostile environ-
ments (high temperature, humidity, dust,
etc.).

Ladder Logic Diagram

PLCs are often programmed using ladder logic, a notation originally used to specify
logic constructed with relays and switches. A relay is a switch where the contact is
controlled by coil. When a voltage is applied to the coil, the contact closes, enabling
current to flow through the relay. By interconnecting contacts and coils, relays can be
used to build digital controllers that follow specified patterns.

In common notation, a contact is represented by two vertical bars, and a coil by
a circle, as shown in the diagram above. The above diagram has two rungs. The
Motor coil on the lower rung turns a motor on or off. The Start and Stop contacts
represent pushbutton switches. When an operator pushes the Start button, the contact
is closed, and current can flow from the left (the power rail) to the right (ground).
Start is a normally open contact. The Stop contact is normally closed, indicated by
the slash, meaning that it becomes open when the operator pushes the switch. The
logic in the upper rung is interesting. When the operator pushes Start, current flows to
the Run coil, causing both Run contacts to close. The motor will run, even after the
Start button is released. When the operator pushes Stop, current is interrupted, and
both Run contacts become open, causing the motor to stop. Contacts wired in parallel
perform a logical OR function, and contacts wired in series perform a logical AND.
The upper rung has feedback; the meaning of the rung is a fixed point solution to the
logic equation implied by the diagram.

Today, PLCs are just microcontrollers in rugged packages with I/O interfaces suit-
able for industrial control, and ladder logic is a graphical programming notation for
programs. These diagrams can get quite elaborate, with thousands of rungs. For de-
tails, we recommend Kamen (1999).

214 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


8. EMBEDDED PROCESSORS

that make heavy use of signal processing include interactive games; radar, sonar, and
LIDAR (light detection and ranging) imaging systems; video analytics (the extraction
of information from video, for example for surveillance); driver-assist systems for cars;
medical electronics; and scientific instrumentation.

Signal processing applications all share certain characteristics. First, they deal with large
amounts of data. The data may represent samples in time of a physical processor (such
as samples of a wireless radio signal), samples in space (such as images), or both (such
as video and radar). Second, they typically perform sophisticated mathematical opera-
tions on the data, including filtering, system identification, frequency analysis, machine
learning, and feature extraction. These operations are mathematically intensive.

Processors designed specifically to support numerically intensive signal processing appli-
cations are called DSP processors, or DSPs (digital signal processors), for short. To
get some insight into the structure of such processors and the implications for the embed-
ded software designer, it is worth understanding the structure of typical signal processing
algorithms.

A canonical signal processing algorithm, used in some form in all of the above applica-
tions, is finite impulse response (FIR) filtering. The simplest form of this algorithm is
straightforward, but has profound implications for hardware. In this simplest form, an in-
put signal x consists of a very long sequence of numerical values, so long that for design

The x86 Architecture

The dominant ISA for desktop and portable computers is known as the x86. This
term originates with the Intel 8086, a 16-bit microprocessor chip designed by Intel
in 1978. A variant of the 8086, designated the 8088, was used in the original IBM
PC, and the processor family has dominated the PC market ever since. Subsequent
processors in this family were given names ending in “86,” and generally maintained
backward compatibility. The Intel 80386 was the first 32-bit version of this instruction
set, introduced in 1985. Today, the term “x86” usually refers to the 32-bit version,
with 64-bit versions designated “x86-64.” The Intel Atom, introduced in 2008, is an
x86 processor with significantly reduced energy consumption. Although it is aimed
primarily at netbooks and other small mobile computers, it is also an attractive option
for some embedded applications. The x86 architecture has also been implemented in
processors from AMD, Cyrix, and several other manufacturers.
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purposes it should be considered infinite. Such an input can be modeled as a function
x : N → D, where D is a set of values in some data type.1 For example, D could be
the set of all 16-bit integers, in which case, x(0) is the first input value (a 16-bit integer),
x(1) is the second input value, etc. For mathematical convenience, we can augment this
to x : Z→ D by defining x(n) = 0 for all n < 0. For each input value x(n), an FIR filter
must compute an output value y(n) according to the formula,

y(n) =
N−1∑
i=0

aix(n− i) , (8.1)

1For a review of this notation, see Appendix A on page 493.

DSP Processors

Specialized computer architectures for signal processing have been around for quite
some time (Allen, 1975). Single-chip DSP microprocessors first appeared in the early
1980s, beginning with the Western Electric DSP1 from Bell Labs, the S28211 from
AMI, the TMS32010 from Texas Instruments, the uPD7720 from NEC, and a few
others. Early applications of these devices included voiceband data modems, speech
synthesis, consumer audio, graphics, and disk drive controllers. A comprehensive
overview of DSP processor generations through the mid-1990s can be found in Lapsley
et al. (1997).

Central characteristics of DSPs include a hardware multiply-accumulate unit; several
variants of the Harvard architecture (to support multiple simultaneous data and program
fetches); and addressing modes supporting auto increment, circular buffers, and bit-
reversed addressing (the latter to support FFT calculation). Most support fixed-point
data precisions of 16-24 bits, typically with much wider accumulators (40-56 bits) so
that a large number of successive multiply-accumulate instructions can be executed
without overflow. A few DSPs have appeared with floating point hardware, but these
have not dominated the marketplace.

DSPs are difficult to program compared to RISC architectures, primarily because
of complex specialized instructions, a pipeline that is exposed to the programmer, and
asymmetric memory architectures. Until the late 1990s, these devices were almost
always programmed in assembly language. Even today, C programs make extensive
use of libraries that are hand-coded in assembly language to take advantage of the most
esoteric features of the architectures.
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z −1

1/41/4

z −1 z −1

1/41/4
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x(n) x(n − 1) x(n − 2) x(n − 3)

a0 a1 a2 a3

y(n)

Figure 8.1: Structure of a tapped delay line implementation of the FIR filter of
example 8.1. This diagram can be read as a dataflow diagram. For each n ∈ N,
each component in the diagram consumes one input value from each input path
and produces one output value on each output path. The boxes labeled z−1 are
unit delays. Their task is to produce on the output path the previous value of the
input (or an initial value if there was no previous input). The triangles multiply their
input by a constant, and the circles add their inputs.

where N is the length of the FIR filter, and the coefficients ai are called its tap values.
You can see from this formula why it is useful to augment the domain of the function x,
since the computation of y(0), for example, involves values x(−1), x(−2), etc.

Example 8.1: Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4. Then for all
n ∈ N,

y(n) = (x(n) + x(n− 1) + x(n− 2) + x(n− 3))/4 .

Each output sample is the average of the most recent four input samples. The
structure of this computation is shown in Figure 8.1. In that figure, input values
come in from the left and propagate down the delay line, which is tapped after
each delay element. This structure is called a tapped delay line.

The rate at which the input values x(n) are provided and must be processed is called
the sample rate. If you know the sample rate and N , you can determine the number of
arithmetic operations that must be computed per second.
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Example 8.2: Suppose that an FIR filter is provided with samples at a rate of
1 MHz (one million samples per second), and that N = 32. Then outputs must
be computed at a rate of 1 MHz, and each output requires 32 multiplications and
31 additions. A processor must be capable of sustaining a computation rate of
63 million arithmetic operations per second to implement this application. Of
course, to sustain the computation rate, it is necessary not only that the arithmetic
hardware be fast enough, but also that the mechanisms for getting data in and out
of memory and on and off chip be fast enough.

An image can be similarly modeled as a function x : H × V → D, where H ⊂ N
represents the horizontal index, V ⊂ N represents the vertical index, and D is the set of
all possible pixel values. A pixel (or picture element) is a sample representing the color
and intensity of a point in an image. There are many ways to do this, but all use one or
more numerical values for each pixel. The sets H and V depend on the resolution of the
image.

Example 8.3: Analog television is steadily being replaced by digital formats
such as ATSC, a set of standards developed by the Advanced Television Systems
Committee. In the US, the vast majority of over-the-air NTSC transmissions
(National Television System Committee) were replaced with ATSC on June 12,
2009. ATSC supports a number of frame rates ranging from just below 24 Hz
to 60 Hz and a number of resolutions. High-definition video under the ATSC
standard supports, for example, a resolution of 1080 by 1920 pixels at a frame rate
of 30 Hz. Hence,H = {0, · · · , 1919} and V = {0, · · · , 1079}. This resolution is
called 1080p in the industry. Professional video equipment today goes up to four
times this resolution (4320 by 7680). Frame rates can also be much higher than
30 Hz. Very high frame rates are useful for capturing extremely fast phenomena
in slow motion.
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For a grayscale image, a typical filtering operation will construct a new image y from an
original image x according to the following formula,

∀ i ∈ H, j ∈ V, y(i, j) =
N∑

n=−N

M∑
m=−M

an,mx(i− n, j −m) , (8.2)

where an,m are the filter coefficients. This is a two-dimensional FIR filter. Such a calcu-
lation requires defining x outside the region H × V . There is quite an art to this (to avoid
edge effects), but for our purposes here, it suffices to get a sense of the structure of the
computation without being concerned for this detail.

A color image will have multiple color channels. These may represent luminance (how
bright the pixel is) and chrominance (what the color of the pixel is), or they may represent
colors that can be composed to get an arbitrary color. In the latter case, a common choice
is an RGBA format, which has four channels representing red, green, blue, and the alpha
channel, which represents transparency. For example, a value of zero for R, G, and B
represents the color black. A value of zero for A represents fully transparent (invisible).
Each channel also has a maximum value, say 1.0. If all four channels are at the maximum,
the resulting color is a fully opaque white.

The computational load of the filtering operation in (8.2) depends on the number of chan-
nels, the number of filter coefficients (the values of N and M ), the resolution (the sizes
of the sets H and V ), and the frame rate.

Example 8.4: Suppose that a filtering operation like (8.2) with N = 1 and
M = 1 (minimal values for useful filters) is to be performed on a high-definition
video signal as in Example 8.3. Then each pixel of the output image y requires
performing 9 multiplications and 8 additions. Suppose we have a color image
with three channels (say, RGB, without transparency), then this will need to per-
formed 3 times for each pixel. Thus, each frame of the resulting image will re-
quire 1080× 1920× 3× 9 = 55, 987, 200 multiplications, and a similar number
of additions. At 30 frames per second, this translates into 1, 679, 616, 000 multi-
plications per second, and a similar number of additions. Since this is about the
simplest operation one may perform on a high-definition video signal, we can see
that processor architectures handling such video signals must be quite fast indeed.
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In addition to the large number of arithmetic operations, the processor has to handle the
movement of data down the delay line, as shown in Figure 8.1 (see box on page 221).
By providing support for delay lines and multiply-accumulate instructions, as shown in
Example 8.6, DSP processors can realize one tap of an FIR filter in one cycle. In that
cycle, they multiply two numbers, add the result to an accumulator, and increment or
decrement two pointers using modulo arithmetic.

8.1.3 Graphics Processors

A graphics processing unit (GPU) is a specialized processor designed especially to per-
form the calculations required in graphics rendering. Such processors date back to the
1970s, when they were used to render text and graphics, to combine multiple graphic
patterns, and to draw rectangles, triangles, circles, and arcs. Modern GPUs support
3D graphics, shading, and digital video. Dominant providers of GPUs today are Intel,
NVIDIA and AMD.

Some embedded applications, particularly games, are a good match for GPUs. Moreover,
GPUs have evolved towards more general programming models, and hence have started to
appear in other compute-intensive applications, such as instrumentation. GPUs are typi-
cally quite power hungry, and therefore today are not a good match for energy constrained
embedded applications.

8.2 Parallelism

Most processors today provide various forms of parallelism. These mechanisms strongly
affect the timing of the execution of a program, so embedded system designers have to
understand them. This section provides an overview of the several forms and their conse-
quences for system designers.

8.2.1 Parallelism vs. Concurrency

Concurrency is central to embedded systems. A computer program is said to be concur-
rent if different parts of the program conceptually execute simultaneously. A program
is said to be parallel if different parts of the program physically execute simultaneously
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Circular Buffers

An FIR filter requires a delay-line like that shown in Figure 8.1. A naive implementa-
tion would allocate an array in memory, and each time an input sample arrives, move
each element in the array to the next higher location to make room for the new element
in the first location. This would be enormously wasteful of memory bandwidth. A
better approach is to use a circular buffer, where an array in memory is interpreted as
having a ring-like structure, as shown below for a length-8 delay line:

0
1

2
34

5

6
7

p

Here, 8 successive memory locations, labeled 0 to 7, store the values in the delay line.
A pointer p, initialized to location 0, provides access.

An FIR filter can use this circular buffer to implement the summation of (8.1). One
implementation first accepts a new input value x(n), and then calculates the summation
backwards, beginning with the i = N−1 term, where in our example,N = 8. Suppose
that when the nth input arrives, the value of p is some number pi ∈ {0, · · · , 7} (for
the first input x(0), pi = 0). The program writes the new input x(n) into the location
given by p and then increments p, setting p = pi + 1. All arithmetic on p is done
modulo 8, so for example, if pi = 7, then pi + 1 = 0. The FIR filter calculation then
reads x(n − 7) from location p = pi + 1 and multiplies it by a7. The result is stored
in an accumulator register. It again increments p by one, setting it to p = pi + 2. It
next reads x(n − 6) from location p = pi + 2, multiplies it by a6, and adds the result
to the accumulator (this explains the name “accumulator” for the register, since it
accumulates the products in the tapped delay line). It continues until it reads x(n) from
location p = pi + 8, which because of the modulo operation is the same location that
the latest input x(n) was written to, and multiplies that value by a0. It again increments
p, getting p = pi+9 = pi+1. Hence, at the conclusion of this operation, the value of p
is pi+1, which gives the location into which the next input x(n+1) should be written.
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on distinct hardware (such as on multicore machines, on servers in a server farm, or on
distinct microprocessors).

Non-concurrent programs specify a sequence of instructions to execute. A programming
language that expresses a computation as a sequence of operations is called an imperative
language. C is an imperative language. When using C to write concurrent programs, we
must step outside the language itself, typically using a thread library. A thread library
uses facilities provided not by C, but rather provided by the operating system and/or the
hardware. Java is a mostly imperative language extended with constructs that directly
support threads. Thus, one can write concurrent programs in Java without stepping outside
the language.

Every (correct) execution of a program in an imperative language must behave as if the
instructions were executed exactly in the specified sequence. It is often possible, how-
ever, to execute instructions in parallel or in an order different from that specified by the
program and still get behavior that matches what would have happened had they been
executed in sequence.

Example 8.5: Consider the following C statements:

double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = pi * pi * pi;

The last two assignment statements are independent, and hence can be executed
in parallel or in reverse order without changing the behavior of the program. Had
we written them as follows, however, they would no longer be independent:

double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = piSquared * pi;

In this case, the last statement depends on the third statement in the sense that the
third statement must complete execution before the last statement starts.
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A compiler may analyze the dependencies between operations in a program and produce
parallel code, if the target machine supports it. This analysis is called dataflow analy-
sis. Many microprocessors today support parallel execution, using multi-issue instruction
streams or VLIW (very large instruction word) architectures. Processors with multi-issue
instruction streams can execute independent instructions simultaneously. The hardware
analyzes instructions on-the-fly for dependencies, and when there is no dependency, exe-
cutes more than one instruction at a time. In the latter, VLIW machines have assembly-
level instructions that specify multiple operations to be performed together. In this case,
the compiler is usually required to produce the appropriate parallel instructions. In these
cases, the dependency analysis is done at the level of assembly language or at the level
of individual operations, not at the level of lines of C. A line of C may specify multiple
operations, or even complex operations like procedure calls. In both cases (multi-issue
and VLIW), an imperative program is analyzed for concurrency in order to enable paral-
lel execution. The overall objective is to speed up execution of the program. The goal is
improved performance, where the presumption is that finishing a task earlier is always
better than finishing it later.

In the context of embedded systems, however, concurrency plays a part that is much more
central than merely improving performance. Embedded programs interact with physical
processes, and in the physical world, many activities progress at the same time. An em-
bedded program often needs to monitor and react to multiple concurrent sources of stim-
ulus, and simultaneously control multiple output devices that affect the physical world.
Embedded programs are almost always concurrent programs, and concurrency is an in-
trinsic part of the logic of the programs. It is not just a way to get improved performance.
Indeed, finishing a task earlier is not necessarily better than finishing it later. Timeliness
matters, of course; actions performed in the physical world often need to be done at the
right time (neither early nor late). Picture for example an engine controller for a gasoline
engine. Firing the spark plugs earlier is most certainly not better than firing them later.
They must be fired at the right time.

Just as imperative programs can be executed sequentially or in parallel, concurrent pro-
grams can be executed sequentially or in parallel. Sequential execution of a concurrent
program is done typically today by a multitasking operating system, which interleaves
the execution of multiple tasks in a single sequential stream of instructions. Of course,
the hardware may parallelize that execution if the processor has a multi-issue or VLIW
architecture. Hence, a concurrent program may be converted to a sequential stream by an
operating system and back to concurrent program by the hardware, where the latter trans-
lation is done to improve performance. These multiple translations greatly complicate
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the problem of ensuring that things occur at the right time. This problem is addressed in
Chapter 12.

Parallelism in the hardware, the main subject of this chapter, exists to improve perfor-
mance for computation-intensive applications. From the programmer’s perspective, con-
currency arises as a consequence of the hardware designed to improve performance, not
as a consequence of the application problem being solved. In other words, the appli-
cation does not (necessarily) demand that multiple activities proceed simultaneously, it
just demands that things be done very quickly. Of course, many interesting applications
will combine both forms of concurrency, arising from parallelism and from application
requirements.

The sorts of algorithms found in compute-intensive embedded programs has a profound
affect on the design of the hardware. In this section, we focus on hardware approaches
that deliver parallelism, namely pipelining, instruction-level parallelism, and multicore
architectures. All have a strong influence on the programming models for embedded
software. In Chapter 9, we give an overview of memory systems, which strongly influence
how parallelism is handled.
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Figure 8.2: Simple pipeline (after Patterson and Hennessy (1996)).
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8.2.2 Pipelining

Most modern processors are pipelined. A simple five-stage pipeline for a 32-bit machine
is shown in Figure 8.2. In the figure, the shaded rectangles are latches, which are clocked
at processor clock rate. On each edge of the clock, the value at the input is stored in the
latch register. The output is then held constant until the next edge of the clock, allowing
the circuits between the latches to settle. This diagram can be viewed as a synchronous-
reactive model of the behavior of the processor.

In the fetch (leftmost) stage of the pipeline, a program counter (PC) provides an address
to the instruction memory. The instruction memory provides encoded instructions, which
in the figure are assumed to be 32 bits wide. In the fetch stage, the PC is incremented
by 4 (bytes), to become the address of the next instruction, unless a conditional branch
instruction is providing an entirely new address for the PC. The decode pipeline stage
extracts register addresses from the 32-bit instruction and fetches the data in the specified
registers from the register bank. The execute pipeline stage operates on the data fetched
from the registers or on the PC (for a computed branch) using an arithmetic logic unit
(ALU), which performs arithmetic and logical operations. The memory pipeline stage
reads or writes to a memory location given by a register. The writeback pipeline stage
stores results in the register file.

DSP processors normally add an extra stage or two that performs a multiplication, provide
separate ALUs for address calculation, and provide a dual data memory for simultaneous
access to two operands (this latter design is known as a Harvard architecture). But the
simple version without the separate ALUs suffices to illustrate the issues that an embedded
system designer faces.

The portions of the pipeline between the latches operate in parallel. Hence, we can see
immediately that there are simultaneously five instructions being executed, each at a dif-
ferent stage of execution. This is easily visualized with a reservation table like that in
Figure 8.3. The table shows hardware resources that may be simultaneously used on the
left. In this case, the register bank appears three times because the pipeline of Figure 8.2
assumes that two reads and write of the register file can occur in each cycle.

The reservation table in Figure 8.3 shows a sequence A,B,C,D,E of instructions in
a program. In cycle 5, E is being fetched while D is reading from the register bank,
while C is using the ALU, while B is reading from or writing to data memory, while A
is writing results to the register bank. The write by A occurs in cycle 5, but the read by
B occurs in cycle 3. Thus, the value that B reads will not be the value that A writes.
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This phenomenon is known as a data hazard, one form of pipeline hazard. Pipeline
hazards are caused by the dashed lines in Figure 8.2. Programmers normally expect that
if instruction A is before instruction B, then any results computed by A will be available
to B, so this behavior may not be acceptable.

Computer architects have tackled the problem of pipeline hazards in a variety of ways.
The simplest technique is known as an explicit pipeline. In this technique, the pipeline
hazard is simply documented, and the programmer (or compiler) must deal with it. For
the example where B reads a register written by A, the compiler may insert three no-op
instructions (which do nothing) between A and B to ensure that the write occurs before
the read. These no-op instructions form a pipeline bubble that propagates down the
pipeline.

A more elaborate technique is to provide interlocks. In this technique, the instruction
decode hardware, upon encountering instruction B that reads a register written by A, will
detect the hazard and delay the execution of B until A has completed the writeback stage.
For this pipeline, B should be delayed by three clock cycles to permit A to complete,
as shown in Figure 8.4. This can be reduced to two cycles if slightly more complex
forwarding logic is provided, which detects that A is writing the same location that B is
reading, and directly provides the data rather than requiring the write to occur before the
read. Interlocks therefore provide hardware that automatically inserts pipeline bubbles.

A still more elaborate technique is out-of-order execution, where hardware is provided
that detects a hazard, but instead of simply delaying execution of B, proceeds to fetch C,
and if C does not read registers written by either A or B, and does not write registers read
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Figure 8.3: Reservation table for the pipeline shown in Figure 8.2.
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by B, then proceeds to execute C before B. This further reduces the number of pipeline
bubbles.

Another form of pipeline hazard illustrated in Figure 8.2 is a control hazard. In the
figure, a conditional branch instruction changes the value of the PC if a specified register
has value zero. The new value of the PC is provided (optionally) by the result of an
ALU operation. In this case, if A is a conditional branch instruction, then A has to have
reached the memory stage before the PC can be updated. The instructions that follow A
in memory will have been fetched and will be at the decode and execute stages already by
the time it is determined that those instructions should not in fact be executed.

Like data hazards, there are multiple techniques for dealing with control hazards. A
delayed branch simply documents the fact that the branch will be taken some number of
cycles after it is encountered, and leaves it up to the programmer (or compiler) to ensure
that the instructions that follow the conditional branch instruction are either harmless
(like no-ops) or do useful work that does not depend on whether the branch is taken. An
interlock provides hardware to insert pipeline bubbles as needed, just as with data hazards.
In the most elaborate technique, speculative execution, hardware estimates whether the
branch is likely to be taken, and begins executing the instructions it expects to execute. If
its expectation is not met, then it undoes any side effects (such as register writes) that the
speculatively executed instructions caused.

Except for explicit pipelines and delayed branches, all of these techniques introduce vari-
ability in the timing of execution of an instruction sequence. Analysis of the timing of
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Figure 8.4: Reservation table for the pipeline shown in Figure 8.2 with interlocks,
assuming that instruction B reads a register that is written by instruction A.

Lee & Seshia, Introduction to Embedded Systems 227

http://LeeSeshia.org


8.2. PARALLELISM

a program can become extremely difficult when there is a deep pipeline with elaborate
forwarding and speculation. Explicit pipelines are relatively common in DSP processors,
which are often applied in contexts where precise timing is essential. Out-of-order and
speculative execution are common in general-purpose processors, where timing matters
only in an aggregate sense. An embedded system designer needs to understand the re-
quirements of the application and avoid processors where the requisite level of timing
precision is unachievable.

8.2.3 Instruction-Level Parallelism

Achieving high performance demands parallelism in the hardware. Such parallelism
can take two broad forms, multicore architectures, described later in Section 8.2.4, or
instruction-level parallelism (ILP), which is the subject of this section. A processor
supporting ILP is able to perform multiple independent operations in each instruction
cycle. We discuss four major forms of ILP: CISC instructions, subword parallelism, su-
perscalar, and VLIW.

CISC Instructions

A processor with complex (and typically, rather specialized) instructions is called a CISC
machine (complex instruction set computer). The philosophy behind such processors
is distinctly different from that of RISC machines (reduced instruction set computers)
(Patterson and Ditzel, 1980). DSPs are typically CISC machines, and include instructions
specifically supporting FIR filtering (and often other algorithms such as FFTs (fast Fourier
transforms) and Viterbi decoding). In fact, to qualify as a DSP, a processor must be able
to perform FIR filtering in one instruction cycle per tap.

Example 8.6: The Texas Instruments TMS320c54x family of DSP processors
is intended to be used in power-constrained embedded applications that demand
high signal processing performance, such as wireless communication systems and
personal digital assistants (PDAs). The inner loop of an FIR computation (8.1) is

1 RPT numberOfTaps - 1
2 MAC *AR2+, *AR3+, A
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The first instruction illustrates the zero-overhead loops commonly found in
DSPs. The instruction that comes after it will execute a number of times equal to
one plus the argument of the RPT instruction. The MAC instruction is a multiply-
accumulate instruction, also prevalent in DSP architectures. It has three argu-
ments specifying the following calculation,

a := a+ x ∗ y ,

where a is the contents of an accumulator register named A, and x and y are
values found in memory. The addresses of these values are contained by auxiliary
registers AR2 and AR3. These registers are incremented automatically after the
access. Moreover, these registers can be set up to implement circular buffers,
as described in the box on page 221. The c54x processor includes a section of
on-chip memory that supports two accesses in a single cycle, and as long as the
addresses refer to this section of the memory, the MAC instruction will execute
in a single cycle. Thus, each cycle, the processor performs two memory fetches,
one multiplication, one ordinary addition, and two (possibly modulo) address
increments. All DSPs have similar capabilities.

CISC instructions can get quite esoteric.

Example 8.7: The coefficients of the FIR filter in (8.1) are often symmetric,
meaning that N is even and

ai = aN−i−1 .

The reason for this is that such filters have linear phase (intuitively, this means that
symmetric input signals result in symmetric output signals, or that all frequency
components are delayed by the same amount). In this case, we can reduce the
number of multiplications by rewriting (8.1) as

y(n) =

(N/2)−1∑
i=0

ai(x(n− i) + x(n−N + i+ 1)) .

The Texas Instruments TMS320c54x instruction set includes a FIRS instruction
that functions similarly to the MAC in Example 8.6, but using this calculation
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rather than that of (8.1). This takes advantage of the fact that the c54x has two
ALUs, and hence can do twice as many additions as multiplications. The time to
execute an FIR filter now reduces to 1/2 cycle per tap.

CISC instruction sets have their disadvantages. For one, it is extremely challenging (per-
haps impossible) for a compiler to make optimal use of such an instruction set. As a
consequence, DSP processors are commonly used with code libraries written and opti-
mized in assembly language.

In addition, CISC instruction sets can have subtle timing issues that can interfere with
achieving hard real-time scheduling. In the above examples, the layout of data in memory
strongly affects execution times. Even more subtle, the use of zero-overhead loops (the
RPT instruction above) can introduce some subtle problems. On the TI c54x, interrupts
are disabled during repeated execution of the instruction following the RPT. This can
result in unexpectedly long latencies in responding to interrupts.

Subword Parallelism

Many embedded applications operate on data types that are considerably smaller than the
word size of the processor.

Example 8.8: In Examples 8.3 and 8.4, the data types are typically 8-bit integers,
each representing a color intensity. The color of a pixel may be represented by
three bytes in the RGB format. Each of the RGB bytes has a value ranging from 0
to 255 representing the intensity of the corresponding color. It would be wasteful
of resources to use, say, a 64-bit ALU to process a single 8-bit number.

To support such data types, some processors support subword parallelism, where a wide
ALU is divided into narrower slices enabling simultaneous arithmetic or logical opera-
tions on smaller words.
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Example 8.9: Intel introduced subword parallelism into the widely used gen-
eral purpose Pentium processor and called the technology MMX (Eden and Ka-
gan, 1997). MMX instructions divide the 64-bit datapath into slices as small as
8 bits, supporting simultaneous identical operations on multiple bytes of image
pixel data. The technology has been used to enhance the performance of im-
age manipulation applications as well as applications supporting video streaming.
Similar techniques were introduced by Sun Microsystems for SparcTMprocessors
(Tremblay et al., 1996) and by Hewlett Packard for the PA RISC processor (Lee,
1996). Many processor architectures designed for embedded applications, includ-
ing many DSP processors, also support subword parallelism.

A vector processor is one where the instruction set includes operations on multiple data
elements simultaneously. Subword parallelism is a particular form of vector processing.

Superscalar

Superscalar processors use fairly conventional sequential instruction sets, but the hard-
ware can simultaneously dispatch multiple instructions to distinct hardware units when
it detects that such simultaneous dispatch will not change the behavior of the program.
That is, the execution of the program is identical to what it would have been if it had
been executed in sequence. Such processors even support out-of-order execution, where
instructions later in the stream are executed before earlier instructions. Superscalar pro-
cessors have a significant disadvantage for embedded systems, which is that execution
times may be extremely difficult to predict, and in the context of multitasking (interrupts
and threads), may not even be repeatable. The execution times may be very sensitive to
the exact timing of interrupts, in that small variations in such timing may have big effects
on the execution times of programs.

VLIW

Processors intended for embedded applications often use VLIW architectures instead of
superscalar in order to get more repeatable and predictable timing. VLIW (very large in-
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struction word) processors include multiple function units, like superscalar processors,
but instead of dynamically determining which instructions can be executed simultane-
ously, each instruction specifies what each function unit should do in a particular cycle.
That is, a VLIW instruction set combines multiple independent operations into a single
instruction. Like superscalar architectures, these multiple operations are executed simul-
taneously on distinct hardware. Unlike superscalar, however, the order and simultaneity
of the execution is fixed in the program rather than being decided on-the-fly. It is up to the
programmer (working at assembly language level) or the compiler to ensure that the si-
multaneous operations are indeed independent. In exchange for this additional complexity
in programming, execution times become repeatable and (often) predictable.

Example 8.10: In Example 8.7, we saw the specialized instruction FIRS of
the c54x architecture that specifies operations for two ALUs and one multiplier.
This can be thought of as a primitive form of VLIW, but subsequent genera-
tions of processors are much more explicit about their VLIW nature. The Texas
Instruments TMS320c55x, the next generation beyond the c54x, includes two
multiply-accumulate units, and can support instructions that look like this:

1 MAC *AR2+, *CDP+, AC0
2 :: MAC *AR3+, *CDP+, AC1

Here, AC0 and AC1 are two accumulator registers and CDP is a specialized reg-
ister for pointing to filter coefficients. The notation :: means that these two
instructions should be issued and executed in the same cycle. It is up to the pro-
grammer or compiler to determine whether these instructions can in fact be exe-
cuted simultaneously. Assuming the memory addresses are such that the fetches
can occur simultaneously, these two MAC instructions execute in a single cycle,
effectively dividing in half the time required to execute an FIR filter.

For applications demanding higher performance still, VLIW architectures can get quite
elaborate.

Example 8.11: The Texas Instruments c6000 family of processors have a VLIW
instruction set. Included in this family are three subfamilies of processors, the
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c62x and c64x fixed-point processors and the c67x floating-point processors.
These processors are designed for use in wireless infrastructure (such as cellular
base stations and adaptive antennas), telecommunications infrastructure (such as
voice over IP and video conferencing), and imaging applications (such as medical
imaging, surveillance, machine vision or inspection, and radar).

Example 8.12: The TriMedia processor family, from NXP, is aimed at digital
television, and can perform operations like that in (8.2) very efficiently. NXP
Semiconductors used to be part of Philips, a diversified consumer electronics
company that, among many other products, makes flat-screen TVs. The strategy
in the TriMedia architecture is to make it easier for a compiler to generate effi-
cient code, reducing the need for assembly-level programming (though it includes
specialized CISC instructions that are difficult for a compiler to exploit). It makes
things easier for the compiler by having a larger register set than is typical (128
registers), a RISC-like instruction set, where several instructions can be issued
simultaneously, and hardware supporting IEEE 754 floating point operations.

8.2.4 Multicore Architectures

A multicore machine is a combination of several processors on a single chip. Although
multicore machines have existed since the early 1990s, they have only recently penetrated
into general-purpose computing. This penetration accounts for much of the interest in
them today. Heterogeneous multicore machines combine a variety of processor types on
a single chip, vs. multiple instances of the same processor type.

Example 8.13: Texas Instruments OMAP (open multimedia application plat-
form) architectures are widely used in cell phones, which normally combine one
or more DSP processors with one or more processors that are closer in style to
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general-purpose processors. The DSP processors handle the radio, speech, and
media processing (audio, images, and video). The other processors handle the
user interface, database functions, networking, and downloadable applications.
Specifically, the OMAP4440 includes a 1 GHz dual-core ARM Cortex processor,
a c64x DSP, a GPU, and an image signal processor.

Fixed-Point Numbers

Many embedded processors provide hardware for integer arithmetic only. Integer arith-
metic, however, can be used for non-whole numbers, with some care. Given, say, a 16-
bit integer, a programmer can imagine a binary point, which is like a decimal point,
except that it separates bits rather than digits of the number. For example, a 16-bit in-
teger can be used to represent numbers in the range −1.0 to 1.0 (roughly) by placing a
(conceptual) binary point just below the high-order bit of the number, as shown below:

binary point

high-order bit
low-order bit

Without the binary point, a number represented by the 16 bits is a whole number x ∈
{−215, · · · , 215−1} (assuming the twos-complement binary representation, which has
become nearly universal for signed integers). With the binary point, we interpret the
16 bits to represent a number y = x/215. Hence, y ranges from−1 to 1−2−15. This is
known as a fixed-point number. The format of this fixed-point number can be written
1.15, indicating that there is one bit to the left of the binary point and 15 to the right.
When two such numbers are multiplied at full precision, the result is a 32-bit number.
The binary point is located as follows:

binary point

high-order bit low-order bit

... Continued on page 235.
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Fixed-Point Numbers (continued)
The location of the binary point follows from the law of conservation of bits. When
multiplying two numbers with formats n.m and p.q, the result has format (n+p).(m+
q). Processors often support such full-precision multiplications, where the result goes
into an accumulator register that has at least twice as many bits as the ordinary data
registers. To write the result back to a data register, however, we have to extract 16
bits from the 32 bit result. If we extract the shaded bits on page 235, then we preserve
the position of the binary point, and the result still represents a number roughly in the
range −1 to 1.

There is a loss of information, however, when we extract 16 bits from a 32-bit result.
First, there is a possibility of overflow, because we are discarding the high-order bit.
Suppose the two numbers being multiplied are both −1, which has binary representa-
tion in twos complement as follows:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When these two number are multiplied, the result has the following bit pattern:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

which in twos complement, represents 1, the correct result. However, when we extract
the shaded 16 bits, the result is now−1! Indeed, 1 is not representable in the fixed-point
format 1.15, so overflow has occurred. Programmers must guard against this, for exam-
ple by ensuring that all numbers are strictly less than 1 in magnitude, prohibiting −1.

A second problem is that when we extract the shaded 16 bits from a 32-bit result,
we discard 15 low-order bits. There is a loss of information here. If we simply discard
the low-order 15 bits, the strategy is known as truncation. If instead we first add the
following bit pattern the 32-bit result, then the result is known as rounding:

00 0 0 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rounding chooses the result that is closest to the full-precision result, while truncation
chooses the closest result that is smaller in magnitude.

DSP processors typically perform the above extraction with either rounding or trun-
cation in hardware when data is moved from an accumulator to a general-purpose reg-
ister or to memory.
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For embedded applications, multicore architectures have a significant potential advan-
tage over single-core architectures because real-time and safety-critical tasks can have a
dedicated processor. This is the reason for the heterogeneous architectures used for cell
phones, since the radio and speech processing functions are hard real-time functions with
considerable computational load. In such architectures, user applications cannot interfere
with real-time functions.

This lack of interference is more problematic in general-purpose multicore architectures.
It is common, for example, to use multi-level caches, where the second or higher level
cache is shared among the cores. Unfortunately, such sharing makes it very difficult to
isolate the real-time behavior of the programs on separate cores, since each program can
trigger cache misses in another core. Such multi-level caches are not suitable for real-time
applications.

A very different type of multicore architecture that is sometimes used in embedded appli-
cations uses one or more soft cores together with custom hardware on a field-programmable
gate array (FPGA). FPGAs are chips whose hardware function is programmable using
hardware design tools. Soft cores are processors implemented on FPGAs. The advan-
tage of soft cores is that they can be tightly coupled to custom hardware more easily than
off-the-shelf processors.

8.3 Summary

The choice of processor architecture for an embedded system has important consequences
for the programmer. Programmers may need to use assembly language to take advantage
of esoteric architectural features. For applications that require precise timing, it may be
difficult to control the timing of a program because of techniques in the hardware for
dealing with pipeline hazards and parallel resources.
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Fixed-Point Arithmetic in C

Most C programmers will use float or double data types when performing arith-
metic on non-whole numbers. However, many embedded processors lack hardware for
floating-point arithmetic. Thus, C programs that use the float or double data types
often result in unacceptably slow execution, since floating point must be emulated in
software. Programmers are forced to use integer arithmetic to implement operations on
numbers that are not whole numbers. How can they do that?

First, a programmer can interpret a 32-bit int differently from the standard repre-
sentation, using the notion of a binary point, explained in the boxes on pages 234 and
235. However, when a C program specifies that two ints be multiplied, the result is an
int, not the full precision 64-bit result that we need. In fact, the strategy outlined on
page 234, of putting one bit to the left of the binary point and extracting the shaded bits
from the result, will not work, because most of the shaded bits will be missing from
the result. For example, suppose we want to multiply 0.5 by 0.5. This number can be
represented in 32-bit ints as follows:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Without the binary point (which is invisible to C and to the hardware, residing only
in the programmer’s mind), this bit pattern represents the integer 230, a large number
indeed. When multiplying these two numbers, the result is 260, which is not repre-
sentable in an int. Typical processors will set an overflow bit in the processor status
register (which the programmer must check) and deliver as a result the number 0, which
is the low-order 32 bits of the product. To guard against this, a programmer can shift
each 32 bit integer to the right by 16 bits before multiplying. In that case, the result of
the multiply 0.5× 0.5 is the following bit pattern:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
With the binary point as shown, this result is interpreted as 0.25, the correct answer. Of
course, shifting data to the right by 16 bits discards the 16 low-order bits in the int.
There is a loss of precision that amounts to truncation. The programmer may wish to
round instead, adding the int 215 to the numbers before shifting to the right 16 times.
Floating-point data types make things easier. The hardware (or software) keeps track
of the amount of shifting required and preserves precision when possible. However,
not all embedded processors with floating-point hardware conform with the IEEE 754
standard. This can complicate the design process for the programmer, because numer-
ical results will not match those produced by a desktop computer.
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Exercises

1. Consider the reservation table in Figure 8.4. Suppose that the processor includes
forwarding logic that is able to tell that instruction A is writing to the same register
that instruction B is reading from, and that therefore the result written by A can
be forwarded directly to the ALU before the write is done. Assume the forwarding
logic itself takes no time. Give the revised reservation table. How many cycles are
lost to the pipeline bubble?

2. Consider the following instruction, discussed in Example 8.6:

1 MAC *AR2+, *AR3+, A

Suppose the processor has three ALUs, one for each arithmetic operation on the
addresses contained in registers AR2 and AR3 and one to perform the addition in
the MAC multiply-accumulate instruction. Assume these ALUs each require one
clock cycle to execute. Assume that a multiplier also requires one clock cycle to
execute. Assume further that the register bank supports two reads and two writes
per cycle, and that the accumulator register A can be written separately and takes
no time to write. Give a reservation table showing the execution of a sequence of
such instructions.

3. Assuming fixed-point numbers with format 1.15 as described in the boxes on pages
234 and 235, show that the only two numbers that cause overflow when multiplied
are −1 and −1. That is, if either number is anything other than −1 in the 1.15
format, then extracting the 16 shaded bits in the boxes does not result in overflow.
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Many processor architects argue that memory systems have more impact on overall sys-
tem performance than data pipelines. This depends, of course, on the application, but for
many applications it is true. There are three main sources of complexity in memory. First,
it is commonly necessary to mix a variety of memory technologies in the same embed-
ded system. Many memory technologies are volatile, meaning that the contents of the
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memory is lost if power is lost. Most embedded systems need at least some non-volatile
memory and some volatile memory. Moreover, within these categories, there are several
choices, and the choices have significant consequences for the system designer. Second,
memory hierarchy is often needed because memories with larger capacity and/or lower
power consumption are slower. To achieve reasonable performance at reasonable cost,
faster memories must be mixed with slower memories. Third, the address space of a
processor architecture is divided up to provide access to the various kinds of memory, to
provide support for common programming models, and to designate addresses for inter-
action with devices other than memories, such as I/O devices. In this chapter, we discuss
these three issues in order.

9.1 Memory Technologies

In embedded systems, memory issues loom large. The choices of memory technologies
have important consequences for the system designer. For example, a programmer may
need to worry about whether data will persist when the power is turned off or a power-
saving standby mode is entered. A memory whose contents are lost when the power is
cut off is called a volatile memory. In this section, we discuss some of the available
technologies and their tradeoffs.

9.1.1 RAM

In addition to the register file, a microcomputer typically includes some amount of RAM
(random access memory), which is a memory where individual items (bytes or words)
can be written and read one at a time relatively quickly. SRAM (static RAM) is faster
than DRAM (dynamic RAM), but it is also larger (each bit takes up more silicon area).
DRAM holds data for only a short time, so each memory location must be periodically
refreshed. SRAM holds data for as long as power is maintained. Both types of memories
lose their contents if power is lost, so both are volatile memory, although arguably DRAM
is more volatile than SRAM because it loses its contents even if power is maintained.

Most embedded computer systems include an SRAM memory. Many also include DRAM
because it can be impractical to provide enough memory with SRAM technology alone. A
programmer that is concerned about the time it takes a program to execute must be aware
of whether memory addresses being accessed are mapped to SRAM or DRAM. More-
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over, the refresh cycle of DRAM can introduce variability to the access times because the
DRAM may be busy with a refresh at the time that access is requested. In addition, the
access history can affect access times. The time it takes to access one memory address
may depend on what memory address was last accessed.

A manufacturer of a DRAM memory chip will specify that each memory location must
be refreshed, say, every 64 ms, and that a number of locations (a “row”) are refreshed
together. The mere act of reading the memory will refresh the locations that are read
(and locations on the same row), but since applications may not access all rows within
the specified time interval, DRAM has to be used with a controller that ensures that all
locations are refreshed sufficiently often to retain the data. The memory controller will
stall accesses if the memory is busy with a refresh when the access is initiated. This
introduces variability in the timing of the program.

9.1.2 Non-Volatile Memory

Embedded systems invariably need to store data even when the power is turned off. There
are several options for this. One, of course, is to provide battery backup so that power
is never lost. Batteries, however, wear out, and there are better options available, known
collectively as non-volatile memories. An early form of non-volatile memory was mag-
netic core memory or just core, where a ferromagnetic ring was magnetized to store data.
The term “core” persists in computing to refer to computer memories, although this may
change as multicore machines become ubiquitous.

The most basic non-volatile memory today is ROM (read-only memory) or mask ROM,
the contents of which is fixed at the chip factory. This can be useful for mass produced
products that only need to have a program and constant data stored, and these data never
change. Such programs are known as firmware, suggesting that they are not as “soft” as
software. There are several variants of ROM that can be programmed in the field, and the
technology has gotten good enough that these are almost always used today over mask
ROM. EEPROM, electrically-erasable programmable ROM, comes in several forms, but
it is possible to write to all of these. The write time is typically much longer than the read
time, and the number of writes is limited during the lifetime of the device. A particularly
useful form of EEPROM is flash memory. Flash is commonly used to store firmware and
user data that needs to persist when the power is turned off.

Flash memory, invented by Dr. Fujio Masuoka at Toshiba around 1980, is a particularly
convenient form of non-volatile memory, but it presents some interesting challenges for
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embedded systems designers. Typically, flash memories have reasonably fast read times,
but not as fast as SRAM and DRAM, so frequently accessed data will typically have to be
moved from the flash to RAM before being used by a program. The write times are much
longer than the read times, and the total number of writes are limited, so these memories
are not a substitute for working memory.

There are two types of flash memories, known as NOR and NAND flash. NOR flash
has longer erase and write times, but it can be accessed like a RAM. NAND flash is less
expensive and has faster erase and write times, but data must be read a block at a time,
where a block is hundreds to thousands of bits. This means that from a system perspective
it behaves more like a secondary storage device like a hard disk or optical media like CD
or DVD. Both types of flash can only be erased and rewritten a bounded number of times,
typically under 1,000,000 for NOR flash and under 10,000,000 for NAND flash, as of this
writing.

The longer access times, limited number of writes, and block-wise accesses (for NAND
flash), all complicate the problem for embedded system designers. These properties must
be taken into account not only while designing hardware, but also software.

Disk memories are also non-volatile. They can store very large amounts of data, but
access times can become quite large. In particular, the mechanics of a spinning disk and
a read-write head require that the controller wait until the head is positioned over the
requested location before the data at that location can be read. The time this takes is
highly variable. Disks are also more vulnerable to vibration than the solid-state memories
discussed above, and hence are more difficult to use in many embedded applications.

9.2 Memory Hierarchy

Many applications require substantial amounts of memory, more than what is available
on-chip in a microcomputer. Many processors use a memory hierarchy, which combines
different memory technologies to increase the overall memory capacity while optimizing
cost, latency, and energy consumption. Typically, a relatively small amount of on-chip
SRAM will be used with a larger amount of off-chip DRAM. These can be further com-
bined with a third level, such as disk drives, which have very large capacity, but lack
random access and hence can be quite slow to read and write.

The application programmer may not be aware that memory is fragmented across these
technologies. A commonly used scheme called virtual memory makes the diverse tech-
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nologies look to the programmer like a contiguous address space. The operating sys-
tem and/or the hardware provides address translation, which converts logical addresses
in the address space to physical locations in one of the available memory technologies.
This translation is often assisted by a specialized piece of hardware called a translation
lookaside buffer (TLB), which can speed up some address translations. For an embed-
ded system designer, these techniques can create serious problems because they make it
very difficult to predict or understand how long memory accesses will take. Thus, embed-
ded system designers typically need to understand the memory system more deeply than
general-purpose programmers.

9.2.1 Memory Maps

A memory map for a processor defines how addresses get mapped to hardware. The
total size of the address space is constrained by the address width of the processor. A
32-bit processor, for example, can address 232 locations, or 4 gigabytes (GB), assuming
each address refers to one byte. The address width typically matches the word width,
except for 8-bit processors, where the address width is typically higher (often 16 bits).
An ARM CortexTM - M3 architecture, for example, has the memory map shown in Figure
9.1. Other architectures will have other layouts, but the pattern is similar.

Notice that this architecture separates addresses used for program memory (labeled A in
the figure) from those used for data memory (B and D). This (typical) pattern allows these
memories to be accessed via separate buses, permitting instructions and data to be fetched
simultaneously. This effectively doubles the memory bandwidth. Such a separation of
program memory from data memory is known as a Harvard architecture. It contrasts
with the classical von Neumann architecture, which stores program and data in the same
memory.

Any particular realization in silicon of this architecture is constrained by this memory
map. For example, the Luminary Micro1 LM3S8962 controller, which includes an ARM
CortexTM - M3 core, has 256 KB of on-chip flash memory, nowhere near the total of
0.5 GB that the architecture allows. This memory is mapped to addresses 0x00000000
through 0x0003FFFF. The remaining addresses that the architecture allows for program
memory, which are 0x00040000 through 0x1FFFFFFF, are “reserved addresses,”
meaning that they should not be used by a compiler targeting this particular device.

1Luminary Micro was acquired by Texas Instruments in 2009.
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Figure 9.1: Memory map of an ARM CortexTM - M3 architecture.
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The LM3S8962 has 64 KB of SRAM, mapped to addresses 0x20000000 through
0x2000FFFF, a small portion of area B in the figure. It also includes a number of
on-chip peripherals, which are devices that are accessed by the processor using some
of the memory addresses in the range from 0x40000000 to 0x5FFFFFFF (area C in
the figure). These include timers, ADCs, GPIO, UARTs, and other I/O devices. Each of
these devices occupies a few of the memory addresses by providing memory-mapped
registers. The processor may write to some of these registers to configure and/or control
the peripheral, or to provide data to be produced on an output. Some of the registers may
be read to retrieve input data obtained by the peripheral. A few of the addresses in the
private peripheral bus region are used to access the interrupt controller.

The LM3S8962 is mounted on a printed circuit board that will provide additional de-
vices such as DRAM data memory and additional external devices. As shown in Fig-
ure 9.1, these will be mapped to memory addresses in the range from 0xA0000000 to
0xDFFFFFFF (area E). For example, the Stellaris R© LM3S8962 evaluation board from
Luminary Micro includes no additional external memory, but does add a few external de-
vices such as an LCD display, a MicroSD slot for additional flash memory, and a USB
interface.

This leaves many memory addresses unused. ARM has introduced a clever way to take
advantage of these unused addresses called bit banding, where some of the unused ad-
dresses can be used to access individual bits rather than entire bytes or words in the mem-
ory and peripherals. This makes certain operations more efficient, since extra instructions
to mask the desired bits become unnecessary.

Harvard Architecture

The term “Harvard architecture” comes from the Mark I computer, which used dis-
tinct memories for program and data. The Mark I was made with electro-mechanical
relays by IBM and shipped to Harvard in 1944. The machine stored instructions on
punched tape and data in electro-mechanical counters. It was called the Automatic Se-
quence Controlled Calculator (ASCC) by IBM, and was devised by Howard H. Aiken
to numerically solve differential equations. Rear Admiral Grace Murray Hopper of the
United States Navy and funding from IBM were instrumental in making the machine a
reality.
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9.2.2 Register Files

The most tightly integrated memory in a processor is the register file. Each register in
the file stores a word. The size of a word is a key property of a processor architecture. It
is one byte on an 8-bit architecture, four bytes on a 32-bit architecture, and eight bytes on
a 64-bit architecture. The register file may be implemented directly using flip flops in the
processor circuitry, or the registers may be collected into a single memory bank, typically
using the same SRAM technology discussed above.

The number of registers in a processor is usually small. The reason for this is not so
much the cost of the register file hardware, but rather the cost of bits in an instruction
word. An instruction set architecture (ISA) typically provides instructions that can access
one, two, or three registers. To efficiently store programs in memory, these instructions
cannot require too many bits to encode them, and hence they cannot devote too many bits
to identifying the registers. If the register file has 16 registers, then each reference to a
register requires 4 bits. If an instruction can refer to 3 registers, that requires a total of 12
bits. If an instruction word is 16 bits, say, then this leaves only 4 bits for other information
in the instruction, such as the identity of the instruction itself, which also must be encoded
in the instruction. This identifies, for example, whether the instruction specifies that two
registers should be added or subtracted, with the result stored in the third register.

9.2.3 Scratchpads and Caches

Many embedded applications mix memory technologies. Some memories are accessed
before others; we say that the former are “closer” to the processor than the latter. For
example, a close memory (SRAM) is typically used to store working data temporarily
while the program operates on it. If the close memory has a distinct set of addresses and
the program is responsible for moving data into it or out of it to the distant memory, then
it is called a scratchpad. If the close memory duplicates data in the distant memory with
the hardware automatically handling the copying to and from, then it is called a cache.
For embedded applications with tight real-time constraints, cache memories present some
formidable obstacles because their timing behavior can vary substantially in ways that
are difficult to predict. On the other hand, manually managing the data in a scratchpad
memory can be quite tedious for a programmer, and automatic compiler-driven methods
for doing so are in their infancy.
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As explained in Section 9.2.1, an architecture will typically support a much larger address
space than what can actually be stored in the physical memory of the processor, with a
virtual memory system used to present the programmer with the view of a contiguous
address space. If the processor is equipped with a memory management unit (MMU),
then programs reference logical addresses and the MMU translates these to physical
addresses. For example, using the memory map in Figure 9.1, a process might be al-
lowed to use logical addresses 0x60000000 to 0x9FFFFFFF (area D in the figure),
for a total of 1 GB of addressable data memory. The MMU may implement a cache that
uses however much physical memory is present in area B. When the program provides
a memory address, the MMU determines whether that location is cached in area B, and
if it is, translates the address and completes the fetch. If it is not, then we have a cache
miss, and the MMU handles fetching data from the secondary memory (in area D) into
the cache (area B). If the location is also not present in area D, then the MMU triggers
a page fault, which can result in software handling movement of data from disk into the
memory. Thus, the program is given the illusion of a vast amount of memory, with the
cost that memory access times become quite difficult to predict. It is not uncommon for
memory access times to vary by a factor of 1000 or more, depending on how the logical
addresses happen to be disbursed across the physical memories.

Given this sensitivity of execution time to the memory architecture, it is important to
understand the organization and operation of caches. That is the focus of this section.

Basic Cache Organization

Suppose that each address in a memory system comprises m bits, for a maximum of
M = 2m unique addresses. A cache memory is organized as an array of S = 2s cache
sets. Each cache set in turn comprises E cache lines. A cache line stores a single block
of B = 2b bytes of data, along with valid and tag bits. The valid bit indicates whether the
cache line stores meaningful information, while the tag (comprising t = m− s− b bits)
uniquely identifies the block that is stored in the cache line. Figure 9.2 depicts the basic
cache organization and address format.

Thus, a cache can be characterized by the tuple (m,S,E,B). These parameters are sum-
marized in Table 9.1. The overall cache size C is given as C = S × E ×B bytes.

Suppose a program reads the value stored at address a. Let us assume for the rest of
this section that this value is a single data word w. The CPU first sends address a to the
cache to determine if it is present there. The address a can be viewed as divided into three
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Valid Tag Block 

Valid Tag Block 
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Figure 9.2: Cache Organization and Address Format. A cache can be viewed as
an array of sets, where each set comprises of one or more cache lines. Each
cache line includes a valid bit, tag bits, and a cache block.
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Parameter Description
m Number of physical address bits
S = 2s Number of (cache) sets
E Number of lines per set
B = 2b Block size in bytes
t = m− s− b Number of tag bits
C Overall cache size in bytes

Table 9.1: Summary of cache parameters.

segments of bits: the top t bits encode the tag, the next s bits encode the set index, and
the last b bits encode the position of the word within a block. If w is present in the cache,
the memory access is a cache hit; otherwise, it is a cache miss.

Caches are categorized into classes based on the value of E. We next review these cate-
gories of cache memories, and describe briefly how they operate.

Direct-Mapped Caches

A cache with exactly one line per set (E = 1) is called a direct-mapped cache. For such
a cache, given a word w requested from memory, where w is stored at address a, there are
three steps in determining whether w is a cache hit or a miss:

1. Set Selection: The s bits encoding the set are extracted from address a and used as
an index to select the corresponding cache set.

2. Line Matching: The next step is to check whether a copy of w is present in the
unique cache line for this set. This is done by checking the valid and tag bits for
that cache line. If the valid bit is set and the tag bits of the line match those of the
address a, then the word is present in the line and we have a cache hit. If not, we
have a cache miss.

3. Word Selection: Once the word is known to be present in the cache block, we use
the b bits of the address a encoding the word’s position within the block to read that
data word.
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On a cache miss, the word w must be requested from the next level in the memory hier-
archy. Once this block has been fetched, it will replace the block that currently occupies
the cache line for w.

While a direct-mapped cache is simple to understand and to implement, it can suffer from
conflict misses. A conflict miss occurs when words in two or more blocks that map
to the same cache line are repeatedly accessed so that accesses to one block evict the
other, resulting in a string of cache misses. Set-associative caches can help to resolve this
problem.

Set-Associative Caches

A set-associative cache can store more than one cache line per set. If each set in a cache
can store E lines, where 1 < E < C/B, then the cache is called an E-way set-associative
cache. The word “associative” comes from associative memory, which is a memory
that is addressed by its contents. That is, each word in the memory is stored along with a
unique key and is retrieved using the key rather than the physical address indicating where
it is stored. An associative memory is also called a content-addressable memory.

For a set-associative cache, accessing a word w at address a consists of the following
steps:

1. Set Selection: This step is identical to a direct-mapped cache.

2. Line Matching: This step is more complicated than for a direct-mapped cache be-
cause there could be multiple lines that w might lie in; i.e., the tag bits of a could
match the tag bits of any of the lines in its cache set. Operationally, each set in a
set-associative cache can be viewed as an associative memory, where the keys are
the concatenation of the tag and valid bits, and the data values are the contents of
the corresponding block.

3. Word Selection: Once the cache line is matched, the word selection is performed
just as for a direct-mapped cache.

In the case of a miss, cache line replacement can be more involved than it is for a direct-
mapped cache. For the latter, there is no choice in replacement since the new block will
displace the block currently present in the cache line. However, in the case of a set-
associative cache, we have an option to select the cache line from which to evict a block.
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A common policy is least-recently used (LRU), in which the cache line whose most
recent access occurred the furthest in the past is evicted. Another common policy is first-
in, first-out (FIFO), where the cache line that is evicted is the one that has been in the
cache for the longest, regardless of when it was last accessed. Good cache replacement
policies are essential for good cache performance. Note also that implementing these
cache replacement policies requires additional memory to remember the access order,
with the amount of additional memory differing from policy to policy and implementation
to implementation.

A fully-associative cache is one where E = C/B, i.e., there is only one set. For such a
cache, line matching can be quite expensive for a large cache size because an associative
memory is expensive. Hence, fully-associative caches are typically only used for small
caches, such as the translation lookaside buffers (TLBs) mentioned earlier.

9.3 Memory Models

A memory model defines how memory is used by programs. The hardware, the operating
system (if any), and the programming language and its compiler all contribute to the
memory model. This section discusses a few of the common issues that arise with memory
models.

9.3.1 Memory Addresses

At a minimum, a memory model defines a range of memory addresses accessible to the
program. In C, these addresses are stored in pointers. In a 32-bit architecture, memory
addresses are 32-bit unsigned integers, capable of representing addresses 0 to 232 − 1,
which is about four billion addresses. Each address refers to a byte (eight bits) in memory.
The C char data type references a byte. The C int data type references a sequence of
at least two bytes. In a 32-bit architecture, it will typically reference four bytes, able to
represent integers from −231 to 231− 1. The double data type in C refers to a sequence
of eight bytes encoded according to the IEEE floating point standard (IEEE 754).

Since a memory address refers to a byte, when writing a program that directly manip-
ulates memory addresses, there are two critical compatibility concerns. The first is the
alignment of the data. An int will typically occupy four consecutive bytes starting at an
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address that is a multiple of four. In hexadecimal notation these addresses always end in
0, 4, 8, or c.

The second concern is the byte order. The first byte (at an address ending in 0, 4, 8, or c),
may represent the eight low order bits of the int (a representation called little endian), or
it may represent the eight high order bits of the int (a representation called big endian).
Unfortunately, although many data representation questions have become universal stan-
dards (such as the bit order in a byte), the byte order is not one those questions. Intel’s x86
architectures and ARM processors, by default, use a little-endian representation, whereas
IBM’s PowerPC uses big endian. Some processors support both. Byte order also matters
in network protocols, which generally use big endian.

The terminology comes from Gulliver’s Travels, by Jonathan Swift, where a royal edict
in Lilliput requires cracking open one’s soft-boiled egg at the small end, while in the rival
kingdom of Blefuscu, inhabitants crack theirs at the big end.

9.3.2 Stacks

A stack is a region of memory that is dynamically allocated to the program in a last-in,
first-out (LIFO) pattern. A stack pointer (typically a register) contains the memory ad-
dress of the top of the stack. When an item is pushed onto the stack, the stack pointer
is incremented and the item is stored at the new location referenced by the stack pointer.
When an item is popped off the stack, the memory location referenced by the stack pointer
is (typically) copied somewhere else (e.g., into a register) and the stack pointer is decre-
mented.

Stacks are typically used to implement procedure calls. Given a procedure call in C,
for example, the compiler produces code that pushes onto the stack the location of the
instruction to execute upon returning from the procedure, the current value of some or all
of the machine registers, and the arguments to the procedure, and then sets the program
counter equal to the location of the procedure code. The data for a procedure that is
pushed onto the stack is known as the stack frame of that procedure. When a procedure
returns, the compiler pops its stack frame, retrieving finally the program location at which
to resume execution.

For embedded software, it can be disastrous if the stack pointer is incremented beyond the
memory allocated for the stack. Such a stack overflow can result in overwriting memory
that is being used for other purposes, leading to unpredictable results. Bounding the stack
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usage, therefore, is an important goal. This becomes particularly difficult with recursive
programs, where a procedure calls itself. Embedded software designers often avoid using
recursion to circumvent this difficulty.

More subtle errors can arise as a result of misuse or misunderstanding of the stack. Con-
sider the following C program:

1 int* foo(int a) {
2 int b;
3 b = a * 10;
4 return &b;
5 }
6 int main(void) {
7 int* c;
8 c = foo(10);
9 ...

10 }

The variable b is a local variable, with its memory on the stack. When the procedure
returns, the variable c will contain a pointer to a memory location above the stack pointer.
The contents of that memory location will be overwritten when items are next pushed onto
the stack. It is therefore incorrect for the procedure foo to return a pointer to b. By the
time that pointer is de-referenced (i.e., if a line in main refers to *c after line 8), the
memory location may contain something entirely different from what was assigned in
foo. Unfortunately, C provides no protection against such errors.

9.3.3 Memory Protection Units

A key issue in systems that support multiple simultaneous tasks is preventing one task
from disrupting the execution of another. This is particularly important in embedded
applications that permit downloads of third party software, but it can also provide an
important defense against software bugs in safety-critical applications.

Many processors provide memory protection in hardware. Tasks are assigned their own
address space, and if a task attempts to access memory outside its own address space, a
segmentation fault or other exception results. This will typically result in termination of
the offending application.
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9.3.4 Dynamic Memory Allocation

General-purpose software applications often have indeterminate requirements for mem-
ory, depending on parameters and/or user input. To support such applications, computer
scientists have developed dynamic memory allocation schemes, where a program can at
any time request that the operating system allocate additional memory. The memory is
allocated from a data structure known as a heap, which facilitates keeping track of which
portions of memory are in use by which application. Memory allocation occurs via an
operating system call (such as malloc in C). When the program no longer needs access
to memory that has been so allocated, it deallocates the memory (by calling free in C).

Support for memory allocation often (but not always) includes garbage collection. For
example, garbage collection is intrinsic in the Java programming language. A garbage
collector is a task that runs either periodically or when memory gets tight that analyzes
the data structures that a program has allocated and automatically frees any portions of
memory that are no longer referenced within the program. When using a garbage collec-
tor, in principle, a programmer does not need to worry about explicitly freeing memory.

With or without garbage collection, it is possible for a program to inadvertently accu-
mulate memory that is never freed. This is known as a memory leak, and for embedded
applications, which typically must continue to execute for a long time, it can be disastrous.
The program will eventually fail when physical memory is exhausted.

Another problem that arises with memory allocation schemes is memory fragmentation.
This occurs when a program chaotically allocates and deallocates memory in varying
sizes. A fragmented memory has allocated and free memory chunks interspersed, and
often the free memory chunks become too small to use. In this case, defragmentation is
required.

Defragmentation and garbage collection are both very problematic for real-time systems.
Straightforward implementations of these tasks require all other executing tasks to be
stopped while the defragmentation or garbage collection is performed. Implementations
using such “stop the world” techniques can have substantial pause times, running some-
times for many milliseconds. Other tasks cannot execute during this time because refer-
ences to data within data structures (pointers) are inconsistent during the task. A technique
that can reduce pause times is incremental garbage collection, which isolates sections of
memory and garbage collects them separately. As of this writing, such techniques are
experimental and not widely deployed.
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9.3.5 Memory Model of C

C programs store data on the stack, on the heap, and in memory locations fixed by by the
compiler. Consider the following C program:

1 int a = 2;
2 void foo(int b, int* c) {
3 ...
4 }
5 int main(void) {
6 int d;
7 int* e;
8 d = ...; // Assign some value to d.
9 e = malloc(sizeInBytes); // Allocate memory for e.

10 *e = ...; // Assign some value to e.
11 foo(d, e);
12 ...
13 }

In this program, the variable a is a global variable because it is declared outside any
procedure definition. The compiler will assign it a fixed memory location. The variables
b and c are parameters, which are allocated locations on the stack when the procedure
foo is called (a compiler could also put them in registers rather than on the stack). The
variables d and e are automatic variables or local variables. They are declared within
the body of a procedure (in this case, main). The compiler will allocate space on the
stack for them.

When the procedure foo is called on line 11, the stack location for b will acquire a copy
of the value of variable d assigned on line 8. This is an example of pass by value, where
a parameter’s value is copied onto the stack for use by the called procedure. The data
referred to by the pointer e, on the other hand, is stored in memory allocated on the heap,
and then it is passed by reference (the pointer to it, e, is passed by value). The address
is stored in the stack location for c. If foo includes an assignment to *c, then then after
foo returns, that value can be read by dereferencing e.

The global variable a is assigned an initial value on line 1. There is a subtle pitfall here,
however. The memory location storing awill be initialized with value 2 when the program
is loaded. This means that if the program is run a second time without reloading, then
the initial value of a will not necessarily be 2! Its value will be whatever it was when the
first invocation of the program ended. In most desktop operating systems, the program is
reloaded on each run, so this problem does not show up. But in many embedded systems,
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the program is not necessarily reloaded for each run. The program may be run from the
beginning, for example, each time the system is reset. To guard against this problem, it
is safer to initialize global variables in the body of main, rather than on the declaration
line, as done above.

9.4 Summary

An embedded system designer needs to understand the memory architecture of the target
computer and the memory model of the programming language. Incorrect uses of memory
can lead to extremely subtle errors, some of which will not show up in testing. Errors that
only show up in a fielded product can be disastrous, for both the user of the system and
the technology provider.

Specifically, a designer needs to understand which portions of the address space refer to
volatile and non-volatile memory. For time-sensitive applications (which is most embed-
ded systems), the designer also needs to be aware of the memory technology and cache
architecture (if any) in order to understand execution times of the program. In addition,
the programmer needs to understand the memory model of the programming language in
order to avoid reading data that may be invalid. In addition, the programmer needs to be
very careful with dynamic memory allocation, particularly for embedded systems that are
expected to run for a very long time. Exhausting the available memory can cause system
crashes or other undesired behavior.
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Exercises

1. Consider the function compute variance listed below, which computes the
variance of integer numbers stored in the array data.

1 int data[N];
2

3 int compute_variance() {
4 int sum1 = 0, sum2 = 0, result;
5 int i;
6

7 for(i=0; i < N; i++) {
8 sum1 += data[i];
9 }

10 sum1 /= N;
11

12 for(i=0; i < N; i++) {
13 sum2 += data[i] * data[i];
14 }
15 sum2 /= N;
16

17 result = (sum2 - sum1*sum1);
18

19 return result;
20 }

Suppose this program is executing on a 32-bit processor with a direct-mapped cache
with parameters (m,S,E,B) = (32, 8, 1, 8). We make the following additional
assumptions:

• An int is 4 bytes wide.

• sum1, sum2, result, and i are all stored in registers.

• data is stored in memory starting at address 0x0.

Answer the following questions:

(a) Consider the case where N is 16. How many cache misses will there be?

(b) Now suppose that N is 32. Recompute the number of cache misses.

(c) Now consider executing for N = 16 on a 2-way set-associative cache with
parameters (m,S,E,B) = (32, 8, 2, 4). In other words, the block size is
halved, while there are two cache lines per set. How many cache misses
would the code suffer?
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2. Recall from Section 9.2.3 that caches use the middle range of address bits as the
set index and the high order bits as the tag. Why is this done? How might cache
performance be affected if the middle bits were used as the tag and the high order
bits were used as the set index?

3. Consider the C program and simplified memory map for a 16-bit microcontroller
shown below. Assume that the stack grows from the top (area D) and that the pro-
gram and static variables are stored in the bottom (area C) of the data and program
memory region. Also, assume that the entire address space has physical memory
associated with it.

interrupt vectors

data and program memory

0x0000
0x000F

0x0020

0xFFFF

A

C

D

memory-mapped I/O 0x0010
0x001FB

stack

program and static variables

1 #include <stdio.h>
2 #define FOO 0x0010
3 int n;
4 int* m;
5 void foo(int a) {
6 if (a > 0) {
7 n = n + 1;
8 foo(n);
9 }

10 }
11 int main() {
12 n = 0;
13 m = (int*)FOO;
14 foo(*m);
15 printf("n = %d\n", n);
16 }

You may assume that in this system, an int is a 16-bit number, that there is no op-
erating system and no memory protection, and that the program has been compiled
and loaded into area C of the memory.

(a) For each of the variables n, m, and a, indicate where in memory (region A, B,
C, or D) the variable will be stored.

(b) Determine what the program will do if the contents at address 0x0010 is 0
upon entry.

(c) Determine what the program will do if the contents of memory location 0x0010
is 1 upon entry.

4. Consider the following program:

1 int a = 2;
2 void foo(int b) {
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3 printf("%d", b);
4 }
5 int main(void) {
6 foo(a);
7 a = 1;
8 }

Is it true or false that the value of a passed to foo will always be 2? Explain.
Assume that this is the entire program, that this program is stored in persistent
memory, and that the program is executed on a bare-iron microcontroller each time
a reset button is pushed.
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Because cyber-physical systems integrate computing and physical dynamics, the mech-
anisms in processors that support interaction with the outside world are central to any
design. A system designer has to confront a number of issues. Among these, the me-
chanical and electrical properties of the interfaces are important. Incorrect use of parts,
such as drawing too much current from a pin, may cause a system to malfunction or may
reduce its useful lifetime. In addition, in the physical world, many things happen at once.
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Software, by contrast, is mostly sequential. Reconciling these two disparate properties
is a major challenge, and is often the biggest risk factor in the design of embedded sys-
tems. Incorrect interactions between sequential code and concurrent events in the physical
world can cause dramatic system failures. In this chapter, we deal with issues.

10.1 I/O Hardware

Embedded processors, be they microcontrollers, DSP processors, or general-purpose pro-
cessors, typically include a number of input and output (I/O) mechanisms on chip, ex-
posed to designers as pins of the chip. In this section, we review some of the more
common interfaces provided, illustrating their properties through the following running
example.

Example 10.1: Figure 10.1 shows an evaluation board for the Luminary Micro
Stellaris R© microcontroller, which is an ARM CortexTM - M3 32-bit processor.
The microcontroller itself is in the center below the graphics display. Many of the
pins of the microcontroller are available at the connectors shown on either side of
the microcontroller and at the top and bottom of the board. Such a board would
typically be used to prototype an embedded application, and in the final product
it would be replaced with a custom circuit board that includes only the hardware
required by the application. An engineer will develop software for the board using
an integrated development environment (IDE) provided by the vendor and load
the software onto flash memory to be inserted into the slot at the bottom of the
board. Alternatively, software might be loaded onto the board through the USB
interface at the top from the development computer.

The evaluation board in the above example is more than a processor since it includes a
display and various hardware interfaces (switches and a speaker, for example). Such a
board is often called a single-board computer or a microcomputer board. We next
discuss a few of the interfaces provided by a microcontroller or single-board computer.
For a more comprehensive description of the many kinds of I/O interfaces in use, we
recommend Valvano (2007) and Derenzo (2003).
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Figure 10.1: Stellaris R© LM3S8962 evaluation board (Luminary Micro R©, 2008a).
(Luminary Micro was acquired by Texas Instruments in 2009.)

10.1.1 Pulse Width Modulation

Pulse width modulation (PWM) is a technique for delivering a variable amount of power
efficiently to external hardware devices. It can be used to control for example the speed of
electric motors, the brightness of an LED light, and the temperature of a heating element.
In general, it can deliver varying amounts of power to devices that tolerate rapid and
abrupt changes in voltage and current.

PWM hardware uses only digital circuits, and hence is easy to integrate on the same chip
with a microcontroller. Digital circuits, by design, produce only two voltage levels, high
and low. A PWM signal rapidly switches between high and low at some fixed frequency,
varying the amount of time that it holds the signal high. The duty cycle is the proportion
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of time that the voltage is high. If the duty cycle is 100%, then the voltage is always high.
If the duty cycle is 0%, then the voltage is always low.

Many microcontrollers provide PWM peripheral devices (see Figure 10.1). To use these,
a programmer typically writes a value to a memory-mapped register to set the duty cycle
(the frequency may also be settable). The device then delivers power to external hardware
in proportion to the specified duty cycle.

PWM is an effective way to deliver varying amounts of power, but only to certain devices.
A heating element, for example, is a resistor whose temperature increases as more cur-
rent passes through it. Temperature varies slowly, compared to the frequency of a PWM
signal, so the rapidly varying voltage of the signal is averaged out by the resistor, and the
temperature will be very close to constant for a fixed duty cycle. Motors similarly aver-
age out rapid variations in input voltage. So do incandescent and LED lights. Any device
whose response to changes in current or voltage is slow compared to the frequency of the
PWM signal is a candidate for being controlled via PWM.

10.1.2 General-Purpose Digital I/O

Embedded system designers frequently need to connect specialized or custom digital
hardware to embedded processors. Many embedded processors have a number of general-
purpose I/O pins (GPIO), which enable the software to either read or write voltage levels
representing a logical zero or one. If the processor supply voltage is VDD, in active high
logic a voltage close to VDD represents a logical one, and a voltage near zero represents
a logical zero. In active low logic, these interpretations are reversed.

In many designs, a GPIO pin may be configured to be an output. This enables software to
then write to a memory-mapped register to set the output voltage to be either high or low.
By this mechanism, software can directly control external physical devices.

However, caution is in order. When interfacing hardware to GPIO pins, a designer needs
to understand the specifications of the device. In particular, the voltage and current levels
vary by device. If a GPIO pin produces an output voltage of VDD when given a logical
one, then the designer needs to know the current limitations before connecting a device
to it. If a device with a resistance of R ohms is connected to it, for example, then Ohm’s
law tells us that the output current will be

I = VDD/R .
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It is essential to keep this current within specified tolerances. Going outside these toler-
ances could cause the device to overheat and fail. A power amplifier may be needed to
deliver adequate current. An amplifier may also be needed to change voltage levels.

Example 10.2: The GPIO pins of the Luminary Micro Stellaris R© microcon-
troller shown in Figure 10.1 may be configured to source or sink varying amounts
of current up to 18 mA. There are restrictions on what combinations of pins can
handle such relatively high currents. For example, Luminary Micro R© (2008b)
states “The high-current GPIO package pins must be selected such that there are
only a maximum of two per side of the physical package ... with the total number
of high-current GPIO outputs not exceeding four for the entire package.” Such
constraints are designed to prevent overheating of the device.

In addition, it may be important to maintain electrical isolation between processor cir-
cuits and external devices. The external devices may have messy (noisy) electrical char-
acteristics that will make the processor unreliable if the noise spills over into the power
or ground lines of the processor. Or the external device may operate in a very different
voltage or power regime compared to the processor. A useful strategy is to divide a cir-
cuit into electrical domains, possibly with separate power supplies, that have relatively
little influence on one another. Isolation devices such as opto-isolators and transformers
may be used to enable communication across electrical domains. The former convert an
electrical signal in one electrical domain into light, and detect the light in the other elec-
trical domain and convert it back to an electrical signal. The latter use inductive coupling
between electrical domains.

GPIO pins can also be configured as inputs, in which case software will be able to react
to externally provided voltage levels. An input pin may be Schmitt triggered, in which
case they have hysteresis, similar to the thermostat of Example 3.5. A Schmitt triggered
input pin is less vulnerable to noise. It is named after Otto H. Schmitt, who invented it in
1934 while he was a graduate student studying the neural impulse propagation in squid
nerves.
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Example 10.3: The GPIO pins of the microcontroller shown in Figure 10.1,
when configured as inputs, are Schmitt triggered.

In many applications, several devices may share a single electrical connection. The de-
signer must take care to ensure that these devices do not simultaneously drive the voltage
of this single electrical connection to different values, resulting in a short circuit that can
cause overheating and device failure.

Example 10.4: Consider a factory floor where several independent microcon-
trollers are all able to turn off a piece of machinery by asserting a logical zero
on an output GPIO line. Such a design may provide additional safety because
the microcontrollers may be redundant, so that failure of one does not prevent
a safety-related shutdown from occurring. If all of these GPIO lines are wired
together to a single control input of the piece of machinery, then we have to take
precautions to ensure that the microcontrollers do not short each other out. This
would occur if one microcontroller attempts to drive the shared line to a high
voltage while another attempts to drive the same line to a low voltage.

GPIO outputs may use open collector circuits, as shown in Figure 10.2. In such a circuit,
writing a logical one into the (memory mapped) register turns on the transistor, which
pulls the voltage on the output pin down to (near) zero. Writing a logical zero into the
register turns off the transistor, which leaves the output pin unconnected, or “open.”

A number of open collector interfaces may be connected as shown in Figure 10.3. The
shared line is connected to a pull-up resistor, which brings the voltage of the line up to
VDD when all the transistors are turned off. If any one transistor is turned on, then it will
bring the voltage of the entire line down to (near) zero without creating a short circuit with
the other GPIO pins. Logically, all registers must have zeros in them for the output to be
high. If any one of the registers has a one in it, then the output will be low. Assuming
active high logic, the logical function being performed is NOR, so such a circuit is called
a wired NOR. By varying the configuration, one can similarly create wired OR or wired
AND.
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Figure 10.2: An open collector circuit for a GPIO pin.
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Figure 10.3: A number of open collector circuits wired together.

The term “open collector” comes from the name for the terminal of a bipolar transistor. In
CMOS technologies, this type of interface will typically be called an open drain interface.
It functions essentially in the same way.

Example 10.5: The GPIO pins of the microcontroller shown in Figure 10.1,
when configured as outputs, may be specified to be open drain circuits. They
may also optionally provide the pull-up resistor, which conveniently reduces the
number of external discrete components required on a printed circuit board.
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DB-9 serial port DB-25 parallel port

USB IEEE 488

Figure 10.4: Connectors for serial and parallel interfaces.

GPIO outputs may also be realized with tristate logic, which means that in addition to
producing an output high or low voltage, the pin may be simply turned off. Like an open-
collector interface, this can facilitate sharing the same external circuits among multiple
devices. Unlike an open-collector interface, a tristate design can assert both high and low
voltages, rather than just one of the two.

10.1.3 Serial Interfaces

One of the key constraints faced by embedded processor designers is the need to have
physically small packages and low power consumption. A consequence is that the num-
ber of pins on the processor integrated circuit is limited. Thus, each pin must be used
efficiently. In addition, when wiring together subsystems, the number of wires needs to
be limited to keep the overall bulk and cost of the product in check. Hence, wires must
also be used efficiently. One way to use pins and wires efficiently is to send information
over them serially as sequences of bits. Such an interface is called a serial interface.
A number of standards have evolved for serial interfaces so that devices from different
manufacturers can (usually) be connected.
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An old but persistent standard, RS-232, standardized by the Electronics Industries Asso-
ciation (EIA), was first introduced in 1962 to connect teletypes to modems. This standard
defines electrical signals and connector types; it persists because of its simplicity and be-
cause of continued prevalence of aging industrial equipment that uses it. The standard
defines how one device can transmit a byte to another device asynchronously (meaning
that the devices do not share a clock signal). On older PCs, an RS-232 connection may be
provided via a DB-9 connector, as shown in Figure 10.4. A microcontroller will typically
use a universal asynchronous receiver/transmitter (UART) to convert the contents of
an 8-bit register into a sequence of bits for transmission over an RS-232 serial link.

For an embedded system designer, a major issue to consider is that RS-232 interfaces can
be quite slow and may slow down the application software, if the programmer is not very
careful.

Example 10.6: All variants of the Atmel AVR microcontroller include a UART
that can be used to provide an RS-232 serial interface. To send a byte over the
serial port, an application program may include the lines

1 while(!(UCSR0A & 0x20));
2 UDR0 = x;

where x is a variable of type uint8 t (a C data type specifying an 8-bit unsigned
integer). The symbols UCSR0A and UDR0 are defined in header files provided in
the AVR IDE. They are defined to refer to memory locations corresponding to
memory-mapped registers in the AVR architecture.

The first line above executes an empty while loop until the serial transmit buffer
is empty. The AVR architecture indicates that the transmit buffer is empty by
setting the sixth bit of the memory mapped register UCSR0A to 1. When that
bit becomes 1, the expression !(UCSR0A & 0x20) becomes 0 and the while
loop stops looping. The second line loads the value to be sent, which is whatever
the variable x contains, into the memory-mapped register UDR0.

Suppose you wish to send a sequence of 8 bytes stored in an array x. You could
do this with the C code

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
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4 }

How long would it take to execute this code? Suppose that the serial port is set
to operate at 57600 baud, or bits per second (this is quite fast for an RS-232
interface). Then after loading UDR0 with an 8-bit value, it will take 8/57600
seconds or about 139 microseconds for the 8-bit value to be sent. Suppose that
the frequency of the processor is operating at 18 MHz (relatively slow for a mi-
crocontroller). Then except for the first time through the for loop, each while
loop will need to consume approximately 2500 cycles, during which time the
processor is doing no useful work.

To receive a byte over the serial port, a programmer may use the following C
code:

1 while(!(UCSR0A & 0x80));
2 return UDR0;

In this case, the while loop waits until the UART has received an incoming
byte. The programmer must ensure that there will be an incoming byte, or this
code will execute forever. If this code is again enclosed in a loop to receive a
sequence of bytes, then the while loop will need to consume a considerable
number of cycles each time it executes.

For both sending and receiving bytes over a serial port, a programmer may use
an interrupt instead to avoid having an idle processor that is waiting for the serial
communication to occur. Interrupts will be discussed below.

The RS-232 mechanism is very simple. The sender and receiver first must agree on a
transmission rate (which is slow by modern standards). The sender initiates transmission
of a byte with a start bit, which alerts the receiver that a byte is coming. The sender then
clocks out the sequence of bits at the agreed-upon rate, following them by one or two stop
bits. The receiver’s clock resets upon receiving the start bit and is expected to track the
sender’s clock closely enough to be able to sample the incoming signal sequentially and
recover the sequence of bits. There are many descendants of the standard that support
higher rate communication, such as RS-422, RS-423, and more.

Newer devices designed to connect to personal computers typically use universal serial
bus (USB) interfaces, standardized by a consortium of vendors. USB 1.0 appeared in
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1996 and supports a data rate of 12 Mbits/sec. USB 2.0 appeared in 2000 and supports
data rates up to 480 Mbits/sec. USB 3.0 appeared in 2008 and supports data rates up to
4.8 Gbits/sec.

USB is electrically simpler than RS-232 and uses simpler, more robust connectors, as
shown in Figure 10.4. But the USB standard defines much more than electrical trans-
port of bytes, and more complicated control logic is required to support it. Since modern
peripheral devices such as printers, disk drives, and audio and video devices all include
microcontrollers, supporting the more complex USB protocol is reasonable for these de-
vices.

Another serial interface that is widely implemented in embedded processors is known
as JTAG (Joint Test Action Group), or more formally as the IEEE 1149.1 standard test
access port and boundary-scan architecture. This interface appeared in the mid 1980s
to solve the problem that integrated circuit packages and printed circuit board technology
had evolved to the point that testing circuits using electrical probes had become difficult or
impossible. Points in the circuit that needed to be accessed became inaccessible to probes.
The notion of a boundary scan allows the state of a logical boundary of a circuit (what
would traditionally have been pins accessible to probes) to be read or written serially
through pins that are made accessible. Today, JTAG ports are widely used to provide a
debug interface to embedded processors, enabling a PC-hosted debugging environment
to examine and control the state of an embedded processor. The JTAG port is used, for
example, to read out the state of processor registers, to set breakpoints in a program, and
to single step through a program. A newer variant is serial wire debug (SWD), which
provides similar functionality with fewer pins.

There are several other serial interfaces in use today, including for example I2C (inter-
integrated circuit), SPI (serial peripheral interface bus), PCI Express (peripheral compo-
nent interconnect express), FireWire, MIDI (musical instrument digital interface), and
serial versions of SCSI (described below). Each of these has its use. Also, network inter-
faces are typically serial.

10.1.4 Parallel Interfaces

A serial interface sends or receives a sequence of bits sequentially over a single line. A
parallel interface uses multiple lines to simultaneously send bits. Of course, each line
of a parallel interface is also a serial interface, but the logical grouping and coordinated
action of these lines is what makes the interface a parallel interface.
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Historically, one of the most widely used parallel interfaces is the IEEE-1284 printer port,
which on the IBM PC used a DB-25 connector, as shown in Figure 10.4. This interface
originated in 1970 with the Centronics model 101 printer, and hence is sometimes called
a Centronics printer port. Today, printers are typically connected using USB or wireless
networks.

With careful programming, a group of GPIO pins can be used together to realize a parallel
interface. In fact, embedded system designers sometimes find themselves using GPIO
pins to emulate an interface not supported directly by their hardware.

It seems intuitive that parallel interfaces should deliver higher performance than serial
interfaces, because more wires are used for the interconnection. However, this is not
necessarily the case. A significant challenge with parallel interfaces is maintaining syn-
chrony across the multiple wires. This becomes more difficult as the physical length of
the interconnection increases. This fact, combined with the requirement for bulkier cables
and more I/O pins has resulted in many traditionally parallel interfaces being replaced by
serial interfaces.

10.1.5 Buses

A bus is an interface shared among multiple devices, in contrast to a point-to-point in-
terconnection linking exactly two devices. Busses can be serial interfaces (such as USB)
or parallel interfaces. A widespread parallel bus is SCSI (pronounced scuzzy, for small
computer system interface), commonly used to connect hard drives and tape drives to
computers. Recent variants of SCSI interfaces, however, depart from the traditional par-
allel interface to become serial interfaces. SCSI is an example of a peripheral bus archi-
tecture, used to connect computers to peripherals such as sound cards and disk drives.

Other widely used peripheral bus standards include the ISA bus (industry standard archi-
tecture, used in the ubiquitous IBM PC architecture), PCI (peripheral component inter-
face), and Parallel ATA (advanced technology attachment). A somewhat different kind
of peripheral bus standard is IEEE-488, originally developed more than 30 years ago to
connect automated test equipment to controlling computers. This interface was designed
at Hewlett Packard and is also widely known as HP-IB (Hewlett Packard interface bus)
and GPIB (general purpose interface bus). Many networks also use a bus architecture.

Because a bus is shared among several devices, any bus architecture must include a
media-access control (MAC) protocol to arbitrate competing accesses. A simple MAC
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protocol has a single bus master that interrogates bus slaves. USB uses such a mech-
anism. An alternative is a time-triggered bus, where devices are assigned time slots
during which they can transmit (or not, if they have nothing to send). A third alternative
is a token ring, where devices on the bus must acquire a token before they can use the
shared medium, and the token is passed around the devices according to some pattern.
A fourth alternative is to use a bus arbiter, which is a circuit that handles requests for
the bus according to some priorities. A fifth alternative is carrier sense multiple access
(CSMA), where devices sense the carrier to determine whether the medium is in use be-
fore beginning to use it, detect collisions that might occur when they begin to use it, and
try again later when a collision occurs.

In all cases, sharing of the physical medium has implications on the timing of applications.

Example 10.7: A peripheral bus provides a mechanism for external devices to
communicate with a CPU. If an external device needs to transfer a large amount
of data to the main memory, it may be inefficient and/or disruptive to require the
CPU to perform each transfer. An alternative is direct memory access (DMA).
In the DMA scheme used on the ISA bus, the transfer is performed by a separate
device called a DMA controller which takes control of the bus and transfers the
data. In some more recent designs, such as PCI, the external device directly takes
control of the bus and performs the transfer without the help of a dedicated DMA
controller. In both cases, the CPU is free to execute software while the transfer is
occurring, but if the executed code needs access to the memory or the peripheral
bus, then the timing of the program is disrupted by the DMA. Such timing effects
can be difficult to analyze.

10.2 Sequential Software in a Concurrent World

As we saw in Example 10.6, when software interacts with the external world, the tim-
ing of the execution of the software may be strongly affected. Software is intrinsically
sequential, typically executing as fast as possible. The physical world, however, is con-
current, with many things happening at once, and with the pace at which they happen
determined by their physical properties. Bridging this mismatch in semantics is one of
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the major challenges that an embedded system designer faces. In this section, we discuss
some of the key mechanisms for accomplishing this.

10.2.1 Interrupts and Exceptions

An interrupt is a mechanism for pausing execution of whatever a processor is currently
doing and executing a pre-defined code sequence called an interrupt service routine
(ISR) or interrupt handler. Three kinds of events may trigger an interrupt. One is
a hardware interrupt, where some external hardware changes the voltage level on an
interrupt request line. In the case of a software interrupt, the program that is executing
triggers the interrupt by executing a special instruction or by writing to a memory-mapped
register. A third variant is called an exception, where the interrupt is triggered by internal
hardware that detects a fault, such as a segmentation fault.

For the first two variants, once the ISR completes, the program that was interrupted re-
sumes where it left off. In the case of an exception, once the ISR has completed, the pro-
gram that triggered the exception is not normally resumed. Instead, the program counter
is set to some fixed location where, for example, the operating system may terminate the
offending program.

Upon occurrence of an interrupt trigger, the hardware must first decide whether to re-
spond. If interrupts are disabled, it will not respond. The mechanism for enabling or
disabling interrupts varies by processor. Moreover, it may be that some interrupts are
enabled and others are not. Interrupts and exceptions generally have priorities, and an
interrupt will be serviced only if the processor is not already in the middle of servicing
an interrupt with a higher priority. Typically, exceptions have the highest priority and are
always serviced.

When the hardware decides to service an interrupt, it will usually first disable interrupts,
push the current program counter and processor status register(s) onto the stack, and
branch to a designated address that will normally contain a jump to an ISR. The ISR must
store on the stack the values currently in any registers that it will use, and restore their
values before returning from the interrupt, so that the interrupted program can resume
where it left off. Either the interrupt service routine or the hardware must also re-enable
interrupts before returning from the interrupt.
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Example 10.8: The ARM CortexTM - M3 is a 32-bit microcontroller used in
industrial automation and other applications. It includes a system timer called
SysTick. This timer can be used to trigger an ISR to execute every 1ms. Suppose
for example that every 1ms we would like to count down from some initial count
until the count reaches zero, and then stop counting down. The following C code
defines an ISR that does this:

1 volatile uint timerCount = 0;
2 void countDown(void) {
3 if (timerCount != 0) {
4 timerCount--;
5 }
6 }

Here, the variable timerCount is a global variable, and it is decremented each
time countDown() is invoked, until it reaches zero. We will specify below
that this is to occur once per millisecond by registering countDown() as an
ISR. The variable timerCount is marked with the C volatile keyword, which
tells the compiler that the value of the variable will change at unpredictable times
during execution of the program. This prevents the compiler from performing
certain optimizations, such as caching the value of the variable in a register and
reading it repeatedly. Using a C API provided by Luminary Micro R© (2008c), we
can specify that countDown() should be invoked as an interrupt service routine
once per millisecond as follows:

1 SysTickPeriodSet(SysCtlClockGet() / 1000);
2 SysTickIntRegister(&countDown);
3 SysTickEnable();
4 SysTickIntEnable();

The first line sets the number of clock cycles between “ticks” of the SysTick
timer. The timer will request an interrupt on each tick. SysCtlClockGet()
is a library procedure that returns the number of cycles per second of the target
platform’s clock (e.g., 50,000,000 for a 50 MHz part). The second line regis-
ters the ISR by providing a function pointer for the ISR (the address of the
countDown() procedure). (Note: Some configurations do not support run-
time registration of ISRs, as shown in this code. See the documentation for your
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particular system.) The third line starts the clock, enabling ticks to occur. The
fourth line enables interrupts.

The timer service we have set up can be used, for example, to perform some
function for two seconds and then stop. A program to do that is:

1 int main(void) {
2 timerCount = 2000;
3 ... initialization code from above ...
4 while(timerCount != 0) {
5 ... code to run for 2 seconds ...
6 }
7 }

Processor vendors provide many variants of the mechanisms used in the previous exam-
ple, so you will need to consult the vendor’s documentation for the particular processor
you are using. Since the code is not portable (it will not run correctly on a different pro-

Basics: Timers

Microcontrollers almost always include some number of peripheral devices called
timers. A programmable interval timer (PIT), the most common type, simply counts
down from some value to zero. The initial value is set by writing to a memory-mapped
register, and when the value hits zero, the PIT raises an interrupt request. By writing to
a memory-mapped control register, a timer might be set up to trigger repeatedly with-
out having to be reset by the software. Such repeated triggers will be more precisely
periodic than what you would get if the ISR restarts the timer each time it gets invoked.
This is because the time between when the count reaches zero in the timer hardware
and the time when the counter gets restarted by the ISR is difficult to control and vari-
able. For example, if the timer reaches zero at a time when interrupts happen to be
disabled, then there will be a delay before the ISR gets invoked. It cannot be invoked
before interrupts are re-enabled.
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cessor), it is wise to isolate such code from your application logic and document carefully
what needs to be re-implemented to target a new processor.

10.2.2 Atomicity

An interrupt service routine can be invoked between any two instructions of the main
program (or between any two instructions of a lower priority ISR). One of the major chal-
lenges for embedded software designers is that reasoning about the possible interleavings
of instructions can become extremely difficult. In the previous example, the interrupt
service routine and the main program are interacting through a shared variable, namely
timerCount. The value of that variable can change between any two atomic opera-
tions of the main program. Unfortunately, it can be quite difficult to know what operations
are atomic. The term “atomic” comes from the Greek work for “indivisible,” and it is far
from obvious to a programmer what operations are indivisible. If the programmer is writ-
ing assembly code, then it may be safe to assume that each assembly language instruction
is atomic, but many ISAs include assembly level instructions that are not atomic.

Example 10.9: The ARM instruction set includes a LDM instruction, which
loads multiple registers from consecutive memory locations. It can be interrupted
part way through the loads (ARM Limited, 2006).

At the level of a C program, it can be even more difficult to know what operations are
atomic. Consider a single, innocent looking statement

timerCount = 2000;

On an 8-bit microcontroller, this statement may take more than one instruction cycle to
execute (an 8-bit word cannot store both the instruction and the constant 2000; in fact, the
constant alone does not fit in an 8-bit word). An interrupt could occur part way through the
execution of those cycles. Suppose that the ISR also writes to the variable timerCount.
In this case, the final value of the timerCount variable may be composed of 8 bits set
in the ISR and the remaining bits set by the above line of C, for example. The final
value could be very different from 2000, and also different from the value specified in the
interrupt service routine. Will this bug occur on a 32-bit microcontroller? The only way
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to know for sure is to fully understand the ISA and the compiler. In such circumstances,
there is no advantage to having written the code in C instead of assembly language.

Bugs like this in a program are extremely difficult to identify and correct. Worse, the
problematic interleavings are quite unlikely to occur, and hence may not show up in test-
ing. For safety-critical systems, programmers have to make every effort to avoid such
bugs. One way to do this is to build programs using higher-level concurrent models of
computation, as discussed in Chapter 6. Of course, the implementation of those models
of computation needs to be correct, but presumably, that implementation is constructed
by experts in concurrency, rather than by application engineers.

When working at the level of C and ISRs, a programmer must carefully reason about
the order of operations. Although many interleavings are possible, operations given as a
sequence of C statements must execute in order (more precisely, they must behave as if
they had executed in order, even if out-of-order execution is used).

Example 10.10: In example 10.8, the programmer can rely on the statements
within main() executing in order. Notice that in that example, the statement

timerCount = 2000;

appears before

SysTickIntEnable();

The latter statement enables the SysTick interrupt. Hence, the former statement
cannot be interrupted by the SysTick interrupt.

10.2.3 Interrupt Controllers

An interrupt controller is the logic in the processor that handles interrupts. It supports
some number of interrupts and some number of priority levels. Each interrupt has an
interrupt vector, which is the address of an ISR or an index into an array called the
interrupt vector table that contains the addresses of all the ISRs.
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Example 10.11: The Luminary Micro LM3S8962 controller, shown in Figure
10.1, includes an ARM CortexTM - M3 core microcontroller that supports 36 in-
terrupts with eight priority levels. If two interrupts are assigned the same priority
number, then the one with the lower vector will have priority over the one with
the higher vector.

When an interrupt is asserted by changing the voltage on a pin, the response may be either
level triggered or edge triggered. For level-triggered interrupts, the hardware asserting
the interrupt will typically hold the voltage on the line until it gets an acknowledgement,
which indicates that the interrupt is being handled. For edge-triggered interrupts, the
hardware asserting the interrupt changes the voltage for only a short time. In both cases,
open collector lines can be used so that the same physical line can be shared among
several devices (of course, the ISR will require some mechanism to determine which
device asserted the interrupt, for example by reading a memory-mapped register in each
device that could have asserted the interrupt).

Sharing interrupts among devices can be tricky, and careful consideration must be given to
prevent low priority interrupts from blocking high priority interrupts. Asserting interrupts
by writing to a designated address on a bus has the advantage that the same hardware can
support many more distinct interrupts, but the disadvantage that peripheral devices get
more complex. The peripheral devices have to include an interface to the memory bus.

10.2.4 Modeling Interrupts

The behavior of interrupts can be quite difficult to fully understand, and many catastrophic
system failures are caused by unexpected behaviors. Unfortunately, the logic of interrupt
controllers is often described in processor documentation very imprecisely, leaving many
possible behaviors unspecified. One way to make this logic more precise is to model it as
an FSM.

Example 10.12: The program of Example 10.8, which performs some action
for two seconds, is shown in Figure 10.5 together with two finite state machines
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volatile uint timerCount = 0;
void ISR(void) {
   … disable interrupts
   if(timerCount != 0) { 
      timerCount--;
   }
   … enable interrupts
}
int main(void) {
   // initialization code
   SysTickIntRegister(&ISR);  
   … // other init
   timerCount = 2000;
   while(timerCount != 0) {
    … code to run for 2 seconds
   }
}
… whatever comes next

E
D

A
B

C

Figure 10.5: State machine models and main program for a program that does
something for two seconds and then continues to do something else.
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that model the ISR and the main program. The states of the FSMs correspond to
positions in the execution labeled A through E, as shown in the program listing.
These positions are between C statements, so we are assuming here that these
statements are atomic operations (a questionable assumption in general).

We may wish to determine whether the program is assured of always reaching
position C. In other words, can we assert with confidence that the program will
eventually move beyond whatever computation it was to perform for two sec-
onds? A state machine model will help us answer that question.

The key question now becomes how to compose these state machines to correctly
model the interaction between the two pieces of sequential code in the proce-
dures ISR and main. It is easy to see that asynchronous composition is not the
right choice because the interleavings are not arbitrary. In particular, main can
be interrupted by ISR, but ISR cannot be interrupted by main. Asynchronous
composition would fail to capture this asymmetry.

Assuming that the interrupt is always serviced immediately upon being requested,
we wish to have a model something like that shown in Figure 10.6. In that figure,
a two-state FSM models whether an interrupt is being serviced. The transition
from Inactive to Active is triggered by a pure input assert, which models the timer
hardware requesting interrupt service. When the ISR completes its execution,
another pure input return triggers a return to the Inactive state. Notice here that
the transition from Inactive to Active is a preemptive transition, indicated by the
small circle at the start of the transition, suggesting that it should be taken im-
mediately when assert occurs, and that it is a reset transition, suggesting that the
state refinement of Active should begin in its initial state upon entry.

If we combine Figures 10.5 and 10.6 we get the hierarchical FSM in Figure 10.7.
Notice that the return signal is both an input and an output now. It is an output
produced by the state refinement of Active, and it is an input to the top-level FSM,
where it triggers a transition to Inactive. Having an output that is also an input
provides a mechanism for a state refinement to trigger a transition in its container
state machine.

To determine whether the program reaches state C, we can study the flattened
state machine shown in Figure 10.8. Studying that machine carefully, we see that
in fact there is no assurance that state C will be reached! If, for example, assert
is present on every reaction, then C is never reached.
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E
D

A
B

C

Figure 10.6: Sketch of a state machine model for the interaction between an ISR
and the main program.

Could this happen in practice? With this program, it is improbable, but not im-
possible. It could happen if the ISR itself takes longer to execute than the time
between interrupts. Is there any assurance that this will not happen? Unfortu-
nately, our only assurance is a vague notion that processors are faster than that.
There is no guarantee.

In the above example, modeling the interaction between a main program and an interrupt
service routine exposes a potential flaw in the program. Although the flaw may be unlikely
to occur in practice in this example, the fact that the flaw is present at all is disturbing.
In any case, it is better to know that the flaw is present, and to decide that the risk is
acceptable, than to not know it is present.

Interrupt mechanisms can be quite complex. Software that uses these mechanisms to
provide I/O to an external device is called a device driver. Writing device drivers that
are correct and robust is a challenging engineering task requiring a deep understanding
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Figure 10.7: Hierarchical state machine model for the interaction between an ISR
and the main program.
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Figure 10.8: Flattened version of the hierarchical state machine in Figure 10.7.

of the architecture and considerable skill reasoning about concurrency. Many failures in
computer systems are caused by unexpected interactions between device drivers and other
programs.

10.3 Summary

This chapter has reviewed hardware and software mechanisms used to get sensor data
into processors and commands from the processor to actuators. The emphasis is on un-
derstanding the principles behind the mechanisms, with a particular focus on the bridging
between the sequential world of software and the parallel physical world.
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Exercises

1. Similar to Example 10.6, consider a C program for an Atmel AVR that uses a UART
to send 8 bytes to an RS-232 serial interface, as follows:

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

Assume the processor runs at 50 MHz; also assume that initially the UART is idle,
so when the code begins executing, UCSR0A & 0x20 == 0x20 is true; further,
assume that the serial port is operating at 19,200 baud. How many cycles are re-
quired to execute the above code? You may assume that the for statement executes
in three cycles (one to increment i, one to compare it to 8, and one to perform the
conditional branch); the while statement executes in 2 cycles (one to compute
!(UCSR0A & 0x20) and one to perform the conditional branch); and the assig-
ment to UDR0 executes in one cycle.

2. Figure 10.9 gives the sketch of a program for an Atmel AVR microcontroller that
performs some function repeatedly for three seconds. The function is invoked by
calling the procedure foo(). The program begins by setting up a timer interrupt
to occur once per second (the code to do this setup is not shown). Each time the
interrupt occurs, the specified interrupt service routine is called. That routine decre-
ments a counter until the counter reaches zero. The main() procedure initializes the
counter with value 3 and then invokes foo() until the counter reaches zero.

(a) We wish to assume that the segments of code in the grey boxes, labeled A, B,
and C, are atomic. State conditions that make this assumption valid.

(b) Construct a state machine model for this program, assuming as in part (a)
that A, B, and C, are atomic. The transitions in your state machine should
be labeled with “guard/action”, where the action can be any of A, B, C, or
nothing. The actions A, B, or C should correspond to the sections of code in
the grey boxes with the corresponding labels. You may assume these actions
are atomic.

(c) Is your state machine deterministic? What does it tell you about how many
times foo() may be invoked? Do all the possible behaviors of your model
correspond to what the programmer likely intended?

284 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


10. INPUT AND OUTPUT

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;

// Interrupt service routine.
SIGNAL(SIG_OUTPUT_COMPARE1A) {

  if(timer_count > 0) {
    timer_count--;
  }
}

// Main program.
int main(void) {
  // Set up interrupts to occur
  // once per second.
  ...

  // Start a 3 second timer.
  timer_count = 3;

  // Do something repeatedly
   // for 3 seconds.
  while(timer_count > 0) {
    foo();
  }
}

A

B

C

Figure 10.9: Sketch of a C program that performs some function by calling proce-
dure foo() repeatedly for 3 seconds, using a timer interrupt to determine when to
stop.
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Note that there are many possible answers. Simple models are preferred over elab-
orate ones, and complete ones (where everything is defined) over incomplete ones.
Feel free to give more than one model.

3. In a manner similar to example 10.8, create a C program for the ARM CortexTM -
M3 to use the SysTick timer to invoke a system-clock ISR with a jiffy interval of
10 ms that records the time since system start in a 32-bit int. How long can this
program run before your clock overflows?

4. Consider a dashboard display that displays “normal” when brakes in the car operate
normally and “emergency” when there is a failure. The intended behavior is that
once “emergency” has been displayed, “normal” will not again be displayed. That
is, “emergency” remains on the display until the system is reset.

In the following code, assume that the variable display defines what is displayed.
Whatever its value, that is what appears on the dashboard.

1 volatile static uint8_t alerted;
2 volatile static char* display;
3 void ISRA() {
4 if (alerted == 0) {
5 display = "normal";
6 }
7 }
8 void ISRB() {
9 display = "emergency";

10 alerted = 1;
11 }
12 void main() {
13 alerted = 0;
14 ...set up interrupts...
15 ...enable interrupts...
16 ...
17 }

Assume that ISRA is an interrupt service routine that is invoked when the brakes
are applied by the driver. Assume that ISRB is invoked if a sensor indicates that the
brakes are being applied at the same time that the accelerator pedal is depressed.
Assume that neither ISR can interrupt itself, but that ISRB has higher priority than
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ISRA, and hence ISRB can interrupt ISRA, but ISRA cannot interrupt ISRB.
Assume further (unrealistically) that each line of code is atomic.

(a) Does this program always exhibit the intended behavior? Explain. In the
remaining parts of this problem, you will construct various models that will
either demonstrate that the behavior is correct or will illustrate how it can be
incorrect.

(b) Construct a determinate extended state machine modeling ISRA. Assume
that:

• alerted is a variable of type {0, 1} ⊂ uint8 t,
• there is a pure input A that when present indicates an interrupt request for
ISRA, and

• display is an output of type char*.

(c) Give the size of the state space for your solution.

(d) Explain your assumptions about when the state machine in (b) reacts. Is this
time triggered, event triggered, or neither?

(e) Construct a determinate extended state machine modeling ISRB. This one has
a pure input B that when present indicates an interrupt request for ISRB.

(f) Construct a flat (non-hierarchical) determinate extended state machine de-
scribing the joint operation of the these two ISRs. Use your model to argue
the correctness of your answer to part (a).

(g) Give an equivalent hierarchical state machine. Use your model to argue the
correctness of your answer to part (a).

5. Suppose a processor handles interrupts as specified by the following FSM:
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Here, we assume a more complicated interrupt controller than that considered in
Example 10.12, where there are several possible interrupts and an arbiter that de-
cides which interrupt to service. The above state machine shows the state of one
interrupt. When the interrupt is asserted, the FSM transitions to the Pending state,
and remains there until the arbiter provides a handle input. At that time, the FSM
transitions to the Active state and produces an acknowledge output. If another inter-
rupt is asserted while in the Active state, then it transitions to Active and Pending.
When the ISR returns, the input return causes a transition to either Inactive or Pend-
ing, depending on the starting point. The deassert input allows external hardware
to cancel an interrupt request before it gets serviced.

Answer the following questions.

(a) If the state is Pending and the input is return, what is the reaction?

(b) If the state is Active and the input is assert ∧ deassert, what is the reaction?

(c) Suppose the state is Inactive and the input sequence in three successive reac-
tions is:

i. assert ,
ii. deassert ∧ handle ,

iii. return .
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What are all the possible states after reacting to these inputs? Was the interrupt
handled or not?

(d) Suppose that an input sequence never includes deassert. Is it true that every
assert input causes an acknowledge output? In other words, is every interrupt
request serviced? If yes, give a proof. If no, give a counterexample.

6. Suppose you are designing a processor that will support two interrupts whose logic
is given by the FSM in Exercise 5. Design an FSM giving the logic of an arbiter
that assigns one of these two interrupts higher priority than the other. The inputs
should be the following pure signals:

assert1, return1, assert2, return2

to indicate requests and return from interrupt for interrupts 1 and 2, respectively.
The outputs should be pure signals handle1 and handle2. Assuming the assert
inputs are generated by two state machines like that in Exercise 5, can you be sure
that this arbiter will handle every request that is made? Justify your answer.

7. Consider the following program that monitors two sensors. Here sensor1 and
sensor2 denote the variables storing the readouts from two sensors. The actual
read is performed by the functions readSensor1() and readSensor2(), re-
spectively, which are called in the interrupt service routine ISR.

1 char flag = 0;
2 volatile char* display;
3 volatile short sensor1, sensor2;
4

5 void ISR() {
6 if (flag) {
7 sensor1 = readSensor1();
8 } else {
9 sensor2 = readSensor2();

10 }
11 }
12

13 int main() {
14 // ... set up interrupts ...
15 // ... enable interrupts ...
16 while(1) {
17 if (flag) {
18 if isFaulty2(sensor2) {
19 display = "Sensor2 Faulty";
20 }
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21 } else {
22 if isFaulty1(sensor1) {
23 display = "Sensor1 Faulty";
24 }
25 }
26 flag = !flag;
27 }
28 }

Functions isFaulty1() and isFaulty2() check the sensor readings for any
discrepancies, returning 1 if there is a fault and 0 otherwise. Assume that the vari-
able display defines what is shown on the monitor to alert a human operator
about faults. Also, you may assume that flag is modified only in the body of
main.

Answer the following questions:

(a) Is it possible for the ISR to update the value of sensor1 while the main
function is checking whether sensor1 is faulty? Why or why not?

(b) Suppose a spurious error occurs that causes sensor1 or sensor2 to be a
faulty value for one measurement. Is it possible for that this code would not
report “Sensor1 faulty” or “Sensor2 faulty”?

(c) Assuming the interrupt source for ISR() is timer-driven, what conditions
would cause this code to never check whether the sensors are faulty?

(d) Suppose that instead being interrupt driven, ISR and main are executed con-
currently, each in its own thread. Assume a microkernel that can interrupt
any thread at any time and switch contexts to execute another thread. In this
scenario, is it possible for the ISR to update the value of sensor1 while the
main function is checking whether sensor1 is faulty? Why or why not?
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In this chapter, we discuss mid-level mechanisms that are used in software to provide
concurrent execution of sequential code. There are a number of reasons for executing
multiple sequential programs concurrently, but they all involve timing. One reason is to
improve responsiveness by avoiding situations where long-running programs can block a
program that responds to external stimuli, such as sensor data or a user request. Improved
responsiveness reduces latency, the time between the occurrence of a stimulus and the
response. Another reason is to improve performance by allowing a program to run simul-
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Concurrent model of computation

  dataflow, time triggered, synchronous, etc.

Multitasking

  processes, threads, message passing

Processor

  interrupts, pipelining, multicore, etc.

Figure 11.1: Layers of abstraction for concurrency in programs.

taneously on multiple processors or cores. This is also a timing issue, since it presumes
that it is better to complete tasks earlier than later. A third reason is to directly control
the timing of external interactions. A program may need to perform some action, such as
updating a display, at particular times, regardless of what other tasks might be executing
at that time.

We have already discussed concurrency in a variety of contexts. Figure 11.1 shows the re-
lationship between the subject of this chapter and those of other chapters. Chapters 8 and
10 cover the lowest layer in Figure 11.1, which represents how hardware provides con-
current mechanisms to the software designer. Chapters 5 and 6 cover the highest layer,
which consists of abstract models of concurrency, including synchronous composition,
dataflow, and time-triggered models. This chapter bridges these two layers. It describes
mechanisms that are implemented using the low-level mechanisms and can provide infras-
tructure for realizing the high-level mechanisms. Collectively, these mid-level techniques
are called multitasking, meaning the simultaneous execution of multiple tasks.

Embedded system designers frequently use these mid-level mechanisms directly to build
applications, but it is becoming increasingly common for designers to use instead the
high-level mechanisms. The designer constructs a model using a software tool that sup-
ports a model of computation (or several models of computation). The model is then
automatically or semi-automatically translated into a program that uses the mid-level or
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1 #include <stdlib.h>
2 #include <stdio.h>
3 int x; // Value that gets updated.
4 typedef void notifyProcedure(int); // Type of notify proc.
5 struct element {
6 notifyProcedure* listener; // Pointer to notify procedure.
7 struct element* next; // Pointer to the next item.
8 };
9 typedef struct element element_t; // Type of list elements.

10 element_t* head = 0; // Pointer to start of list.
11 element_t* tail = 0; // Pointer to end of list.
12

13 // Procedure to add a listener.
14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }
27 // Procedure to update x.
28 void update(int newx) {
29 x = newx;
30 // Notify listeners.
31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }
36 }
37 // Example of notify procedure.
38 void print(int arg) {
39 printf("%d ", arg);
40 }

Figure 11.2: A C program used in a series of examples in this chapter.
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low-level mechanisms. This translation process is variously called code generation or
autocoding.

The mechanisms described in this chapter are typically provided by an operating system,
a microkernel, or a library of procedures. They can be rather tricky to implement cor-
rectly, and hence the implementation should be done by experts (for some of the pitfalls,
see Boehm (2005)). Embedded systems application programmers often find themselves
having to implement such mechanisms on bare iron (a processor without an operating
system). Doing so correctly requires deep understanding of concurrency issues.

This chapter begins with a brief description of models for sequential programs, which
enable models of concurrent compositions of such sequential programs. We then progress
to discuss threads, processes, and message passing, which are three styles of composition
of sequential programs.

11.1 Imperative Programs

A programming language that expresses a computation as a sequence of operations is
called an imperative language. C is an imperative language.

Example 11.1: In this chapter, we illustrate several key points using the example
C program shown in Figure 11.2. This program implements a commonly used
design pattern called the observer pattern (Gamma et al., 1994). In this pattern,
an update procedure changes the value of a variable x. Observers (which are
other programs or other parts of the program) will be notified whenever x is
changed by calling a callback procedure. For example, the value of x might be
displayed by an observer on a screen. Whenever the value changes, the observer
needs to be notified so that it can update the display on the screen. The following
main procedure uses the procedures defined in Figure 11.2:

1 int main(void) {
2 addListener(&print);
3 addListener(&print);
4 update(1);
5 addListener(&print);
6 update(2);
7 return 0;
8 }
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This test program registers the print procedure as a callback twice, then per-
forms an update (setting x = 1), then registers the print procedure again, and
finally performs another update (setting x = 2). The print procedure simply
prints the current value, so the output when executing this test program is 1 1 2
2 2.

A C program specifies a sequence of steps, where each step changes the state of the
memory in the machine. In C, the state of the memory in the machine is represented by
the values of variables.

Example 11.2: In the program in Figure 11.2, the state of the memory of the
machine includes the value of variable x (which is a global variable) and a list of
elements pointed to by the variable head (another global variable). The list itself
is represented as a linked list, where each element in the list contains a function
pointer referring to a procedure to be called when x changes.

During execution of the C program, the state of the memory of the machine will
need to include also the state of the stack, which includes any local variables.

Using extended state machines, we can model the execution of certain simple C programs,
assuming the programs have a fixed and bounded number of variables. The variables of
the C program will be the variables of the state machine. The states of the state machine
will represent positions in the program, and the transitions will represent execution of the
program.

Example 11.3: Figure 11.3 shows a model of the update procedure in Figure
11.2. The machine transitions from the initial Idle state when the update proce-
dure is called. The call is signaled by the input arg being present; its value will be
the int argument to the update procedure. When this transition is taken, newx
(on the stack) will be assigned the value of the argument. In addition, x (a global
variable) will be updated.
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Figure 11.3: Model of the update procedure in Figure 11.2.

After this first transition, the machine is in state 31, corresponding to the program
counter position just prior to the execution of line 31 in Figure 11.2. It then
unconditionally transitions to state 32 and sets the value of element. From state
32, there are two possibilities; if element = 0, then the machine transitions back
to Idle and produces the pure output return. Otherwise, it transitions to 33.

On the transition from 33 to 34, the action is a procedure call to the listener with
the argument being the stack variable newx. The transition from 34 back to 32
occurs upon receiving the pure input returnFromListener, which indicates that the
listener procedure returns.

The model in Figure 11.3 is not the only model we could have constructed of the update
procedure. In constructing such a model, we need to decide on the level of detail, and we
need to decide which actions can be safely treated as atomic operations. Figure 11.3 uses
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Linked Lists in C

A linked list is a data structure for storing a list of elements that varies in length during
execution of a program. Each element in the list contains a payload (the value of the
element) and a pointer to the next element in the list (or a null pointer if the element is
the last one). For the program in Figure 11.2, the linked list data structure is defined
by:

1 typedef void notifyProcedure(int);
2 struct element {
3 notifyProcedure* listener;
4 struct element* next;
5 };
6 typedef struct element element_t;
7 element_t* head = 0;
8 element_t* tail = 0;

The first line declares that notifyProcedure is a type whose value is a C procedure
that takes an int and returns nothing. Lines 2–5 declare a struct, a composite data
type in C. It has two pieces, listener (with type notifyProcedure*, which is
a function pointer, a pointer to a C procedure) and next (a pointer to an instance of
the same struct). Line 6 declares that element t is a type referring to an instance of
the structure element.

Line 7 declares head, a pointer to a list element. It is initialized to 0, a value that
indicates an empty list. The addListener procedure in Figure 11.2 creates the first
list element using the following code:

1 head = malloc(sizeof(element_t));
2 head->listener = listener;
3 head->next = 0;
4 tail = head;

Line 1 allocates memory from the heap using malloc to store a list element and
sets head to point to that element. Line 2 sets the payload of the element, and line 3
indicates that this is the last element in the list. Line 4 sets tail, a pointer to the last
list element. When the list is not empty, the addListener procedure will use the
tail pointer rather than head to append an element to the list.
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lines of code as a level of detail, but there is no assurance that a line of C code executes
atomically (it usually does not).

In addition, accurate models of C programs are often not finite state systems. Considering
only the code in Figure 11.2, a finite-state model is not appropriate because the code
supports adding an arbitrary number of listeners to the list. If we combine Figure 11.2
with the main procedure in Example 11.1, then the system is finite state because only
three listeners are put on the list. An accurate finite-state model, therefore, would need to
include the complete program, making modular reasoning about the code very difficult.

The problems get much worse when we add concurrency to the mix. We will show in
this chapter that accurate reasoning about C programs with mid-level concurrency mech-
anisms such as threads is astonishingly difficult and error prone. It is for this reason that
designers are tending towards the upper layer in Figure 11.1.

11.2 Threads

Threads are imperative programs that run concurrently and share a memory space. They
can access each others’ variables. Many practitioners in the field use the term “threads”
more narrowly to refer to particular ways of constructing programs that share memory, but
here we will use the term broadly to refer to any mechanism where imperative programs
run concurrently and share memory. In this broad sense, threads exist in the form of
interrupts on almost all microprocessors, even without any operating system at all (bare
iron).

11.2.1 Creating Threads

Most operating systems provide a higher-level mechanism than interrupts to realize im-
perative programs that share memory. The mechanism is provided in the form of a col-
lection of procedures that a programmer can use. Such procedures typically conform to
a standardized API (application program interface), which makes it possible to write
programs that are portable (they will run on multiple processors and/or multiple operating
systems). Pthreads (or POSIX threads) is such an API; it is integrated into many modern
operating systems. Pthreads defines a set of C programming language types, functions and
constants. It was standardized by the IEEE in 1988 to unify variants of Unix. In Pthreads,
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1 #include <pthread.h>
2 #include <stdio.h>
3 void* printN(void* arg) {
4 int i;
5 for (i = 0; i < 10; i++) {
6 printf("My ID: %d\n", *(int*)arg);
7 }
8 return NULL;
9 }

10 int main(void) {
11 pthread_t threadID1, threadID2;
12 void* exitStatus;
13 int x1 = 1, x2 = 2;
14 pthread_create(&threadID1, NULL, printN, &x1);
15 pthread_create(&threadID2, NULL, printN, &x2);
16 printf("Started threads.\n");
17 pthread_join(threadID1, &exitStatus);
18 pthread_join(threadID2, &exitStatus);
19 return 0;
20 }

Figure 11.4: Simple multithreaded C program using Pthreads.

a thread is defined by a C procedure and created by invoking the pthread create
procedure.1

Example 11.4: A simple multithreaded C program using Pthreads is shown in
Figure 11.4. The printN procedure (lines 3–9) — the procedure that the thread
begins executing — is called the start routine; in this case, the start routine
prints the argument passed to it 10 times and then exits, which will cause the
thread to terminate. The main procedure creates two threads, each of which will
execute the start routine. The first one, created on line 14, will print the value
1. The second one, created on line 15, will print the value 2. When you run this

1For brevity, in the examples in this text we do not check for failures, as any well-written program using
Pthreads should. For example, pthread create will return 0 if it succeeds, and a non-zero error code if
it fails. It could fail, for example, due to insufficient system resources to create another thread. Any program
that uses pthread create should check for this failure and handle it in some way. Refer to the Pthreads
documentation for details.
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program, values 1 and 2 will be printed in some interleaved order that depends
on the thread scheduler. Typically, repeated runs will yield different interleaved
orders of 1’s and 2’s.

The pthread create procedure creates a thread and returns immediately. The
start routine may or may not have actually started running when it returns. Lines
17 and 18 use pthread join to ensure that the main program does not ter-
minate before the threads have finished. Without these two lines, running the
program may not yield any output at all from the threads.

A start routine may or may not return. In embedded applications, it is quite common to
define start routines that never return. For example, the start routine might execute forever
and update a display periodically. If the start routine does not return, then any other thread
that calls its pthread join will be blocked indefinitely.

As shown in Figure 11.4, the start routine can be provided with an argument and can
return a value. The fourth argument to pthread create is the address of the argument
to be passed to the start routine. It is important to understand the memory model of C,
explained in Section 9.3.5, or some very subtle errors could occur, as illustrated in the
next example.

Example 11.5: Suppose we attempt to create a thread inside a procedure like
this:

1 pthread_t createThread(int x) {
2 pthread_t ID;
3 pthread_create(&ID, NULL, printN, &x);
4 return ID;
5 }

This code would be incorrect because the argument to the start routine is given by
a pointer to a variable on the stack. By the time the thread accesses the specified
memory address, the createThread procedure will likely have returned and
the memory address will have been overwritten by whatever went on the stack
next.
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11.2.2 Implementing Threads

The core of an implementation of threads is a scheduler that decides which thread to
execute next when a processor is available to execute a thread. The decision may be
based on fairness, where the principle is to give every active thread an equal opportunity
to run, on timing constraints, or on some measure of importance or priority. Scheduling
algorithms are discussed in detail in Chapter 12. In this section, we simply describe how
a thread scheduler will work without worrying much about how it makes a decision on
which thread to execute.

The first key question is how and when the scheduler is invoked. A simple technique
called cooperative multitasking does not interrupt a thread unless the thread itself calls
a certain procedure or one of a certain set of procedures. For example, the scheduler may
intervene whenever any operating system service is invoked by the currently executing
thread. An operating system service is invoked by making a call to a library procedure.
Each thread has its own stack, and when the procedure call is made, the return address
will be pushed onto the stack. If the scheduler determines that the currently executing
thread should continue to execute, then the requested service is completed and the pro-
cedure returns as normal. If instead the scheduler determines that the thread should be
suspended and another thread should be selected for execution, then instead of returning,
the scheduler makes a record of the stack pointer of the currently executing thread, and
then modifies the stack pointer to point to the stack of the selected thread. It then returns
as normal by popping the return address off the stack and resuming execution, but now in
a new thread.

The main disadvantage of cooperative multitasking is that a program may execute for a
long time without making any operating system service calls, in which case other threads
will be starved. To correct for this, most operating systems include an interrupt service
routine that runs at fixed time intervals. This routine will maintain a system clock, which
provides application programmers with a way to obtain the current time of day and enables
periodic invocation of the scheduler via a timer interrupt. For an operating system with a
system clock, a jiffy is the time interval at which the system-clock ISR is invoked.

Example 11.6: The jiffy values in Linux versions have typically varied between
1 ms and 10 ms.
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The value of a jiffy is determined by balancing performance concerns with required timing
precision. A smaller jiffy means that scheduling functions are performed more often,
which can degrade overall performance. A larger jiffy means that the precision of the
system clock is coarser and that task switching occurs less often, which can cause real-
time constraints to be violated. Sometimes, the jiffy interval is dictated by the application.

Example 11.7: Game consoles will typically use a jiffy value synchronized to
the frame rate of the targeted television system because the major time-critical
task for such systems is to generate graphics at this frame rate. For example,
NTSC is the analog television system historically used in most of the Americas,
Japan, South Korea, Taiwan, and a few other places. It has a frame rate of 59.94
Hz, so a suitable jiffy would be 1/59.94 or about 16.68 ms. With the PAL (phase
alternating line) television standard, used in most of Europe and much of the rest
of the world, the frame rate is 50 Hz, yielding a jiffy of 20 ms.

Analog television is steadily being replaced by digital formats such as ATSC.
ATSC supports a number of frame rates ranging from just below 24 Hz to 60 Hz
and a number of resolutions. Assuming a standard-compliant TV, a game console
designer can choose the frame rate and resolution consistent with cost and quality
objectives.

In addition to periodic interrupts and operating service calls, the scheduler might be in-
voked when a thread blocks for some reason. We discuss some of the mechanisms for
such blocking next.

11.2.3 Mutual Exclusion

A thread may be suspended between any two atomic operations to execute another thread
and/or an interrupt service routine. This fact can make it extremely difficult to reason
about interactions among threads.
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Example 11.8: Recall the following procedure from Figure 11.2:

14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }

Suppose that addListener is called from more than one thread. Then what
could go wrong? First, two threads may be simultaneously modifying the linked
list data structure, which can easily result in a corrupted data structure. Suppose
for example that a thread is suspended just prior to executing line 23. Suppose
that while the thread is suspended, another thread calls addListener. When
the first thread resumes executing at line 23, the value of tail has changed. It is
no longer the value that was set in line 22! Careful analysis reveals that this could
result in a list where the second to last element of the list points to a random ad-
dress for the listener (whatever was in the memory allocated by malloc), and the
second listener that was added to the list is no longer on the list. When update
is called, it will try to execute a procedure at the random address, which could
result in a segmentation fault, or worse, execution of random memory contents as
if they were instructions!

The problem illustrated in the previous example is known as a race condition. Two
concurrent pieces of code race to access the same resource, and the exact order in which
their accesses occurs affects the results of the program. Not all race conditions are as
bad as the previous example, where some outcomes of the race cause catastrophic failure.
One way to prevent such disasters is by using a mutual exclusion lock (or mutex), as
illustrated in the next example.
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Example 11.9: In Pthreads, mutexes are implemented by creating an instance
of a structure called a pthread mutex t. For example, we could modify the
addListener procedure as follows:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void addListener(notifyProcedure* listener) {
pthread_mutex_lock(&lock);
if (head == 0) {

...
} else {
...

}
pthread_mutex_unlock(&lock);

}

The first line creates and initializes a global variable called lock. The first line
within the addListener procedure acquires the lock. The principle is that
only one thread can hold the lock at a time. The pthread mutex lock pro-
cedure will block until the calling thread can acquire the lock.

In the above code, when addListener is called by a thread and be-
gins executing, pthread mutex lock does not return until no other thread
holds the lock. Once it returns, this calling thread holds the lock. The
pthread mutex unlock call at the end releases the lock. It is a serious error
in multithreaded programming to fail to release a lock.

A mutual exclusion lock prevents any two threads from simultaneously accessing or mod-
ifying a shared resource. The code between the lock and unlock is a critical section. At
any one time, only one thread can be executing code in such a critical section. A pro-
grammer may need to ensure that all accesses to a shared resource are similarly protected
by locks.

Example 11.10: The update procedure in Figure 11.2 does not modify the list
of listeners, but it does read the list. Suppose that thread A calls addListener
and gets suspended just after line 21, which does this:
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21 tail->next = malloc(sizeof(element_t));

Suppose that while A is suspended, another thread B calls update, which in-
cludes the following code:

31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }

What will happen on line 33 when element == tail->next? At that point,
thread B will treat whatever random contents were in the memory returned by
malloc on line 21 as a function pointer and attempt to execute a procedure
pointed to by that pointer. Again, this will result in a segmentation fault or worse.

The mutex added in Example 11.9 is not sufficient to prevent this disaster. The
mutex does not prevent thread A from being suspended. Thus, we need to protect
all accesses of the data structure with mutexes, which we can do by modifying
update as follows

void update(int newx) {
x = newx;
// Notify listeners.
pthread_mutex_lock(&lock);
element_t* element = head;
while (element != 0) {

(*(element->listener))(newx);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

This will prevent the update procedure from reading the list data structure while
it is being modified by any other thread.

11.2.4 Deadlock

As mutex locks proliferate in programs, the risk of deadlock increases. A deadlock occurs
when some threads become permanently blocked trying to acquire locks. This can occur,
for example, if thread A holds lock1 and then blocks trying to acquire lock2, which
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Operating Systems

The computers in embedded systems often do not interact directly with humans in the
same way that desktop or handheld computers do. As a consequence, the collection
of services that they need from an operating system (OS) may be very different. The
dominant general-purpose OSs for desktops today, Microsoft Windows, Mac OS X,
and Linux, provide services that may or may not be required in an embedded processor.
For example, many embedded applications do not require a graphical user interface
(GUI), a file system, font management, or even a network stack.

Several operating systems have been developed specifically for embedded applica-
tions, including Windows CE (WinCE) (from Microsoft), VxWorks (from Wind River
Systems, acquired by Intel in 2009), QNX (from QNX Software Systems, acquired in
2010 by Research in Motion (RIM)), Embedded Linux (an open source community
effort), and FreeRTOS (another open source community effort). These share many fea-
tures with general-purpose OSs, but typically have specialized the kernel to become a
real-time operating system (RTOS). An RTOS provides bounded latency on interrupt
servicing and a scheduler for processes that takes into account real-time constraints.

Mobile operating systems are a third class of OS designed specifically for hand-
held devices. The smart phone operating systems iOS (from Apple) and Android (from
Google) dominate today, but there is a long history of such software for cell phones and
PDAs. Examples include Symbian OS (an open-source effort maintained by the Sym-
bian Foundation), BlackBerry OS (from RIM), Palm OS (from Palm, Inc., acquired by
Hewlett Packard in 2010), and Windows Mobile (from Microsoft). These OSs have
specialized support for wireless connectivity and media formats.

The core of any operating system is the kernel, which controls the order in which
processes are executed, how memory is used, and how information is communicated
to peripheral devices and networks (via device drivers). A microkernel is a very
small operating system that provides only these services (or even a subset of these
services). OSs may provide many other services, however. These could include
user interface infrastructure (integral to Mac OS X and Windows), virtual memory,
memory allocation and deallocation, memory protection (to isolate applications from
the kernel and from each other), a file system, and services for programs to interact
such as semaphores, mutexes, and message passing libraries.
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is held by thread B, and then thread B blocks trying to acquire lock1. Such deadly
embraces have no clean escape. The program needs to be aborted.

Example 11.11: Suppose that both addListener and update in Figure
11.2 are protected by a mutex, as in the two previous examples. The update
procedure includes the line

33 (*(element->listener))(newx);

which calls a procedure pointed to by the list element. It would not be unrea-
sonable for that procedure to itself need to acquire a mutex lock. Suppose for
example that the listener procedure needs to update a display. A display is typ-
ically a shared resource, and therefore will likely have to be protected with its
own mutex lock. Suppose that threadA calls update, which reaches line 33 and
then blocks because the listener procedure tries to acquire a different lock held by
thread B. Suppose then that thread B calls addListener. Deadlock!

Deadlock can be difficult to avoid. In a classic paper, Coffman et al. (1971) give necessary
conditions for deadlock to occur, any of which can be removed to avoid deadlock. One
simple technique is to use only one lock throughout an entire multithreaded program. This
technique does not lead to very modular programming, however. Moreover, it can make it
difficult to meet real-time constraints because some shared resources (e.g., displays) may
need to be held long enough to cause deadlines to be missed in other threads.

In a very simple microkernel, we can sometimes use the enabling and disabling of inter-
rupts as a single global mutex. Assume that we have a single processor (not a multicore),
and that interrupts are the only mechanism by which a thread may be suspended (i.e.,
they do not get suspended when calling kernel services or blocking on I/O). With these
assumptions, disabling interrupts prevents a thread from being suspended. In most OSs,
however, threads can be suspended for many reasons, so this technique won’t work.

A third technique is to ensure that when there are multiple mutex locks, every thread
acquires the locks in the same order. This can be difficult to guarantee, however, for
several reasons (see Exercise 2). First, most programs are written by multiple people, and
the locks acquired within a procedure are not part of the signature of the procedure. So
this technique relies on very careful and consistent documentation and cooperation across
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a development team. And any time a lock is added, then all parts of the program that
acquire locks may have to be modified.

Second, it can make correct coding extremely difficult. If a programmer wishes to call a
procedure that acquires lock1, which by convention in the program is always the first
lock acquired, then it must first release any locks it holds. As soon as it releases those
locks, it may be suspended, and the resource that it held those locks to protect may be
modified. Once it has acquired lock1, it must then reacquire those locks, but it will then
need to assume it no longer knows anything about the state of the resources, and it may
have to redo considerable work.

There are many more ways to prevent deadlock. For example, a particularly elegant tech-
nique synthesizes constraints on a scheduler to prevent deadlock (Wang et al., 2009).
Nevertheless, most available techniques either impose severe constraints on the program-
mer or require considerable sophistication to apply, which suggests that the problem may
be with the concurrent programming model of threads.

11.2.5 Memory Consistency Models

As if race conditions and deadlock were not problematic enough, threads also suffer from
potentially subtle problems with the memory model of the programs. Any particular im-
plementation of threads offers some sort of memory consistency model, which defines
how variables that are read and written by different threads appear to those threads. Intu-
itively, reading a variable should yield the last value written to the variable, but what does
“last” mean? Consider a scenario, for example, where all variables are initialized with
value zero, and thread A executes the following two statements:

1 x = 1;
2 w = y;

while thread B executes the following two statements:

1 y = 1;
2 z = x;

Intuitively, after both threads have executed these statements, we would expect that at
least one of the two variables w and z has value 1. Such a guarantee is referred to as
sequential consistency (Lamport, 1979). Sequential consistency means that the result of
any execution is the same as if the operations of all threads are executed in some sequential
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order, and the operations of each individual thread appear in this sequence in the order
specified by the thread.

However, sequential consistency is not guaranteed by most (or possibly all) implemen-
tations of Pthreads. In fact, providing such a guarantee is rather difficult on modern
processors using modern compilers. A compiler, for example, is free to re-order the in-
structions in each of these threads because there is no dependency between them (that is
visible to the compiler). Even if the compiler does not reorder them, the hardware might.
A good defensive tactic is to very carefully guard such accesses to shared variables us-
ing mutual exclusion locks (and to hope that those mutual exclusion locks themselves are
implemented correctly).

An authoritative overview of memory consistency issues is provided by Adve and Ghara-
chorloo (1996), who focus on multiprocessors. Boehm (2005) provides an analysis of the
memory consistency problems with threads on a single processor.

11.2.6 The Problem with Threads

Multithreaded programs can be very difficult to understand. Moreover, it can be difficult
to build confidence in the programs because problems in the code may not show up in
testing. A program may have the possibility of deadlock, for example, but nonetheless
run correctly for years without the deadlock ever appearing. Programmers have to be
very cautious, but reasoning about the programs is sufficiently difficult that programming
errors are likely to persist.

In the example of Figure 11.2, we can avoid the potential deadlock of Example 11.11
using a simple trick, but the trick leads to a more insidious error (an error that may
not occur in testing, and may not be noticed when it occurs, unlike a deadlock, which is
almost always noticed when it occurs).

Example 11.12: Suppose we modify the update procedure as follows:
void update(int newx) {

x = newx;
// Copy the list
pthread_mutex_lock(&lock);
element_t* headc = NULL;
element_t* tailc = NULL;
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element_t* element = head;
while (element != 0) {

if (headc == NULL) {
headc = malloc(sizeof(element_t));
headc->listener = head->listener;
headc->next = 0;
tailc = headc;

} else {
tailc->next = malloc(sizeof(element_t));
tailc = tailc->next;
tailc->listener = element->listener;
tailc->next = 0;

}
element = element->next;

}
pthread_mutex_unlock(&lock);

// Notify listeners using the copy
element = headc;
while (element != 0) {

(*(element->listener))(newx);
element = element->next;

}
}

This implementation does not hold lock when it calls the listener procedure.
Instead, it holds the lock while it constructs a copy of the list of the listeners, and
then it releases the lock. After releasing the lock, it uses the copy of the list of
listeners to notify the listeners.

This code, however, has a potentially serious problem that may not be detected in
testing. Specifically, suppose that thread A calls update with argument newx
= 0, indicating “all systems normal.” Suppose that A is suspended just after
releasing the lock, but before performing the notifications. Suppose that while
it is suspended, thread B calls update with argument newx = 1, meaning
“emergency! the engine is on fire!” Suppose that this call to update completes
before thread A gets a chance to resume. When thread A resumes, it will notify
all the listeners, but it will notify them of the wrong value! If one of the listeners
is updating a pilot display for an aircraft, the display will indicate that all systems
are normal, when in fact the engine is on fire.
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Many programmers are familiar with threads and appreciate the ease with which they ex-
ploit underlying parallel hardware. It is possible, but not easy, to construct reliable and
correct multithreaded programs. See for example Lea (1997) for an excellent “how to”
guide to using threads in Java. By 2005, standard Java libraries included concurrent data
structures and mechanisms based on threads (Lea, 2005). Libraries like OpenMP (Chap-
man et al., 2007) also provide support for commonly used multithreaded patterns such
as parallel loop constructs. However, embedded systems programmers rarely use Java or
large sophisticated packages like OpenMP. And even if they did, the same deadlock risks
and insidious errors would occur.

Threads have a number of difficulties that make it questionable to expose them to pro-
grammers as a way to build concurrent programs (Ousterhout, 1996; Sutter and Larus,
2005; Lee, 2006; Hayes, 2007). In fact, before the 1990s, threads were not used at all by
application programmers. It was the emergence of libraries like Pthreads and languages
like Java and C# that exposed these mechanisms to application programmers.

Nontrivial multithreaded programs are astonishingly difficult to understand, and can yield
insidious errors, race conditions, and deadlock. Problems can lurk in multithreaded pro-
grams through years of even intensive use of the programs. These concerns are partic-
ularly important for embedded systems that affect the safety and livelihood of humans.
Since virtually every embedded system involves concurrent software, engineers that de-
sign embedded systems must confront the pitfalls.

11.3 Processes and Message Passing

Processes are imperative programs with their own memory spaces. These programs can-
not refer to each others’ variables, and consequently they do not exhibit the same dif-
ficulties as threads. Communication between the programs must occur via mechanisms
provided by the operating system, microkernel, or a library.

Implementing processes correctly generally requires hardware support in the form of a
memory management unit or MMU. The MMU protects the memory of one process from
accidental reads or writes by another process. It typically also provides address trans-
lation, providing for each process the illusion of a fixed memory address space that is
the same for all processes. When a process accesses a memory location in that address
space, the MMU shifts the address to refer to a location in the portion of physical memory
allocated to that process.
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To achieve concurrency, processes need to be able to communicate. Operating systems
typically provide a variety of mechanisms, often even including the ability to create shared
memory spaces, which of course opens the programmer to all the potential difficulties of
multithreaded programming.

One such mechanism that has fewer difficulties is a file system. A file system is simply
a way to create a body of data that is persistent in the sense that it outlives the process
that creates it. One process can create data and write it to a file, and another process can
read data from the same file. It is up to the implementation of the file system to ensure
that the process reading the data does not read it before it is written. This can be done, for
example, by allowing no more than one process to operate on a file at a time.

A more flexible mechanism for communicating between processes is message passing.
Here, one process creates a chunk of data, deposits it in a carefully controlled section of
memory that is shared, and then notifies other processes that the message is ready. Those
other processes can block waiting for the data to become ready. Message passing requires
some memory to be shared, but it is implemented in libraries that are presumably written
by experts. An application programmer invokes a library procedure to send a message or
to receive a message.

Example 11.13: A simple example of a message passing program is shown in
Figure 11.5. This program uses a producer/consumer pattern, where one thread
produces a sequence of messages (a stream), and another thread consumes the
messages. This pattern can be used to implement the observer pattern without
deadlock risk and without the insidious error discussed in the previous section.
The update procedure would always execute in a different thread from the ob-
servers, and would produce messages that are consumed by the observers.

In Figure 11.5, the code executed by the producing thread is given by the
producer procedure, and the code for the consuming thread by the consumer
procedure. The producer invokes a procedure called send (to be defined) on line
4 to send an integer-valued message. The consumer uses get (also to be de-
fined) on line 10 to receive the message. The consumer is assured that get does
not return until it has actually received the message. Notice that in this case,
consumer never returns, so this program will not terminate on its own.

An implementation of send and get using Pthreads is shown in Figure 11.6.
This implementation uses a linked list similar to that in Figure 11.2, but where
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1 void* producer(void* arg) {
2 int i;
3 for (i = 0; i < 10; i++) {
4 send(i);
5 }
6 return NULL;
7 }
8 void* consumer(void* arg) {
9 while(1) {

10 printf("received %d\n", get());
11 }
12 return NULL;
13 }
14 int main(void) {
15 pthread_t threadID1, threadID2;
16 void* exitStatus;
17 pthread_create(&threadID1, NULL, producer, NULL);
18 pthread_create(&threadID2, NULL, consumer, NULL);
19 pthread_join(threadID1, &exitStatus);
20 pthread_join(threadID2, &exitStatus);
21 return 0;
22 }

Figure 11.5: Example of a simple message-passing application.

the payload is an int. Here, the linked list is implementing an unbounded first-
in, first-out (FIFO) queue, where new elements are inserted at the tail and old
elements are removed from the head.

Consider first the implementation of send. It uses a mutex to ensure that send
and get are not simultaneously modifying the linked list, as before. But in ad-
dition, it uses a condition variable to communicate to the consumer process
that the size of the queue has changed. The condition variable called sent
is declared and initialized on line 7. On line 23, the producer thread calls
pthread cond signal, which will “wake up” another thread that is blocked
on the condition variable, if there is such a thread.

To see what it means to “wake up” another thread, look at the get procedure.
On line 31, if the thread calling get has discovered that the current size of the
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1 #include <pthread.h>
2 struct element {int payload; struct element* next;};
3 typedef struct element element_t;
4 element_t *head = 0, *tail = 0;
5 int size = 0;
6 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
7 pthread_cond_t sent = PTHREAD_COND_INITIALIZER;
8

9 void send(int message) {
10 pthread_mutex_lock(&mutex);
11 if (head == 0) {
12 head = malloc(sizeof(element_t));
13 head->payload = message;
14 head->next = 0;
15 tail = head;
16 } else {
17 tail->next = malloc(sizeof(element_t));
18 tail = tail->next;
19 tail->payload = message;
20 tail->next = 0;
21 }
22 size++;
23 pthread_cond_signal(&sent);
24 pthread_mutex_unlock(&mutex);
25 }
26 int get() {
27 element_t* element;
28 int result;
29 pthread_mutex_lock(&mutex);
30 while (size == 0) {
31 pthread_cond_wait(&sent, &mutex);
32 }
33 result = head->payload;
34 element = head;
35 head = head->next;
36 free(element);
37 size--;
38 pthread_mutex_unlock(&mutex);
39 return result;
40 }

Figure 11.6: Message-passing procedures to send and get messages.
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queue is zero, then it calls pthread cond wait, which will block the thread
until some other thread calls pthread cond signal.

Notice that the get procedure acquires the mutex before testing the size vari-
able. Notice further on line 31 that pthread cond wait takes &mutex as an
argument. In fact, while the thread is blocked on the wait, it releases the mutex
lock temporarily. If it were not to do this, then the producer thread would be
unable to enter its critical section, and therefore would be unable to send a mes-
sage. The program would deadlock. Before pthread cond wait returns, it
will re-acquire the mutex lock.

Programmers have to be very careful when calling pthread cond wait, be-
cause the mutex lock is temporarily released during the call. As a consequence,
the value of any shared variable after the call to pthread cond wait may
not be the same as it was before the call (see Exercise 3). Hence, the call to
pthread cond wait lies within a while loop (line 30) that repeatedly tests
the size variable. This accounts for the possibility that there could be multiple
threads simultaneously blocked on line 31 (which is possible because of the tem-
porary release of the mutex). When a thread calls pthread cond signal,
all threads that are waiting will be notified. But exactly one will re-acquire the
mutex before the others and consume the sent message, causing size to be reset
to zero. The other notified threads, when they eventually acquire the mutex, will
see that size == 0 and will just resume waiting.

The condition variable used in the previous example is a generalized form of a semaphore.
Semaphores are named after mechanical signals traditionally used on railroad tracks to
signal that a section of track has a train on it. Using such semaphores, it is possible to use
a single section of track for trains to travel in both directions (the semaphore implements
mutual exclusion, preventing two trains from simultaneously being on the same section
of track).

In the 1960s, Edsger W. Dijkstra, a professor in the Department of Mathematics at the
Eindhoven University of Technology, Netherlands, borrowed this idea to show how pro-
grams could safely share resources. A counting semaphore (which Dijkstra called a PV
semaphore) is a variable whose value is a non-negative integer. A value of zero is treated
as distinctly different from a value greater than zero. In fact, the size variable in Ex-
ample 11.13 functions as such a semaphore. It is incremented by sending a message,
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and a value of zero blocks the consumer until the value is non-zero. Condition variables
generalize this idea by supporting arbitrary conditions, rather than just zero or non-zero,
as the gating criterion for blocking. Moreover, at least in Pthreads, condition variables
also coordinate with mutexes to make patterns like that in Example 11.13 easier to write.
Dijkstra received the 1972 Turing Award for his work on concurrent programming.

Using message passing in applications can be easier than directly using threads and shared
variables. But even message passing is not without peril. The implementation of the pro-
ducer/consumer pattern in Example 11.13, in fact, has a fairly serious flaw. Specifically, it
imposes no constraints on the size of the message queue. Any time a producer thread calls
send, memory will be allocated to store the message, and that memory will not be deal-
located until the message is consumed. If the producer thread produces messages faster
than the consumer consumes them, then the program will eventually exhaust available
memory. This can be fixed by limiting the size of the buffer (see Exercise 4), but what
size is appropriate? Choosing buffers that are too small can cause a program to deadlock,
and choosing buffers that are too large is wasteful of resources. This problem is not trivial
to solve (Lee, 2009b).

There are other pitfalls as well. Programmers may inadvertently construct message-
passing programs that deadlock, where a set of threads are all waiting for messages from
one another. In addition, programmers can inadvertently construct message-passing pro-
grams that are nondeterminate, in the sense that the results of the computation depend on
the (arbitrary) order in which the thread scheduler happens to schedule the threads.

The simplest solution is for application programmers to use higher-levels of abstraction
for concurrency, the top layer in Figure 11.1, as described in Chapter 6. Of course, they
can only use that strategy if they have available a reliable implementation of a higher-level
concurrent model of computation.

11.4 Summary

This chapter has focused on mid-level abstractions for concurrent programs, above the
level of interrupts and parallel hardware, but below the level of concurrent models of
computation. Specifically, it has explained threads, which are sequential programs that
execute concurrently and share variables. We have explained mutual exclusion and the
use of semaphores. We have shown that threads are fraught with peril, and that writing
correct multithreaded programs is extremely difficult. Message passing schemes avoid
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some of the difficulties, but not all, at the expense of being somewhat more constraining
by prohibiting direct sharing of data. In the long run, designers will be better off using
higher-levels of abstraction, as discussed in Chapter 6.
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Exercises

1. Give an extended state-machine model of the addListener procedure in Figure
11.2 similar to that in Figure 11.3,

2. Suppose that two int global variables a and b are shared among several threads.
Suppose that lock a and lock b are two mutex locks that guard access to a and
b. Suppose you cannot assume that reads and writes of int global variables are
atomic. Consider the following code:

1 int a, b;
2 pthread_mutex_t lock_a
3 = PTHREAD_MUTEX_INITIALIZER;
4 pthread_mutex_t lock_b
5 = PTHREAD_MUTEX_INITIALIZER;
6

7 void procedure1(int arg) {
8 pthread_mutex_lock(&lock_a);
9 if (a == arg) {

10 procedure2(arg);
11 }
12 pthread_mutex_unlock(&lock_a);
13 }
14

15 void procedure2(int arg) {
16 pthread_mutex_lock(&lock_b);
17 b = arg;
18 pthread_mutex_unlock(&lock_b);
19 }

Suppose that to ensure that deadlocks do not occur, the development team has
agreed that lock b should always be acquired before lock a by any thread that
acquires both locks. Note that the code listed above is not the only code in the pro-
gram. Moreover, for performance reasons, the team insists that no lock be acquired
unnecessarily. Consequently, it would not be acceptable to modify procedure1
as follows:

1 void procedure1(int arg) {
2 pthread_mutex_lock(&lock_b);
3 pthread_mutex_lock(&lock_a);
4 if (a == arg) {
5 procedure2(arg);
6 }
7 pthread_mutex_unlock(&lock_a);
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8 pthread_mutex_unlock(&lock_b);
9 }

A thread calling procedure1 will acquire lock b unnecessarily when a is not
equal to arg. 2 Give a design for procedure1 that minimizes unnecessary
acquisitions of lock b. Does your solution eliminate unnecessary acquisitions of
lock b? Is there any solution that does this?

3. The implementation of get in Figure 11.6 permits there to be more than one thread
calling get.

However, if we change the code on lines 30-32 to:
1 if (size == 0) {
2 pthread_cond_wait(&sent, &mutex);
3 }

then this code would only work if two conditions are satisfied:

• pthread cond wait returns only if there is a matching call to
pthread cond signal, and

• there is only one consumer thread.

Explain why the second condition is required.

4. The producer/consumer pattern implementation in Example 11.13 has the draw-
back that the size of the queue used to buffer messages is unbounded. A program
could fail by exhausting all available memory (which will cause malloc to fail).
Construct a variant of the send and get procedures of Figure 11.6 that limits the
buffer size to 5 messages.

5. An alternative form of message passing called rendezvous is similar to the pro-
ducer/consumer pattern of Example 11.13, but it synchronizes the producer and
consumer more tightly. In particular, in Example 11.13, the send procedure re-
turns immediately, regardless of whether there is any consumer thread ready to
receive the message. In a rendezvous-style communication, the send procedure
will not return until a consumer thread has reached a corresponding call to get.
Consequently, no buffering of the messages is needed. Construct implementations
of send and get that implement such a rendezvous.

2In some thread libraries, such code is actually incorrect, in that a thread will block trying to acquire a
lock it already holds. But we assume for this problem that if a thread attempts to acquire a lock it already
holds, then it is immediately granted the lock.
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6. Consider the following code.

1 int x = 0;
2 int a;
3 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
4 pthread_cond_t go = PTHREAD_COND_INITIALIZER; // used in part c
5

6 void proc1(){
7 pthread_mutex_lock(&lock_a);
8 a = 1;
9 pthread_mutex_unlock(&lock_a);

10 <proc3>(); // call to either proc3a or proc3b
11 // depending on the question
12 }
13

14 void proc2(){
15 pthread_mutex_lock(&lock_a);
16 a = 0;
17 pthread_mutex_unlock(&lock_a);
18 <proc3>();
19 }
20

21 void proc3a(){
22 if(a == 0){
23 x = x + 1;
24 } else {
25 x = x - 1;
26 }
27 }
28

29 void proc3b(){
30 pthread_mutex_lock(&lock_a);
31 if(a == 0){
32 x = x + 1;
33 } else {
34 x = x - 1;
35 }
36 pthread_mutex_unlock(&lock_a);
37 }

Suppose proc1 and proc2 run in two separate threads and that each procedure
is called in its respective thread exactly once. Variables x and a are global and
shared between threads and x is initialized to 0. Further, assume the increment and
decrement operations are atomic.
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The calls to proc3 in proc1 and proc2 should be replaced with calls to proc3a
and proc3b depending on the part of the question.

(a) If proc1 and proc2 call proc3a in lines 10 and 18, is the final value of
global variable x guaranteed to be 0? Justify your answer.

(b) What if proc1 and proc2 call proc3b? Justify your answer.

(c) With proc1 and proc2 still calling proc3b, modify proc1 and proc2
with condition variable go to guarantee the final value of x is 2. Specifically,
give the lines where pthread cond wait and pthread cond signal
should be inserted into the code listing. Justify your answer briefly. Make the
assumption that proc1 acquires lock a before proc2.
Also recall that
pthread cond wait(&go, &lock a);

will temporarily release lock a and block the calling thread until
pthread cond signal(&go);

is called in another thread, at which point the waiting thread will be unblocked
and reacquire lock a.

(This problem is due to Matt Weber.)

Lee & Seshia, Introduction to Embedded Systems 321

http://LeeSeshia.org


12
Scheduling

12.1 Basics of Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.1.1 Scheduling Decisions . . . . . . . . . . . . . . . . . . . . . . 323
12.1.2 Task Models . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.1.3 Comparing Schedulers . . . . . . . . . . . . . . . . . . . . . 327
12.1.4 Implementation of a Scheduler . . . . . . . . . . . . . . . . . 328

12.2 Rate Monotonic Scheduling . . . . . . . . . . . . . . . . . . . . . . 329
12.3 Earliest Deadline First . . . . . . . . . . . . . . . . . . . . . . . . . 334

12.3.1 EDF with Precedences . . . . . . . . . . . . . . . . . . . . . 337
12.4 Scheduling and Mutual Exclusion . . . . . . . . . . . . . . . . . . 339

12.4.1 Priority Inversion . . . . . . . . . . . . . . . . . . . . . . . . 339
12.4.2 Priority Inheritance Protocol . . . . . . . . . . . . . . . . . . 340
12.4.3 Priority Ceiling Protocol . . . . . . . . . . . . . . . . . . . . 342

12.5 Multiprocessor Scheduling . . . . . . . . . . . . . . . . . . . . . . 344
12.5.1 Scheduling Anomalies . . . . . . . . . . . . . . . . . . . . . 345

12.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Sidebar: Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 350

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Chapter 11 has explained multitasking, where multiple imperative tasks execute concur-
rently, either interleaved on a single processor or in parallel on multiple processors. When
there are fewer processors than tasks (the usual case), or when tasks must be performed at
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a particular time, a scheduler must intervene. A scheduler makes the decision about what
to do next at certain points in time, such as the time when a processor becomes available.

Real-time systems are collections of tasks where in addition to any ordering constraints
imposed by precedences between the tasks, there are also timing constraints. These con-
straints relate the execution of a task to real time, which is physical time in the envi-
ronment of the computer executing the task. Typically, tasks have deadlines, which are
values of physical time by which the task must be completed. More generally, real-time
programs can have all manner of timing constraints, not just deadlines. For example,
a task may be required to be executed no earlier than a particular time; or it may be re-
quired to be executed no more than a given amount of time after another task is executed;
or it may be required to execute periodically with some specified period. Tasks may be
dependent on one another, and may cooperatively form an application. Or they may be
unrelated except that they share processor resources. All of these situations require a
scheduling strategy.

12.1 Basics of Scheduling

In this section, we discuss the range of possibilities for scheduling, the properties of tasks
that a scheduler uses to guide the process, and the implementation of schedulers in an
operating system or microkernel.

12.1.1 Scheduling Decisions

A scheduler decides what task to execute next when faced with a choice in the execu-
tion of a concurrent program or set of programs. In general, a scheduler may have more
than one processor available to it (for example in a multicore system). A multiproces-
sor scheduler needs to decide not only which task to execute next, but also on which
processor to execute it. The choice of processor is called processor assignment.

A scheduling decision is a decision to execute a task, and it has the following three
parts:

• assignment: which processor should execute the task;
• ordering: in what order each processor should execute its tasks; and
• timing: the time at which each task executes.
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Each of these three decisions may be made at design time, before the program begins
executing, or at run time, during the execution of the program.

Depending on when the decisions are made, we can distinguish a few different types of
schedulers (Lee and Ha, 1989). A fully-static scheduler makes all three decisions at
design time. The result of scheduling is a precise specification for each processor of what
to do when. A fully-static scheduler typically does not need semaphores or locks. It
can use timing instead to enforce mutual exclusion and precedence constraints. However,
fully-static schedulers are difficult to realize with most modern microprocessors because
the time it takes to execute a task is difficult to predict precisely, and because tasks will
typically have data-dependent execution times (see Chapter 16).

A static order scheduler performs the task assignment and ordering at design time, but
defers until run time the decision of when in physical time to execute a task. That deci-
sion may be affected, for example, by whether a mutual exclusion lock can be acquired,
or whether precedence constraints have been satisfied. In static order scheduling, each
processor is given its marching orders before the program begins executing, and it simply
executes those orders as quickly as it can. It does not, for example, change the order of
tasks based on the state of a semaphore or a lock. A task itself, however, may block on a
semaphore or lock, in which case it blocks the entire sequence of tasks on that processor.
A static order scheduler is often called an off-line scheduler.

A static assignment scheduler performs the assignment at design time and everything
else at run time. Each processor is given a set of tasks to execute, and a run-time sched-
uler decides during execution what task to execute next.

A fully-dynamic scheduler performs all decisions at run time. When a processor be-
comes available (e.g., it finishes executing a task, or a task blocks acquiring a mutex), the
scheduler makes a decision at that point about what task to execute next on that processor.
Both static assignment and fully-dynamic schedulers are often called on-line schedulers.

There are, of course, other scheduler possibilities. For example, the assignment of a task
may be done once for a task, at run time just prior to the first execution of the task. For
subsequent runs of the same task, the same assignment is used. Some combinations do not
make much sense. For example, it does not make sense to determine the time of execution
of a task at design time and the order at run time.

A preemptive scheduler may make a scheduling decision during the execution of a task,
assigning a new task to the same processor. That is, a task may be in the middle of exe-
cuting when the scheduler decides to stop that execution and begin execution of another
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task. The interruption of the first task is called preemption. A scheduler that always lets
tasks run to completion before assigning another task to execute on the same processor is
called a non-preemptive scheduler.

In preemptive scheduling, a task may be preempted if it attempts to acquire a mutual
exclusion lock and the lock is not available. When this occurs, the task is said to be
blocked on the lock. When another task releases the lock, the blocked task may resume.
Moreover, a task may be preempted when it releases a lock. This can occur for example
if there is a higher priority task that is blocked on the lock. We will assume in this chapter
well-structured programs, where any task that acquires a lock eventually releases it.

12.1.2 Task Models

For a scheduler to make its decisions, it needs some information about the structure of the
program. A typical assumption is that the scheduler is given a finite set T of tasks. Each
task may be assumed to be finite (it terminates in finite time), or not. A typical operating
system scheduler does not assume that tasks terminate, but real-time schedulers often do.
A scheduler may make many more assumptions about tasks, a few of which we discuss in
this section. The set of assumptions is called the task model of the scheduler.

Some schedulers assume that all tasks to be executed are known before scheduling begins,
and some support arrival of tasks, meaning tasks become known to the scheduler as other
tasks are being executed. Some schedulers support scenarios where each task τ ∈ T
executes repeatedly, possibly forever, and possibly periodically. A task could also be
sporadic, which means that it repeats, and its timing is irregular, but that there is a lower
bound on the time between task executions. In situations where a task τ ∈ T executes
repeatedly, we need to make a distinction between the task τ and the task executions
τ1, τ2, · · · . If each task executes exactly once, then no such distinction is necessary.

Task executions may have precedence constraints, a requirement that one execution pre-
cedes another. If execution i must precede j, we can write i < j. Here, i and j may be
distinct executions of the same task, or executions of different tasks.

A task execution i may have some preconditions to start or resume execution. These
are conditions that must be satisfied before the task can execute. When the preconditions
are satisfied, the task execution is said to be enabled. Precedences, for example, specify
preconditions to start a task execution. Availability of a lock may be a precondition for
resumption of a task.
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Figure 12.1: Summary of times associated with a task execution.

We next define a few terms that are summarized in Figure 12.1.

For a task execution i, we define the release time ri (also called the arrival time) to be
the earliest time at which a task is enabled. We define the start time si to be the time at
which the execution actually starts. Obviously, we require that

si ≥ ri .

We define the finish time fi to be the time at which the task completes execution. Hence,

fi ≥ si .

The response time oi is given by

oi = fi − ri .

The response time, therefore, is the time that elapses between when the task is first enabled
and when it completes execution.

The execution time ei of τi is defined to be the total time that the task is actually exe-
cuting. It does not include any time that the task may be blocked or preempted. Many
scheduling strategies assume (often unrealistically) that the execution time of a task is
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known and fixed. If the execution time is variable, it is common to assume (often unre-
alistically) that the worst-case execution time (WCET) is known. Determining execution
times of software can be quite challenging, as discussed in Chapter 16.

The deadline di is the time by which a task must be completed. Sometimes, a deadline
is a real physical constraint imposed by the application, where missing the deadline is
considered an error. Such a deadline is called a hard deadline. Scheduling with hard
deadlines is called hard real-time scheduling.

Often, a deadline reflects a design decision that need not be enforced strictly. It is better
to meet the deadline, but missing the deadline is not an error. Generally it is better to not
miss the deadline by much. This case is called soft real-time scheduling.

A scheduler may use priority rather than (or in addition to) a deadline. A priority-based
scheduler assumes each task is assigned a number called a priority, and the scheduler will
always choose to execute the task with the highest priority (which is often represented by
the lowest priority number). A fixed priority is a priority that remains constant over all
executions of a task. A dynamic priority is allowed to change during execution.

A preemptive priority-based scheduler is a scheduler that supports arrivals of tasks and
at all times is executing the enabled task with the highest priority. A non-preemptive
priority-based scheduler is a scheduler that uses priorities to determine which task to
execute next after the current task execution completes, but never interrupts a task during
execution to schedule another task.

12.1.3 Comparing Schedulers

The choice of scheduling strategy is governed by considerations that depend on the goals
of the application. A rather simple goal is that all task executions meet their deadlines,
fi ≤ di. A schedule that accomplishes this is called a feasible schedule. A scheduler
that yields a feasible schedule for any task set (that conforms to its task model) for which
there is a feasible schedule is said to be optimal with respect to feasibility.

A criterion that might be used to compare scheduling algorithms is the achievable pro-
cessor utilization. The utilization is the percentage of time that the processor spends
executing tasks (vs. being idle). This metric is most useful for tasks that execute peri-
odically. A scheduling algorithm that delivers a feasible schedule whenever processor
utilization is less than or equal to 100% is obviously optimal with respect to feasibility. It
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only fails to deliver a feasible schedule in circumstances where all scheduling algorithms
will fail to deliver a feasible schedule.

Another criterion that might be used to compare schedulers is the maximum lateness,
defined for a set of task executions T as

Lmax = max
i∈T

(fi − di) .

For a feasible schedule, this number is zero or negative. But maximum lateness can also
be used to compare infeasible schedules. For soft real-time problems, it may be tolerable
for this number to be positive, as long as it does not get too large.

A third criterion that might be used for a finite set T of task executions is the total com-
pletion time or makespan, defined by

M = max
i∈T

fi −min
i∈T

ri .

If the goal of scheduling is to minimize the makespan, this is really more of a performance
goal rather than a real-time requirement.

12.1.4 Implementation of a Scheduler

A scheduler may be part of a compiler or code generator (for scheduling decisions made at
design time), part of an operating system or microkernel (for scheduling decisions made
at run time), or both (if some scheduling decisions are made at design time and some at
run time).

A run-time scheduler will typically implement tasks as threads (or as processes, but the
distinction is not important here). Sometimes, the scheduler assumes these threads com-
plete in finite time, and sometimes it makes no such assumption. In either case, the sched-
uler is a procedure that gets invoked at certain times. For very simple, non-preemptive
schedulers, the scheduling procedure may be invoked each time a task completes. For
preemptive schedulers, the scheduling procedure is invoked when any of several things
occur:

• A timer interrupt occurs, for example at a jiffy interval.
• An I/O interrupt occurs.
• An operating system service is invoked.
• A task attempts to acquire a mutex.
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• A task tests a semaphore.

For interrupts, the scheduling procedure is called by the interrupt service routine (ISR).
In the other cases, the scheduling procedure is called by the operating system procedure
that provides the service. In both cases, the stack contains the information required to
resume execution. However, the scheduler may choose not to simply resume execution.
I.e., it may choose not to immediately return from the interrupt or service procedure. It
may choose instead to preempt whatever task is currently running and begin or resume
another task.

To accomplish this preemption, the scheduler needs to record the fact that the task is
preempted (and, perhaps, why it is preempted), so that it can later resume this task. It can
then adjust the stack pointer to refer to the state of the task to be started or resumed. At
that point, a return is executed, but instead of resuming execution with the task that was
preempted, execution will resume for another task.

Implementing a preemptive scheduler can be quite challenging. It requires very careful
control of concurrency. For example, interrupts may need to be disabled for significant
parts of the process to avoid ending up with a corrupted stack. This is why scheduling
is one of the most central functions of an operating system kernel or microkernel. The
quality of the implementation strongly affects system reliability and stability.

12.2 Rate Monotonic Scheduling

Consider a scenario with T = {τ1, τ2, · · · , τn} of n tasks, where the tasks must execute
periodically. Specifically, we assume that each task τi must execute to completion exactly
once in each time interval pi. We refer to pi as the period of the task. Thus, the deadline
for the j-th execution of τi is ri,1+jpi, where ri,1 is the release time of the first execution.

Liu and Layland (1973) showed that a simple preemptive scheduling strategy called rate
monotonic (RM) scheduling is optimal with respect to feasibility among fixed priority
uniprocessor schedulers for the above task model. This scheduling strategy gives higher
priority to a task with a smaller period.

The simplest form of the problem has just two tasks, T = {τ1, τ2} with execution times
e1 and e2 and periods p1 and p2, as depicted in Figure 12.2. In the figure, the execution
time e2 of task τ2 is longer than the period p1 of task τ1. Thus, if these two tasks are to
execute on the same processor, then it is clear that a non-preemptive scheduler will not
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Figure 12.2: Two periodic tasks T = {τ1, τ2} with execution times e1 and e2 and
periods p1 and p2.
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Figure 12.3: Two periodic tasks T = {τ1, τ2} with a preemptive schedule that
gives higher priority to τ1.

yield a feasible schedule. If task τ2 must execute to completion without interruption, then
task τ1 will miss some deadlines.

A preemptive schedule that follows the rate monotonic principle is shown in Figure 12.3.
In that figure, task τ1 is given higher priority, because its period is smaller. So it executes
at the beginning of each period interval, regardless of whether τ2 is executing. If τ2 is
executing, then τ1 preempts it. The figure assumes that the time it takes to perform the
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preemption, called the context switch time, is negligible.1 This schedule is feasible,
whereas if τ2 had been given higher priority, then the schedule would not be feasible.

For the two task case, it is easy to show that among all preemptive fixed priority sched-
ulers, RM is optimal with respect to feasibility, under the assumed task model with neg-
ligible context switch time. This is easy to show because there are only two fixed priority
schedules for this simple case, the RM schedule, which gives higher priority to task τ1,
and the non-RM schedule, which gives higher priority to task τ2. To show optimality, we
simply need to show that if the non-RM schedule is feasible, then so is the RM schedule.

1The assumption that context switch time is negligible is problematic in practice. On processors with
caches, a context switch often causes substantial cache-related delays. In addition, the operating system
overhead for context switching can be substantial.
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Figure 12.4: Response time o2 of task τ2 is worst when its cycle starts at the
same time that the cycle of τ1 starts.
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Figure 12.5: The non-RM schedule gives higher priority to τ2. It is feasible if and
only if e1 + e2 ≤ p1 for this scenario.

Before we can do this, we need to consider the possible alignments of task executions that
can affect feasibility. As shown in Figure 12.4, the response time of the lower priority
task is worst when its starting phase matches that of higher priority tasks. That is, the
worst-case scenario occurs when all tasks start their cycles at the same time. Hence, we
only need to consider this scenario.

Under this worst-case scenario, where release times align, the non-RM schedule is feasi-
ble if and only if

e1 + e2 ≤ p1 . (12.1)

This scenario is illustrated in Figure 12.5. Since task τ1 is preempted by τ2, for τ1 to not
miss its deadline, we require that e2 ≤ p1 − e1, so that τ2 leaves enough time for τ1 to
execute before its deadline.
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e
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τ2

Figure 12.6: The RM schedule gives higher priority to τ1. For the RM schedule to
be feasible, it is sufficient, but not necessary, for e1 + e2 ≤ p1.
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To show that RM is optimal with respect to feasibility, all we need to do is show that if the
non-RM schedule is feasible, then the RM schedule is also feasible. Examining Figure
12.6, it is clear that if equation (12.1) is satisfied, then the RM schedule is feasible. Since
these are the only two fixed priority schedules, the RM schedule is optimal with respect to
feasibility. The same proof technique can be generalized to an arbitrary number of tasks,
yielding the following theorem (Liu and Layland, 1973):

Theorem 12.1. Given a preemptive, fixed priority scheduler and a finite set of re-
peating tasks T = {τ1, τ2, · · · , τn} with associated periods p1, p2, · · · , pn and no
precedence constraints, if any priority assignment yields a feasible schedule, then the
rate monotonic priority assignment yields a feasible schedule.

RM schedules are easily implemented with a timer interrupt with a time interval equal to
the greatest common divisor of the periods of the tasks. They can also be implemented
with multiple timer interrupts.

It turns out that RM schedulers cannot always achieve 100% utilization. In particular,
RM schedulers are constrained to have fixed priority. This constraint results in situations
where a task set that yields a feasible schedule has less than 100% utilization and yet
cannot tolerate any increase in execution times or decrease in periods. This means that
there are idle processor cycles that cannot be used without causing deadlines to be missed.
An example is studied in Exercise 3.

Fortunately, Liu and Layland (1973) show that this effect is bounded. First note that the
utilization of n independent tasks with execution times ei and periods pi can be written

µ =
n∑
i=1

ei
pi
.

If µ = 1, then the processor is busy 100% of the time. So clearly, if µ > 1 for any task
set, then that task set has no feasible schedule. Liu and Layland (1973) show that if µ is
less than or equal to a utilization bound given by

µ ≤ n(21/n − 1), (12.2)

then the RM schedule is feasible.

To understand this (rather remarkable) result, consider a few cases. First, if n = 1 (there
is only one task), then n(21/n − 1) = 1, so the result tells us that if utilization is 100% or

Lee & Seshia, Introduction to Embedded Systems 333

http://LeeSeshia.org


12.3. EARLIEST DEADLINE FIRST

less, then the RM schedule is feasible. This is obvious, of course, because with only one
task, µ = e1/p1, and clearly the deadline can only be met if e1 ≤ p1.

If n = 2, then n(21/n− 1) ≈ 0.828. Thus, if a task set with two tasks does not attempt to
use more than 82.8% of the available processor time, then the RM schedule will meet all
deadlines.

As n gets large, the utilization bound approaches ln(2) ≈ 0.693. That is

lim
n→∞

n(21/n − 1) = ln(2) ≈ 0.693.

This means that if a task set with any number of tasks does not attempt to use more than
69.3% of the available processor time, then the RM schedule will meet all deadlines.

In the next section, we relax the fixed-priority constraint and show that dynamic priority
schedulers can do better than fixed priority schedulers, in the sense that they can achieve
higher utilization. The cost is a somewhat more complicated implementation.

12.3 Earliest Deadline First

Given a finite set of non-repeating tasks with deadlines and no precedence constraints,
a simple scheduling algorithm is earliest due date (EDD), also known as Jackson’s
algorithm (Jackson, 1955). The EDD strategy simply executes the tasks in the same
order as their deadlines, with the one with the earliest deadline going first. If two tasks
have the same deadline, then their relative order does not matter.

Theorem 12.2. Given a finite set of non-repeating tasks T = {τ1, τ2, · · · , τn} with
associated deadlines d1, d2, · · · , dn and no precedence constraints, an EDD schedule
is optimal in the sense that it minimizes the maximum lateness, compared to all other
possible orderings of the tasks.

Proof. This theorem is easy to prove with a simple interchange argument. Consider
an arbitrary schedule that is not EDD. In such a schedule, because it is not EDD, there
must be two tasks τi and τj where τi immediately precedes τj , but dj < di. This is
depicted here:
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0 fi

task i

fj dj di

task j

Since the tasks are independent (there are no precedence constraints), reversing the
order of these two tasks yields another valid schedule, depicted here:

0 f ’i

task i

f ’j dj di

task j

We can show that the new schedule has a maximum lateness no greater than that of
the original schedule. If we repeat the above interchange until there are no more tasks
eligible for such an interchange, then we have constructed the EDD schedule. Since
this schedule has a maximum lateness no greater than that of the original schedule, the
EDD schedule has the minimum maximum lateness of all schedules.

To show that the second schedule has a maximum lateness no greater than that of the
first schedule, first note that if the maximum lateness is determined by some task other
than τi or τj , then the two schedules have the same maximum lateness, and we are
done. Otherwise, it must be that the maximum lateness of the first schedule is

Lmax = max(fi − di, fj − dj) = fj − dj ,

where the latter equality is obvious from the picture and follows from the facts that
fi ≤ fj and dj < di.

The maximum lateness of the second schedule is given by

L′max = max(f ′i − di, f ′j − dj) .

Consider two cases:

Case 1: L′max = f ′i − di. In this case, since f ′i = fj , we have

L′max = fj − di ≤ fj − dj ,

Lee & Seshia, Introduction to Embedded Systems 335

http://LeeSeshia.org


12.3. EARLIEST DEADLINE FIRST

where the latter inequality follows because dj < di. Hence, L′max ≤ Lmax.

Case 2: L′max = f ′j − dj . In this case, since f ′j ≤ fj , we have

L′max ≤ fj − dj ,

and again L′max ≤ Lmax.

In both cases, the second schedule has a maximum lateness no greater than that of the
first schedule. QED.

EDD is also optimal with respect to feasibility, because it minimizes the maximum late-
ness. However, EDD does not support arrival of tasks, and hence also does not sup-
port periodic or repeated execution of tasks. Fortunately, EDD is easily extended to
support these, yielding what is known as earliest deadline first (EDF) or Horn’s al-
gorithm (Horn, 1974).

Theorem 12.3. Given a set of n independent tasks T = {τ1, τ2, · · · , τn} with asso-
ciated deadlines d1, d2, · · · , dn and arbitrary arrival times, any algorithm that at any
instant executes the task with the earliest deadline among all arrived tasks is optimal
with respect to minimizing the maximum lateness.

The proof of this uses a similar interchange argument. Moreover, the result is easily
extended to support an unbounded number of arrivals. We leave it as an exercise.

Note that EDF is a dynamic priority scheduling algorithm. If a task is repeatedly executed,
it may be assigned a different priority on each execution. This can make it more complex
to implement. Typically, for periodic tasks, the deadline used is the end of the period of
the task, though it is certainly possible to use other deadlines for tasks.

Although EDF is more expensive to implement than RM, in practice its performance is
generally superior (Buttazzo, 2005b). First, RM is optimal with respect to feasibility
only among fixed priority schedulers, whereas EDF is optimal w.r.t. feasibility among
dynamic priority schedulers. In addition, EDF also minimizes the maximum lateness.
Also, in practice, EDF results in fewer preemptions (see Exercise 2), which means less
overhead for context switching. This often compensates for the greater complexity in
the implementation. In addition, unlike RM, any EDF schedule with less than 100%
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Figure 12.7: An example of a precedence graph for six tasks and the schedule
under three scheduling policies. Execution times for all tasks are one time unit.

utilization can tolerate increases in execution times and/or reductions in periods and still
be feasible.

12.3.1 EDF with Precedences

Theorem 12.2 shows that EDF is optimal (it minimizes maximum lateness) for a task
set without precedences. What if there are precedences? Given a finite set of tasks,
precedences between them can be represented by a precedence graph.

Example 12.1: Consider six tasks T = {1, · · · , 6}, each with execution time
ei = 1, with precedences as shown in Figure 12.7. The diagram means that task
1 must execute before either 2 or 3 can execute, that 2 must execute before either
4 or 5, and that 3 must execute before 6. The deadline for each task is shown in
the figure. The schedule labeled EDF is the EDF schedule. This schedule is not
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feasible. Task 4 misses its deadline. However, there is a feasible schedule. The
schedule labeled LDF meets all deadlines.

The previous example shows that EDF is not optimal if there are precedences. In 1973,
Lawler (1973) gave a simple algorithm that is optimal with precedences, in the sense that it
minimizes the maximum lateness. The strategy is very simple. Given a fixed, finite set of
tasks with deadlines, Lawler’s strategy constructs the schedule backwards, choosing first
the last task to execute. The last task to execute is the one on which no other task depends
that has the latest deadline. The algorithm proceeds to construct the schedule backwards,
each time choosing from among the tasks whose dependents have already been scheduled
the one with the latest deadline. For the previous example, the resulting schedule, labeled
LDF in Figure 12.7, is feasible. Lawler’s algorithm is called latest deadline first (LDF).

LDF is optimal in the sense that it minimizes the maximum lateness, and hence it is
also optimal with respect to feasibility. However, it does not support arrival of tasks.
Fortunately, there is a simple modification of EDF, proposed by Chetto et al. (1990).
EDF* (EDF with precedences), supports arrivals and minimizes the maximal lateness. In
this modification, we adjust the deadlines of all the tasks. Suppose the set of all tasks is T .
For a task execution i ∈ T , let D(i) ⊂ T be the set of task executions that immediately
depend on i in the precedence graph. For all executions i ∈ T , we define a modified
deadline

d′i = min(di, min
j∈D(i)

(d′j − ej)) .

EDF* is then just like EDF except that it uses these modified deadlines.

Example 12.2: In Figure 12.7, we see that the EDF* schedule is the same as the
LDF schedule. The modified deadlines are as follows:

d′1 = 1, d′2 = 2, d′3 = 4, d′4 = 3, d′5 = 5, d′6 = 6 .

The key is that the deadline of task 2 has changed from 5 to 2, reflecting the fact
that its successors have early deadlines. This causes EDF* to schedule task 2
before task 3, which results in a feasible schedule.
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EDF* can be thought of as a technique for rationalizing deadlines. Instead of accepting
arbitrary deadlines as given, this algorithm ensures that the deadlines take into account
deadlines of successor tasks. In the example, it makes little sense for task 2 to have a later
deadline, 5, than its successors. So EDF* corrects this anomaly before applying EDF.

12.4 Scheduling and Mutual Exclusion

Although the algorithms given so far are conceptually simple, the effects they have in
practice are far from simple and often surprise system designers. This is particularly true
when tasks share resources and use mutual exclusion to guard access to those resources.

12.4.1 Priority Inversion

In principle, a priority-based preemptive scheduler is executing at all times the high-
priority enabled task. However, when using mutual exclusion, it is possible for a task to
become blocked during execution. If the scheduling algorithm does not account for this
possibility, serious problems can occur.

Example 12.3: The Mars Pathfinder, shown in Figure 12.8, landed on Mars on
July 4th, 1997. A few days into the mission, the Pathfinder began sporadically
missing deadlines, causing total system resets, each with loss of data. Engineers
on the ground diagnosed the problem as priority inversion, where a low priority
meteorological task was holding a lock and blocking a high-priority task, while
medium priority tasks executed. (Source: What Really Happened on Mars?
Mike Jones, RISKS-19.49 on the comp.programming.threads newsgroup, Dec.
07, 1997, and What Really Happened on Mars? Glenn Reeves, Mars Pathfinder
Flight Software Cognizant Engineer, email message, Dec. 15, 1997.)

Priority inversion is a scheduling anomaly where a high-priority task is blocked while
unrelated lower-priority tasks are executing. The phenomenon is illustrated in Figure 12.9.
In the figure, task 3, a low priority task, acquires a lock at time 1. At time 2, it is preempted
by task 1, a high-priority task, which then at time 3 blocks trying to acquire the same lock.
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Before task 3 reaches the point where it releases the lock, however, it gets preempted by
an unrelated task 2, which has medium priority. Task 2 can run for an unbounded amount
of time, and effectively prevents the higher-priority task 1 from executing. This is almost
certainly not desirable.

12.4.2 Priority Inheritance Protocol

In 1990, Sha et al. (1990) gave a solution to the priority inversion problem called priority
inheritance. In their solution, when a task blocks attempting to acquire a lock, then the
task that holds the lock inherits the priority of the blocked task. Thus, the task that holds
the lock cannot be preempted by a task with lower priority than the one attempting to
acquire the lock.

Figure 12.8: The Mars Pathfinder and a view of the surface of Mars from the
camera of the lander (image from the Wikipedia Commons).
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Example 12.4: Figure 12.10 illustrates priority inheritance. In the figure, when
task 1 blocks trying to acquire the lock held by task 3, task 3 resumes executing,
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Figure 12.9: Illustration of priority inversion. Task 1 has highest priority, task 3
lowest. Task 3 acquires a lock on a shared object, entering a critical section. It
gets preempted by task 1, which then tries to acquire the lock and blocks. Task
2 preempts task 3 at time 4, keeping the higher priority task 1 blocked for an
unbounded amount of time. In effect, the priorities of tasks 1 and 2 get inverted,
since task 2 can keep task 1 waiting arbitrarily long.
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Figure 12.10: Illustration of the priority inheritance protocol. Task 1 has highest
priority, task 3 lowest. Task 3 acquires a lock on a shared object, entering a
critical section. It gets preempted by task 1, which then tries to acquire the lock
and blocks. Task 3 inherits the priority of task 1, preventing preemption by task 2.
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Figure 12.11: Illustration of deadlock. The lower priority task starts first and ac-
quires lock a, then gets preempted by the higher priority task, which acquires lock
b and then blocks trying to acquire lock a. The lower priority task then blocks
trying to acquire lock b, and no further progress is possible.

but now with the higher priority of task 1. Thus, when task 2 becomes enabled at
time 4, it does not preempt task 3. Instead, task 3 runs until it releases the lock at
time 5. At that time, task 3 reverts to its original (low) priority, and task 1 resumes
executing. Only when task 1 completes is task 2 able to execute.

12.4.3 Priority Ceiling Protocol

Priorities can interact with mutual exclusion locks in even more interesting ways. In
particular, in 1990, Sha et al. (1990) showed that priorities can be used to prevent certain
kinds of deadlocks.

Example 12.5: Figure 12.11 illustrates a scenario in which two tasks deadlock.
In the figure, task 1 has higher priority. At time 1, task 2 acquires lock a. At time
2, task 1 preempts task 2, and at time 3, acquires lock b. While holding lock b, it
attempts to acquire lock a. Since a is held by task 2, it blocks. At time 4, task 2
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Figure 12.12: Illustration of the priority ceiling protocol. In this version, locks a and
b have priority ceilings equal to the priority of task 1. At time 3, task 1 attempts
to lock b, but it cannot because task 2 currently holds lock a, which has priority
ceiling equal to the priority of task 1.

resumes executing. At time 5, it attempts to acquire lock b, which is held by task
1. Deadlock!

The deadlock in the previous example can be prevented by a clever technique called the
priority ceiling protocol (Sha et al., 1990). In this protocol, every lock or semaphore is
assigned a priority ceiling equal to the priority of the highest-priority task that can lock it.
A task τ can acquire a lock a only if the task’s priority is strictly higher than the priority
ceilings of all locks currently held by other tasks. Intuitively, if we prevent task τ from
acquiring lock a, then we ensure that task τ will not hold lock a while later trying to
acquire other locks held by other tasks. This prevents certain deadlocks from occurring.

Example 12.6: The priority ceiling protocol prevents the deadlock of Example
12.5, as shown in Figure 12.12. In the figure, when task 1 attempts to acquire
lock b at time 3, it is prevented from doing so. At that time, lock a is currently
held by another task (task 2). The priority ceiling assigned to lock a is equal to
the priority of task 1, since task 1 is the highest priority task that can acquire lock
a. Since the priority of task 1 is not strictly higher than this priority ceiling, task
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1 is not permitted to acquire lock b. Instead, task 1 becomes blocked, allowing
task 2 to run to completion. At time 4, task 2 acquires lock b unimpeded, and at
time 5, it releases both locks. Once it has released both locks, task 1, which has
higher priority, is no longer blocked, so it resumes executing, preempting task 2.

Of course, implementing the priority ceiling protocol requires being able to determine in
advance which tasks acquire which locks. A simple conservative strategy is to examine
the source code for each task and inventory the locks that are acquired in the code. This is
conservative because a particular program may or may not execute any particular line of
code, so just because a lock is mentioned in the code does not necessarily mean that the
task will attempt to acquire the lock.

12.5 Multiprocessor Scheduling

Scheduling tasks on a single processor is hard enough. Scheduling them on multiple pro-
cessors is even harder. Consider the problem of scheduling a fixed finite set of tasks with
precedences on a finite number of processors with the goal of minimizing the makespan.
This problem is known to be NP-hard. Nonetheless, effective and efficient scheduling
strategies exist. One of the simplest is known as the Hu level scheduling algorithm. It
assigns a priority to each task τ based on the level, which is the greatest sum of exe-
cution times of tasks on a path in the precedence graph from τ to another task with no
dependents. Tasks with larger levels have higher priority than tasks with smaller levels.

Example 12.7: For the precedence graph in Figure 12.7, task 1 has level 3,
tasks 2 and 3 have level 2, and tasks 4, 5, and 6 have level 1. Hence, a Hu level
scheduler will give task 1 highest priority, tasks 2 and 3 medium priority, and
tasks 4, 5, and 6 lowest priority.

Hu level scheduling is one of a family of critical path methods because it emphasizes the
path through the precedence graph with the greatest total execution time. Although it is
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not optimal, it is known to closely approximate the optimal solution for most graphs (Kohler,
1975; Adam et al., 1974).

Once priorities are assigned to tasks, a list scheduler sorts the tasks by priorities and
assigns them to processors in the order of the sorted list as processors become available.

Example 12.8: A two-processor schedule constructed with the Hu level schedul-
ing algorithm for the precedence graph shown in Figure 12.7 is given in Fig-
ure 12.13. The makespan is 4.

12.5.1 Scheduling Anomalies

Among the worst pitfalls in embedded systems design are scheduling anomalies, where
unexpected or counterintuitive behaviors emerge due to small changes in the operating
conditions of a system. We have already illustrated two such anomalies, priority inversion
and deadlock. There are many others. The possible extent of the problems that can
arise are well illustrated by the so-called Richard’s anomalies (Graham, 1969). These
show that multiprocessor schedules are non-montonic, meaning that improvements in
performance at a local level can result in degradations in performance at a global level,
and brittle, meaning that small changes can have big consequences.

Richard’s anomalies are summarized in the following theorem.

0

1

42

3 5 6Processor A:

2 4Processor B:

Figure 12.13: A two-processor parallel schedule for the tasks with precedence
graph shown in Figure 12.7.
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Figure 12.14: A precedence graph with nine tasks, where the lower numbered
tasks have higher priority than the higher numbered tasks.

Theorem 12.4. If a task set with fixed priorities, execution times, and precedence con-
straints is scheduled on a fixed number of processors in accordance with the priorities,
then increasing the number of processors, reducing execution times, or weakening
precedence constraints can increase the schedule length.

Proof. The theorem can be proved with the example in Figure 12.14. The example
has nine tasks with execution times as shown in the figure. We assume the tasks
are assigned priorities so that the lower numbered tasks have higher priority than the
higher numbered tasks. Note that this does not correspond to a critical path priority
assignment, but it suffices to prove the theorem. The figure shows a three-processor
schedule in accordance with the priorities. Notice that the makespan is 12.
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First, consider what happens if the execution times are all reduced by one time unit. A
schedule conforming to the priorities and precedences is shown below:
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Notice that the makespan has increased to 13, even though the total amount of compu-
tation has decreased significantly. Since computation times are rarely known exactly,
this form of brittleness is particularly troubling.

Consider next what happens if we add a fourth processor and keep everything else the
same as in the original problem. A resulting schedule is shown below:
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Again, the makespan has increased (to 15 this time) even though we have added 33%
more processing power than originally available.

Consider finally what happens if we weaken the precedence constraints by removing
the precedences between task 4 and tasks 7 and 8. A resulting schedule is shown
below:
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Figure 12.15: Anomaly due to mutual exclusion locks, where a reduction in the
execution time of task 1 results in an increased makespan.

The makespan has now increased to 16, even though weakening precedence constraints
increases scheduling flexibility. A simple priority-based scheduling scheme such as
this does not take advantage of the weakened constraints.

This theorem is particularly troubling when we realize that execution times for software
are rarely known exactly (see Chapter 16). Scheduling policies will be based on approxi-
mations, and behavior at run time may be quite unexpected.

Another form of anomaly arises when there are mutual exclusion locks. An illustration is
given in Figure 12.15. In this example, five tasks are assigned to two processors using a
static assignment scheduler. Tasks 2 and 4 contend for a mutex. If the execution time of
task 1 is reduced, then the order of execution of tasks 2 and 4 reverses, which results in
an increased execution time. This kind of anomaly is quite common in practice.

12.6 Summary

Embedded software is particularly sensitive to timing effects because it inevitably inter-
acts with external physical systems. A designer, therefore, needs to pay considerable
attention to the scheduling of tasks. This chapter has given an overview of some of the
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basic techniques for scheduling real-time tasks and parallel scheduling. It has explained
some of the pitfalls, such as priority inversion and scheduling anomalies. A designer that
is aware of the pitfalls is better equipped to guard against them.
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Further Reading

Scheduling is a well-studied topic, with many basic results dating back to the 1950s.
This chapter covers only the most basic techniques and omits several important top-
ics. For real-time scheduling textbooks, we particularly recommend Buttazzo (2005a),
Stankovic and Ramamritham (1988), and Liu (2000), the latter of which has particu-
larly good coverage of scheduling of sporadic tasks. An excellent overview article is
Sha et al. (2004). A hands-on practical guide can be found in Klein et al. (1993). For
an excellent overview of the evolution of fixed-priority scheduling techniques through
2003, see Audsley et al. (2005). For soft real-time scheduling, we recommend study-
ing time utility functions, introduced by Douglas Jensen in 1977 as a way to overcome
the limited expressiveness in classic deadline constraints in real-time systems (see, for
example, Jensen et al. (1985); Ravindran et al. (2007)).

There are many more scheduling strategies than those described here. For example,
deadline monotonic (DM) scheduling modifies rate monotonic to allow periodic tasks
to have deadlines less than their periods (Leung and Whitehead, 1982). The Spring
algorithm is a set of heuristics that support arrivals, precedence relations, resource
constraints, non-preemptive properties, and importance levels (Stankovic and Ramam-
ritham, 1987, 1988).

An important topic that we do not cover is feasibility analysis, which provides tech-
niques for analyzing programs to determine whether feasible schedules exist. Much
of the foundation for work in this area can be found in Harter (1987) and Joseph and
Pandya (1986).

Multiprocessor scheduling is also a well-studied topic, with many core results orig-
inating in the field of operations research. Classic texts on the subject are Conway
et al. (1967) and Coffman (1976). Sriram and Bhattacharyya (2009) focus on embed-
ded multiprocessors and include innovative techniques for reducing synchronization
overhead in multiprocessor schedules.

It is also worth noting that a number of projects have introduced programming lan-
guage constructs that express real-time behaviors of software. Most notable among
these is Ada, a language developed under contract from the US Department of De-
fense (DoD) from 1977 to 1983. The goal was to replace the hundreds of programming
languages then used in DoD projects with a single, unified language. An excellent dis-
cussion of language constructs for real time can be found in Lee and Gehlot (1985) and
Wolfe et al. (1993).

350 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


12. SCHEDULING

Exercises

1. This problem studies fixed-priority scheduling. Consider two tasks to be executed
periodically on a single processor, where task 1 has period p1 = 4 and task 2 has
period p2 = 6.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for the
execution time e2 of task 2 such that the RM schedule is feasible.

(b) Again let the execution time of task 1 be e1 = 1. Let non-RMS be a fixed-
priority schedule that is not an RM schedule. Find the maximum value for the
execution time e2 of task 2 such that non-RMS is feasible.

(c) For both your solutions to (a) and (b) above, find the processor utilization.
Which is better?

(d) For RM scheduling, are there any values for e1 and e2 that yield 100% utiliza-
tion? If so, give an example.

2. This problem studies dynamic-priority scheduling. Consider two tasks to be exe-
cuted periodically on a single processor, where task 1 has period p1 = 4 and task
2 has period p2 = 6. Let the deadlines for each invocation of the tasks be the end
of their period. That is, the first invocation of task 1 has deadline 4, the second
invocation of task 1 has deadline 8, and so on.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for the
execution time e2 of task 2 such that EDF is feasible.

(b) For the value of e2 that you found in part (a), compare the EDF schedule
against the RM schedule from Exercise 1 (a). Which schedule has less pre-
emption? Which schedule has better utilization?

3. This problem compares RM and EDF schedules. Consider two tasks with periods
p1 = 2 and p2 = 3 and execution times e1 = e2 = 1. Assume that the deadline for
each execution is the end of the period.

(a) Give the RM schedule for this task set and find the processor utilization.
How does this utilization compare to the Liu and Layland utilization bound of
(12.2)?

(b) Show that any increase in e1 or e2 makes the RM schedule infeasible. If you
hold e1 = e2 = 1 and p2 = 3 constant, is it possible to reduce p1 below 2
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and still get a feasible schedule? By how much? If you hold e1 = e2 = 1
and p1 = 2 constant, is it possible to reduce p2 below 3 and still get a feasible
schedule? By how much?

(c) Increase the execution time of task 2 to be e2 = 1.5, and give an EDF sched-
ule. Is it feasible? What is the processor utilization?

4. This problem, formulated by Hokeun Kim, also compares RM and EDF schedules.
Consider two tasks to be executed periodically on a single processor, where task 1
has period p1 = 4 and task 2 has period p2 = 10. Assume task 1 has execution
time e1 = 1, and task 2 has execution time e2 = 7.

(a) Sketch a rate-monotonic schedule (for 20 time units, the least common multi-
ple of 4 and 10). Is the schedule feasible?

(b) Now suppose task 1 and 2 contend for a mutex lock, assuming that the lock
is acquired at the beginning of each execution and released at the end of each
execution. Also, suppose that acquiring or releasing locks takes zero time
and the priority inheritance protocol is used. Is the rate-monotonic schedule
feasible?

(c) Assume still that tasks 1 and 2 contend for a mutex lock, as in part (b). Sup-
pose that task 2 is running an anytime algorithm, which is an algorithm that
can be terminated early and still deliver useful results. For example, it might
be an image processing algorithm that will deliver a lower quality image when
terminated early. Find the maximum value for the execution time e2 of task
2 such that the rate-monotonic schedule is feasible. Construct the resulting
schedule, with the reduced execution time for task 2, and sketch the schedule
for 20 time units. You may assume that execution times are always positive
integers.

(d) For the original problem, where e1 = 1 and e2 = 7, and there is no mutex
lock, sketch an EDF schedule for 20 time units. For tie-breaking among task
executions with the same deadline, assume the execution of task 1 has higher
priority than the execution of task 2. Is the schedule feasible?

(e) Now consider adding a third task, task 3, which has period p3 = 5 and ex-
ecution time e3 = 2. In addition, assume as in part (c) that we can adjust
execution time of task 2.
Find the maximum value for the execution time e2 of task 2 such that the
EDF schedule is feasible and sketch the schedule for 20 time units. Again,
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you may assume that the execution times are always positive integers. For
tie-breaking among task executions with the same deadline, assume task i has
higher priority than task j if i < j.)

5. This problem compares fixed vs. dynamic priorities, and is based on an example by
Burns and Baruah (2008). Consider two periodic tasks, where task τ1 has period
p1 = 2, and task τ2 has period p2 = 3. Assume that the execution times are e1 = 1
and e2 = 1.5. Suppose that the release time of execution i of task τ1 is given by

r1,i = 0.5 + 2(i− 1)

for i = 1, 2, · · · . Suppose that the deadline of execution i of task τ1 is given by

d1,i = 2i.

Correspondingly, assume that the release times and deadlines for task τ2 are

r2,i = 3(i− 1)

and
d2,i = 3i.

(a) Give a feasible fixed-priority schedule.

(b) Show that if the release times of all executions of task τ1 are reduced by 0.5,
then no fixed-priority schedule is feasible.

(c) Give a feasible dynamic-priority schedule with the release times of task τ1
reduced to

r1,i = 2(i− 1).

6. This problem studies scheduling anomalies. Consider the task precedence graph
depicted in Figure 12.16 with eight tasks. In the figure, ei denotes the execution
time of task i. Assume task i has higher priority than task j if i < j. There is no
preemption. The tasks must be scheduled respecting all precedence constraints and
priorities. We assume that all tasks arrive at time t = 0.

(a) Consider scheduling these tasks on two processors. Draw the schedule for
these tasks and report the makespan.

(b) Now consider scheduling these tasks on three processors. Draw the schedule
for these tasks and report the makespan. Is the makespan bigger or smaller
than that in part (a) above?
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e1= 3

e2= 2

e3= 2

e8= 5

e7 = 10

e4 = 5

e5 = 5

e6 = 5

Figure 12.16: Precedence Graph for Exercise 6.

(c) Now consider the case when the execution time of each task is reduced by
1 time unit. Consider scheduling these tasks on two processors. Draw the
schedule for these tasks and report the makespan. Is the makespan bigger or
smaller than that in part (a) above?

7. This problem studies the interaction between real-time scheduling and mutual ex-
clusion, and was formulated by Kevin Weekly.
Consider the following excerpt of code:

1 pthread_mutex_t X; // Resource X: Radio communication
2 pthread_mutex_t Y; // Resource Y: LCD Screen
3 pthread_mutex_t Z; // Resource Z: External Memory (slow)
4

5 void ISR_A() { // Safety sensor Interrupt Service Routine
6 pthread_mutex_lock(&Y);
7 pthread_mutex_lock(&X);
8 display_alert(); // Uses resource Y
9 send_radio_alert(); // Uses resource X

10 pthread_mutex_unlock(&X);
11 pthread_mutex_unlock(&Y);
12 }
13

14 void taskB() { // Status recorder task
15 while (1) {
16 static time_t starttime = time();
17 pthread_mutex_lock(&X);
18 pthread_mutex_lock(&Z);
19 stats_t stat = get_stats();
20 radio_report( stat ); // uses resource X
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21 record_report( stat ); // uses resource Z
22 pthread_mutex_unlock(&Z);
23 pthread_mutex_unlock(&X);
24 sleep(100-(time()-starttime)); // schedule next excecution
25 }
26 }
27

28 void taskC() { // UI Updater task
29 while(1) {
30 pthread_mutex_lock(&Z);
31 pthread_mutex_lock(&Y);
32 read_log_and_display(); // uses resources Y and Z
33 pthread_mutex_unlock(&Y);
34 pthread_mutex_unlock(&Z);
35 }
36 }

You may assume that the comments fully disclose the resource usage of the proce-
dures. That is, if a comment says ”uses resource X”, then the relevant procedure
uses only resource X. The scheduler running aboard the system is a priority-based
preemptive scheduler, where taskB is higher priority than taskC. In this problem,
ISR A can be thought of as an asynchronous task with the highest priority.

The intended behavior is for the system to send out a radio report every 100ms and
for the UI to update constantly. Additionally, if there is a safety interrupt, a radio
report is sent immediately and the UI alerts the user.

(a) Occasionally, when there is a safety interrupt, the system completely stops
working. In a scheduling diagram (like Figure 12.11 in the text), using the
tasks {A,B,C}, and resources {X,Y,Z}, explain the cause of this behavior.
Execution times do not have to be to scale in your diagram. Label your dia-
gram clearly. You will be graded in part on the clarity of your answer, not just
on its correctness.

(b) Using the priority ceiling protocol, show the scheduling diagram for the same
sequence of events that you gave in part (a). Be sure to show all resource locks
and unlocks until all tasks are finished or reached the end of an iteration. Does
execution stop as before?

(c) Without changing the scheduler, how could the code in taskB be reordered to
fix the issue? Using an exhaustive search of all task/resource locking scenar-
ios, prove that this system will not encounter deadlock. (Hint: There exists
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a proof enumerating 6 cases, based on reasoning that the 3 tasks each have 2
possible resources they could block on.)

356 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


Part III

Analysis and Verification

This part of this text studies analysis of embedded systems, with emphasis on methods
for specifying desired and undesired behaviors and verifying that an implementation con-
forms to its specification. Chapter 13 covers temporal logic, a formal notation that can
express families of input/output behaviors and the evolution of the state of a system over
time. This notation can be used to specify unambiguously desired and undesired behav-
iors. Chapter 14 explains what it means for one specification to be equivalent to another,
and what it means for a design to implement a specification. Chapter 15 shows how to
check algorithmically whether a design correctly implements a specification. Chapter 16
illustrates how to analyze designs for quantitative properties, with emphasis on execu-
tion time analysis for software. Such analysis is essential to achieving real-time behavior
in software. Chapter 17 introduces the basics of security and privacy with a focus on
concepts relevant to embedded, cyber-physical systems.
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Every embedded system must be designed to meet certain requirements. Such system
requirements are also called properties or specifications. The need for specifications is
aptly captured by the following quotation (paraphrased from Young et al. (1985)):

“A design without specifications cannot be right or wrong, it can only be
surprising!”

In present engineering practice, it is common to have system requirements stated in a nat-
ural language such as English. As an example, consider the SpaceWire communication
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protocol that is gaining adoption with several national space agencies (European Cooper-
ation for Space Standardization, 2002). Here are two properties reproduced from Section
8.5.2.2 of the specification document, stating conditions on the behavior of the system
upon reset:

1. “The ErrorReset state shall be entered after a system reset, after link operation has
been terminated for any reason or if there is an error during link initialization.”

2. “Whenever the reset signal is asserted the state machine shall move immediately to
the ErrorReset state and remain there until the reset signal is de-asserted.”

It is important to precisely state requirements to avoid ambiguities inherent in natural
languages. For example, consider the first property of the SpaceWire protocol stated
above. Observe that there is no mention of when the ErrorReset state is to be entered. The
systems that implement the SpaceWire protocol are synchronous, meaning that transitions
of the state machine occur on ticks of a system clock. Given this, must the ErrorReset
state be entered on the very next tick after one of the three conditions becomes true or on
some subsequent tick of the clock? As it turns out, the document intends the system to
make the transition to ErrorReset on the very next tick, but this is not made precise by the
English language description.

This chapter will introduce techniques to specify system properties mathematically and
precisely. A mathematical specification of system properties is also known as a formal
specification. The specific formalism we will use is called temporal logic. As the name
suggests, temporal logic is a precise mathematical notation with associated rules for rep-
resenting and reasoning about timing-related properties of systems. While temporal logic
has been used by philosophers and logicians since the times of Aristotle, it is only in the
last thirty years that it has found application as a mathematical notation for specifying
system requirements.

One of the most common kinds of system property is an invariant. It is also one of
the simplest forms of a temporal logic property. We will first introduce the notion of an
invariant and then generalize it to more expressive specifications in temporal logic.

13.1 Invariants

An invariant is a property that holds for a system if it remains true at all times during
operation of the system. Put another way, an invariant holds for a system if it is true in the
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initial state of the system, and it remains true as the system evolves, after every reaction,
in every state.

In practice, many properties are invariants. Both properties of the SpaceWire proto-
col stated above are invariants, although this might not be immediately obvious. Both
SpaceWire properties specify conditions that must remain true always. Below is an ex-
ample of an invariant property of a model that we have encountered in Chapter 3.

Example 13.1: Consider the model of a traffic light controller given in Fig-
ure 3.10 and its environment as modeled in Figure 3.11. Consider the system
formed by the asynchronous composition of these two state machines. An obvi-
ous property that the composed system must satisfy is that there is no pedestrian
crossing when the traffic light is green (when cars are allowed to move). This
property must always remain true of this system, and hence is a system invariant.

It is also desirable to specify invariant properties of software and hardware implemen-
tations of embedded systems. Some of these properties specify correct programming
practice on language constructs. For example, the C language property

“The program never dereferences a null pointer”

is an invariant specifying good programming practice. Typically dereferencing a null
pointer in a C program results in a segmentation fault, possibly leading to a system crash.
Similarly, several desirable properties of concurrent programs are invariants, as illustrated
in the following example.

Example 13.2: Consider the following property regarding an absence of dead-
lock:

If a thread A blocks while trying to acquire a mutex lock, then the
threadB that holds that lock must not be blocked attempting to acquire
a lock held by A.
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This property is required to be an invariant on any multithreaded program con-
structed from threadsA andB. The property may or may not hold for a particular
program. If it does not hold, there is risk of deadlock.

Many system invariants also impose requirements on program data, as illustrated in the
example below.

Example 13.3: Consider the following example of a software task from the open
source Paparazzi unmanned aerial vehicle (UAV) project (Nemer et al., 2006):

1 void altitude_control_task(void) {
2 if (pprz_mode == PPRZ_MODE_AUTO2
3 || pprz_mode == PPRZ_MODE_HOME) {
4 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
5 float err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 }
15 }
16 }

For this example, it is required that the value of the desired climb vari-
able at the end of altitude control task remains within the range [-
CLIMB MAX, CLIMB MAX]. This is an example of a special kind of invariant, a
postcondition, that must be maintained every time altitude control task
returns. Determining whether this is the case requires analyzing the control flow
of the program.
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13.2 Linear Temporal Logic

We now give a formal description of temporal logic and illustrate with examples of how
it can be used to specify system behavior. In particular, we study a particular kind of tem-
poral logic known as linear temporal logic, or LTL. There are other forms of temporal
logic, some of which are briefly surveyed in sidebars.

Using LTL, one can express a property over a single, but arbitrary execution of a system.
For instance, one can express the following kinds of properties in LTL:

• Occurrence of an event and its properties. For example, one can express the prop-
erty that an event A must occur at least once in every trace of the system, or that it
must occur infinitely many times.

• Causal dependency between events. An example of this is the property that if an
event A occurs in a trace, then event B must also occur.

• Ordering of events. An example of this kind of property is one specifying that every
occurrence of event A is preceded by a matching occurrence of B.

We now formalize the above intuition about the kinds of properties expressible in linear
temporal logic. In order to perform this formalization, it is helpful to fix a particular
formal model of computation. We will use the theory of finite-state machines, introduced
in Chapter 3.

Recall from Section 3.6 that an execution trace of a finite-state machine is a sequence of
the form

q0, q1, q2, q3, . . . ,

where qj = (xj , sj , yj), sj is the state, xj is the input valuation, and yj is the output
valuation at reaction j.

13.2.1 Propositional Logic Formulas

First, we need to be able to talk about conditions at each reaction, such as whether an
input or output is present, what the value of an input or output is, or what the state is.
Let an atomic proposition be such a statement about the inputs, outputs, or states. It is a
predicate (an expression that evaluates to true or false). Examples of atomic propositions
that are relevant for the state machines in Figure 13.1 are:
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true Always true.
false Always false.
x True if input x is present.

x = present True if input x is present.
y = absent True if y is absent.

b True if the FSM is in state b

In each case, the expression is true or false at a reaction qi. The proposition b is true at a
reaction qi if qi = (x, b, y) for any valuations x and y, which means that the machine is
in state b at the start of the reaction. I.e., it refers to the current state, not the next state.

A propositional logic formula or (more simply) proposition is a predicate that combines
atomic propositions using logical connectives: conjunction (logical AND, denoted ∧),
disjunction (logical OR, denoted ∨), negation (logical NOT, denoted ¬), and implies
(logical implication, denoted =⇒ ). Propositions for the state machines in Figure 13.1
include any of the above atomic proposition and expressions using the logical connectives
together with atomic propositions. Here are some examples:

x ∧ y True if x and y are both present.
x ∨ y True if either x or y is present.

x = present ∧ y = absent True if x is present and y is absent.
¬y True if y is absent.

a =⇒ y True if whenever the FSM is in state a, the
output y will be made present by the reaction

Figure 13.1: Two finite-state machines used to illustrate LTL formulas.
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Note that if p1 and p2 are propositions, the proposition p1 =⇒ p2 is true if and only
if ¬p2 =⇒ ¬p1. In other words, if we wish to establish that p1 =⇒ p2 is true, it
is equally valid to establish that ¬p2 =⇒ ¬p1 is true. In logic, the latter expression is
called the contrapositive of the former.

Note further that p1 =⇒ p2 is true if p1 is false. This is easy to see by considering
the contrapositive. The proposition ¬p2 =⇒ ¬p1 is true regardless of p2 if ¬p1 is true.
Thus, another proposition that is equivalent to p1 =⇒ p2 is

¬p1 ∨ p2 .

13.2.2 LTL Formulas

An LTL formula, unlike the above propositions, applies to an entire trace

q0, q1, q2, . . . ,

rather than to just one reaction qi. The simplest LTL formulas look just like the proposi-
tions above, but they apply to an entire trace rather than just a single element of the trace.
If p is a proposition, then by definition, we say that LTL formula φ = p holds for the
trace q0, q1, q2, . . . if and only if p is true for q0. It may seem odd to say that the formula
holds for the entire trace even though the proposition only holds for the first element of
the trace, but we will see that LTL provides ways to reason about the entire trace.

By convention, we will denote LTL formulas by φ, φ1, φ2, etc. and propositions by p, p1,
p2, etc.

Given a state machine M and an LTL formula φ, we say that φ holds for M if φ holds for
all possible traces of M . This typically requires considering all possible inputs.

Example 13.4: The LTL formula a holds for Figure 13.1(b), because all traces
begin in state a. It does not hold for Figure 13.1(a).

The LTL formula x =⇒ y holds for both machines. In both cases, in the first
reaction, if x is present, then y will be present.
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To demonstrate that an LTL formula is false for an FSM, it is sufficient to give one trace for
which it is false. Such a trace is called a counterexample. To show that an LTL formula
is true for an FSM, you must demonstrate that it is true for all traces, which is often much
harder (although not so much harder when the LTL formula is a simple propositional logic
formula, because in that case we only have to consider the first element of the trace).

Example 13.5: The LTL formula y is false for both FSMs in Figure 13.1. In
both cases, a counterexample is a trace where x is absent in the first reaction.

In addition to propositions, LTL formulas can also have one or more special temporal
operators. These make LTL much more interesting, because they enable reasoning about
entire traces instead of just making assertions about the first element of a trace. There are
four main temporal operators, which we describe next.

G Operator

The property Gφ (which is read as “globally φ”) holds for a trace if φ holds for every
suffix of that trace. (A suffix is a tail of a trace beginning with some reaction and including
all subsequent reactions.)

In mathematical notation, Gφ holds for the trace if and only if, for all j ≥ 0, formula φ
holds in the suffix qj , qj+1, qj+2, . . ..

Example 13.6: In Figure 13.1(b), G(x =⇒ y) is true for all traces of the ma-
chine, and hence holds for the machine. G(x∧ y) does not hold for the machine,
because it is false for any trace where x is absent in any reaction. Such a trace
provides a counterexample.

If φ is a propositional logic formula, then Gφ simply means that φ holds in every reaction.
We will see, however, that when we combine the G operator with other temporal logic
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operators, we can make much more interesting statements about traces and about state
machines.

F Operator

The property Fφ (which is read as “eventually φ” or “finally φ”) holds for a trace if φ
holds for some suffix of the trace.

Formally, Fφ holds for the trace if and only if, for some j ≥ 0, formula φ holds in the
suffix qj , qj+1, qj+2, . . ..

Example 13.7: In Figure 13.1(a), Fb is trivially true because the machine starts
in state b, hence, for all traces, the proposition b holds for the trace itself (the very
first suffix).

More interestingly, G(x =⇒ Fb) holds for Figure 13.1(a). This is because if x
is present in any reaction, then the machine will eventually be in state b. This is
true even in suffixes that start in state a.

Notice that parentheses can be important in interpreting an LTL formula. For
example, (Gx) =⇒ (Fb) is trivially true because Fb is true for all traces (since
the initial state is b).

Notice that F¬φ holds if and only if ¬Gφ. That is, stating that φ is eventually false is the
same as stating that φ is not always true.

X Operator

The property Xφ (which is read as “next state φ” ) holds for a trace q0, q1, q2, . . . if and
only if φ holds for the trace q1, q2, q3, . . ..

Example 13.8: In Figure 13.1(a), x =⇒ Xa holds for the state machine,
because if x is present in the first reaction, then the next state will be a. G(x =⇒
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Probing Further: Alternative Temporal Logics

Amir Pnueli (1977) was the first to formalize temporal logic as a way of specifying
program properties. For this he won the 1996 ACM Turing Award, the highest honor
in Computer Science. Since his seminal paper, temporal logic has become widespread
as a way of specifying properties for a range of systems, including hardware, software,
and cyber-physical systems.

In this chapter, we have focused on LTL, but there are several alternatives. LTL
formulas apply to individual traces of an FSM, and in this chapter, by convention, we
assert than an LTL formula holds for an FSM if it holds for all possible traces of the
FSM. A more general logic called computation tree logic (CTL∗) explicitly provides
quantifiers over possible traces of an FSM (Emerson and Clarke (1980); Ben-Ari et al.
(1981)). For example, we can write a CTL∗ expression that holds for an FSM if there
exists any trace that satisfies some property, rather than insisting that the property must
hold for all traces. CTL∗ is called a branching-time logic because whenever a reaction
of the FSM has a nondeterministic choice, it will simultaneously consider all options.
LTL, by contrast, considers only one trace at a time, and hence it is called a linear-time
logic. Our convention of asserting that an LTL formula holds for an FSM if it holds for
all traces cannot be expressed directly in LTL, because LTL does not include quantifiers
like “for all traces.” We have to step outside the logic to apply this convention. With
CTL∗, this convention is expressible directly in the logic.

Several other temporal logic variants have found practical use. For instance, real-
time temporal logics (e.g., timed computation tree logic or TCTL), is used for rea-
soning about real-time systems (Alur et al., 1991; Alur and Henzinger, 1993) where
the passage of time is not in discrete steps, but is continuous. Similarly, probabilistic
temporal logics are useful for reasoning about probabilistic models such as Markov
chains or Markov decision processes (see, for example, Hansson and Jonsson (1994)),
and signal temporal logic has proved effective for reasoning about real-time behavior
of hybrid systems (Maler and Nickovic, 2004).

Techniques for inferring temporal logic properties from traces, also known as spec-
ification mining, have also proved useful in industrial practice (see Jin et al. (2015)).
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Xa) does not hold for the state machine because it does not hold for any suffix
that begins in state a. In Figure 13.1(b), G(b =⇒ Xa) holds for the state
machine.

U Operator

The property φ1Uφ2 (which is read as “φ1 until φ2”) holds for a trace if φ2 holds for
some suffix of that trace, and φ1 holds until φ2 becomes true.

Formally, φ1Uφ2 holds for the trace if and only if there exists j ≥ 0 such that φ2 holds
in the suffix qj , qj+1, qj+2, . . . and φ1 holds in suffixes qi, qi+1, qi+2, . . ., for all i s.t.
0 ≤ i < j. φ1 may or may not hold for qj , qj+1, qj+2, . . ..

Example 13.9: In Figure 13.1(b), aUx is true for any trace for which Fx holds.
Since this does not include all traces, aUx does not hold for the state machine.

Some authors define a weaker form of the U operator that does not require φ2 to hold.
Using our definition, this can be written

(Gφ1) ∨ (φ1Uφ2) .

This holds if either φ1 always holds (for any suffix) or, if φ2 holds for some suffix, then
φ1 holds for all previous suffixes. This can equivalently be written

(F¬φ1) =⇒ (φ1Uφ2) .

Example 13.10: In Figure 13.1(b), (G¬x)∨ (aUx) holds for the state machine.
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13.2.3 Using LTL Formulas

Consider the following English descriptions of properties and their corresponding LTL
formalizations:

Example 13.11: “Whenever the robot is facing an obstacle, eventually it moves
at least 5 cm away from the obstacle.”

Let p denote the condition that the robot is facing an obstacle, and q denote the
condition where the robot is at least 5 cm away from the obstacle. Then, this
property can be formalized in LTL as

G (p =⇒ Fq) .

Example 13.12: Consider the SpaceWire property:
“Whenever the reset signal is asserted the state machine shall move immediately
to the ErrorReset state and remain there until the reset signal is de-asserted.”

Let p be true when the reset signal is asserted, and q be true when the state of the
FSM is ErrorReset. Then, the above English property is formalized in LTL as:

G (p =⇒ X(qU¬p)) .

In the above formalization, we have interpreted “immediately” to mean that the
state changes to ErrorReset in the very next time step. Moreover, the above LTL
formula will fail to hold for any execution where the reset signal is asserted and
not eventually de-asserted. It was probably the intent of the standard that the reset
signal should be eventually de-asserted, but the English language statement does
not make this clear.

Example 13.13: Consider the traffic light controller in Figure 3.10. A property
of this controller is that the outputs always cycle through sigG, sigY and sigR. We
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can express this in LTL as follows:

G { (sigG =⇒ X((¬sigR ∧ ¬sigG)U sigY ))

∧ (sigY =⇒ X((¬sigG ∧ ¬sigY )U sigR))

∧ (sigR =⇒ X((¬sigY ∧ ¬sigR)U sigG)) } .

The following LTL formulas express commonly useful properties.

(a) Infinitely many occurrences: This property is of the form GFp, meaning that it is
always the case that p is true eventually. Put another way, this means that p is true
infinitely often.

(b) Steady-state property: This property is of the form FGp, read as “from some point
in the future, p holds at all times.” This represents a steady-state property, indicating
that after some point in time, the system reaches a steady state in which p is always
true.

(c) Request-response property: The formula G (p =⇒ Fq) can be interpreted to
mean that a request p will eventually produce a response q.

13.3 Summary

Dependability and correctness are central concerns in embedded systems design. Formal
specifications, in turn, are central to achieving these goals. In this chapter, we have studied
temporal logic, one of the main approaches for writing formal specifications. This chapter
has provided techniques for precisely stating properties that must hold over time for a
system. It has specifically focused on linear temporal logic, which is able to express
many safety and liveness properties of systems.

370 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


13. INVARIANTS AND TEMPORAL LOGIC

Safety and Liveness Properties

System properties may be safety or liveness properties. Informally, a safety property
is one specifying that “nothing bad happens” during execution. Similarly, a liveness
property specifies that “something good will happen” during execution.

More formally, a property p is a safety property if a system execution does not
satisfy p if and only if there exists a finite-length prefix of the execution that cannot
be extended to an infinite execution satisfying p. We say p is a liveness property if
every finite-length execution trace can be extended to an infinite execution that satisfies
p. See Lamport (1977) and Alpern and Schneider (1987) for a theoretical treatment of
safety and liveness.

The properties we have seen in Section 13.1 are all examples of safety properties.
Liveness properties, on the other hand, specify performance or progress requirements
on a system. For a state machine, a property of the form Fφ is a liveness property. No
finite execution can establish that this property is not satisfied.

The following is a slightly more elaborate example of a liveness property:

“Whenever an interrupt is asserted, the corresponding interrupt service
routine (ISR) is eventually executed.”

In temporal logic, if p1 is the property that an interrupt is asserted, and p2 is the property
that the interrupt service routine is executed, then this property can be written

G(p1 =⇒ Fp2) .

Note that both safety and liveness properties can constitute system invariants. For
example, the above liveness property on interrupts is also an invariant; p1 =⇒ Fp2
must hold in every state.

Liveness properties can be either bounded or unbounded. A bounded liveness prop-
erty specifies a time bound on something desirable happening (which makes it a safety
property). In the above example, if the ISR must be executed within 100 clock cycles
of the interrupt being asserted, the property is a bounded liveness property; otherwise,
if there is no such time bound on the occurrence of the ISR, it is an unbounded live-
ness property. LTL can express a limited form of bounded liveness properties using the
X operator, but it does not provide any mechanism for quantifying time directly.
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Exercises

1. For each of the following questions, give a short answer and justification.

(a) TRUE or FALSE: If GFp holds for a state machine A, then so does FGp.

(b) TRUE or FALSE: G(Gp) holds for a trace if and only if Gp holds.

2. Consider the following state machine:

(Recall that the dashed line represents a default transition.) For each of the fol-
lowing LTL formulas, determine whether it is true or false, and if it is false, give a
counterexample:

(a) x =⇒ Fb

(b) G(x =⇒ F(y = 1))

(c) (Gx) =⇒ F(y = 1)

(d) (Gx) =⇒ GF(y = 1)

(e) G((b ∧ ¬x) =⇒ FGc)

(f) G((b ∧ ¬x) =⇒ Gc)

(g) (GF¬x) =⇒ FGc

3. Consider the synchronous feedback composition studied in Exercise 6 of Chapter
6. Determine whether the following statement is true or false:

The following temporal logic formula is satisfied by the sequence w for every pos-
sible behavior of the composition and is not satisfied by any sequence that is not a
behavior of the composition:

(Gw) ∨ (wU(G¬w)) .
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Justify your answer. If you decide it is false, then provide a temporal logic formula
for which the assertion is true.

4. This problem is concerned with specifying in linear temporal logic tasks to be per-
formed by a robot. Suppose the robot must visit a set of n locations l1, l2, . . . , ln.
Let pi be an atomic formula that is true if and only if the robot visits location li.

Give LTL formulas specifying the following tasks:

(a) The robot must eventually visit at least one of the n locations.

(b) The robot must eventually visit all n locations, but in any order.

(c) The robot must eventually visit all n locations, in the order
l1, l2, . . . , ln.

5. Consider a system M modeled by the hierarchical state machine of Figure 13.2,
which models an interrupt-driven program. M has two modes: Inactive, in which
the main program executes, and Active, in which the interrupt service routine (ISR)
executes. The main program and ISR read and update a common variable timer-
Count.

Answer the following questions:

(a) Specify the following property φ in linear temporal logic, choosing suitable
atomic propositions:

φ: The main program eventually reaches program location C.

(b) Does M satisfy the above LTL property? Justify your answer by constructing
the product FSM. If M does not satisfy the property, under what conditions
would it do so? Assume that the environment of M can assert the interrupt at
any time.

6. Express the postcondition of Example 13.3 as an LTL formula. State your assump-
tions clearly.

7. Consider the program fragment shown in Figure 11.6, which provides procedures
for threads to communicate asynchronously by sending messages to one another.
Please answer the following questions about this code. Assume the code is running
on a single processor (not a multicore machine). You may also assume that only
the code shown accesses the static variables that are shown.
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Figure 13.2: Hierarchical state machine modeling a program and its interrupt
service routine.

(a) Let s be an atomic proposition asserting that send releases the mutex (i.e.
executes line 24). Let g be an atomic proposition asserting that get releases
the mutex (i.e. executes line 38). Write an LTL formula asserting that g cannot
occur before s in an execution of the program. Does this formula hold for the
first execution of any program that uses these procedures?

(b) Suppose that a program that uses the send and get procedures in Figure
11.6 is aborted at an arbitrary point in its execution and then restarted at the
beginning. In the new execution, it is possible for a call to get to return
before any call to send has been made. Describe how this could come about.
What value will get return?

(c) Suppose again that a program that uses the send and get procedures above
is aborted at an arbitrary point in its execution and then restarted at the begin-
ning. In the new execution, is it possible for deadlock to occur, where neither
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a call to get nor a call to send can return? If so, describe how this could
come about and suggest a fix. If not, give an argument.
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This chapter discusses some fundamental ways to compare state machines and other
modal models, such as trace equivalence, trace containment, simulation, and bisimula-
tion. These mechanisms can be used to check conformance of a state machine against a
specification.



14. EQUIVALENCE AND REFINEMENT

14.1 Models as Specifications

The previous chapter provided techniques for unambiguously stating properties that a
system must have to be functioning properly and safely. These properties were expressed
using linear temporal logic, which can concisely describe requirements that the trace of
a finite-state machine must satisfy. An alternative way to give requirements is to provide
a model, a specification, that exhibits expected behavior of the system. Typically, the
specification is quite abstract, and it may exhibit more behaviors than a useful implemen-
tation of the system would. But the key to being a useful specification is that it explicitly
excludes undesired or dangerous behaviors.

Example 14.1: A simple specification for a traffic light might state: “The lights
should always be lighted in the order green, yellow, red. It should never, for ex-
ample, go directly from green to red, or from yellow to green.” This requirement
can be given as a temporal logic formula (as is done in Example 13.13) or as an
abstract model (as is done in Figure 3.12).

The topic of this chapter is on the use of abstract models as specifications, and on how
such models relate to an implementation of a system and to temporal logic formulas.

Example 14.2: We will show how to demonstrate that the traffic light model
shown in Figure 3.10 is a valid implementation of the specification in Figure
3.12. Moreover, all traces of the model in Figure 3.10 satisfy the temporal logic
formula in Example 13.13, but not all traces of the specification in Figure 3.12
do. Hence, these two specifications are not the same.

This chapter is about comparing models, and about being able to say with confidence that
one model can be used in place of another. This enables an engineering design process
where we start with abstract descriptions of desired and undesired behaviors, and suc-
cessively refine our models until we have something that is detailed enough to provide
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a complete implementation. It also tells when it is safe to change an implementation,
replacing it with another that might, for example, reduce the implementation cost.

14.2 Type Equivalence and Refinement

We begin with a simple relationship between two models that compares only the data
types of their communication with their environment. Specifically, the goal is to ensure
that a model B can be used in any environment where a model A can be used without
causing any conflicts about data types. We will require that B can accept any inputs that

Abstraction and Refinement

This chapter focuses on relationships between models known as abstraction and re-
finement. These terms are symmetric in that the statement “model A is an abstraction
of model B” means the same thing as “model B is a refinement of model A.” As a
general rule, the refinement model B has more detail than the abstraction A, and the
abstraction is simpler, smaller, or easier to understand.

An abstraction is sound (with respect to some formal system of properties) if proper-
ties that are true of the abstraction are also true of the refinement. The formal system of
properties could be, for example, a type system, linear temporal logic, or the languages
of state machines. If the formal system is LTL, then if every LTL formula that holds
for A also holds for B, then A is a sound abstraction of B. This is useful when it is
easier to prove that a formula holds for A than to prove that it holds for B, for example
because the state space of B may be much larger than the state space of A.

An abstraction is complete (with respect to some formal system of properties) if
properties that are true of the refinement are also true of the abstraction. For example,
if the formal system of properties is LTL, thenA is a complete abstraction ofB if every
LTL formula that holds for B also holds for A. Useful abstractions are usually sound
but not complete, because it is hard to make a complete abstraction that is significantly
simpler or smaller.

Consider for example a programB in an imperative language such as C that has mul-
tiple threads. We might construct an abstraction A that ignores the values of variables
and replaces all branches and control structures with nondeterministic choices. The
abstraction clearly has less information than the program, but it may be sufficient for
proving some properties about the program, for example a mutual exclusion property.
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A can accept from the environment, and that any environment that can accept any output
A can produce can also accept any output that B can produce.

To make the problem concrete, assume an actor model for A and B, as shown in Figure
14.1. In that figure, A has three ports, two of which are input ports represented by the
set PA = {x,w}, and one of which is an output port represented by the set QA = {y}.
These ports represent communication between A and its environment. The inputs have
type Vx and Vw, which means that at a reaction of the actor, the values of the inputs will
be members of the sets Vx or Vw.

If we want to replace A by B in some environment, the ports and their types impose four
constraints:

1. The first constraint is thatB does not require some input signal that the environment
does not provide. If the input ports of B are given by the set PB , then this is
guaranteed by

PB ⊆ PA. (14.1)

B

A

x: Vx

w: Vw

y: Vy

x: V'x

z: V'z

y: V'y

PA = { x, w }

PB = { x }

QA = { y }

QB = { y, z }

(1) PB ⊆ PA

(2) QA ⊆ QB

(3) ∀ p ∈ PB, Vp ⊆ V ′p

(4) ∀ q ∈ QA, V ′q ⊆ Vq

Figure 14.1: Summary of type refinement. If the four constraints on the right are
satisfied, then B is a type refinement of A.
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The ports ofB are a subset of the ports ofA. It is harmless forA to have more input
ports than B, because if B replaces A in some environment, it can simply ignore
any input signals that it does not need.

2. The second constraint is thatB produces all the output signals that the environment
may require. This is ensured by the constraint

QA ⊆ QB, (14.2)

where QA is the set of output ports of A, and QB is the set of output ports of B. It
is harmless for B to have additional output ports because an environment capable
of working with A does not expect such outputs and hence can ignore them.

The remaining two constraints deal with the types of the ports. Let the type of an input
port p ∈ PA be given by Vp. This means that an acceptable input value v on p satisfies
v ∈ Vp. Let V ′p denote the type of an input port p ∈ PB .

3. The third constraint is that if the environment provides a value v ∈ Vp on an input
port p that is acceptable to A, then if p is also an input port of B, then the value
is also acceptable to B; i.e., v ∈ V ′p . This constraint can be written compactly as
follows,

∀ p ∈ PB, Vp ⊆ V ′p . (14.3)

Let the type of an output port q ∈ QA be Vq, and the type of the corresponding output
port q ∈ QB be V ′q .

4. The fourth constraint is that ifB produces a value v ∈ V ′q on an output port q, then if
q is also an output port of A, then the value must be acceptable to any environment
in which A can operate. In other words,

∀ q ∈ QA, V ′q ⊆ Vq. (14.4)

The four constraints of equations (14.1) through (14.4) are summarized in Figure 14.1.
When these four constraints are satisfied, we say that B is a type refinement of A. If B
is a type refinement of A, then replacing A by B in any environment will not cause type
system problems. It could, of course, cause other problems, since the behavior of B may
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not be acceptable to the environment, but that problem will be dealt with in subsequent
sections.

If B is a type refinement of A, and A is a type refinement of B, then we say that A and
B are type equivalent. They have the same input and output ports, and the types of the
ports are the same.

Example 14.3: LetA represent the nondeterministic traffic light model in Figure
3.12 and B represent the more detailed deterministic model in Figure 3.10. The
ports and their types are identical for both machines, so they are type equivalent.
Hence, replacing A with B or vice versa in any environment will not cause type
system problems.

Notice that since Figure 3.12 ignores the pedestrian input, it might seem rea-
sonable to omit that port. Let A′ represent a variant of Figure 3.12 without the
pedestrian input. It is not safe to replace A′ with B in all environments, because
B requires an input pedestrian signal, but A′ can be used in an environment that
provides no such input.

14.3 Language Equivalence and Containment

To replace a machine A with a machine B, looking at the data types of the inputs and
outputs alone is usually not enough. If A is a specification and B is an implementation,
then normally A imposes more constraints than just data types. If B is an optimization of
A (e.g., a lower cost implementation or a refinement that adds functionality or leverages
new technology), then B normally needs to conform in some way with the functionality
of A.

In this section, we consider a stronger form of equivalence and refinement. Specifically,
equivalence will mean that given a particular sequence of input valuations, the two ma-
chines produce the same output valuations.
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Example 14.4: The garage counter of Figure 3.4, discussed in Example 3.4, is
type equivalent to the extended state machine version in Figure 3.8. The actor
model is shown below:

Counter 

up : pure 

down : pure 

count : {0, …, M } 

However, these two machines are equivalent in a much stronger sense than simply
type equivalence. These two machines behave in exactly the same way, as viewed
from the outside. Given the same input sequence, the two machines will produce
the same output sequence.

Consider a port p of a state machine with type Vp. This port will have a sequence of values
from the set Vp ∪ {absent}, one value at each reaction. We can represent this sequence as
a function of the form

sp : N→ Vp ∪ {absent}.
This is the signal received on that port (if it is an input) or produced on that port (if it is
an output). Recall that a behavior of a state machine is an assignment of such a signal to
each port of such a machine. Recall further that the language L(M) of a state machineM
is the set of all behaviors for that state machine. Two machines are said to be language
equivalent if they have the same language.

Example 14.5: A behavior of the garage counter is a sequence of present and
absent valuations for the two inputs, up and down, paired with the corresponding
output sequence at the output port, count. A specific example is given in Example
3.16. This is a behavior of both Figures 3.4 and 3.8. All behaviors of Figure
3.4 are also behaviors of 3.8 and vice versa. These two machines are language
equivalent.

In the case of a nondeterministic machine M , two distinct behaviors may share the same
input signals. That is, given an input signal, there is more than one possible output se-
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Figure 14.2: Three state machines where (a) and (b) have the same language,
and that language is contained by that of (c).

quence. The language L(M) includes all possible behaviors. Just like deterministic ma-
chines, two nondeterministic machines are language equivalent if they have the same
language.

Suppose that for two state machines A and B, L(A) ⊂ L(B). That is, B has behaviors
that A does not have. This is called language containment. A is said to be a language
refinement of B. Just as with type refinement, language refinement makes an assertion
about the suitability of A as a replacement for B. If every behavior of B is acceptable to
an environment, then every behavior of A will also be acceptable to that environment. A
can substitute for B.
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Finite Sequences and Accepting States

A complete execution of the FSMs considered in this text is infinite. Suppose that we
are interested in only the finite executions. To do this, we introduce the notion of an
accepting state, indicated with a double outline as in state b in the example below:

Let La(M) denote the subset of the language L(M) that results from executions that
terminate in an accepting state. Equivalently, La(M) includes only those behaviors in
L(M) with an infinite tail of stuttering reactions that remain in an accepting state. All
such executions are effectively finite, since after a finite number of reactions, the inputs
and outputs will henceforth be absent, or in LTL, FG¬p for every port p.

We call La(M) the language accepted by an FSM M . A behavior in La(M)
specifies for each port p a finite string, or a finite sequence of values from the type
Vp. For the above example, the input strings (1), (1, 0, 1), (1, 0, 1, 0, 1), etc., are all
in La(M). So are versions of these with an arbitrary finite number of absent values
between any two present values. When there is no ambiguity, we can write these
strings 1, 101, 10101, etc.

In the above example, in all behaviors inLa(M), the output is present a finite number
of times, in the same reactions when the input is present.

The state machines in this text are receptive, meaning that at each reaction, each
input port p can have any value in its type Vp or be absent. Hence, the language L(M)
of the machine above includes all possible sequences of input valuations. La(M) ex-
cludes any of these that do not leave the machine in an accepting state. For example,
any input sequence with two 1’s in a row and the infinite sequence (1, 0, 1, 0, · · · ) are
in L(M) but not in La(M).

Note that it is sometimes useful to consider language containment when referring
to the language accepted by the state machine, rather than the language that gives all
behaviors of the state machine.

Accepting states are also called final states, since for any behavior in La(M), it is
the last state of the machine. Accepting states are further explored in Exercise 2.
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Regular Languages and Regular Expressions

A language is a set of sequences of values from some set called its alphabet. A
language accepted by an FSM is called a regular language. A classic example of a
language that is not regular has sequences of the form 0n1n, a sequence of n zeros
followed by n ones. It is easy to see that no finite state machine can accept this lan-
guage because the machine would have to count the zeros to ensure that the number
of ones matches. And the number of zeros is not bounded. On the other hand, the
input sequences accepted by the FSM in the box on page 384, which have the form
10101 · · · 01, are regular.

A regular expression is a notation for describing regular languages. A central fea-
ture of regular expressions is the Kleene star (or Kleene closure), named after the
American mathematician Stephen Kleene (who pronounced his name KLAY-nee). The
notation V ∗, where V is a set, means the set of all finite sequences of elements from V .
For example, if V = {0, 1}, then V ∗ is a set that includes the empty sequence (often
written λ), and every finite sequence of zeros and ones.

The Kleene star may be applied to sets of sequences. For example, if A = {00, 11},
then A∗ is the set of all finite sequences where zeros and ones always appear in pairs.
In the notation of regular expressions, this is written (00|11)*, where the vertical
bar means “or.” What is inside the parentheses defines the set A.

Regular expressions are sequences of symbols from an alphabet and sets of se-
quences. Suppose our alphabet is A = {a,b, · · · ,z}, the set of lower-case charac-
ters. Then grey is a regular expression denoting a single sequence of four charac-
ters. The expression grey|gray denotes a set of two sequences. Parentheses can be
used to group sequences or sets of sequences. For example, (grey)|(gray) and
gr(e|a)y mean the same thing.

Regular expressions also provide convenience notations to make them more compact
and readable. For example, the + operator means “one or more,” in contrast to the
Kleene star, which means “zero or more.” For example, a+ specifies the sequences a,
aa, aaa, etc.; it is the same as a(a*). The ? operator species “zero or one.” For
example, colou?r specifies a set with two sequences, color and colour; it is the
same as colo(λ|u)r, where λ denotes the empty sequence.

Regular expressions are commonly used in software systems for pattern matching.
A typical implementation provides many more convenience notations than the ones
illustrated here.
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Example 14.6: Machines M1 and M2 in Figure 14.2 are language equiva-
lent. Both machines produce output 1, 1, 0, 1, 1, 0, · · · , possibly interspersed with
absent if the input is absent in some reactions.

Machine M3, however, has more behaviors. It can produce any output sequence
thatM1 andM2 can produce, but it can also produce other outputs given the same
inputs. Thus, M1 and M2 are both language refinements of M3.

Language containment assures that an abstraction is sound with respect to LTL formulas
about input and output sequences. That is, if A is a language refinement of B, then any
LTL formula about inputs and outputs that holds for B also holds for A.

Example 14.7: Consider again the machines in Figure 14.2. M3 might be a
specification. For example, if we require that any two output values 0 have at

Probing Further: Omega Regular Languages

The regular languages discussed in the boxes on pages 384 and 385 contain only finite
sequences. But embedded systems most commonly have infinite executions. To extend
the idea of regular languages to infinite runs, we can use a Büchi automaton, named
after Julius Richard Büchi, a Swiss logician and mathematician. A Büchi automaton is
a possibly nondeterministic FSM that has one or more accepting states. The language
accepted by the FSM is defined to be the set of behaviors that visit one or more of the
accepting states infinitely often; in other words, these behaviors satisfy the LTL formula
GF(s1 ∨ · · · ∨ sn), where s1, · · · , sn are the accepting states. Such a language is
called an omega-regular language or ω-regular language, a generalization of regular
languages. The reason for using ω in the name is because ω is used to construct infinite
sequences, as explained in the box on page 500.

As we will see in Chapter 15, many model checking questions can be expressed by
giving a Büchi automaton and then checking to see whether the ω-regular language it
defines contains any sequences.
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least one intervening 1, then M3 is a suitable specification of this requirement.
This requirement can be written as an LTL formula as follows:

G((y = 0)⇒ X((y 6= 0)U(y = 1))).

If we prove that this property holds for M3, then we have implicitly proved that
it also holds for M1 and M2.

We will see in the next section that language containment is not sound with respect to LTL
formulas that refer to states of the state machines. In fact, language containment does not
require the state machines to have the same states, so an LTL formula that refers to the
states of one machine may not even apply to the other machine. A sound abstraction that
references states will require simulation.

Language containment is sometimes called trace containment, but here the term “trace”
refers only to the observable trace, not to the execution trace. As we will see next, things
get much more subtle when considering execution traces.

14.4 Simulation

Two nondeterministic FSMs may be language equivalent but still have observable differ-
ences in behavior in some environments. Language equivalence merely states that given
the same sequences of input valuations, the two machines are capable of producing the
same sequences of output valuations. However, as they execute, they make choices al-
lowed by the nondeterminism. Without being able to see into the future, these choices
could result in one of the machines getting into a state where it can no longer match the
outputs of the other.

When faced with a nondeterministic choice, each machine is free to use any policy to
make that choice. Assume that the machine cannot see into the future; that is, it cannot
anticipate future inputs, and it cannot anticipate future choices that any other machine
will make. For two machines to be equivalent, we will require that each machine be able
to make choices that allow it to match the reaction of the other machine (producing the
same outputs), and further allow it to continue to do such matching in the future. It turns
out that language equivalence is not strong enough to ensure that this is possible.
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Example 14.8: Consider the two state machines in Figure 14.3. Suppose that
M2 is acceptable in some environment (every behavior it can exhibit in that envi-
ronment is consistent with some specification or design intent). Is it safe for M1

to replace M2? The two machines are language equivalent. In all behaviors, the
output is one of two finite strings, 01 or 00, for both machines. So it would seem
that M1 can replace M2. But this is not necessarily the case.

Suppose we compose each of the two machines with its own copy of the environ-
ment that finds M2 acceptable. In the first reaction where x is present, M1 has no
choice but to take the transition to state b and produce the output y = 0. However,
M2 must choose between f and h. Whichever choice it makes, M2 matches the
output y = 0 of M1 but enters a state where it is no longer able to always match
the outputs of M1. If M1 can observe the state of M2 when making its choice,
then in the second reaction where x is present, it can choose a transition that M2

can never match. Such a policy for M1 ensures that the behavior of M1, given
the same inputs, is never the same as the behavior of M2. Hence, it is not safe to
replace M2 with M1.

On the other hand, if M1 is acceptable in some environment, is it safe for M2

to replace M1? What it means for M1 to be acceptable in the environment is
that whatever decisions it makes are acceptable. Thus, in the second reaction
where x is present, both outputs y = 1 and y = 0 are acceptable. In this second
reaction, M2 has no choice but to produce one or the other these outputs, and it
will inevitably transition to a state where it continues to match the outputs of M1

(henceforth forever absent). Hence it is safe for M2 to replace M1.

In the above example, we can think of the machines as maliciously trying to make M1

look different from M2. Since they are free to use any policy to make choices, they are
free to use policies that are contrary to our goal to replace M2 with M1. Note that the ma-
chines do not need to know the future; it is sufficient to simply have good visibility of the
present. The question that we address in this section is: under what circumstances can we
assure that there is no policy for making nondeterministic choices that can make machine
M1 observably different from M2? The answer is a stronger form of equivalence called
bisimulation and a refinement relation called simulation. We begin with the simulation
relation.
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Figure 14.3: Two state machines that are language equivalent but where M2 does
not simulate M1 (M1 does simulate M2).

14.4.1 Simulation Relations

First, notice that the situation given in Example 14.8 is not symmetric. It is safe for M2

to replace M1, but not the other way around. Hence, M2 is a refinement of M1, in a sense
that we will now establish. M1, on the other hand, is not a refinement of M2.

The particular kind of refinement we now consider is a simulation refinement. The
following statements are all equivalent:

• M2 is a simulation refinement of M1.

• M1 simulates M2.

• M1 is a simulation abstraction of M2.

Simulation is defined by a matching game. To determine whether M1 simulates M2,
we play a game where M2 gets to move first in each round. The game starts with both
machines in their initial states. M2 moves first by reacting to an input valuation. If this
involves a nondeterministic choice, then it is allowed to make any choice. Whatever it
choses, an output valuation results and M2’s turn is over.
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It is now M1’s turn to move. It must react to the same input valuation that M2 reacted
to. If this involves a nondeterministic choice, then it must make a choice that matches
the output valuation of M2. If there are multiple such choices, it must select one without
knowledge of the future inputs or future moves of M2. Its strategy should be to choose
one that enables it to continue to match M2, regardless of what future inputs arrive or
future decisions M2 makes.

Machine M1 “wins” this matching game (M1 simulates M2) if it can always match the
output symbol of machine M2 for all possible input sequences. If in any reaction M2 can
produce an output symbol that M1 cannot match, then M1 does not simulate M2.

Example 14.9: In Figure 14.3, M1 simulates M2 but not vice versa. To see this,
first play the game with M2 moving first in each round. M1 will always be able
to match M2. Then play the game with M1 moving first in each round. M2 will
not always be able to match M1. This is true even though the two machines are
language equivalent.

Interestingly, if M1 simulates M2, it is possible to compactly record all possible games
over all possible inputs. Let S1 be the states of M1 and S2 be the states of M2. Then a
simulation relation S ⊆ S2 × S1 is a set of pairs of states occupied by the two machines
in each round of the game for all possible inputs. This set summarizes all possible plays
of the game.

Example 14.10: In Figure 14.3,

S1 = {a, b, c, d}

and
S2 = {e, f, g, h, i}.

The simulation relation showing that M1 simulates M2 is

S = {(e, a), (f, b), (h, b), (g, c), (i, d)}

390 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


14. EQUIVALENCE AND REFINEMENT

First notice that the pair (e, a) of initial states is in the relation, so the relation
includes the state of the two machines in the first round. In the second round,
M2 may be in either f or h, and M1 will be in b. These two possibilities are also
accounted for. In the third round and beyond, M2 will be in either g or i, and M1

will be in c or d.

There is no simulation relation showing that M2 simulates M1, because it does
not.

A simulation relation is complete if it includes all possible plays of the game. It must
therefore account for all reachable states of M2, the machine that moves first, because
M2’s moves are unconstrained. Since M1’s moves are constrained by the need to match
M2, it is not necessary to account for all of its reachable states.

14.4.2 Formal Model

Using the formal model of nondeterministic FSMs given in Section 3.5.1, we can formally
define a simulation relation. Let

M1 = (States1, Inputs,Outputs, possibleUpdates1, initialState1),

and
M2 = (States2, Inputs,Outputs, possibleUpdates2, initialState2).

Assume the two machines are type equivalent. If either machine is deterministic, then its
possibleUpdates function always returns a set with only one element in it. IfM1 simulates
M2, the simulation relation is given as a subset of States2 × States1. Note the ordering
here; the machine that moves first in the game, M2, the one being simulated, is first in
States2 × States1.

To consider the reverse scenario, ifM2 simulatesM1, then the relation is given as a subset
of States1 × States2. In this version of the game M1 must move first.

We can state the “winning” strategy mathematically. We say that M1 simulates M2 if
there is a subset S ⊆ States2 × States1 such that

1. (initialState2, initialState1) ∈ S, and
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2. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2, y2) ∈ possibleUpdates2(s2, x),
there is a (s′1, y1) ∈ possibleUpdates1(s1, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1.

This set S, if it exists, is called the simulation relation. It establishes a correspondence
between states in the two machines. If it does not exist, then M1 does not simulate M2.

14.4.3 Transitivity

Simulation is transitive, meaning that ifM1 simulatesM2 andM2 simulatesM3, thenM1

simulates M3. In particular, if we are given simulation relations S2,1 ⊆ States2 × States1
(M1 simulates M2) and S3,2 ⊆ States3 × States2 (M2 simulates M3), then

S3,1 = {(s3, s1) ∈ States3 × States1 | there exists s2 ∈ States2 where
(s3, s2) ∈ S3,2 and (s2, s1) ∈ S2,1}

Example 14.11: For the machines in Figure 14.2, it is easy to show that (c)
simulates (b) and that (b) simulates (a). Specifically, the simulation relations are

Sa,b = {(a, ad), (b, be), (c, cf), (d, ad), (e, be), (f, cf)}.

and
Sb,c = {(ad, ad), (be, bcef), (cf, bcef)}.

By transitivity, we can conclude that (c) simulates (a), and that the simulation
relation is

Sa,c = {(a, ad), (b, bcef), (c, bcef), (d, ad), (e, bcef), (f, bcef)},

which further supports the suggestive choices of state names.
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14.4.4 Non-Uniqueness of Simulation Relations

When a machine M1 simulates another machine M2, there may be more than one simu-
lation relation.

Example 14.12: In Figure 14.4, it is easy to check that M1 simulates M2. Note
that M1 is nondeterministic, and in two of its states it has two distinct ways of
matching the moves of M2. It can arbitrarily choose from among these possibili-
ties to match the moves. If from state b it always chooses to return to state a, then
the simulation relation is

S2,1 = {(ac, a), (bd, b)}.

Otherwise, if from state c it always chooses to return to state b, then the simulation
relation is

S2,1 = {(ac, a), (bd, b), (ac, c)}.

Otherwise, the simulation relation is

S2,1 = {(ac, a), (bd, b), (ac, c), (bd, d)}.

All three are valid simulation relations, so the simulation relation is not unique.

14.4.5 Simulation vs. Language Containment

As with all abstraction-refinement relations, simulation is typically used to relate a simpler
specificationM1 to a more complicated realizationM2. WhenM1 simulatesM2, then the
language of M1 contains the language of M2, but the guarantee is stronger than language
containment. This fact is summarized in the following theorem.

Theorem 14.1. Let M1 simulate M2. Then

L(M2) ⊆ L(M1).
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Figure 14.4: Two state machines that simulate each other, where there is more
than one simulation relation.

Proof. This theorem is easy to prove. Consider a behavior (x, y) ∈ L(M2). We need
to show that (x, y) ∈ L(M1).

Let the simulation relation be S. Find all possible execution traces for M2

((x0, s0, y0), (x1, s1, y1), (x2, s2, y2), · · · ),

that result in behavior (x, y). (If M2 is deterministic, then there will be only one
execution trace.) The simulation relation assures us that we can find an execution trace
for M1

((x0, s
′
0, y0), (x1, s

′
1, y1), (x2, s

′
2, y2), · · · ),

where (si, s
′
i) ∈ S, such that given input valuation xi, M1 produces yi. Thus,

(x, y) ∈ L(M1).

One use of this theorem is to show that M1 does not simulate M2 by showing that M2 has
behaviors that M1 does not have.
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Example 14.13: For the examples in Figure 14.2, M2 does not simulate M3. To
see this, just note that the language of M2 is a strict subset of the language of M3,

L(M2) ⊂ L(M3),

meaning that M3 has behaviors that M2 does not have.

It is important to understand what the theorem says, and what it does not say. It does not
say, for example, that if L(M2) ⊆ L(M1) thenM1 simulatesM2. In fact, this statement is
not true, as we have already shown with the examples in Figure 14.3. These two machines
have the same language. The two machines are observably different despite the fact that
their input/output behaviors are the same.

Of course, if M1 and M2 are deterministic and M1 simulates M2, then their languages
are identical and M2 simulates M1. Thus, the simulation relation differs from language
containment only for nondeterministic FSMs.

14.5 Bisimulation

It is possible to have two machines M1 and M2 where M1 simulates M2 and M2 simu-
lates M1, and yet the machines are observably different. Note that by the theorem in the
previous section, the languages of these two machines must be identical.

Example 14.14: Consider the two machines in Figure 14.5. These two machines
simulate each other, with simulation relations as follows:

S2,1 = {(e, a), (f, b), (h, b), (j, b), (g, c), (i, d), (k, c), (m, d)}

(M1 simulates M2), and

S1,2 = {(a, e), (b, j), (c, k), (d,m)}

(M2 simulates M1). However, there is a situation in which the two machines will
be observably different. In particular, suppose that the policies for making the
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Figure 14.5: An example of two machines where M1 simulates M2, and M2 sim-
ulates M1, but they are not bisimilar.

nondeterministic choices for the two machines work as follows. In each reaction,
they flip a coin to see which machine gets to move first. Given an input valuation,
that machine makes a choice of move. The machine that moves second must be
able to match all of its possible choices. In this case, the machines can end up in a
state where one machine can no longer match all the possible moves of the other.

Specifically, suppose that in the first move M2 gets to move first. It has three
possible moves, and M1 will have to match all three. Suppose it chooses to move
to f or h. In the next round, if M1 gets to move first, then M2 can no longer match
all of its possible moves.

Notice that this argument does not undermine the observation that these machines
simulate each other. If in each round,M2 always moves first, thenM1 will always
be able to match its every move. Similarly, if in each round M1 moves first, then
M2 can always match its every move (by always choosing to move to j in the
first round). The observable difference arises from the ability to alternate which
machines moves first.
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To ensure that two machines are observably identical in all environments, we need a
stronger equivalence relation called bisimulation. We say that M1 is bisimilar to M2 (or
M1 bisimulates M2) if we can play the matching game modified so that in each round
either machine can move first.

As in Section 14.4.2, we can use the formal model of nondeterministic FSMs to define a
bisimulation relation. Let

M1 = (States1, Inputs,Outputs, possibleUpdates1, initialState1), and

M2 = (States2, Inputs,Outputs, possibleUpdates2, initialState2).

Assume the two machines are type equivalent. If either machine is deterministic, then
its possibleUpdates function always returns a set with only one element in it. If M1

bisimulates M2, the simulation relation is given as a subset of States2 × States1. The
ordering here is not important because if M1 bisimulates M2, then M2 bisimulates M1.

We say that M1 bisimulates M2 if there is a subset S ⊆ States2 × States1 such that

1. (initialState2, initialState1) ∈ S, and

2. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2, y2) ∈ possibleUpdates2(s2, x),
there is a (s′1, y1) ∈ possibleUpdates1(s1, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1, and

3. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′1, y1) ∈ possibleUpdates1(s1, x),
there is a (s′2, y2) ∈ possibleUpdates2(s2, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1.

This set S, if it exists, is called the bisimulation relation. It establishes a correspondence
between states in the two machines. If it does not exist, then M1 does not bisimulate M2.
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14.6 Summary

In this chapter, we have considered three increasingly strong abstraction-refinement re-
lations for FSMs. These relations enable designers to determine when one design can
safely replace another, or when one design correctly implements a specification. The first
relation is type refinement, which considers only the existence of input and output ports
and their data types. The second relation is language refinement, which considers the
sequences of valuations of inputs and outputs. The third relation is simulation, which
considers the state trajectories of the machines. In all three cases, we have provided both
a refinement relation and an equivalence relation. The strongest equivalence relation is
bisimulation, which ensures that two nondeterministic FSMs are indistinguishable from
each other.
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Exercises

1. In Figure 14.6 are four pairs of actors. For each pair, determine whether

• A and B are type equivalent,
• A is a type refinement of B,
• B is a type refinement of A, or
• none of the above.

x:{0,1}

A Bw:{0,1}
y: pure y: pure

(a)

x:{0,1}

A Bw:{0,1}
y: pure

(b)

x:{0,1}

A Bw:{0,1}
y: pure

(c)

x:{0,1}

A Bw:{0,1}
y: {0, 1}

(d)

Figure 14.6: Four pairs of actors whose type refinement relationships are ex-
plored in Exercise 1.
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2. In the box on page 384, a state machine M is given that accepts finite inputs x of
the form (1), (1, 0, 1), (1, 0, 1, 0, 1), etc.

(a) Write a regular expression that describes these inputs. You may ignore stut-
tering reactions.

(b) Describe the output sequences in La(M) in words, and give a regular expres-
sion for those output sequences. You may again ignore stuttering reactions.

(c) Create a state machine that accepts output sequences of the form (1), (1, 0, 1),
(1, 0, 1, 0, 1), etc. (see box on page 384). Assume the input x is pure and that
whenever the input is present, a present output is produced. Give a determin-
istic solution if there is one, or explain why there is no deterministic solution.
What input sequences does your machine accept?

3. The state machine in Figure 14.7 has the property that it outputs at least one 1
between any two 0’s. Construct a two-state nondeterministic state machine that
simulates this one and preserves that property. Give the simulation relation. Are
the machines bisimilar?

4. Consider the FSM in Figure 14.8, which recognizes an input code. The state ma-
chine in Figure 14.9 also recognizes the same code, but has more states than the
one in Figure 14.8. Show that it is equivalent by giving a bisimulation relation with
the machine in Figure 14.8.

5. Consider the state machine in Figure 14.10. Find a bisimilar state machine with
only two states, and give the bisimulation relation.

Figure 14.7: Machine that outputs at least one 1 between any two 0’s.
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Figure 14.8: A machine that implements a code recognizer. It outputs recognize
at the end of every input subsequence 1100; otherwise it outputs absent .

Figure 14.9: A machine that implements a recognizer for the same code as in
Figure 14.8, but has more states.
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6. You are told that state machine A has one input x, and one output y, both with type
{1, 2}, and that it has states {a, b, c, d}. You are told nothing further. Do you have
enough information to construct a state machine B that simulates A? If so, give
such a state machine, and the simulation relation.

7. Consider a state machine with a pure input x, and output y of type {0, 1}. Assume
the states are

States = {a, b, c, d, e, f},

and the initial state is a. The update function is given by the following table (ignor-
ing stuttering):

(currentState, input) (nextState, output)
(a, x) (b, 1)

(b, x) (c, 0)

(c, x) (d, 0)

(d, x) (e, 1)

(e, x) (f, 0)

(f, x) (a, 0)

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give all possible behaviors for this machine.

(c) Find a state machine with three states that is bisimilar to this one. Draw that
state machine, and give the bisimulation relation.

8. For each of the following questions, give a short answer and justification.

Figure 14.10: A machine that has more states than it needs.
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(a) TRUE or FALSE: Consider a state machine A that has one input x, and one
output y, both with type {1, 2} and a single state s, with two self loops labeled
true/1 and true/2. Then for any state machine B which has exactly the
same inputs and outputs (along with types), A simulates B.

(b) TRUE or FALSE: Suppose that f is an arbitrary LTL formula that holds for
state machine A, and that A simulates another state machine B. Then we can
safely assert that f holds for B.

(c) TRUE or FALSE: Suppose that A are B are two type-equivalent state ma-
chines, and that f is an LTL formula where the atomic propositions refer only
to the inputs and outputs of A and B, not to their states. If the LTL formula f
holds for state machine A, and A simulates state machine B, then f holds for
B.
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Chapters 13 and 14 have introduced techniques for formally specifying properties and
models of systems, and for comparing such models. In this chapter, we will study algo-
rithmic techniques for formal verification — the problem of checking whether a system
satisfies its formal specification in its specified operating environment. In particular, we
study a technique called model checking. Model checking is an algorithmic method for
determining whether a system satisfies a formal specification expressed as a temporal
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logic formula. It was introduced by Clarke and Emerson (1981) and Queille and Sifakis
(1981), which earned the creators the 2007 ACM Turing Award, the highest honor in
Computer Science.

Central to model checking is the notion of the set of reachable states of a system. Reach-
ability analysis is the process of computing the set of reachable states of a system. This
chapter presents basic algorithms and ideas in reachability analysis and model checking.
These algorithms are illustrated using examples drawn from embedded systems design,
including verification of high-level models, sequential and concurrent software, as well
as control and robot path planning. Model checking is a large and active area of research,
and a detailed treatment of the subject is out of the scope of this chapter; we refer the in-
terested reader to Clarke et al. (1999) and Holzmann (2004) for an in-depth introduction
to this field.

15.1 Open and Closed Systems

A closed system is one with no inputs. An open system, in contrast, is one that maintains
an ongoing interaction with its environment by receiving inputs and (possibly) generating
output to the environment. Figure 15.1 illustrates these concepts.

Techniques for formal verification are typically applied to a model of the closed system
M obtained by composing the model of the system S that is to be verified with a model
of its environment E. S and E are typically open systems, where all inputs to S are
generated by E and vice-versa. Thus, as shown in Figure 15.2, there are three inputs to
the verification process:

• A model of the system to be verified, S;
• A model of the environment, E, and

outin

(a) Open system

SO

out

(b) Closed system

SC

Figure 15.1: Open and closed systems.
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S

E

Φ

Compose Verify

Property

System

Environment

YES
[proof]

NO
counterexample

M

Figure 15.2: Formal verification procedure.

• The property to be verified Φ.

The verifier generates as output a YES/NO answer, indicating whether or not S satisfies
the property Φ in environment E. Typically, a NO output is accompanied by a counterex-
ample, also called an error trace, which is a trace of the system that indicates how Φ is
violated. Counterexamples are very useful aids in the debugging process. Some formal
verification tools also include a proof or certificate of correctness with a YES answer;
such an output can be useful for certification of system correctness.

The form of composition used to combine system model S with environment model E
depends on the form of the interaction between system and environment. Chapters 5
and 6 describe several ways to compose state machine models. All of these forms of
composition can be used in generating a verification model M from S and E. Note that
M can be nondeterministic.

For simplicity, in this chapter we will assume that system composition has already been
performed using one of the techniques presented in Chapters 5 and 6. All algorithms
discussed in the following sections will operate on the combined verification model M ,
and will be concerned with answering the question of whether M satisfies property Φ.
Additionally, we will assume that Φ is specified as a property in linear temporal logic.

15.2 Reachability Analysis

We consider first a special case of the model checking problem which is useful in practice.
Specifically, we assume that M is a finite-state machine and Φ is an LTL formula of the
form Gp, where p is a proposition. Recall from Chapter 13 that Gp is the temporal logic
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formula that holds in a trace when the proposition p holds in every state of that trace. As
we have seen in Chapter 13, several system properties are expressible as Gp properties.

We will begin in Section 15.2.1 by illustrating how computing the reachable states of a
system enables one to verify a Gp property. In Section 15.2.2 we will describe a technique
for reachability analysis of finite-state machines based on explicit enumeration of states.
Finally, in Section 15.2.3, we will describe an alternative approach to analyze systems
with very large state spaces.

15.2.1 Verifying Gp

In order for a system M to satisfy Gp, where p is a proposition, every trace exhibitable
by M must satisfy Gp. This property can be verified by enumerating all states of M and
checking that every state satisfies p.

When M is finite-state, in theory, such enumeration is always possible. As shown in
Chapter 3, the state space of M can be viewed as a directed graph where the nodes of
the graph correspond to states of M and the edges correspond to transitions of M . This
graph is called the state graph ofM , and the set of all states is called its state space. With
this graph-theoretic viewpoint, one can see that checking Gp for a finite-state system M
corresponds to traversing the state graph forM , starting from the initial state and checking
that every state reached in this traversal satisfies p. Since M has a finite number of states,
this traversal must terminate.

Example 15.1: Let the system S be the traffic light controller of Figure 3.10 and
its environment E be the pedestrian model shown in Figure 3.11. Let M be the
synchronous composition of S and E as shown in Figure 15.3. Observe that M
is a closed system. Suppose that we wish to verify that M satisfies the property

G ¬(green ∧ crossing)

In other words, we want to verify that it is never the case that the traffic light is
green while pedestrians are crossing.

The composed system M is shown in Figure 15.4 as an extended FSM. Note that
M has no inputs or outputs. M is finite-state, with a total of 188 states (using
a similar calculation to that in Example 3.12). The graph in Figure 15.4 is not
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Figure 15.3: Composition of traffic light controller (Figure 3.10) and pedestrian
model (Figure 3.11).

the full state graph of M , because each node represents a set of states, one for
each different value of count in that node. However, through visual inspection
of this graph we can check for ourselves that no state satisfies the proposition
(green∧crossing), and hence every trace satisfies the LTL property G¬(green∧
crossing).

In practice, the seemingly simple task of verifying whether a finite-state system M satis-
fies a Gp property is not as straightforward as in the previous example for the following
reasons:

• Typically, one starts only with the initial state and transition function, and the state
graph must be constructed on the fly.
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Figure 15.4: Extended state machine obtained from synchronous-reactive com-
position of traffic light controller and pedestrian models. Note that this is nonde-
terministic.

• The system might have a huge number of states, possibly exponential in the size of
the syntactic description of M . As a consequence, the state graph cannot be repre-
sented using traditional data structures such as an adjacency or incidence matrix.

The next two sections describe how these challenges can be handled.

15.2.2 Explicit-State Model Checking

In this section, we discuss how to compute the reachable state set by generating and
traversing the state graph on the fly.

First, recall that the system of interest M is closed, finite-state, and can be nondetermin-
istic. Since M has no inputs, its set of possible next states is a function of its current state
alone. We denote this transition relation ofM by δ, which is only a function of the current
state of M , in contrast to the possibleUpdates function introduced in Chapter 3 which is
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also a function of the current input. Thus, δ(s) is the set of possible next states from state
s of M .

Algorithm 15.1 computes the set of reachable states of M , given its initial state s0 and
transition relation δ. Procedure DFS Search performs a depth-first traversal of the state
graph of M , starting with state s0. The graph is generated on-the-fly by repeatedly apply-
ing δ to states visited during the traversal.

Input : Initial state s0 and transition relation δ for closed finite-state
system M

Output: Set R of reachable states of M

1 Initialize: Stack Σ to contain a single state s0; Current set of reached
states R := {s0}.

2 DFS Search() {
3 while Stack Σ is not empty do
4 Pop the state s at the top of Σ
5 Compute δ(s), the set of all states reachable from s in one

transition
6 for each s′ ∈ δ(s) do
7 if s′ 6∈ R then
8 R := R ∪ {s′}
9 Push s′ onto Σ

10 end
11 end
12 end
13 }

Algorithm 15.1: Computing the reachable state set by depth-first explicit-state
search.

The main data structures required by the algorithm are Σ, the stack storing the current
path in the state graph being explored from s0, and R, the current set of states reached
during traversal. Since M is finite-state, at some point all states reachable from s0 will
be in R, which implies that no new states will be pushed onto Σ and thus Σ will become
empty. Hence, procedure DFS Search terminates and the value of R at the end of the
procedure is the set of all reachable states of M .

The space and time requirements for this algorithm are linear in the size of the state graph
(see Appendix B for an introduction to such complexity notions). However, the number of
nodes and edges in the state graph of M can be exponential in the size of the descriptions
of S and E. For example, if S and E together have 100 Boolean state variables (a small
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number in practice!), the state graph of M can have a total of 2100 states, far more than
what contemporary computers can store in main memory. Therefore, explicit-state search
algorithms such as DFS Search must be augmented with state compression techniques.
Some of these techniques are reviewed in the sidebar on page 424.

A challenge for model checking concurrent systems is the state-explosion problem.
Recall that the state space of a composition of k finite-state systems M1,M2, . . . ,Mk

(say, using synchronous composition), is the cartesian product of the state spaces of
M1,M2, . . . ,Mk. In other words, if M1,M2, . . . ,Mk have n1, n2, . . . , nk states respec-
tively, their composition can have Πk

i=1ni states. It is easy to see that the number of states
of a concurrent composition of k components grows exponentially with k. Explicitly rep-
resenting the state space of the composite system does not scale. In the next section, we
will introduce techniques that can mitigate this problem in some cases.

15.2.3 Symbolic Model Checking

The key idea in symbolic model checking is to represent a set of states symbolically as
a propositional logic formula, rather than explicitly as a collection of individual states.
Specialized data structures are often used to efficiently represent and manipulate such
formulas. Thus, in contrast to explicit-state model checking, in which individual states
are manipulated, symbolic model checking operates on sets of states.

Algorithm 15.2 (Symbolic Search) is a symbolic algorithm for computing the set of
reachable states of a closed, finite-state system M . This algorithm has the same input-
output specification as the previous explicit-state algorithm DFS Search; however, all
operations in Symbolic Search are set operations.

In algorithm Symbolic Search, R represents the entire set of states reached at any point
in the search, and Rnew represents the new states generated at that point. When no more
new states are generated, the algorithm terminates, with R storing all states reachable
from s0. The key step of the algorithm is line 5, in which Rnew is computed as the set
of all states s′ reachable from any state s in R in one step of the transition relation δ.
This operation is called image computation, since it involves computing the image of
the function δ. Efficient implementations of image computation that directly operate on
propositional logic formulas are central to symbolic reachability algorithms. Apart from
image computation, the key set operations in Symbolic Search include set union and
emptiness checking.
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Input : Initial state s0 and transition relation δ for closed finite-state
system M , represented symbolically

Output: Set R of reachable states of M , represented symbolically

1 Initialize: Current set of reached states R = {s0}
2 Symbolic Search() {
3 Rnew = R
4 while Rnew 6= ∅ do
5 Rnew := {s′ | ∃s ∈ R s.t. s′ ∈ δ(s) ∧ s′ 6∈ R}
6 R := R ∪Rnew

7 end
8 }

Algorithm 15.2: Computing the reachable state set by symbolic search.

Example 15.2: We illustrate symbolic reachability analysis using the finite-state
system in Figure 15.4.

To begin with, we need to introduce some notation. Let vl be a variable denoting
the state of the traffic light controller FSM S at the start of each reaction; i.e., vl ∈
{green, yellow, red, pending}. Similarly, let vp denote the state of the pedestrian
FSM E, where vp ∈ {crossing, none,waiting}.
Given this notation, the initial state set {s0} of the composite system M is repre-
sented as the following propositional logical formula:

vl = red ∧ vp = crossing ∧ count = 0

From s0, the only enabled outgoing transition is the self-loop on the initial state
of the extended FSM in Figure 15.4. Thus, after one step of reachability compu-
tation, the set of reached states R is represented by the following formula:

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 1

After two steps, R is given by

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 2

and after k steps, k ≤ 60, R is represented by the formula

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ k

412 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


15. REACHABILITY ANALYSIS AND MODEL CHECKING

On the 61st step, we exit the state (red, crossing), and compute R as

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 60

∨ vl = green ∧ vp = none ∧ count = 0

Proceeding similarly, the set of reachable states R is grown until there is no fur-
ther change. The final reachable set is represented as:

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 60

∨ vl = green ∧ vp = none ∧ 0 ≤ count ≤ 60

∨ vl = pending ∧ vp = waiting ∧ 0 < count ≤ 60

∨ vl = yellow ∧ vp = waiting ∧ 0 ≤ count ≤ 5

In practice, the symbolic representation is much more compact than the explicit one. The
previous example illustrates this nicely because a large number of states are compactly
represented by inequalities like 0 < count ≤ 60. Computer programs can be designed
to operate directly on the symbolic representation. Some examples of such programs are
given in the box on page 424.

Symbolic model checking has been used successfully to address the state-explosion prob-
lem for many classes of systems, most notably for hardware models. However, in the
worst case, even symbolic set representations can be exponential in the number of system
variables.

15.3 Abstraction in Model Checking

A challenge in model checking is to work with the simplest abstraction of a system that
will provide the required proofs of safety. Simpler abstractions have smaller state spaces
and can be checked more efficiently. The challenge, of course, is to know what details to
omit from the abstraction.

The part of the system to be abstracted away depends on the property to be verified. The
following example illustrates this point.
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Example 15.3: Consider the traffic light systemM in Figure 15.4. Suppose that,
as in Example 15.1 we wish to verify that M satisfies the property

G ¬(green ∧ crossing)

Suppose we abstract the variable count away from M by hiding all references to
count from the model, including all guards mentioning it and all updates to it.
This generates the abstract model Mabs shown in Figure 15.5.

We observe that this abstract Mabs exhibits more behaviors than M . For instance,
from the state (yellow,waiting) we can take the self-loop transition forever, stay-
ing in that state perennially, even though in the actual system M this state must
be exited within five clock ticks. Moreover, every behavior ofM can be exhibited
by Mabs.

The interesting point is that, even with this approximation, we can prove thatMabs
satisfies G ¬(green∧crossing). The value of count is irrelevant for this property.

Notice that while M has 188 states, Mabs has only 4 states. Reachability analysis
on Mabs is far easier than for M as we have far fewer states to explore.

There are several ways to compute an abstraction. One of the simple and extremely
useful approaches is called localization reduction or localization abstraction (Kurshan
(1994)). In localization reduction, parts of the design model that are irrelevant to the
property being checked are abstracted away by hiding a subset of state variables. Hiding
a variable corresponds to freeing that variable to evolve arbitrarily. It is the form of
abstraction used in Example 15.3 above, where count is allowed to change arbitrarily, and
all transitions are made independent of the value of count.

Example 15.4: Consider the multithreaded program given below (adapted
from Ball et al. (2001)). The procedure lock unlock executes a loop within
which it acquires a lock, then calls the function randomCall, based on whose
result it either releases the lock and executes another loop iteration, or it quits
the loop (and then releases the lock). The execution of another loop iteration is
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Figure 15.5: Abstraction of the traffic light system in Figure 15.4.

ensured by incrementing new, so that the condition old != new evaluates to
true.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2 unsigned int old, new;
3

4 void lock_unlock() {
5 do {
6 pthread_mutex_lock(&lock);
7 old = new;
8 if (randomCall()) {
9 pthread_mutex_unlock(&lock);

10 new++;
11 }
12 } while (old != new)
13 pthread_mutex_unlock(&lock);
14 }

Suppose the property we want to verify is that the code does not attempt to call
pthread mutex lock twice in a row. Recall from Section 11.2.4 how the
system can deadlock if a thread becomes permanently blocked trying to acquire a
lock. This could happen in the above example if the thread, already holding lock
lock, attempts to acquire it again.
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If we model this program exactly, without any abstraction, then we need to reason
about all possible values of old and new, in addition to the remaining state of the
program. Assuming a word size of 32 in this system, the size of the state space is
roughly 232 × 232 × n, where 232 is the number of values of old and new, and
n denotes the size of the remainder of the state space.

However, it is not necessary to reason about the precise values of old and new
to prove that this program is correct. Assume, for this example, that our pro-
gramming language is equipped with a boolean type. Assume further that the
program can perform nondeterministic assignments. Then, we can generate the
following abstraction of the original program, written in C-like syntax, where the
Boolean variable b represents the predicate old == new.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2 boolean b; // b represents the predicate (old == new)
3 void lock_unlock() {
4 do {
5 pthread_mutex_lock(&lock);
6 b = true;
7 if (randomCall()) {
8 pthread_mutex_unlock(&lock);
9 b = false;

10 }
11 } while (!b)
12 pthread_mutex_unlock(&lock);
13 }

It is easy to see that this abstraction retains just enough information to show that
the program satisfies the desired property. Specifically, the lock will not be ac-
quired twice because the loop is only iterated if b is set to false, which implies
that the lock was released before the next attempt to acquire.

Moreover, observe that size of the state space to be explored has reduced to simply
2n. This is the power of using the “right” abstraction.

A major challenge for formal verification is to automatically compute simple abstrac-
tions. An effective and widely-used technique is counterexample-guided abstraction
refinement (CEGAR), first introduced by Clarke et al. (2000). The basic idea (when
using localization reduction) is to start by hiding almost all state variables except those
referenced by the temporal logic property. The resulting abstract system will have more
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behaviors than the original system. Therefore, if this abstract system satisfies an LTL
formula Φ (i.e., each of its behaviors satisfies Φ), then so does the original. However, if
the abstract system does not satisfy Φ, the model checker generates a counterexample. If
this counterexample is a counterexample for the original system, the process terminates,
having found a genuine counterexample. Otherwise, the CEGAR approach analyzes this
counterexample to infer which hidden variables must be made visible, and with these ad-
ditional variables, recomputes an abstraction. The process continues, terminating either
with some abstract system being proven correct, or generating a valid counterexample for
the original system.

The CEGAR approach and several follow-up ideas have been instrumental in driving
progress in the area of software model checking. We review some of the key ideas in the
sidebar on page 424.

15.4 Model Checking Liveness Properties

So far, we have restricted ourselves to verifying properties of the form Gp, where p is an
atomic proposition. An assertion that Gp holds for all traces is a very restricted kind of
safety property. However, as we have seen in Chapter 13, several useful system properties
are not safety properties. For instance, the property stating that “the robot must visit
location A” is a liveness property: if visiting location A is represented by proposition q,
then this property is an assertion that Fq must hold for all traces. In fact, several problems,
including path planning problems for robotics and progress properties of distributed and
concurrent systems can be stated as liveness properties. It is therefore useful to extend
model checking to handle this class of properties.

Properties of the form Fp, though liveness properties, can be partially checked using the
techniques introduced earlier in this chapter. Recall from Chapter 13 that Fp holds for
a trace if and only if ¬G¬p holds for the same trace. In words, “p is true some time in
the future” iff “¬p is always false.” Therefore, we can attempt to verify that the system
satisfies G¬p. If the verifier asserts that G¬p holds for all traces, then we know that
Fp does not hold for any trace. On the other hand, if the verifier outputs “NO”, then
the accompanying counterexample provides a witness exhibiting how p may become true
eventually. This witness provides one trace for which Fp holds, but it does not prove that
Fp holds for all traces (unless the machine is deterministic).
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More complete checks and more complicated liveness properties require a more sophis-
ticated approach. Briefly, one approach used in explicit-state model checking of LTL
properties is as follows:

1. Represent the negation of the property Φ as an automaton B, where certain states
are labeled as accepting states.

2. Construct the synchronous composition of the property automaton B and the sys-
tem automatonM . The accepting states of the property automaton induce accepting
states of the product automaton MB .

3. If the product automaton MB can visit an accepting state infinitely often, then it
indicates that M does not satisfy Φ; otherwise, M satisfies Φ.

The above approach is known as the automata-theoretic approach to verification. We
give a brief introduction to this subject in the rest of this section. Further details may be
found in the seminal papers on this topic (Wolper et al. (1983); Vardi and Wolper (1986))
and the book on the SPIN model checker (Holzmann (2004)).

15.4.1 Properties as Automata

Consider the first step of viewing properties as automata. Recall the material on omega-
regular languages introduced in the box on page 386. The theory of Büchi automata and
omega-regular languages, briefly introduced there, is relevant for model checking liveness
properties. Roughly speaking, an LTL property Φ has a one-to-one correspondence with a
set of behaviors that satisfy Φ. This set of behaviors constitutes the language of the Büchi
automaton corresponding to Φ.

For the LTL model checking approach we describe here, if Φ is the property that the
system must satisfy, then we represent its negation ¬Φ as a Büchi automaton. We present
some illustrative examples below.

Example 15.5: Suppose that an FSM M1 models a system that executes forever
and produces a pure output h (for heartbeat), and that it is required to produce this
output at least once every three reactions. That is, if in two successive reactions
it fails to produce the output h, then in the third it must.
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We can formulate this property in LTL as the property Φ1 below:

G(h ∨Xh ∨X2h)

and the negation of this property is

F(¬h ∧X¬h ∧X2¬h)

The Büchi automaton B1 corresponding to the negation of the desired property is
given below:

Let us examine this automaton. The language accepted by this automaton in-
cludes all behaviors that enter and stay in state d. Equivalently, the language
includes all behaviors that produce a present output on f in some reaction. When
we compose the above machine with M1, if the resulting composite machine can
never produce f = present, then the language accepted by the composite machine
is empty. If we can prove that the language is empty, then we have proved that M
produces the heartbeat h at least once every three reactions.

Observe that the property Φ1 in the above example is in fact a safety property. We give
an example of a liveness property below.

Example 15.6: Suppose that the FSM M2 models a controller for a robot that
must locate a room and stay there forever. Let p be the proposition that becomes
true when the robot is in the target room. Then, the desired property Φ2 can be
expressed in LTL as FGp.

The negation of this property is GF¬p. The Büchi automaton B2 corresponding
to this negated property is given below:
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Notice that all accepting behaviors of B2 correspond to those where ¬p holds
infinitely often. These behaviors correspond to a cycle in the state graph for the
product automaton where state b of B2 is visited repeatedly. This cycle is known
as an acceptance cycle.

Liveness properties of the form GFp also occur naturally as specifications. This form of
property is useful in stating fairness properties which assert that certain desirable proper-
ties hold infinitely many times, as illustrated in the following example.

Example 15.7: Consider a traffic light system such as that in Example 3.10. We
may wish to assert that the traffic light becomes green infinitely many times in
any execution. In other words, the state green is visited infinitely often, which
can be expressed as Φ3 = GF green.

The automaton corresponding to Φ3 is identical to that for the negation of Φ2

in Example 15.6 above with ¬p replaced by green. However, in this case the
accepting behaviors of this automaton are the desired behaviors.

Thus, from these examples we see that the problem of detecting whether a certain ac-
cepting state s in an FSM can be visited infinitely often is the workhorse of explicit-state
model checking of LTL properties. We next present an algorithm for this problem.

15.4.2 Finding Acceptance Cycles

We consider the following problem:
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Given a finite-state system M , can an accepting state sa of M be visited
infinitely often?

Put another way, we seek an algorithm to check whether (i) state sa is reachable from
the initial state s0 of M , and (ii) sa is reachable from itself. Note that asking whether a
state can be visited infinitely often is not the same as asking whether it must be visited
infinitely often.

The graph-theoretic viewpoint is useful for this problem, as it was in the case of Gp
discussed in Section 15.2.1. Assume for the sake of argument that we have the entire state
graph constructed a priori. Then, the problem of checking whether state sa is reachable
from s0 is simply a graph traversal problem, solvable for example by depth-first search
(DFS). Further, the problem of detecting whether sa is reachable from itself amounts to
checking whether there is a cycle in the state graph containing that state.

The main challenges for solving this problem are similar to those discussed in Sec-
tion 15.2.1: we must perform this search on-the-fly, and we must deal with large state
spaces.

The nested depth-first search (nested DFS) algorithm, which is implemented in the SPIN
model checker (Holzmann (2004)), solves this problem and is shown as Algorithm 15.3.
The algorithm begins by calling the procedure called Nested DFS Search with argument
1, as shown in the Main function at the bottom. MB is obtained by composing the original
closed system M with the automaton B representing the negation of LTL formula Φ.

As the name suggests, the idea is to perform two depth-first searches, one nested inside the
other. The first DFS identifies a path from initial state s0 to the target accepting state sa.
Then, from sa we start another DFS to see if we can reach sa again. The variable mode
is either 1 or 2 depending on whether we are performing the first DFS or the second.
Stacks Σ1 and Σ2 are used in the searches performed in modes 1 and 2 respectively. If
sa is encountered in the second DFS, the algorithm generates as output the path leading
from s0 to sa with a loop on sa. The path from s0 to sa is obtained simply by reading off
the contents of stack Σ1. Likewise, the cycle from sa to itself is obtained from stack Σ2.
Otherwise, the algorithm reports failure.

Search optimization and state compression techniques that are used in explicit-state reach-
ability analysis can be used with nested DFS also. Further details are available in Holz-
mann (2004).
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Input : Initial state s0 and transition relation δ for automaton MB ; Target
accepting state sa of MB

Output: Acceptance cycle containing sa, if one exists

1 Initialize: (i) Stack Σ1 to contain a single state s0, and stack Σ2 to be empty;
(ii) Two sets of reached states R1 := R2 := {s0}; (iii) Flag found := false.

2 Nested DFS Search(Mode mode) {
3 while Stack Σmode is not empty do
4 Pop the state s at the top of Σmode

5 if (s = sa and mode = 1) then
6 Push s onto Σ2

7 Nested DFS Search(2)
8 return
9 end

10 Compute δ(s), the set of all states reachable from s in one transition
11 for each s′ ∈ δ(s) do
12 if (s′ = sa and mode = 2) then
13 Output path to sa with acceptance cycle using contents of

stacks Σ1 and Σ2

14 found := true
15 return
16 end
17 if s′ 6∈ Rmode then
18 Rmode := Rmode ∪ {s′}
19 Push s′ onto Σmode

20 Nested DFS Search(mode)
21 end
22 end
23 end
24 }
25 Main() {
26 Nested DFS Search(1)
27 if (found = false) then Output “no acceptance cycle with sa” end }
28

Algorithm 15.3: Nested depth-first search algorithm.
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15.5 Summary

This chapter gives some basic algorithms for formal verification, including model check-
ing, a technique for verifying if a finite-state system satisfies a property specified in tem-
poral logic. Verification operates on closed systems, which are obtained by composing a
system with its operating environment. The first key concept is that of reachability anal-
ysis, which verifies properties of the form Gp. The concept of abstraction, central to the
scalability of model checking, is also discussed in this chapter. This chapter also shows
how explicit-state model checking algorithms can handle liveness properties, where a cru-
cial concept is the correspondence between properties and automata.
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Probing Further: Model Checking in Practice

Several tools are available for computing the set of reachable states of a finite-state
system and checking that they satisfy specifications in temporal logic. One such tool
is SMV (symbolic model verifier), which was first developed at Carnegie Mellon Uni-
versity by Kenneth McMillan. SMV was the first model checking tool to use binary
decision diagrams (BDDs), a compact data structure introduced by Bryant (1986) for
representing a Boolean function. The use of BDDs has proved instrumental in enabling
analysis of more complex systems. Current symbolic model checkers also rely heav-
ily on Boolean satisfiability (SAT) solvers (see Malik and Zhang (2009)), which are
programs for deciding whether a propositional logic formula can evaluate to true. One
of the first uses of SAT solvers in model checking was for bounded model checking
(see Biere et al. (1999)), where the transition relation of the system is unrolled only a
bounded number of times. A few different versions of SMV are available online (see
for example http://nusmv.fbk.eu/).

The SPIN model checker (Holzmann, 2004) developed in the 1980’s and 1990’s at
Bell Labs by Gerard Holzmann and others, is another leading tool for model checking
(see http://www.spinroot.com/). Rather than directly representing models as
communicating FSMs, it uses a specification language (called Promela, for process
meta language) that enables specifications that closely resemble multithreaded pro-
grams. SPIN incorporates state-compression techniques such as hash compaction (the
use of hashing to reduce the size of the stored state set) and partial-order reduction (a
technique to reduce the number of reachable states to be explored by considering only
a subset of the possible process interleavings).

Automatic abstraction has played a big role in applying model checking directly to
software. An example of abstraction-based software model checking is the SLAM
system developed at Microsoft Research (Ball and Rajamani, 2001; Ball et al., 2011).
SLAM combines CEGAR with a particular form of abstraction called predicate ab-
straction, in which predicates in a program are abstracted to Boolean variables. A
key step in these techniques is checking whether a counterexample generated on the
abstract model is in fact a true counterexample. This check is performed using sat-
isfiability solvers for logics richer than propositional logic. These solvers are called
SAT-based decision procedures or satisfiability modulo theories (SMT) solvers (for
more details, see Barrett et al. (2009)).

More recently, techniques based on inductive learning, that is, generalization from
sample data, have started playing an important role in formal verification (see Seshia
(2015) for an exposition of this topic).
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Exercises

1. Consider the system M modeled by the hierarchical state machine of Figure 13.2,
which models an interrupt-driven program.

Model M in the modeling language of a verification tool (such as SPIN). You will
have to construct an environment model that asserts the interrupt. Use the verifica-
tion tool to check whether M satisfies φ, the property stated in Exercise 5:

φ: The main program eventually reaches program location C.

Explain the output you obtain from the verification tool.

2. Figure 15.3 shows the synchronous-reactive composition of the traffic light con-
troller of Figure 3.10 and the pedestrian model of Figure 3.11.

Consider replacing the pedestrian model in Figure 15.3 with the alternative model
given below where the initial state is nondeterministically chosen to be one of none
or crossing:

(a) Model the composite system in the modeling language of a verification tool
(such as SPIN). How many reachable states does the combined system have?
How many of these are initial states?

(b) Formulate an LTL property stating that every time a pedestrian arrives, even-
tually the pedestrian is allowed to cross (i.e., the traffic light enters state red).

(c) Use the verification tool to check whether the model constructed in part (a)
satisfies the LTL property specified in part (b). Explain the output of the tool.
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3. The notion of reachability has a nice symmetry. Instead of describing all states that
are reachable from some initial state, it is just as easy to describe all states from
which some state can be reached. Given a finite-state system M , the backward
reachable states of a set F of states is the set B of all states from which some
state in F can be reached. The following algorithm computes the set of backward
reachable states for a given set of states F :

Input : A set F of states and transition relation δ for closed finite-state system M
Output: Set B of backward reachable states from F in M

1 Initialize: B := F

2 Bnew := B
3 while Bnew 6= ∅ do
4 Bnew := {s | ∃s′ ∈ B s.t. s′ ∈ δ(s) ∧ s 6∈ B}
5 B := B ∪Bnew

6 end

Explain how this algorithm can check the property Gp on M , where p is some
property that is easily checked for each state s in M . You may assume that M has
exactly one initial state s0.
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16.1. PROBLEMS OF INTEREST

Will my brake-by-wire system actuate the brakes within one millisecond? Answering this
question requires, in part, an execution-time analysis of the software that runs on the
electronic control unit (ECU) for the brake-by-wire system. Execution time of the soft-
ware is an example of a quantitative property of an embedded system. The constraint
that the system actuate the brakes within one millisecond is a quantitative constraint.
The analysis of quantitative properties for conformance with quantitative constraints is
central to the correctness of embedded systems and is the topic of the present chapter.

A quantitative property of an embedded system is any property that can be measured.
This includes physical parameters, such as position or velocity of a vehicle controlled by
the embedded system, weight of the system, operating temperature, power consumption,
or reaction time. Our focus in this chapter is on properties of software-controlled sys-
tems, with particular attention to execution time. We present program analysis techniques
that can ensure that execution time constraints will be met. We also discuss how similar
techniques can be used to analyze other quantitative properties of software, particularly
resource usage such as power, energy, and memory.

The analysis of quantitative properties requires adequate models of both the software com-
ponents of the system and of the environment in which the software executes. The envi-
ronment includes the processor, operating system, input-output devices, physical compo-
nents with which the software interacts, and (if applicable) the communication network.
The environment is sometimes also referred to as the platform on which the software ex-
ecutes. Providing a comprehensive treatment of execution time analysis would require
much more than one chapter. The goal of this chapter is more modest. We illustrate
key features of programs and their environment that must be considered in quantitative
analysis, and we describe qualitatively some analysis techniques that are used. For con-
creteness, we focus on a single quantity, execution time, and only briefly discuss other
resource-related quantitative properties.

16.1 Problems of Interest

The typical quantitative analysis problem involves a software task defined by a program
P , the environment E in which the program executes, and the quantity of interest q. We
assume that q can be given by a function of fP as follows,

q = fP (x,w)
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where x denotes the inputs to the program P (such as data read from memory or from sen-
sors, or data received over a network), andw denotes the environment parameters (such as
network delays or the contents of the cache when the program begins executing). Defin-
ing the function fP completely is often neither feasible nor necessary; instead, practical
quantitative analysis will yield extreme values for q (highest or lowest values), average
values for q, or proofs that q satisfies certain threshold constraints. We elaborate on these
next.

16.1.1 Extreme-Case Analysis

In extreme-case analysis, we may want to estimate the largest value of q for all values of
x and w,

max
x,w

fP (x,w). (16.1)

Alternatively, it can be useful to estimate the smallest value of q:

min
x,w

fP (x,w). (16.2)

If q represents execution time of a program or a program fragment, then the largest value is
called the worst-case execution time (WCET), and the smallest value is called the best-
case execution time (BCET). It may be difficult to determine these numbers exactly, but
for many applications, an upper bound on the WCET or a lower bound on the BCET is
all that is needed. In each case, when the computed bound equals the actual WCET or
BCET, it is said to be a tight bound; otherwise, if there is a considerable gap between the
actual value and the computed bound, it is said to be a loose bound. Computing loose
bounds may be much easier than finding tight bounds.

16.1.2 Threshold Analysis

A threshold property asks whether the quantity q is always bounded above or below by
a threshold T , for any choice of x and w. Formally, the property can be expressed as

∀x,w, fP (x,w) ≤ T (16.3)

or
∀x,w, fP (x,w) ≥ T (16.4)
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Threshold analysis may provide assurances that a quantitative constraint is met, such as
the requirement that a brake-by-wire system actuate the brakes within one millisecond.

Threshold analysis may be easier to perform than extreme-case analysis. Unlike extreme-
case analysis, threshold analysis does not require us to determine the maximum or mini-
mum value exactly, or even to find a tight bound on these values. Instead, the analysis is
provided some guidance in the form of the target value T . Of course, it might be possible
to use extreme-case analysis to check a threshold property. Specifically, Constraint 16.3
holds if the WCET does not exceed T , and Constraint 16.4 holds if the BCET is not less
than T .

16.1.3 Average-Case Analysis

Often one is interested more in typical resource usage rather than in worst-case scenarios.
This is formalized as average-case analysis. Here, the values of input x and environment
parameter w are assumed to be drawn randomly from a space of possible values X and
W according to probability distributions Dx and Dw respectively. Formally, we seek to
estimate the value

EDx,DwfP (x,w) (16.5)

where EDx,Dw denotes the expected value of fP (x,w) over the distributions Dx and Dw.

One difficulty in average-case analysis is to define realistic distributions Dx and Dw that
capture the true distribution of inputs and environment parameters with which a program
will execute.

In the rest of this chapter, we will focus on a single representative problem, namely,
WCET estimation.

16.2 Programs as Graphs

A fundamental abstraction used often in program analysis is to represent a program as a
graph indicating the flow of control from one code segment to another. We will illustrate
this abstraction and other concepts in this chapter using the following running example:
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Example 16.1: Consider the function modexp that performs modular expo-
nentiation, a key step in many cryptographic algorithms. In modular exponen-
tiation, given a base b, an exponent e, and a modulus m, one must compute
be mod m. In the program below, base, exponent and mod represent b, e
and m respectively. EXP BITS denotes the number of bits in the exponent. The
function uses a standard shift-square-accumulate algorithm, where the base is
repeatedly squared, once for each bit position of the exponent, and the base is
accumulated into the result only if the corresponding bit is set.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp(UI base, UI exponent, UI mod) {
6 int i;
7 UI result = 1;
8

9 i = EXP_BITS;
10 while(i > 0) {
11 if ((exponent & 1) == 1) {
12 result = (result * base) % mod;
13 }
14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;
17 }
18 return result;
19 }

16.2.1 Basic Blocks

A basic block is a sequence of consecutive program statements in which the flow of
control enters only at the beginning of this sequence and leaves only at the end, without
halting or the possibility of branching except at the end.
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Example 16.2: The following three statements from the modexp function in
Example 16.1 form a basic block:

14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;

Another example of a basic block includes the initializations at the top of the
function, comprising lines 7 and 9:

7 result = 1;
8

9 i = EXP_BITS;

16.2.2 Control-Flow Graphs

A control-flow graph (CFG) of a program P is a directed graph G = (V,E), where the
set of vertices V comprises basic blocks of P , and the set of edges E indicates the flow
of control between basic blocks. Figure 16.1 depicts the CFG for the modexp program
of Example 16.1. Each node of the CFG is labeled with its corresponding basic block. In
most cases, this is simply the code as it appears in Example 16.1. The only exception is
for conditional statements, such as the conditions in while loops and if statements; in
these cases, we follow the convention of labeling the node with the condition followed by
a question mark to indicate the conditional branch.

Although our illustrative example of a control-flow graph is at the level of C source code,
it is possible to use the CFG representation at other levels of program representation
as well, including a high-level model as well as low-level assembly code. The level of
representation employed depends on the level of detail required by the context. To make
them easier to follow, our control-flow graphs will be at the level of source code.

16.2.3 Function Calls

Programs are typically decomposed into several functions in order to systematically or-
ganize the code and promote reuse and readability. The control-flow graph (CFG) repre-
sentation can be extended to reason about code with function calls by introducing special
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call and return edges. These edges connect the CFG of the caller function – the one
making the function call – to that of the callee function – the one being called. A call
edge indicates a transfer of control from the caller to the callee. A return edge indicates
a transfer of control from the callee back to the caller.

result = 1; 

i = EXP_BITS; 

  (i > 0)? 

  ((exponent & 1) == 1)? 

   result = (result * base) % mod; 

exponent >>= 1; 

base = (base * base) % mod; 

i--; 

   return result; 

1 

0 

1 

0 

1 

2 

3 

4 

5 

6 

Figure 16.1: Control-flow graph for the modexp function of Example 16.1. All
incoming edges at a node indicate transfer of control to the start of the basic
block for that node, and all outgoing edges from a node indicate an exit from the
end of the basic block for that node. For clarity, we label the outgoing edges from
a branch statement with 0 or 1 indicating the flow of control in case the branch
evaluates to false or true, respectively. An ID number for each basic block is noted
above the node for that block; IDs range from 1 to 6 for this example.
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result = 1; 

i = EXP_BITS; 

  (i > 0)? 

   result = update(result); 

i--; 

   return result; 

1 

0 

  res = r; 

  ((exponent & 1) == 1)? 

   res = (res * base) % mod; 

exponent >>= 1; 

base = (base * base) % mod; 

0 

1 

   return res; 

call 

return 

Figure 16.2: Control-flow graphs for the modexp call and update functions in
Example 16.3. Call/return edges are indicated with dashed lines.

Example 16.3: A slight variant shown below of the modular exponentation
program of Example 16.1 uses function calls and can be represented by the CFG
with call and return edges in Figure 16.2.

1 #define EXP_BITS 32
2 typedef unsigned int UI;
3 UI exponent, base, mod;
4

5 UI update(UI r) {
6 UI res = r;
7 if ((exponent & 1) == 1) {
8 res = (res * base) % mod;
9 }
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10 exponent >>= 1;
11 base = (base * base) % mod;
12 return res;
13 }
14

15 UI modexp_call() {
16 UI result = 1; int i;
17 i = EXP_BITS;
18 while(i > 0) {
19 result = update(result);
20 i--;
21 }
22 return result;
23 }

In this modified example, the variables base, exponent, and mod are global
variables. The update to base and exponent in the body of the while loop,
along with the computation of result is now performed in a separate function
named update.

Non-recursive function calls can also be handled by inlining, which is the process of
copying the code for the callee into that of the caller. If inlining is performed transitively
for all functions called by the code that must be analyzed, the analysis can be performed
on the CFG of the code resulting from inlining, without using call and return edges.

16.3 Factors Determining Execution Time

There are several issues one must consider in order to estimate the worst-case execution
time of a program. This section outlines some of the main issues and illustrates them with
examples. In describing these issues, we take a programmer’s viewpoint, starting with the
program structure and then considering how the environment can impact the program’s
execution time.
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16.3.1 Loop Bounds

The first point one must consider when bounding the execution time of a program is
whether the program terminates. Non-termination of a sequential program can arise from
non-terminating loops or from an unbounded sequence of function calls. Therefore, while
writing real-time embedded software, the programmer must ensure that all loops are guar-
anteed to terminate. In order to guarantee this, one must determine for each loop a bound
on the number of times that loop will execute in the worst case. Similarly, all function
calls must have bounded recursion depth. The problems of determining bounds on loop
iterations or recursion depth are undecidable in general, since the halting problem for Tur-
ing machines can be reduced to either problem. (See Appendix B for an introduction to
Turing machines and decidability.)

In this section, we limit ourselves to reasoning about loops. In spite of the undeciable
nature of the problem, progress has been made on automatically determining loop bounds
for several patterns that arise in practice. Techniques for determining loop bounds are a
current research topic and a full survey of these methods is out of the scope of this chapter.
We will limit ourselves to presenting illustrative examples for loop bound inference.

The simplest case is that of for loops that have a specified constant bound, as in Exam-
ple 16.4 below. This case occurs often in embedded software, in part due to a discipline
of programming enforced by designers who must program for real-time constraints and
limited resources.

Example 16.4: Consider the function modexp1 below. It is a slight variant of
the function modexp introduced in Example 16.1 that performs modular expo-
nentiation, in which the while loop has been expressed as an equivalent for
loop.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp1(UI base, UI exponent, UI mod) {
6 UI result = 1; int i;
7

8 for(i=EXP_BITS; i > 0; i--) {
9 if ((exponent & 1) == 1) {

10 result = (result * base) % mod;
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11 }
12 exponent >>= 1;
13 base = (base * base) % mod;
14 }
15 return result;
16 }

In the case of this function, it is easy to see that the for loop will take exactly
EXP BITS iterations, where EXP BITS is defined as the constant 32.

In many cases, the loop bound is not immediately obvious (as it was for the above exam-
ple). To make this point, here is a variation on Example 16.4.

Example 16.5: The function listed below also performs modular exponentiation,
as in Example 16.4. However, in this case, the for loop is replaced by a while
loop with a different loop condition – the loop exits when the value of exponent
reaches 0. Take a moment to check whether the while loop will terminate (and
if so, why).

1 typedef unsigned int UI;
2

3 UI modexp2(UI base, UI exponent, UI mod) {
4 UI result = 1;
5

6 while (exponent != 0) {
7 if ((exponent & 1) == 1) {
8 result = (result * base) % mod;
9 }

10 exponent >>= 1;
11 base = (base * base) % mod;
12 }
13 return result;
14 }

Now let us analyze the reason that this loop terminates. Notice that exponent
is an unsigned int, which we will assume to be 32 bits wide. If it starts out equal
to 0, the loop terminates right away and the function returns result = 1. If
not, in each iteration of the loop, notice that line 10 shifts exponent one bit
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to the right. Since exponent is an unsigned int, after the right shift, its most
significant bit will be 0. Reasoning thus, after at most 32 right shifts, all bits of
exponent must be set to 0, thus causing the loop to terminate. Therefore, we
can conclude that the loop bound is 32.

Let us reflect on the reasoning employed in the above example. The key component of
our “proof of termination” was the observation that the number of bits of exponent
decreases by 1 each time the loop executes. This is a standard argument for proving
termination – by defining a progress measure or ranking function that maps each state
of the program to a mathematical structure called a well order. Intuitively, a well order is
like a program that counts down to zero from some initial value in the natural numbers.

16.3.2 Exponential Path Space

Execution time is a path property. In other words, the amount of time taken by the pro-
gram is a function of how conditional statements in the program evaluate to true or false.
A major source of complexity in execution time analysis (and other program analysis
problems as well) is that the number of program paths can be very large — exponential in
the size of the program. We illustrate this point with the example below.

Example 16.6: Consider the function count listed below, which runs over
a two-dimensional array, counting and accumulating non-negative and negative
elements of the array separately.

1 #define MAXSIZE 100
2

3 int Array[MAXSIZE][MAXSIZE];
4 int Ptotal, Pcnt, Ntotal, Ncnt;
5 ...
6 void count() {
7 int Outer, Inner;
8 for (Outer = 0; Outer < MAXSIZE; Outer++) {
9 for (Inner = 0; Inner < MAXSIZE; Inner++) {

10 if (Array[Outer][Inner] >= 0) {
11 Ptotal += Array[Outer][Inner];
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12 Pcnt++;
13 } else {
14 Ntotal += Array[Outer][Inner];
15 Ncnt++;
16 }
17 }
18 }
19 }

The function includes a nested loop. Each loop executes MAXSIZE (100) times.
Thus, the inner body of the loop (comprising lines 10–16) will execute 10,000
times – as many times as the number of elements of Array. In each iteration of
the inner body of the loop, the conditional on line 10 can either evaluate to true or
false, thus resulting in 210000 possible ways the loop can execute. In other words,
this program has 210000 paths.

Fortunately, as we will see in Section 16.4.1, one does not need to explicitly enumerate
all possible program paths in order to perform execution time analysis.

16.3.3 Path Feasibility

Another source of complexity in program analysis is that all program paths may not be
executable. A computationally expensive function is irrelevant for execution time analysis
if that function is never executed.

A path p in program P is said to be feasible if there exists an input x to P such that
P executes p on x. In general, even if P is known to terminate, determining whether a
path p is feasible is a computationally intractable problem. One can encode the canonical
NP-complete problem, the Boolean satisfiability problem (see Appendix B), as a problem
of checking path feasibility in a specially-constructed program. In practice, however, in
many cases, it is possible to determine path feasibility.

Example 16.7: Recall Example 13.3 of a software task from the open source
Paparazzi unmanned aerial vehicle (UAV) project (Nemer et al., 2006):
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1 #define PPRZ_MODE_AUTO2 2
2 #define PPRZ_MODE_HOME 3
3 #define VERTICAL_MODE_AUTO_ALT 3
4 #define CLIMB_MAX 1.0
5 ...
6 void altitude_control_task(void) {
7 if (pprz_mode == PPRZ_MODE_AUTO2
8 || pprz_mode == PPRZ_MODE_HOME) {
9 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {

10 float err = estimator_z - desired_altitude;
11 desired_climb
12 = pre_climb + altitude_pgain * err;
13 if (desired_climb < -CLIMB_MAX) {
14 desired_climb = -CLIMB_MAX;
15 }
16 if (desired_climb > CLIMB_MAX) {
17 desired_climb = CLIMB_MAX;
18 }
19 }
20 }
21 }

This program has 11 paths in all. However, the number of feasible program
paths is only 9. To see this, note that the two conditionals desired climb
< -CLIMB MAX on line 13 and desired climb > CLIMB MAX on line 16
cannot both be true. Thus, only three out of the four paths through the two inner-
most conditional statements are feasible. This infeasible inner path can be taken
for two possible evaluations of the outermost conditional on lines 7 and 8: either
if pprz mode == PPRZ MODE AUTO2 is true, or if that condition is false, but
pprz mode == PPRZ MODE HOME is true.

16.3.4 Memory Hierarchy

The preceding sections have focused on properties of programs that affect execution time.
We now discuss how properties of the execution platform, specifically of cache memories,
can significantly impact execution time. We illustrate this point using Example 16.8.1 The
material on caches introduced in Sec. 9.2.3 is pertinent to this discussion.

1This example is based on a similar example in Bryant and O’Hallaron (2003).
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Example 16.8: Consider the function dot product listed below, which
computes the dot product of two vectors of floating point numbers. Each vector
is of dimension n, where n is an input to the function. The number of iterations
of the loop depends on the value of n. However, even if we know an upper bound
on n, hardware effects can still cause execution time to vary widely for similar
values of n.

1 float dot_product(float *x, float *y, int n) {
2 float result = 0.0;
3 int i;
4 for(i=0; i < n; i++) {
5 result += x[i] * y[i];
6 }
7 return result;
8 }

Suppose this program is executing on a 32-bit processor with a direct-mapped
cache. Suppose also that the cache can hold two sets, each of which can hold 4
floats. Finally, let us suppose that x and y are stored contiguously in memory
starting with address 0.

Let us first consider what happens if n = 2. In this case, the entire arrays x and
y will be in the same block and thus in the same cache set. Thus, in the very
first iteration of the loop, the first access to read x[0] will be a cache miss, but
thereafter every read to x[i] and y[i] will be a cache hit, yielding best case
performance for loads.

Consider next what happens when n = 8. In this case, each x[i] and y[i] map
to the same cache set. Thus, not only will the first access to x[0] be a miss, the
first access to y[0] will also be a miss. Moreover, the latter access will evict
the block containing x[0]-x[3], leading to a cache miss on x[1], x[2], and
x[3] as well. The reader can see that every access to an x[i] or y[i] will
lead to a cache miss.

Thus, a seemingly small change in the value of n from 2 to 8 can lead to a drastic
change in execution time of this function.
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16.4 Basics of Execution Time Analysis

Execution time analysis is a current research topic, with many problems still to be solved.
There have been over two decades of research, resulting in a vast literature. We cannot
provide a comprehensive survey of the methods in this chapter. Instead, we will present
some of the basic concepts that find widespread use in current techniques and tools for
WCET analysis. Readers interested in a more detailed treatment may find an overview
in a recent survey paper (Wilhelm et al., 2008) and further details in books (e.g., Li and
Malik (1999)) and book chapters (e.g., Wilhelm (2005)).

16.4.1 Optimization Formulation

An intuitive formulation of the WCET problem can be constructed using the view of
programs as graphs. Given a program P , let G = (V,E) denote its control-flow graph
(CFG). Let n = |V | be the number of nodes (basic blocks) in G, and m = |E| denote the
number of edges. We refer to the basic blocks by their index i, where i ranges from 1 to
n.

We assume that the CFG has a unique start or source node s and a unique sink or end
node t. This assumption is not restrictive: If there are multiple start or end nodes, one
can add a dummy start/end node to achieve this condition. Usually we will set s = 1 and
t = n.

Let xi denote the number of times basic block i is executed. We call xi the execution
count of basic block i. Let x = (x1, x2, . . . , xn) be a vector of variables recording
execution counts. Not all valuations of x correspond to valid program executions. We say
that x is valid if the elements of x correspond to a (valid) execution of the program. The
following example illustrates this point.

Example 16.9: Consider the CFG for the modular exponentiation function
modexp introduced in Example 16.1. There are six basic blocks in this func-
tion, labeled 1 to 6 in Figure 16.1. Thus, x = (x1, x2, . . . , x6). Basic blocks 1
and 6, the start and end, are each executed only once. Thus, x1 = x6 = 1; any
other valuation cannot correspond to any program execution.
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Next consider basic blocks 2 and 3, corresponding to the conditional branches
i > 0 and (exponent & 1) == 1. One can observe that x2 must equal
x3 + 1, since the block 3 is executed every time block 2 is executed, except when
the loop exits to block 6.

Along similar lines, one can see that basic blocks 3 and 5 must be executed an
equal number of times.

Flow Constraints

The intuition expressed in Example 16.9 can be formalized using the theory of network
flow, which finds use in many contexts including modeling traffic, fluid flow, and the flow
of current in an electrical circuit. In particular, in our problem context, the flow must
satisfy the following two properties:

1. Unit Flow at Source: The control flow from source node s = 1 to sink node t = n
is a single execution and hence corresponds to unit flow from source to sink. This
property is captured by the following two constraints:

x1 = 1 (16.6)

xn = 1 (16.7)

2. Conservation of Flow: For each node (basic block) i, the incoming flow to i from
its predecessor nodes equals the outgoing flow from i to its successor nodes.

To capture this property, we introduce additional variables to record the number
of times that each edge in the CFG is executed. Following the notation of Li and
Malik (1999), let dij denote the number of times the edge from node i to node j in
the CFG is executed. Then we require that for each node i, 1 ≤ i ≤ n,

xi =
∑
j∈Pi

dji =
∑
j∈Si

dij , (16.8)

where Pi is the set of predecessors to node i and Si is the set of successors. For the
source node, P1 = ∅, so the sum over predecessor nodes is omitted. Similarly, for
the sink node, Sn = ∅, so the sum over successor nodes is omitted.
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Taken together, the two sets of constraints presented above suffice to implicitly define all
source-to-sink execution paths of the program. Since this constraint-based representation
is an implicit representation of program paths, this approach is also referred to in the
literature as implicit path enumeration or IPET.

We illustrate the generation of the above constraints with an example.

Example 16.10: Consider again the function modexp of Example 16.1, with
CFG depicted in Figure 16.1.

The constraints for this CFG are as follows:

x1 = 1

x6 = 1

x1 = d12

x2 = d12 + d52 = d23 + d26

x3 = d23 = d34 + d35

x4 = d34 = d45

x5 = d35 + d45 = d52

x6 = d26

Any solution to the above system of equations will result in integer values for
the xi and dij variables. Furthermore, this solution will generate valid execution
counts for basic blocks. For example, one such valid solution is

x1 = 1, d12 = 1, x2 = 2, d23 = 1, x3 = 1, d34 = 0, d35 = 1,

x4 = 0, d45 = 0, x5 = 1, d52 = 1, x6 = 1, d26 = 1.

Readers are invited to find and examine additional solutions for themselves.

Overall Optimization Problem

We are now in a position to formulate the overall optimization problem to determine
worst-case execution time. The key assumption we make in this section is that we know
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an upper bound wi on the execution time of the basic block i. (We will later see in
Section 16.4.3 how the execution time of a single basic block can be bounded.) Then the
WCET is given by the maximum

∑n
i=1wixi over valid execution counts xi.

Putting this together with the constraint formulation of the preceding section, our goal is
to find values for xi that give

max
xi, 1≤i≤n

n∑
i=1

wixi

subject to

x1 = xn = 1

xi =
∑
j∈Pi

dji =
∑
j∈Si

dij

This optimization problem is a form of a linear programming (LP) problem (also called
a linear program), and it is solvable in polynomial time.

However, two major challenges remain:

• This formulation assumes that all source to sink paths in the CFG are feasible and
does not bound loops in paths. As we have already seen in Section 16.3, this is
not the case in general, so solving the above maximization problem may yield a
pessimistic loose bound on the WCET. We will consider this challenge in Sec-
tion 16.4.2.

• The upper bounds wi on execution time of basic blocks i are still to be determined.
We will briefly review this topic in Section 16.4.3.

16.4.2 Logical Flow Constraints

In order to ensure that the WCET optimization is not too pessimistic by including paths
that cannot be executed, we must add so-called logical flow constraints. These con-
straints rule out infeasible paths and incorporate bounds on the number of loop iterations.
We illustrate the use of such constraints with two examples.
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Loop Bounds

For programs with loops, it is necessary to use bounds on loop iterations to bound execu-
tion counts of basic blocks.

Example 16.11: Consider the modular exponentiation program of Example 16.1
for which we wrote down flow constraints in Example 16.10.

Notice that those constraints impose no upper bound on x2 or x3. As argued
in Examples 16.4 and 16.5, the bound on the number of loop iterations in this
example is 32. However, without imposing this additional constraint, since there
is no upper bound on x2 or x3, the solution to our WCET optimization will be
infinite, implying that there is no upper bound on the WCET. The following single
constraint suffices:

x3 ≤ 32

From this constraint on x3, we derive the constraint that x2 ≤ 33, and also upper
bounds on x4 and x5. The resulting optimization problem will then return a finite
solution, for finite values of wi.

Adding such bounds on values of xi does not change the complexity of the optimization
problem. It is still a linear programming problem.

Infeasible Paths

Some logical flow constraints rule out combinations of basic blocks that cannot appear
together on a single path.

Example 16.12: Consider a snippet of code from Example 16.7 describing a
software task from the open source Paparazzi unmanned aerial vehicle (UAV)
project (Nemer et al., 2006):

1 #define CLIMB_MAX 1.0
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2 ...
3 void altitude_control_task(void) {
4 ...
5 err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 return;
15 }

The CFG for the snippet of code shown above is given in Figure 16.3. The system
of flow constraints for this CFG according to the rules in Section 16.4.1 is as
follows:

x1 = 1

x5 = 1

x1 = d12 + d13

x2 = d12 = d23

x3 = d13 + d23 = d34 + d35

x4 = d34 = d45

x5 = d35 + d45

A solution for the above system of equations is

x1 = x2 = x3 = x4 = x5 = 1,

implying that each basic block gets executed exactly once, and that both condi-
tionals evaluate to true. However, as we discussed in Example 16.7, it is im-
possible for both conditionals to evaluate to true. Since CLIMB MAX = 1.0, if
desired climb is less than −1.0 in basic block 1, then at the start of basic
block 3 it will be set to −1.0.

The following constraint rules out the infeasible path:

d12 + d34 ≤ 1 (16.9)
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err = estimator_z - desired_altitude; 

desired_climb 

    = pre_climb + altitude_pgain * err; 

(desired_climb < -CLIMB_MAX)? 

  desired_climb = -CLIMB_MAX; 

(desired_climb > CLIMB_MAX)? 

   return; 

1 

0 

0 

1 

2 

3 

4 

5 

  desired_climb = CLIMB_MAX; 

1 

Figure 16.3: Control-flow graph for Example 16.12.

This constraint specifies that both conditional statements cannot be true together.
It is of course possible for both conditionals to be false. We can check that this
constraint excludes the infeasible path when added to the original system.

More formally, for a program without loops, if a set of k edges

(i1, j1), (i2, j2), . . . , (ik, jk)

in the CFG cannot be taken together in a program execution, the following constraint is
added to the optimization problem:

di1j1 + di2j2 + . . .+ dikjk ≤ k − 1 (16.10)

For programs with loops, the constraint is more complicated since an edge can be tra-
versed multiple times, so the value of a dij variable can exceed 1. We omit the details in
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this case; the reader can consult Li and Malik (1999) for a more elaborate discussion of
this topic.

In general, the constraints added above to exclude infeasible combinations of edges can
change the complexity of the optimization problem, since one must also add the following
integrality constraints:

xi ∈ N, for all i = 1, 2, . . . , n (16.11)

dij ∈ N, for all i, j = 1, 2, . . . , n (16.12)

In the absence of such integrality constraints, the optimization solver can return fractional
values for the xi and dij variables. However, adding these constraints results in an inte-
ger linear programming (ILP) problem. The ILP problem is known to be NP-hard (see
Appendix B, Section B.4). Even so, in many practical instances, one can solve these ILP
problems fairly efficiently (see for example Li and Malik (1999)).

16.4.3 Bounds for Basic Blocks

In order to complete the optimization problem for WCET analysis, we need to compute
upper bounds on the execution times of basic blocks – the wi coefficients in the cost func-
tion of Section 16.4.1. Execution time is typically measured in CPU cycles. Generating
such bounds requires detailed microarchitectural modeling. We briefly outline some of
the issues in this section.

A simplistic approach to this problem would be to generate conservative upper bounds
on the execution time of each instruction in the basic block, and then add up these per-
instruction bounds to obtain an upper bound on the execution time of the overall basic
block.

The problem with this approach is that there can be very wide variation in the execution
times for some instructions, resulting in very loose upper bounds on the execution time
of a basic block. For instance, consider the latency of memory instructions (loads and
stores) for a system with a data cache. The difference between the latency when there
is a cache miss versus a hit can be a factor of 100 on some platforms. In these cases,
if the analysis does not differentiate between cache hits and misses, it is possible for the
computed bound to be a hundred times larger than the execution time actually exhibited.
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Several techniques have been proposed to better use program context to predict execution
time of instructions more precisely. These techniques involve detailed microarchitectural
modeling. We mention two main approaches below:

• Integer linear programming (ILP) methods: In this approach, pioneered by Li and
Malik (1999), one adds cache constraints to the ILP formulation of Section 16.4.1.
Cache constraints are linear expressions used to bound the number of cache hits and
misses within basic blocks. The approach tracks the memory locations that cause
cache conflicts – those that map onto the same cache set, but have different tags –
and adds linear constraints to record the impact of such conflicts on the number of
cache hits and misses. Measurement through simulation or execution on the actual
platform must be performed to obtain the cycle count for hits and misses. The cost
constraint of the ILP is modified to compute the program path along which the
overall number of cycles, including cache hits and misses, is the largest. Further
details about this approach are available in Li and Malik (1999).

• Abstract interpretation methods: Abstract interpretation is a theory of approx-
imation of mathematical structures, in particular those that arise in defining the
semantic models of computer systems (Cousot and Cousot (1977)). In particular,
in abstract interpretation, one performs sound approximation, where the set of
behaviors of the system is a subset of that of the model generated by abstract inter-
pretation. In the context of WCET analysis, abstract interpretation has been used
to infer invariants at program points, in order to generate loop bounds, and con-
straints on the state of processor pipelines or caches at the entry and exit locations
of basic blocks. For example, such a constraint could specify the conditions under
which variables will be available in the data cache (and hence a cache hit will re-
sult). Once such constraints are generated, one can run measurements from states
satisfying those constraints in order to generate execution time estimates. Further
details about this approach can be found in Wilhelm (2005).

In addition to techniques such as those described above, accurate measurement of execu-
tion time is critical for finding tight WCET bounds. Some of the measurement techniques
are as follows:

1. Sampling CPU cycle counter: Certain processors include a register that records the
number of CPU cycles elapsed since reset. For example, the time stamp counter
register on x86 architectures performs this function, and is accessible through a
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rdtsc (“read time stamp counter”) instruction. However, with the advent of multi-
core designs and power management features, care must be taken to use such CPU
cycle counters to accurately measure timing. For example, it may be necessary to
lock the process to a particular CPU.

2. Using a logic analyzer: A logic analyzer is an electronic instrument used to mea-
sure signals and track events in a digital system. In the current context, the events of
interest are the entry and exit points of the code to be timed, definable, for example,
as valuations of the program counter. Logic analyzers are less intrusive than using
cycle counters, since they do not require instrumenting the code, and they can be
more accurate. However, the measurement setup is more complicated.

3. Using a cycle-accurate simulator: In many cases, timing analysis must be per-
formed when the actual hardware is not yet available. In this situation, a cycle-
accurate simulator of the platform provides a good alternative.

16.5 Other Quantitative Analysis Problems

Although we have focused mainly on execution time in this chapter, several other quan-
titative analysis problems are relevant for embedded systems. We briefly describe two of
these in this section.

16.5.1 Memory-bound Analysis

Embedded computing platforms have very limited memory as compared to general-purpose
computers. For example, as mentioned in Chapter 9, the Luminary Micro LM3S8962 con-
troller has only 64 KB of RAM. It is therefore essential to structure the program so that
it uses memory efficiently. Tools that analyze memory consumption and compute bounds
on memory usage can be very useful.

There are two kinds of memory bound analysis that are relevant for embedded systems.
In stack size analysis (or simply stack analysis), one needs to compute an upper bound
on the amount of stack-allocated memory used by a program. Recall from Section 9.3.2
that stack memory is allocated whenever a function is called or an interrupt is handled. If
the program exceeds the memory allocated for the stack, a stack overflow is said to occur.
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If the program does not contain recursive functions and runs uninterrupted, one can bound
stack usage by traversing the call graph of the program – the graph that tracks which
functions call which others. If the space for each stack frame is known, then one can track
the sequence of calls and returns along paths in the call graph in order to compute the
worst-case stack size.

Performing stack size analysis for interrupt-driven software is significantly more compli-
cated. We point the interested reader to Brylow et al. (2001).

Heap analysis is the other memory bound analysis problem that is relevant for embedded
systems. This problem is harder than stack bound analysis since the amount of heap space
used by a function might depend on the values of input data and may not be known prior
to run-time. Moreover, the exact amount of heap space used by a program can depend on
the implementation of dynamic memory allocation and the garbage collector.

16.5.2 Power and Energy Analysis

Power and energy consumption are increasingly important factors in embedded system
design. Many embedded systems are autonomous and limited by battery power, so a
designer must ensure that the task can be completed within a limited energy budget. Also,
the increasing ubiquity of embedded computing is increasing its energy footprint, which
must be reduced for sustainable development.

To first order, the energy consumed by a program running on an embedded device depends
on its execution time. However, estimating execution time alone is not sufficient. For
example, energy consumption depends on circuit switching activity, which can depend
more strongly on the data values with which instructions are executed.

For this reason, most techniques for energy and power estimation of embedded soft-
ware focus on estimating the average-case consumption. The average case is typically
estimated by profiling instructions for several different data values, guided by software
benchmarks. For an introduction to this topic, see Tiwari et al. (1994).

16.6 Summary

Quantitative properties, involving physical parameters or specifying resource constraints,
are central to embedded systems. This chapter gave an introduction to basic concepts in
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quantitative analysis. First, we considered various types of quantitative analysis problems,
including extreme-case analysis, average-case analysis, and verifying threshold proper-
ties. As a representative example, this chapter focused on execution time analysis. Sev-
eral examples were presented to illustrate the main issues, including loop bounds, path
feasibility, path explosion, and cache effects. An optimization formulation that forms the
backbone of execution time analysis was presented. Finally, we briefly discussed two
other quantitative analysis problems, including computing bounds on memory usage and
on power or energy consumption.

Quantitative analysis remains an active field of research – exemplifying the challenges in
bridging the cyber and physical aspects of embedded systems.
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Tools for Execution-Time Analysis

Current techniques for execution-time analysis are broadly classified into those primar-
ily based on static analysis and those that are measurement-based.

Static tools rely on abstract interpretation and dataflow analysis to compute facts
about the program at selected program locations. These facts are used to identify de-
pendencies between code fragments, generate loop bounds, and identify facts about the
platform state, such as the state of the cache. These facts are used to guide timing mea-
surements of basic blocks and combined into an optimization problem as presented
in this chapter. Static tools aim to find conservative bounds on extreme-case execu-
tion time; however, they are not easy to port to new platforms, often requiring several
man-months of effort.

Measurement-based tools are primarily based on testing the program on multiple
inputs and then estimating the quantity of interest (e.g., WCET) from those measure-
ments. Static analysis is often employed in performing a guided exploration of the
space of program paths and for test generation. Measurement-based tools are easy to
port to new platforms and apply broadly to both extreme-case and average-case analy-
sis; however, not all techniques provide guarantees for finding extreme-case execution
times.

Further details about many of these tools are available in Wilhelm et al. (2008);
Seshia and Rakhlin (2012). Here is a partial list of tools with links to papers and
websites:

Name Primary Type Institution & Website/References
aiT Static AbsInt Angewandte Informatik GmbH (Wilhelm, 2005)

http://www.absint.com/ait/

Bound-T Static Tidorum Ltd.
http://www.bound-t.com/

Chronos Static National University of Singapore (Li et al., 2005)
http://www.comp.nus.edu.sg/˜rpembed/chronos/

Heptane Static IRISA Rennes
http://www.irisa.fr/aces/work/heptane-demo/heptane.html

SWEET Static Mälardalen University
http://www.mrtc.mdh.se/projects/wcet/

GameTime Measurement UC Berkeley
Seshia and Rakhlin (2008)

RapiTime Measurement Rapita Systems Ltd.
http://www.rapitasystems.com/

SymTA/P Measurement Technical University Braunschweig
http://www.ida.ing.tu-bs.de/research/projects/symtap/

Vienna M./P. Measurement Technical University of Vienna
http://www.wcet.at/
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Exercises

1. This problem studies execution time analysis. Consider the C program listed below:

1 int arr[100];
2

3 int foo(int flag) {
4 int i;
5 int sum = 0;
6

7 if (flag) {
8 for(i=0;i<100;i++)
9 arr[i] = i;

10 }
11

12 for(i=0;i<100;i++)
13 sum += arr[i];
14

15 return sum;
16 }

Assume that this program is run on a processor with data cache of size big enough
that the entire array arr can fit in the cache.

(a) How many paths does the function foo of this program have? Describe what
they are.

(b) Let T denote the execution time of the second for loop in the program. How
does executing the first for loop affect the value of T ? Justify your answer.

2. Consider the program given below:

1 void testFn(int *x, int flag) {
2 while (flag != 1) {
3 flag = 1;
4 *x = flag;
5 }
6 if (*x > 0)
7 *x += 2;
8 }

In answering the questions below, assume that x is not NULL.

(a) Draw the control-flow graph of this program. Identify the basic blocks with
unique IDs starting with 1.
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Note that we have added a dummy source node, numbered 0, to represent the
entry to the function. For convenience, we have also introduced a dummy sink
node, although this is not strictly required.

(b) Is there a bound on the number of iterations of the while loop? Justify your
answer.

(c) How many total paths does this program have? How many of them are feasi-
ble, and why?

(d) Write down the system of flow constraints, including any logical flow con-
straints, for the control-flow graph of this program.

(e) Consider running this program uninterrupted on a platform with a data cache.
Assume that the data pointed to by x is not present in the cache at the start of
this function.
For each read/write access to *x, argue whether it will be a cache hit or miss.
Now, assume that *x is present in the cache at the start of this function. Iden-
tify the basic blocks whose execution time will be impacted by this modified
assumption.

3. Consider the function check password given below that takes two arguments: a
user ID uid and candidate password pwd (both modeled as ints for simplicity).
This function checks that password against a list of user IDs and passwords stored
in an array, returning 1 if the password matches and 0 otherwise.

1 struct entry {
2 int user;
3 int pass;
4 };
5 typedef struct entry entry_t;
6

7 entry_t all_pwds[1000];
8

9 int check_password(int uid, int pwd) {
10 int i = 0;
11 int retval = 0;
12

13 while(i < 1000) {
14 if (all_pwds[i].user == uid && all_pwds[i].pass == pwd) {
15 retval = 1;
16 break;
17 }
18 i++;
19 }
20
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21 return retval;
22 }

(a) Draw the control-flow graph of the function check password. State the num-
ber of nodes (basic blocks) in the CFG. (Remember that each conditional
statement is considered a single basic block by itself.)
Also state the number of paths from entry point to exit point (ignore path
feasibility).

(b) Suppose the array all pwds is sorted based on passwords (either increasing
or decreasing order). In this question, we explore if an external client that calls
check password can infer anything about the passwords stored in all pwds

by repeatedly calling it and recording the execution time of check password.
Figuring out secret data from “physical” information, such as running time, is
known as a side-channel attack.
In each of the following two cases, what, if anything, can the client infer about
the passwords in all pwds?

(i) The client has exactly one (uid, password) pair present in all pwds

(ii) The client has NO (uid, password) pairs present in in all pwds

Assume that the client knows the program but not the contents of the array
all pwds.

4. Consider the code below that implements the logic of a highly simplified vehicle
automatic transmission system. The code aims to set the value of current gear
based on a sensor input rpm. LO VAL and HI VAL are constants whose exact
values are irrelevant to this problem (you can assume that LO VAL is strictly smaller
than HI VAL).

1 volatile float rpm;
2

3 int current_gear; // values range from 1 to 6
4

5 void change_gear() {
6 if (rpm < LO_VAL)
7 set_gear(-1);
8 else {
9 if (rpm > HI_VAL)

10 set_gear(1);
11 }
12

13 return;
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14 }
15

16 void set_gear(int update) {
17 int new_gear = current_gear + update;
18 if (new_gear > 6)
19 new_gear = 6;
20 if (new_gear < 1)
21 new_gear = 1;
22

23 current_gear = new_gear;
24

25 return;
26 }

This is a 6-speed automatic transmission system, and thus the value of current gear
ranges between 1 and 6.

Answer the following questions based on the above code:

(a) Draw the control-flow graph (CFG) of the program starting from change gear,
without inlining function set gear. In other words, you should draw the
CFG using call and return edges.
For brevity, you need not write the code for the basic blocks inside the nodes
of the CFG. Just indicate which statements go in which node by using the line
numbers in the code listing above.

(b) Count the number of execution paths from the entry point in set gear to
its exit point (the return statement). Ignore feasibility issues for this question.
Also count the number of paths from the entry point in change gear to
its exit point (the return statement), including the paths through set gear.
State the number of paths in each case.

(c) Now consider path feasibility. Recalling that current gear ranges be-
tween 1 and 6, how many feasible paths does change gear have? Justify
your answer.

(d) Give an example of a feasible path and of an infeasible path through the func-
tion change gear. Describe each path as a sequence of line numbers, ig-
noring the line numbers corresponding to function definitions and return state-
ments.
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Security and privacy are two of the foremost design concerns for cyber-physical systems
today. Security, broadly speaking, is the state of being protected from harm. Privacy is the
state of being kept away from observation. With embedded and cyber-physical systems
being increasingly networked with each other and with the Internet, security and privacy
concerns are now front and center for system designers.



In a formal sense, there are two primary aspects that differentiate security and privacy
from other design criteria. First, the operating environment is considered to be signif-
icantly more adversarial in nature than in typical system design. Second, the kinds of
properties, specifying desired and undesired behavior, are also different from traditional
system specifications (and often impose additional requirements on top of the traditional
ones). Let us consider each of these aspects in turn.

The notion of an attacker or an adversary is central to the theory and practice of security
and privacy. An attacker is a malicious agent whose goal is to subvert the operation of
the system in some way. The exact subversion depends on characteristics of the system,
its goals and requirements, and the capabilities of the attacker. Typically, these charac-
teristics are grouped together into an entity called the threat model or attacker model.
For example, while designing an automobile with no wireless network connectivity, the
designers may assume that the only threats arise from people who have physical access
to the automobile and knowledge of its components, such as a well-trained mechanic.
Transforming an informal threat model (such as the preceding sentence) into a precise,
mathematical statement of an attacker’s objectives is a challenging task, but one that is
essential for principled model-based design of secure embedded systems.

The second defining characteristic of the field of security and privacy are the distinctive
properties it is concerned with. Broadly speaking, these properties can be categorized into
the following types: confidentiality, integrity, authenticity, and availability. Confidential-
ity is the state of being secret from the attacker. A good example of confidential data is
a password or PIN that one uses to access one’s bank account. Integrity is the state of
being unmodified by an attacker. An example of integrity is the property that an attacker,
who does not have authorized access to your bank account, cannot modify its contents.
Authenticity is the state of knowing with a level of assurance the identity of agents you
are communicating or interacting with. For instance, when you connect to a website that
purports to be your bank, you want to be sure that it indeed is your bank’s website and
not that of some malicious entity. The process of demonstrating authenticity is known as
authentication. Finally, availability is the property that a system provides a sufficient
quality of service to its users. For example, you might expect your bank’s website to be
available to you 99% of the time.

It is important to note that security and privacy are not absolute properties. Do not believe
anyone who claims that their system is “completely secure”! Security and privacy can
only be guaranteed for a specific threat model and a specific set of properties. As a
system designer, if security and privacy are important concerns for you, you must first

460 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


17. SECURITY AND PRIVACY

define your threat model and formalize your properties. Otherwise, any solution you
adopt is essentially meaningless.

In this chapter, we seek to give you a basic understanding of security and privacy with a
special focus on concepts relevant for cyber-physical system design. The field of security
and privacy is too broad for us to cover it in any comprehensive manner in a single chapter;
we refer the interested reader to some excellent textbooks on the topic, e.g., (Goodrich
and Tamassia, 2011; Smith and Marchesini, 2007). Instead, our goal is more modest: to
introduce you to the important basic concepts, and highlight the topics that are specific to,
or especially relevant for, embedded, cyber-physical systems.

17.1 Cryptographic Primitives

The field of cryptography is one of the cornerstones of security and privacy. The word
“cryptography” is derived from the Latin roots “crypt” meaning secret and “graphia”
meaning write, and thus literally means “the study of secret writing.”

We begin with a review of the basic cryptographic primitives for encryption and de-
cryption, secure hashing, and authentication. Issues that are particularly relevant for the
design and analysis of embedded and cyber-physical systems are highlighted. The reader
is warned that examples given in this chapter, particularly those listing code, are given at
a high level of abstraction, and omit details that are critical to developing secure crypto-
graphic implementations. See books such as (Menezes et al., 1996; Ferguson et al., 2010)
for a more in-depth treatment of the subject.

17.1.1 Encryption and Decryption

Encryption is the process of translating a message into an encoded form with the intent
that an adversary cannot recover the former from the latter. The original message is
typically referred to as the plaintext, and its encoded form as the ciphertext. Decryption
is the process of recovering the plaintext from the ciphertext.

The typical approach to encryption relies on the presence of a secret called the key. An
encryption algorithm uses the key and the plaintext in a prescribed manner to obtain the
ciphertext. The key is shared between the parties that intend to exchange a message se-
curely. Depending on the mode of sharing, there are two broad categories of cryptography.
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In symmetric-key cryptography, the key is a single entity that is known to both sender
and receiver. In public-key cryptography, also termed asymmetric cryptography, the
key is split into two portions, a public part and a private part, where the public key is
known to everyone (including the adversary) and the private key is known only to the re-
ceiver. In the rest of this section, we present a brief introduction to these two approaches
to cryptography.

One of the fundamental tenets of cryptography, known as Kerckhoff’s principle, states
that a cryptographic system (algorithm) should be secure even if everything about the sys-
tem, except the key, is public knowledge. In practical terms, this means that even if the
adversary knows all details about the design and implementation of a cryptographic algo-
rithm, as long as he does not know the key, he should be unable to recover the plaintext
from the ciphertext.

Symmetric-Key Cryptography

Let Alice and Bob be two parties that seek to communicate with each other securely. In
symmetric-key cryptography, they accomplish this using a shared secret key K. Suppose
Alice wishes to encrypt and send Bob an n-bit plaintext message,M = m1m2m3 . . .mn ∈
{0, 1}n. We wish to have an encryption scheme that, given the shared key K, should en-
code M into ciphertext C with the following two properites. First, the intended recipient
Bob should be able to easily recover M from C. Second, any adversary who does not
know K should not, by observing C, be able to gain any more information about M .

We present intuition for the operation of symmetric-key cryptography using a simple,
idealized scheme known as the one-time pad. In this scheme, the two parties Alice and
Bob share an n-bit secret key K = k1k2k3 . . . kn ∈ {0, 1}n, where the n bits are chosen
independently at random. K is known as the one-time pad. Given K, encryption works
by taking the bit-wise XOR of M and K; i.e., C = M ⊕K where⊕ denotes XOR. Alice
then sends C over to Bob, who decrypts C by taking the bit-wise XOR of C with K;
using properties of the XOR operation, C ⊕K = M .

Suppose an adversary Eve observes C. We claim that Eve has no more information about
M or K than she had without C. To see this, fix a plaintext message M . Then, every
unique ciphertext C ∈ {0, 1}n can be obtained from M with a corresponding unique
choice of keyK — simply setK = C⊕M where C is the desired ciphertext. Put another
way, a uniformly random bit-stringK ∈ {0, 1}n generates a uniformly random ciphertext

462 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


17. SECURITY AND PRIVACY

C ∈ {0, 1}n. Thus, looking at this ciphertext, Eve can do no better than guessing at the
value of K uniformly at random.

Notice that Alice cannot use the key K more than once! Consider what happens if she
does so twice. Then Eve has access to two ciphertexts C1 = M1⊕K and C2 = M2⊕K.
If Eve computes C1 ⊕ C2, using properties of XOR, she learns M1 ⊕M2. Thus, Eve
receives partial information about the messages. In particular, if Eve happens to learn
one of the messages, she learns the other one, and can also recover the key K. Thus, this
scheme is not secure if the same key is used for multiple communications, hence the name
“one-time pad.” Fortunately, other, stronger symmetric key cryptography schemes exist.

Most common symmetric key encryption methods use a building block termed a block
cipher. A block cipher is an encryption algorithm based on using a k-bit key K to
convert an n-bit plaintext message M into an n-bit ciphertext C. It can be mathemati-
cally captured in terms of an encryption function E : {0, 1}k × {0, 1}n → {0, 1}n; i.e.,
E(K,M) = C. For a fixed key K, the function EK defined by EK(M) = E(K,M)
must be a permutation from {0, 1}n to {0, 1}n. Decryption is the inverse function of
encryption; note that the inverse exists for each K as EK is invertible. We denote the
decryption function corresponding to EK by DK = E−1K . Note that for simplicity this
model of encryption abstracts it to be (only) a function of the message and the key; in
practice, care must be taken to use a suitable block cipher mode that, for example, does
not always encrypt the same plaintext to the same ciphertext.

One of the classic block ciphers is the data encryption standard (DES). Introduced in
the mid-1970s, DES was the first block cipher based on modern cryptographic techniques,
considered to be “commercial-grade,” with an open specification. While the details of
DES are beyond the scope of this chapter, we note that versions of DES are still used
in certain embedded devices. For instance, a version of DES, known as 3DES, which
involves applying the DES algorithm to a block three times, is used in certain “chip and
PIN” payment cards around in the world. The basic version of the DES involves use
of a 56-bit key and operates on 64-bit message blocks. While DES initially provided
an acceptable level of security, by the mid-1990s, it was getting easier to break it using
“brute-force” methods. Therefore, in 2001, the U.S. National Institute of Standards and
Technology (NIST) established a new cryptographic standard known as the advanced
encryption standard or AES. This standard is based on a cryptographic scheme called
Rijndael proposed by Joan Daemen and Vincent Rijmen, two researchers from Belgium.
AES uses a message block length of 128 bits and three different key lengths of 128, 192,
and 256 bits. Since its adoption, AES has proved to be a strong cryptographic algorithm
amenable to efficient implementation both in hardware and in software. It is estimated
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that the current fastest supercomputers could not successfully mount a brute-force attack
on AES within the estimated lifetime of the solar system!

Public-Key Cryptography

In order to use symmetric-key cryptography, Alice and Bob need to have already set up
a shared key in advance. This is not always easy to arrange. Public-key cryptography is
designed to address this limitation.

In a public-key cryptosystem, each principal (Alice, Bob, etc.) has two keys: a public key,
known to everyone, and a private key, known only to that principal. When Alice wants
to send Bob a secret message, she obtains his public key KB and encrypts her message
with it. When Bob receives the message, he decrypts it with his private key kB . In
other words, the encryption function based onKB must be invertible using the decryption
function based on kB , and moreover, must not be invertible without kB .

Let us consider the last point. Encryption using a public key must effectively be a one-
way function: a publicly-known function F such that it is easy to compute F (M) but
(virtually) impossible to invert without knowledge of a suitable secret (the private key).
Remarkably, there is more than one public-key cryptographic scheme available today,
each based on a clever combination of mathematics, algorithm design, and implementa-
tion tricks. We focus our attention here on one such scheme proposed in 1978 (Rivest
et al.), known as RSA for the initials of its creators: Rivest, Shamir and Adleman. For
brevity, we mostly limit our discussion to the basic mathematical concepts behind RSA.

Consider the setting where Bob wishes to create his public-private key pair so that others
can send him secret messages. The RSA scheme involves three main steps, as detailed
below:

1. Key Generation: Select two large prime numbers p and q, and compute their prod-
uct n = pq. Then compute ϕ(n) where ϕ denotes Euler’s totient function. This
function maps an integer n to the number of positive integers less than or equal
to n that are relatively prime to n. For the special case of the product of primes,
ϕ(n) = (p−1)(q−1). Select a random integer e such that 1 < e < ϕ(n) such that
the greatest common divisor of e and ϕ(n), denoted GCD(e, ϕ(n)) equals 1. Then
compute d, 1 < d < ϕ(n), such that ed ≡ 1 (mod ϕ(n)). The key generation
process is now complete. Bob’s public key KB is the pair (n, e). The private key is
kB = d.
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2. Encryption: When Alice wishes to send a message to Bob, she first obtains his
public key KB = (n, e). Given the message M to transmit, she computes the
ciphertext C as C = M e (mod n). C is then transmitted to Bob.

3. Decryption: Upon receipt of C, Bob computes Cd (mod n). By properties of
Euler’s totient function and modular arithmetic, this quantity equals M , allowing
Bob to recover the plaintext message from Alice.

We make two observations on the above scheme. First, the operations in the various
steps of RSA make heavy use of non-linear arithmetic on large numbers, especially mod-
ular multiplication of large integers and modular exponentiation. These operations must
be implemented carefully, especially on embedded platforms, in order to operate effi-
ciently. For instance, modular exponentiation is typically implemented using a version of
the square-and-multiply technique outlined in Example 16.1 of Chapter 16. Second, the
effectiveness of the approach depends critically on infrastructure to store and maintain
public keys. Without such a public-key infrastructure, an attacker Eve can masquerade
as Bob, advertising her own public key as Bob’s, and thus fooling Alice into sending her
messages intended for Bob. While such a public-key infrastructure has now been estab-
lished for servers on the Web using so-called “certificate authorities,” it is more challeng-
ing to extend that approach for networked embedded systems for a variety of reasons: the
large scale of devices that may act as servers, the ad-hoc nature of networks, and the re-
source constraints on many embedded devices.1 For this reason, public-key cryptography
is not as widely used in embedded devices as is symmetric-key cryptography.

17.1.2 Digital Signatures and Secure Hash Functions

The cryptographic primitives for encryption and decryption help in providing confiden-
tiality of data. However, by themselves, they are not designed to provide integrity or au-
thenticity guarantees. Those properties require the use of related, but distinct, primitives:
digital signatures, secure hash functions, and message authentication codes (MACs). This
section provides a brief overview of these primitives.

1Let’s Encrypt, an ongoing effort to develop a free, automated, and open certificate authority might miti-
gate some of these challenges; see https://letsencrypt.org/ for more details.
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Secure Hash Functions

A secure hash function (also known as cryptographic hash function) is a deterministic
and keyless function H : {0, 1}n → {0, 1}k that maps n-bit messages to k-bit hash
values. Typically, n can be arbitrarily large (i.e., the message can be arbitrarily long) while
k is a relatively small fixed value. For example, SHA-256 is a secure hash function that

Implementation Matters for Cryptography

Embedded platforms typically have limited resources such as memory or energy, and
must obey physical constraints, for instance on real-time behavior. Cryptography can
be computationally quite demanding. Such computations cannot simply be offloaded
“to the cloud” as secret data must be secured at the end point before being sent out
on the network. Thus, cryptographic primitives must be implemented in a manner that
obeys the constraints imposed by embedded platforms.

Consider, for example, public-key cryptography. These primitives involve modu-
lar exponentiation and multiplications that can have large timing, memory, and energy
requirements. Consequently, researchers have developed efficient algorithms as well
as software and hardware implementations. A good example is Montgomery mul-
tiplication (Montgomery, 1985), a clever way of performing modular multiplication
by replacing the division (implicit in computing the modulus) with addition. Another
promising technology is elliptic curve cryptography which allows for a level of se-
curity comparable with the RSA approach with keys of smaller bit-width, reducing the
memory footprint of implementations; see, for example, Paar and Pelzl (2009) for de-
tails. Due to the costs of public-key cryptography, it is often used to exchange a shared
symmetric key that is then used for all subsequent communication.

Another important aspect of implementing cryptographic schemes is the design and
use of random number generation (RNG). A high-quality RNG requires as input a
source of randomness with high entropy. Many recommended high entropy sources
involve physical processes, such atmospheric noise or atomic decay, but these may not
be easy to use in embedded systems, especially in hardware implementations. Alter-
natively, one can use on-chip thermal noise and the timing of input events from the
physical world and network events. Polling the physical world for many such sources
of randomness may consume power, leading to implementation trade-offs; see Perrig
et al. (2002) for an example.
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maps messages to a 256-bit hash, and is being adopted for authenticating some software
packages and for hashing passwords in some Linux distributions. For a message M , we
term H(M) as the “hash of M.”

A secure hash function H has certain important properties that distinguishes it from more
traditional hash functions used for non-security purposes:

• Efficient to compute: Given a message M , it should be efficient to compute H(M).
• Pre-image resistance: Given a hash (value) h, it should be computationally infeasible

to find a message M such that h = H(M).
• Second pre-image resistance: Given a messageM1, it should be computationally infea-

sible to find another message M2 such that H(M1) = H(M2). This property prevents
attackers from taking a known message M1 and modifying it to match a desired hash
value (and hence find the corresponding message M2).
• Collision resistance: It should be computationally infeasible to find two different mes-

sages M1 and M2 where H(M1) = H(M2). This property, a stronger version of
second pre-image resistance, prevents an attacker from taking any starting message
and modifying it to match a given hash value.

A common use of secure hash functions is to verify the integrity of a message or a piece of
data. For example, before you install a software update on your computer you might want
to verify that the update you downloaded is a valid copy of the package you are updating
and not something modified by an attacker. Providing a secure hash of the software update
on a separate channel than the one on which the update file is distributed can provide such
assurance. After separately downloading this hash value, you can verify, by computing
the hash yourself on the software, that the provided hash indeed matches the one you
compute. With the growing trend for embedded systems to be networked and to receive
software patches over the network, the use of secure hash functions is expected to be a
central component of any solution that maintains system integrity.

Digital Signatures

A digital signature is a cryptographic mechanism, based on public-key cryptography, for
the author of a digital document (message) to authenticate himself/herself to a third party
and to provide assurance about the integrity of the document. The use of digital signatures
involves the following three stages:
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1. Key generation: This step is identical to the key generation phase of public-key
cryptosystems, resulting in a public key-private key pair.

2. Signing: In this step, the author/sender digitally signs the document to be sent to
the receiving party.

3. Verification: The recipient of a signed document verifies, using the digital signature,
that the sender of the document is indeed who he/she purports to be.

We now illustrate how the basic scheme works for the RSA cryptosystem. Suppose
Bob wishes to digitally sign a message M before sending it to Alice. Recall from Sec-
tion 17.1.1 that, using RSA, Bob can generate his public key as KB = (n, e) and private
key kB = d. One simple authentication scheme is for Bob to use his key-pair in reverse:
to sign M , he simply encrypts it with his private key, computing S = Md (mod n), and
sends S to Alice along with M . When Alice receives this signed message, she uses KB

to recover M from the signature S and verifies it by comparing it with the received mes-
sage. If they match, the message has been authenticated; otherwise, Alice has detected
tampering either in the message or its signature.

The above scheme is simple, but flawed. In particular, given the signatures S1 and S2 for
two messages M1 and M2, notice that an attacker can construct the signature for message
M1 ·M2 by simply multiplying together S1 and S2 (mod n). In order to guard against
this attack, one can first compute a secure hash of M1 and M2 before computing the
signatures on the resultant hashes rather than on the messages.

Message Authentication Codes

A message authentication code (MAC) is a cryptographic mechanism, based on
symmetric-key cryptography, for providing integrity and authenticity to a document. It is
thus the symmetric-key analog of a digital signature. As in other symmetric-key schemes,
the use of a MAC requires first setting up a shared key between sender and receiver that
each of them can use to authenticate messages sent by the other. For this reason, MACs
are best suited to settings where such a shared key can be easily set up. For instance,
modern automobiles comprise multiple electronic control units (ECUs) communicating
with each other on an on-board network such as a controller-area network (CAN) bus.
In this case, if each ECU is pre-programmed with a common key, then each ECU can
authenticate messages sent from other ECUs on the CAN bus using MACs.
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17.2 Protocol and Network Security

An attacker typically gains access to a system via its connection to a network or some
other medium used to connect it with other components. Additionally, it is increasingly
the case that a single embedded system comprises many distributed components con-
nected over a network. Thus, one must address fundamental questions about security
over a network and using various communication protocols, a field termed protocol se-
curity or network security. In this section, we review basic ideas related to two topics
of particular relevance for embedded systems: key exchange and cryptographic protocol
design.

17.2.1 Key Exchange

We have already seen how secret keys are critical components of both symmetric and
asymmetric cryptosystems. How are these keys established in the first place? In a sym-
metric cryptosystem, we need a mechanism for two communicating parties to agree on a
single shared key. In an asymmetric cryptosystem, we need infrastructure for establish-
ing and maintaining public keys so that any party on a network can look up the public
key of any other party it wishes to communicate with. In this section, we discuss a classic
method for key exchange and some alternative schemes customized to specific embedded
system design problems, with a focus on symmetric cryptography.

Diffie-Hellman Key Exchange

In 1976, Whitfield Diffie and Martin Hellman introduced what is widely considered the
first public-key cryptosystem (Diffie and Hellman, 1976). The crux of their proposal was
a clever scheme for two parties to agree on a shared secret key using a communication
medium observable by anyone. This scheme is commonly referred to as Diffie-Hellman
key exchange.

Suppose there are two parties Alice and Bob that wish to agree on a secret key. Everything
Alice sends to Bob, and vice-versa, can be viewed by an attacker Eve. Alice and Bob wish
to agree on a key while ensuring that it is computationally infeasible for Eve to compute
that key by observing their communication. Here is how Alice and Bob can use Diffie-
Hellman key exchange to achieve this objective.
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To begin with, Alice and Bob need to agree on two parameters. In doing so, they can use
various methods including a hard-coded scheme (e.g., a parameter hard-coded into the
same program they use) or one of them can announce the parameters to the other in some
deterministic fashion (e.g., based on a fixed ordering between their network addresses).
The first parameter is a very large prime number p. The second is a number z such that
1 < z < p− 1. Note that an attacker can observe z and p.

After these parameters p and z are agreed upon, Alice randomly selects a number a from
the set {0, 1, . . . , p − 2} and keeps it secret. Similarly, Bob randomly selects a number
b ∈ {0, 1, . . . , p − 2} and keeps it secret. Alice computes the quantity A = za (mod p)
and sends it to Bob. Likewise, Bob computes B = zb (mod p) and sends it to Alice. In
addition to z and p, the attacker Eve can observe A and B, but not a and b.

On receiving B, Alice uses her secret number a to compute Ba (mod p). Bob performs
the analogous step, computing Ab (mod p). Now, observe that

Ab (mod p) = zab (mod p) = Ba (mod p)

Thus, amazingly, Alice and Bob have agreed on a shared key K = zab (mod p) simply
by communicating on a public channel. Note that they have revealed neither of the secret
numbers a or b to the attacker Eve. Without knowledge of a or b, Eve cannot reliably
compute K. Moreover, it is computationally very difficult for Eve to compute a or b sim-
ply by knowing p, z, A or B, since the underlying problem is one known as the discrete
logarithm problem, for which no efficient (polynomial-time) algorithm is known. Put
another way, the function f(x) = zx (mod p) is a one-way function.

Diffie-Hellman is simple, elegant, and effective: unfortunately, it is typically not practical
for resource-constrained embedded systems. Computing it involves modular exponen-
tiation for large primes (typical key sizes range to 2048-bits), and thus impractical for
energy-constrained platforms that must obey real-time constraints. We therefore discuss
next a few alternative schemes.

Timed Release of Keys

Many networked embedded systems use a broadcast medium for communication — one
where senders send data over a public channel where all receivers, intended and unin-
tended, can read that data. Examples include on-board automotive networks using the
CAN bus and wireless sensor networks. A broadcast medium has many advantages: it
is simple, requires little infrastructure, and a sender can quickly reach a large number of
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receivers. However, it also has certain disadvantages, notably that malicious parties can
eavesdrop and inject malicious packets with ease. Reliability of the broadcast medium
can also be concern.

How can one achieve secure key exchange in such a broadcast medium, under constraints
on timing and energy consumption? This question was studied in the early 2000s, when
the first work was done on deploying wireless sensor networks (e.g., see Perrig et al.
(2004); Perrig and Tygar (2012)). One of the novel ideas is to leverage timing properties
of these networks, an idea whose roots go back to a paper by Anderson et al. (1998).

The first property is that of clock synchronization, where different nodes on the network
have clocks such that the difference between the values of any two clocks is bounded by
a small constant. Many sensor nodes can have synchronized clocks via GPS or protocols
such as the precision time protocol (PTP) (Eidson, 2006).

The second property is that of scheduled transmission. Each node in the network transmits
packets at pre-determined times, following a schedule.

The combination of the above two properties permits the use of a secure broadcast pro-
tocol called µTESLA (Perrig et al., 2002). This protocol is designed for broadcast net-
works comprising two types of nodes, base stations and sensor nodes. A key property
of µTESLA is secure authentication — a node receiving a message should be able to
determine who the authentic sender is, discarding spoofed messages. It performs this by
using a message authentication code (MAC) in each message, which is computed using
a secret key. This secret key is broadcast some time after the original message was sent,
allowing the receiver to compute the MAC for itself, and determine the authenticity of
the received message. Since each message is timestamped, upon receiving a message the
receiver verifies that the key used to compute the MAC has not yet been disclosed based
on this timestamp, its local clock, the maximum clock skew, and the time schedule at
which keys are disclosed. If the check fails, the message is discarded; otherwise, when
the key is received, the authenticity of the message is checked by computing the MAC
and checking against the received MAC. In this way, the timed release of keys is used to
share keys between a broadcast sender and its receivers, for the purpose of authenticating
messages.

A similar approach has been adopted for CAN-based automotive networks. Lin et al.
(2013) have shown how to extend the µTESLA approach for the CAN bus where the
nodes do not necessarily share a common global notion of time. Timed delayed release
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of keys has also been implemented for Time Triggered Ethernet (TTE) (Wasicek et al.,
2011).

Other Schemes

In certain application domains, customized schemes have been developed for key ex-
change using special characteristics of those domains. For instance, Halperin et al. (2008)
discuss a key exchange scheme for implantable medical devices (IMDs) such as pace-
makers and defibrillators. They propose a “zero-power” security mechanism on the im-
planted device based on radio-frequency (RF) power harvesting. The novel key exchange
scheme involves a “programmer” device initiating communication with the IMD (and
supplying an RF signal to power it). The IMD generates a random value that is commu-
nicated as a weak modulated sound wave that is perceptible by the patient. The security

Reverse Engineering Systems to Improve Security

Several embedded systems were designed at a time when security was a secondary
design concern, if one at all. In recent years, researchers have shown how this lack of
attention to security can lead to compromised systems in various domains. The chief
approach taken is to reverse engineer protocols that provide access to systems and the
working of their components.

We present here three representative examples of vulnerabilities demonstrated in
real embedded systems. Halperin et al. (2008) show how implantable medical devices
(IMDs) can be read and reprogrammed wirelessly. Koscher et al. (2010) demonstrate
for automobiles how the on-board diagnostics bus (OBD-II) protocol can be subverted
to adversarially control a wide range of functions, including disabling the brakes and
stopping the engine. Ghena et al. (2014) study traffic light intersections and show
how their functioning can be partially controlled wirelessly to perform, for example, a
denial-of-service attack causing traffic congestion.

Such investigations based on reverse engineering “legacy” embedded systems to un-
derstand their functioning and uncover potential security flaws form an important part
of the process of securing our cyber-physical infrastructure.
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of this scheme relies on a threat model based on physical security around the patient’s
immediate vicinity, one that is plausible for this particular application.

17.2.2 Cryptographic Protocol Design

Some of the most-publicized vulnerabilities in networked embedded systems, at the time
of writing, arise from the fact that the communication protocols were designed with little
or no security in mind (see the box on page 472). However, even protocols designed for
security using cryptographic primitives can have vulnerabilities. Poor protocol design can
compromise confidentiality, integrity, and authenticity properties even if one assumes per-
fect cryptography and the presence of key exchange and key management infrastructure.
We explain this point with an example.

Example 17.1: A replay attack on a protocol is one where an attacker is able to
violate a security property by replaying certain messages in the protocol, possibly
with modifications to accompanying data.

We describe here a replay attack on a fictitious wireless sensor network protocol.
This network comprises a base station S and several energy-constrained sensor
nodes N1, N2, . . . , Nk communicating via broadcast. Each node spends most of
its time in a sleep mode, to conserve energy. When S wants to communicate with
a particular node Ni to take a sensor reading, it sends it a message M encrypted
with a suitable shared key Ki pre-arranged between S and Ni. Ni then responds
with an encrypted sensor reading R. In other words, the protocol has a message
exchange as follows:

S → Ni : E(Ki,M)

Ni → S : E(Ki, R)

This protocol, on the face of it, seems secure. However, it has a flaw that can
hinder operation of the network. Since the nodes use broadcast communication,
an attacker can easily record the messageE(Ki,M). The attacker can then replay
this message multiple times at a low power so that it is detected by Ni, but not by
S. Ni will keep responding with encrypted sensor readings, possibly causing it
to run down its battery much faster than anticipated, and disabling its operation.

Notice that there was nothing wrong with the individual cryptographic steps used
in this protocol. The problem was with the temporal behavior of the system —
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that Ni had no way of checking if a message is “fresh.” A simple countermeasure
to this attack is to attach a fresh random value, called a nonce, or a timestamp
with each message.

This attack is also an example of a so-called denial-of-service attack, abbre-
viated DoS attack, indicating that the impact of the attack is a loss of service
provided by the sensor node.

Fortunately, techniques and tools exist to formally model cryptographic protocols and ver-
ify their correctness with respect to specific properties and threat models before deploying
them. More widespread use of these techniques is needed to improve protocol security.

17.3 Software Security

The field of software security is concerned with how errors in the software implementa-
tion can impact desired security and privacy properties of the system. Bugs in software
can and have been used to steal data, crash a system, and worse, allow an attacker to obtain
an arbitrary level of control over a system. Vulnerabilities in software implementations
are one of the largest categories of security problems in practice. These vulnerabilities
can be especially dangerous for embedded systems. Much of embedded software is pro-
grammed in low-level languages such as C, where the programmer can write arbitrary
code with few language-level checks. Moreover, the software often runs “bare metal”
without an underlying operating system or other software layer that can monitor and trap
illegal accesses or operations. Finally, we note that in embedded systems, even “crashing”
the system can have severe consequences, since it can completely impair the interaction
of the system with the physical world. Consider, for example, a medical device such as a
pacemaker, where the consequences of a crash may be that the device stops functioning
(e.g. pacing), leading to potentially life-threatening consequences for the patient.

In this section, we give the reader a very brief introduction to software security problems
using a few illustrative examples. The reader is referred to relevant books on security
(e.g., Smith and Marchesini (2007)) for further details.

Our examples illustrate a vulnerability known as a buffer overflow or buffer overrun.
This class of errors is particularly common in low-level languages such as C. It arises from
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the absence of automatic bounds-checking for accessing arrays or pointers in C programs.
More precisely, a buffer overflow is a error arising from the absence of a bounds check
resulting in the program writing past the end of an array or memory region. Attackers can
use this out-of-bounds write to corrupt trusted locations in a program such as the value
of a secret variable or the return address of a function. (Tip: material in Chapter 9 on
Memory Architectures might be worth reviewing.) Let us begin with a simple example.

Example 17.2: The sensors in certain embedded systems use communication
protocols where data from various on-board sensors is read as a stream of bytes
from a designated port or network socket. The code example below illustrates one
such scenario. Here, the programmer expects to read at most 16 bytes of sensor
data, storing them into the array sensor data.

1 char sensor_data[16];
2 int secret_key;
3

4 void read_sensor_data() {
5 int i = 0;
6

7 // more_data returns 1 if there is more data,
8 // and 0 otherwise
9 while(more_data()) {

10 sensor_data[i] = get_next_byte();
11 i++;
12 }
13

14 return;
15 }

The problem with this code is that it implicitly trusts the sensor stream to be no
more than 16 bytes long. Suppose an attacker has control of that stream, either
through physical access to the sensors or over the network. Then an attacker can
provide more than 16 bytes and cause the program to write past the end of the
array sensor data. Notice further how the variable secret key is defined
right after sensor data, and assume that the compiler allocates them adja-
cently. In this case, an attacker can exploit the buffer oveflow vulnerability to
provide a stream of length 20 bytes and overwrite secret key with a key of
his choosing. This exploit can then be used to compromise the system in other
ways.
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The example above involves an out-of-bounds write in an array stored in global memory.
Consider next the case when the array is stored on the stack. In this case, a buffer overrun
vulnerability can be exploited to overwrite the return address of the function, and cause it
to execute some code of the attacker’s choosing. This can lead to the attacker gaining an
arbitrary level of control over the embedded system.

Example 17.3: Consider below a variant on the code in Example 17.2 where
the sensor data array is stored on the stack. As before, the function reads
a stream of bytes and stores them into sensor data. However, in this case,
the read sensor data is then processed within this function and used to set certain
globally-stored flags (which can then be used to take control decisions).

1 int sensor_flags[4];
2

3 void process_sensor_data() {
4 int i = 0;
5 char sensor_data[16];
6

7 // more_data returns 1 if there is more data,
8 // and 0 otherwise
9 while(more_data()) {

10 sensor_data[i] = get_next_byte();
11 i++;
12 }
13

14 // some code here that sets sensor_flags
15 // based on the values in sensor_data
16

17 return;
18 }

Recall from Chapter 9 how the stack frame of a function is laid out. It is possi-
ble for the return address of function process sensor data to be stored in
memory right after the end of the array sensor data. Thus, an attacker can
exploit the buffer overflow vulnerability to overwrite the return address and cause
execution to jump to a location of his choice. This version of the buffer overflow
exploit is sometimes (and rather aptly) termed as stack smashing.

Moreover, the attacker could write a longer sequence of bytes to memory and
include arbitrary code in that sequence. The overwritten return address could be
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tailored to be within this overwritten memory region, thus causing the attacker
to control the code that gets executed! This attack is often referred to as a code
injection attack.

How do we avoid buffer overflow attacks? One easy way is to explicitly check that we
never write past the end of the buffer, by keeping track of its length. Another approach
is to use higher-level languages that enforce memory safety — preventing the program
from reading or writing to locations in memory that it does not have privileges for or that
the programmer did not intend it to. Exercise 1 gives you some practice with writing code
so as to avoid a buffer overflow.

17.4 Information Flow

Many security properties specify restrictions on the flow of information between princi-
pals. Confidentiality properties restrict the flow of secret data to channels that are readable
by an attacker. For example, your bank balance should be viewable only by you and au-
thorized bank personnel and not by an attacker. Similarly, integrity properties restrict the
flow of untrusted values, controlled by an attacker, to trusted channels or locations. Your
bank balance should be writable only by trusted deposit or withdrawal operations and not
arbitrarily by a malicious party. Thus, secure information flow, the systematic study of
how the flow of information in a system affects its security and privacy, is a central topic
in the literature.

Given a component of an embedded system it is important to understand how informa-
tion flows from secret locations to attacker-readable “public” locations, or from attacker-
controlled untrusted channels to trusted locations. We need techniques to detect illegal
information flows and to quantify their impact on the overall security of the system. Addi-
tionally, given security and privacy policies, we need techniques to enforce those policies
on a system by suitably restricting the flow of information. Our goal, in this section, is to
equip the reader with the basic principles of secure information flow so as to be able to
develop such techniques.
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17.4.1 Examples

In order to motivate the secure information flow problem, we present a series of examples.
Although these examples focus on confidentiality, the same approaches and concerns ap-
ply for integrity properties as well.

Example 17.4: Medical devices are increasingly software-controlled, personal-
ized, and networked. An example of such a device is a blood glucose meter, used
by doctors and patients to monitor a patient’s blood glucose level. Consider a hy-
pothetical glucose meter that can take a reading of a patient’s glucose level, show
it on the device’s display, and also transmit it over the network to the patient’s
hospital. Here is a highly-abstracted version of the software that might perform
these tasks.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 void take_reading() {
4 float reading = read_from_sensor();
5

6 display(reading);
7

8 send(network_socket, hospital_server,
9 reading, patient_id);

10

11 return;
12 }

The function take reading records a single blood glucose reading (e.g., in
mg/dL) and stores it in a floating-point variable reading. It then writes this
value, suitably formatted, to the device’s display. Finally, it transmits the value
along with the patient’s ID without any encryption over the network to the hospital
server for analysis by the patient’s doctor.

Suppose that the patient wishes to have his glucose level kept private, in the sense
that its value is known only to him and his doctor, but no one else. Does this
program achieve that objective? It is easy to see that it does not, as the value
of reading is transmitted “in the clear” over the network. We can formal-
ize this violation of privacy as an illegal information flow from reading to
network socket, where the former is a secret location whereas the latter is a
public channel visible to an attacker.
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With the knowledge of cryptographic primitives presented earlier in this chapter, we know
that we can do better. In particular, let us assume the presence of a shared key between the
patient’s device and the hospital server that permits the use of symmetric-key encryption.
Consider the following new version of the above example.

Example 17.5: In this version of the program, we employ symmetric-key cryp-
tography, denoted by AES, to protect the reading. The encryption process is ab-
stractly represented by the function enc AES, and send enc differs from send
only in the type of its third argument.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 long cipher_text;
4

5 struct secret_key_s {
6 long key_part1; long key_part2;
7 }; // struct type storing 128-bit AES key
8

9 struct secret_key_s secret_key; // shared key
10

11 void take_reading() {
12 float reading = read_from_sensor();
13

14 display(reading);
15

16 enc_AES(&secret_key, reading, &cipher_text);
17

18 send_enc(network_socket, hospital_server,
19 cipher_text, patient_id);
20

21 return;
22 }

In this case, there is still a flow of information from reading to
network socket. In fact, there is also a flow from secret key to
network socket. However, both these flows passed through an encryption
function denoted by enc AES. In the security literature, such a function is termed
a declassifier since it encodes the secret data in such a way that it becomes accept-
able to transmit the encoded, “declassified” result to an attacker-readable channel.
In other words, the declassifier serves as a “dam” blocking the flow of secret infor-
mation and releasing only information that, by the properties of the cryptographic
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primitives, provides attackers with no more information than they had before the
release.

While the above fix to the code blocks the flow of information about the reading of the
patient’s blood glucose, note that it does not completely protect the program. In particular,
notice that the patient’s ID is still being sent in the clear over the network! Thus, even
though the attacker cannot tell, without the secret key, what the patient’s reading is, he/she
knows who transmitted a reading to the hospital (and possibly also at what time). Some
private data is still being leaked. One solution to this leak is fairly obvious – we can
encrypt both variables reading and patient id using the secret key before sending
them over the network.

So far we have assumed an implicit threat model where the attacker can only read in-
formation sent over the network. However, for many embedded systems, attackers may
also have physical access to the device. For instance, consider what happens if the patient
loses his device and an unauthorized person (attacker) gains access to it. If the patient’s
readings are stored on the device, the attacker might be able to read the data stored on it
if such an illegal information flow exists. One approach to guard against this attack is to
have the patient create a password, much like one creates a password for other personal
devices, and have the device prompt one for the password when turned on. This idea is
discussed in the example below.

Example 17.6: Suppose that a log of the past 100 readings is stored
on the device. The code below sketches an implementation of a function
show readings that prompts the user for an integer password, and displays
the stored readings only if the current password stored in patient pwd is en-
tered, otherwise displaying an error message that has no information about the
stored readings.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 int patient_pwd; // stored patient password
4

5 float stored_readings[100];
6

7 void show_readings() {
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8 int input_pwd = read_input(); // prompt user for
9 // password and read it

10 if (input_pwd == patient_pwd) // check password
11 display(&stored_readings);
12 else
13 display_error_mesg();
14

15 return;
16 }

Assuming the attacker does not know the value of patient pwd, we can see
that the above code does not leak any of the 100 stored readings. However, it
does leak one bit of information: whether the input password provided by the
attacker equals the correct password or not. In practice, such a leak is deemed
acceptable since, for a strong choice of patient password, it would take even the
most determined attacker an exponential number of attempts to log in success-
fully, and this can be thwarted by disallowing more than a small, fixed number of
attempts to provide the correct password.

The above example illustrates the concept of quantitative information flow (QIF). QIF
is typically defined using a function measuring the amount of information flowing from
a secret location to a public location. For instance, one might be interested in computing
the number of bits leaked, as illustrated by the example above. If this quantity is deemed
small enough, the information leak is tolerated, otherwise, the program must be rewritten.

However, the code in Example 17.6 has a potential flaw. Once again, this flaw stems
from a corresponding threat model. In particular, consider the case where an attacker not
only has physical possession of the device, but also has the knowledge and resources to
perform invasive attacks by opening up the device, and reading out the contents of main
memory as it executes. In this case, the attacker can read the value of patient pwd
simply by booting up the device and reading out the contents of memory as the system is
initialized.

How can we protect against such invasive attacks? One approach involves the use of se-
cure hardware or firmware coupled with secure hash functions. Suppose the hardware
provides for secure storage where a secure hash of the user password can be written out,
and any tampering detected. Then, only the secure hash need be stored in main memory,
not the actual password. By the properties of a secure hash function, it would be compu-
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tationally infeasible for an attacker to reverse engineer the password simply by knowing
the hash.

A similar flaw exists in Example 17.5, where the secret key is stored in memory in the
clear. However, in this case, simply taking a secure hash of the key is insufficient as the
actual key is required to perform encryption and decryption to facilitate secure commu-
nication with the server. How do we secure this function? In general, this requires an
additional component such as a secure key manager, e.g., implemented in hardware or by
a trusted operating system, one that uses a master key to encrypt or decrypt the secret key
for the application.

Finally, although our examples illustrate the flow of information through values of vari-
ables in software, information can also be leaked through other channels. The term side
channel is used to refer to a channel that involves a non-traditional way of communicat-
ing information, typically using a physical quantity such as time, power consumption, or
the amplitude and frequency of an audio signal, or a physical modification to the system,
such as a fault, that induces a traditional information leak. We cover some basic concepts
on side-channel attacks in Section 17.5.2.

17.4.2 Theory

So far we have spoken of confidentiality and integrity properties only informally. How
can we state these properties precisely, similar to the notation introduced in Chapter 13?
It turns out that specifying security and privacy properties formally can be quite tricky.
Various formalisms have been proposed in the literature over the years, and there is no
consensus on a common definition of notions such as confidentiality or integrity. How-
ever, some foundational concepts and principles have emerged. We introduce these basic
concepts in this section.

The first key concept is that of non-interference. The term non-interference is used
to refer to any of a family of (security) properties that specify how actions taken by one
or more principals can or cannot affect (“interfere with”) actions taken by others. For
instance, for integrity properties, we require that actions of an attacker cannot affect the
values of certain trusted data or computations. Similarly, for confidentiality properties, we
require that the actions taken by an attacker cannot depend on secret values (thus implying
that the attacker has no information about those secrets).
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There are several variants of non-interference that are useful for expressing different kinds
of security or privacy properties. In defining these, it is customary to use the terms high
and low to denote two security levels. For confidentiality, the high level denotes secret
data/channels and the low level denotes public data/channels. For integrity, the high level
denotes trusted data/channels while the low level denotes untrusted data/channels. Non-
interference is typically defined over traces of a system, where each input, output, and
state element is classified as being either low or high.

The first variant we introduce is observational determinism (McLean, 1992; Roscoe,
1995) which is defined as follows: if two traces of a system are initialized to be in states
in which the low elements are identical, and they receive the same low inputs, then that
implies that the low elements of all states and outputs in that trace must be identical. Put
another way, the low parts of a system’s trace are deterministic functions of the low initial
state and the low inputs, and nothing else. This, in turn, implies that an attacker who
only controls or observes the low parts of a system’s trace cannot infer anything about the
high parts.

Another variant is generalized non-interference (McLean, 1996) which requires a sys-
tem to exhibit a set of traces with a special property: for any two traces τ1 and τ2, there
must exist a newly-constructed trace τ3 such that, at each time step in τ3, the high inputs
are the same as in τ1 and the low inputs, states, and outputs are the same as in τ2. Intu-
itively, by observing the low states and outputs, an attacker cannot tell if she is seeing the
high inputs as in τ1 or as they occur in τ2.

The different variants of non-interference, however, share something in common. Math-
ematically, they are all hyperproperties (Clarkson and Schneider, 2010). Formally, a
hyperproperty is a set of sets of traces. Contrast this definition with the definition of
a property as a set of traces, as introduced in Chapter 13. The latter is more accurately
called a trace property, as its truth value can be evaluated on a single, standalone trace of
a system. The truth value of a hyperproperty, in contrast, typically2 cannot be determined
by observing a single trace. One needs to observe multiple traces, and compute a relation
between them, in order to determine if they together satisfy or violate a hyperproperty.

Example 17.7: Consider the two state machines in Figure 17.1. In both cases,
the state machine has one secret input s and one public output z. Additionally,

2Clearly, every (trace) property has an equivalent hyperproperty, which is why we use the adverb “typi-
cally.”
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x=0 / 1

inputs: s, x : {0,1}
output: z : {0,1}

x=1 / 0

(a) M1

s = 0 / 1

input: s : {0,1}
output: z : {0,1}

s = 0 / 1

s = 1 / 0

s = 1 / 0

(b) M2

Figure 17.1: An example of a state machine satisfying observational determinism
(a) and one that does not (b). Input s is a secret (high) input, and output z is a
public (low) output.

M1 has a public input x. An attacker can directly read the value of x and z but
not s.

State machine M1 satisfies observational determinism (OD). For any input se-
quence, M1 produces a binary output sequence that depends solely on the values
of the public input x and not on s.

However, M2 does not satisfy OD. For example, consider the input sequence
1010ω. Then, the corresponding output sequence of M2 will be 0101ω. If the in-
put sequence is switched to 0101ω, then the output will correspondingly change to
1010ω. The adversary can gain information about the input s simply by observing
the output z.

17.4.3 Analysis and Enforcement

Several techniques have been developed to analyze and track the flow of information in
software systems, and, in some cases, to enforce information flow policies either at design
time or run time. We mention some of these methods below, with the caveat that this is a
rapidly evolving area and our selection is meant to be representative, not exhaustive.
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Taint analysis. In taint analysis, the flow of information is tracked using labels (“taint”)
attached to data items and by monitoring memory operations. When an illegal informa-
tion flow is detected, a warning is generated. Taint analysis has been mainly developed for
software systems. It can be performed statically, when software is compiled, or dynam-
ically, at run time. For instance, for the code in Example 17.4, taint analysis can detect
the flow of secret data from reading to network socket. At run time, this can be
detected before the write to the network socket, and used to raise a run-time exception or
other preventive action. Static taint analysis is a simple concept, and easy to apply, but
can generate false alarms. Dynamic taint analysis is just as easy and more precise, but im-
poses a run-time overhead. System designers must evaluate for themselves the suitability
of either mechanism for their contexts.

Formal verification of information flow. Techniques for formal verification, such as the
model checking methods covered in Chapter 15, can also be adapted to verify secure infor-
mation flow. These methods usually operate after the original analysis problem has been
reduced to one of checking a safety property on a suitably constructed model (Terauchi
and Aiken, 2005). Compared to taint analysis, such methods are much more precise, but
they also come at a higher computational cost. As these methods are still rapidly evolving,
detailed coverage of these methods is beyond the scope of this chapter at the present time.

Run-time enforcement of policies. The notion of taint allows one to specify simple
information flow policies, such as disallowing the flow of secret data to any public location
at all times. However, some security and privacy policies are more complex. Consider,
for example, a policy that a person’s location is public some of the time (e.g., while they
are at work or in a public space such as an airport), but is kept secret at selected other
times (e.g., when they visit their doctor). Such a policy involves a time-varying secret tag
on the variable storing the person’s location. The problem of specifying, checking, and
enforcing such expressive policies is an active area of research.

17.5 Advanced Topics

Certain problems in security and privacy gain special significance in the context of cyber-
physical systems. In this section, we review two of these problems and highlight some of
the key issues.
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17.5.1 Sensor and Actuator Security

Sensors and actuators form the interface between the cyber and physical worlds. In many
cyber-physical systems, these components are easily observed or controlled by an at-
tacker. Detecting attacks on these components and securing them is therefore an impor-
tant problem. Central to both efforts is to develop realistic threat models and mechanisms
to address those threats. We review two representative recent efforts in the area of sensor
security.

Recent work has focused on attacks on analog sensors, i.e., developing threat models
for these attacks as well as countermeasures. The main mode of attack is to employ
electromagnetic interference (EMI) to modify the sensed signal. Two recent projects
have studied EMI attacks in different applications. Foo Kune et al. (2013) investigate
EMI attacks at varying power and distances on implantable medical devices and consumer
electronics. Shoukry et al. (2013) study the possibility of EMI attacks that spoof sensor
values for certain types of automotive sensors. We present here some basic principles
from both projects.

Threat Models

In the context of sensor security, EMI can be classified along multiple dimensions. First,
such interference can be invasive, involving modification to the sensor components, or
non-invasive, involving observation or remote injection of spurious values. Second, it
can be unintentional (e.g., arising from lightning strikes or transformers) or intentional
(injected by an attacker). Third, it can be high-power, potentially injecting faults into or
disabling the sensor, or low-power, which simply injects false values or modifies sensor
readings. These dimensions can be used to define informal threat models.

Foo Kune et al. (2013) describe a threat model for intentional, low-power, non-invasive
attacks. This combination of characteristics is amongst the hardest to defend against,
since the low-power and non-intrusive nature of the attacks makes it potentially hard to
detect. The researchers design two kinds of EMI attacks. Baseband attacks inject signals
within the same frequency band in which the generated sensor readings lie. They can be
effective on sensors that filter signals outside the operating frequency band. Amplitude-
modulated attacks start with a carrier signal in the same frequency band of the sensor and
modulate it with an attack signal. They can match the resonant frequency of a sensor,
thus amplifying the impact of even a low-power attack signal. They demonstrate how
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these attacks can be performed on implantable cardiac devices, injecting forged signals
in leads, inhibiting pacing, causing defibrillation, etc. from 1 to 2 meters away from the
device.

The threat model considered by Shoukry et al. (2013) is for intentional, non-invasive
attacks, with a focus on anti-lock braking systems (ABS) in automobiles. The magnetic
wheel speed sensors are attacked by placing a malicious actuator in close proximity of
the sensor (mountable from outside the vehicle) that modifies the magnetic field measured
by the ABS sensor. One form of the attack, in which the actuator disrupts the magnetic
field but is not precisely controllable by the attacker, can be “merely” disruptive. Its
impact is similar to unintentional, high-power EMI. The trickier form of the attack is
a spoofing attack, where the ABS system is deceived into measuring an incorrect but
precise wheel speed for one or more of the wheels. This is achieved by implementing
an active magnetic shield around the actuator. The reader is referred to the paper for
additional details. The authors show how their attack can be mounted on real automotive
sensors, and demonstrate, in simulation, how the ABS system can be tricked into making
an incorrect braking decision in icy road conditions, causing the vehicle to slip off-road.

Countermeasures

Both of the projects mentioned above also discuss potential countermeasures to the at-
tacks.

Foo Kune et al. (2013) consider a range of defenses, both hardware-based and software-
based. Hardware or circuit-level approaches include shielding the sensor, filtering the
input signals, and common mode noise rejection. However, these methods are reported to
have limited effectiveness. Thus, software-based defenses are also introduced, including
estimating the EMI level in the environment, adaptive filtering, cardiac probing to see if
the sensed signals follow an expected pattern, reverting to safe defaults, and notifying
the victim (patient) or physician about the possibility of an attack to allow them to take
suitable actions to move away from the EMI source.

Shoukry et al 2015; 2016 take a somewhat different approach that is rooted in control
theory and formal methods. The idea is to create a mathematical model of the system and
of sensor attacks, and devise algorithms to identify subsets of sensors that are attacked,
isolate them, and use the remaining (unattacked) sensors to perform state estimation and
control.
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17.5.2 Side-channel Attacks

Many embedded systems are accessible to an attacker not just over a network but also
physically. These systems are therefore exposed to classes of attacks not possible in other
settings. One such class are known as side-channel attacks, which involve illegal infor-
mation flows through side channels. Since the seminal work by Kocher (1996), attacks
have been demonstrated using several types of side channels, including timing (Brumley
and Boneh, 2005; Tromer et al., 2010), power (Kocher et al., 1999), faults (Anderson and
Kuhn, 1998; Boneh et al., 2001) memory access patterns (Islam et al., 2012), acoustic sig-
nals (Zhuang et al., 2009), and data remanence (Anderson and Kuhn, 1998; Halderman
et al., 2009). Timing attacks involve the observation of the timing behavior of a system
rather than the output values it generates. Power attacks involve the observation of power
consumption; a particularly effective variant, known as differential power analysis, are
based on a comparative analysis of power consumption for different executions. In mem-
ory access pattern attacks, observing addresses of memory locations accessed suffices
to extract information about encrypted data. Fault attacks induce information leaks by
modifying normal execution via fault injection.

While an exhaustive survey of side-channel attacks is outside the scope of this book,
we illustrate, using the example below, how information can leak through a timing side
channel.

Example 17.8: Consider the C implementation of modular exponentiation given
as the modexp function of Example 16.1. In Figure 17.2 we show how the exe-
cution time of modexp varies as a function of the value of exponent. Recall
how the exponent usually corresponds to the secret key in implementations of
public-key cryptosystems such as RSA or Diffie-Hellman. Execution time is de-
picted in CPU cycles on the y axis, while the value of exponent ranges from
0 to 15. The measurements are made on a processor implementing the ARMv4
instruction set.

Notice that there are five clusters of measurements around 600, 700, 750, 850,
and 925 cycles respectively. It turns out that each cluster corresponds to values of
exponent that, when represented in binary, have the same number of bits set to
1. For example, the execution times for values 1, 2, 4 and 8, each corresponding
to a single bit set to 1, are clustered around 700 CPU cycles.
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Figure 17.2: Timing data for the modexp function of Example 16.1. The graph
shows how execution time (in CPU cycles on the y-axis) for modexp varies as a
function of the value of the 4-bit exponent (listed on the x-axis).
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Thus, from simply observing the execution time of modexp and nothing else,
and with some knowledge of the underlying hardware platform (or access to it),
an attacker can infer the number of bits set to 1 in exponent, i.e., in the secret
key. Such information can significantly narrow down the search space for brute-
force enumeration of keys.

In Example 17.8, it is assumed that an attacker can measure the execution time of a fairly
small piece of code such as modexp, embedded within a larger program. Is this realistic?
Probably not, but it does not mean timing attacks cannot be mounted. More sophisticated
methods are available for an attacker to measure execution time of a procedure. For
instance, Tromer et al. (2010) show how AES can be broken using a timing attack where
an attacker simply induces cache hits or misses in another process (by writing to carefully
chosen memory locations within its own memory segment), along with an indirect way of
measuring whether the victim process suffered a cache hit or a cache miss. This can allow
the attacker to know if certain table entries were looked up during the AES computation,
thereby allowing him to reconstruct the key.

Side-channel attacks remind us that security compromises are often achieved by breaking
assumptions made by system designers. In designing an embedded system, careful con-
sideration must be given to the assumptions one makes and to plausible threat models, in
order to achieve a reasonable level of assurance in the system’s security.

17.6 Summary

Security and privacy are now amongst the top design concerns for embedded, cyber-
physical systems. This chapter gave an introduction to security and privacy with a focus
on topics relevant for cyber-physical systems. We covered basic cryptographic primitives
covering techniques for encryption and decryption, secure hash functions, and digital sig-
natures. The chapter also gave overviews of protocol security and software security, as
well as secure information flow, a fundamental topic that cuts across many sub-areas in
security and privacy. We concluded with certain advanced topics, including sensor secu-
rity and side-channel attacks.
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Exercises

1. Consider the buffer overflow vulnerability in Example 17.2. Modify the code so as
to prevent the buffer overflow.

2. Suppose a system M has a secret input s, a public input x, and a public output z.
Let all three variables be Boolean. Answer the following TRUE/FALSE questions
with justification:

(a) Suppose M satisfies the linear temporal logic (LTL) property G¬z. Then M
must also satisfy observational determinism.

(b) Suppose M satisfies the linear temporal logic (LTL) property G [(s ∧ x) ⇒ z].
Then M must also satisfy observational determinism.

3. Consider the finite-state machine below with one input x and one output z, both
taking values in {0, 1}. Both x and z are considered public (“low”) signals from a
security viewpoint. However, the state of the FSM (i.e., “A” or “B”) is considered
secret (“high”).

x = 0 / 1

input: x : {0,1}
output: z : {0,1}

x = 0 / 1

x = 1 / 0

x = 1 / 0

TRUE or FALSE: There is an input sequence an attacker can supply that tells him
whether the state machine begins execution in A or in B.
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Part IV

Appendices

This part of this text covers some background in mathematics and computer science that
is useful to more deeply understand the formal and algorithmic aspects of the main text.
Appendix A reviews basic notations in logic, with particular emphasis on sets and func-
tions. Appendix B reviews notions of complexity and computability, which can help a
system designer understand the cost of implementing a system and fundamental limits
that make certain systems not implementable.
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This appendix reviews some basic notation for sets and functions.

A.1 Sets

In this section, we review the notation for sets. A set is a collection of objects. When
object a is in set A, we write a ∈ A. We define the following sets:

• B = {0, 1}, the set of binary digits.
• N = {0, 1, 2, · · · }, the set of natural numbers.
• Z = {· · · ,−1, 0, 1, 2, · · · }, the set of integers.
• R, the set of real numbers.
• R+, the set of non-negative real numbers.



A.2. RELATIONS AND FUNCTIONS

When set A is entirely contained by set B, we say that A is a subset of B and write
A ⊆ B. For example, B ⊆ N ⊆ Z ⊆ R. The sets may be equal, so the statement N ⊆ N
is true, for example. The powerset of a set A is defined to be the set of all subsets. It is
written 2A. The empty set, written ∅, is always a member of the powerset, ∅ ∈ 2A.

We define set subtraction as follows,

A \B = {a ∈ A : a /∈ B}

for all sets A and B. This notation is read “the set of elements a from A such that a is not
in B.”

A cartesian product of sets A and B is a set written A×B and defined as follows,

A×B = {(a, b) : a ∈ A, b ∈ B}.

A member of this set (a, b) is called a tuple. This notation is read “the set of tuples (a, b)
such that a is in A and b is in B.” A cartesian product can be formed with three or more
sets, in which case the tuples have three or more elements. For example, we might write
(a, b, c) ∈ A×B×C. A cartesian product of a setA with itself is writtenA2 = A×A. A
cartesian product of a set A with itself n times, where n ∈ N is written An. A member of
the set An is called an n-tuple. By convention, A0 is a singleton set, or a set with exactly
one element, regardless of the size of A. Specifically, we define A0 = {∅}. Note that A0

is not itself the empty set. It is a singleton set containing the empty set (for insight into
the rationale for this definition, see the box on page 500).

A.2 Relations and Functions

A relation from set A to set B is a subset of A × B. A partial function f from set A
to set B is a relation where (a, b) ∈ f and (a, b′) ∈ f imply that b = b′. Such a partial
function is written f : A ⇀ B. A total function or simply function f from A to B is a
partial function where for all a ∈ A, there is a b ∈ B such that (a, b) ∈ f . Such a function
is written f : A → B, and the set A is called its domain and the set B its codomain.
Rather than writing (a, b) ∈ f , we can equivalently write f(a) = b.

Example A.1: An example of a partial function is f : R⇀ R defined by f(x) =√
x for all x ∈ R+. It is undefined for any x < 0 in its domain R.
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A partial function f : A ⇀ B may be defined by an assignment rule, as done in the above
example, where an assignment rule simply explains how to obtain the value of f(a) given
a ∈ A. Alternatively, the function may be defined by its graph, which is a subset of
A×B.

Example A.2: The same partial function from the previous example has the
graph f ⊆ R2 given by

f = {(x, y) ∈ R2 : x ≥ 0 and y =
√
x} .

Note that we use the same notation f for the function and its graph when it is
clear from context which we are talking about.

The set of all functions f : A → B is written (A → B) or BA. The former notation is
used when the exponential notation proves awkward. For a justification of the notation
BA, see the box on page 500.

The function composition of f : A→ B and g : B → C is written (g ◦ f) : A→ C and
defined by

(g ◦ f)(a) = g(f(a))

for any a ∈ A. Note that in the notation (g ◦ f), the function f is applied first. For a
function f : A → A, the composition with itself can be written (f ◦ f) = f2, or more
generally

(f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸ = fn

n times

for any n ∈ N. In case n = 1, f1 = f . For the special case n = 0, the function f0 is
by convention the identity function, so f0(a) = a for all a ∈ A. When the domain and
codomain of a function are the same, i.e., f ∈ AA, then fn ∈ AA for all n ∈ N.

For every function f : A → B, there is an associated image function f̂ : 2A → 2B

defined on the powerset of A as follows,

∀ A′ ⊆ A, f̂(A′) = {b ∈ B : ∃ a ∈ A′, f(a) = b}.

The image function f̂ is applied to sets A′ of elements in the domain, rather than to single
elements. Rather than returning a single value, it returns the set of all values that f would
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return, given an element of A′ as an argument. We call f̂ the lifted version of f . When
there is no ambiguity, we may write the lifted version of f simply as f rather than f̂ (see
problem 2(c) for an example of a situation where there is ambiguity).

For any A′ ⊆ A, f̂(A′) is called the image of A′ for the function f . The image f̂(A) of
the domain is called the range of the function f .

Example A.3: The image f̂(R) of the function f : R→ R defined by f(x) = x2

is R+.

A function f : A → B is onto (or surjective) if f̂(A) = B. A function f : A → B is
one-to-one (or injective) if for all a, a′ ∈ A,

a 6= a′ ⇒ f(a) 6= f(a′). (A.1)

That is, no two distinct values in the domain yield the same values in the codomain. A
function that is both one-to-one and onto is bijective.

Example A.4: The function f : R → R defined by f(x) = 2x is bijective.
The function f : Z → Z defined by f(x) = 2x is one-to-one, but not onto. The
function f : R2 → R defined by f(x, y) = xy is onto but not one-to-one.

The previous example underscores the fact that an essential part of the definition of a
function is its domain and codomain.

Proposition A.1. If f : A→ B is onto, then there is a one-to-one function h : B → A.

Proof. Let h be defined by h(b) = a where a is any element in A such that f(a) = b.
There must always be at least one such element because f is onto. We can now show
that h is one-to-one. To do this, consider any two elements b, b′ ∈ B where b 6= b′.
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We need to show that h(b) 6= h(b′). Assume to the contrary that h(b) = h(b′) = a for
some a ∈ A. But then by the definition of h, f(a) = b and f(a) = b′, which implies
b = b′, a contradiction.

The converse of this proposition is also easy to prove.

Proposition A.2. If h : B → A is one-to-one, then there is an onto function f : A →
B.

Any bijection f : A→ B has an inverse f−1 : B → A defined as follows,

f−1(b) = a ∈ A such that f(a) = b , (A.2)

for all b ∈ B. This function is defined for all b ∈ B because f is onto. And for each
b ∈ B there is a single unique a ∈ A satisfying (A.2) because f is one-to-one. For any
bijection f , its inverse is also bijective.

A.2.1 Restriction and Projection

Given a function f : A→ B and a subset C ⊆ A, we can define a new function f |C that
is the restriction of f to C. It is defined so that for all x ∈ C, f |C(x) = f(x).

Example A.5: The function f : R→ R defined by f(x) = x2 is not one-to-one.
But the function f |R+ is.

Consider an n-tuple a = (a0, a1, · · · , an−1) ∈ A0 × A1 × · · · × An−1. A projection of
this n-tuple extracts elements of the tuple to create a new tuple. Specifically, let

I = (i0, i1, · · · , im) ∈ {0, 1, · · · , n− 1}m

for some m ∈ N \ {0}. That is, I is an m-tuple of indexes. Then we define the projection
of a onto I by

πI(a) = (ai0 , ai1 , · · · , aim) ∈ Ai0 ×Ai1 × · · · ×Aim .
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The projection may be used to permute elements of a tuple, to discard elements, or to
repeat elements.

Projection of a tuple and restriction of a function are related. An n-tuple a ∈ An where
a = (a0, a1, · · · , an−1) may be considered a function of the form a : {0, 1, · · · , n−1} →
A, in which case a(0) = a0, a(1) = a1, etc. Projection is similar to restriction of this
function, differing in that restriction, by itself, does not provide the ability to permute,
repeat, or renumber elements. But conceptually, the operations are similar, as illustrated
by the following example.

Example A.6: Consider a 3-tuple a = (a0, a1, a2) ∈ A3. This is represented
by the function a : {0, 1, 2} → A. Let I = {1, 2}. The projection b = πI(a) =
(a1, a2), which itself can be represented by a function b : {0, 1} → A, where
b(0) = a1 and b(1) = a2.

The restriction a|I is not exactly the same function as b, however. The domain
of the first function is {1, 2}, whereas the domain of the second is {0, 1}. In
particular, a|I(1) = b(0) = a1 and a|I(2) = b(1) = a2.

A projection may be lifted just like ordinary functions. Given a set of n-tuples B ⊆
A0 × A1 × · · · × An−1 and an m-tuple of indexes I ∈ {0, 1, · · · , n − 1}m, the lifted
projection is

π̂I(B) = {πI(b) : b ∈ B} .

A.3 Sequences

A tuple (a0, a1) ∈ A2 can be interpreted as a sequence of length 2. The order of elements
in the sequence matters, and is in fact captured by the natural ordering of the natural
numbers. The number 0 comes before the number 1. We can generalize this and recognize
that a sequence of elements from set A of length n is an n-tuple in the set An. A0

represents the set of empty sequences, a singleton set (there is only one empty sequence).

The set of all finite sequences of elements from the setA is writtenA∗, where we interpret
∗ as a wildcard that can take on any value in N. A member of this set with length n is an
n-tuple, a finite sequence.
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The set of infinite sequences of elements from A is written AN or Aω. The set of finite
and infinite sequences is written

A∗∗ = A∗ ∪AN .

Finite and infinite sequences play an important role in the semantics of concurrent pro-
grams. They can be used, for example, to represent streams of messages sent from one
part of the program to another. Or they can represent successive assignments of values to
a variable. For programs that terminate, finite sequences will be sufficient. For programs
that do not terminate, we need infinite sequences.
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Exponential Notation for Sets of Functions

The exponential notation BA for the set of functions of form f : A → B is worth
explaining. Recall that A2 is the cartesian product of set A with itself, and that 2A is
the powerset of A. These two notations are naturally thought of as sets of functions. A
construction attributed to John von Neumann defines the natural numbers as follows,

0 = ∅
1 = {0} = {∅}
2 = {0,1} = {∅, {∅}}
3 = {0,1,2} = {∅, {∅}, {∅, {∅}}}
· · ·

With this definition, the powerset 2A is the set of functions mapping the set A into the
set 2. Consider one such function, f ∈ 2A. For each a ∈ A, either f(a) = 0 or
f(a) = 1. If we interpret “0” to mean “nonmember” and “1” to mean “member,” then
indeed the set of functions 2A represents the set of all subsets ofA. Each such function
defines a subset.

Similarly, the cartesian product A2 can be interpreted as the set of functions of form
f : 2 → A, or using von Neumann’s numbers, f : {0,1} → A. Consider a tuple
a = (a0, a1) ∈ A2. It is natural to associate with this tuple a function a : {0,1} → A
where a(0) = a0 and a(1) = a1. The argument to the function is the index into the
tuple. We can now interpret the set of functions BA of form f : A → B as a set of
tuples indexed by the set A instead of by the natural numbers.

Let ω = {∅, {∅}, {∅, {∅}}, · · · } represent the set of von Neumann numbers. This
set is closely related to the set N (see problem 2). Given a set A, it is now natural to
interpret Aω as the set of all infinite sequences of elements from A, the same as AN.

The singleton set A0 can now be interpreted as the set of all functions whose do-
main is the empty set and codomain is A. There is exactly one such function (no two
such functions are distinguishable), and that function has an empty graph. Before, we
defined A0 = {∅}. Using von Neumann numbers, A0 = 1, corresponding nicely with
the definition of a zero exponent on ordinary numbers. Moreover, you can think of
A0 = {∅} as the set of all functions with an empty graph.

It is customary in the literature to omit the bold face font for A0, 2A, and A2,
writing instead simply A0, 2A, and A2.
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Exercises

1. This problem explores properties of onto and one-to-one functions.

(a) Show that if f : A→ B is onto and g : B → C is onto, then (g ◦ f) : A→ C
is onto.

(b) Show that if f : A → B is one-to-one and g : B → C is one-to-one, then
(g ◦ f) : A→ C is one-to-one.

2. Let ω = {∅, {∅}, {∅, {∅}}, · · · } be the von Neumann numbers as defined in the box
on page 500. This problem explores the relationship between this set and N, the set
of natural numbers.

(a) Let f : ω → N be defined by

f(x) = |x|, ∀ x ∈ ω .

That is, f(x) is the size of the set x. Show that f is bijective.

(b) The lifted version of the function f in part (a) is written f̂ . What is the value
of f̂({0, {0}})? What is the value of f({0, {0}})? Note that on page 496 it
is noted that when there is no ambiguity, f̂ may be written simply f . For this
function, is there such ambiguity?
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Complexity theory and computability theory are areas of Computer Science that study
the efficiency and the limits of computation. Informally, computability theory studies
which problems can be solved by computers, while complexity theory studies how effi-
ciently a problem can be solved by computers. Both areas are problem-centric, meaning
that they are more concerned with the intrinsic ease or difficulty of problems and less
concerned with specific techniques (algorithms) for solving them.



B. COMPLEXITY AND COMPUTABILITY

In this appendix, we very briefly review selected topics from complexity and computabil-
ity theory that are relevant for this book. There are excellent books that offer a detailed
treatment of these topics, including Papadimitriou (1994), Sipser (2005), and Hopcroft
et al. (2007). We begin with a discussion of the complexity of algorithms. Algorithms are
realized by computer programs, and we show that there are limitations on what computer
programs can do. We then describe Turing machines, which can be used to define what
we have come to accept as “computation,” and show how the limitations of programs
manifest themselves as undecidable problems. Finally, we close with a discussion of the
complexity of problems, as distinct from the complexity of the algorithms that solve the
problems.

B.1 Effectiveness and Complexity of Algorithms

An algorithm is a step-by-step procedure for solving a problem. To be effective, an
algorithm must complete in a finite number of steps and use a finite amount of resources
(such as memory). To be useful, an algorithm must complete in a reasonable number
of steps and use a reasonable amount of resources. Of course, what is “reasonable” will
depend on the problem being solved.

Some problems are known to have no effective algorithm, as we will see below when we
discuss undecidability. For other problems, one or more effective algorithms are known,
but it is not known whether the best algorithm has been found, by some measure of “best.”
There are even problems where we know that there exists an effective algorithm, but no
effective algorithm is known. The following example describes such a problem.

Example B.1: Consider a function f : N→ {YES, NO} where f(n) = YES if
there is a sequence of n consecutive fives in the decimal representation of π, and
f(n) = NO otherwise. This function has one of two forms. Either

f(n) = YES ∀ n ∈ N,

or there is a k ∈ N such that

f(n) =

{
YES if n < k
NO otherwise
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It is not known which of these two forms is correct, nor, if the second form is
correct, what k is. However, no matter what the answer is, there is an effective
algorithm for solving this problem. In fact, the algorithm is rather simple. Either
the algorithm immediately returns YES, or it compares n to k and returns YES
if n < k. We know that one of these is the right algorithm, but we do not know
which. Knowing that one of these is correct is sufficient to know that there is an
effective algorithm.

For a problem with known effective algorithms, there are typically many algorithms that
will solve the problem. Generally, we prefer algorithms with lower complexity. How do
we choose among these? This is the topic of the next subsection.

B.1.1 Big O Notation

Many problems have several known algorithms for solving them, as illustrated in the
following example.

Example B.2: Suppose we have a list (a1, a2, · · · , an) of n integers, arranged in
increasing order. We would like to determine whether the list contains a particular
integer b. Here are two algorithms that accomplish this:

1. Use a linear search. Starting at the beginning of the list, compare the input
b against each entry in the list. If it is equal, return YES. Otherwise, proceed
to the next entry in the list. In the worst case, this algorithm will require n
comparisons before it can give an answer.

2. Use a binary search. Start in the middle of the list and compare b to the
entry a(n/2) in the middle. If it is equal, return YES. Otherwise, determine
whether b < a(n/2). If it is, then repeat the search, but over only the first
half of the list. Otherwise, repeat the search over the second half of the list.
Although each step of this algorithm is more complicated than the steps of
the first algorithm, usually fewer steps will be required. In the worst case,
log2(n) steps are required.
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The difference between these two algorithms can be quite dramatic if n is large.
Suppose that n = 4096. The first algorithm will require 4096 steps in the worst
case, whereas the second algorithm will require only 12 steps in the worst case.

The number of steps required by an algorithm is the time complexity of the algorithm.
It is customary when comparing algorithms to simplify the measure of time complexity
by ignoring some details. In the previous example, we might ignore the complexity of
each step of the algorithm and consider only how the complexity grows with the input
size n. So if algorithm (1) in Example B.2 takes K1n seconds to execute, and algorithm
(2) takes K2 log2(n) seconds to execute, we would typically ignore the constant factors
K1 and K2. For large n, they are not usually very helpful in determining which algorithm
is better.

To facilitate such comparisons, it is customary to use big O notation. This notation
finds the term in a time complexity measure that grows fastest as a function of the size
of the input, for large input sizes, and ignores all other terms. In addition, it discards
any constant factors in the term. Such a measure is an asymptotic complexity measure
because it studies only the limiting growth rate as the size of the input gets large.

Example B.3: Suppose that an algorithm has time complexity 5 + 2n + 7n3,
where n is the size of the input. This algorithm is said to have O(n3) time com-
plexity, which is read “order n cubed.” The term 7n3 grows fastest with n, and
the number 7 is a relatively unimportant constant factor.

The following complexity measures are commonly used:

1. constant time: The time complexity does not depend at all on the size of the input.
The complexity is O(1).

2. logarithmic time: O(logm(n)) complexity, for any fixed m.
3. linear time: O(n) complexity.
4. quadratic time: O(n2) complexity.
5. polynomial time: O(nm) complexity, for any fixed m ∈ N.
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6. exponential time: O(mn) complexity for any m > 1.
7. factorial time: O(n!) complexity.

The above list is ordered by costliness. Algorithms later in the list are usually more
expensive to realize than algorithms earlier in the list, at least for large input size n.

Example B.4: Algorithm 1 in Example B.2 is a linear-time algorithm, whereas
algorithm 2 is a logarithmic-time algorithm. For large n, algorithm (2) is more
efficient.

The number of steps required by an algorithm, of course, is not the only measure of its
cost. Some algorithms execute in rather few steps but require a great deal of memory. The
size of the memory required can be similarly characterized using big O notation, giving a
measure of space complexity.

B.2 Problems, Algorithms, and Programs

Algorithms are developed to solve some problem. How do we know whether we have
found the best algorithm to solve a problem? The time complexity of known algorithms
can be compared, but what about algorithms we have not thought of? Are there problems
for which there is no algorithm that can solve them? These are difficult questions.

Assume that the input to an algorithm is a member of a set W of all possible inputs,
and the output is a member of a set Z of all possible outputs. The algorithm computes a
function f : W → Z. The function f , a mathematical object, is the problem to be solved,
and the algorithm is the mechanism by which the problem is solved.

It is important to understand the distinction between the problem and the mechanism.
Many different algorithms may solve the same problem. Some algorithms will be better
than others; for example, one algorithm may have lower time complexity than another.
We next address two interesting questions:

• Is there a function of the form f : W → Z for which there is no algorithm that can
compute the function for all inputs w ∈W ? This is a computability question.
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• Given a particular function f : W → Z, is there a lower bound on the time com-
plexity of an algorithm to compute the function? This is a complexity question.

If W is a finite set, then the answer to the first question is clearly no. Given a particular
function f : W → Z, one algorithm that will always work uses a lookup table listing
f(w) for all w ∈ W . Given an input w ∈ W , this algorithm simply looks up the answer
in the table. This is a constant-time algorithm; it requires only one step, a table lookup.
Hence, this algorithm provides the answer to the second question, which is that if W is a
finite set, then the lowest time complexity is constant time.

A lookup table algorithm may not be the best choice, even though its time complexity
is constant. Suppose that W is the set of all 32-bit integers. This is a finite set with
232 elements, so a table will require more than four billion entries. In addition to time
complexity, we must consider the memory required to implement the algorithm.

The above questions become particularly interesting when the set W of possible inputs
is infinite. We will focus on decision problems, where Z = {YES, NO}, a set with
only two elements. A decision problem seeks a yes or no answer for each w ∈ W . The
simplest infinite set of possible inputs is W = N, the natural numbers. Hence, we will
next consider fundamental limits on decision problems of the form f : N→ {YES, NO}.
We will see next that for such problems, the answer to the first question above is yes.
There are functions of this form that are not computable.

B.2.1 Fundamental Limitations of Programs

One way to describe an algorithm is to give a computer program. A computer program
is always representable as a member of the set {0, 1}∗, i.e., the set of finite sequences of
bits. A programming language is a subset of {0, 1}∗. It turns out that not all decision
problems can be solved by computer programs.

Proposition B.1. No programming language can express a program for each and ev-
ery function of the form f : N→ {YES, NO}.

Proof. To prove this proposition, it is enough to show that there are strictly more
functions of the form f : N→ {YES, NO} than there are programs in a programming
language. It is sufficient to show that the set {YES, NO}N is strictly larger than the
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set {0, 1}∗, because a programming language is a subset of {0, 1}∗. This can be done
with a variant of Cantor’s diagonal argument, which goes as follows.

First, note that the members of the set {0, 1}∗ can be listed in order. Specifically, we
list them in the order of binary numbers,

λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, · · · , (B.1)

where λ is the empty sequence. This list is infinite, but it includes all members of the
set {0, 1}∗. Because the members of the set can be so listed, the set {0, 1}∗ is said to
be countable or countably infinite.

For any programming language, every program that can be written will appear some-
where in the list (B.1). Assume the first such program in the list realizes the deci-
sion function f1 : N → {YES, NO}, the second one in the list realizes f2 : N →
{YES, NO}, etc. We can now construct a function g : N → {YES, NO} that is not
computed by any program in the list. Specifically, let

g(i) =

{
YES if fi(i) = NO
NO if fi(i) = YES

for all i ∈ N. This function g differs from every function fi in the list, and hence it
is not included in the list. Thus, there is no computer program in the language that
computes function g.

This theorem tells us that programs, and hence algorithms, are not capable of solving all
decision problems. We next explore the class of problems they can solve, known as the
effectively computable functions. We do this using Turing machines.

B.3 Turing Machines and Undecidability

In 1936, Alan Turing proposed a model for computation that is now called the Turing
machine (Turing, 1936). A Turing machine, depicted in Figure B.1, is similar to a finite-
state machine, but with an unlimited amount of memory. This memory has the form of an
infinite tape that the Turing machine can read from and write to. The machine comprises
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Figure B.1: Illustration of a Turing machine.

a finite-state machine (FSM) controller, a read/write head, and an infinite tape organized
as a sequence of cells. Each cell contains a value drawn from a finite set Σ or the special
value 2, which indicates an empty cell. The FSM acts as a control for the read/write head
by producing outputs that move the read/write head over the tape.

In Figure B.1, the symbols on the non-empty cells of the tape are drawn from the set
Σ = {0, 1}, the binary digits. The FSM has two output ports. The top output port is
write, which has type Σ and produces a value to write to the cell at the current position of
the read/write head. The bottom output port is move, which has type {L,R}, where the
output symbol L causes the read/write head to move to the left (but not off the beginning
of the tape), andR causes it to move to the right. The FSM has one input port, read, which
has type Σ and receives the current value held by the cell under the read/write head.

The tape is initialized with an input string, which is an element of the set Σ∗ of finite
sequences of elements of Σ, followed by an infinite sequence of empty cells. The Turing
machine starts in the initial state of the FSM with the read/write head on the left end of
the tape. At each reaction, the FSM receives as input the value from the current cell under
the read/write head. It produces an output that specifies the new value of that cell (which
may be the same as the current value) and a command to move the head left or right.

The control FSM of the Turing machine has two final states: an accepting state accept
and a rejecting state reject. If the Turing machine reaches accept or reject after a finite
number of reactions, then it is said to terminate, and the execution is called a halting
computation. If it terminates in accept, then the execution is called an accepting com-
putation. If it terminates in reject, then the execution is called a rejecting computation.
It is also possible for a Turing machine to reach neither accept nor reject, meaning that it
does not halt. When a Turing machine does not halt, we say that it loops.
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When the control FSM is deterministic, we say that the Turing machine is also determinis-
tic. Given an input string w ∈ Σ∗, a deterministic Turing machineD will exhibit a unique
computation. Therefore, given an input string w ∈ Σ∗, a deterministic Turing machine
D will either halt or not, and if it halts, it will either accept w or reject it. For simplicity,
we will limit ourselves in this section to deterministic Turing machines, unless explicitly
stated otherwise.

B.3.1 Structure of a Turing Machine

More formally, each deterministic Turing machine can be represented by a pair D =
(Σ,M), where Σ is a finite set of symbols and M is any FSM with the following proper-
ties:

• a finite set StatesM of states that includes two final states accept and reject;
• an input port read of type Σ;
• an output port write of type Σ; and
• an output port move of type {L,R}.

As with any FSM, it also must have an initial state s0 and a transition function updateM ,
as explained in Section 3.3.3. If the read/write head is over a cell containing 2, then the
input to the read port of the FSM will be absent. If at a reaction the write output of the
FSM is absent, then the cell under the read/write head will be erased, setting its contents
to 2.

A Turing machine described by D = (Σ,M) is a synchronous composition of two ma-
chines, the FSM M and a tape T . The tape T is distinctly not an FSM, since it does not
have finite state. Nonetheless, the tape is a (extended) state machine, and can be described
using the same five-tuple used in Section 3.3.3 for FSMs, except that the set StatesT is
now infinite. The data on the tape can be modeled as a function with domain N and
codomain Σ ∪ {2}, and the position of the read/write head can be modeled as a natural
number, so

StatesT = N× (Σ ∪ {2})N.

The machine T has input port write of type Σ, input port move of type {L,R}, and output
port read of type Σ. The updateT transition function is now easy to define formally (see
Exercise 1).
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Note that the machine T is the same for all Turing machines, so there is no need to include
it in the description D = (Σ,M) of a particular Turing machine. The description D can
be understood as a program in a rather special programming language. Since all sets in
the formal description of a Turing machine are finite, any Turing machine can be encoded
as a finite sequence of bits in {0, 1}∗.

Note that although the control FSM M and the tape machine T both generate output, the
Turing machine itself does not. It only computes by transitioning between states of the
control FSM, updating the tape, and moving left (L) or right (R). On any input string
w, we are only concerned with whether the Turing machine halts, and if so, whether it
accepts or rejects w. Thus, a Turing machine attempts to map an input string w ∈ Σ∗ to
{accept, reject}, but for some input strings, it may be unable to produce an answer.

We can now see that Proposition B.1 applies, and the fact that a Turing machine may not
produce an answer on some input strings is not surprising. Let Σ = {0, 1}. Then any in-
put string w ∈ Σ∗ can be interpreted as a binary encoding of a natural number in N. Thus,
a Turing machine implements a partial function of the form f : N → {accept, reject}.
The function is partial because for some n ∈ N, the machine may loop. Since a Turing
machine is a program, Proposition B.1 tells that Turing machines are incapable of realiz-
ing all functions of the form f : N → {accept, reject}. This limitation manifests itself as
looping.

A principle that lies at heart of computer science, known as the Church-Turing thesis,
asserts that every effectively computable function can be realized by a Turing machine.
This principle is named for mathematicians Alonzo Church and Alan Turing. Our intuitive
notion of computation, as expressed in today’s computers, is equivalent to the Turing
machine model of computation in this sense. Computers can realize exactly the functions
that can be realized by Turing machines: no more, no less. This connection between the
informal notion of an algorithm and the precise Turing machine model of computation
is not a theorem; it cannot be proved. It is a principle that underlies what we mean by
computation.

B.3.2 Decidable and Undecidable Problems

Turing machines, as described here, are designed to solve decision problems, which only
have a YES or NO answer. The input string to a Turing machine represents the encoding
of a problem instance. If the Turing machine accepts, it is viewed as a YES answer, and

Lee & Seshia, Introduction to Embedded Systems 511

http://LeeSeshia.org


B.3. TURING MACHINES AND UNDECIDABILITY

if it rejects, it is viewed as a NO answer. There is the third possibility that the Turing
machine might loop.

Example B.5: Consider the problem of determining, given a directed graph G
with two nodes s and t in G, whether there is a path from s to t. One can think
of writing down the problem as a long string listing all nodes and edges of G,
followed by s and t. Thus, an instance of this path problem can be presented to
the Turing machine as an input string on its tape. The instance of the problem is
the particular graph G, and nodes s and t. If there exists a path from s to t in G,
then this is a YES problem instance; otherwise, it is a NO problem instance.

Turing machines are typically designed to solve problems, rather than specific
problem instances. In this example, we would typically design a Turing machine
that, for any graphG, nodes s and t, determines whether there is a path inG from
s to t.

Probing Further: Recursive Functions and Sets

Logicians make distinctions between the functions that can be realized by Turing ma-
chines. The so-called total recursive functions are those where a Turing machine
realizing the function terminates for all inputs w ∈ Σ∗. The partial recursive func-
tions are those where a Turing machine may or may not terminate on a particular input
w ∈ Σ∗. By these definitions, every total recursive function is also a partial recursive
function, but not vice-versa.

Logicians also use Turing machines to make useful distinctions between sets. Con-
sider sets of natural numbers, and consider Turing machines where Σ = {0, 1} and an
input w ∈ Σ∗ is the binary encoding of a natural number. Then a set C of natural num-
bers is a computable set (or synonymously a recursive set or decidable set) if there is
a Turing machine that terminates for all inputs w ∈ N and yields accept if w ∈ C and
reject if w /∈ C. A set E ⊂ N is a computably enumerable set (or synonymously a
recursively enumerable set or a semidecidable set) if there is a Turing machine that
terminates if and only if the input w is in E.
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Recall that a decision problem is a function f : W → {YES,NO}. For a Turing machine,
the domain is a set W ⊆ Σ∗ of finite sequences of symbols from the set Σ. A problem
instance is a particular w ∈ W , for which the “answer” to the problem is either f(w) =
YES or f(w) = NO. Let Y ⊆W denote the set of all YES instances of problem f . That
is,

Y = {w ∈W | f(w) = YES}.

Given a decision problem f , a Turing machine D = (Σ,M) is called a decision proce-
dure for f if D accepts every string w ∈ Y , and D rejects every w ∈ W \ Y , where \
denotes set subtraction. Note that a decision procedure always halts for any input string
w ∈W .

A problem f is said to be decidable (or solvable) if there exists a Turing machine that
is a decision procedure for f . Otherwise, we say that the problem is undecidable (or
unsolvable). For an undecidable problem f , there is no Turing machine that terminates
with the correct answer f(w) for all input strings w ∈W .

One of the important philosophical results of 20th century mathematics and computer
science is the existence of problems that are undecidable. One of the first problems to be
proved undecidable is the so-called halting problem for Turing machines. This problem
can be stated as follows:

Given a Turing machine D = (Σ,M) initialized with input string w ∈ Σ∗

on its tape, decide whether or not M will halt.

Proposition B.2. (Turing, 1936) The halting problem is undecidable.

Proof. This is a decision problem h : W ′ → {YES,NO}, where W ′ denotes the set
of all Turing machines and their inputs. The proposition can be proved using a variant
of Cantor’s diagonal argument.

It is sufficient to prove the theorem for the subset of Turing machines with binary tape
symbols, Σ = {0, 1}. Moreover, we can assume without loss of generality that every
Turing machine in this set can be represented by a finite sequence of binary digits
(bits), so

W ′ = Σ∗ × Σ∗.
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Assume further that every finite sequence of bits represents a Turing machine. The
form of the decision problem becomes

h : Σ∗ × Σ∗ → {YES,NO}. (B.2)

We seek a procedure to determine the value of h(D,w), where D is a finite sequence
of bits representing a Turing machine and w is a finite sequence of bits representing an
input to the Turing machine. The answer h(D,w) will be YES if the Turing machine
D halts with input w and NO if it loops.

Consider the set of all effectively computable functions of the form

f : Σ∗ × Σ∗ → {YES,NO}.

These functions can be given by a Turing machine (by the Church-Turing thesis), and
hence the set of such functions can be enumerated f0, f1, f2, · · · . We will show that
the halting problem (B.2) is not on this list. That is, there is no fi such that h = fi.

Consider a sequence of Turing machines D0, D1, · · · where Di is the sequence of
bits representing the ith Turing machine, and Di halts if fi(Di, Di) = NO and loops
otherwise. Since fi is a computable function, we can clearly construct such a Turing
machine. Not one of the computable functions in the list f0, f1, f2, · · · can possibly
equal the function h, because every function fi in the list gives the wrong answer
for input (Di, Di). If Turing machine Di halts on input w = Di, function fi evalu-
ates to fi(Di, Di) = NO, whereas h(Di, Di) = YES. Since no function in the list
f0, f1, f2, · · · of computable functions works, the function h is not computable.

B.4 Intractability: P and NP

Section B.1 above studied asymptotic complexity, a measure of how quickly the cost (in
time or space) of solving a problem with a particular algorithm grows with the size of the
input. In this section, we consider problems rather than algorithms. We are interested in
whether an algorithm with a particular asymptotic complexity exists to solve a problem.
This is not the same as asking whether an algorithm with a particular complexity class is
known.
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A complexity class is a collection of problems for which there exist algorithms with the
same asymptotic complexity. In this section, we very briefly introduce the complexity
classes P and NP.

First recall the concept of a deterministic Turing machine from the preceding section. A
nondeterministic Turing machine N = (Σ,M) is identical to its deterministic counter-
part, except that the control FSM M can be a nondeterministic FSM. On any input string
w ∈ Σ∗, a nondeterministic Turing machine N can exhibit several computations. N is
said to accept w if any computation accepts w, and N rejects w if all its computations
reject w.

A decision problem is a function f : W → {YES,NO}, where W ⊆ Σ∗. N is said
to be a decision procedure for f if for each input w ∈ W , all of its computations halt,
no matter what nondeterministic choices are made. Note that a particular execution of a
nondeterministic Turing machine N may give the wrong answer. That is, it could yield
NO for inputw when the right answer is f(w) = YES. It can still be a decision procedure,
however, because we define the final answer to be YES if any execution yields YES. We
do not require that all executions yield YES. This subtle point underlies the expressive
power of nondeterministic Turing machines.

An execution that accepts an input w is called a certificate. A certificate can be repre-
sented by a finite list of choices made by the Turing machine such that it accepts w. We
need only one valid certificate to know that f(w) = YES.

Given the above definitions, we are ready to introduce P and NP. P is the set of problems
decidable by a deterministic Turing machine in polynomial time. NP, on the other hand,
is the set of problems decidable by a nondeterministic Turing machine in polynomial
time. That is, a problem f is in NP if there is a nondeterministic Turing machine N that
is a decision procedure for f , and for all inputs w ∈ W , every execution of the Turing
machine has time complexity no greater than O(nm), for some m ∈ N.

An equivalent alternative definition of NP is the set of all problems for which one can
check the validity of a certificate for a YES answer in polynomial time. Specifically, a
problem f is in NP if there is a nondeterministic Turing machine N that is a decision
procedure for f , and given an input w and a certificate, we can check in polynomial
time whether the certificate is valid (i.e., whether the choices it lists do indeed result in
accepting w). Note that this says nothing about NO answers. This asymmetry is part of
the meaning of NP.
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An important notion that helps systematize the study of complexity classes is that of
completeness, in which we identify problems that are “representative” of a complexity
class. In the context of NP, we say that a problem A is NP-hard if any other problem B
in NP can be reduced (“translated”) toA in polynomial time. Intuitively, A is “as hard as”
any problem in NP — if we had a polynomial-time algorithm for A, we could derive one
for B by first translating the instance of B to one of A, and then invoking the algorithm to
solve A. A problem A is said to be NP-complete if (i) A is in NP, and (ii) A is NP-hard.
In other words, an NP-complete problem is a problem in NP that is as hard as any other
problem in NP.

Several core problems in the modeling, design, and analysis of embedded systems are NP-
complete. One of these is the very first problem to be proved NP-complete, the Boolean
satisfiability (SAT) problem. The SAT problem is to decide, given a propositional logic
formula φ expressed over Boolean variables x1, x2, . . . , xn, whether there exists a valua-
tion of the xi variables such that φ(x1, x2, . . . , xn) = true. If there exists such a valuation,
we say φ is satisfiable; otherwise, we say that φ is unsatisfiable. The SAT problem is a
decision problem of the form f : W → {YES,NO}, where each w ∈ W is an encoding
of a propositional logic formula φ.

Example B.6: Consider the following propositional logic formula φ:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x2) ∧ (x1 ∨ ¬x3)

We can see that setting x1 = x3 = true will make φ evaluate to true. It is possible
to construct a nondeterministic Turing machine that takes as input an encoding of
the formula, where the nondeterministic choices correspond to choices of valua-
tions for each variable xi, and where the machine will accept the input formula if
it is satisfiable and reject it otherwise. If the input w encodes the above formula
φ, then one of the certificates demonstrating that f(w) = YES is the choices
x1 = x2 = x3 = true.

Next consider the alternative formula φ′:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

In this case, no matter how we assign Boolean values to the xi variables, we
cannot make φ′ = true. Thus while φ is satisfiable, φ′ is unsatisfiable. The
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same nondeterministic Turing machine as above will reject an input w′ that is an
encoding of φ′. Rejecting this input means that all choices result in executions
that terminate in reject.

Another problem that is very useful, but NP-complete, is checking the feasibility of an
integer linear program (ILP). Informally, the feasibility problem for integer linear pro-
grams is to find a valuation of integer variables such that each inequality in a collection
of linear inequalities over those variables is satisfied.

Given that both SAT and ILP are NP-complete, one can transform an instance of either
problem into an instance of the other problem, in polynomial time.

Example B.7: The following integer linear program is equivalent to the SAT
problem corresponding to formula φ′ of Example B.6:

find x1, x2 ∈ {0, 1}
such that:

x1 − x2 ≥ 0

−x1 + x2 ≥ 0

x1 + x2 ≥ 1

−x1 − x2 ≥ −1

One can observe that there is no valuation of x1 and x2 that will make all the
above inequalities simultaneously true.

NP-complete problems seem to be harder than those in P; for large enough input sizes,
these problems can become intractable, meaning that they cannot be practically solved.
In general, it appears that to determine that f(w) = YES for some w without being
given a certificate, we might have to explore all executions of the nondeterministic Turing
machine before finding, on the last possibility, an execution that accepts w. The number
of possible executions can be exponential in the size of the input. Indeed, there are no
known polynomial-time algorithms that solve NP-complete problems. Surprisingly, as of
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this writing, there is no proof that no such algorithm exists. It is widely believed that NP
is a strictly larger set of problems than P, but without a proof, we cannot be sure. The P
versus NP question is one of the great unsolved problems in mathematics today.

Despite the lack of polynomial-time algorithms for solving NP-complete problems, many
such problems turn out to be solvable in practice. SAT problems, for example, can often
be solved rather quickly, and a number of very effective SAT solvers are available. These
solvers use algorithms that have worst-case exponential complexity, which means that
for some inputs they can take a very long time to complete. Yet for most inputs, they
complete quickly. Hence, we should not be deterred from tackling a problem just because
it is NP-complete.

B.5 Summary

This appendix has very briefly introduced two rather large interrelated topics, the theo-
ries of complexity and computability. The chapter began with a discussion of complexity
measures for algorithms, and then established a fundamental distinction between a prob-
lem to be solved and an algorithm for solving the problem. It then showed that there
are problems that cannot be solved. We then explained Turing machines, which are ca-
pable of describing solution procedures for all problems that have come to be considered
“computable.” The chapter then closed with a brief discussion of the complexity classes P
and NP, which are classes of problems that can be solved by algorithms with comparable
complexity.
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Exercises

1. Complete the formal definition of the tape machine T by giving the initial state of
T and the mathematical description of its transition function updateT .

2. Directed, acyclic graphs (DAGs) have several uses in modeling, design, and analy-
sis of embedded systems; e.g., they are used to represent precedence graphs of tasks
(see Chapter 12) and control-flow graphs of loop-free programs (see Chapter 16).

A common operation on DAGs is to topologically sort the nodes of the graph. For-
mally, consider a DAG G = (V,E) where V is the set of vertices {v1, v2, . . . , vn}
and E is the set of edges. A topological sort of G is a linear ordering of vertices
{v1, v2, . . . , vn} such that if (vi, vj) ∈ E (i.e., there is a directed edge from vi to
vj), then vertex vi appears before vertex vj in this ordering.

The following algorithm due to Kahn (1962) topologically sorts the vertices of
a DAG:

input : A DAG G = (V,E) with n vertices and m edges.
output: A list L of vertices in V in topologically-sorted order.

1 L← empty list
2 S ← {v | v is a vertex with no incoming edges}
3 while S is non-empty do
4 Remove vertex v from S
5 Insert v at end of list L
6 for each vertex u such that edge (v, u) is in E do
7 Mark edge (v, u)
8 if all incoming edges to u are marked then
9 Add u to set S

10 end
11 end
12 end

L contains all vertices of G in topologically sorted order.

13

Algorithm B.1: Topological sorting of vertices in a DAG
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State the asymptotic time complexity of Algorithm B.1 using Big O notation. Prove
the correctness of your answer.
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of Lecture Notes in Computer Science, pp. 128–148.

Wang, Y., S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke, 2009: The theory of
deadlock avoidance via discrete control. In Principles of Programming Languages
(POPL), ACM SIGPLAN Notices, Savannah, Georgia, USA, vol. 44, pp. 252–263.
doi:10.1145/1594834.1480913.

Wasicek, A., C. E. Salloum, and H. Kopetz, 2011: Authentication in time-triggered sys-
tems using time-delayed release of keys. In 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), pp.
31–39.

Wiener, N., 1948: Cybernetics: Or Control and Communication in the Animal and the
Machine. Librairie Hermann & Cie, Paris, and MIT Press.Cambridge, MA.

Wilhelm, R., 2005: Determining Bounds on Execution Times. In Zurawski, R., ed., Hand-
book on Embedded Systems, CRC Press.

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenstr, 2008: The worst-case execution-time problem - overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3),
1–53.

Wolf, W., 2000: Computers as Components: Principles of Embedded Computer Systems
Design. Morgan Kaufman.

Wolfe, V., S. Davidson, and I. Lee, 1993: RTC: Language support for real-time concur-
rency. Real-Time Systems, 5(1), 63–87.

Wolper, P., M. Y. Vardi, and A. P. Sistla, 1983: Reasoning about infinite computation
paths. In 24th Annual Symposium on Foundations of Computer Science (FOCS), pp.
185–194.

Young, W., W. Boebert, and R. Kain, 1985: Proving a computer system secure. Scientific
Honeyweller, 6(2), 18–27.

Zeigler, B., 1976: Theory of Modeling and Simulation. Wiley Interscience, New York.

Lee & Seshia, Introduction to Embedded Systems 539

http://dx.doi.org/10.1145/1594834.1480913
http://LeeSeshia.org


BIBLIOGRAPHY

Zeigler, B. P., H. Praehofer, and T. G. Kim, 2000: Theory of Modeling and Simulation.
Academic Press, 2nd ed.

Zhao, Y., E. A. Lee, and J. Liu, 2007: A programming model for time-synchronized dis-
tributed real-time systems. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, Bellevue, WA, USA, pp. 259 – 268. doi:10.1109/
RTAS.2007.5.

Zhuang, L., F. Zhou, and J. D. Tygar, 2009: Keyboard acoustic emanations revisited. ACM
Transactions on Information and System Security (TISSEC), 13(1), 3.

540 Lee & Seshia, Introduction to Embedded Systems

http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://LeeSeshia.org


Notation Index

x|t≤τ restriction in time 28
¬ negation 51
∧ conjunction 51
∨ disjunction 51
L(M) language 70
:= assignment 52
VCC supply voltage 263
=⇒ implies 363
Gφ globally 365
Fφ eventually 366
Uφ until 368
Xφ next state 366
La(M) language accepted by an FSM 384
λ empty sequence 385
B = {0, 1} binary digits 493
N = {0, 1, 2, · · · } natural numbers 493
Z = {· · · ,−1, 0, 1, 2, · · · } integers 493
R real numbers 493
R+ non-negative real numbers 493
A ⊆ B subset 494



NOTATION INDEX

2A powerset 494
∅ empty set 494
A\B set subtraction 494
A×B cartesian product 494
(a, b) ∈ A×B tuple 494
A0 singleton set 494
f : A→ B function 494
f : A ⇀ B partial function 494
g ◦ f function composition 495
fn : A→ A function to a power 495
f0(a) identity function 495
f̂ : 2A → 2B image function 495
(A→ B) set of all functions from A to B 495
BA set of all functions from A to B 495
πI projection 497
π̂I lifted projection 498
f |C restriction 497
A∗ finite sequences 498
AN infinite sequences 499
ω = {∅, {∅}, {∅, {∅}}, · · · } von Neumann numbers 500
Aω infinite sequences 500
A∗∗ finite and infinite sequences 499
2 empty cell 509
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1080p, 218
32-bit architecture, 246, 251
3D graphics, 220
3DES, 463
64-bit architecture, 246
8-bit architecture, 246

6800, 213
6811, 213
8051, 213
8080, 213
8086, 215
80386, 215

A-440, 38
abstract interpretation, 450, 454
abstraction, xiii, 12, 15, 118, 378, 413
acceleration, 20
acceleration of gravity, 92, 196, 207
accelerometer, 186, 194, 195
acceptance cycle, 420
accepting computation, 509, 515
accepting state, 384, 386, 418, 509

accumulator, 221, 229
acquire a lock, 304
action, 52, 296
action-reaction law, 23
active high logic, 263, 265
active low logic, 263
actor, 25, 78, 110, 136, 165, 379
actor function, 149
actor model for state machines, 79
actor models, 24
actuator, 179, 185
Ada, 350
adaptive antennas, 233
ADC, 180, 207, 245
adder, 27
address space, 243, 253
address translation, 243, 311
ADL, xix
advanced encryption standard, 463
adversary, 460
AES, 463, 490
affine function, 182, 182, 207
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AGV, 94
Aiken, Howard H., 245
Airbus, 3, 148
Albert Einstein, 195
Alcatel, 213
Alexander Graham Bell, 189
algorithm, 503
aliasing, 190
alignment, 251
allocation, 254
alphabet, 385
ALU, 225
AMD, 212, 215, 220
AMI, 216
amplifier, 264
analog, 180
analog comparator, 185
analog sensor, 180
analog-to-digital converter, 180
analysis, 9, 357
Android, 306
anemometer, 198
angular velocity, 204
anti-aircraft gun, 5
anti-aliasing filter, 191
anytime algorithm, 352
API, 274, 298
Apple, 213, 306
application program interface, 298
arithmetic logic unit, 225
ARM, 213, 252
ARM CortexTM, 243, 261, 274, 278, 286
ARM instruction set, 276
ARM Limited, 213
arrival of tasks, 325, 336, 338
arrival time, 326
assignment, 52, 84, 541

assignment rule, 495
assignment to a processor, 323
associative memory, 250, 251
asymmetric cryptography, 462
asymptotic complexity, 505, 514
asynchronous, 147, 268
asynchronous composition, 111, 116, 280
Atmel, 213, 284
Atmel AVR, 10, 213, 268, 284
Atom, Intel, 212, 215
atomic operation, 14, 119, 120, 276, 280,

296, 302
atomic proposition, 362
ATSC, 188, 218, 302
attacker, 460
attacker model, 460
audio, 200, 216
audio amplifier, 202
authentication, 460
authenticity, 460
auto increment, 216
autocoding, 294
automata, 83
automated guided vehicle, 94
automatic variable, 255
automotive, 200, 215
automotive safety, 3
availability, 460
AVR, 213, 284

Büchi automaton, 386, 418
Büchi, Julius Richard, 386
back electromagnetic force, 204
back electromagnetic force constant, 204
backward reachable states, 426
balance equation, 153
bang-bang controller, 185
bare iron, 259, 294, 298
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baseband processing, 212
basic block, 431
battery capacity, 201
baud, 269
BCET, 429
BDD, 424
behavior, 69, 76, 382, 394, 402
bel, 189
Bell Labs, 58, 216, 424
Bell Telephone Labs, 189
Bell, Alexander Graham, 189
best-case execution time, 429
bias, 182, 198, 207
BIBO stable, 30
big endian, 252
big O notation, 505
bijective, 496, 501
binary decision diagram, 424
binary digits, 493, 541
binary point, 234, 237
binary search, 504
bipolar transistor, 266
bisimilar, 397
bisimulates, 397
bisimulation, 388, 397
bisimulation relation, 397, 397
bit banding, 245
bit-reversed addressing, 216
BlackBerry OS, 306
Blefuscu, 252
block, 247
block cipher, 463, 463
block diagrams, 166
blocked, 325, 339
blocking reads, 160
blocking writes, 161
bluetooth, 198

Bogen, Alf-Egil, 213
Boolean satisfiability, 424, 439, 516
bounce, 200
boundary scan, 270
bounded buffers, 152
bounded liveness, 371
bounded model checking, 424
bounded-input bounded-output stable, 30
branching-time logic, 367
breakpoint, 270
brittle, xiv, 345
broadcast, 470
Broadcom, 213
buffer overflow, 474
buffer overrun, 474
bus, 271
bus arbiter, 272
bus master, 272
byte, 251

C data type, 268
C programming language, 222, 294
c54x, 228, 229
c55x, 232
c6000, 232
c62x, 233
c64x, 233, 234
c67x, 233
C#, 311
cache, 14, 236, 246, 440
cache constraints, 450
cache hit, 249
cache line, 247
cache miss, 247, 249
cache organization, 248
cache set, 247
calculus of communicating systems, 161
calibration, 207

Lee & Seshia, Introduction to Embedded Systems 545

http://LeeSeshia.org


INDEX

call edge, 433
call graph, 452
callback, 294
callee function, 433
caller function, 433
CAN, 468, 470
Cantor’s diagonal argument, 508, 513
capacitance, 199
carrier sense multiple access, 272
cartesian product, 494, 500, 542
cascade composition, 25, 122, 151
causal, 28
CCS, 161
CD, 191, 212, 242
CEGAR, 416, 424
cellular base stations, 233
central processing unit, 212
Centronics, 271
certificate, 515
certification, 406
CFG, 432
char, 251
chattering, 52, 53
chemical processes, 200
chip, 211
chrominance, 219
Church, Alonzo, 511
Church-Turing thesis, 511, 514
ciphertext, 461
circuit design, 112
circular buffer, 216, 221, 229
Cirrus Logic, 213
CISC, 228, 233
classical mechanics, 18
clock, 83, 112, 141
clock signal, 138, 163
clock synchronization, 471

closed system, 405, 407, 423
CMOS, 266
code generation, 294
code injection attack, 477
codomain, 139, 494
coil, 214
ColdFire, 213
color, 218, 230
color channels, 219
commissioning, 181
communicating sequential processes, 161
communication event, 137
compact disc, 191
compiler, 223
complete, 378
completeness, 516
complex instruction set computer, 228
complexity, 505
complexity class, 515
Complexity theory, 502
component, 136
compositional, 114, 118, 145
computability theory, 502
computable function, 511
computable set, 512
computably enumerable set, 512
computation tree, 70
computation tree logic, 367
computed branch, 225
concurrent, 136, 178, 220, 291
condition variable, 313
conditional branch, 225
conditional branch instruction, 227
conditioning filter, 194
confidentiality, 460
conflict miss, 250
conjunction, 51, 363, 541
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consistent, 155
constant time, 505
constructive, 146, 162, 164
consumer electronics, 233
contact, 214
content-addressable memory, 250
context switch time, 331
continuous, 43
continuous state, 85, 91, 92
continuous-time model of computation, 165
continuous-time signal, 20, 23, 24, 28, 44,

79, 165
continuous-time system, 24
contrapositive, 364
control hazard, 227
control law, 4
control system, 5
control-flow graph, 432, 433
controller, 94
controller-area network, 468
cooperative multitasking, 301
coordination language, 148
core, 241
coroutines, 160
CortexTM, ARM, 243, 261, 274, 278, 286
countable, 508
countably infinite, 508
counterexample, 365, 406, 417
counterexample-guided abs. refinement, 416
counting semaphore, 315
CPS, xi, 1, 12
CPU, 212
critical path, 344, 346
critical section, 304
crosswalk, 62, 64, 75
cryptographic algorithm, 431
cryptographic primitives, 461, 490

CSMA, 272
CSP, 161
CTL∗, 367
cyber-physical system, xi, 1, 5, 12, 162, 260
cybernetics, 5
cyberspace, 5
cycle-accurate simulator, 451
Cypress Semiconductor, 213
Cyrix, 215

DAC, 180, 185, 202
Dallas Semiconductor, 213
data encryption standard, 463
data hazard, 226
dataflow, xiii, xix, 56, 122, 147, 162, 168
dataflow analysis, 223
dB, 189
DB-25, 271
DB-9, 268
DC motor, 40, 102, 203
DC motors, 203
DDF, 157
DE, 163
dead reckoning, 199
deadline, 323, 327, 353
deadline monotonic, 350
deadlock, 152, 155, 305, 311, 342, 345
deallocate, 254
debugging, 270
decibel, 183, 189
decidable, 156, 513
decidable set, 512
decision problem, 507, 511, 513, 515
decision procedure, 513, 515
declassifier, 479
decode pipeline stage, 225
decryption, 461, 490
ded reckoning, 199
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default transition, 54, 55, 59, 372
defragmentation, 254
delay, 30, 164
delay line, 217
delayed branch, 227
denial-of-service attack, 474
DES, 463
design, 9, 178
design time, 324, 328
determinate, xiii, 59, 69, 139, 140, 316
deterministic, 59, 114, 143, 400, 510
deterministic Turing machine, 510, 515
device driver, 281, 306
DEVS, 163
DFS, 421
differential equation, 9, 18, 78, 245
differential power analysis, 488
Diffie-Hellman, 469, 469, 470, 488
diffraction, 199
digital, 180
digital actuator, 180
digital sensor, 180
digital signal processor, 215, 216
digital signature, 465, 467, 490
digital television, 233
digital to analog converter, 185
digital-to-analog converter, 180
Dijkstra, Edsger W., 315
dimmer, 203
direct memory access, 272
direct-mapped cache, 249
directed cycles, 31
discrete, 43, 45, 77
discrete dynamics, 43, 48, 68
discrete event, 44
discrete logarithm, 470
discrete signal, 45, 137, 188

discrete state, 85
discrete system, 43, 141
discrete-event systems, 163
disjunction, 51, 363, 541
disk drive, 242
disk drive controllers, 216
DM, 350
DMA, 272
DMA controller, 272
DoD, 350
domain, 139, 494
DoS attack, 474
double, 251
DRAM, 240, 242, 245
drift, 198
driver-assist system, 215
DSP, xix, 215, 216, 225, 228, 231, 233, 261
DSP processors, 215
DSP1, 216
duty cycle, 203, 262
DVD, 242
dynamic dataflow, 157
dynamic memory allocation, 254
dynamic priority, 327, 336, 351, 353
dynamic RAM, 240
dynamic range, 183, 207, 208
dynamics, xiii, 12, 17, 18, 83

earliest deadline first, 336
earliest due date, 334
ECU, 428, 468
EDD, 334
EDF, 336, 337, 351, 352
EDF*, 338
edge triggered, 278
EEPROM, 241
effective, 503
effectively computable, 508, 511, 514
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EIA, 268
Eindhoven University of Technology, 315
Einstein, Albert, 195
electrical domain, 264
electrical isolation, 264
electromagnetic induction, 199
electromagnetic interference, 486
Electronics Industries Association, 268
elliptic curve cryptography, 466
Embedded Linux, 306
embedded software, x
embedded systems, x
empty cell, 509, 542
empty sequence, 385, 541
empty set, 494, 542
enabled, 49, 325
encoder, 205
encryption, 461, 490
energy conservation, 51
engine controller, 223
engine controllers, 200
environment, 46, 52, 64, 67, 94, 114, 118,

405
equivalence principle, 195
error signal, 32
error trace, 406
Esterel, 148
Esterel Technologies, 148
estimation, 194
Euler’s totient function, 464
event queue, 163
event triggered, 46, 52, 53, 287
eventually, 366, 541
exception, 273
execute pipeline stage, 225
execution action, 136
execution count, 442

execution time, 326
execution trace, 70, 75, 362, 387, 394
execution-time analysis, 428
exhaustive search, 145
explicit pipeline, 226
exponential time, 506
extended state machine, 60, 61, 84, 110,

113, 119, 126, 174, 295, 382

f=ma, 90
factorial time, 506
fairness, 301, 420
fast Fourier transforms, 228
fault attack, 488
fault handler, 44
feasibility analysis, 350
feasible path, 439
feasible schedule, 327, 330, 333
feature extraction, 215
feedback, 5, 29, 31, 126, 138, 152, 172
feedback control, 4, 205
fetch pipeline stage, 225
FFT, 216, 228
fidelity, 12, 12, 37
field-programmable gate array, 236
FIFO, 251, 313
file system, 306, 312
filtering, 215
final state, 384, 509
finally, 366
finish time, 326
finite and infinite sequences, 499, 542
finite impulse response, 215
finite sequences, 498, 507, 509, 511, 513,

542
finite-state machine, 49, 81, 362, 406, 508
FIR, 215, 217, 221, 228

two dimensional, 219
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FireWire, 270
firing, 164
firing function, 140, 143, 149
firing rule, 150
firmware, 241
first-in, first-out, 251, 313
fixed point, 140, 143, 214
fixed priority, 327, 329, 331, 333, 351, 353
fixed-point number, 14, 234
fixed-point semantics, 140
flash memory, 213, 241, 261
FlexRay, 162
flight control, 148
flight envelope protection, 3
flip flop, 246
floating-point, 233
floating-point standard, 237
fly-by-wire, 3
Fog, xii, 180
font, 306
force, 20
formal specification, 359
formal verification, 15, 404, 423, 424
forward Euler, 165
forwarding, 226
Fourier transforms, 191
FPGA, 236
fragmentation, 254
frame, 212
frame rate, 302
free, 254
FreeRTOS, 306
Freescale, 213
Freescale 6811, 213
Freescale ColdFire, 213
frequency, 192
frequency analysis, 215

frequency selective filtering, 193
friction, 204
FSM, 49, 136, 168, 278
fully-associative cache, 251
fully-dynamic scheduler, 324
fully-static scheduler, 324
function, 494, 542
function composition, 495, 542
function pointer, 274, 297
function to a power, 542

game consoles, 302
games, 215, 220
garage counter, 60
garbage collection, 254
garbage collector, 254, 452
gasoline engine, 223
GB, 243
general-purpose computing, 210
general-purpose I/O, 263
general-purpose OS, 306
generalized non-interference, 483
generator, 204
Geode, 212
geometric series identity, 106
get, 374, 375
GHz, 212
gigabytes, 243
Gill, Helen, xi, 5
gimbal, 199
global positioning system, 198
global variable, 255, 274, 295, 304, 318,

435
globally, 365, 541
Google, 306
goto, 158
GPIB, 271
GPIO, 185, 200, 245, 263, 271
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GPS, 198, 198, 471
GPU, 220, 234
graph, 495, 500
graphical user interface, 306
graphics, 216, 220
graphics processing unit, 220
gravity, 92
grayscale, 219
guard, 49
GUI, 306
Gulliver’s Travels, 252
gyroscope, 199

H8, 213
halting computation, 509
halting problem, 436, 513
handheld device, 306
hard deadline, 327
hard real-time scheduling, 230, 327
hardware interrupt, 273
harmonic distortion, 192
Harvard architecture, 216, 225, 243, 245
hash compaction, 424
heap, 254, 255, 297
heap analysis, 452
hearing, 207
heartbeat, 418
heating element, 262
helicopter, 23
Hennessy, John, 213
Hertz, 188, 212
heterogeneous multicore, 233
Hewlett Packard, 231, 271, 306
hexadecimal notation, 252
hierarchical FSM, 126, 280
higher-order actor, 158
history transition, 129
Hitachi H8, 213

hold a lock, 304
Holzmann, Gerard, 424
Hopper, Grace M., 245
Horn’s algorithm, 336
HP-IB, 271
Hu level scheduling, 344
human hearing, 207
HVAC, 51, 200
hybrid system, 9, 43, 78, 367
hybrid systems modeling, 19
hyperproperty, 483
hysteresis, 52, 53, 73, 84, 264
Hz, 188, 212

I2C, 270
I/O, 261
IBM, 213, 245
IBM PC, 215, 271
icons, 27
IDE, 261, 268
identity function, 495, 542
IEEE 1149.1, 270
IEEE 754, 233, 237, 251
IEEE floating point standard, 251
IEEE-1284, 271
IEEE-488, 271
ill formed, 143
ILP, 228, 449, 517
image, 411, 496
image computation, 411
image function, 495, 542
IMD, 472
impedance, 202
imperative, 128, 136, 157, 158, 222, 294,

322, 378
implantable medical devices, 472
implicit path enumeration, 444
implies, 363, 541
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importance, 350
IMU, 11, 199
incandescent lamp, 203
inconsistent, 155
incremental garbage collection, 254
indoor localization, 198
inductance, 204
inductive coupling, 264
inductive learning, 424
industrial automation, 214, 274
Industrial Internet, xii, 180
Industry 4.0, xii, 180
inelastic, 92
inertial measurement unit, 199
inertial navigation, 199
inertial navigation system, 199
Infineon Technologies, 213
infinite sequences, 499, 542
infinitely often, 370, 386, 420
initial segment, 149
initial state, 49, 56
initially at rest, 33, 40
injective, 496
inlining, 435
INS, 199
insidious error, 309, 311, 312
instruction memory, 225
instruction set architecture, 211, 246
instruction-level parallelism, 228
instrumentation, 215, 220
int, 251
integer linear program, 449, 517
integers, 493, 541
integral equation, 18
integrality, 449
integrated development environment, 261
integrity, 460

Intel, 220, 231, 306
Intel 80386, 215
Intel 8051, 213
Intel 8080, 213
Intel 8086, 215
Intel Atom, 212, 215
Intel x86, 210
intensity, 218
inter-integrated circuit, 270
interchange argument, 334, 336
interleaving semantics, 116, 118, 120
interlock, 226
Internet of Everything, xii, 180
Internet of Things, xii, 180
interrupt, 119, 231, 269, 273, 298, 307, 328,

333
interrupt controller, 245, 277
interrupt handler, 273
interrupt service routine, 273, 329
interrupt vector, 277
interrupt vector table, 277
intractable, 517
invariant, 11, 359, 359, 450
inverse, 497
iOS, 306
IoT, xii, 180
IPET, 444
ISA, 211, 213, 215, 246, 276
ISA bus, 271, 272
ISR, 273, 329
IT, 2

Jackson’s algorithm, 334
Java, 222, 254, 311
Jensen, E. Douglas, 350
jiffy, 286, 301, 328
Joint Test Action Group, 270
Jonathan Swift, 252
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JTAG, 270

Kahn process network, 159
Kahn, Gilles, 159
Kerckhoff’s principle, 462
kernel, 306
key, 461
key exchange, 469
kHz, 212
kilohertz, 190
kinetic energy, 92
Kleene closure, 385
Kleene star, 385
Kleene, Stephen, 385

LabVIEW, 19, 56, 159, 162, 167, 174
ladder logic, 214
language, 70, 378, 382, 385, 418, 541
language accepted by an FSM, 384, 385,

386, 541
language containment, 15, 383, 384
language equivalence, 382
language refinement, 383
last-in, first-out, 252
latch, 225
latency, 291
lateness, 328, 334, 336–338
latest deadline first, 338
law of conservation of bits, 235
LCD display, 245
LDF, 338
LDM instruction, 276
least-recently used, 251
LED, 200, 201
level triggered, 278
LG, 213
LIDAR, 215
LIFO, 252

lifted, 496, 498, 501
lifted projection, 498, 542
light-emitting diode, 200
Lilliput, 252
linear function, 181
linear phase, 229
linear program, 445
linear programming, 445
linear search, 504
linear systems, 29
linear temporal logic, 362, 377, 378, 406,

423, 491
linear time, 505
linear time-invariant system, 30
linear-time logic, 367
linked list, 295, 297, 312
Linux, 301, 306
list scheduler, 345
little endian, 252
liveness property, 371, 417, 419
LM3S8962, 262
LM3S8962 controller, 243, 278
load, 202
local variable, 253, 255
localization, 8, 10
localization abstraction, 414
localization reduction, 414, 416
lock, 303, 324
logarithmic time, 505
logic analyzer, 451
logical address, 247
logical connectives, 363
logical execution time, 162
logical flow constraints, 445
logical system, 12
loose bound, 429, 445
low-level control, 94
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lowpass filter, 195
LP, 445
LRU, 251
LTI, 30, 194
LTL, 362, 367, 384, 386, 403
LTL formula, 364, 406
luminance, 219
Luminary Micro, 243, 261, 262, 264, 278
Lustre, 148

M2M, xii, 180
MAC, 271, 465
Mac OS X, 306
machine learning, 194, 215
machine vision, 233
Machine-to-Machine, xii, 180
magnetic core memory, 241
makespan, 328, 344, 345, 353
malloc, 254, 297, 303, 305, 319
Mark I, 245
marking, 168
Markov chain, 367
Markov decision process, 367
Mars Pathfinder, 339, 340
Marvell Technology Group, 213
mask ROM, 241
Masuoka, Fujio, 241
matching game, 389, 397
MathScript, 167
MathWorks, 19, 162, 166
MATLAB, 166
MATRIXx, 166
McMillan, Kenneth, 424
Mealy machine, 58
Mealy, George H., 58
mechanics, 19
media-access control, 271
medical electronics, 215

medical imaging, 212, 233
memory access pattern attack, 488
memory addresses, 251
memory allocation, 306
memory consistency, 119, 308
memory fragmentation, 254
memory hierarchy, 240, 242
memory leak, 254
memory management unit, 247
memory map, 243, 244
memory model, 251, 308
memory pipeline stage, 225
memory protection, 253, 253, 306, 311
memory safety, 477
memory-mapped register, 245, 263, 268, 273,

275, 278
memoryless, 29, 166
MEMS, 199
message authentication code, 465, 468, 471
message passing, 306, 312, 319
Microchip Technology, 213
microcomputer board, 261
microcontroller, 212, 261, 268
microelectromechanical systems, 199
microkernel, 294, 306, 328
micropascals, 189
microphone, 192, 199
MicroSD, 245
Microsoft Windows, 306
MIDI, 270
MIPS, 213
MMU, 247, 311
mobile operating system, 306
MoC, 136
modal model, 82, 163
mode, 82, 85
model, 12
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model checking, 386, 404, 423, 485
model of computation, 136, 292
model-order reduction, 22
modeling, 9, 17
modem, 216, 268
modular, 114
modular exponentiation, 431
moment of inertia, 23, 40, 204
moment of inertia tensor, 21
momentum, 91
Montgomery multiplication, 466
Moore machine, 58, 163
Moore, Edward F., 58
motion control, 212
motor, 202, 262
motor torque constant, 40, 204
Motorola, 213
Motorola 6800, 213
Motorola ColdFire, 213
mph, 94
multi-issue instruction streams, 223
multicore, 233, 241, 323
multipath, 199
multiply-accumulate instruction, 229
multiprocessor scheduler, 323
multitasking, 292, 322
multitasking operating system, 223
multithreaded programming, 304
music, 212
musical instrument digital interface, 270
must-may analysis, 146
mutex, 303, 306, 313, 316, 318, 324, 328,

360
mutual exclusion, 168, 303, 315, 316, 324,

325, 339, 348, 378

n-tuple, 494
name-space management, 181

NAND flash, 242
National Instruments, 19, 159, 162, 166
National Science Foundation, xi, 5
National Television System Committee, 218
natural numbers, 493, 507, 541
NEC, 213, 216
negation, 51, 363, 541
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