PSI-3432: Processamento de Áudio e Imagem $2^{\frac{a}{2}}$ Prova

14 de dezembro de 2017

Nome: .			 • • • • •	• • • • •		• • • •			 				• • • • •
Nº USP:	• • • • •	• • • • •	 		• • • • •	• • • •			 			• • •	
Duração Tipo de	_			mulári	o pró	nrio (1 folk	na.)					
Justifiqu					o pro	prio (1 1011	iaj					
Notas:													
	1ª Q:	• • • • •	 • • • • •	• • • • •	• • • • •	• • • •	• • • •	• • • •	 • • • •	• • • •	• • • •	• • •	• • • • •
	2ª Q:	• • • • •	 • • • • •	• • • • •	• • • • •	• • • •			 • • • •	• • • •	• • • •	• • •	• • • • •
	3 <u>a</u> Q:	• • • • •	 	• • • • •		• • • •			 		• • • •	• • • •	
	4ª Q:	• • • • •	 	• • • • •		• • • •			 			• • • •	
	Total:		 						 				

- $1^{\rm a}$ Q (2,5) Considere um arranjo de M=2 microfones, que você quer usar para receber um sinal de 1 kHz vindo de um ângulo de $15^{\rm o}$ (amplitude 0,5). Há um sinal de interferência vindo de $-60^{\rm o}$ (amplitude 0,4). Considere c=330 m/s.
 - a) (0,5) Calcule o espaçamento d entre os microfones de modo que $d=\lambda/2$, em que λ é o comprimento de onda.
 - **b)** (0,5) Para esse espaçamento, escolha os coeficientes dos microfones tal que o arranjo tenha um ganho de 1 para o sinal vindo de 15°.
 - c) (0.5) Calcule o ganho para o sinal que chega de -60° .
 - d) (1,0) Calcule a relação sinal/interferência na saída do arranjo, e compare com a relação sinal/interferência em um único microfone.

- $2^{\rm a}$ Q (2,5) O sinal x[n] está amostrado a 100 kHz, e você precisa aumentar a taxa de amostragem para 150 kHz. Sabendo que o sinal original tem banda entre 0 e 0.8π rad/amostra, projete um sistema completo (incluindo um filtro usando janela de Kaiser) para fazer a conversão de frequência de amostragem. Dados: oscilação máxima na banda-passante do sinal $\delta_p=\pm 0.01$. Atenuação mínima na banda de rejeição: 50 dB.
 - a) (1,0) Desenhe um diagrama do sistema, indicando cada componente, o sinal de entrada na frequência baixa, e o sinal de saída na frequência alta.
 - b) (0,5) Indique claramente os limites da banda de passagem e da banda de rejeição do filtro.
 - c) (0,5) Calcule os parâmetros da janela de Kaiser (comprimento e β).
 - d) (0,5) Mostre como calcular os coeficientes do filtro (resposta ideal e janela). Não é necessário calcular os valores, apenas indicar como devem ser feitos os cálculos.

 $3^{\rm a}$ Q (2,0) Projete um filtro de duas dimensões com as especificações:

- Banda-passante em $0 \le |\omega_1| \le \pi/3$ e $0 \le |\omega_2| \le \pi/4$.
- Banda de rejeição em $\pi/2 \le |\omega_1| \le \pi$ e $\pi/3 \le |\omega_2| \le \pi$.
- Oscilação máxima na banda passante e na banda de rejeição de 0,002.

Use janela de Kaiser e estrutura separável.

- a) (0,5) Calcule os comprimentos dos filtros em cada dimensão.
- b) (0,5) Calcule os parâmetros das janelas para cada dimensão.
- c) (0,5) Mostre como calcular a resposta ao impulso do filtro para cada dimensão.
- d) (0,5) Mostre como obter a resposta ao impulso completa a partir daquela de cada dimensão.

- $4^{\rm a}$ Q (3,0) Você dispõe de um conversor A/D e um conversor D/A com 8 bits, capazes de amostrar sinais a uma taxa de 2 MHz. Você deseja amostrar um sinal de áudio com taxa de 40 kHz com precisão de 12 bits. Suponha que os filtros passa-baixas sejam ideais.
 - a) (0,5) Qual seria a taxa de amostragem necessária para obter a precisão desejada, usando sobreamostragem sem realimentação do erro?
 - **b)** (1,0) Qual seria a taxa de amostragem necessária para obter a precisão desejada usando sobreamostragem com realimentação do erro?
 - c) (0,5) Qual seria a maior precisão possível nas condições do problema, usando sobreamostragem sem realimentação do erro?
 - d) (1,0) Qual seria a maior precisão possível, usando sobreamostragem com realimentação do erro?