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a b s t r a c t

Biohydrogen production by dark fermentation in batch reactors was modeled using the

Gompertz equation and a model based on Anaerobic Digestion Model (ADM1). The ADM1

framework, which has been well accepted for modeling methane production by anaerobic

digestion, was modified in this study for modeling hydrogen production. Experimental

hydrogen production data from eight reactor configurations varying in pressure conditions,

temperature, type and concentration of substrate, inocula source, and stirring conditions

were used to evaluate the predictive abilities of the two modeling approaches. Although

the quality of fit between the measured and fitted hydrogen evolution by the Gompertz

equation was high in all the eight reactor configurations with r2 w0.98, each configuration

required a different set of model parameters, negating its utility as a general approach to

predict hydrogen evolution. On the other hand, the ADM1-based model (ADM1BM) with

predefined parameters was able to predict COD, cumulative hydrogen production, as well

as volatile fatty acids production, albeit at a slightly lower quality of fit. Agreement

between the experimental temporal hydrogen evolution data and the ADM1BM predictions

was statistically significant with r2> 0.91 and p-value <1E-04. Sensitivity analysis of the

validated model revealed that hydrogen production was sensitive to only six parameters in

the ADM1BM.

ª 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
1. Introduction biomass and waste materials. Among these, hydrogen has
Foreseeable depletion of limited fossil fuels, increased emis-

sions of greenhouse gases, impacts on climate, and threat-

ened global energy security are driving world-wide R&D

efforts towards a renewable energy-based infrastructure

[1,2,3]. Fermentation technology is receiving revived recogni-

tion as a sustainable and economically viable technology to

produce a variety of energy carriers such as methane, ethanol,

butanol, and hydrogen from inexpensive and renewable
t.net (V. Gadhamshetty).
sor T. Nejat Veziroglu. Pu
been identified as having the highest potential as an energy

carrier because it has a higher energy density and can be

converted to electricity more efficiently. Among the biological

methods of producing hydrogen – biohydrogen, dark fermen-

tation has some advantages over the photosynthetic and

photolytic bioprocesses because of lower net energy input,

higher rate, and moderate yields.

In spite of over-emphasized disadvantage of moderate

hydrogen yield from dark fermentation (of 4 mol of H2/mole of
blished by Elsevier Ltd. All rights reserved.
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glucose), scientists continue to optimize fermentative bio-

hydrogen production from biomass feedstock to improve the

rates and net energy yield [4]. Economics of fermentative

biohydrogen process could be improved if its effluents can be

fed to downstream processes such as photofermentation or

microbial electrolysis cells to produce additional hydrogen;

methane fermentation to produce methane; or microbial fuel

cells to produce electricity [4,5,6].

1.1. Modeling biohydrogen production by dark
fermentation

In the past, laboratory scale experiments have been con-

ducted to identify the effects of individual process variables

such as type and concentration of substrate and fatty acids,

headspace pressure release methods, hydrogen partial pres-

sure, pH, stirring and temperature on the product spectrum of

dark fermentation [7]. In some instances, combined effects of

two variables such as pH and substrate concentration [8];

temperature and pressure release [9], on biohydrogen

production have also been discerned. However, it is difficult to

conduct exploratory studies to discern synergistic effects of

multiple variables (n > 3) on fermentative hydrogen produc-

tion. Complexity of these studies is further compounded due

to the syntrophic existence of multiple bacterial species when

mixed cultures are used. Mechanistic mathematical models

that can simulate the science behind biohydrogen processes

can be beneficial in identifying the optimum combination of

process variables to maximize hydrogen yields. Kinetic

constants developed from such modeling studies can be

validated with experimental data for use in design and

development of the biohydrogen process. Models that can

predict the product mix can be useful in designing down-

stream processing of the effluents.

1.2. Gompertz equation in biohydrogen studies

Previous biohydrogen researchers have used Gompertz

equation to describe hydrogen evolution by dark fermenta-

tion. In this empirical approach, three model parameters – lag

time, H2 production potential, and H2 production rate are

adjusted to fit the Gompertz equation to experimentally

measured hydrogen evolution data. Even though this curve-

fitting approach yields high correlation coefficients between

the observed and fitted hydrogen evolution data (Cited in [10]),

the three model parameters determined by curve-fitting are

restricted to specific experimental conditions and cannot be

used in a predictive mode. Due to this empirical nature, utility

of the Gompertz equation is severely limited as it cannot

account for any of the relevant process variables such as

substrate concentrations, temperature, pH, substrate-types

etc. for predictive purposes. In certain studies, Gompertz

equation has been modified to accommodate typical kinetics

of substrate degradation, biomass growth, and hydrogen

production [11,12].

Some biohydrogen studies have utilized the conventional

kinetic expressions such as Monod’s equation and Luedeking

Piret’s equation [10]. However, rigorous and multiple simula-

tions, followed by a series of validations may be required to

establish generality of such equations and the associated
parameters. Further, comprehensiveness of such models is

accomplished only when they can be readily integrated with

other complex bioprocesses i.e. hydrolysis, acidogenesis, and

H2 production from complex and particulate organic

substrates. Towards this end, it would be advantageous to

develop/adapt a generic modeling framework, with well-

defined nomenclature, and readily available kinetic parame-

ters and constants to predict cumulative hydrogen production

under varying combinations of multiple substrates, bacterial

strains, and processes.
1.3. Anaerobic digestion model I (ADM1) in biohydrogen
studies

The Anaerobic Digestion Model I (ADM1) is a mechanistic

model that has open structure, common nomenclature inte-

grating biokinetics with association-dissociation; gas–liquid

transfer; cellular processes involving hydrolysis, acidogenesis,

acetogenesis, and methanogenesis. Previous researchers have

successfully used the ADM1 model for describing methane

production from mixed culture fermentation of domestic,

industrial wastewater as well as solid wastes [2]. It is therefore

prudent to adapt the ADM1 framework to predict hydrogen

and volatile fatty acid formation by dark fermentation, by

excluding the final step of methanogenesis. Peiris et al. [13]

had demonstrated the utility of ADM1 model in biohydrogen

studies by simulating the effect of carbohydrate-protein ratio

on dynamic production of protons, biomass, fatty acid and

hydrogen. Rodriguez et al. [14,15,16,17] have applied ADM1

model in biohydrogen studies as an energetic and metabolic

network based modeling approach and alternative to multiple

biomass models and in mechanistic description of product

formation through a variable stoichiometry approach.

The objective of this study was to evaluate the suitability of

ADM1-based model (ADM1BM) vs. Gompertz equation in

predicting hydrogen production in eight dark fermentation

systems varying in temperature, inocula, stirring, pH control,

pressure release, or liquid-headspace volume.
2. Methods

2.1. Culture conditions

The following three different culture sources reported in our

previous studies were evaluated in this study: LpH inocula [18],

heat-treated compost [9], and raw compost [19] (Table 1). Two

different substrates (glucose and sucrose) were evaluated at two

different concentrations. Stock solutions were added to

compost extracted media [9] to obtain final COD concentration

(5–10 g COD/L) in the test reactors. The test reactors (250 mL

capacity bottles; Wheaton Scientific) had a headspace volume of

either 75 or 100 mL. Tests were conducted at the designated test

temperatures (22 �C, 25 �C, or 37 �C) in batch mode, either with

continuous agitation at 160 rpm or without any agitation. The

reactors were coded based on the headspace pressure release

method – continuous pressure release (CPR) or intermittent

pressure release (IPR). Details of the experimental design are

presented elsewhere [9,18,19,20] and summarized in Table 1.



Table 1 – Experimental conditions in eight biohydrogen systems.

IPRB5 IPRB10 IPR22 CPR22 CPR37 IPR37 IPR22-UC IPR22-LpH

Reactor Buffered Buffered Unbuffered Unbuffered Unbuffered Unbuffered Unbuffered Unbuffered

Conditions Stirred Stirred Stirred Stirred Stirred Stirred Unstirred Unstirred

Substrate Glucose Glucose Sucrose Sucrose Sucrose Sucrose Sucrose Sucrose

g COD/L 5 10 10 10 10 10 10 10

Inocula HC HC HC HC HC HC RC LpH

T (�C) 25 25 22 22 37 37 22 22

PR IPR IPR IPR CPR CPR IPR IPR IPR

Volume (mL) 175 175 175 175 175 175 150 150

Stirring (rpm) 160 160 160 160 160 160 None None

Notes: HC, heat-treated compost; RC, raw compost; LpH, inocula from low pH systems: PR: pressure release; IPR: intermittent PR, CPR:

continuous PR.
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2.2. Bioreactor configurations

Four unbuffered reactors (IPR22, CPR22, IPR37, and CPR37)

were inoculated with heat-treated compost and tested under

the two pressure release conditions (IPR and CPR) and

temperatures (22 �C and 37 �C) [9]. Previously demonstrated

cultures capable of hydrogen production under low pH range

of 3.3–4.3 constituted reactor IPR22-LpH [18]. Another reactor,

coded IPR22-UC, was inoculated with unconditioned compost

and operated without any buffers or stirring [19]. Two addi-

tional reactors, IPRB5 (with 5 g COD/L glucose) and IPRB10

(with 10 g COD/L glucose) were buffered with 50 mM MES

(pH¼ 7), inoculated with heat-treated compost and tested

under stirred conditions (160 rpm) [20]. Control reactors were

set up to verify the absence of biotic, abiotic and background

H2 production from compost.

2.3. Analytical

Liquid and gas samples were drawn with gas tight syringes and

analyzed following procedures described elsewhere [9,18].

Reducing sugars were measured spectrophotometrically (Hach,

wavelength¼ 575 nm) using di-nitro salicylic acid (DNS) assay.

pH was measured using Cole-Palmer pH electrode probe.

Volatile fatty acids in the liquid phase and composition of the

headspace gases (hydrogen, oxygen, nitrogen, and methane)

were measured using gas chromatograph following the

methods described previously [9]. Hydrogen production was

calculated from headspace measurements and the total

volume of biogas produced at each time interval, and reported

at STP. Hydrogen gas composition between sampling time was

assumed to follow a linear change in concentration over the

sampling interval [9,18].
3. Model development

3.1. Gompertz equation

Procedure suggested to minimize the sum of square error to

the correlation coefficients ratio (SSE/R2) was used to fit the

Gompertz equation by adjusting the three Gompertz param-

eters: hydrogen production, (Hmax, mL), H2 production rate,

(R, mL/h), and the lag phase, (l, h). This curve-fitting exercise

was carried out using Microsoft Excel software [8].
HðtÞ ¼ Hmax$exp

�
� exp

�
R

Hmax
ðl� tÞ þ 1

��
(1)

3.2. ADM1-based model (ADMBM)

In our experiments, the end-products of dark fermentation of

sugar substrates (S1) were butyrate (S2), propionate (S3),

acetate (S4), hydrogen (S5) and biomass (X1). Lactate typically

observed during higher organic loading [3] was not detected in

this study. Ethanol production was also insignificant (<5% of

total COD) and was not considered in our model. Based on

these results, the schematic shown in Fig. S1 (Supplementary)

was adapted to generate ADM1BM. The following equations

were used to describe the intermediate steps.

C6H12O6 /2CH3COOHþ 2CO2 þ 4H2 (2)

C6H12O6 /CH3CH2CH2COOHþ 2CO2 þ 2H2 (3)

3C6H12O6/4CH3CH2COOHþ 2CH3COOHþ 2H2Oþ 2CO2 (4)

Product formation from the monosaccharide fermentation

was obtained by following the constant stoichiometry

approach described in ADM1 [2]. The relative split, via which

dark fermentation proceeds according to Eqs. (2)–(4), was

experimentally determined to establish individual yield

values for butyrate ( f1–2), propionate ( f1–3), acetate ( f1–4),

hydrogen ( f1–5), and biomass (Y1). Assimilation of organic

acids is thermodynamically unfavorable (DG0> 48 kJ/mol) in

the absence of external energy input [21] and was therefore

not considered in this model. All the state variables (S1 (COD

input), S2 (butyrate), S3 (propionate), S4 (acetate), S5 (hydrogen)

and X1 (acidogenic biomass)) are expressed as g COD/L. Defi-

nitions for the other variables were adapted from ADM1

model. Substrate uptake rate assuming substrate-limited

conditions is described by Monod’s equation:

�
dS1

dt

�
U

¼ �k1

�
S1

KS1 þ S1

�
X1 (5)

where, k1, g COD/g biomass-day is the specific uptake rate and

KS1, g COD/L is the half saturation constant.

It has been reported that substrate uptake rate can be

inhibited at higher proton levels: i) low pH promotes diffusion

of undissociated acids into the cell membrane where it

dissociates in the cell to release a proton which has
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implications on higher cellular maintenance energy require-

ments ii) proton uptake decreases the availability of coen-

zyme A and phosphate pools to cause subsequent reduction in

glucose flux through glycolysis [22]. Substrate uptake rate in

Eq. (5) has, therefore, been modified to include pH inhibition.

�
dS1

dt

�
U

¼ �k1

�
S1

KS1 þ S1

�
X1IpH (6)

where, the pH inhibition term, IpH, inhibits the substrate

uptake rate and hence the hydrogen production at both the

lower and the upper pH values according to the model sug-

gested in ADM1 [2]:

IpH ¼
1þ 2� 100:5ðpHLL�pHULÞ

1þ 10ðpH�pHULÞ þ 10ðpHLL�pHÞ (7)

Biomass growth is dependent on the biomass yield (Y1),

COD uptake rate, and cell death rate due to lysis and disinte-

gration (kd,1) [2].

dX1

dt
¼ Y1

�
dS1

dt

�
U

�kd;1X1 (8)

Formation of butyrate (S2), propionate (S3), and acetate (S4)

are described by the following equations as suggested in

ADM1 [2]:

dS2

dt
¼ ð1� Y1Þf1 – 2

�
dS1

dt

�
U

(9)

dS3

dt
¼ ð1� Y1Þf1 – 3

�
dS1

dt

�
U

(10)

dS4

dt
¼ ð1� Y1Þf1 – 4

�
dS1

dt

�
U

(11)

Finally, hydrogen production is obtained from Eq. (12) [2]

dS5

dt
¼ ð1� Y1Þf1 – 5

�
dS1

dt

�
U

þð1� Y2Þf2 – 5

�
dS2

dt

�

þ ð1� Y3Þf3 – 5

�
dS3

dt

�
þ ð1� Y4Þf4 – 5

�
dS4

dt

�
(12)

where, f2–5, f3–5, and f4–5 are set to zero.

As methane production was not observed in any of the

reactors due to the heat treatment technique or operating

conditions [9,18,19,20], the initial concentration of metha-

nogens was set to zero.

The primary objective of this study was to evaluate the

suitability of ADM1-based model (ADM1BM) vs. Gompertz

equation in predicting cumulative biohydrogen production in

eight different biohydrogen systems. Ion association/dissoci-

ation and gas–liquid transfer processes are not considered in

this preliminary work and may be necessary to match the

comprehensiveness of the ADM1 framework. Effects of

undissociated fatty acid concentrations on acid accumulation

and hydrogen production are not discussed here and readers

are directed elsewhere [14].
4. Results and discussion

Experimental results confirmed absence of background

hydrogen production in the control reactors. As demonstrated
in our previous studies, heat treatment of inocula and/or the

right operating conditions (unbuffered, low pH as suggested in

our previous study) [9,18] can effectively suppress methane

production. Hydrogen conversion efficiencies (%) determined

from experimental cumulative H2 production data and

substrate consumption calculated from stoichiometry (Eq. (2))

for IPR22, IPRB10, IPR22-LpH, CPR22, CPR37, IPR22-UC, IPR37,

and IPRB5 are: 53%, 42%, 43%, 40%, 29%, 36%, 21%, and 36%,

respectively. Cumulative H2 production and substrate

consumption data (n¼ 3, SD< 6%) are shown in Fig. 1a and

b respectively, with the sole purpose of demonstrating

differences in process conditions and performances among

the eight reactors (Table 1), and associated challenges in

predicting hydrogen production using a calibrated model with

a specific set of parameters. Fig. 1c shows pH dynamics in the

six unbuffered reactors, which are fed into ADM1BM under

simulation mode, implications of which are discussed in later

sections.

4.1. Gompertz equation

The three Gompertz parameters – specific hydrogen produc-

tion potential (SHHP), hydrogen production rate (Rs) and lag

time (l), for each of the eight biohydrogen reactors determined

by the curve-fitting process are tabulated in Table 2. Gompertz

equation-based best fit curves for cumulative H2 production

for the eight reactors are shown in Fig. 2. The overall goodness

of fit between the measured hydrogen production data and

those fitted with the Gompertz equation was high in IPR37 and

CPR37 (r2¼ 0.99, p< 1.3E-07; and r2¼ 0.99, p< 1.6E-07 respec-

tively; Fig. 2e, f). While Gompertz equation could fit cumula-

tive hydrogen production in IPR22 and CPR22 reasonably well,

the overall goodness of fit between the measured and fitted

values was slightly lower (r2¼ 0.93, p< 4.1E-18; and r2¼ 0.91,

p< 5.8E-15 respectively; Fig. 2a, d). This is likely due to

mismatch between temporal and experimental data due to

untypical H2 production characteristics specific to unbuffered

IPR22 and CPR22 reactors: when pH reached 4.5 self induced

pH increase was observed possibly accompanied with acid

reassimilation and solvent production [9].

Overall goodness of fit by the Gompertz model in the case

of the buffered reactors (IPRB5 and IPRB10) at the two glucose

concentrations was high (r2¼ 0.98, p< 3.3E-17; and r2¼ 0.99,

p< 4.7E-25 respectively; Fig. 2b, c). Gompertz equation was

able to follow the temporal trend of cumulative hydrogen

production in IRP22-UC also well (Fig. 2g). The overall good-

ness of fit by the Gompertz model was high (r2¼ 0.98,

p< 6.77E-12). A bacterial consortium capable of producing

hydrogen in low pH (LpH) range of 3.3–4.3 was used in IPR22-

LpH [18]. Gompertz equation was able to trace the temporal

trend of cumulative H2 production in IRP22-LpH well (r2¼ 0.99,

p< 6.5E-10; Fig. 2h).

The quality of the fit by the Gompertz equation in all eight

reactors is comparable to that reported in the literature (23

biohydrogen studies cited by Jianlong et al. [10]). This is as

expected because the results are based on curve fitting for the

specific experimental data from the eight different systems. In

spite of excellent statistical evidence for goodness of fit, no

single set of parameters (SHPP, RS and l) found from any one

reactor could be generalized to fit H2 production data from the
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Fig. 1 – a) Cumulative hydrogen production (mL) b) COD

consumption (g COD/L) and c) pH in six unbuffered batch

reactors.
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other reactors. Experimentally determined Gompertz param-

eters do not distinguish differences in process conditions

across the eight reactors shown in Table 1.

4.2. ADM1-based model (ADM1BM)

In our approach, the variation of pH was not explicitly

modeled; instead, experimentally measured, time dependent

pH values were incorporated into the model. When substrate is

not the limiting factor, pH inhibition switch (IpH) in Eq. (6)

controls H2 production in the defined pH limits with pHLL¼ 5.5

and pHUL¼ 6.5 [8,23]. While the kinetic model based on pH
inhibition and substrate limitation can be deemed as over-

simplification of the ADM1 model, advanced models for

specific biohydrogen systems should be simulated under

variable stoichiometry mode [14] to explore precise and

comprehensive details in the specific reactor. We adapted the

simpler approach here because the major objective in this

study was to evaluate suitability of ADM1BM vs. Gompertz

model in predicting biohydrogen production from dissimilar

bioreactors. For this purpose, the six unbuffered biohydrogen

systems, IPR22, CPR22, IPR37 and CPR27, IPR22_UC, IPR22_LpH

varying in inocula source, pressure release method and

temperature were selected as the base case. Experimental

results from IPR22 were used to calibrate our model; results

from the other five were used to validate the model.

Sucrose was used as the substrate and heat-treated

compost as the inocula in IPR22, CPR22, IPR37 and CPR37

reactors. Butyrate was the major end product in these reac-

tors, followed by acetate and propionate. Yield values inter-

polated experimentally from separate batch studies were used

to establish the following f-factors: butyric acid: f1–2¼ 0.54;

acetic acid, f1–4¼ 0.11; propionic acid, f1–3¼ 0.03; hydrogen,

f1–5¼ 0.19; and biomass, Y1¼ 0.1. The model Equations (5)–(12)

were implemented in Extend (ImagineThat Inc.) simulation

software and solved using Euler’s backward numerical

method (Dt¼ 300 s).

All the kinetic parameters used in Equations (5)–(12), except

KS1 were adapted from Batsone et al. [2]. Values of KS1 in Eq. (6)

were modified as m KS1 where the modifier ‘m’ is hypothesized

here as a function of reactor conditions, while the value of KS1

was kept the same as in ADM1. Initially, m was considered to be

a function of temperature, and was determined by curve fitting

using one set of experimental hydrogen data at 22 �C and

another set at 37 �C. For this initial model, identified here as the

General ADM1BM, the following modifier values were estab-

lished: m¼ 22 at 22 �C and m¼ 2 at 37 �C. This initial model was

further refined by considering m to be a function of both

temperature and the pressure release method, and was

established by fitting the hydrogen data from the four reactors.

For this model, identified here as the Refined ADM1BM, the

following modifier values were established: m¼ 16, 36, 2, and 4

for IPR22, CPR22, IPR37 and CPR37 respectively.

4.2.1. Calibration of general ADM1BM
Experimental COD results from IPR22 were used to calibrate

the General ADM1BM. COD consumption, VFA (acetate,

propionate, and butyrate) production and hydrogen evolution

fitted by the calibrated model are compared against the cor-

responding experimental values in Figs. 3a, 4a, and 5a,

respectively. Existence of fermentative bacteria in IPR22 adept

in responding to inhibitory pH conditions by switching from

exponential to stationary growth phase for concurrent

participation in sucrose degradation, and reassimilation of

volatile fatty acids was hypothesized to sustain hydrogen

production under unbuffered conditions [9]. Since liquid

phase analysis indicated no pH inhibition in IPR22, except for

the initial short period, H2 prediction by the model was largely

dependent on substrate availability; nearly 99% of the

substrate was utilized, confirmed by both experimental

results and modeling results. The predicted temporal

hydrogen production in IPR22 matched the experimental



Table 2 – Gompertz analysis for eight biohydrogen systems.

IPRB5 IPRB10 IPR22 CPR22 CPR37 IPR37 IPR22-UC IPR23-LpH

a) Gompertz parameters for proposed biohydrogen systems

SHPP, (Ps) 33 37 47 36 27 20 22 28

Lag time, l (h) 42 60 40 30 18 18 40 54

Rs (mL/L h) 13 15 23 9 54 46 13 25

b) Quality of fit for Gompertz model

Data points 16 25 26 25 8 8 14 9

r2 0.98 0.99 0.93 0.91 0.99 0.99 0.98 0.99

F 2524 2542 556 317 754 807 670 2065

P 3.E-17 5.E-25 4.E-18 6.E-15 2.E-07 1.E-07 7.E-12 7.E-10

Notes: SHPP, specific hydrogen potential (mL H2/(g COD/L of hexose)); Rs: hydrogen production rate.
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results well with r2¼ 0.96, p< 0.0001, F¼ 584 (Fig. 3a). The

quality of fit for COD profile and that for VFA production were

also statistically significant as shown in Figs. 4 and 5 and Table

3. The fact that the model predictions followed the temporal
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(H2, VFAs) suggests that the general-model formulation and

the modified KS1 value are adequate in describing the dark

fermentation process for hydrogen production.
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4.2.2. Validation of the general ADM1BM
The model was first validated using the experimental data

from CPR22. As in the case of IPR22, pH inhibition was not

observed in this reactor, and the entire sucrose content was

utilized (Fig. 4b). Though the model predicted cumulative

hydrogen production reasonably well in CPR22 (r2¼ 0.93,

p< 0.0001, F¼ 326), the temporal hydrogen production did not

match well with experimental data (Fig. 3b). This is likely due

to the untypical nature of unbuffered conditions: self induced

pH increase caused by slight shift from acid-production to

solvent production phase, coupled with hydrogen
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assimilation during endangered pH conditions (pH w4.5 h at

t¼ 266 h) [9]. Similar effects in IPR22 might have been slightly

masked as this reactor was used as a base model for calibra-

tion purpose. Figs. 3b, 4b, 5b clearly show that COD

consumption, VFA production and hydrogen evolution pre-

dicted by model in this case compare well against corre-

sponding measured values with statistically significant

quality of fit (Table 3).

Next, the model was validated using experimental data

from IPR37, run at a slightly higher temperature (37 �C). As

shown in Fig. 3c, predicted cumulative hydrogen production
0 100 200 300 400 500
0

4

8

12

0 100 200 300 400 500
0

4

8

12

Elapsed time [hrs]

b

d

CP R22
n= 14

r2=0.88
p< 0. 0001
F= 89

CPR37
n= 7

r2=0.89
p< 0.01 5
F= 25

eral ADM1-Fit (–). (a) IPR22 (b) CPR22 (c) IPR37 (d) CPR37.



0 100 200 300
0

1000

2000

3000

Butyrate

Acetate

Propionate

0 100 200 300
0

1000

2000

3000
Butyrate

Acetate

Propionate

0 100 200 300
0

1000

2000

3000

Butyrate

Acetate

Propionate

0 100 200 300
0

1000

2000

3000

Butyrate

Acetate

Propionate

V
FA

 f
or

m
at

io
n 

[m
g 

C
O

D
/l

]

Elapsed time [hrs] Elapsed time [hrs]

c IPR37 d  CPR37

b CPR22a IPR22

Fig. 5 – VFA formation (mg COD/L): experimental butyrate (,), acetate (6), propionate (B) vs. General ADM1BM-Fit (–) (a)

IPR22 (b) CPR22 (c) IPR37 (d) CPR37.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 3 5 ( 2 0 1 0 ) 4 7 9 – 4 9 0486
curve followed the trend in the measured values. Within 90 h

of operation of this reactor, volatile fatty acids accumulated

rapidly to lower the pH to inhibitive levels, hindering

substrate consumption and hydrogen production [9].

Hindered hydrogen production in IPR37 due to acidic condi-

tions, and the lower consumption of sucrose are well pre-

dicted by this model (Fig. 4c). Both experimental and model

results indicated that 50% of sucrose was still available after

cessation of hydrogen production (Fig. 4c). Temporal data of

predicted butyrate, acetate, and propionate production
Table 3 – Quality of ‘General-ADM1’ prediction in four bioreact

Bioreactor Quality

COD H2

IPR22 n 14 26

r2 0.96 0.96

p 0.0001 1E-04

F 323 584

CPR22 n 14 25

r2 0.88 0.93

p 0.0001 1E-04

F 89 326

IPR37 n 7 9

r2 0.9 0.97

p 0.001 1E-04

F 47 213

CPR37 n 7 9

r2 0.89 0.91

p 0.015 1E-04

F 25 72
matched the measured data well (Fig. 5c). As shown in Table 3,

except for propionate, overall goodness of fit between pre-

dicted and measured substrate concentration as well as that

for gaseous and liquid products were statistically significant

(r2> 0.9, p-value >0.001, F> 44).

The model was further validated using the experimental

data from CPR37 run at 37 �C, but under continuous pressure

release conditions. The model predictions of cumulative

hydrogen production agreed precisely with measured values:

259.5 vs. 260 mL. Similar to IPR37, 50% of the substrate was left
ors.

of fit for ‘General-ADM1’ predictions

Acetate Propionate Butyrate

11 11 11

0.84 0.88 0.97

0.0001 0.0001 0.0001

48 67 272

9 10 10

0.76 0.62 0.81

0.0021 0.0075 0.0004

23 12 35

7 7 7

0.93 0.58 0.9

0.0005 0.0458 0.0001

63 7 44

7 7 7

0.92 0.024 0.75

0.0007 0.74 15

56 0.123 15
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unutilized due to pH inhibition, a fact well captured by the

model (Fig. 3d). The overall goodness of fit between predicted

and measured values for the COD profile and gaseous and

liquid products were reasonably significant except for propi-

onate (r2> 0.75, p-value> 0.001, F> 25; Figs. 4d and 5d).

The model was also able to predict hydrogen evolution

from two other reactors IPR22_UC and IPR22_LpH with

reasonable statistical significance with r2¼ 0.89 and 0.96

respectively and p-value <0.001 (Data not shown here).

4.2.3. Refined-ADM1 model
Though the General ADM1BM was well calibrated to predict

hydrogen production with reasonable statistical significance

in six different biohydrogen systems, the proposed refinement

showed a better quality of fit, albeit reducing its generality.

Other workers have suggested similar customization too. For

example, Penumathsa et al. [14] ran a series of experiments on

a single continuous-biohydrogen system to develop

a comprehensive set of ‘training-data’ for calibration

purposes, and further used the same combination of cali-

brated model & bioreactor for prediction purposes.
In this study, General ADM1BM (presented in Figs. 3–5 and

Table 3) was customized to each individual bioreactor (i.e.

IPR22, CPR22, IPR37 and CPR37) by modifying KS1 values as

described in Section 4.2. Temporal predictions of COD profile,

H2 evolution, and total VFA production by the ‘‘Refined-

ADM1BM’’ model are shown in Fig. 6. Temporal profiles of

individual VFAs derived from experimental and modeling

data are provided in supplementary section (Fig. S2). With this

approach, excellent match between model predictions and

measured values can be seen in all four systems. Overall

goodness of fit of this model summarized in Table S1 can be

seen to be higher than that of the ‘‘General-Model’ summa-

rized in Table 3.

4.3. Sensitivity analysis

The proposed model was simulated under sensitivity analysis

mode to identify the most significant parameters affecting

hydrogen production. Reactor IPR22 was chosen for this

purpose. For each of the model parameters, five values were

selected within a range of G5% and five simulations were run
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at each of those values keeping all the other parameters fixed

at the base values established in this study. The five hydrogen

production curves generated from these five simulations were

combined to produce a mean profile with a spread of one

standard deviation. Based on this study, only the following six

parameters out of the ten studied were found to be significant:

K1, KS1, Y1, f1–5, pHLL, pHUL.

Considering the cumulative hydrogen volume, these

simulations indicate that the least significant parameters

affecting cumulative hydrogen production are Kd,1, f1–2, f1–3,

f1–4: when these parameters were varied within a range of

G5% from the base values, the standard deviations in cumu-

lative hydrogen production were less than 5% of the standard
deviation (413 G 6, 413 G 5, 413 G 0.1, 413 G 0.5), and showed

no significant change in the temporal values (Fig. 7d, f; Data

not shown for f1–3, and f1–4). However, the significance of f1–2,

f1–3, f1–4 on biohydrogen production cannot be underestimated

based on these results as it is known that domination of each

acid has major impact on the hydrogen yield [22]. Significance

of these three parameters in our study are masked by constant

stoichiometry approach used by us as the values for f1–2, f1–3,

f1–4 and f1–5 are based on the stoichiometric coefficients in Eqs.

(2)–(4) and experimentally determined COD distribution

values (Fig. S1, Fig. 5) were permanently coded into the model.

Therefore, variations in f1–2, f1–3, f1–4 will affect corresponding

products but not hydrogen production. For example, Fig. 7e
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shows significant effect of f1–5 (COD distribution towards

hydrogen production) on hydrogen evolution i.e. 8% variation

in standard deviation (408 G 32). Sensitivity effect of the

f-factors will become prominent in variable stoichiometry

ADM1 framework suggested by Rodriguez et al. [15].

Reasonable sensitivity of hydrogen evolution to KS1 values

is exhibited in this study (Fig. 7b): 7–8% and <2% variation in

standard deviation during t¼ 100–200 h and during last 100 h

of the whole duration. Further, KS1 value of 11 g COD/L,

obtained from the calibration purpose, is nearly 20 times

higher than that recommended in the original ADM1 study.

High value of KS1 may have implications on high cell turn over

and maintenance energy requirements for these fermentative

bacteria, and may have resulted from the selected untypical,

unbuffered nature of IPR22 fermentation system character-

ized by low temperatures. This value was readily reduced by

nearly 10 fold in our high temperature reactors (CPR37 and

IPR37). In another unpublished study, when the ADM1BM was

calibrated with low value of KS1 (0.5 g COD/L) there was less

than 1% variation in the standard deviation value of the

hydrogen evolution.

The other important parameters affecting cumulative

hydrogen production in increasing order of their significance

are Y1, K1, pHUL, pHLL (413 G 0.8, 413 G 5, 407 G 10, and

357 G 90 mL H2 respectively). Though 5% variation in values of

K1, Y1, pHUL varied the standard deviation of cumulative

hydrogen production by less than 1%, the sensitivity of model

towards these parameters is apparent due to variations in the

temporal hydrogen production profiles (Fig. 7a, c, and h

respectively).

Larger influence of K1 value is due to the typical charac-

teristics of coupled differential equations (Eqs. (5)–(12)), both

cell growth and product formation dynamics are tied to

substrate consumption and therefore ramping factor (K1) in

Eq. (6) exerts a major influence on the cumulative hydrogen

production. Here, the selected K1 value (30 g COD/g COD-day)

is well-suited to COD rich glucose substrates and these values

will be considerably low when less-preferential COD source

such as domestic waste or wastewater are employed as

feedstock for biohydrogen production. Similarly, biomass

yield (Y1) influences instantaneous biomass concentration,

which directly influences substrate consumption rate (Eq. (6))

and corresponding relative shifts in cumulative hydrogen

production (Eq. (12)). These results are slightly different from

that of Batstone et al. [2] where they found that hydrolysis

parameters are more significant and this disagreement is

valid because ADM1 model was typically designed to model

complex, particulate matter unlike readily degradable glucose

substrates employed in our laboratory study.

Hydrogen evolution was more sensitive to pHLL than to

pHUL (Fig. 7g, h). This observation on dramatic influence of low

pH values on hydrogen evolution is in agreement with litera-

ture reports [8]. As mentioned in the introductory paragraphs,

low extracellular pH conditions amplify the energy require-

ments for the transport of the undissociated acids outside

the cell wall; proton uptake also decreases the availability of

coenzyme A and phosphate pools to cause subsequent

reduction in glucose flux through glycolysis [22]. Nearly

20–60% variation in standard deviation values of hydrogen

production is apparent when pHLL value is changed from the
base value by 5%. Such pH variations are mitigated by using

buffers and pH control, or special process conditions incor-

porated in our IPR22 reactor [9].
5. Conclusions

Experimental data from eight dark fermentation reactors

varying in temperature, pressure release, biomass seed, and

substrate were used to evaluate the predictive ability of the

Gompertz equation and an ADM1-based model developed in

this study. Even though the statistical quality of fit by the

Gompertz equation was high, three reactor-specific parame-

ters had to be found for each reactor to trace their hydrogen

production profiles. In its generic form, Gompertz equation is

also limited by its inability to predict volatile fatty acid

formation and substrate consumption. The ADM1-based

model was able to predict well not only the hydrogen profile

(r2> 0.91), but also the COD (r2> 0.88), acetate (r2> 0.76), and

butyrate (r2> 0.75). In contrast to the Gompertz equation, only

one specific parameter per reactor had to be chosen in the

case of the ADM1-based model. Based on the above findings, it

can be concluded that the models and associated parameters

adapted from ADM1 framework are appropriate for modeling

fermentative hydrogen production.
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