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Preface

THIS book is not a treatise on environmental modeling. Several excellent
books are currently available that do more than justice to the science of

environmental modeling. The goal of this book is to bridge the gap between
the science of environmental modeling and working models of environmen-
tal systems. More specifically, the intent of this book is to bring computer-
based modeling within easy reach of subject matter experts and professionals
who have shied away from modeling, daunted by the intricacies of computer
programming and programming languages. 

In the past two decades, interest in computer modeling in general and in
environmental modeling in particular, have grown significantly. The number
of papers and reports published on modeling, the number of specialty con-
ferences on modeling held all over the world, and the number of journals
dedicated to modeling efforts are evidence of this growth. Several factors
such as better understanding of the underlying science, availability of high
performance computer facilities, and increased regulatory concerns and
pressures have fueled this growth. Scrutiny of those involved in environ-
mental modeling, however, reveals that only a small percentage of experts
are active in the modeling efforts; namely those who also happen to be
skilled in computer programming. 

For the rest of us, computer modeling has remained a challenging task
until recently. A new breed of software authoring packages has now become
available that enables nonprogrammers to develop their own models without
having to learn programming languages. These packages feature English-like
syntax and easy-to-use yet extremely powerful mathematical, analytical,
computational, and graphical functions, and user-friendly interfaces. They
can drastically reduce the time, effort, and programming skills required to
develop professional quality user-friendly models. This book describes eight
such software packages, and, with over 50 modeling examples, illustrates
how they can be adapted for almost any type of modeling project.
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The contents of this book are organized into nine chapters. Chapter 1 is an
introduction to modeling. Chapter 2 focuses on the science and art of mathe-
matical modeling. Chapter 3 contains a primer on mathematics with examples
of computer implementation of standard mathematical calculi. Chapters 4, 5,
and 6 contain reviews of the fundamentals of environmental processes, engi-
neered systems, and natural systems, respectively. Chapter 7 describes and
compares the eight software packages selected here for developing environ-
mental models. Chapters 8 and 9 are devoted entirely to modeling examples
covering engineered and natural systems, respectively. 

The book can be of benefit to those who have been yearning to venture into
modeling, as well as to those who have been using traditional language-based
approaches for modeling. In the academic world, this book can be used as the
main text to cultivate computer modeling skills at the freshman or junior lev-
els. It can be used as a companion text in “fate and transport” or “environ-
mental modeling” types of courses. It can be useful to graduate students
planning to incorporate some form of modeling into their research. Faculty
can benefit from this book in developing special purpose models for teaching,
research, publication, or consulting. Practicing professionals may find it use-
ful to develop custom models for limited use, preliminary analysis, and fea-
sibility studies. Suggested uses of this book by different audiences at different
levels are included in Chapter 1. 

As a final note, this book should not be taken as a substitute for the user
manuals that accompany software packages; rather, it takes off from where
the user manuals stop, and demonstrates the types of finished products (mod-
els, in this case) that can be developed by integrating the features of the soft-
ware. This book can, perhaps, be compared to a road map, which can take
nonprogrammers from the problem statement to a working computer-based
mathematical model. Different types of vehicles can be used for the journey.
The intention here is not to teach how to drive the vehicles but rather to point
out the effort required by the different vehicles, their capabilities, advantages,
disadvantages, special features, and limitations.
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PART I

Fundamentals
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CHAPTER 1

Introduction to Modeling

CHAPTER PREVIEW

In this chapter, an overview of the process of modeling is presented.
Different approaches to modeling are identified first, and features of
mathematical modeling are detailed. Alternate classifications of math-
ematical models are addressed. A case history is presented to illustrate
the benefits and scope of environmental modeling. A road map through
this book is presented, identifying the topics to be covered in the fol-
lowing chapters and potential uses of the book.

1.1 WHAT IS MODELING?

MODELING can be defined as the process of application of fundamental
knowledge or experience to simulate or describe the performance of a

real system to achieve certain goals. Models can be cost-effective and effi-
cient tools whenever it is more feasible to work with a substitute than with the
real, often complex systems. Modeling has long been an integral component
in organizing, synthesizing, and rationalizing observations of and measure-
ments from real systems and in understanding their causes and effects. 

In a broad sense, the goals and objectives of modeling can be twofold:
research-oriented or management-oriented. Specific goals of modeling efforts
can be one or more of the following: to interpret the system; to analyze its
behavior; to manage, operate, or control it to achieve desired outcomes; to
design methods to improve or modify it; to test hypotheses about the system;
or to forecast its response under varying conditions. Practitioners, educators,
researchers, and regulators from all professions ranging from business to
management to engineering to science use models of some form or another in
their respective professions. It is probably the most common denominator
among all endeavors in such professions, especially in science and engineering.
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The models resulting from the modeling efforts can be viewed as logical
and rational representations of the system. A model, being a representation
and a working hypothesis of a more complex system, contains adequate but
less information than the system it represents; it should reflect the features
and characteristics of the system that have significance and relevance to the
goal. Some examples of system representations are verbal (e.g., language-
based description of size, color, etc.), figurative (e.g., electrical circuit net-
works), schematic (e.g., process and plant layouts), pictographic (e.g.,
three-dimensional graphs), physical (e.g., scaled models), empirical (e.g., sta-
tistical models), or symbolic (e.g., mathematical models). For instance, in
studying the ride characteristics of a car, the system can be represented 
verbally with words such as “soft” or “smooth,” figuratively with spring sys-
tems, pictographically with graphs or videos, physically with a scaled mate-
rial model, empirically with indicator measurements, or symbolically using
kinematic principles.

Most common modeling approaches in the environmental area can be clas-
sified into three basic types—physical modeling, empirical modeling, and
mathematical modeling. The third type forms the foundation for computer
modeling, which is the focus of this book. While the three types of modeling
are quite different from one another, they complement each other well. As
will be seen, both physical and empirical modeling approaches provide 
valuable information to the mathematical modeling process. These three
approaches are reviewed in the next section. 

1.1.1 PHYSICAL MODELING

Physical modeling involves representing the real system by a geometri-
cally and dynamically similar, scaled model and conducting experiments on
it to make observations and measurements. The results from these experi-
ments are then extrapolated to the real systems. Dimensional analysis and
similitude theories are used in the process to ensure that model results can be
extrapolated to the real system with confidence. 

Historically, physical modeling had been the primary approach followed
by scientists in developing the fundamental theories of natural sciences.
These included laboratory experimentation, bench-scale studies, and pilot-
scale tests. While this approach allowed studies to be conducted under con-
trolled conditions, its application to complex systems has been limited. Some
of these limitations include the need for dimensional scale-up of “small” sys-
tems (e.g., colloidal particles) or scale-down of “large” ones (e.g., acid rain),
limited accessibility (e.g., data collection); inability to accelerate or slow
down processes and reactions (e.g., growth rates), safety (e.g., nuclear reac-
tions), economics (e.g., Great Lakes reclamation), and flexibility (e.g.,
change of diameter of a pilot column). 
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1.1.2 EMPIRICAL MODELING 

Empirical modeling (or black box modeling) is based on an inductive or
data-based approach, in which past observed data are used to develop rela-
tionships between variables believed to be significant in the system being
studied. Statistical tools are often used in this process to ensure validity of the
predictions for the real system. The resulting model is considered a “black
box,” reflecting only what changes could be expected in the system perform-
ance due to changes in inputs. Even though the utility value of this approach
is limited to predictions, it has proven useful in the case of complex systems
where the underlying science is not well understood. 

1.1.3 MATHEMATICAL MODELING 

Mathematical modeling (or mechanistic modeling) is based on the deduc-
tive or theoretical approach. Here, fundamental theories and principles gov-
erning the system along with simplifying assumptions are used to derive
mathematical relationships between the variables known to be significant.
The resulting model can be calibrated using historical data from the real sys-
tem and can be validated using additional data. Predictions can then be made
with predefined confidence. In contrast to the empirical models, mathemati-
cal models reflect how changes in system performance are related to changes
in inputs.

The emergence of mathematical techniques to model real systems have alle-
viated many of the limitations of physical and empirical modeling.
Mathematical modeling, in essence, involves the transformation of the system
under study from its natural environment to a mathematical environment in
terms of abstract symbols and equations. The symbols have well-defined
meanings and can be manipulated following a rigid set of rules or “mathe-
matical calculi.” Theoretical concepts and process fundamentals are used to
derive the equations that establish relationships between the system variables.
By feeding known system variables as inputs, these equations or “models”
can then be solved to determine a desired, unknown result. In the precom-
puter era, mathematical modeling could be applied to model only those prob-
lems with closed-form solutions; application to complex and dynamic
systems was not feasible due to lack of computational tools.

With the growth of high-speed computer hardware and programming lan-
guages in the past three decades, mathematical techniques have been applied
successfully to model complex and dynamic systems in a computer environ-
ment. Computers can handle large volumes of data and manipulate them at a
minute fraction of the time required by manual means and present the results
in a variety of different forms responsive to the human mind. Development of
computer-based mathematical models, however, remained a demanding task
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within the grasp of only a few with subject-matter expertise and computer
programming skills.

During the last decade, a new breed of software packages has become
available that enables subject matter experts with minimal programming
skills to build their own computer-based mathematical models. These soft-
ware packages can be thought of as tool kits for developing applications and
are sometimes called software authoring tools. Their functionality is some-
what similar to the following: a web page can be created using hypertext
marking language (HTML) directly. Alternatively, one can use traditional
word-processing programs (such as Word®1), or special-purpose authoring
programs (such as PageMill®2), and click a button to create the web page
without requiring any knowledge of HTML code. 

Currently, several different types of such syntax-free software authoring
tools are commercially available for mathematical model building. They are
rich with built-in features such as a library of preprogrammed mathematical
functions and procedures, user-friendly interfaces for data entry and running,
post-processing of results such as plotting and animation, and high degrees of
interactivity. These authoring tools bring computer-based mathematical mod-
eling within easy reach of more subject matter experts and practicing profes-
sionals, many of whom in the past shied away from it due to lack of computer
programming and/or mathematical skills. 

1.2 MATHEMATICAL MODELING

The elegance of mathematical modeling needs to be appreciated: a single
mathematical formulation can be adapted for a wide number of real systems,
with the symbols taking on different meanings depending on the system. As
an elementary example, consider the following linear equation:

Y � mX � C (1.1)

The “mathematics” of this equation is very well understood as is its “solu-
tion.” The readers are probably aware of several real systems where Equation
(1.1) can serve as a model (e.g., velocity of a particle falling under gravita-
tional acceleration or logarithmic growth of a microbial population). As
another example, the partial differential equation

�
∂
∂
φ
t
� = α�

∂
∂

2

x

φ
2� (1.2)

1Word® is a registered trademark of Microsoft Corporation. All rights reserved.
2PageMill® is a registered trademark of Adobe Systems Incorporated. All rights reserved.
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can model the temperature profile in a one-dimensional heat transfer problem
or the concentration of a pollutant in a one-dimensional diffusion problem.
Thus, subject matter experts can reduce their models to standard mathemati-
cal forms and adapt the standard mathematical calculi for their solution,
analysis, and evaluation.

Mathematical models can be classified into various types depending on the
nature of the variables, the mathematical approaches used, and the behavior
of the system. The following section identifies some of the more common and
important types in environmental modeling.

1.2.1 DETERMINISTIC VS. PROBABILISTIC 

When the variables (in a static system) or their changes (in a dynamic sys-
tem) are well defined with certainty, the relationships between the variables
are fixed, and the outcomes are unique, then the model of that system is said
to be deterministic. If some unpredictable randomness or probabilities are
associated with at least one of the variables or the outcomes, the model is con-
sidered probabilistic. Deterministic models are built of algebraic and differ-
ential equations, while probabilistic models include statistical features.

For example, consider the discharge of a pollutant into a lake. If all of the
variables in this system, such as the inflow rate, the volume of the lake, etc.,
are assumed to be average fixed values, then the model can be classified as
deterministic. On the other hand, if the flow is taken as a mean value with
some probability of variation around the mean, due to runoff, for example, a
probabilistic modeling approach has to be adapted to evaluate the impact of
this variable.

1.2.2 CONTINUOUS VS. DISCRETE

When the variables in a system are continuous functions of time, then the
model for the system is classified as continuous. If the changes in the vari-
ables occur randomly or periodically, then the corresponding model is termed
discrete. In continuous systems, changes occur continuously as time advances
evenly. In discrete models, changes occur only when the discrete events
occur, irrespective of the passage of time (time between those events is sel-
dom uniform). Continuous models are often built of differential equations;
discrete models, of difference equations.

Referring to the above example of a lake, the volume or the concentration
in the lake might change with time, but as long as the inflow remains non-
zero, the system will be amenable to continuous modeling. If random events
such as rainfall are to be included, a discrete modeling approach may have to 
be followed. 
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1.2.3 STATIC VS. DYNAMIC 

When a system is at steady state, its inputs and outputs do not vary with
passage of time and are average values. The model describing the system
under those conditions is known as static or steady state. The results of a
static model are obtained by a single computation of all of the equations.
When the system behavior is time-dependent, its model is called dynamic.
The output of a dynamic model at any time will be dependent on the output
at a previous time step and the inputs during the current time step. The results
of a dynamic model are obtained by repetitive computation of all equations
as time changes. Static models, in general, are built of algebraic equations
resulting in a numerical form of output, while dynamic models are built of
differential equations that yield solutions in the form of functions. 

In the example of the lake, if the inflow and outflow remain constant, the
resulting concentration of the pollutant in the lake will remain at a constant
value, and the system can be modeled by a static model. But, if the inflow of
the pollutant is changed from its steady state value to another, its concentra-
tion in the lake will change as a function of time and approach another steady
state value. A dynamic model has to be developed if it is desired to trace the
concentration profile during the change, as a function of time.

1.2.4 DISTRIBUTED VS. LUMPED

When the variations of the variables in a system are continuous functions
of time and space, then the system has to be modeled by a distributed model.
For instance, the variation of a property, C, in the three orthogonal directions
(x, y, z), can be described by a distributed function C = f (x,y,z). If those vari-
ations are negligible in those directions within the system boundary, then 
C is uniform in all directions and is independent of x, y, and z. Such a system
is referred to as a lumped system. Lumped, static models are often built of
algebraic equations; lumped, dynamic models are often built of ordinary dif-
ferential equations; and distributed models are often built of partial differen-
tial equations.

In the case of the lake example, if mixing effects are (observed or thought
to be) significant, then a distributed model could better describe the system.
If, on the other hand, the lake can be considered completely mixed, a lumped
model would be adequate to describe the system. 

1.2.5 LINEAR VS. NONLINEAR

When an equation contains only one variable in each term and each vari-
able appears only to the first power, that equation is termed linear, if not, it is
known as nonlinear. If a model is built of linear equations, the model
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responses are additive in their effects, i.e., the output is directly proportional
to the input, and outputs satisfy the principle of superpositioning. For
instance, if an input I1 to a system produces an output O1, and another input
I2 produces an output of O2, then a combined input of (αI1 + βI2) will pro-
duce an output of (αO1 + βO2). Superpositioning cannot be applied in non-
linear models.

In the lake example, if the reactions undergone by the pollutant in the lake
are assumed to be of first order, for instance, then the linearity of the result-
ing model allows superpositioning to be applied. Suppose the input to the lake
is changed from a steady state condition, then the response of the lake can be
found by adding the response following the general solution (due to the ini-
tial conditions) to the response following the particular solution (due to 
the input change) of the differential equation governing the system. 

1.2.6 ANALYTICAL VS. NUMERICAL 

When all the equations in a model can be solved algebraically to yield a
solution in a closed form, the model can be classified as analytical. If that is
not possible, and a numerical procedure is required to solve one or more of
the model equations, the model is classified as numerical. 

In the above example of the lake, if the entire volume of the lake is
assumed to be completely mixed, a simple analytical model may be devel-
oped to model its steady state condition. However, if such an assumption 
is unacceptable, and if the lake has to be compartmentalized into several 
layers and segments for detailed study, a numerical modeling approach has 
to be followed.

A comparison of the above classifications is summarized in Figure 1.1.
Indicated at the bottom section of this figure are the common mathematical
analytical methods appropriate for each type of model. These classifications
are presented here to stress the necessity of understanding input data require-
ments, model formulation, and solution procedures, and to guide in the selec-
tion of the appropriate computer software tool in modeling the system. Most
environmental systems can be approximated in a satisfactory manner by lin-
ear and time variant descriptions in a lumped or distributed manner, at least
for specified and restricted conditions. Analytical solutions are possible for
limited types of systems, while solutions may be elaborate or not currently
available for many others. Computer-based mathematical modeling using
numerical solutions can provide valuable insight in such cases. 

The goal of this book is to illustrate, with examples, the application of a
variety of software packages in developing computer-based mathematical
models in the environmental field. The examples included in the book fall
into the following categories: static, dynamic, continuous, deterministic
(probabilistic, at times), analytical, numerical, and linear. 
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1.3 ENVIRONMENTAL MODELING

The application of mathematical modeling in various fields of study has
been well illustrated by Cellier (1991). According to Cellier’s account, such
models range from the well-defined and rigorous “white-box” models to the
ill-defined, empirical “black-box” models. With white-box models, it is sug-
gested that one could proceed directly to design of full-scale systems with
confidence, while with black-box models, that remains a speculative theory.
A modified form of the illustration of Cellier is shown in Table 1.1.

Mathematical modeling in the environmental field can be traced back to
the 1900s, the pioneering work of Streeter and Phelps on dissolved oxygen
being the most cited. Today, driven mainly by regulatory forces, environmen-
tal studies have to be multidisciplinary, dealing with a wide range of 
pollutants undergoing complex biotic and abiotic processes in the soil, sur-
face water, groundwater, ocean water, and atmospheric compartments of the
ecosphere. In addition, environmental studies also encompass equally diverse
engineered reactors and processes that interact with the natural environment

Figure 1.1 Classification of mathematical models (N = number of variables).
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Table 1.1 Range of Mathematical Models

Models Systems Calculi Applications

White-box

Electrical Ordinary Highly Design
differential deductive and

Mechanical equations deterministic
Control
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through several pathways. Consequently, modeling of large-scale environ-
mental systems is often a complex and challenging task. The impetus for
developing environmental models can be one or more of the following:

(1) To gain a better understanding of and glean insight into environmental
processes and their influence on the fate and transport of pollutants in the
environment

(2) To determine short- and long-term chemical concentrations in the vari-
ous compartments of the ecosphere for use in regulatory enforcement and
in the assessment of exposures, impacts, and risks of existing as well as
proposed chemicals 

(3) To predict future environmental concentrations of pollutants under vari-
ous waste loadings and/or management alternatives

(4) To satisfy regulatory and statutory requirements relating to environmen-
tal emissions, discharges, transfers, and releases of controlled pollutants

(5) To use in hypothesis testing relating to processes, pollution control alter-
natives, etc. 

(6) To implement in the design, operation, and optimization of reactors,
processes, pollution control alternatives, etc.

(7) To simulate complex systems at real, compressed, or expanded time hori-
zons that may be too dangerous, too expensive, or too elaborate to study
under real conditions 

(8) To generate data for post-processing, such as statistical analysis, visuali-
zation, and animation, for better understanding, communication, and dis-
semination of scientific information 

(9) To use in environmental impact assessment of proposed new activities
that are currently nonexistent 

Above all, the formal exercise of designing and building a model may be
more valuable than the actual model itself or its use in that the knowledge
about the problem is organized and crystallized to extract the maximum ben-
efit from the effort and the current knowledge about the subject. Typical
issues and concerns in various environmental systems and the use of mathe-
matical models in addressing them are listed in Appendix 1.1, showing the
wide scope of environmental modeling. 

The use of and need for mathematical models, their scope and utility value,
and the computer-based approaches used in developing them can best be
illustrated by a case history (Nirmalakhandan et al., 1990, 1991a, 1991b,
1992a, 1992b, 1993). 

Case History: Improvement of the Air-Stripping Process

The air-stripping (A/S) process has been used in the chemical engineering
field for over 50 years. During the early 1980s, this process was adapted by
environmental engineers for remediating groundwaters contaminated with
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organic contaminants. While A/S is a cost-effective process for removing
volatile organic contaminants (VOCs), its application at sites contaminated
with semivolatile organic contaminants (SVOCs) had been limited by prohib-
itive energy requirements. This case study summarizes how mathematical
modeling was utilized in developing and demonstrating a unique modification
to the A/S process that had the potential for gaining significant improvements
in applicability, efficiency, energy consumption, and overall treatment costs.

In the A/S process, the VOC-contaminated water is pumped to the top of a
packed tower from where it flows down through the packing media under
gravity. A countercurrent stream of air blown from the bottom of the tower
strips the VOCs, and the treated water is collected at the bottom of the 
tower. From the mass transfer theory, it is known that the efficiency of the
process and its applicability to SVOCs can be improved by increasing 
the driving force for mass transfer. The driving force can be improved by
increasing the airflow rate. But, increasing the airflow rate will not only
increase pressure drop and energy consumption, but it will also lead to
process failure due to flooding of the tower. 

It was hypothesized that if the airflow could be distributed along the depth
of the packing, the driving force for mass transfer could be increased: the
fresh air entering the tower along its depth will dilute the upcoming contam-
inated air through the tower, thus increasing the driving force throughout the
full depth of the tower. At the same time, the overall pressure drop will not be
that high. In combination, these two factors could be expected to reduce the
packing depth requirements, pressure drop, and energy consumption, leading
to reduced capital and operating costs.

To verify this hypothesis, a mathematical model based on fundamental
mass theories was formulated. The model was then used to compare the con-
ventional A/S process against the proposed process configuration under iden-
tical input conditions. This modeling exercise confirmed that the proposed
configuration could result in a 50% reduction in packing depth, a 40% reduc-
tion in pressure drop, and a 40% reduction in energy requirement, for com-
parable removal efficiencies. Based on these model results, the American
Water Works Association (AWWA) funded a research project to verify the
hypothesis and validate the process model at pilot scale. The model was used
to optimize the process and design the optimal pilot-scale process. This pilot-
scale test confirmed the hypothesis and validated the model predictions. The
validated model was then used to design a prototype-scale system and a field-
scale system that produced results that were used to further validate the math-
ematical model over a wide range of operating variables under field conditions. 

1.4 OBJECTIVES OF THIS BOOK

The premise of this book is that computer-based mathematical modeling is
a powerful and essential tool appropriate for analyzing and evaluating a wide
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range of complex environmental applications. Desktop and laptop computers
with computing capabilities approaching supercomputer-level performance are
now available at reasonable prices. Several new powerful software packages
have emerged that bring mathematical modeling within reach of nonprogrammers.

The primary objective of this book is to introduce several types of com-
puter software packages that subject matter experts with minimal computer
programming skills can use to develop their own models. Even though this
book has the words “environmental modeling” in its title and is illustrated
with examples in that area, professionals in other fields can also learn about
the features of the various software packages identified, benefit from the
examples included, and be able to adapt them in their own areas. 

The motivation for a book of this nature is that the users manuals that
accompany software often are not focused toward application of the software
in modeling. In modeling, one has to integrate several features to achieve the
modeling goal. In all fairness, the manuals are well written to illustrate the
functioning of individual features of the software. They cannot be expected to
include examples of integration of features for specific purposes. This book
takes off from where the manuals end and provides examples of integrated
applications of the software to specific problems. 

Further impetus for this book stems from the fact that computer usage, par-
ticularly in modeling, analyzing, synthesizing, and simulating in engineering
curricula, is being advocated by cognitive researchers as one of the effective
ways of improving the teaching and learning processes. Recognizing this, the
Accreditation Board of Engineering Technologies (ABET) is placing strong
emphasis on computer usage in engineering curricula. Several engineering
programs have recently initiated freshman undergraduate-level courses to
introduce computer applications in engineering. This book includes basic
mathematical concepts and scientific principles for use in such classes to cul-
tivate modeling skills from early stages.

Chapter 2 of the book contains a discussion of the various steps involved 
in developing mathematical models. As pointed out in Chapter 2, modeling is
part science and part art, and as such, modelers have developed their own 
style of accomplishing the task. While it is recognized that different
approaches are being practiced, the steps and tasks identified in Chapter 2 are
key elements in the process and have to be taken into consideration in some
form or another. The procedures presented in Chapter 2 are in no way 
intended to be followed in every case. 

Chapters 3, 4, 5, and 6 present reviews of fundamental concepts in math-
ematics, environmental processes, engineered environmental systems, and
natural environmental systems, respectively. The material included in this
book is not to be construed as a formal and/or complete treatment of the
respective topics but as a review of the fundamentals involved, providing a
basic starting point in the modeling process.
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Chapter 7 contains a comparative presentation of various types of software
authoring packages that can be used for developing mathematical models.
These include spreadsheets, mathematical software, and dynamic modeling
software. A total of six different packages are identified and compared using
one common problem. Rather than attempt to include every software package
commercially available, selected examples of software products representing
the different types of systems are included.  

Chapters 8 and 9 contain several examples of applications of the different
types of software packages in modeling engineered and natural systems,
respectively. Here, the main focus is on the use of the various packages in the
computer implementation of the modeling process rather than on the funda-
mentals of the science behind the systems. However, a brief review of and ref-
erences to related theories and principles are included, along with pertinent
details on the model formulation process as a prerequisite to the computer
implementation process.

Suggested uses of this book by various audiences are indicated in
Appendix 1.2. It is hoped that the book will be able to serve as a primary text-
book in environmental modeling courses; a companion book in unit opera-
tions or environmental fate and transport courses; a guidebook to faculty
interested in modeling work for teaching, research, and publication; a tool for
graduate students involved in modeling-oriented research; and a reference
book for practicing professionals in the environmental area. 
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APPENDIX 1.1 TYPICAL USES OF MATHEMATICAL MODELS

Environmental
Medium Issues/Concerns Use of Models in

Atmosphere Hazardous air pollutants; Concentration profiles;
air emissions; toxic exposure; design and
releases; acid rain; smog; analysis of control processes
CFCs; particulates; health and equipment; evaluation
concerns; global warming of management actions;

environmental impact
assessment of new projects;
compliance with regulations

Surface Wastewater treatment Fate and transport of
water plant discharges; industrial pollutants; concentration

discharges; agricultural/ plumes; design and analysis
urban runoff; storm water of control processes and
discharges; potable water equipment; wasteload
source; food chain allocations; evaluation of

management actions;
environmental impact
assessment of new projects;
compliance with regulations

Groundwater Leaking underground Fate and transport of
storage tanks; leachates pollutants; design and
from landfills and analysis of remedial actions;
agriculture; injection; drawdowns; compliance with
potable water source regulations

Subsurface Land application of solid Fate and transport of
and hazardous wastes; pollutants; concentration
spills; leachates from plumes; design and analysis
landfills; contamination of of control processes;
potable acquifers evaluation of management

actions

Ocean Sludge disposal; spills; Fate and transport of
outfalls; food chain pollutants; concentration

plumes; design and analysis
of control processes;
evaluation of management 
actions
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CHAPTER 2

Fundamentals of Mathematical
Modeling

CHAPTER PREVIEW

In this chapter, formal definitions and terminology relating to mathe-
matical modeling are presented. The key steps involved in developing
mathematical models are identified, and the tasks to be completed
under each step are detailed. While the suggested procedure is not a
standard one, it includes the crucial components to be addressed in the
process. The application of these steps in developing a mathematical
model for a typical environmental system is illustrated.

2.1 DEFINITIONS AND TERMINOLOGY IN 
MATHEMATICAL MODELING

GENERAL background information on models was presented in Chapter 1,
where certain terms were introduced in a general manner. Before con-

tinuing on to the topic of developing mathematical models, it is necessary to
formalize certain terminology, definitions, and conventions relating to the
modeling process. Recognition of these formalities can greatly help in the
selection of the modeling approach, data needs, theoretical constructs, math-
ematical tools, solution procedures, and, hence, the appropriate computer
software package(s) to complete the modeling task. In the following sections,
the language in mathematical modeling is clarified in the context of model-
ing of environmental systems.

2.1.1 SYSTEM/BOUNDARY 

A “system” can be thought of as a collection of one or more related
objects, where an “object” can be a physical entity with specific attributes or
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characteristics. The system is isolated from its surroundings by the “bound-
ary,” which can be physical or imaginary. (In many books on modeling, the
term “environment” is used instead of “surroundings” to indicate everything
outside the boundary; the reason for picking the latter is to avoid the confu-
sion in the context of this book that focuses on modeling the environment. In
other words, environment is the system we are interested in modeling, which
is enclosed by the boundary.) The objects within a system may or may not
interact with each other and may or may not interact with objects in the sur-
roundings, outside the boundary. A system is characterized by the fact that the
modeler can define its boundaries, its attributes, and its interactions with 
the surroundings to the extent that the resulting model can satisfy the mod-
eler’s goals. 

The largest possible system of all, of course, is the universe. One can,
depending on the modeling goals, isolate a part of the universe such as a con-
tinent, or a country, or a city, or the city’s wastewater treatment plant, or the
aeration tank of the city’s wastewater treatment plant, or the microbial popu-
lation in the aeration tank, and define that as a system for modeling purposes.
Often, the larger the system, the more complex the model. However, the effort
can be made more manageable by dissecting the system into smaller subsys-
tems and including the interactions between them.

2.1.2 OPEN/CLOSED, FLOW/NONFLOW SYSTEMS

A system is called a closed system when it does not interact with the sur-
roundings. If it interacts with the surroundings, it is called an open system. In
closed systems, therefore, neither mass nor energy will cross the boundary;
whereas in open systems, mass and energy can. When mass does not cross the
boundary (but energy does), an open system may be categorized as a nonflow
system. If mass crosses the boundary, it is called a flow system. 

While certain batch processes may be approximated as closed systems,
most environmental systems interact with the surroundings in one way or
another, with mass flow across the boundary. Thus, most environmental sys-
tems have to be treated as open, flow systems. 

2.1.3 VARIABLES/PARAMETERS/INPUTS/OUTPUTS

The attributes of the system and of the surroundings that have significant
impact on the system are termed “variables.” The term variable includes those
attributes that change in value during the modeling time span and those that
remain constant during that period. Variables of the latter type are often
referred to as parameters. Some parameters may relate to the system, and
some may relate to the surroundings. 
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A system may have numerous attributes or variables. However, as men-
tioned before, the modeler needs to select only those that are significant and
relevant to the modeler’s goal in the modeling process. For example, in the
case of the aeration tank, its attributes can include biomass characteristics, vol-
ume of mixed liquor, its color, temperature, viscosity, specific weight, con-
ductivity, reflectivity, etc., and the attributes of the surroundings may be flow
rate, mass input, wind velocity, solar radiation, etc. Even though many of the
attributes may be interacting, only a few (e.g., biomass characteristics, vol-
ume, flow rate, mass input) are identified as variables of significance and rel-
evance based on the modeler’s goals (e.g., the efficiency of the aeration tank). 

Variables that change in value fall into two categories: those that are gen-
erated by the surroundings and influence the behavior of the system, and
those that are generated by the system and impact the surroundings. The for-
mer are called “inputs,” and the latter are called “outputs.” In the case of the
aeration tank, the mass inflow can be an input, the concentration leaving 
the tank, an output, and the volume of the tank, a parameter. In mathematical
language, inputs are considered independent variables, and outputs are con-
sidered dependent variables. The inputs and model parameters are often
known or defined in advance; they drive the model to produce some output.
In the context of modeling, relationships are sought between inputs and out-
puts, with the parameters acting as model coefficients. 

At this point, a very important factor has to be recognized; in the real sys-
tem, not all significant and relevant variables and/or parameters may be
accessible for control or manipulation; likewise, not all outputs may be acces-
sible for observation or measurement. However, in mathematical models, all
inputs and parameters are readily available for control or manipulation, and
all outputs are accessible. It also follows that, in mathematical modeling,
modelers can suppress “disturbances” that are unavoidable in the real sys-
tems. These traits are of significant value in mathematical modeling. 

However, numerical values for the variables will be needed to execute the
model. Some values are set by the modeler as inputs. Other system parame-
ter data can be obtained from many sources, such as the scientific literature,
experimentation on the real system or physical models, or by adapting esti-
mation methods. Accounts of experimentation techniques and parameter 
estimation methods for determining such data can be found elsewhere and are
beyond the scope of this book. 

2.2 STEPS IN DEVELOPING MATHEMATICAL MODELS

The craft of mathematical model development is part science and part art.
It is a multistep, iterative, trial-and-error process cycling through hypotheses
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formation, inferencing, testing, validating, and refining. It is common prac-
tice to start from a simple model and develop it in steps of increasing com-
plexity, until it is capable of replicating the observed or anticipated behavior
of the real system to the extent that the modeler expects. It has to be kept in
mind that all models need not be perfect replicates of the real system. If all
the details of the real system are included, the model can become unmanage-
able and be of very limited use. On the other hand, if significant and relevant
details are omitted, the model will be incomplete and again be of limited use.
While the scientific side of modeling involves the integration of knowledge
to build and solve the model, the artistic side involves the making of a sensi-
ble compromise and creating balance between two conflicting features of the
model: degree of detail, complexity, and realism on one hand, and the valid-
ity and utility value of the final model on the other. 

The overall approach in mathematical modeling is illustrated in Figure 2.1.
Needless to say, each of these steps involves more detailed work and, as men-
tioned earlier, will include feedback, iteration, and refinement. In the follow-
ing sections, a logical approach to the model development process is
presented, identifying the various tasks involved in each of the steps. It is not
the intention here to propose this as the standard procedure for every modeler
to follow in every situation; however, most of the important and crucial tasks
are identified and included in the proposed procedure. 

Figure 2.1 Overall approach to mathematical modeling.

Problem
formulation

Mathematical
representation

Mathematical
analysis

Interpretation
and evaluation

of results
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2.2.1 PROBLEM FORMULATION

As in any other field of scientific study, formulation of the problem is the
first step in the mathematical model development process. This step involves
the following tasks:

Task 1: establishing the goal of the modeling effort. Modeling projects
may be launched for various reasons, such as those pointed out in Chapter 1.
The scope of the modeling effort will be dictated by the objective(s) and the
expectation(s). Because the premise of the effort is for the model to be sim-
pler than the real system and at the same time be similar to it, one of the
objectives should be to establish the extent of correlation expected between
model predictions and performance of the real system, which is often referred
to as performance criteria. This is highly system specific and will also depend
on the available resources such as the current knowledge about the system
and the tools available for completing the modeling process. 

It should also be noted that the same system might require different types
of models depending on the goal(s). For example, consider a lake into which
a pollutant is being discharged, where it undergoes a decay process at a rate
estimated from empirical methods. If it is desired to determine the long-term
concentration of the pollutant in the lake or to do a sensitivity study on the
estimated decay rate, a simple static model will suffice. On the other hand, if
it is desired to trace the temporal concentration profile due to a partial shut-
down of the discharge into the lake, a dynamic model would be required. If
toxicity of the pollutant is a key issue and, hence, if peak concentrations due
to inflow fluctuations are to be predicted, then a probabilistic approach may
have to be adapted.  

Another consideration at this point would be to evaluate other preexisting
“canned” models relating to the project at hand. They are advantageous
because many would have been validated and/or accepted by regulators.
Often, such models may not be applicable to the current problem with or
without minor modifications due to the underlying assumptions about the sys-
tem, the contaminants, the processes, the interactions, and other concerns.
However, they can be valuable in guiding the modeler in developing a new
model from the basics.  

Task 2: characterizing the system. In terms of the definitions presented
earlier, characterizing the system implies identifying and defining the system,
its boundaries, and the significant and relevant variables and parameters. The
modeler should be able to establish how, when, where, and at what rate the
system interacts with its surroundings; namely, provide data about the inflow
rates and the outflow rates. Processes and reactions occurring inside the sys-
tem boundary should also be identified and quantified. 

Often, creating a schematic, graphic, or pictographic model of the system
(a two-dimensional model) to visualize and identify the boundary and the 
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system-surroundings interactions can be a valuable aid in developing the
mathematical model. These aids may be called conceptual models and can
include the model variables, such as the directions and the rates of flows
crossing the boundary, and parameters such as reaction and process rates
inside the system. Jorgensen (1994) presented a comprehensive summary of
10 different types of such tools, giving examples and summarizing their char-
acteristics, advantages, and disadvantages. 

Some of the recent software packages (to be illustrated later) have taken
this idea to new heights by devising the diagrams to be “live.” For example,
in a simple block diagram, the boxes with interconnecting arrows can be
encoded to act as reservoirs, with built-in mass balance equations. With the
passage of time, these blocks can “execute” the mass balance equation and
can even animate the amount of material inside the box as a function of time.
Examples of such diagrams can be found throughout this book.   

Another very useful and important part of this task is to prepare a list of
all of the variables along with their fundamental dimensions (i.e., M, L, T )
and the corresponding system of units to be used in the project. This can help
in checking the consistency among variables and among equations, in trou-
bleshooting, and in determining the appropriateness of the results. 

Task 3: simplifying and idealizing the system. Based on the goals of the
modeling effort, the system characteristics, and available resources, appropri-
ate assumptions and approximations have to be made to simplify the system,
making it amenable to modeling within the available resources. Again, the
primary goal is to be able to replicate or reproduce significant behaviors of
the real system. This involves much experience and professional judgement
and an overall appreciation of the efforts involved in modeling from start to
finish.

For example, if the processes taking place in the system can be approxi-
mated as first-order processes, the resulting equations and the solution proce-
dures can be considerably simpler. Similar benefits can be gained by making
assumptions: using average values instead of time-dependent values, using
estimated values rather than measured ones, using analytical approaches rather
than numerical or probability-based analysis, considering equilibrium vs. non-
equilibrium conditions, and using linear vs. nonlinear processes.  

2.2.2 MATHEMATICAL REPRESENTATION

This is the most crucial step in the process, requiring in-depth subject mat-
ter expertise. This step involves the following tasks:

Task 1: identifying fundamental theories. Fundamental theories and princi-
ples that are known to be applicable to the system and that can help achieve the
goal have to be identified. If they are lacking, ad hoc or empirical relationships
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may have to be included. Examples of fundamental theories and principles
include stoichiometry, conservation of mass, reaction theory, reactor theory,
and transport mechanisms. A review of theories of environmental processes
is included in Chapter 4. A review of engineered environmental systems is
presented in Chapter 5. And, a review of natural environmental systems 
is presented in Chapter 6.

Task 2: deriving relationships. The next step is to apply and integrate the
theories and principles to derive relationships between the variables of sig-
nificance and relevance. This essentially transforms the real system into a
mathematical representation. Several examples of derivations are included in
the following chapters.

Task 3: standardizing relationships. Once the relationships are derived, the
next step is to reduce them to standard mathematical forms to take advantage
of existing mathematical analyses for the standard mathematical formulations.
This is normally done through standard mathematical manipulations, such as
simplifying, transforming, normalizing, or forming dimensionless groups. 

The advantage of standardizing has been referred to earlier in Chapter 1
with Equations (1.1) and (1.2) as examples. Once the calculus that applies to
the system has been identified, the analysis then follows rather routine pro-
cedures. (The term calculus is used here in the most classical sense, denoting
formal structure of axioms, theorems, and procedures.) Such a calculus
allows deductions about any situation that satisfies the axioms. Or, alterna-
tively, if a model fulfills the axioms of a calculus, then the calculus can be
used to predict or optimize the performance of the model. Mathematicians
have formalized several calculi, the most commonly used being differential
and integral. A review of the calculi commonly used in environmental sys-
tems is included in Chapter 3, with examples throughout this book. 

2.2.3 MATHEMATICAL ANALYSIS

The next step of analysis involves application of standard mathematical
techniques and procedures to “solve” the model to obtain the desired results.
The convenience of the mathematical representation is that the resulting
model can be analyzed on its own, completely disregarding the real system,
temporarily. The analysis is done according to the rules of mathematics, and
the system has nothing to do with that process. (In fact, any analyst can per-
form this task—subject matter expertise is not required.) 

The type of analysis to be used will be dictated by the relationships derived
in the previous step. Generalized analytical techniques can fall into algebraic,
differential, or numerical categories. A review of selected analytical tech-
niques commonly used in modeling of environmental systems is included in
Chapter 3.
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2.2.4 INTERPRETATION AND EVALUATION OF RESULTS

It is during this step that the iteration and model refinement process is car-
ried out. During the iterative process, performance of the model is compared
against the real system to ensure that the objectives are satisfactorily met.
This process consists of two main tasks—calibration and validation. 

Task 1: calibrating the model. Even if the fundamental theorems and prin-
ciples used to build the model described the system truthfully, its perform-
ance might deviate from the real system because of the inherent assumptions
and simplifications made in Task 3, Section 2.2.1 and the assumptions made
in the mathematical analysis. These deviations can be minimized by calibrat-
ing the model to more closely match the real system. 

In the calibration process, previously observed data from the real system
are used as a “training” set. The model is run repeatedly, adjusting the model
parameters by trial and error (within reasonable ranges) until its predictions
under similar conditions match the training data set as per the goals and per-
formance criteria established in Section 2.2.1. If not for computer-based mod-
eling, this process could be laborious and frustrating, especially if the model
includes several parameters. 

An efficient way to calibrate a model is to perform preliminary sensitivity
analysis on model outputs to each parameter, one by one. This can identify
the parameters that are most sensitive, so that time and other resources can be
allocated to those parameters in the calibration process. Some modern com-
puter modeling software packages have sensitivity analysis as a built-in fea-
ture, which can further accelerate this step.

If the model cannot be calibrated to be within acceptable limits, the mod-
eler should backtrack and reevaluate the system characterization and/or the
model formulation steps. Fundamental theorems and principles as well as the
model formulation and their applicability to the system may have to be reex-
amined, assumptions may have to be checked, and variables may have to be
evaluated and modified, if necessary. This iterative exercise is critical in
establishing the utility value of the model and the validity of its applications,
such as in making predictions for the future. 

Task 2: validating the model. Unless a model is well calibrated and vali-
dated, its acceptability will remain limited and questionable. There are no
standard benchmarks for demonstrating the validity of models, because mod-
els have to be linked to the systems that they are designed to represent.

Preliminary, informal validation of model performance can be conducted
relatively easily and cost-effectively. One way of checking overall perform-
ance is to ensure that mass balance is maintained through each of the model
runs. Another approach is to set some of the parameters so that a closed alge-
braic solution could be obtained by hand calculation; then, the model outputs
can be compared against the hand calculations for consistency. For example,
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by setting the reaction rate constant of a contaminant to zero, the model may be
easier to solve algebraically and the output may be more easily compared with
the case of a conservative substance, which may be readily obtained. Other
informal validation tests can include running the model under a wide range of
parameters, input variables, boundary conditions, and initial values and then
plotting the model outputs as a function of space or time for visual interpre-
tation and comparison with intuition, expectations, or similar case studies. 

For formal validation, a “testing” data set from the real system, either his-
toric or generated expressly for validating the model, can be used as a bench-
mark. The calibrated model is run under conditions similar to those of the
testing set, and the results are compared against the testing set. A model can
be considered valid if the agreement between the two under various condi-
tions meets the goal and performance criteria set forth in Section 2.2.1. An
important point to note is that the testing set should be completely independ-
ent of, and different from, the training set.

A common practice used to demonstrate validity is to generate a parity plot
of predicted vs. observed data with associated statistics such as goodness of
fit. Another method is to compare the plots of predicted values and observed
data as a function of distance (in spatially varying systems) or of time (in tem-
porally varying systems) and analyze the deviations. For example, the num-
ber of turning points in the plots and maxima and/or minima of the plots and
the locations or times at which they occur in the two plots can be used as com-
parison criteria. Or, overall estimates of absolute error or relative error over a
range of distance or time may be quantified and used as validation criterion.  

Murthy et al. (1990) have suggested an index J to quantify overall error in
dynamic, deterministic models relative to the real system under the same
input u(t) over a period of time T. They suggest using the absolute error or the
relative error to determine J, calculated as follows:

J = �T
o

e(t)Te(t)dt or J = �T
o

ẽ(t)Tẽ(t)dt

where e(t) = ys(t) – ym(t) or ẽ(t) = �
y

e

s

(

(

t

t

)

)
�

ys(t) = output observed from the real system as a function of time, t
ym(t) = output predicted by the model as a function of time, t

2.2.5 SUMMARY OF THE MATHEMATICAL MODEL 
DEVELOPMENT PROCESS

In Chapter 1, physical modeling, empirical modeling, and mathematical
modeling were alluded to as three approaches to modeling. However, as could
be gathered from the above, they complement each other and are applied
together in practice to complete the modeling task. Empirical models are used
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to fill in where scientific theories are nonexistent or too complex (e.g., non-
linear). Experimental or physical model results are used to develop empirical
models and calibrate and validate mathematical models. 

The steps and tasks described above are summarized schematically in
Figure 2.2. This scheme illustrates the feedback and iterative nature of the
process as described earlier. It also shows how the real system and the
“abstract” mathematical system interact and how experimentation with 
the real system and/or physical models is integrated with the modeling
process. It is hoped that the above sections accented the science as well as the
art in the craft of mathematical model building.

Figure 2.2 Steps in mathematical modeling.
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2.3 APPLICATION OF THE STEPS IN 
MATHEMATICAL MODELING

In this section, the application of the above steps in modeling the spatial
variation of a chemical in an advective-dispersive river is detailed. Because
the focus of this book is on computer-based mathematical modeling using
authoring software tools, the validation and calibration steps are only briefly
illustrated. It should not be construed in any way that they are of less impor-
tance in the modeling process. Other references must be consulted for further
in-depth treatment of these steps.

Step 1: Problem Formulation

An industry is proposing to discharge its waste stream containing a toxi-
cant into a nearby river. It is desired to set up discharge permits based on the
impact of the discharge on the water quality in the river. A preliminary model
has to be developed to predict in-river concentrations of the toxicant under var-
ious discharge conditions and river flow rates under steady state conditions. 

Task 1: establishing a goal. The model has to replicate long-term, spatial
variations of the toxicant concentrations in the river. Because the real system
per se (river receiving the discharge) is not yet in existence, the desired
extent of correlation between the model and real system cannot be estab-
lished in this case. However, let us pretend that from observations of similar
systems, the concentration profile can be expected to have cusp at the point
of discharge, with exponential-type decreases on either side. The model
should be able to reproduce such a profile. It should enable the users to esti-
mate in-stream concentrations up to 30 miles upstream and up to 50 miles
downstream and to determine the maximum discharge that can be allowed
without violating certain water quality standards at the above two points. A
decision to build a detailed model will be made depending on the results
from this preliminary model. 

Task 2: characterizing the system. The system in this case is the water col-
umn, enclosed for the most part by the physical boundaries provided by the
riverbed and the banks. An imaginary cross-section at the upstream point of
interest, A-A, and another imaginary section at the downstream point of inter-
est, B-B, will complete the boundary as shown in Figure 2.3. The inflow
crosses the boundary at A-A, and the outflow crosses at B-B. The origin for
measuring distance along the river is taken as the point of discharge. 

The most significant variables in this problem can be identified as the 
flow rate in the river, the concentration of the toxicant in the inflow, the waste
input rate, the reaction rate constants for the various processes that the toxi-
cant can undergo within the system, and the length of the river system. Other
variables can be the area of flow and the velocity of flow in the river. Some

Chapter 02  11/9/01  9:31 AM  Page 29

© 2002 by CRC Press LLC



of the environmental processes that the toxicant can undergo within the sys-
tem, such as adsorption, desorption, volatilization, hydrolysis, photolysis,
biodegradation, and biouptake, are illustrated in Figure 2.4. 

Task 3: simplifying the system. In general, the interactions between the
toxicant and the suspended solids and sediments can be under equilibrium,
nonequilibrium, linear, or nonlinear conditions. The dissolved form of the
toxicant can undergo a variety of processes or reactions that can be of first or
higher order. The system parameters, such as area of cross-section and the
flow rate of the river, etc., can vary spatially or temporally.

Considering the project goals agreed upon and the physical, chemical, and
biological properties of the toxicant and the system, it may be reasonable to
make the following simplifying assumptions for the preliminary model:

• Instantaneous mixing in the z- and y-directions occurs at the point of
discharge; thus, the problem is reduced to a one-dimensional analysis. 

• Only the dissolved concentration of the toxicant is of significance and
relevance; thus, interactions with sediments through suspended solids
are negligible.

• All reactions undergone by the toxicant are of first order; thus, all the
individual reaction rate constants, ki, can be lumped to an overall rate
constant, K = Σki.

• The river is of fixed prismatic section; thus, the area of flow is time-
invariant and space-invariant within the system boundary.

• The dispersion coefficient is significant only in the x-direction and
remains constant within the system boundary.

• The flow rate is an average constant value, but can be changed, viz.,
a parameter.

Figure 2.3 Schematic of real system.
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• The river flow and waste input are the only inflows into the system,
and the river flow is the only outflow from the system. 

• The volumetric flow of the waste stream is negligible compared to the
river flow. 

With these assumptions, the system is reduced to a simplified form as shown
in Figure 2.5. The variables of significance and relevance are listed in Table
2.1 along with their respective symbols, dimensions, and common units.

Figure 2.4 Environmental processes acting upon dissolved toxicant.

Volatilization

Biodegradation

Hydrolysis
Photolysis

Desorption

Biouptake
Settling

Scour
Diffusion Depuration

Dissolved form
of toxicant

Adsorption Suspended
solids

Sediments

Figure 2.5 Schematic of the simplified system. 
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Step 2: Mathematical Representation

Task 1: identifying fundamental theories. Having simplified the system,
the appropriate fundamental theorems, laws, and principles necessary to build
the model to achieve the goal can be identified as follows:

• Toxicant mass balance based on conservation of mass:

= + – (2.1)

• Advective mass flow rate based on continuity:

= [river flow rate, Q] × [concentration of toxicant, C] (2.2)

• Dispersive mass flow rate based on Fick’s Law:

= [dispersion coefficient, E] × [area of flow, A] 
× [concentration gradient, ∂C/∂x] (2.3)

• Mass loss due to reaction based on first-order reaction kinetics:

= [reaction rate constant, k] × [volume, V] × [concentration, C] (2.4)

If other processes, such as interactions with suspended solids, bioaccumula-
tion, volatilization, etc., are to be included, then appropriate principles and
relationships have to be included in this listing.

Task 2: deriving relationships. The fundamentals identified in Task 2 can
now be combined to derive an expression for the output(s). This involves

Net rate of
loss of
toxicant due
to reactions

Net rate of
diffusive
inflow of
toxicant

Net rate of
advective
inflow of
toxicant

Rate of change
of mass of
toxicant inside
system

Table 2.1 Variables, Symbols, Dimensions, and Units

Variable Symbol Dimension Unit

River flow rate Q L3T3 cfs
Concentration of toxicant C ML–3 mg/L
First-order reaction rate constant k T –1 1/day
Area of flow A L2 sq ft
Velocity of flow U LT –1 ft/s
Dispersion coefficient E L2T –1 sq miles/day
Length in direction of flow x L miles
Time t T day
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standard mathematical manipulations such as simplification, substitution,
and rearrangement. 

In this example, a distributed model is appropriate because of spatial vari-
ations of the output. The calculi of “differential calculus” is applied to derive
the governing partial differential equation. The fundamentals identified above
are applied to a small element of length, ∆x, within the system over an infin-
itesimal time interval, ∆ t, as illustrated in Figure 2.6. 

The components of the mass balance equation for the toxicant can be
expressed in terms of the symbols as follows:

Rate of change of mass of toxicant within the element = �
∂(V

∂t

C)
� (2.5)

Advective inflow rate into element = QC (2.6)

Advective outflow rate from element = QC + �
∂(

∂
Q

x

C)
�∆x (2.7)

∴ Net advective inflow = QC – �QC + �
∂(

∂
Q

x

C)
�∆x� = – �

∂(

∂
Q

x

C)
� ∆x

from element
(2.8)

Diffusive inflow rate into element = –EA�
∂
∂
C

x
� (2.9)

Diffusive outflow rate from element = –EA�
∂
∂
C

x
� + �

∂
∂
x
��–EA�

∂
∂
C

x
��∆x (2.10)

Figure 2.6 Detail of element.
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∴Net diffusive inflow = �–EA�
∂
∂
C

x
�� – �–EA�

∂
∂
C

x
� + �

∂
∂
x
� �–EA�

∂
∂
C

x
��∆x�into element

= EA�
∂
∂
x
���

∂
∂
C

x
��∆x

(2.11)

Net rate of loss of toxicant due to reactions
within the element = k(A∆x)C (2.12)

Combining the above expressions now completes the mass balance equation:

�
∂(V

∂t

C)
� = – �

∂(

∂
Q

x

C)
�∆x + �

∂
∂
x
��EA�

∂
∂
C

x
��∆x – k(A∆x)C (2.13)

The solution to the above partial differential equation will yield the output C
as a function of time, t, and distance, x.

Based on the goals and the assumptions, the model has to describe steady
state conditions, and temporal variations are not required; hence, the partial
derivative term on the left-hand side (LHS) of the above equation equals zero,
and the equation becomes an ordinary differential equation. Further, Q is a
constant, but a parameter; E and A are assumed constant within the boundary;
thus, the above equation reduces to the following:

0 = –Q�
d

d

C

x
�∆x + EA�

d

d

2

x

C
2�∆x – k(A∆x)C (2.14)

which on division by (A∆x) simplifies further to:

0 = –��
Q

A
���

d

d

C

x
� + E�

d

d

2

x

C
2� – kC (2.15)

Task 3: standardizing relationships. The relationship(s) derived from the
fundamental theories and principles can now be translated into standard
mathematical forms for further manipulation, analysis, and solving. Mathe-
matical handbooks containing solutions to standard formulations have to be
referred to in order to identify the ones matching the equations derived.  

In this example, the final equation can be recognized as a second-order,
ordinary, homogeneous, linear differential equation, of the standard form:

0 = ay � � by� � cy (2.16)

whose solution can be found from handbooks as:

y � Megx � Ne jx (2.17)
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where g and j are, in turn, the positive and negative values of –b ±�b2 – 4a�c�/2a,
and M and N are constants to be found from two boundary conditions.

Step 3: Mathematical Analysis

Comparing the coefficients of the final equation derived in our example
with those of the standard equation, a = E, b = –(Q/A), and c = –K.
Recognizing that Q/A = U, the river velocity, b = –U. Thus, g and j are first
found as follows:

g, j ��
U ± �

2

U

E

2 + 4�Ek�
� = �

2

U

E
� (1 ± α) (2.18)

where, α = 	1 + �
4

U

E
2

k
�
 (2.19)

Now, the constants M and N have to be determined using appropriate bound-
ary conditions for this particular situation. (This is another reason for estab-
lishing the system boundary in advance.) It is convenient in this case to
consider the reaches upstream and downstream of the discharge point as two
separate regions to determine the boundary conditions (BCs). Assuming the
toxicant concentration far upstream and far downstream from the discharge
point will approach near-zero values, the following boundary BCs can be
used to find M and N and, hence, the final solution:

Upstream reach: x ≤ 0
BC 1: x = 0, C = C0

BC 2: x = –∞, C = 0
M = C0

N = 0
and,

C = C0egx

Downstream reach: x ≥ 0
BC 1: x = 0, C = C0

BC 2: x = +∞, C = 0
N = C0

M = 0
and,

C = C0e jx

It remains to determine C0 to complete the solution. A mass balance across
an infinitesimal element at the discharge point can now yield the value for C0
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in terms of the model parameters already defined. This element can be treated
as a subsystem at the discharge point as shown in Figure 2.7.

The mass inflow, outflow, and reaction loss for this element are as follows:

Mass inflow into element = QC0 – EA��
d

d

C

x
��x = 0 – ε

(2.20)

Mass outflow from element = QC0 – EA��
d

d

C

x
��x = 0 + ε

(2.21)

Reaction loss within element = kCA∆x = 0

Hence, the mass balance equation for the element, ignoring the reaction loss
in the infinitesimal element, is as follows:

QC0 – EA��
d

d

C

x
��x = 0 – ε

+ W = QC0 – EA��
d

d

C

x
��x = 0 + ε

(2.22)

Now, substituting from the previous expressions for C,

–EA��d[C

d
0

x

egx]
��x = 0 – ε

+ W = –EA��[Cd
0e

x

jx]
��x = 0 +ε

(2.23)

and simplifying,

–EAC0g � W = –EAC0 j (2.24)

or,

C0 = �
EA(

W

g – j)
� (2.25)

Figure 2.7 Element at point of discharge.
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On substituting for g and j from the above, C0 = W/αQ, where W is the mass
rate of discharge into the river. The final model for this problem is, therefore:

C = �
α
W

Q
�egx for x ≤ 0 (2.26)

C = �
α
W

Q
�e jx for x ≥ 0 (2.27)

Step 4: Interpretation of Results

The calibration and validation of the model will be highly problem-
specific. Initial interpretations can include simulations, sensitivity analysis,
and comparison with other similar systems. As a first step in this case, the
model can be run with typical parameters and known inputs. The output can
be used to corroborate the performance of the model against intuition, past
experience, or literature results to verify that the model outputs generally fol-
low the observed profiles and are within reasonable ranges. Because the result
in this case is a function of x rather than a numerical value, it may be useful
to plot the variation of C as a function of x to check if the model is reflecting
the spatial concentration profile.

As an example of calibration and validation, let us use an artificial data set
(adapted from Thomann and Mueller, 1987):

Distance (mi) –15 –10 –5 0 5 10 15
Concentration (mg/L) 0.43 1.22 3.50 10.00 4.49 2.02 0.91

This data set had been collected on an estuary flowing at 100 cfs with an aver-
age cross-sectional area of 10 × 105 sq ft, receiving a waste input of 372,000
lbs/day at 0 miles. The decay rate of the waste material was measured to be
0.1 day–1. The dispersion for this estuary was estimated to be in the range of
2–5 sq miles/day. 

As a first step, an appropriate value for the dispersion coefficient, E, has
to be established. The data from the upstream portion of the estuary are used
to calibrate the model to fit the four data points by running the model with
various values of E ranging from 2 to 5 sq miles/day. Given the value of E,
the remaining three data points may be used to validate the model. These con-
siderations are illustrated in Figure 2.8, from which the value of E can be esti-
mated to be 3 sq miles/day. With this value for E, the model is capable of
fitting the upstream data points as well as predicting the downstream data
points. While acknowledging that the validation and calibration exercise in
this example is somewhat academic, the very same procedure is used in prac-
tice to calibrate and validate mathematical models. 
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The value of the simplifying assumptions made at the beginning of the
analysis is in the reduction of the governing equation to a form amenable to
a closed solution. Such an analysis provides highly useful insight and acts as
a stepping stone for the modeler to gradually add pertinent details and
refinements to build more realistic models. Needless to say, as the models
become more detailed and realistic, analytical methods of solving the gov-
erning equations can be extremely complicated or impossible. In such cases,
using computer-based, numerical approaches is the only way to complete the
modeling process. In the next chapter, some of the common analytical and
numerical approaches used in environmental modeling efforts will be reviewed.

Figure 2.8 Model predictions vs. measured data.
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CHAPTER 3

Primer on Mathematics

CHAPTER PREVIEW

This chapter contains a review of mathematical methods and tools as
they apply to environmental modeling. It is assumed that the readers
have taken a formal sequence of college-level course work in mathe-
matics leading up to partial differential equations. In the first part of
this chapter, reviews of different types of mathematical formulations
are summarized. Analytical and numerical procedures for solving them
are outlined. Then, ways to implement some of the more common pro-
cedures in the computer environment are demonstrated.

3.1 MATHEMATICAL FORMULATIONS

IN the previous chapter, several steps and tasks involved in the model devel-
opment process were identified. It goes without saying that a clear under-

standing of mathematical formulations and analyses is a necessary prerequi-
site in this process. A strong mathematical foundation is required to transmute
subject matter knowledge into mathematical forms such as functions, expres-
sions, and equations. Knowledge of analytical procedures in mathematical
calculi such as simplifying, transforming, and solving, is essential to select
and develop the appropriate computational procedures for computer imple-
mentation. The selection of an appropriate computer software package to
complete the model also requires a good understanding of the mathematics
underlying the model. As pointed out in Chapter 1, different formulations can
be developed to describe the same system; hence, the ability to choose the
optimal one that can meet the goals requires a strong mathematical foundation.

The advantage of reducing the formulations to standard mathematical
forms has been pointed out before. For modeling purposes, a wide variety of
environmental systems can be categorized as deterministic with continuous
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variables. Deterministic systems can be described either by static or dynamic
formulations. This chapter will, therefore, focus on the mathematical calculi
for continuous, deterministic, static, and dynamic systems with up to four
independent variables. Brief discussions of how these deterministic models
can be adapted for probability systems will be illustrated in selected cases in
later chapters. In the following sections, selected standard mathematical for-
mulations commonly encountered in modeling environmental systems are
reviewed. In a broad sense, these formulations can be classified as either
static or dynamic.

3.1.1 STATIC FORMULATIONS

Static models are often built of algebraic equations. The general standard
form of the algebraic equation in static formulations is as follows:

G(x,y,�) = 0 (3.1)

where G is a vector function, x and y are vector variables, and θ is a set of
parameters. In the context of a model, x can correspond to the inputs, y the
outputs, and θ the system parameters. If x and y are linear in G, the model is
called linear, otherwise, it is nonlinear.

3.1.2 DYNAMIC FORMULATIONS

Dynamic systems with continuous variables are normally described by dif-
ferential equations. Any equation containing one or more derivatives is called
a differential equation. When the number of independent variables in a dif-
ferential equation is not more than 1, the equation is called an ordinary 
differential equation (ODE), otherwise, it is called a partial differential equa-
tions (PDE). 

The general standard form of an ODE is as follows:
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�, . . . , �(t)� (3.2)

where u(t) is a known function, α(t) and θ(t) are parameters, and z(t) is the
dependent variable. In the context of a model, t can correspond to time, u to
the input, z the output, and α(t) and θ(t) the system parameters. 

An ODE is ranked as of order n if the highest derivative of the dependent
variable is of order n. When α(t) is nonzero, i.e., the equation is nonsingular,
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it can be simplified by dividing throughout by α(t). Often, in many environ-
mental systems, θ(t) does not change with t. Further, if G is linear in z(t), u(t),
and their derivatives, then the equation is linear, and the principle of super-
positioning can be applied.

The general standard form of a PDE with two independent variables x and
t is as follows:

G[u, ux, ut, uxx, uxt, utt, �(x,t), f (x,t)] = 0 (3.3)

where

ux = �
∂
∂
u

x
�; ut = �

∂
∂
u

t
�; uxx = �

∂
∂

2

t

u
2�; uxt = �

∂
∂

2

t

u
2�; utt = �

∂
∂

2

t

u
2�, �(x,t)

is a parameter and f (x,t) is a known function. In the context of a model, x can
correspond to a spatial coordinate, t to time, f (x,t) to the input, θ(x,t) to the
system parameter, and u(x,t) to the system outputs. The formulation should
also define the problem domain, i.e., ranges for x and t.

3.2 MATHEMATICAL ANALYSIS

Some of the formulations identified above are tractable to an analytical
method of analysis, while many require a computational (also referred to as
numerical) method of analysis. Both methods of analysis can form the basis
of computer-based mathematical modeling. 

3.2.1 ANALYTICAL METHODS

In analytical methods, the solution to a formulation is found as an expres-
sion consisting of the parameters and the independent variables in terms of
the symbols. Sometimes this method of solution is referred to as parameter-
ized solutions. The solution can be exact or approximate. Only for a limited
class of formulations is it possible to find an exact analytical solution. An
approximate solution has to be sought in other cases, such as in the models
for large environmental systems. 

For example, consider Equation (3.1), where y is the unknown, x is a
known variable, and θ is a parameter. The solution for y might or might not
exist; if it does, it might not be unique. If Equation (3.1) could be rearranged
to the form

A(x,�)y � B(x,�) = 0 (3.4)

a solution can be found by inverting the matrix A(x,θ) if and only if A(x,θ) is
a nonsingular n × n matrix. If y appears nonlinearly, multiple solutions may
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be possible, and a computational method of analysis would be necessary to
find them.

3.2.2 COMPUTATIONAL METHODS

In this method, the solution is found numerically, often with the aid of a
computer. The solutions in this case are only approximate, and numeric.
Therefore, the formulation should include numeric values for the model
parameters and variables, whereas symbolic representations will suffice in the
case of the analytical method of analysis. The advantage of the computational
method of analysis is that it can be applied to a much wider class of mathe-
matical formulations, particularly for complex systems.

It is not within the scope of this book to identify all the standard mathe-
matical calculi and procedures for analyses, rather, some specific examples 
of analyses pertaining to typical environmental systems are illustrated. The
intent of this illustration is for the readers to be able to adapt them for imple-
mentation in the computer environment. 

3.3 EXAMPLES OF ANALYTICAL AND 
COMPUTATIONAL METHODS

The governing equations in environmental models may be reduced to sim-
ple algebraic equations (e.g., steady state concentration of a contaminant in a
completely mixed lake), systems of simultaneous linear equations (e.g., steady
state concentrations in completely mixed lakes in series), ODEs (e.g., transient
concentration in a well-mixed lake), systems of ODEs (e.g., biomass growth,
substrate consumption, and oxygen level in a completely mixed lake), or PDEs
(e.g., contaminant transport in a stratified lake under transient loads). In this
section, common algorithms for solving these types of formulations are out-
lined. Many of these algorithms can be implemented in spreadsheet programs
with minimal syntax or programming. Many standard algorithms are included
as preprogrammed libraries in other software packages discussed in this
book. Some examples of implementations are included in this chapter to illus-
trate the general approach, and more detailed ones for specific problems can
be found in Chapters 8 and 9.   

3.3.1 ALGEBRAIC EQUATIONS

3.3.1.1 Classifications of Algebraic Equations

The most general form of the algebraic equation was given in Equation
(3.1), and a solvable form was provided in Equation (3.4). Considering a 
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simpler form of G, such as f (x) = 0, its solution or “root” is the value of the
independent variable, x, that when substituted into f (x) will make it equal to
zero. Methods to find those roots for such equations depend on the number of
equations and the type of equations to be solved. Classification of algebraic
equations is shown in Figure 3.1 to help in this selection process. 

3.3.1.2 Single, Linear Equations

Analytical methods of elementary algebra for solving single, linear equa-
tions for one unknown are rather straightforward and are not discussed further. 

3.3.1.3 Set of Linear Equations

Simultaneous linear equations are frequently encountered in environmen-
tal modeling. Typical examples include chemical speciation calculations and
numerical solution of partial differential equations. A general form of a set of
m linear equations with n unknowns is Ax = B, where A is a given m × n
matrix, and B is a given vector. The solution is given by x = A–1B. This equa-
tion in general will have a unique solution only if m = n; if m < n, infinitely
many solutions may be possible; and if m > n no solutions are possible. An
example of a set of linear simultaneous equations is as follows:

a11x1 � a12x2 � a13x3 � b1

a21x1 � a22x2 � a23x3 � b2

a31x1 � a32x2 � a33x3 � b3

Figure 3.1 Classification of algebraic equations.

Algebraic equations

Linear equations Nonlinear equations

One Multiple One Multiple

equation equations equation equations

One One Polynomial Transcendental Multiple

solution solution set equation equation solution sets

Nº of solutions equals
degree of polynomial

Unspecified number
of solutions 
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or, in matrix form

� � � � � � �
where aij are the coefficients, b’s are constants, and x’s are the unknowns.

The Gauss-Seidel iterative method is a convenient computational method
used for solving such a set of equations. The algorithm first solves the first
equation for x1, the second for x2, and the third for x3. 

x1 =�
b1 – a12

a

x

1

2

1

– a13x3
� (3.5a)

x2 = �
b2 – a21

a

x

2

1

2

– a23x3
� (3.5b)

x3 =�
b3 – a31

a

x

3

1

3

– a32x2
� (3.5c)

The process is iterated with resubstitution, until a desired degree of conver-
gence is reached using Equations (3.5). This algorithm is illustrated in the
next example.

Worked Example 3.1

Solve the following simultaneous equations:

4 X1 + 6 X2 + 2 X3 = 11
2 X1 + 6 X2 + X3 = 21
3 X1 + 2 X2 + 5 X3 = 75

Solution

Figure 3.2 shows an Excel® 3  implementation for solving the three equa-
tions, which are entered in rows 2 to 4. Note how the coefficients are entered
into separate cells so that they can be referred to by cell reference. The Gauss-
Seidel algorithm is entered into rows 6 to 8, in column N, to estimate X1, X2,
and X3, respectively. 

For illustration, the algorithm is expressed in Excel® language in column
L, against each X row. Notice that the formula in cell L6 refers to cell L7,
while the formula in cell L7 refers back to L6. This is known as circular 

b1

b2

b3

x1

x2

x3

a11 a12 a13

a21 a22 a23

a31 a32 a33

3Excel® is a registered trademark of Microsoft Corporation. All rights reserved.
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reference in Excel® and will cause an error message to be generated. To exe-
cute such circular references, the Iteration option in the Calculation panel
under the Preferences menu item under the Tools menu should be turned on.
Once the equations are entered, the spreadsheet can be Run to solve the equa-
tions iteratively. The results calculated are returned in column N. Finally, the
results can be checked by feeding them back into the original equations to
ensure that they satisfy them as shown in rows 10 to 12.

Other methods such as the Gauss Elimination method are also available
to solve linear simultaneous equations. Most equation solver-based pack-
ages feature built-in procedures for solving these equations, requiring min-
imal programming.

An example of the use of Excel®’s built-in Solver utility that can be used
to solve a set of equations is presented next. Consider the same set of equa-
tions solved in Worked Example 3.1, and let the functions f, g, and h repre-
sent those equations:

f ≡ 4 X1 + 6 X2 + 2 X3 – 11
g ≡ 2 X1 + 6 X2 + X3 – 21
h ≡ 3 X1 + 2 X2 + 5 X3 – 75

Recognizing the fact that the roots of the above equations will make y = f 2 +
g2 + h2 = 0, the problem of finding those roots can be tackled readily by call-
ing the Solver routine of Excel® as illustrated in Figure 3.3. Here, X1, X2, and
X3 are assigned arbitrary guess values of 1, 2, and 3 in column M. The expres-
sion for y is entered into cell J6. The Solver routine is selected from the Tools
menu, and the target cell and the cells to be changed are specified in the
Solver Parameter dialog box. The routine then will find the values of X1, X2,
and X3 that will make y = 0. 

Figure 3.2 Gauss-Siedel algorithm implemented in the Excel® spreadsheet program.
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As an alternate approach, equation solver-based packages that have built-
in routines for solving simultaneous equations can be used. For example, the
Mathematica® 4 equation solver-based software can be used as shown in
Figure 3.4. The coefficients aij and bk are first assigned appropriate numeri-
cal values. Then, the built-in routine, Solve, is called with two lists of argu-
ments. The first list contains all the equations to be solved in symbolic form,
and the second list contains the variables for which the equations are to be
solved. When executed, the roots of the three equations are returned in line
Out[1] as x1 = –16.381; x2 = 5.16667; and x3 = 22.7619.

An elegant way to solve a set of linear equations is by following the math-
ematical calculi of matrix algebra. Another equation solver-type software

4Mathematica® is a registered trademark of Wolfram Research, Inc. All rights reserved.

(a)

(b)

Figure 3.3 (a) Setting up Solver routine in Excel®; (b) results from Solver routine.
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package, MATLAB® 5, allows this to be set up effortlessly. The same set of
equations as in the above example is solved in MATLAB® as shown in Figure
3.5. The matrix a is first specified with aij , followed by matrix b with b’s.
Then, by entering the command x = b/a, MATLAB® returns the solution for
x with x1 = –16.3810; x2 = 5.1667; and x3 = 22.7619.

3.3.1.4 Single, Nonlinear Equations

The next class of algebraic equations is single, nonlinear equations.
Solution methods for nonlinear equations are either direct or indirect. In the
direct method, known formulas are applied to standard forms of the equations
in a nonrepetitive manner (analytical methods of analysis). A typical example
is the standard solution for a second-order polynomial equation, otherwise
known as the “quadratic equation”: ax2 + bx + c = 0, whose roots are given
by {–b ± �b2 – 4a�c�}/2a. 

Such formulas are not readily available or unknown for many types of equa-
tions. Hence, indirect methods have to be used in those cases. In the indirect
method, repeated application of some algorithm is implemented to yield an
approximate solution (computational method of analysis). The indirect meth-
ods are the ones that are utilized in computer modeling of complex systems.

Nonlinear equations can be either polynomial or transcendental. The com-
putational methods for solving such equations start with a guessed value for
the root and follow standard computer algorithms to systematically refine that
guess in an iterative manner until the equation is satisfied within acceptable
limits. Two simple methods are outlined here.

In the first, known as the binary method, two guesses xI and xu are made
such that they bracket the real root, x: xI < x and xu > x. While this may appear
circuitous, as x is not known, xI and xu can be found rather easily by taking

Figure 3.4 Using Mathematica® for solving simultaneous equations.

5MATLAB® is a registered trademark of The MathWorks, Inc. All rights reserved.
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advantage of the fact that the function should change sign within the interval
bounded by xI and xu. Or, in other words, guess xI and xu so that:

f (xI ,�) • f (xu,�) < 0 (3.6)

This can be readily achieved by plotting the function. Then, a refined value
of the root, xr , can be estimated as = ( xI + xu)/2. To make the next refined
guess, a new bracket is now defined with either xI and xr or xr and xu. Again,
a sign change of f (x) is used to decide which range to make the new guess
from:

if f (xI,�) × f (xr,�) < 0, the new guess is made between xI and xr (3.7a)

if f (xr,�) × f (xu,�) < 0, the new guess is made between xr and xu (3.7b)

This process is iterated until the new guess is not significantly different from
the previous one; at that point, the root is taken as the value of the last guess.

Worked Example 3.2

First-order processes occurring in many environmental systems can be
described by the equation: C = C0e–k t, where C is the concentration of the
chemical undergoing the reaction, C0 is its initial concentration, k is the reac-
tion rate constant, and t is the time. Find the time it would take for the con-
centration to drop from 100 mg/L to 10 mg/L.

Solution

Even though the equation can be solved for t algebraically, the binary
method is used here to illustrate the method and to compare its performance
against the direct algebraic solution. The algebraic solution can be readily
seen as t = 9.21. The implementation of the binary algorithm in an Excel®

spreadsheet is shown in Figure 3.6. 

Figure 3.5 Using MATLAB® for solving simultaneous equations.
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The first step in the binary method is to guess the lower and upper bounds
of the root by calculating the function C – C0e–k t for a range of values of t to
determine the value of t at which a sign change occurs. It can be readily done
in Excel® by entering the function in cell C12 and filling it down, with t val-
ues set up in column B, again by filling down. The upper and lower bounds
are seen to be t = 9 and t = 10. The following algorithms, based on Equation
(3.5), are entered into cells F15 and G15, and filled down to perform the cal-
culations automatically for seven steps, in this case:

Cell F15: IF(($C$4-Co*EXP(-k*F14))*($C$4-Co*EXP
(-k*H14))<0,F14,H14)

Cell G15: IF(($C$4-Co*EXP(-k*G14))*($C$4-Co*EXP
(-k*H14))<0,G14,H14)

As can be seen from Figure 3.6, this procedure quickly converges on the root
to a high degree of accuracy. Even though a more elegant spreadsheet can be
developed for this application, the intent here is to illustrate the procedure as
well as the ease with which a simple model could be developed.

Figure 3.6 Implementation of binary method in Excel® spreadsheet.
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Another method, known as the Newton-Raphson method, requires only
one guess to start the iterative process. It is based on Taylor’s expansion of
the form:

f (xn � h) � f (xn�1) � f (xn) � hf �(xn) � �
h

2

2

� f �(xn) + . . . (3.8)

If h2 and higher terms are ignored, it can be seen that the step from xn to xn+1

moves the function value closer to a root so that f (xn � h) = 0. Then,

xn�1 � xn – �
f

f

(

(

x

x
n

n

)

)
� (3.9)

Here, the computational process starts with a guess value for xn. Then, using
f (xn) and f �(xn), a value for xn�1 is calculated. If f (xn�1) is sufficiently small,
the root is taken as xn�1; or, a new value for xn�1 is calculated using the cur-
rent value of xn�1 for xn in Equation (3.7), and the process is repeated. A
modification to this method is the Secant method, which is preferable when
it is difficult to get the derivative f �(xn) to be used in Equation (3.7). In such
cases, the Secant method uses the following approximation for f �(xn):

f �(xn) ≈ slope at xn � �
f(x

x
n

n

) –

–

f

x

(

n

x

–

n

1

–1)
� (3.10)

Even though these methods can be implemented in a spreadsheet with rel-
ative ease, most equation solver-based software packages feature built-in
functions that can return the solutions to such equations more efficiently and
accurately, without requiring any programming. Spreadsheet packages such
as Excel® also include some built-in functions that are preprogrammed to per-
form iterative calculations for solving simple equations. 

The use of the built-in Goal Seek feature of Excel® in solving the problem
in Worked Example 3.2 is illustrated in Figure 3.7. In this worksheet, the
right-hand side of the equation to be solved is entered in cell C4. Then, the
Goal Seek option is selected from the Tools menu. To start the Goal Seek
process, cell C4 is specified to be 10 by changing the value of cell C6. The
process is instantly executed, and the result is returned as 9.21014.

Alternatively, in equation solver-based software packages, such equations
can be solved readily by calling appropriate built-in routines. For example,
Figure 3.8 shows how the above problem can be solved in Mathematica®. The
variables in the equation are defined first. The built-in routine Solve is called
where the first argument contains the equation to be solved. The second
argument is the variable for which the equation is to be solved. When exe-
cuted, the solution is returned in line Out[2] as 9.21034. Note that the
Mathematica® sheet is set up so that one can change the values of the vari-
ables and readily solve the equation for t. In addition, the same setup can be
used to solve for any one of the four variables in the equation, provided the
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other three are known. This is achieved by specifying the unknown variable
to solve for as the second argument to the call to Solve.

3.3.1.5 Set of Nonlinear Equations

The general form of a set of nonlinear equations can consist of n functions
in terms of n unknown variables, xi :

f1(x1, x2, . . . xn) � 0; f2(x1, x2, . . . xn) = 0; . . . .

Figure 3.7 Using Goal Seek function in Excel® for solving nonlinear equations.

Figure 3.8 Using Mathematica® to solve nonlinear equations.
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and so on up to

fn(x1, x2, . . . xn) = 0 (3.11)

There are no direct methods for solving simultaneous nonlinear equations.
The most popular method for solving nonlinear equations is the Newton’s
Iteration Method, which is based on Taylor’s expansion of each of the n
equations. For example, the first of the above equations can be expressed 
as follows:

f1(x1 � ∆x1, . . . xn � ∆xn) = f1(x1, . . . xn) � ��
∂
∂
x

f1

1

�	∆x1

+ higher-order terms (3.12)

Neglecting higher-order terms,

f1(x1 � ∆x1, . . . xn � ∆xn) = f1(x1, . . . xn) � ��
∂
∂
x

f1

1

�	∆x1 (3.13)

If, from a guessed value of x1, the change ∆x1 would make the left-hand
side approach 0, then the true root will be x1 � ∆x1. Or, in other words, if 

��
∂
∂
x

f1

1

�	∆x1 = –f1(x1, . . . xn) (3.14)

then x1 � ∆x1 will be a root. Thus, extending this argument to the set of equa-
tions, this algorithm reduces to the solution of a set of linear equations that
can be represented in the following form:

(3.15)

The algorithms discussed in the previous section for a set of linear equa-
tions can now be applied to the above set of linear equations to find their roots.

3.3.2 ORDINARY DIFFERENTIAL EQUATIONS

A vast majority of environmental systems can be described by ODEs. Only
in a limited number of such cases can these equations be solved analytically,
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whereas all of them can be readily solved using computational methods.
Whichever method is used, the solution of ODEs requires that the dependent
variable and/or its derivatives be known constraints at prescribed values of the
independent variable. When all of these known constraints are at zero value
of the independent variable, the problem is called an “initial value problem.”
In other cases, where the constraints are known at nonzero values of the inde-
pendent variable, the problem is called a “boundary value problem.” The con-
straints in the two cases are known as “initial conditions” (ICs) and
“boundary conditions” (BCs), respectively. It has to be noted that the solution
to a differential equation should satisfy the equation and the initial or bound-
ary conditions. 

3.3.2.1 Analytical Solutions of ODEs

The general form of an ODE may be stated as follows:

�
d

d

y

x
� = f (x,y)

with an IC of
y(x0) = y0 (3.16)

The solution to this will be a function y(x) that satisfies both the differential
equation and the IC. Analytical solutions for some of the more common func-
tions f (x,y) and ICs are summarized here. Additional solutions can be found
in mathematical handbooks. 

a. First-order equations: when an ODE can be expressed in the form:

M(x)dx + N(y)dy = 0 

then the equation is separable, and the solution can be found by inte-
grating each term in:

∫M(x)dx = –∫N(y)dy (3.17)

b. First-order nonhomogeneous linear equations: when an ODE can be
expressed in the form:

�
d

d

y

x
� � P(x)y = Q(x)

it can be solved by using an integrating factor of the form: e∫P(x)dx to
give the solution as

y = (3.18)

where b is a constant of integration.

∫{e∫P(x)dxQ(x)}dx � b
��

e∫P(x)dx
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c. Second-order equation with equidimensional coefficients: when the ODE
can be expressed in the form:

�
d

dx

2y
2� � �

a

x
� �

d

d

y

x
� � �

x

b
2�y = 0

a trial solution of the form y = cxs, where s is found from:

s = – (3.19)

giving the solution as

y = b1xs1 + b2xs2 if s1 ≠ s2 (3.20a)

y = b1xs + b2xs ln x if s1 = s2 = s (3.20b)

d. Second-order equation with constant coefficients: when the ODE can be
expressed in the form:

�
d

dx

2y
2� � a �

d

d

y

x
� � by = 0

a trial solution of the form y = besx, where s is found from:

s = – (3.21)

giving the solution as

y = b1es1x + b2es2x if s1 ≠ s2 (3.22a)

y = b1esx + b2xesx if s1 = s2 = s (3.22b)

Worked Example 3.3

The buildup of the concentration, C, in a lake due to a new step waste load
input can be described by the following equation (to be derived in Chapter 6):

�
d

d

C

t
� � 1.23C = 2.0

The initial concentration of the waste material in the lake = 0. Develop a solu-
tion to the above ODE to describe the concentration in the lake as a function
of time.

a ± �a2 – 4b�
��

2

(a – 1) ± �(a – 1)�2 – 4b�
���

2
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Solution

The solution can be found by first categorizing the ODE and then follow-
ing standard appropriate mathematical calculi. Alternatively, some computer
software packages can find the analytical solution directly. The two ap-
proaches are illustrated in this example. 

The given equation can be seen as a special case of a first-order non-
homogeneous linear equation identified earlier, with y = C, x = t, P(x) = 1.23,
and Q(x) = 2.0. It can, therefore, be solved by applying Equation (3.18):

Integrating factor = ≡ e∫P(t)dt ≡ e∫1.23dt = e1.23t

Hence, the solution to ODE is as follows:

C = = 

= �
1.

2

23
� �1 � ��

1.

2

23
�	be–1.23t�

From the initial condition given, C = 0 at t = 0; therefore, b = –�
1.

2
23
�

Thus, the final solution for C as a function of t is as follows:

C � �
1.

2

23
� {1 – e–1.23t} � 1.63{1 – e–1.23t}

See Worked Example 3.4 for a plot of the above result.
As an alternate approach, an equation solver-based software package,

Mathematica®, is used to find the solution directly as shown in Figure 3.9.
Here, the built-in procedure, DSolve, is called in line In[1] with the follow-
ing arguments: the ODE to be solved, the initial condition, the dependent
variable, and the independent variable. The solution is returned in line Out[2],
with the integration constant automatically evaluated, by Mathematica®.
Finally, the Plot function is called to plot the solution showing the variation
of C with t.

It can be seen that the solution returned by Mathematica® in line Out[2],
after some manipulation, is identical to the solution found earlier by follow-
ing the standard mathematical calculi. This example illustrates just one of the
benefits of such packages in easing the mathematical tasks involved in mod-
eling, enabling modelers to focus more on formulating and posing the prob-
lem at hand in standard mathematical forms rather than on the operandi of
solving the formulation. 

�
1.

2

23
� {e1.23t} � b

��
e1.23t

∫{e1.23t2}dt � b
��

e1.23t
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3.3.2.2 Computational Solutions of ODEs 

Two of the more common computational methods used for solving such
equations, Euler’s Method and the Runge-Kutta Method, are presented here. 

(1) Euler’s method: this method is based on the application of Taylor’s series
to estimate the function. Starting from the known initial condition 
[x0, y(x0)], the next point on the function, small step h away from 
x, at x = x0 + h, is found using the slope of the function at [x0, y(x0)]:

y(x0 � h) � y(x0) � hy�(x0) � �
h

2

2

�y�(x0) + . . . (3.23)

By ignoring terms of h2 and higher order, the above can be approximated
by the following:

y(x0 � h) 
 y(x0) � hy�(x0) (3.24)

Figure 3.9 Solution of ODE by Mathematica®.
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This procedure may be continued for n points along the function for 
n = 1,2,3, . . . to develop the function y(x) over the desired range:

yn�1 = yn � hf �(xn,yn) (3.25)

Worked Example 3.4

Solve the ODE from Worked Example 3.3 using Euler’s method,
and compare the result with the analytical solution found in Worked
Example 3.3.

Solution

Euler’s numerical method is illustrated in Figure 3.10 using a time
step, h = 0.05 year. The numerical method, in this case, is rather close to
the analytical solution. The error will depend on the time step and the
type of equation being solved. 

(2) Runge-Kutta method: the error in Euler’s method stems from the assump-
tion that the slope at the beginning of the calculation step is the same 

Figure 3.10 Euler’s method vs. analytical solution.
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over the entire step, which may be considered a first-order method.
Under the Runge-Kutta method, two schemes have been proposed to
improve the accuracy—a second-order method and a fourth-order
method. The latter is the most commonly used in environmental model-
ing practice. 

In the Runge-Kutta method, higher-order terms in the Taylor series are
retained. The formulas for the fourth-order method are as follows:

yn�1 = yn � (3.26)

where 

K0 = hf (xn ,yn )

K1 = hf (xn + 0.5h,yn + 0.5K0)

K2 = hf (xn + 0.5h,yn + 0.5K1)

K3 = hf (xn + h,yn + K2)

Even though the fourth-order Runge-Kutta method is more computation
intensive, because of its increased accuracy, higher step sizes, h, can be
used. The above algorithm can be implemented in spreadsheet packages,
such as Excel®, but can be quite tedious; however, most computer soft-
ware packages have the Runge-Kutta routines built in, and they can be
evoked readily with appropriate arguments. An example of the Excel®

implementation of the Runge-Kutta method is illustrated in Worked
Example 3.5.

Worked Example 3.5

Solve the ODE from the Worked Example 3.3 using the Runge-Kutta
method.

Solution 

The Runge-Kutta method implemented in the Excel® spreadsheet
package is shown in Figure 3.11. The comparison between the solution
by the Runge-Kutta method and the analytical solution is also included,
showing close agreement between the two.

(K0 � 2K1 � 2K2 � K3)
���

6
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3.3.3 SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Systems of coupled ODEs are rather common in many environmental sys-
tems and several examples will be considered in detail in the following chapters.
The Runge-Kutta method can be extended to systems of ODEs as well as to
higher-order differential equations. Higher-order equations have to be reduced to
first-order equations by introducing new variables before applying the Runge-
Kutta method. For example, consider the second-order differential equation:

�
d

d

x

2y
2� = g�x,y,�

d

d

y

x
�	 (3.27)

The order of the above can be reduced from 2 to 1 by introducing

z = �
d

d

y

x
� whereby �

d

d

x

z
� = �

d

d

x

2y
2� (3.28)

Figure 3.11 Runge-Kutta method in Excel®. 
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Hence, the original problem is now equivalent to one with two coupled ODEs:

�
d

d

x

z
� = g(x,y,z) and �

d

d

y

x
� = f (x,y,z) = z (3.29)

The Runge-Kutta method can now be applied to each of the above two ODEs:

yn�1 = yn � (3.30)

zn�1 = zn � (3.31)

where

K0 = hf (xn,yn,zn)

L0 = hg(xn,yn,zn)

K1 = hf (xn + 0.5h,yn + 0.5K0,zn + 0.5L0)

L1 = hg(xn + 0.5h,yn + 0.5K0,zn + 0.5L0)

K2 = hf (xn + 0.5h,yn + 0.5K1,zn + 0.5L1)

L2 = hg(xn + 0.5h,yn + 0.5K1,zn + 0.5L1)

K3 = hf (xn + h,yn + K2,zn + L2)

L3 = hg(xn + h,yn + K2,zn + L2)

The above algorithms are available in many software packages as built-in
routines for easy application. Several examples of such applications to a wide
range of problems will be presented in the following chapters.

3.3.4 PARTIAL DIFFERENTIAL EQUATIONS  

For a large variety of environmental systems, the dependent variable is
expressed in more than one independent variable. For example, the concentra-
tion of a pollutant in a river may be a function of time and river miles, whereas
that in an aquifer may be a function of the three spatial dimensions as well as
of time. Such systems are modeled using partial differential equations.

Partial differential equations may be classified in terms of their mathemat-
ical form or the type of problem to which they apply. The general form of a
second-order PDE in two independent variables is as follows:

A(x,y)�
∂
∂
x

2f
2� � B(x,y)�

∂
∂
x

2

∂
f

y
� � C(x,y)�

∂
∂
y

2

2

f
� � E�x,y,�

∂
∂
x

f
�, �

∂
∂
y

f
�	 (3.32)

If B2 – 4AC < 0, the equation is classified as elliptic; if B2 – 4AC = 0, para-
bolic; and if B2 – 4AC < 0, hyperbolic. To solve such PDEs, initial conditions,

(L0 � 2L1 � 2L2 � L3)
���

6

(K0 � 2K1 � 2K2 � K3)
���

6
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boundary conditions, or their combinations would be required. However, most
PDEs cannot be solved in exact form analytically; analytical solutions, when
available, are problem specific and cannot be generalized. Therefore, numer-
ical approaches are the methods of choice for their solution, of which the
finite difference method and the finite element method are the most common.

3.3.4.1 Finite Difference Method

The essence of this method is as follows. The problem domain is first
divided into a grid of n node points. The PDE is approximated by difference
equations relating the functional value at neighboring points in the grid. 
Then, the resulting set of n equations in n unknowns is solved to obtain the
approximate solution values at the node points. The approximation of PDEs
by difference is based on Taylor series expansion and can be formulated by
considering the two-dimensional grid system shown in Figure 3.12. 

Using the notation of subscript “j ” for the y-variable and subscript “i” for
the x-variable, the difference equations take the following form:

�
∂
∂
x

f
� � �

fi�1, j

2

–

h

fi–1, j
�; �

∂
∂
y

f
� � �

fi, j�1

2

–

h

fi, j–1
�; (3.33)

�
∂
∂
x

2

2

f
� ��

fi�1, j – 2

h

fi
2
, j � fi–1, j
�; �

∂
∂
y

2

2

f
� ��

fi, j�1 – 2

h

fi
2
, j � fi, j–1
�; (3.34)

Figure 3.12 Two-dimensional grid system.
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�
∂
∂
x

2

∂
f

y
� � (3.35)

Worked Example 3.6

The advective-diffusive transport of a pollutant in a river, undergoing a
first-order decay reaction, can be modeled by the following equation (as
derived in Chapter 2):

�
∂
∂
C

t
� = E�

∂
∂

2

t

C
2� – U�

∂
∂
C

x
� – kC

where C is the concentration of the pollutant, E is the dispersion coefficient,
U is the velocity, k is the reaction rate constant, t is the time, and x is the dis-
tance along the river. Develop the finite difference formulation to solve the
above PDE numerically.

Solution

The grid notation indicated in Figure 3.12 can be adapted as shown in
Figure 3.13 for this problem. Each of the terms in the PDE can now be
expressed in the finite difference form as follows:

�
∂
∂
C

t
� � �

Ci,n�1

h

– Ci,n
�

E�
∂
∂

2

x

C
2� � E� 	

U�
∂
∂
C

x
� � U��Ci,n –

h

Ci–1,n
�	

kC � k ��Ci,n �

2

Ci,n+1
�	

Hence, combining all of the above, the finite difference form of the PDE is

�
Ci,n�1

h

– Ci,n
� = E� 	 – U��Ci,n –

h

Ci–i,n
�	

–  k��Ci,n �

2

Ci,n+1
�	

Ci+1,n – 2Ci,n + Ci–1,n
���

h2

Ci+1,n – 2Ci,n + Ci–1,n
���

h2

fi�1,j�1 – fi–1,j�1 – fi�1,j–1 � fi–1,j–1
����

4h2
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which can be rearranged to solve for Ci,n+1 in terms of the known values of C
at the nth time point, Ci,n. In essence, these equations now become a set of
algebraic equations to be solved simultaneously. 

Even though the above equations can be set up in a spreadsheet package,
the implementation can be laborious. Several mathematical packages offer
built-in routines to execute this algorithm, without requiring any program-
ming on the part of the modeler.

3.4 CLOSURE

Mathematical calculi underlying various types of mathematical formu-
lations were presented in this chapter. These formulations are integral com-
ponents of mathematical models, and a clear understanding of these
formulations and the calculi is essential to complete the modeling process.
The availability of modern software packages can be of significant benefit to
modelers, because the mechanics of the mathematical calculi are readily
available, preprogrammed. The intent of this book is to demonstrate, through
specific examples, that many of these calculi could be implemented in a com-
puter environment using software packages that require minimal program-
ming skills. These packages can, thus, help subject matter experts focus on
formulating and posing the problem rather than on implementing the problem
and the solution procedure in a computer environment to achieve the model-
ing goal.  

It should be noted that some software packages incorporate the calculi and
algorithms as built-in ready-to-use “libraries”; in some other packages, the
users may have to chose from several built-in algorithms; in yet others, users
may have to set them up with some software-specific scripts, syntax, or code.
This is the reason for including this mathematics primer in this book, so that
readers can benefit from them in selecting the optimal software package for

t

ti-h

ti

ti+h

xi-h ti+hti

h

h

h

h

Ci,n+1

Ci,n Ci+1,n+1Ci-1,n+1

Ci,n-1

Figure 3.13
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modeling, in diagnosis and troubleshooting, and in verifying and interpreting
the results obtained.

EXERCISE PROBLEMS

3.1. The relationship between pressure, P, volume, V, and temperature, T, for
many real gases can be described by the van der Waals equation:

�P � �
V

a
2�	(V – b) � RT

Identify the problems with solving the above equation using elementary
algebraic methods. Prepare an Excel® worksheet to solve this equation
for V for known values of P, T, a, and b.

3.2. The rate expressions for the reversible reaction A S B result in the fol-
lowing coupled differential equations:

�
d

d

[A

t

]
� = –k1[A] � k2[B] and �

d

d

[B

t

]
� = k1[A] – k2[B]

Recognizing that the total concentration of A and B = CT, the rate equa-
tion for A can be found as follows:

�
d

d

[A

t

]
� = –k1[A] � k2[CT – A]

Show that the solution to the above ODE is 

A = A0 exp[–k1 � k2)t] � {1 – exp[–(k1 � k2)t]}

where A0 is the initial concentration of A.

Assuming k1 = 0.2, k2 = 0.1, CT = 0.01, and A0 = 0.009, find the time
required for A to decrease by 50%.

3.3. Consecutive reactions A → B → C such as can be found in environ-
mental systems (e.g., NH3 → NO–

2 → NO–
3). Starting from the individ-

ual rate equations:

�
d

d

[A

t

]
� = –k1[A]; �

d

d

[B

t

]
� = k1[A] � k2[B]

and

�
d[

d

C

t

]
� = k3[B]

k2CT
�
k1 � k2
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deduce that the rate equation for B can be written as follows:

�
d

d

[B

t

]
� � k1A0 exp(–k1t) � k2[B]

Hence, show that 

B = B0 exp(–k2t) � �
k

A

2

0

–

k

k
1

1

�[exp(–k1t) – exp(–k2t)]

where A0 and B0 are the initial concentrations of A and B.

Assuming k1 = 0.15, k2 = 0.2, A0 = 0.05, and B0 = 0.01, find the time
required for B to increase by 50%.

3.4. The rate of transfer of oxygen in natural waters by reaeration alone can
be modeled by the following equation:

�
d

d

C

t
� � KL�

A

V
� (Csat – C)

Solve the above ODE analytically, as it is and also after making a sub-
stitution, D = (Csat – C ), and confirm that both approaches yield identi-
cal results for C as a function of time.

Develop an Excel® worksheet to solve the equation numerically, and
compare the results with the analytical results by plotting a graph of 
C vs. t.

Assume (KL A/V ) = 2.5 day–1 and Csat = 7.8 mg/L. 
3.5. The in-stream concentration of a pollutant caused by a linearly distrib-

uted uniform source of strength SD can be described by the following
equation:

E�
d

d

2

x

C
2� – U�

d

d

C

x
� – KC = SD

that gives the following solution:

For the reach x ≤ 0: C � ��
S

K
D
���α2

–

α
1

�	(1 – exp(–j1a))� exp( j1x)

For the reach 0 ≤ x ≤ a: C � �
S

K
D
��1 – ��α2

–

α
1

�	 exp( j1(x – a)) 

– ��α2

+

α
1

�	 exp ( j2(x))�
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For the reach x ≥ a: C � ��
S

K
D
���α2

+

α
1

�	[1 – exp(–j2a)]� exp( j2(x – a))

where the distributed load occurs from x = 0 to x = a. Determine the
optimum value of a over which the waste load can be distributed with-
out violating the following water quality standards for the pollutant: at 
x ≤ –6 miles, C should be less than 1.5 mg/L and at x ≥ 40 miles, C
should be less than 2.0 mg/L.

The maximum value of C in the stream should be less than 20 mg/L.
(Hint: use the Goal Seek or Solver feature in Excel®).

Assume the following values: E = 15 miles2/day, U = 4 miles/day,
K = 0.3 day–1, SD = 25 mg/L-day, α = 1.44, j1 = 0.33 mile–1, and j2 =
0.06 mile–1.
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CHAPTER 4

Fundamentals of Environmental
Processes

CHAPTER PREVIEW

The objective of this chapter is to review the fundamental principles
required to formulate material balance equations, which are the build-
ing blocks in mathematical modeling of environmental systems.
Toward this end, fundamental concepts and principles of environmen-
tal processes commonly encountered in both engineered and natural
systems are reviewed here. Topics reviewed include phase contents,
phase equilibrium, partitioning, transport processes, and reactive and
nonreactive processes. Finally, integration of these concepts in formu-
lating the material balance equation is outlined. Again, rather than
rigorous and complete thermodynamic and mechanistic analyses, only
the extracts are included to serve the modeling goal. 

4.1 INTRODUCTION

THE ultimate objective of this book is to develop models to describe the
changes of concentrations of contaminants in engineered and natural sys-

tems. Changes within a system can result due to transport into and/or out of
the system and/or processes acting on the contaminants within the system.
Contaminants can be transported through a system by microscopic and
macroscopic mechanisms such as diffusion, dispersion, and advection. At the
same time, they may or may not undergo a variety of physical, chemical, and
biological processes within the system. Some of these processes result in
changes in the molecular nature of the contaminants, while others result in
mere change of phase or separation. The former type of processes can be cat-
egorized as reactive processes and the latter as nonreactive processes. Those
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contaminants that do not undergo any significant processes are called con-
servative substances, and those that do are called reactive substances. While
most contaminants are reactive to a good extent, a few substances behave as
conservative substances. Nonreactive substances such as chlorides can be
used as tracers to study certain system characteristics.  

A clear mechanistic understanding of the processes that impact the fate
and transport of contaminants is a prerequisite in formulating the mathemat-
ical model. At the microscopic level, such processes essentially involve the
same reaction and mass transfer considerations irrespective of the system
(engineered or natural) or the media (soil, water, or air) or the phase (solid,
liquid, or gas) in which they occur. The system will bring in additional spe-
cific considerations at the macroscopic level. Basic definitions and funda-
mental concepts relating to the microscopic level processes common to both
engineered and natural systems are reviewed in this chapter. Express details
pertinent to engineered and natural systems are reviewed in Chapters 5 and 6,
respectively. The specific objective here is to compile general expressions or
submodels for quantifying the rate of mass “transferred” or “removed” by the
various processes that would cause changes of concentrations in the system. 

4.2 MATERIAL CONTENT

Material content is a measure of the material contained in a bulk medium,
quantified by the ratio of the amount of material present to the amount of the
medium. The amounts can be quantified in terms of mass, moles, or volume.
Thus, the ratio can be expressed in several alternate forms such as mass or
moles of material per volume of medium resulting in mass or molar concen-
tration; moles of material per mole of medium, resulting in mole fraction;
volume of material per volume of medium, resulting in volume fraction; and
so on. The use of different forms of measures in the ratio to quantify material
content may become confusing in the case of mixtures of materials and
media. The following notation and examples can help in formalizing these
different forms: subscripts for components are i = 1,2,3, . . . N; and subscripts
for phases are g = gas, a = air, l = liquid, w = water, s = solids and soil.

4.2.1 MATERIAL CONTENT IN LIQUID PHASES

Material content in liquid phases is often quantified as mass concentration,
molar concentration, or mole fraction.

Mass concentration of component i in water = �i,w = (4.1)
Mass of material, i
��

Volume of water
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Molar concentration of component i in water = Ci,w = (4.2)

Because moles of material = mass ÷ molecular weight, MW, mass concen-
trations, �i,w , and molar concentrations, Ci,w , are related by the following:

Ci,w = �
M

�i

W
,w

i

� (4.3)

Mole fraction, X, of a single chemical in water can be expressed as follows:

X = 

For dilute solutions, the moles of chemical in the denominator of the above
can be ignored in comparison to the moles of water, nw, and X can be approx-
imated by:

X = �
M

M

ol

o

e

l

s

e

o

s

f

o

c

f

h

w

em

ate

ic

r

al
� (4.4)

An aqueous solution of a chemical can be considered dilute if X is less
than 0.02. Similar expressions can be formulated on mass basis to yield mass
fractions. Mass fractions can also be expressed as a percentage or as other
ratios such as parts per million (ppm) or parts per billion (ppb). 

In the case of solutions of mixtures of materials, it is convenient to use
mass or mole fractions, because the sum of the individual fractions should
equal 1. This constraint can reduce the number of variables when modeling
mixtures of chemicals. Mole fraction, Xi , of component i in an N-component
mixture is defined as follows:

Xi = (4.5)

and, the sum of all the mole fractions = ��
N

1
Xi� � Xw = 1 (4.6)

As in the case of single chemical systems, for dilute solutions of multiple
chemicals, mole fraction Xi of component i in an N-component mixture can
be approximated by the following:

Xi = �
Mol

n

e

w

s of i
� (4.7)

This ratio of quantities is independent of the system and the mass of the
sample. Such a property that is independent of the mass of the sample is

Moles of i
��

��
N

1
ni� � nw

Moles of chemical
����
Moles of chemical + Moles of water

Moles of material, i
���

Volume of water

Chapter 04  11/9/01  11:10 AM  Page 69

© 2002 by CRC Press LLC



known as an intensive property. Other examples of intensive properties
include pressure, density, etc. Those that depend on mass, volume and poten-
tial energy, for example, are called extensive properties. 

4.2.2 MATERIAL CONTENT IN SOLID PHASES

The material content in solid phases is often quantified by a ratio of
masses and is expressed as ppm or ppb. For example, a quantity of a chemi-
cal adsorbed onto a solid adsorbent is expressed as mg of adsorbate per kg 
of adsorbent. 

4.2.3 MATERIAL CONTENT IN GAS PHASES

The material content in gas phases is often quantified by a ratio of moles
or volumes and is expressed as ppm or ppb. It is important to specify the tem-
perature and pressure in this case, because (unlike liquids and solids) gas
phase densities are strong functions of temperature and pressure. It is prefer-
able to report gas phase concentrations at standard temperature and pressure
(STP) conditions of 0ºC and 760 mm Hg. 

Worked Example 4.1

A certain chemical has a molecular weight of 90. Derive the conversion
factors to quantify the following: (1) 1 ppm (volume/volume) of the chemical
in air in molar and mass concentration form, (2) 1 ppm (mass ratio) of the
chemical in water in mass and molar concentration form, and (3) 1 ppm (mass
ratio) of the chemical in soil in mass ratio form.

Solution

(1) In the air phase, the volume ratio of 1 ppm can be converted to the mole
or mass concentration form using the assumption of Ideal Gas, with a
molar volume of 22.4 L/gmole at STP conditions (273 K and 1.0 atm.).  

1 ppmv = 

1 ppmv ≡ ��2
m

2

o

.4

le

L

s
����10

m

00
3

L
�� ≡ 4.46 × 10–5

�
m

m

ol
3

es
�

≡ 4.46 × 10–5
�
m

m

ol
3

es
� ��g

9

m

0

o

g

le
�� ≡ 0.004 �

m

g
3� ≡ 4 �

m

m

g
3� ≡ 4 �

µ

L

g
�

The general relationship is 1 ppm = (MW /22.4) mg/m3. 

1 m3 of chemical
���
1,000,000 m3 of air

1 m3 of chemical
���
1,000,000 m3 of air
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(2) In the water phase, the mass ratio of 1 ppm can be converted to mole or
mass concentration form using the density of water, which is 1 g/cc at 
4ºC and 1 atm:

1 ppm = 

1 ppm ≡ �1�
cm

g
3����100

m

3c
3

m3

�� ≡ 1 �
m

g
3� ≡ 1 �

m

L

g
�

≡ 1�
m

g
3� ��m90

ol

g

e
�� ≡ 0.011 �

m

m

ol
3

es
�

(3) In the soil phase, the conversion is direct:

1 ppm = 

1 ppm = ��10

k

0

g

0 g
����1000

g

mg
�� = 1 �

m

kg

g
�

Worked Example 4.2 

Analysis of a water sample from a lake gave the following results: volume
of sample = 2 L, concentration of suspended solids in the sample = 15 mg/L,
concentration of a dissolved chemical = 0.01 moles/L, and concentration of
the chemical adsorbed onto the suspended solids = 500 µg/g solids. If the
molecular weight of the chemical is 125, determine the total mass of the
chemical in the sample.

Solution

Total mass of chemical can be found by summing the dissolved mass and
the adsorbed mass. Dissolved mass can be found from the given molar con-
centration, molecular weight, and sample volume. The adsorbed mass can be
found from the amount of solids in the sample and the adsorbed concentra-
tion. The amount of solids can be found from the concentration of solids in
the sample.

Dissolved concentration = molar concentration * MW

= 0.001 �
mo

L

les
���g

1

m

25

ol

g

e
�� = 0.125 �

L

g
�

1 g of chemical
��
1,000,000 g of soil

1 g of chemical
��
1,000,000 g of soil

1 g of chemical
���
1,000,000 g of water

1 g of chemical
���
1,000,000 g of water
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Dissolved mass in sample = dissolved concentration × volume

= �0.125 �
L

g
�� × (2 L) = 0.25 g

Mass of solids in sample = concentration of solids × volume

= �25 �
m

L

g
�� × (2 L) = 50 mg = 0.05 g

Adsorbed mass in sample = adsorbed concentration × mass of solids

= �500 �
µ

g

g
�� × (0.05 g)��106

g

µg
�� = 0.00025 g

Hence, total mass of chemical in the sample = 0.25 g + 0.00025 g 
= 0.25025 g. 

4.3 PHASE EQUILIBRIUM

The concept of phase equilibrium is an important one in environmental
modeling that can be best illustrated through an experiment. Consider a
sealed container consisting of an air-water binary system. Suppose a mass, m,
of a chemical is injected into this closed system, and the system is allowed to
reach equilibrium. Under that condition, some of the chemical would have
partitioned into the aqueous phase and the balance into the gas phase, assum-
ing negligible adsorption onto the walls of the container. The chemical con-
tent in the aqueous and gas phases are now measured (as mole fractions, X
and Y). The experiment is then repeated several times by injecting different
amounts of the chemical each time and measuring the final phase contents in
each case (X’s and Y’s). A rectilinear plot of Y vs. X, called the equilibrium
diagram, is then generated from the data, as illustrated in Figure 4.1. 

For most chemicals, when the aqueous phase content is dilute, a linear
relationship could be observed between the phase contents, Y and X. (A com-
monly accepted criterion for dilute solution is aqueous phase mole fraction,
X < 2%.) This phenomenon is referred to as linear partitioning. The slope of
the straight line in the equilibrium diagram is a temperature-dependent ther-
modynamic property of the chemical and is termed the partition coefficient.
Such linearity has been observed for most chemicals in many two-phase envi-
ronmental systems. Thus, X and Y are related to one another under dilute con-
ditions by

Y � Ka–wX (4.8)
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where, Ka–w is the nondimensional air-water partition coefficient (–). Similar
partitioning phenomena can be observed between other phases as well. Some
of the more common two-phase environmental systems and the appropriate
partition coefficients for those systems are summarized in Appendix 4.1. It is
imperative that these definitions be used consistently to avoid confusion
about units and inverse ratios, i.e., K1–2 vs. K2–1.

Experimentally measured data for many of these partition coefficients can
be found in handbooks and the literature. Alternatively, structure activity rela-
tionship (SAR) or property activity relationship (PAR) methods have also
been proposed to estimate them from molecular structures or other physico-
chemical properties. A comprehensive compilation of such estimation meth-
ods can be found in Lyman et al. (1982). 

4.3.1 STEADY STATE AND EQUILIBRIUM

The concept of steady state has been referred to previously, implying no
changes with passage of time. The equilibrium conditions discussed above
also imply no change of state with passage of time. The following illustration
adapted from Mackay (1991) provides a clear understanding of the similari-
ties and differences between the two concepts.

Consider the oxygen concentrations in the water and air, first, in a closed
air-water binary system as shown in Figure 4.2(a). After a sufficiently long
time, the system will reach equilibrium conditions with an oxygen content 
of 8.6 × 10–3 mole/L and 2.9 × 10–4 mole/L in the gas and aqueous phase,
respectively. The system will remain under these conditions, seen as steady
state. Consider now the flow system in Figure 4.2(b). The flow rates remain
constant with time, keeping the oxygen contents the same as before. The sys-
tem not only is at steady state, but also is at equilibrium, because the ratio of

Figure 4.1 Linear partitioning in air-water binary system.
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Figure 4.2 Illustration of steady state conditions vs. equilibrium conditions.
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the phase contents is still equal to the Ka–w value. Now consider the situation
in Figure 4.2(c), where the flow rates are still steady, but the phase contents
are not being maintained at the “equilibrium values,” and their ratio is not
equal to the Ka–w value. Here, the system is at steady state but not at equilib-
rium. In Figure 4.2(d), the flow rates and phase contents are fluctuating with
time; however, their ratio remains the same at Ka–w. Here, the system is not
at steady state, but it is at equilibrium. Finally, in Figure 4.2(e), the flow rates
and the phase contents and their raito are changing. This system is not at
steady state or equilibrium.

4.3.2 LAWS OF EQUILIBRIUM 

Several fundamental laws from physical chemistry and thermodynamics
can be applied to environmental systems under certain conditions. These laws
serve as important links between the state of the system, chemical properties,
and their behavior. As pointed out earlier, fundamental laws of science form
the building blocks of mathematical models. As such, some of the important
laws essential for modeling the fate and transport of chemicals in natural and
engineered environmental systems are reviewed in the next section.

4.3.2.1 Ideal Gas Law

The Ideal Gas Law states that

pV � nRT (4.9)

where p is the pressure, V is the volume, n is the number of moles, R is the
Ideal Gas Constant, and T is the absolute temperature. Most gases in envi-
ronmental systems can be assumed to obey this law. It is important to use the
appropriate value for R depending on the units used for the other parameters
as summarized in Table 4.1.

Table 4.1 Units Used in the Ideal Gas Law

Pressure, Volume, Temperature, No. of Moles,
p V T n Ideal Gas Constant, R

atm. L K gmole 0.08206 atm.-L/gmole-K
mm Hg L K gmole 62.36 mm Hg-L/gmole-K

atm. ft3 K lbmole 1.314 atm.-ft3/lbmole-K
psi ft3 R lbmole 10.73 psi.-ft3/lbmole-R

in Hg ft3 R lbmole 21.85 in Hg-ft3/lbmole-R
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4.3.2.2 Dalton’s Law

Dalton’s Law states that for an ideal mixture of gases of total volume, V,
the total pressure, p, is the sum of the partial pressures, pi , exerted by each
component in the mixture. Partial pressure is the pressure that would be
exerted by the component if it occupied the same total volume, V, as that of the
mixture. The following relationships can be developed for an N-component
mixture of ideal gases:

p � �
N

j=1
pj � pA � pB � pC . . . (4.10)

and,

pj � �
nj

V

RT
� (4.11)

where nj is the number of moles of component j in the mixture. A useful
corollary can be deduced by combining the above two equations:

p � pA � pB � pC . . . = (4.12)

Considering component A, as an example, its mole fraction in the mixture, YA,
can now be related to its partial pressure as follows:

YA ��
nA � nB

n

�

A

nC . . .
��

or

Y � �
p

p
A
� (4.13)

4.3.2.3 Raoult’s Law

Raoult’s Law states that the partial pressure, pA, of a chemical A in the gas
phase just above a liquid phase containing the dissolved form of the chemi-
cal A along with other chemicals, is given by

pA � vpAXA (4.14)

where vpA is the vapor pressure of the chemical A, and XA is the mole frac-
tion of A in the liquid phase. The mole fraction, XA, can be related to liquid
phase concentrations as follows:

�
p

R
A

T

V
�

�
�
R

pV

T
�

(nA � nB � nC . . .)RT
���

V
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XA � �
C

C
A
� (4.15)

where CA is the molar concentration of A, and C is the total molar concentra-
tion of the solution.

4.3.2.4 Henry’s Law

Henry’s Law states that the partial pressure of a chemical, pA, in an 
air-water binary system at equilibrium is linearly proportional to its mole
fraction in the aqueous phase, XA, as long as the solution is dilute. The pro-
portionality constant is known as Henry’s Constant, H:

pA � HXA (4.16)

The above statement is conceptually the same as the partitioning phenome-
non discussed in Section 4.3, where Ka–w is comparable to H. The higher the
value of H, the higher the tendency of the chemical to partition into the gas
phase. Or, in other words, H can be considered as a measure of the volatility
of a chemical. As defined above, H may take the dimensions of atm./mole
fraction or mm Hg/mole fraction; similarly, Ka–w can also take different
forms. Table 4.2 summarizes the different forms of Henry’s Law and conver-
sion factors to relate them to one another. 

Worked Example 4.3

The air-water partition coefficient, Ka–w, for oxygen has been reported as
40,000 atm.-mole/mole. (1) Estimate the dissolved oxygen concentration that
can be expected in a natural body of pristine water. (2) Convert the given Ka–w

value to a molar concentration ratio form. 

Solution

(1) The air-water partition coefficient discussed in Section 4.3 can be used to
find the dissolved concentration, because the atmospheric content of oxy-
gen is known as 21%. Consistent units have to be used in the calculations.

Air-water partition coefficient,

Ka–w = 

Hence,

Oxygen content in water = 
Oxygen content in air
���

Ka–w

Oxygen content in air
���
Oxygen content in water
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Table 4.2 Different Forms of Quantifying Phase Contents and the Resulting Forms of Henry’s Constant

Multiplication Factors for Converting
to Other Forms

Gas Phase Aqueous Phase
Content Content Form of Henry’s Constant Hppmf Hmcmc Hmfmf Hppmc

Partial pressure Mole fraction Hppmf 1 RT ρRT/p ρRT
(atm.) (mole/moles) [atm.]

Molar concentration Molar concentration Hmcmc 1/RT 1 p/ρ ρ
(moles/L) (moles/L) (–)

Mole fraction Mole fraction Hmfmf p/ρRT ρ/p 1 p
(moles/moles) (moles/moles) (–)

Partial pressure Molar concentration Hppmc 1/ρRT 1/ρ 1/p 1
(atm.) (moles/L) (atm.-L/mole)

R = Ideal Gas constant; T = absolute temperature; ρ = molar density of water; p = total pressure; typical units indicated as ( ).
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The given value of Ka–w indicates that the gas phase content is quantified
in partial pressure (atm.), and the aqueous phase content is quantified by
mole fraction (mole/mole). Oxygen content in the atmosphere = 21% =
mole fraction of 0.21. Because the atmospheric pressure is 1 atm., using
Dalton’s Law, the partial pressure of oxygen in air = 0.21 × 1 atm. 
= 0.21 atm. 

∴ Oxygen content in water = 

= 5.25 × 10–6 �
m

m

o

o

le

le

s

s

H

O

2

2

O
�

= �5.25 × 10–6 �
m

m

o

o

le

le

s

s

H

O

2

2

O
����g

3

m

2

o

g
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O
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����1000
g

mg
����m1

o

8

le

g

s

H

H

2

2

O

O
����100

L

0 g
��

= 9.3 �
m

L

g
�

(2) In the given Ka–w value, the gas phase content is in partial pressure form,
and the aqueous phase content is in the mole fraction form. To convert
this value to the mole concentration ratio form, the gas phase content has
to first be converted from the partial pressure form to the molar concen-
tration form (moles/L). This can be achieved using the Ideal Gas Law:

pV � nRT

or,

�
V

n
� � �

R

p

T
�

Assuming ambient temperature of T = 25ºC, and R = 82 atm.-L/kmole-
K, at the partial pressure = 0.21 atm.,

�
V
n

� � = 8.6 × 10–6 
�
km

L

ole
� = 8.6 × 10–3 

�
m

L

ole
�

The mole fraction in the aqueous phase was found as 5.25 × 10–6 in part
(I ), which can be converted to molar concentration C using Equation
(4.15):

CA = X × C = (5.25 × 10–6) × �55.5 �
gm

L

ole
�� = 2.9 �

gm

L

ole
�

0.21 atm.
���
82 �

k
a
m
tm
ol

.
e
-
-
L
K

� (273 + 25)K

0.21 atm.
���
40,000 �

atm
m
.-m

ol
o
e
l
s
e
O
s H

2

2O
�
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Hence, Ka–w = = �
8

2

.

.

6

9

×
×

1

1

0

0

–

–

3

4� = 29.6

Note that the oxygen content in the water is <<0.02 mole fraction, which
satisfies the assumption of dilute solution, thus justifying the use of lin-
ear partitioning.

4.4 ENVIRONMENTAL TRANSPORT PROCESSES

Chemicals can be transported through the various compartments of the
environment by microscopic level and macroscopic level processes. At the
microscopic level, the primary mechanism of transport is by molecular diffu-
sion driven by concentration gradients. At the macroscopic level, mixing (due
to turbulence, eddy currents, velocity gradients) and bulk movement of the
medium are the primary transport mechanisms. Transport by molecular dif-
fusion and mixing has been referred to as dispersive transport, while transport
by bulk movement of the medium is referred to as advective transport.
Advective and dispersive transport are fluid-element driven, whereas diffu-
sive transport is concentration-driven and can proceed under quiescent con-
ditions. In this section, fundamentals of diffusive, dispersive, and advective
transport mechanisms are reviewed along with the theories used to model the
mass transfer phenomenon. 

4.4.1 DIFFUSIVE TRANSPORT

Diffusive transport at the molecular level can take place under steady or
unsteady conditions in homogeneous (gases, soils, water) or multiphase (sed-
iments, biofilms) engineered and natural environmental systems. The rate of
chemical transport under these conditions can be quantified using Fick’s
Laws of diffusion as summarized next. 

4.4.1.1 Steady State Conditions

The diffusive transport rate under steady state conditions can be quantified
using Fick’s First Law of diffusion. According to Fick’s First Law, the molar
rate of transport by diffusion in the x-direction, Jx,i (MT–1), is directly pro-
portional to the concentration gradient, dCi /dx (ML–3 – L–1), and the area of
flow, Ax (L2):

Jx,i ∝ Ax ��
d

d

C

x
i

�� (4.17)
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By introducing a proportionality constant, Di, called the molecular diffusion
coefficient (L2T–1), and a negative sign to indicate that the flux is positive in
the x-direction,

Jx,i = –DiAx ��
d

d

C

x
i

�� (4.18)

4.4.1.2 Unsteady State Conditions

The diffusive transport rate under time-dependent, unsteady state can be
quantified using Fick’s Second Law:

�
∂
∂
x
��–Di �

∂
∂
C

x
i

�� � �
∂
∂
C

t
i

� (4.19)

The above equations can be applied to diffusive transport through gases or
liquids. The diffusion coefficient (or diffusivity), Di, is an intrinsic molecular
property for a chemical-solvent system. Tabulated numerical values for D can
be found in handbooks; they can also be estimated from chemical and ther-
modynamic properties following empirical correlations such as the Wilkie-
Chang equation for diffusion of small molecules through water and the
Chapman equation for diffusion in gases. 

4.4.1.3 Multiphase Diffusion

In certain environmental systems, molecules may diffuse through a matrix
of multiple phases. A typical example is the diffusion of chemical vapors
through the vadose zone matrix that may consist of air, water vapor, pure
chemical liquid, and soil. The effective diffusion coefficient under these con-
ditions will be dependent upon the pore characteristics and can be accounted
for by the tortuosity factor, τ, to modify the pure phase diffusivity as follows:

Dpore, j = Di, j ��
�

τ
�� (4.20)

where Dpore, j is the diffusivity in the pores filled with phase j, Di, j is the
molecular diffusivity in phase j, and θ is the porosity of the matrix.

Worked Example 4.4

The molecular diffusivity of nitrates in water is 19 × 10–6 cm2/s. In a river,
nitrate concentration in the water column is 20 mg/L, and in the sediment
pore waters, at a depth of 10 cm, it is 0.05 mg/L. Estimate the diffusive flux
of nitrate into the sediments, assuming sediment bed porosity of 65% and a
tortuosity factor of 3.
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Solution

The flux, N, which is the diffusive mass flow rate, J, per unit area, A, can
be found from Fick’s First Law and from using diffusivity in the pore
waters. Diffusivity in the pore waters can be found using the porosity and
tortuosity factors.

The flux can be calculated from the following:

N = �
A

J
� ≅ D�

∆
∆

C

z
� � [Dpore,w]�

(Cw

∆
–

z

Cs)
� � �Dw��

�

τ
����(Cw

∆
–

z

Cs)
�

where,

DW = 19 × 10–6 cm2/s, θ = 0.65, τ = 3, CW = 20 mg/L, Cs = 0.05 mg/L, and
∆z = 10 cm

Hence, nitrate flux into the sediment 

= ��19 × 10–6 �
cm

s

2

����
0.

3
65
�� ���36

h
0
r
0 s
����1000

L
cm3����104

m
c
2
m2

��
= 3.0 × 10–4 �

m2
g
– hr
�

4.4.2 DISPERSIVE TRANSPORT

Dispersive transport results from a combination of multiple mechanisms,
such as molecular diffusion, turbulence, eddy currents, and velocity gradi-
ents. The exchange of momentum between fluid elements in a turbulent flow
field is the driving force for this mode of transport. The quantification of con-
centration profiles and chemical fluxes by dispersive transport follows the
same model as that for diffusive transport (discussed in Section 4.4.1) but
uses a dispersion coefficient, E (L2T–1). 

4.4.3 ADVECTIVE TRANSPORT

Advection is the mechanism by which a chemical is transported across the
boundary of the system and through the system by the flow of the bulk medium.
The molar flux of chemical i transported by advection in the x-direction, Nx,i

(ML–2T–1), can be found from

Nx,i � vxCi (4.21)

where vx is the velocity of flow (LT–1) in the x-direction and Ci is the molar
concentration of chemical i in the bulk medium. If Ax (L2) is the area normal

(20 – 0.05)�
m
L
g
�

��
10 cm
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to the flow, the molar transport rate, Jx,i (MT–1) by advection is therefore
found from the following:

Jx,i = AxNx,i = AxvxCi = QCi (4.22)

where Q is the volumetric flow rate (L3T–1) of the bulk medium.

4.5 INTERPHASE MASS TRANSPORT

The above sections dealt with intraphase transport processes. The transfer
of mass from one phase to another is an important transport process in envi-
ronmental systems. Examples of such processes include aeration, reaeration,
air stripping, soil emissions, etc. The following theories have been proposed
to model such transfers: the Two-Film Theory proposed in the 1920s, the
Penetration Theory proposed in the 1930s, and the Surface Renewal Theory
proposed in the 1950s. Among these, the first is the simplest, most under-
stood, and most commonly used. As such, only the Two-Film Theory is
reviewed here. 

4.5.1 TWO-FILM THEORY

The Two-Film Theory can best be illustrated using the classical example
of transfer of oxygen in an air-water binary system as shown in Figure 4.3.
According to this theory, the following are postulated:

• There are two films at the interface, one on each side. 
• Concentration gradients exist only within the two films, and the bulk

are well mixed. 
• Concentrations, Ca,i and Cw,i , at the interface are at equilibrium. 

Because the interfacial concentrations are at equilibrium, using linear partitioning

�
C

C

w

a,

,

i

i

� = Ka–w (4.23)

The molar flow rate through the gas-side film, Jx,i,a , is given by 

Jx,i,a = Di,aAx��
d

d

C

x
i

�� = �
Di,aAx(

∆
Ca

x
,

a

b – Ca,i)
� = kgAx(Ca,b – Ca,i) (4.24)

and, the molar flow rate through the liquid-side film, Jx,i,w , is given by

Jx,i,w = Di,wAx��
d

d

C

x
i

�� = Di,w Ax�
(Cw,i

∆
–

xw

Cw,b)
� = klAx(Cw,i – Cw,b) (4.25)
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where kg = Di,a /∆xa and kl = Di,w /∆xw are local mass transfer coefficients
(LT–1) for the gas- and liquid-side films, respectively. Under steady state con-
ditions, the above two expressions for the molar flow rates must equal one
another: Jx,i,a = Jx,i,w = Jx,i.

Because the interfacial concentrations are not known, a new variable is
introduced to make the above equations useful. The new variable is defined
as the liquid phase concentration, C*

w, that would be in equilibrium with the
current gas phase concentration; in other words, Ca,b = Ka–wC*

w. Thus, equat-
ing the two molar flow rate equations and eliminating Ca,b and Ca,i , an
expression for Cw,i can be found as follows:

Cw,i = (4.26)

On substituting the above result back into the expression for the flux through
the liquid film, the mass transfer flux is finally found as follows:

Nx,i = �
J

A
x

x

,i
� = KL(C*

w – Cw,b) (4.27)

where the new coefficient KL (LT–1) is known as the overall mass transfer
coefficient relative to the liquid, which is related to the local mass transfer
coefficients by

KL � (4.28)
1

��
�
kgK

1

a–w
� � �

k
1

l
�

klCw,b � kgKa–wC*
w

��
kl � Ka–wkg

Figure 4.3 Illustration of the Two-Film Theory. 
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The mass transfer rate per unit volume of the bulk medium can then be found
by multiplying the flux by the specific interfacial mass transfer area, a. In
most systems, this may be not readily accessible and will have to be esti-
mated. In addition, the overall mass transfer coefficients are highly system
specific and also have to be determined experimentally. In practice, the com-
bined term KLa is estimated using empirical correlations developed from 
similar systems. A compilation of correlations for estimating KLa in environ-
mental systems can be found in Webber and DiGiano (1996).

4.6 ENVIRONMENTAL NONREACTIVE PROCESSES

As defined earlier, nonreactive processes cause changes in the chemical
content within the system, without the chemical undergoing any change in its
molecular structure; the chemical may, however, undergo a phase change.
Such processes are also referred to as physical processes. Some examples of
environmental nonreactive processes are settling, resuspension, flotation,
adsorption, desorption, absorption, thermal desorption, volatilization, extrac-
tion, filtration, membrane processes, and biosorption. A review of some of the
more common nonreactive processes is included here.

4.6.1 ADSORPTION AND DESORPTION 

Adsorption and desorption of chemicals (adsorbates) at liquid-solid and
gas-solid interfaces (adsorbents) are ubiquitous in natural and engineered sys-
tems. Examples include adsorption of molecules onto sediments, suspended
matter, soil, and aerosols in natural systems and onto activated carbon, zeo-
lite, and ion exchange resins in engineered systems. Two types of mecha-
nisms are thought to be significant in these processes: physisorption and
chemisorption. Physisorption is driven by van der Waals, electrostatic, and
hydrophobic forces. Chemisorption is driven by covalent bonding forces. In
practice, both of these mechanisms often occur together, and a generalized
approach is used to model the process.

The relationship between the concentration of the adsorbate on the adsor-
bent (solid) and in the bulk phase (gas or liquid) is often referred to as the
isotherm. Two of the more common isotherms used for aqueous systems are
as follows:

Langmuir isotherm: Cs � �
B

A
�

Cw

Cw
� (4.29)

Freundlich isotherm: Cs � Kf Cw
1/n (4.30)

Chapter 04  11/9/01  11:10 AM  Page 85

© 2002 by CRC Press LLC



where Cs is the concentration of the adsorbate on the adsorbent (MM–1); Cw

is the concentration of the adsorbent in the bulk liquid phase (ML–3); and A,
B, Kf , and n are empirical constants to be determined by experimentation. The
model constants can also be estimated from the molecular structures of the
adsorbates using quantitative structure activity relationships (QSARs). As can
be noted, the above isotherms are nonlinear and can result in nonlinear mod-
els that may be difficult to solve by traditional mathematical calculi. 

For most environmental systems, where the maximum adsorptive capacity
of the adsorbent is much greater than the actual adsorbed concentration, the
index n in Freundlich isotherm may be assumed to be approximately equal to
1. Thus, the Freundlich isotherm can be reduced to a linear model, where the
other constant, Kf , while being similar to the partition coefficient discussed in
Section 4.3, now has the dimensions of L3M–1:

Linear isotherm: Cs � Kf Cw (4.31)

Usually, adsorption/desorption processes are very fast, attaining equilib-
rium condition within minutes or hours. This implies that in environmental
systems where the time step in calculations is in the order of days, the
assumption of equilibrium can be justified. However, if it is necessary to
include the rate expression, as in microscopic analysis, a first-order expres-
sion can be assumed to give the rate of transfer:

�
d

d

C

t
s

� = k(C*
s – Cs) (4.32)

where C*
s is the equilibrium concentration on the solid phase.

4.6.2 SETTLING AND RESUSPENSION

The fate and transport of suspended solids and of chemicals adsorbing onto
them or desorbing from them can be impacted by settling or resuspension
processes. Examples include sedimentation of suspended particles in water
and wastewater treatment, electrostatic precipitation in air pollution control,
and settling of algae in natural systems. These processes are driven by gravi-
tational, buoyancy, hydrodynamic, aerodynamic, or electrostatic forces. The
two processes can be combined and modeled as a net settling process.

A submodel for the removal rate of suspended particles from the bulk fluid
can be developed as follows, considering a well-mixed lake as an example.
The rate of change of mass, m, of suspended particles in the water column
should equal the rate of settling of suspended particles toward the sediment:

Rate of change of suspended particles = �
d

d

m

t
� = �

d(P

d
w

t

V)
� (4.33)

Rate of settling of suspended particles to sediement = Avs Pw
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where Pw is the concentration of the particles in the water column (ML–3), V
is the volume (L3) of the lake, A is the average surface area of the lake (L2),
and vs is the settling velocity of the particles (LT–1). Hence, equating the
above two,

�
d

d

m

t
� = –AvsPw = –Avs��

m

V
�� = –��

v

D
s
��m � –ksm (4.34)

where D is the depth (L) of the lake. From the above, it can be seen that the
rate of settling is a first-order process, with a rate constant of ks = (vs /D), hav-
ing a dimension of T–1. The settling velocity of the particles can be deter-
mined experimentally or theoretically using Stokes’ Law or empirically using
correlations. A similar submodel can be used in all the examples of settling
processes mentioned earlier.

Once the settling rate is established, the sediment buildup rate can be
deduced. Also, by combining the settling submodel with the adsorption sub-
model, the rate of removal of chemical from the water by adsorption by sus-
pended solids, and hence the removal of chemicals from the water column,
and finally, its accumulation in the sediments can be modeled. 

The relationship between adsorbed concentration, Cs, particulate concen-
tration, Pw, dissolved concentration, Cw, and the adsorbed bulk concentra-
tion, CP, can be developed from the following definitions:

Cs = (4.35)

Pw = (4.36)

Cw = (4.37)

CP = (4.38)

Hence, assuming linear adsorption isotherm,

CP � CsPw � (Kf Cw)Pw

Since CT � CP � Cw (4.39)

where CT is the total concentration of the chemical in the water column,
the fractions of the dissolved and particulate forms of the chemical can be
found from:

Mass of adsorbed chemical
���

Volume of water

Mass of dissolved chemical
���

Volume of water

Mass of suspended particles
���

Volume of water

Mass of adsorbed chemical
���
Mass of suspended particles
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Fraction in dissolved form = fd = �
C

C
w

T

� = �
(1 �

1

Kf Pw)
� (4.40)

Fraction in particulate form = 1 – fd = �
(1 �

Kf

K

P

f

w

Pw)
� (4.41)

Worked Example 4.5

A lake has been receiving a constant input of suspended solids and a tox-
icant, resulting in a suspended solids concentration of 10 mg/L in the lake.
The partitioning of the toxicant in a solids-water system has been found to be
linear with a partition coefficient of 200,000 L/kg. The net settling velocity of
the suspended solids is 0.6 ft/day, the average depth of the lake is 30 ft, and
the volume of the lake is 3 × 106 cu ft. Determine the following: (1) adsorbed
concentration, (2) the rate constant for the settling process, (3) the dissolved
and particulate fractions of the toxicant in the water column, (4) the flux of
solids to the sediment, and (5) the flux of toxicant to the sediment if the total
concentration of the toxicant in the water column is 10 µg/L. 

Solution

(1) Using Equation (4.31), adsorbed concentration, Cs

= Kf • Cw = (200,000 L/kg) * (10 mg/L) = 2 * 106 mg/kg

(2) Using Equation (4.34), the rate constant, ks

= vs /D = (0.6 ft/day)/30 ft = 0.02 day–1

(3) Using Equation (4.40), the dissolved fraction, fd

= �
1 + K

1

f Pw

� = = �
1 +

1

2
� = 0.67

and, the particulate fraction fp = 1 – fd = 1 – 0.67 = 0.33
(4) The rate of solids settling to the sediments 

= �
d

d

m

t
� = ksm = ks (VPw)

= �0.02 �
d
1
ay
����3 × 106 ft3 × ��28.3

1
2 ft3
����10 �

m
L
g
� × ��100

1
0
g
mg

���� = 21.2 �
d
g
ay
�

1
�����

1 + 200,000 �
k

L

g
� × 10 �

m

L

g
� × �10–6

�
m

kg

g
��

Chapter 04  11/9/01  11:10 AM  Page 88

© 2002 by CRC Press LLC



The flux of solids to the sediment 

= = = = 0.2 �
ft2

m

–

g

day
�

(5) The flux of toxicant to the sediments

= Flux of solids * Adsorbed concentration 

First, find dissolved concentration in the water column:

Cw = fdCT = (0.67)�10 �
µ

L

g
�� = 6.7 �

µ

L

g
�

Now, find adsorbed concentration using Equation (4.31)

Cs � Kf Cw = �200,000 �
K

L

g
���6.7 �

µ

L

g
�� = 1.34 × 106

�
µ

k

g

g
�

Hence, the flux of toxicants to sediments

= �0.2 �
ft2

m

–

g

day
�� × Cs = �0.2 �

ft2
m

–

g

day
���1.34 × ��106

g

mg
�� × ��1

1

09

k

µ

g

g
���

= 0.268 × 10–3 = 0.268 × 10–3 
�
ft2

m

–

g

day
� = 0.268 �

ft2
µ

–

g

day
�

4.6.3 VOLATILIZATION AND ABSORPTION 

Volatilization and absorption involve phase change and are commonly
encountered processes in engineered and natural systems. Examples include
aeration, air stripping, reaeration, evaporation, soil venting, and emissions.
These processes are driven by concentration gradients and can be modeled
using the Two-Film Theory as discussed in Section 4.5.1. 

For example, the emission of volatile organic chemicals (VOCs) from an
aeration tank fitted with a surface aerator to the atmosphere by volatilization
can be described by the following:

�
d

d

C

t
w

� = KLa(Cw – Cw
*) = KLa�Cw – �

C

H
a
�� ≈ KLaCw (4.42)

where KLa is the overall mass transfer coefficient, (T–1), Cw
* is the concentra-

tion of the VOC in water that would be in equilibrium with the concentration

�21.2 �
d

g

ay
���1000

g

mg
���

���

��3 ×
3

1

0

0

f

6

t

ft3
��

��
d

d

m

t
��

�

��
D

V
��

��
d

d

m

t
��

�
A
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in the air (M/L–3), Ca is the concentration of the VOC in air (M/L–3), and H
is the Henry’s Constant (–) of the VOC. Because the VOC concentration in
the atmosphere can be assumed to be negligible, the equation reduces to a
first-order process with respect to Cw. The mass transfer coefficient is often
found from empirical correlations specific to the system.

4.6.4 BIOUPTAKE

Chemicals and biota in water interact through several different processes,
such as biosorption, biouptake, excretion, depuration, and biodegradation.
These processes result in bioconcentration, bioaccumulation, and through the
food chain, in biomagnification. Bioconcentration occurs through uptake
from the dissolved phase, mainly through a partitioning process. Bioaccumu-
lation results from uptake from water, ingestion of suspended solids that carry
adsorbed chemicals, and prey. Biomagnification is the increase in body bur-
den through each step of the trophic ladder. 

The rate of increase of chemical in biomass can be expressed as follows:

�
d

d

F

t
� = �k1Cw – k2F (4.43)

where η is the efficiency of absorption by the gills (–), k1 is the rate constant
(L3M–1T–1), k2 is the depuration rate constant (T–1), and F is the concentra-
tion of the chemical in the biomass (MM–1). At steady state, the above
reduces to

F = ��
�

k

k

2

1
��Cw = BCFCw (4.44)

where BCF is termed the bioconcentration factor (L3M–1). Notice that BCF is
very similar to the adsorption constant, Kf , for linear isotherms.

Worked Example 4.6

The bioconcentration of a new pesticide in a lake is to be evaluated. The
suspended solids concentration in the lake = 20 mg/L, and the water-solids
partition coefficient of the pesticide is estimated as 10,000 L/kg. Assuming
the BCF of the pesticide as 10,000 L/kg, estimate its total concentration in 
the water column that can be tolerated without violating the Food and Drug
Administration level of 0.3 ppm in the fish. 

Solution

Using Equation (4.44), the dissolved concentration, Cw, that can be tolerated
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= �
BC

F

F
� = = 0.06 �

µ
L
g
�

Using Equation (4.40), the dissolved fraction, fd , is given by:

fd = �
1 + K

1

f Pw

� = = 0.83

Hence, the CT allowable in the water column = Cw /fd = 0.06/0.83 = 0.07 µg/L.

4.7 ENVIRONMENTAL REACTIVE PROCESSES

Reactive processes result in changes in concentrations of chemicals within
a system by degrading or transforming them to different chemical(s). Reac-
tions can occur in a single step (elementary reactions) or in multiple steps,
consecutively, in parallel, or in cycles. Some of the most common environ-
mental reactive processes are biodegradation, hydrolysis, oxidation, reduc-
tion, incineration, precipitation, ion exchange, and photolysis. Reactive
processes can be categorized as homogeneous if they occur only in a single
phase or heterogeneous if they involve multiple phases. 

Regardless of whether a reaction is homogeneous or heterogeneous, it is
essential to quantify the rate at which chemicals are degraded or transformed
by that reaction in order to model the chemicals’ fate and transport. When the
rates of reactions are faster than transport processes (discussed in Section
4.4), it is reasonable to assume that the system is at chemical equilibrium,
allowing concentrations of participating chemical species to be established
through stoichiometry. Acid-base and complexation reactions are examples of
fast reactions, while redox reactions are typically slower. When the reaction
rates are comparable to transport rates, concentrations of participating chem-
ical species have to be determined through reaction kinetics. In the next sec-
tions, the fundamentals of stoichiometry and kinetics of some of the more
common environmental reactions are reviewed.

4.7.1 CHEMICAL EQUILIBRIUM

Chemical equilibrium is said to exist when the forward rate of a reversible
reaction is equal to the backward rate. The concept of chemical equilibrium
is best illustrated by considering a simple case of a reversible reaction where
species A and B are participating: A [ B. The rates of the forward and

1
����

1 + �10,000 �
k

L

g
���20 �

m

L

g
����10

1
6

k

m

g

g
��

0.3 �
10

g
6 g
�

��

5000 �
k

L

g
���10

k
9

g

µg
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backward reactions can expressed in terms of their respective reaction rate
constants and the molar concentrations of the species by:

rforward = k1[A] and rbackward = k2[B] (4.45)

Therefore, at equilibrium, equating the two rates, the concentrations of the
two species at equilibrium are related by:

�
[

[

A

B]

]
e

e

q

q

� = �
k

k
1

2

� = Keq (4.46)

where Keq is known as the equilibrium constant for the reaction. Equilibrium
constants play an important role in environmental modeling in that they are
key inputs in determining equilibrium distributions of participating reactants
and products in many environmental systems. It has to be noted that Keq is
strongly dependent on the system temperature, for example, in the case of
self-ionization of water, Keq = 0.45 × 10–14 at 15ºC and Keq = 1.47 × 10–14

at 30ºC. 
The directions of reversible reactions depend on the energy of the system

and can be established through a thermodynamic analysis. It can be shown
that Keq is related to the Gibbs’ standard free energy of the products minus the
Gibbs’ standard free energy of the reactants, ∆Go, by the following equation:

∆Go = –RT ln Keq (4.47)

where R is the Ideal Gas Constant and T is the absolute temperature. This
equation enables Keq values to be calculated from ∆Go. Tabulated values of
Keq can also be found in Chemical Property Handbooks. The application of
the above concepts is illustrated in Worked Example 4.7. 

Worked Example 4.7

(1) Calculate the equilibrium constant for the dissociation of carbonic acid.
(2) Derive the equations that can be used to plot the concentrations of the

various carbonate species in a closed aqueous system as a function of pH
for a given total carbon mass, CT.

Solution

(1) The equilibrium constant can be calculated from ∆Go using Equation
(4.47). By definition, ∆Go can be found from the following:

∆Go = �
i

(vi∆Gf
o)products – �

j

(vj∆Gf
o)reactants
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where vi and vj are the stoichiometric coefficients in the equation, and
∆Gf

o are the standard free energy of each reactant and product. The rele-
vant equation in this example is as follows:

H2CO*
3 I H+ + HCO–

3

Looking up the ∆Gf
o values and substituting,

∆Go = –586.8 + 0 – (–623.2) = 36.5 �
m

k

o

J

le
�

Hence,

K = exp��–∆
R

G

T

o

�� = exp� � = 4.04 × 10–7

(2) The relevant equations are first compiled along with their respective
equilibrium constants:

H2CO*
3 S HCO–

3 + H+ K1 = �
[
[
H
H

+

2

]
C
[C

O
O

3

–
3

]
]

� = 10–6.3

HCO–
3 S CO3

2–+ H+ K2 = �
[H

[

+

H

]

C

[C

O

O
–
3

3
2

]

–]
� = 10–10.2

H2O S OH– + H+ Kw = �
[H

[

+

H
][

2

O
O

H
]

–]
� = 10–14

The above expressions can be formulated as a set of simultaneous equations:

log K1 = log [H+] + log [HCO–
3] – log [H2CO3]

log K2 = log [H+] + log [CO3
2–] – log [HCO–

3]

log Kw = log [H+] + log [OH–]

In addition to the above equations, a total mass balance on carbon can 
be written:

CT = [H2CO3] + [HCO–
3] + [CO3

2–]

The above set of linear simultaneous equations has to be solved to develop the
required plot. See Modeling Example 9.6 in Chapter 9 for a computer imple-
mentation of the solution process. 

–36.5 �m
k
o
J
le
�

����
0.008314 �

mo
k
le
J
-K

� (25 + 273)K
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4.7.2 ELEMENTARY REACTIONS

The rate or kinetics of these reactions can be quantified using the Law of
Mass Action, which states that the rate is proportional to the concentration 
of the reactants. For example, consider the reaction: A + B → C. The rate of
consumption of species A by this reaction is given by the Law of Mass Action
as follows:

�
d

d

C

t

A
� = –kf(CA,CB) (4.48)

where k is a temperature-dependent reaction rate constant, and the function
f (CA,CB) has to be determined experimentally. A common general form of
this function is

�
d

d

C

t
A

� = –kC�
A,Cβ

B (4.49)

where the powers to which the concentrations are raised are referred to as the
reaction order. In the above example, the reaction is of order α with respect
to species A, and order β with respect to B, and the overall order of the reac-
tion is n = (α + β). Because most modeling efforts build upon submodels of
single chemicals, the following sections will deal with the equation:

�
d

d

C

t
� = –kC n (4.50)

where n = 0 for zero order, n = 1 for first order, or n = 2 for second order. The
mass removal rate by such a reaction can be found from V(dC/dt), where V is
the volume in which the reaction is occurring. The change in concentration as
a function of time and the time to reduce the initial concentration by 50%
(half-life) can be found by solving the above equation for the appropriate
value of n and initial concentration of C0. The results are summarized in Table
4.3. The order of the reaction and the rate constant have to be determined
experimentally. The procedures are well established and can be found in sev-
eral textbooks on reaction kinetics. 

4.7.3 ENZYME-MEDIATED REACTIONS

The Michaelis-Menten model of microbial growth is a classic example of
an enzyme-mediated two-step reaction where the substrate S is converted to
the product P in the presence of a catalytic enzyme, E:

E � S I [ES] r E � P
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This model results in a rather complicated rate expression and does not yield
a simple rate expression or reaction order:

�
d

d

P

t
� = µmax�

KM

[P

�

][S

[

]

S]
� (4.51)

where µmax is the maximum growth rate of the products. This expression is
neither first order nor second order. At low substrate concentrations, [S] << KM,
the expression can be approximated as follows:

�
d

d

P

t
� = µmax[P][S] (4.52)

to be second order overall; and, at high substrate concentrations, [S] << KM,
can be approximated to be first order in P as follows:

�
d

d

P

t
� = µmax[P] (4.53)

Thus, the results summarized in the previous section can be applied to com-
plex rate equations such as the Michaelis-Menton model.

4.7.4 PHOTOLYSIS

This is a solar energy driven decay process by which chemicals may be
transformed at a molecular level. This process can take place in two steps:
direct photolysis due to sunlight and sensitized indirect photolysis due to

Table 4.3 Reactions of Order Zero, First, and Second

Order of Reaction

Zero First Second

Value of n n = 0 n = 1 n = 2

Governing equation: �
d
d
C
t
� = –k �

d
d
C
t
� = –kC �

d
d
C
t
� = –kC2

Mass removal rate: Vk VkC VkC2

Concentration profile: C = C0 – kt C = C0e–k t C = �
1 +

C
k
0

C0t
�

Units of k: ML–3T–1 T–1 L3M–1T–1

Half-life C0/(2k) 1/(1.44k) 1/(kC0)
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excess energy. The direct photolysis process is well understood and can be
modeled by a first-order process:

�
d

d

P

t
� = –kpC (4.54)

where kp is the first-order photolysis rate constant (T–1). This rate constant
depends on the chemical as well as the light intensity and has to be deter-
mined experimentally or estimated from correlations. In the case of lakes, for
example, a depth-averaged kpa value can be found in terms of near-surface
photolysis rate and light intensity:

kp,a = kp,s��
I

I0
1
0

���
R
R
D
D

F
F

0
�� � (4.55)

where kp,s is the measured, near-surface direct photolysis rate (T–1), I0
1 is the

light intensity at which kp,s was measured, RDF is the radiance distribution
factor = 1.2–1.6, RDF0 is the radiance distribution factor at the surface = 1.2,
keλmax is the light attenuation coefficient, and D is the depth (L).

4.7.5 HYDROLYSIS

The reaction of certain chemicals with water results in the cleavage of
chemical bonds. The breakdown of a chemical by this process depends on
molar concentrations of [H+] and [OH–] and can be described by the following:

�
d

d

C

t
w

� = –ka[H�]Cw – knCw – kb[OH–]Cw (4.56)

where ka (M–1T–1), kn (T–1), and kb (M–1T–1) are the acid-, neutral-, and base-
catalyzed hydrolysis reaction rate constants, respectively. Often, the above is
approximated by a pseudo first-order reaction at a given pH according to:

�
d

d

C

t
w

� = –khCw (4.57)

using a first-order hydrolysis reaction rate constant, kh (T–1).

4.7.6 BIOTRANSFORMATION

Microbially mediated transformation processes are common in a wide
range of engineered and natural systems. These processes can include miner-
alization, in which organic compounds are converted to inorganic com-
pounds; detoxification, in which toxic chemicals are transformed to innocuous
byproducts; and cometabolism, in which compounds are used as secondary
substrates and not as nutrients. 

1 – exp(–Ke	maxD)
���

K	maxD
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When the microbial population has adapted to the contaminant, the rate
constant, kb, for the transformation process can be modeled by the Michaelis-
Menton equation:

kb = �
Y(K

µ

s

m

�

axX

Cw)
� (4.58)

where µmax is the maximum growth rate of the organisms (T–1), X is the 
biomass concentration (ML–3), Y is the yield coefficient (–), Ks is the half-
saturation constant (ML–3), and Cw is the dissolved concentration of the sub-
strate (ML–3).

Because the above equation is nonlinear, it does not lend itself easily for
continuous modeling. Often, in environmental systems, Cw << Ks; under such
conditions, Equation (4.58) can be simplified to the following linear form:

kb = �
µ

Y
m

K
ax

s

X
� = kb2X (4.59)

Thus, the rate equation for the disappearance of the chemical by biotransfor-
mation simplifies to that of a second-order process, with a rate constant, kb2

(L3M–1T–1). Further, if the biomass concentration, X, is assumed to be a con-
stant, the equation simplifies to that of a first-order process.

Worked Example 4.8

The second-order decay rate of di-n-butyl has been reported as 7 × 10–7

mL/cell-day. Estimate its half-life assuming a biomass of (1) 100 cells/mL
and (2) 5000 cells/mL.

Solution

Half-life for first-order process = 1/1.44k where, in this case, k = (kb2)X

(1) When X = 100 cells/L, half-life 

= = 9900 days

(2) When X = 5000 cells/L, half-life 

= = 200 days
1

����

1.44�7 × 10–7 �
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m
l-

L
day
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c
m
el
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��

1
����
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4.8 MATERIAL BALANCE

As indicated in Chapter 2, the material balance approach is the primary
principle upon which mathematical models of environmental systems are
built. It is based on the principle of conservation of mass—mass can neither
be created nor destroyed. Before applying the material balance principle, the
following preliminaries have to be addressed:

• Define and characterize the system and the boundary.
• Identify the inflows and outflows of the target chemical crossing the

boundary.
• Identify all sources and sinks of the target chemical inside the system.
• Identify all reactive and nonreactive processes acting upon the target

chemical. 

In the verbal form, the material balance (MB) equation can be stated 
as follows:

= – ±

The MB equation can be applied to distributed systems and lumped systems.

4.8.1 MATERIAL BALANCE FOR DISTRIBUTED SYSTEMS

In distributed systems, the material balance is applied in the differential
form to a small element of the system. This procedure has already been
detailed in Section 2.3 in Chapter 2. 

4.8.2 MATERIAL BALANCE FOR LUMPED SYSTEMS

Key characteristics of the lumped system are that the system is homoge-
neous or well mixed and the concentration of the target chemical in the out-
flow stream(s) is the same as that within the system. An example of a lumped
system is shown in Figure 4.4, where the system, boundary, two advective
inflows, and two advective outflows are indicated.

The terms in the MB equation can be expressed as follows in terms of the
system variables, assuming first-order reactions:

Net rate of change of material within system = �
d(

d
V

t
C)
� (4.60)

Rate of inflow of material into system = ∑(QC)in = Q1C1 � Q2C2 (4.61)

Rate of
reactions
within system

Rate of outflow
of material
from system

Rate of inflow
of material
into system

Net rate of change
of material within
system
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Rate of outflow of material out of system= �∑(Q)out�C = (Q3 � Q4)C (4.62)

Rate of reactions within system = CV∑k (4.63)

Thus, the MB equation for this example can be expressed as follows:

�
d(C

dt

V)
� = ∑(QC)in – ∑(QC)out ± CV∑(k) (4.64)

= Q1C1 � Q2C2 – (Q3 � Q4)C ± CV∑k (4.65)

The above general equation may be simplified by assuming the volume of the
system, V, to be a constant.

Worked Example 4.9

An experimental method known as the equilibrium partitioning in closed
systems (EPICS) method has been proposed by Lincoff and Gossett (1984) to
measure the air-water partition coefficient (Henry’s Constant) of volatile
organic chemicals. In this method, a certain mass of the test chemical is
injected into a sealed bottle containing known volumes of water, Vl,1, and air,
Vg,1. The bottle is allowed to reach equilibrium, and the gas phase concentra-
tion, Cg1, is measured analytically. The experiment is repeated by injecting
the same mass of the chemical into another bottle with different volumes of
water, Vl,2, and air, Vg,2. Again, the bottle is allowed to reach equilibrium, and
the gas phase concentration, Cg2, is measured. Derive an expression in terms
of the above to determine the Henry’s Constant, H, of the test chemical.

Figure 4.4 Notations for a lumped system.

Inflow 1
Q1
C1

Inflow 2
Q2
C2

Outflow 2

Outflow 1

Q3
C

Q4
C

System
V
C

Reaction
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Solution

Let M be the mass of chemical injected. This mass will distribute itself
between the two phases to reach equilibrium conditions. MB equations can
be written for the two bottles after they have reached equilibrium. Because
there is no inflow or outflow and assuming no reactions within the bottles, the
MB equations are as follows:

Bottle 1: M = Vl,1Cl,1 + Vg,1Cg,1

Bottle 2: M = Vl,2Cl,2 + Vg,2Cg,2

Because the bottles are at equilibrium, Henry’s Law can be used to relate the
phase concentrations in each bottle:

H � �
C

C
g

l,

,

1

1
�

and

H � �
C

C
g

l,

,

2

2
�

The liquid-phase concentrations Cl,1 and Cl,2 can now be eliminated between
the four equations to yield:

H �

Worked Example 4.10

A membrane separation system working on a batch mode consists of a
well-mixed vessel containing a solution of a chemical at a concentration of
Cr 0, initially filled to a volume of V0. The solution flows at a constant of Q
through the membrane. The concentration of the chemical in the permeate,
Cp, is always related to the concentration in the vessel by a constant ratio of
p = Cp/Cr . The volume remaining in the vessel at any time is Vf . Derive an
expression for Cp (see Figure 4.5).

Solution

Material balance for chemical: �
d(V

d
r

t

Cr)
� = 0 – QCp ± 0

From the information given: Cp = pCr

��
C

C
g

g

,

,

1

2

��Vl,1 – Vl,2

��

Vg,2 – ��
C

C
g

g

,

,

1

2

��Vg,1
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One of the unknown concentrations, Cr, can be eliminated between the two
equations to yield the following:

� –QCp

Note that Vr is a variable, and therefore, another relationship is needed to
solve the above differential equation. The left-hand side of the above equation
can be expanded using the chain rule:

= �
1

p
��Vr�

d

d

C

t
p

� � Cp�
d

d

V

t
r

��
Recognizing that the rate of decrease of volume inside the vessel, (–dVr /dt)
� Q, the flow rate out of the vessel, and the volume remaining at any time,
Vr = V0 – Qt, the MB equation reduces to:

�
d

d

C

t
p

� = �
Q

V

(

0

1

–

–

Q

p

t

)
� CP

By separating the variables, the solution to the above can be developed 
as follows:

�
d

C

C

P

p
� = �

Q

V

(

0

1

–

–

Q

p

t

)
� dt

Integrating between the following initial conditions:

t = 0, Cp0 = pCr 0

and 

d�Vr�
C

p
p
��

�
dt

d�Vr�
C

p
p
��

�
dt

Figure 4.5 A membrane separation system.
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t = t, Cp = Cp

�Cp

pCr 0
�
d

C

C

p

p
� = Q(1 – p)�t

0
�
V0 –

1

Qt
� dt

ln ��p
C

C
p

r 0

�� = (1 – p) ln ��V0

V

–

0

Qt
��

Hence, the final result is 

Cp = pCr 0��V0

V

–

0

Qt
��(1 – p)

EXERCISE PROBLEMS

4.1. A mixture of benzene and toluene exists as a gas-liquid system in equi-
librium in a closed system at 80ºC. The gas phase contains 65% mole
benzene and 35% mole toluene. Assume that the vapor pressure of ben-
zene = 756 and that of toluene = 287 mm Hg at 80ºC. 
a. Find the total pressure of the system. 
b. What is the composition of the liquid phase? 

4.2. In a gas-liquid binary system containing a solute A, the bulk mole frac-
tion of A in the gas phase, Y1, is 0.00035, and that in the liquid phase,
X1, is 0.03. Assume X1

* = 0.02, Yi = 0.0004, and kL = 0.01.
a. Determine the Henry’s Constant of the solute.
b. Construct the equilibrium diagram for the system.
c. Determine Y1

* and Xi.
d. Determine the overall mass transfer coefficients, KL and KG.
e. In what direction will the solute tend to flow?
f. List four different equations to calculate the mass transfer flux and

verify that all four equations yield the same result. 
4.3. At an industrial facility, an open holding tank is used to equalize and

store wastewaters for weekly discharge. Water samples taken from this
tank indicate 2 mg dissolved oxygen in a 100-g water sample. 
a. Determine the direction of oxygen flux under this condition.
b. When equilibrium is reached, what would be the dissolved oxygen

concentration in the water (in mg/L)?
c. To contain air emissions, this tank is now being covered, and the head-

space is pressurized to 1.1 atm. Also, the headspace is enriched with oxy-
gen. What should be the oxygen content (in %) in the headspace to
ensure 20 mg/L of dissolved oxygen when the tank is discharged?
Assume Henry’s Constant of oxygen = 2.28 × 107 mm Hg/mole fraction.

4.4. A continuous flow of an aqueous waste stream containing toluene is 
pretreated by holding it in a closed tank and scavenging the headspace
with a continuous flow of air. 
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a. Develop MB equations for the liquid and gas phases, and show that
the concentration of toluene in the aqueous effluent, Cw,out, is given
by the following expression:

Cw,out = Cw,i n �1 � �
–1

where Cw,out is the concentration of toluene in the influent, Qw is the
flow rate of the waste stream, Qa is the flow rate of the air stream, Vw

is the volume of the waste in the holding tank, k is the mass transfer
coefficient, Ka–w is the nondimensional concentration ratio form of
the air-water partition coefficient of the VOC, R is the universal gas
constant, and T is the temperature in the tank. 

b. Hence, show that the concentration of the VOC in the off-gases from
the tank, Ca,out, is given by:

Ca,out = Cw,out ��
k

Q

V
a

w

� � �
Ka

1

–w

��
–1

4.5. Ammonia-nitrogen can exist in natural waters either in the ammonium
ion form, NH4

+, or in the un-ionized form, NH3. The un-ionized form is
of concern because of its toxicity to fish at concentrations around 0.01
mg N/L. 
a. Derive a model to describe the amount of un-ionized ammonia as a

% of total N, as a function of pH and temperature. 
b. Hence, develop a nomograph to visualize the relationship between

the above three variables. 
4.6. Consider Worked Example 4.10. 

a. How can the analysis be adapted if the chemical is being produced
inside the vessel by a first-order reaction? 

b. How can it be adapted if there is a constant inflow of the chemical,
and the volume inside the vessel remains constant?

1
��
�
V

Q

w

w

k
� � �

Ka

Q

–w

w

Qa

�
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CHAPTER 5

Fundamentals of Engineered
Environmental Systems

CHAPTER PREVIEW

Applications of the fundamentals of transport processes and reactions
in developing material balance equations for engineered environmen-
tal systems are reviewed in this chapter. Alternate reactor configura-
tions involving homogeneous and heterogeneous systems with solid,
liquid, and gas phases are identified. Models to describe the perform-
ances of selected reactor configurations under nonflow, flow, steady,
and unsteady conditions are developed. The objective here is to pro-
vide the background for the modeling examples to be presented in
Chapter 8.

5.1 INTRODUCTION

CHAPTER 4 contained a review of environmental processes and reactions.
In this chapter, their application to engineered systems is reviewed. An

engineered environmental system is defined here as a unit process, operation,
or system that is designed, optimized, controlled, and operated to achieve
transformation of materials to prevent, minimize, or remedy their undesired
impacts on the environment. 

The application and analysis of environmental processes and reactions in
engineered systems follow the well-established practice of reaction engineer-
ing in the field of chemical engineering. While both chemical and environ-
mental systems deal with processes and reactions involving liquids, solids,
and gases, some important differences between the two systems have to be
noted. Environmental systems are often more complex than chemical sys-
tems, and therefore, several simplifying assumptions have to be made in 
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analyzing and modeling them. The exact composition and nature of the
inflows are well defined in chemical systems, whereas in environmental sys-
tems, lumped surrogate measures are used (e.g., BOD, COD, coliform). The
flow rates are often constant, steady, or predictable in chemical systems,
whereas, in environmental systems, they are not, as a rule.

Engineered environmental systems are built up of reactors. A reactor is
defined here as any device in which materials can undergo chemical, biochem-
ical, biological, or physical processes resulting in chemical transformations,
phase changes, or separations. The starting point in developing mathematical
models of such reactors and systems is the material balance (MB). Principles
of micro- and macro-transport theory and process/reaction kinetics (reviewed
in Chapter 4) can be applied to derive expressions for inflows, outflows, and
transformations to complete the MB equation. The mathematical form of the
final MB equation can be algebraic or differential, depending on the nature of
flows, reactions, and the type of reactor.

A complete analysis of reactors is beyond the scope of this book, and read-
ers should refer to other specific texts on reactor engineering for further
details. Excellent examples of such texts include those by Webber (1972),
Treybal (1980), Levenspiel (1972), and Weber and DiGiano (1996).

5.2 CLASSIFICATIONS OF REACTORS

Reactors can be classified into several different types for the purposes of
analysis and modeling. At the outset, they can be classified based on the type
of flow and extent of mixing through the reactor. These factors determine the
amount of time spent by the material inside the reactor, which, in turn, deter-
mines the extent of reaction undergone by the material. At one extreme con-
dition, complete mixing of all elements within the reactor occurs; and at the
other extreme, no mixing whatsoever occurs. The former type of reactors is
referred to as completely mixed reactors and the latter, as plug flow reactors.
Complete mixing here implies that concentration gradients do not exist
within the reactor, and the reaction rate is the same everywhere inside the
reactor. A corollary of this condition is that the concentration in the effluent
of a completely mixed reactor is equal to that inside the reactor. In contrast,
plug flow reactors are characterized by concentration gradients, therefore,
they have spatially varying reaction rates within the reactor. Thus, completely
mixed reactors fall under lumped systems, and plug flow reactors fall under
distributed systems. 

Reactors with either complete mixing on one extreme or no mixing on the
other extreme are known as ideal reactors. Reactors in which some interme-
diate degree of mixing between the two extremes occurs are called nonideal
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reactors. While most reactors are analyzed and designed to be ideal, in prac-
tice, all reactors exhibit some degree of nonideality due to channeling, short-
circuiting, stagnant regions, inlet/outlet effects, wall effects, etc. The degree
of nonideality can be quantified through residence time distribution (RTD)
studies. Even the best-designed reactors often exhibit some degree of non-
ideality that requires complex models; hence, they are often approximated by
modified ideal reactors. For example, large, nonideal continuous mixed-flow
reactors (CMFRs) can be approximated by smaller, ideal CMFRs operating in
series; large nonideal plug flow reactors (PFRs) may be approximated by
ideal PFRs with dispersive transport added on. Thus, it is beneficial to fully
appreciate ideal reactors and develop models for them so that large, full-scale
reactors could be realistically designed, operated, and evaluated. 

Ideal reactors can be further divided into homogeneous vs. heterogeneous,
depending on the number of phases involved; flow vs. nonflow, depending  on
whether or not the flow of material occurs during the reaction; or steady vs.
unsteady, depending on the time-dependency of the parameters. Illustrative
applications of the fundamentals of environmental processes in homogeneous
and heterogeneous reactors under flow, nonflow, steady, and unsteady condi-
tions are presented in the following sections.

5.2.1 HOMOGENEOUS REACTORS

Homogeneous reactors entail reactions within one phase. Classification of
some of the common homogeneous reactors is shown in Table 5.1.

The MB equation forms the basis for analyzing and modeling reactors. In
the case of homogeneous reactors, bulk fluid flow characteristics and reaction
kinetics at the macroscopic or reactor scale are primary factors to consider. 

Completely
Mixed
Batch

Reactors
(CMBR)

Sequencing
Batch

Reactors
(SBR)

Completely
Mixed Fed

Batch
Reactors
(CMFBR)

Completely
Mixed Flow
Reactors
(CMFR)

Plug Flow
Reactors

(PFR)

With
recycle

Without
recycle

Non-flow Reactors

Homogeneous   Reactors

Flo ReactorsNonflow Reactors Flow Reactors

Table 5.1 Classification of Homogeneous Reactors
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5.2.2 HETEROGENEOUS REACTORS

Heterogeneous reactors entail reactions within two or more different
phases such as gas-liquid, gas-solid, and liquid-solid systems. Classification
of heterogeneous reactors commonly used in environmental studies is shown
in Table 5.2.

While transport at the macro and reactor scales and reaction rates are 
the significant factors in homogeneous systems, micro- and macro-transport
scales and inter- and intraphase mass transfer processes are significant in 
heterogeneous systems. As such, hydraulic retention times and reaction rate
constants characterize homogeneous systems, and reaction rates and mass
transfer coefficients characterize heterogeneous systems. The amounts of
interfacial surface areas and path lengths for intraphase transport as well as
bulk fluid dynamics contribute to the effectiveness of various heterogeneous
reactor configurations. 

5.3 MODELING OF HOMOGENEOUS REACTORS

In the following sections, development of the MB equation for various
configurations of homogeneous reactors is summarized. The goal of this sec-
tion is not to provide a formal treatment of reactor engineering, but instead to
illustrate the different forms of MB equations, mathematical formulations,
and the solution procedures that are involved in the modeling of common
engineered environmental reactors.

\

Table 5.2 Classification of Heterogeneous Reactors
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5.3.1 COMPLETELY MIXED BATCH REACTORS 

In completely mixed batch reactors (CMBRs), the reactor is first charged
with the reactants, and the products are discharged after completion of the
reactions. During the reaction, inflow and outflow are zero, and the volume,
V (L3), remains constant, but the concentration of the material undergoing the
reaction changes with time, starting at an initial value of C0. The MB equa-
tion for a CMBR during the reaction is as follows:

�
d(V

dt

C)
� = –rV = –kCV (5.1)

where r is the rate of removal of the material by reactions (ML–3T–1), and k
is the first-order reaction rate constant (T–1). The solution to the MB equation
is as follows:

C = C0e–k t (5.2)

or

t = – �
1

k
� ln ��

C

C

0

�� (5.3)

where C is the concentration of the material at any time, t, during the reaction.

5.3.2 SEQUENCING BATCH REACTOR 

In sequencing batch reactors (SBRs), a sequence of processes can take
place in the same reactor in a cyclic manner, typically starting with a fill
phase. Reaction can occur during the fill phase of the cycle as the volume
increases and can continue at constant volume after completion of the fill
phase. On completion of the reaction, another process can take place, or the
contents can be decanted to complete the cycle. The volume, Vt , at any time,
t, during the fill phase = V0 + Qt, where V0 is the volume remaining in the
reactor at the beginning of the fill phase (i.e., t = 0), and Q is the volumetric
fill rate (L3T–1). The MB equation during the fill phase, with reaction, for
example, is as follows:

�
d(V

dt
tC)
� = rVt � QCin = –kCVt � QCin (5.4)

which can be expanded to:

�
d

d

t
�[(V0 � Qt)C] = –kC(V0 � Qt) � QCin (5.5)

The solution to the above MB equation is:
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Figure 5.1 Concentration profile in an SBR during the fill phase.

C = �
(t �

Cin

t0)k
� – ��

C

t0

i

k
n

� – C0� �
(t �

t0
t0)

� e–k t (5.6)

where t0 = V0 /Q and C0 is the concentration remaining in the reactor at t = 0.
While the final result is difficult to interpret in the above form, a plot of C vs.
t can provide more insight into the dynamics of the process. An Excel® model
of the process is presented in Figure 5.1. A complete model for a biological
SBR with Michaelis-Menten type reaction kinetics is detailed in Chapter 8,
where the profiles of COD, dissolved oxygen, and biomass are developed
employing three coupled differential equations. 

5.3.3 COMPLETELY MIXED FLOW REACTORS

Completely mixed flow reactors (CMFRs) are completely mixed with 
continuous inflow and outflow. CMFRs are, by far, the most common environ-
mental reactors and are often operated under steady state conditions,
i.e., d( )/dt = 0. Under such conditions, the inflow should equal the outflow, while
the active reactor volume, V, remains constant. A key characteristic of CMFRs is
that the effluent concentration is the same as that inside the reactor. CMFRs can
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be characterized by their detention time, τ, or the hydraulic residence time (HRT),
which is given by τ = HRT = V/Q. The material balance equation is as follows:

�
d(V

dt

C)
� = rV + QCin – QC (5.7)

which at steady state reduces to:

0 = –kCV � QCin – QC (5.8)

whose solution is:

C = �
Q

Q

�

Ci

k
n

V
� = � �

1

C

+
in

kτ
� (5.9)

In some instances, multiple CMFRs are used in series, as shown in Figure 5.2,
to represent a single nonideal reactor, or to improve overall performance, or
to minimize total reactor volume.

For n such identical CMFRs shown in Figure 5.2, the overall concentration
ratio is related to the individual ratio of each reactor by the following 
series:

�
C

C
ou

in

t,n
� = ��

C

C

i

1

n

�� × ��
C

C
2

1

�� × . . . ��CC
o

n

u

–

t

1

,n
�� (5.10)

where Cp is the effluent concentration of the pth reactor (p = 1 to n).
Substituting from the result found above for a single CMFR into the above
series gives the following:

�
C

C
ou

in

t,n
� = ��1 +

1

kτ
��

n

or, overall, τ = n� � (5.11)
��C

C

ou

in

t,n

��
1/n

– 1

��
k

Cin
��

1 + k��
Q

V
��

Figure 5.2 CMFRs in series.

 Q, Cin Q, C1 Q, C2

Q, Cout,n

Reactor 1 Reactor 2 Reactor n

Q, Cin Q, C1 Q, C2

Q, Cout,n
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Worked Example 5.1

A wastewater treatment system for a rural community consists of two
completely mixed lagoons in series, the first one of HRT = 10 days, and the
second one of HRT = 5 days. It is desired to check whether this system can
meet a newly introduced regulation of 99.9% reduction of fecal coliform by
a first-order die off. The rate constant, k, for the die-off reaction has been
found to be a function of HRT described by k = 0.2τ – 0.3 (adapted from
Weber and DiGiano, 1996).

Solution

Because Equation (5.11) assumes identical rate constants in all the reac-
tors, it cannot be applied here. However, Equations (5.9) and (5.10) can be
applied to yield the following:

�
C

C
2,

i

o

n

ut
� = ��

C

C

i

1

n

����CC
2,o

1

ut
�� = ��1 �

1

k1τ1

����1 �

1

k2τ2

��
Substituting the given data of: τ1 = 10 days, τ2 = 5 days, k1 = 0.2 * 10 – 0.3 = 1.7,
and k2 = 0.2 * 5 – 0.3 = 0.7,

�
C

C
2,

i

o

n

ut
� = ��1 + (1

1

.7)(10)
����1 + (0

1

.7)(5)
�� = 0.0123

and, hence, the percent reduction that can be achieved is 98.77%, which is
less than the target of 99.9%.

One option for meeting the new standard is to construct a third lagoon in
series. Its detention time can be determined as follows to achieve a reduction
of 99.9%, or an overall concentration ratio of 0.001:

�
C

C
3,

i

o

n

ut
� = 0.001 = ���

C

C

i

1

n

����
C

C
2

1

�����CC
3,o

2

ut
��

which gives

��CC
3,

i

o

n

ut
�� = = �

0

0

.

.

0

0

1

0

2

1

3
� = 0.081

Now, substituting this concentration ratio in Equation (5.9), and rearrang-
ing for kτ,

kτ � ��C
C
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and replacing k in terms of the given function, results in a quadratic equation:

[0.2τ – 0.3]τ = 11.35

or, 0.2τ2 – 0.3τ = 11.35

giving a detention time of τ = 8.3 days in the third lagoon to meet the 
new regulation. 

5.3.4 PLUG FLOW REACTORS 

In plug flow reactors (PFRs), elements of the material flow in a uniform
manner, so that each plug of fluid moves through the reactor without inter-
mixing with any other plug. As such, PFRs are also referred to as tubular
reactors. The concentration within the reactor is, therefore, a function of the
distance along the reactor. Hence, an integral form of the MB has to be used
as shown in Figure 5.3 (see also Section 2.3 in Chapter 2). 

For the element of length, dx, and area of cross-section, A, and velocity of
flow, u = Q/A, the MB equation is:

�
d[(A

d

d

t

x)C]
� = r(Adx) � QC – Q�C � �

d

d

C

x
� dx� (5.12)

which at steady state yields:

0 = –(kC)(Adx) – Q�
d

d

C

x
�dx (5.13)

or,

�
d

d

C

x
� = – k� �C = –��

u

k
��C (5.14)

The solution to the above MB equation is as follows:

[ln C]C0

CL = –��
u

k
���

x�L

x�0
dx = –��

u

k
��L (5.15)

1
�
�
Q

A
�

Figure 5.3 Analysis of PFR.
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or,

CL = C0e–(k /u)L = C0e–kτ (5.16)

where τ = L/u is the hydraulic detention time, HRT.

5.3.5 REACTORS WITH RECYCLE

Reactors with some form of recycling often are advantageous over other
reactor configurations, providing dilution of the feed and performance im-
provement. Recycling in CMFRs or PFRs is used more commonly in contin-
uous flow heterogeneous reactors. Liquid recycling in CMFRs and PFRs,
shown in Figure 5.4, can be modeled as follows by applying MB across the
boundaries indicated:

5.3.5.1 CMFR with Recycle

The MB equation for CMFR with recycle is as follows:

�
d(V

dt

C)
� = QCin + QRC – (Q � QR)C – rV � QCin – (Q � kV)C (5.17)

and, the solution to the MB equation at steady state is:

C = �
Q

Q

�

Ci

k
n

V
� = = �

1

C

+
in

kτ
� (5.18)

which is the same result as that found for CMFR without any recycle,
Equation (5.9).

5.3.5.2 PFR with Recycle

An integral MB equation has to be developed for PFR with recycle:

Cin
��

1 + k��
Q

V
��

Figure 5.4 CMFR and PFR with recycle.
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�
d[(A

d

d

t

x)C]
� = rAdx � (Q � RQ)C – (Q � RQ)�C � �

d

d

C

x
� dx� (5.19)

which at steady state reduces to:

0 = –kAC – (Q � RQ)�
d

d

C

x
� (5.20)

whose solution can be found as follows:

�Cout

Cin
�
d

C

C
� = �

Q(1

–A

�

k

R)
��L

0
dx (5.21)

ln ��
C

C
o

i

u

n

t
�� = �

Q(1

–A

�

k

R)
� L (5.22)

or,

Cout = Cine–[Ak /Q(1�R)]L = Cine–[k/u(1�R)]L (5.23)

A value for concentration Cin at x = 0 can be found by applying an MB at the
mixing point at the inlet:

Cin = �
QC

Q
0

(

�

1 �

RQ

R

C

)
out

� (5.24)

Hence, the final solution is as follows:

Cout = � �C0 (5.25)

It can be noted that when R = 0, the above equation becomes identical to the
one for the PFR without recycle, Equation (5.16). 

Worked Example 5.2

A first-order removal process is to be evaluated in the following reactor
configurations: a CMFR, two CMFRs in series, three CMFRs in series, and a
PFR. Compare the reactors on the basis of hydraulic retention time for
removal efficiencies of 75, 80, 85, 90, and 95%.

Solution

The HRT for a first-order process in a CMFR to achieve a removal effi-
ciency of η can be found by rearranging Equation (5.9) to get:

e–[k/u(1�R)]L

���
1 + R – Re–[k/u(1�R)]L
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HRT = ��
1

k
���

(1

�

– �)
�

The overall HRT for n CMFRs in series can be found by rearranging Equation
(5.11) to get:

HRT = n��
1

k
�����(1 –

1

�)
��

1/n

– 1�
The HRT for a PFR can be found by rearranging Equation (5.16) to get:

HRT = ��
1

k
�� ln ��(1 –

1

�)
��

Using the above equations, the following results can be obtained:

Overall HRT for

Overall One Two Three One
Efficiency CMFR CMFRs CMFRs PFR

75% 30.0 20.0 17.6 13.9
80% 40.0 24.7 21.3 16.1
85% 56.7 31.6 26.5 19.0
90% 90.0 43.2 34.6 23.0
95% 190.0 69.4 51.4 30.0

5.4 MODELING OF HETEROGENEOUS REACTORS

The analysis and modeling of heterogeneous systems is often more com-
plex than homogeneous systems. Furthermore, reactions in natural environ-
mental systems are also typically heterogeneous. Hence, they are presented in
this chapter, in somewhat more detail. However, because it is impossible to
detail all the different reactor configurations, only a representative number of
examples are presented. 

5.4.1 FLUID-SOLID SYSTEMS

In liquid-solid reactors (and in gas-solid reactors), contact of liquids (or
gases) with the reactive sites of the solid phase has to be facilitated by the
transport processes. The reaction sites on the solid phase may be external at
the surface and/or internal at the pores in the case of microporous or aggre-
gated solids. The transport process and the reaction process occur in series,
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and therefore, the overall rate of gain or loss of material in the fluid phase will
be controlled by transport alone or reaction alone or by both. The mass trans-
fer process may be limited by external resistance due to boundary layers at
the fluid-solid interface or by internal pore resistances in the case of micro-
porous solids. 

Examples of environmental liquid-solid reactors include adsorption,
biofilms, catalytic transformations, and immobilized enzymatic reactions.
Some of these reactors involve physical processes (e.g., carbon adsorption),
while others involve chemical [e.g., UV-light-catalyzed reduction of Cr(VI)
to Cr(III) by titanium dioxide] or biological reactions (e.g., removal of organ-
ics by biofilms). In this section, the development of two models of liquid-
solid reactors is presented—one with biological reaction and one with a
chemical reaction under nonideal conditions.

5.4.1.1 Slurry Reactor

Reactors used in activated sludge treatment, powdered activated carbon
treatment (PACT), metal precipitation, and water softening can be catego-
rized as slurry reactors. Here, biological flocs or precipitated solids represent
the solid phase and act as catalysts to promote the reaction. These reactors are
often modeled as CMFRs and are operated under steady state conditions. In
this example, the activated sludge process is modeled, where the rate at which
the dissolved substrate is consumed in the reactor is described using the
Monod’s expression. A typical CMFR-based activated sludge system is
shown in Figure 5.5. 

Figure 5.5 Schematic of CMFR-based activated sludge process. 
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The MB equation for the above system under steady state conditions is 
as follows:

0 = QCin – QwCw – (Q – Qw)Cout – raV (5.26)

where r is the substrate uptake rate per unit reactive area (ML–2T–1), a is the
reactive area per unit volume of the reactor (L2L–3), and V is the volume of
the reactor (L3). The Monod’s expression for reaction rate is:

r = rmax��Ks

C

� C
�� (5.27)

where rmax is the maximum surface substrate utilization rate (ML–2T–1) and
Ks is the half-saturation constant (ML–3). The reactive surface area can be
expressed as follows:

a = ap�
C

�p

p
� (5.28)

where ap is the reactive surface area per unit volume of the flocs (L2L–3), Cp

is the concentration of flocs in the reactor (ML–3), and ρp is the density of the
flocs (ML–3). 

The following assumptions are made to simplify the analysis: the dis-
solved substrate does not undergo any reaction in the settling tank; concen-
tration of the dissolved substrate, Cw, and the water flow rate, Qw, in the
solids wasting line are negligible when compared to the corresponding values
in the influent and effluent; thus, C = Cout and Q – Qw ~ Q. Hence, combin-
ing the above Equations (5.26), (5.27), and (5.28) gives the following:

0 = QCin – QC – rmax��Ks

C

� C
���ap�

C

�p

p
��V (5.29)

Even though the above expression is algebraic, it is somewhat difficult to
solve for C in the above form. If the reactor concentration, C, is small com-
pared to Ks (i.e., Ks >> C), the reaction can be approximated by a first-order
reaction with a rate constant = (rmax /ks ), and Equation (5.29) can be readily
solved to give the solution as follows:

C = Cin�1 + ��
r

K
ma

s

x
��apCp��

Q

V
���

–1

= Cin�1 + ��
r

K
ma

s

x
��apCpτ�

–1

(5.30)

5.4.1.2 Packed Bed Reactor

Packed bed reactors for contacting liquids (and gases) with solids are 
typically based on the PFR configuration. In essence, the fluid carrying the
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reactant(s) flows through a tubular reactor packed with the solid phase. The
solid phase is retained within the reactor. The reaction occurs at the external
or internal sites on the solid phase. Packed bed reactors can be engineered
with immobile beds, expanded beds, or fluidized beds. In expanded bed reac-
tors, the fluid velocity, U, is slightly greater than the settling velocity, Us, of
the solid particles, i.e., U > Us; in fluidized bed reactors, the fluid velocity is
significantly greater than the settling velocity, i.e., U >> Us. 

The process model is essentially the same whether the bed is stationary,
expanded, or fluidized. Reactor-scale macro-transport and element-scale
micro-transport features of the three packed bed configurations are illustrated
in Figure 5.6. In this example, the following assumptions are made: the reac-
tion is first-order, and the fluid flow is nonideal, with advection and dispersion. 

The steady state MB equation for the reactant in fluid phase can be devel-
oped as follows:

0 = QC – Q�C � �
d

d

C

z
�dz� � EA�

d

d

C

z
� – �EA�

d

d

C

z
� � �

d

d

z
��EA�

d

d

C

z
��dz� – Na(Adz)

0 = Q�
d

d

C

z
�dz – �

d

d

z
��EA�

d

d

C

z
��dz – Na(Adz)

0 = –u�
d

d

C

z
� – E�

d

d

2

z

C
2� – Na (5.31)

where E is the dispersion coefficient (L2T–1), a is the specific reactive area per
unit volume of the reactor (L2L–3), N is the interphase transport flux normal to

Figure 5.6 Macro-scale and micro-scale representations of packed bed reactors (1—fluid phase;
2—laminar sublayer; 3—porous solid phase).

 Expanded bed  Fluidized bed Fixed bed

dz
z

Q, Cin

a) Macro-scale processes  b) Micro-scale processes

Interphase
transport

Intraphase
transport

1
2

3

Q, CinQ, Cin

Q, Cout Q, Cout Q, Cout

 Advection Dispersion

Q.C

QC+d[QC)]/dz

EA dC
dz

[EA    
dC
dz

d
dz

EA dC
dz

+ ]

Chapter 05  11/9/01  11:24 AM  Page 119

© 2002 by CRC Press LLC



the particle surface (ML–2T–1), and u = Q/A is the axial fluid velocity (LT–1).
The interphase flux can be expressed as follows:

N = kf∆C = kf (C – C0) (5.32)

where kf is the mass transfer coefficient (LT–1) of the laminar sublayer and
∆C is the concentration difference (ML–3) across the laminar sublayer around
the particle = (C – C0), C0 being the fluid phase concentration of the reactant
immediately adjacent to the solid phase (ML–3). The sublayer concentration
difference can be expressed as follows:

∆C = (C – C0) = �C – ��kf

k

�

f C

k
��� (5.33)

where k is the reaction rate constant, assuming it to be a first-order reaction.
The above equations can now be combined, resulting in a second-order
ODE. It has been solved between z = 0, C = Cin and z = L, C = Cout, where
L is the length of the reactor. The final solution is as follows (Weber and
DiGiano, 1996):

�
C
C

o

i

u

n

t� = (5.34)

where

� = 	1 + 4k
f a��
u

E

L
�
�


5.4.2 FLUID-FLUID SYSTEMS

Environmental reactor configurations for processing gas-liquid systems
include bubble columns (e.g., ozonation), packed towers (e.g., air-stripping),
sparged tanks (e.g., activated sludge), and mechanical surface-aerated tanks
(e.g., stabilization ponds). Some of these reactors involve only physical
processes (e.g., volatilization in air-stripping towers), while some include
chemical or biochemical reactions (e.g., ozonation, activated sludge). In this
section, two examples illustrating the model development process for gas-
liquid systems are detailed—one featuring a physical process and another
featuring a biochemical process.

5.4.2.1 Packed Columns

Packed columns in which gas and liquid phases are contacted accompa-
nied by transfers and/or reactions are common in many environmental and
chemical engineering applications. In the environmental area, packed-column

4� exp��
2
u

E
L
��

�����
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applications include stripping of volatile contaminants from water, oxygenation
of wastewaters, adsorption of contaminants by activated carbon, stripping of
nitrogen from wastewaters, and removal of organics in trickling filters. As an
example, a model for a packed column used in air-stripping is presented next. 

Packed columns for stripping volatile organic contaminants (VOCs), from
groundwater, for instance, consist of countercurrent flow columns filled with
inert packing media. Contaminated water is pumped to the top of the tower
from where it flows under gravity through the packing media. Clean air is
blown from the bottom of the column and flows upward. The contaminants
are merely transferred from the aqueous phase to the gas phase without
undergoing any chemical reaction. The countercurrent flow provides a large
driving force for the transfer of the contaminant by volatilization, and the
packed media provides a large interfacial area to enhance the transfer rate.
Reactor-scale macro-transport and element-scale micro-transport representa-
tions of packed columns used in air-stripping are shown in Figure 5.7. 

The packed column is often approximated as an ideal PFR, with the water
and air streams flowing advectively with negligible mixing or dispersion.
Hence, elemental MBs have to be written for the two phases. In this example,
mole fractions are used rather than concentrations; the intention is not to
cause any confusion, but to demonstrate that the fundamental concepts can be
applied in any form. The steady state MB on the contaminant in the aqueous
phase is as follows:

0 = Advective inflow – Advective outflow – Mass transferred to gas phase

Figure 5.7 Macro- and micro-transport processes in air-stripping.
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0 = QX – Q(X – dX) – KL(aAdz)(X – X*) (5.35)

where Q is the molar flow rate (MT–1); X is the mole fraction of the contam-
inant in the aqueous phase, and X* is its mole fraction in the aqueous phase
that would be in equilibrium with the mole fraction in the gas phase (–); KL

is the overall mass transfer coefficient with reference to the liquid-side film
(ML–2T–1); a is the interfacial area per unit volume of the reactor (L2L–3);
and A is the area of cross-section of the column (L2). Equation (5.35) can be
simplified to determine the required height, Z, to achieve a certain removal of
the contaminant:

z = �z

0
dz = ��KL

Q

aA
���

Xout

Xin
�
(X

d

–

X

X*)
� (5.36)

The first term Q/(KLaA) in the right-hand side of the above equation has units
of length (L) and is called the height of a transfer unit (HTU); the last inte-
gral term is a nondimensional quantity and is called the number of transfer
units (NTUs). Hence, the column height can be expressed as 

z = HTU × NTU

To complete the integral, an expression for X* as a function of X has to be
established. Following the definition introduced in Chapter 4, X* and Y are
related through the air-water partition coefficient Ka–w (–) in the mole frac-
tion ratio form.

X* = �
Ka

Y

–w

� (5.37)

An equation relating X and Y can be developed by applying a macro-scale or
overall MB across the reactor:

0 = Q Xin + GYin – Q Xout – GYout (5.38)

Assuming that the airflow at the inlet is free of the contaminant (i.e., Yin = 0),
Equation (5.38) can be rearranged to get

Yout = �
Q

G
�(Xin – Xout) (5.39)

A similar MB between any point inside the reactor and the bottom of the reac-
tor yields a similar result:

Y = �
Q

G
�(X – Xout) (5.40)
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Substituting for Y in Equation (5.37) from Equation (5.40), and substituting
the result into Equation (5.36), makes it finally amenable for integration:

z = �z

0
dz = ��KL

Q

aA
���

Xin

Xout

(5.41)

Hence,

z = {HTU}{NTU} = ��KL

Q

aA
�����R

R

– 1
�� ln ��Xin(R

R

–

X

1

o

)

u

�

t

Xout
��� (5.42a)

or, in terms of removal efficiency, η,

z = ��KL

Q

aA
�����R

R

– 1
�� ln ��R

R

(1

–

–

�

�)
��� (5.42b)

where the nondimensional quantity, R = (G/Q) Ka–w, is known as the strip-
ping factor (–). This final result is too complex to impart any intuitive feel for
the process or its sensitivity to the different process variables. The relation-
ship between tower height, removal efficiency, and HTU is illustrated in
Figure 5.8 for R = 15. Similar graphical plots can be generated (with many of
the software packages covered in this book) to gain insight into the process
for optimal design and operation. 

5.4.2.2 Sparged Tanks

Sparged tanks, in which gas and liquid phases are contacted accompanied
by phase transfers and/or reactions are common in many environmental and

dX
���

�X – ��GK

Q

a–w

��(X – Xout)�

Figure 5.8 Relationship between tower height, HTU, and removal efficiency.
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chemical engineering applications. In the environmental area, sparged tank
applications include oxygenation of wastewaters with air or high-purity oxy-
gen, stripping of volatile contaminants from water, and removal of organics
by ozonation. As an example, a model of a sparged tank for stripping VOCs
is presented next.  

In sparged tanks for aerating wastewaters, for example, oxygen is trans-
ferred from the gas phase into the liquid phase. At the same time, the gas
phase can also strip dissolved gases or VOCs from the liquid phase. Such
tanks are typically designed as continuous flow CMFRs and are operated
under steady state conditions. The gas phase is introduced at the bottom of 
the tank, rising upward in a plug flow manner. In this section, modeling the
stripping of VOCs in sparged tanks is outlined. A similar approach can be
used to model oxygenation in aeration tanks (either with air or high-purity
oxygen as the gas phase) and ozonation with gaseous ozone. Reactor-scale,
macro-transport, and element-scale, micro-transport representations of
sparged tanks used for stripping VOCs are as shown in Figure 5.9. 

Consider a single rising bubble during its travel time tb , and assume that
its volume remains constant during its rise. The MB equation on VOCs inside
the bubble is as follows:

�
d(V

d
b

tb

Cg)
� = Vb�

d

d

C

tb

g
� = KGaV(C*

g – Cg)

�
d

d

C

tb

g
� = �

K

V
Ga

b

V
� (C*

g – Cg) (5.43)

where Vb is the volume of the bubble at any instant (L3); KG is the overall
mass transfer coefficient relative to the gas phase (LT–1); a is the interfacial
area per unit volume of reactor (L2L–3); Cg is the gas phase concentration of

Figure 5.9 Macro- and micro-transport processes in air-stripping in sparged tanks.
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the VOC inside the bubble (ML–3); and C*
g is the gas phase concentration 

of the VOC that would be in equilibrium with the liquid phase concentration of
the VOC in the reactor, C. An expression for the bubble travel time and rise
velocity can be derived as follows for solving the above MB equation:

tb = �
v

z

b

� → �
d

d

C

tb

g
� = �

d

d

C

z
g

� �
d

d

t

z

b

� = �
d

d

C

z
g

�vb (5.44)

where vb is the terminal rise velocity of the bubble (LT–1), and z is the depth
of the sparge tank (L). Hence, combining Equations (5.43) and (5.44),

�
d

d
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V
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bV

aV

b

� (C*
g – Cg) = �

K

z
G

G

aV
� (C*

g – Cg) (5.45)

where G is the volumetric gas flow rate (L3T–1). To eliminate C*
g, the air-

water partition coefficient, Ka–w (Henry’s Constant), can be used:

C*
g = Ka–wC (5.46)

where C is the liquid-phase concentration of VOC in the reactor. The MB
equation for VOCs in gas phase can now be solved as follows:

�
d

d
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� = ��Kz
G
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��(Ka–wC – Cg)
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���

z

0
dz

Because Cg,in = 0, the final result is:

Cg,out = Ka–wC�1 – exp�– �
KG

G

aV
��� (5.47)

Finally, an overall steady state MB equation for the VOCs across the reactor
can be written, assuming no other removal mechanism, and solved as follows:

0 = QCin – QC – GCg,out

0 = QCin – QC – G�Ka–wC�1 – exp��KG

G

aV
���� (5.48)

to yield the concentration of VOCs that can be expected in the effluent of 
the CMFR:

C = (5.49)
Cin����

�1 + �
GK

Q
a–w��1 – exp��KG

G
aV
����
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This expression does not provide an intuitive appreciation of the process and
the significance of the various parameters in the overall process. Performance
curves generated in the following example can help in better understanding
the process. 

Worked Example 5.3

An aeration tank with a volume of 3 × 106 ft3 is receiving a flow of 5000
cfm. It is desired to evaluate the stripping efficiency of VOCs of a range of
volatility in the aeration tank. Assuming a constant mass transfer coefficient
for the bubble aeration device as 0.05 ft/min, develop a plot to show the rela-
tionship between the stripping efficiency, air-water partition coefficient,
Ka–w, and the airflow-to-water flow ratio, G/Q.  

Solution

Equation (5.49) can be used to calculate the stripping efficiency and the
contours. The stripping efficiency can be found as follows:

� = 100��Ci

C
n –

in

C
�� = 100�1 – �

C

C

in

��
= 100�1 – �1 + �

GK

Q
a–w
��1 – exp�– �

KG

G

aV
����

–1

�

Figure 5.10 
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The above equation is implemented as a spreadsheet model as shown in
Figure 5.10. This model calculates the stripping efficiency for Ka–w values
ranging from 0.05 to 0.8, at G/Q values of 1, 5, 10, 15, 20, and 30. The con-
tour plot generated from this model shows the required relationship between
the three process parameters. Such a plot provides additional insight and aids
in rapid evaluation of the overall process. 

EXERCISE PROBLEMS

5.1. Develop unsteady state MB equations for biomass and substrate concen-
trations, X and S (M/L–3), respectively, in a batch bioreactor employing
the following variables: maximum growth rate, µmax (T–1); half satura-
tion constant, Ks (ML–3); first-order biomass death rate, kd (T–1); first-
order biomass respiration rate, kr (T–1); and yield coefficient, Y [M cells
(M substrate)–1]. Note that the biomass death process releases organic
carbon back into the substrate pool, whereas the respiration process 
does not.

5.2. Using the same notation as in problem 5.1, develop MB equations for
biomass and substrate in a CMFR with the following additional vari-
ables: the flow rate, Q (L3T–1); influent substrate concentration, Cin

(M/L–3); and volume of the reactor, V (L3). Assume negligible biomass
concentration in the influent.

5.3. The aeration tank in a wastewater treatment plant is based on a CMFR
design, using pure oxygen with bubble diffusers. A chemical plant
wishes to discharge a waste stream containing 140 mg/L of toluene into
the sewer system. The permit granted to the wastewater treatment plant
(WWTP) limits the maximum concentration of toluene in its effluent to
1 mg/L. You are required to estimate the allowable discharge rate from
the chemical plant, assuming that the WWTP influent previously carried
no traces of toluene.

Oxygen transfer efficiency of aerators = 20%
Waste flow rate through aeration basin = 1 MGD
Surface area of aeration basin = 4000 sq ft
Hydraulic residence time = 12 hrs
Oxygen requirement = 200 mg/L of reactor volume
Henry’s Constant of oxygen = 32 –

in wastewater
Henry’s Constant of toluene = 0.45 –

in wastewater
DO level maintained in aeration basin = 3.0 mg/L
KL for toluene/KL for oxygen = 0.65 –
Average temperature = 30ºC
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If the WWTP used air instead of pure oxygen, do you think the chemi-
cal plant would be able to discharge at a higher rate than the one calcu-
lated above? Explain without any calculations. 

5.4. Refer to Equation (5.35) where the overall mass transfer coefficient with
reference to the liquid-side film, KL, is dimensioned as (ML–2T–1),
while in Equation (4.28), it is defined and dimensioned as (LT –1).
Reconcile these two forms of KL.

5.5. Sparged tanks have been proposed for the removal of synthetic organic
chemicals (SOCs) from water. Here, SOCs can be removed by two
mechanisms—volatilization and oxidation. The oxidation process can
be approximated by a first-order process of rate constant kO3

. Following
the approach and the notation used in developing Equation (5.49), and
assuming the liquid phase to be completely mixed, develop a model to
describe the effluent concentration of the SOC from the tank. The model
should be in terms of the parameters Q, G, V, Ka–w, and KGa defined in
Equation (5.49); and τ, the hydraulic detention time; and CO3

, the dis-
solved concentration of ozone in the reactor.

5.6. Continuing the above problem 5.4, construct MB equations for ozone in
the gas and liquid phases. The rate of loss of ozone in the gas phase
should equal the rate of consumption by the reaction in the liquid phase
plus the rate of outflow in the effluent. Hence, derive an expression for
CO3

that can be used in the result derived in the above problem 5.4. 
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CHAPTER 6

Fundamentals of Natural
Environmental Systems

CHAPTER PREVIEW

This chapter outlines fluid flow and material balance equations for
modeling the fate and transport of contaminants in unsaturated and
saturated soils, lakes, rivers, and groundwater, and presents solutions
for selected special cases. The objective is to provide the background
for the modeling examples to be presented in Chapter 9.

6.1 INTRODUCTION

IN this book, the terrestrial compartments of the natural environment are
covered; namely, lakes, rivers, estuaries, groundwater, and soils. As in

Chapter 4 on engineered environmental systems, the objective in this chapter
also is to provide a review of the fundamentals and relevant equations for sim-
ulating some of the more common phenomena in these systems. Readers are
referred to several textbooks that detail the mechanisms and processes in nat-
ural environmental systems and their modeling and analysis: Thomann and
Mueller, 1987; Nemerow, 1991; James, 1993; Schnoor, 1996; Clark, 1996;
Thibodeaux, 1996; Chapra, 1997; Webber and DiGiano, 1996; Logan, 1999;
Bedient et al., 1999; Charbeneau, 2000; Fetter, 1999, to mention just a few.

Modeling of natural environmental systems had lagged behind the model-
ing of engineered systems. While engineered systems are well defined in
space and time; better understood; and easier to monitor, control, and evalu-
ate, the complexities and uncertainties of natural systems have rendered their
modeling a difficult task. However, increasing concerns about human health
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and degradation of the natural environment by anthropogenic activities and
regulatory pressures have driven modeling efforts toward natural systems.
Better understanding of the science of the environment, experience from
engineered systems, and the availability of desktop computing power have
also contributed to significant inroads into modeling of natural environmen-
tal systems.  

Modeling studies that began with BOD and dissolved oxygen analyses in
rivers in the 1920s have grown to include nutrients to toxicants, lakes to
groundwater, sediments to unsaturated zones, waste load allocations to risk
analysis, single chemicals to multiphase flows, and local to global scales.
Today, environmental models are used to evaluate the impact of past prac-
tices, analyze present conditions to define suitable remediation or manage-
ment approaches, and forecast future fate and transport of contaminants in 
the environment.  

Modeling of the natural environment is based on the material balance con-
cept discussed in Section 4.8 in Chapter 4. Obviously, a prerequisite for per-
forming a material balance is an understanding of the various processes and
reactions that the substance might undergo in the natural environment and an
ability to quantify them. Fundamentals of processes and reactions applicable
to natural environmental systems and methods to quantify them have been
summarized in Chapter 4. Their application in developing modeling frame-
works for soil and aquatic systems is summarized in the following sections.
Under soil systems, saturated and unsaturated zones and groundwater are dis-
cussed; under aquatic systems, lakes, rivers, and estuaries are included.  

6.2 FUNDAMENTALS OF MODELING SOIL SYSTEMS

The soil compartment of the natural environment consists primarily of the
unsaturated zone (also referred to as the vadose zone), the capillary zone, and
the saturated zone. The characteristics of these zones and the processes 
and reactions that occur in these zones differ somewhat. Thus, the analysis
and modeling of the fate and transport of contaminants in these zones warrant 
differing approaches. Some of the natural and engineered phenomena that
impact or involve the soil medium are air emissions from landfills, land 
spills, and land applications of waste materials; leachates from landfills,
waste tailings, land spills, and land applications of waste materials (e.g., sep-
tic tanks); leakages from underground storage tanks; runoff; atmospheric dep-
osition; etc. 

To simulate these phenomena, it is desirable to review, first, the funda-
mentals of the flow of water, air, and contaminants through the contaminated
soil matrix. In the following sections, flow of water and air through the satu-
rated and unsaturated zones of the soil media are reviewed, followed by their
applications to some of the phenomena mentioned above.   
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6.2.1 FLOW OF WATER THROUGH THE SATURATED ZONE

The flow of water through the saturated zone, commonly referred to as
groundwater flow, is a very well-studied area and is a prerequisite in simulating
the fate, transport, remediation, and management of contaminants in ground-
water. Fluid flow through a porous medium, as in groundwater flow, studied by
Darcy in the 1850s, forms the basis of today’s knowledge of groundwater mod-
eling. His results, known as Darcy’s Law, can be stated as follows:

u = �
Q

A
� = –K �

d

d

h

x
� (6.1)

where u is the average (or Darcy) velocity of groundwater flow (LT–1), Q is
the volumetric groundwater flow rate (L3T–1), A is the area normal to the
direction of groundwater flow (L2), K is the hydraulic conductivity (LT–1), h
is the hydraulic head (L), and x is the distance along direction of flow (L).
Sometimes, u is referred to as specific discharge or Darcy flux. Note that the
actual velocity, known as the pore velocity or seepage velocity, us , will be
more than the average velocity, u, by a factor of three or more, due to the
porosity n (–). The two velocities are related through the following expression:

us = �
n

Q

A
� = �

u

n
� (6.2)

By applying a material balance on water across an elemental control volume
in the saturated zone, the following general equation can be derived:
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where u, v, and w are the velocity components (LT–1) in the x, y, and z direc-
tions and ρ is the density of water (ML–3). The three terms in the left-hand side
of the above general equation represent the net advective flow across the ele-
ment; the first term on the right-hand side represents the compressibility of the
water, while the last term represents the compressibility of the soil matrix.

Substituting from Darcy’s Law for the velocities, u, v, and w, under steady
state flow conditions, the general equation simplifies to:
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and by further simplification, assuming homogenous soil matrix with Kx = Ky

= Kz, the above reduces to a simpler form, known as the Laplace equation:
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The solution to the above PDE gives the hydraulic head, h = h(x, y, z), which
then can be substituted into Darcy’s equation, Equation (6.1) to get the Darcy
velocities, u, v, and w.

Worked Example 6.1

A one-dimensional unconfined aquifer has a uniform recharge of W (LT–1).
Derive the governing equation for the groundwater flow in this aquifer. (The
governing equation for this case is known as the Dupuit equation.) 

Solution

The problem can be analyzed by applying a material balance (MB) on
water across an element as shown in Figure 6.1. In this case, the water mass
balance across an elemental section between 1-1 and 2-2 gives:

Inflow at 1-1 + Recharge = Outflow at 2-2

(u × h)�1 � Wdx � (u × h)�2

Using Darcy’s equation for u and simplifying:
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Saturated
zone

Figure 6.1. Application of a material balance on water across an element.
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which has to be integrated with two BCs to solve for h. Typical BCs can be
of the form: h = ho at x = 0;  and, h = h1 at x = L.

Following standard mathematical calculi, the above ODE can be solved to
yield the variation of head h with x. The result is a parabolic profile
described by:

h2 = h2
o � �

(h2
L

L

– h2
o)

� x � �
W

K

x
� (L – x)

The flux at any location can now be found by determining the derivative of h
from the above result and substituting into Darcy’s equation to get:

u = �
2

K

L
� (h2

o – h2
L ) � W�x – �

L

2
��

Worked Example 6.2

Two rivers,1500 m apart, fully penetrate an aquifer with a hydraulic con-
ductivity of 0.5 m/day. The water surface elevation in river 1 is 25 m, and that
in river 2 is 23 m. The average rainfall is 15 cm/yr, and the average evapora-
tion is 10 cm/yr. If a dairy is to be located between the rivers, which river is
likely to receive more loading of nitrates that might infiltrate the soil.

Solution

The equation derived in Worked Example 6.1 can be used here, measuring
x from river 1 to river 2:

u = �
2

K

L
� (h2

o – h2
L ) � W�x – �

L

2
��

The flow, q, into each river can be calculated with the following data:

W = rainfall – evaporation = 15 – 10 = 5 cm/yr = 1.37 × 10–4 m/day
K = 0.5 m/day, L = 1500 m, ho = 25 m, hL = 23 m

• river 1: x = 0

∴u = (25 m2 – 23 m2) + �1.37 × 10–4 �
d
m
ay
���0 – � m

= –0.087 �
d

m

ay
�

The negative sign indicates that the flow is opposite to the positive 
x-direction, i.e., toward river 1.

1500
�

2

0.5�
d
m
ay
�

��
2 * 1500 m
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• river 2: x = 1500

∴u = (25 m2 – 23 m2) + �1.37 × 10–4 �
d
m
ay
���1500 – �

15

2

00
�� m

= 0.12 m/day

Hence, river 2 is likely to receive a greater loading.
The problem is implemented in an Excel® spreadsheet to plot the head

curve between the rivers. The divide can be found analytically by setting 
q = 0 and solving for x. The head will be a maximum at the divide. These con-
ditions can be observed in the plot shown in Figure 6.2 as well, from which,
at the divide, x is about 650 m.

0.5�
d
m
ay
�

��
2 * 1500 m

Figure 6.2.
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6.2.2 GROUNDWATER FLOW NETS 

The potential theory provides a mathematical basis for understanding and
visualizing groundwater flow. A knowledge of groundwater flow can be valu-
able in preliminary analysis of fate and transport of contaminants, in screen-
ing alternate management and treatment of groundwater systems, and in their
design. Under steady, incompressible flow, the theory can be readily applied
to model various practical scenarios. Formal development of the potential
flow theory can be found in standard textbooks on hydrodynamics. The basic
equations to start from can be developed for two-dimensional flow as out-
lined below. 

The continuity equation for two-dimensional flow can be developed by
considering an element to yield

�
∂
∂
u

x
� � �

∂
∂
v

y
� = 0 (6.6)

where u and v are the velocity components in the x- and y-directions. If a
function ψ(x,y) can be formulated such that
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x
� = v (6.7)

then the function ψ(x,y) can satisfy the above continuity equation. This func-
tion is called the stream function. This implies that if one can find the stream
function describing a flow field, then the velocity components can be found
directly by differentiating the stream function. 

Likewise, another function φ(x,y) can be defined such that 
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� = u and –�
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y
� = v (6.8)

which can satisfy the two-dimensional form of the Laplace equation for flow
derived earlier, Equation (6.5). This function is called the velocity potential
function. It can also be shown that φ(x,y) = constant and ψ(x,y) = constant sat-
isfy the continuity equation and the Laplace equation for flow. In addition,
they are orthogonal to one another. In summary, the following useful rela-
tionships result:

in rectangular coordinates:

u = –��
∂
∂
�

x
�� = ��

∂
∂
�

y
�� and v = –��

∂
∂
�

y
�� = –��

∂
∂
�

x
��

in cylindrical coordinates:

ur = –��
∂
∂
�

r
�� � �

1

r
� ��

∂
∂
�

	
�� and uθ = – �

1

r
� ��

∂
∂
�

	
�� = –��

∂
∂
�

r
�� (6.9)

Chapter 06  11/9/01  9:32 AM  Page 135

© 2002 by CRC Press LLC



These functions are valuable tools in groundwater studies, because they
can describe the path of a fluid particle, known as the streamline. Further,
under steady flow conditions, the two functions, φ(x,y) and ψ(x,y), are linear.
Hence, by taking advantage of the principle of superposition, functions
describing different simple flow situations can be added to derive potential
and stream functions, and hence, the streamlines for the combined flow field. 

The application of the stream and potential functions and the principle of
superposition can best be illustrated by considering a practical example. The
development of the flow field around a pumping well situated in a uniform
flow field such as in a homogeneous aquifer is detailed in Worked Example
6.3, starting from the functions describing them individually.  

Worked Example 6.3

Develop the stream function and the potential function to construct the
flow network for a production well located in a uniform flow field. Use the
resulting flow field to delineate the capture zone of the well.

Solution

Consider first, a uniform flow of velocity, U, at an angle, α, with the x-
direction. The velocity components in the x- and y-directions are as follows:

u = U cos 
 and v = U sin 


Substituting these velocity components into the above definitions for the
potential and stream functions and integrating, the following expressions can
be derived:

� = �0 – U(x cos 
 + y sin 
)

or

y = – (cos 
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 – x sin 
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s

�



� + (tan 
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The results indicate that the stream lines are parallel, straight lines at an angle
of α with the x-direction, which is as expected. In the special case where the

�0 – �
�
u sin 
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flow is along the x-direction, for example, with U = u, the potential and
stream functions simplify to:

� = �0 – ux

and

� = �0 – uy

Now, consider a well injecting or extracting a flow of ±Q located at the ori-
gin of the coordinate system. By continuity, it can be seen that the value of 
Q = (2π r) ur , where ur is the radial flow velocity. Substituting this into the
definitions of the potential and stream yields in cylindrical coordinates:

� = �0 ± �
2

Q

π
�(ln r)

and

� = �0 ± �
2

Q

π
�(θ)

which can be transformed to the more familiar Cartesian coordinate system as

� = �0 ± �
4

Q

π
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� = �0 ± �
2

Q

π
� tan–1��

y

x
��

The results confirm that the stream lines are a family of straight lines ema-
nating radially from the well, and the potential lines are circles with the well
at the center, as expected.

Because the stream functions and the potential functions are linear, by
applying the principle of superposition, the stream lines for the combined
flow field consisting of a production well in a uniform flow field can now be
described by the following general expression:

� = �0 + u(y cos 
 – x sin 
) ± �
2

Q

π
� tan–1��

y

x
��

This result is difficult to comprehend in the above abstract form; however,
a contour plot of the stream function can greatly aid in understanding the flow
pattern. Here, the Mathematica® equation solver package is used to model
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this problem. Once the basic “syntax” of Mathematica® becomes familiar, a
simple “code” can be written to readily generate the contours as shown in
Figure 6.3. The capture zone of the well can be defined with the aid of this plot. 

Notice that the qTerm is assigned a negative sign to indicate that it is
pumping well. With the model shown, one can easily simulate various sce-
narios such as a uniform flow alone by setting the qTerm = 0 or an injection
well alone by setting u = 0 and assigning a positive sign to the qTerm or by
changing the flow directions through α.

Worked Example 6.4

Using the following potential functions for a uniform flow, a doublet, and
a source, construct the potential lines for the flow of a pond receiving
recharge with water exiting the upstream boundary of the pond. Use the fol-
lowing values: uniform velocity of the aquifer, U = 1, radius of pond, R = 
200, and recharge flow, Q = 1000π.

Uniform flow: � = –ux

Doublet: � = �
x2

R

�

2x

y2�

Source: � = – �
2

Q

π
� ln [�x2 � y�2�]

Figure 6.3 Groundwater flow net generated by Mathematica®.
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Solution

The potential function for the combined flow field is found by superposition:

� = –ux + �
x2

R

�

2x

y2
� – �

2

Q

π
� ln [�x2 � y�2�]

The contours of constant velocity potentials can be readily constructed with
Mathematica® as shown in Figure 6.4. The plot shows that the stagnation
point is upstream of the pond, implying that water is exiting the upstream
boundary of the pond. This can be verified analytically by determining the
velocity u at (–R,0) and checking if it is less than zero:

u(–R,0) = – ��
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The above reduces to:

u(–R,0) = 2u – �
2

Q

πR
�

Figure 6.4 Contours of potential function at q = 300.
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giving the condition Q > 4πRu for flow to occur from the pond through its
upstream boundary. In the above example, this condition is satisfied. The con-
dition of Q < 4πRu can be readily evaluated by decreasing Q, for example,
from 1000π to 600π, and plotting the potential lines as shown in Figure 6.5.

The Mathematica® script can be easily adapted to superimpose the stream
function on the velocity potential function as shown in Figure 6.6, for the two
cases, to illustrate the orthogonality and to describe the flow pattern completely.

6.2.3 FLOW OF WATER AND CONTAMINANTS THROUGH 
THE SATURATED ZONE 

Principles of groundwater flow and process fundamentals have to be inte-
grated to model the fate and transport of contaminants in the saturated zone.
Both advective and dispersive transport of the contaminant have to be
included in the contaminant transport model, as well as the physical, biolog-
ical, and chemical reactions.

As an initial step in the analysis of contaminant transport, the ground-
water flow velocity components u, v, and w (LT–1), and the dispersion coef-
ficients, Ei (L2T–1), in the direction i, can be assumed to be constant with

Figure 6.5 Contours of potential function at q = 300.
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space and time. A generalized three-dimensional (3-D) material balance
equation can then be formulated for an element to yield:
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where the left-hand side of the equation represents the rate of change in con-
centration of the contaminant within the element, the first three terms within
the square brackets on the right-hand side represent the advective transport
across the element in the three directions, the next three terms within the next
square brackets represent dispersive transport across the element in the three

Figure 6.6 Contours of potential and stream functions at q = 500 and q = 300.
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directions, and the last term represents the sum of all physical, chemical, and
biological processes acting on the contaminant within the element. 

An important physical process that most organic chemicals and metals
undergo in the subsurface is adsorption onto soil, resulting in their retardation
relative to the groundwater flow. For low concentrations of contaminants, this
phenomenon can be modeled assuming a linear adsorption coefficient and
can be quantified by a retardation factor, R (–), defined as follows:

R = 1 � �
Kd

n

�b
� (6.11)

where Kd is the soil-water distribution coefficient (L3M–1) = S/C, n is the
effective porosity (–), ρb is the bulk density of soil (ML–3) = ρs (1 – n), S is
the sorbed concentration (MM–1), and ρs is the density of soil particles
(ML–3). Introducing the retardation factor, R, into Equation (6.10) and using
retarded velocities, u�, v�, and w� (LT–1), and retarded dispersion coefficients,
E i

� (L2T–1), results in the following:
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The solution of the above PDE involves numerical procedures. However,
by invoking simplifying assumptions, some special cases can be simulated
using analytical solutions. These cases can be of benefit in preliminary eval-
uations, in screening alternative management or treatment options, in evalu-
ating and determining model parameters in laboratory studies, and in gaining
insights into the effects of the various parameters. They can also be used to
evaluate the performance of numerical models. With that note, two simplified
cases of one-dimensional flow (1-D) are given next. 

Impulse input, 1-D flow with first-order consumptive reaction
A simple 1-D flow with first-order degradation reaction of the dissolved

concentration, C, such as a biological process, with a rate constant, k (T–1),
can be described adequately by the simplified form of Equation (6.12):
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For example, an accidental spill of a biodegradable chemical into the aquifer can
be simulated by treating the spill as an impulse load. For such an impulse input
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of mass M (M), applied at x = 0 and t = 0 to an initially pristine aquifer over an
area A (L2), the solution to Equation (6.13) has been reported to be as follows:

C = �– � �exp�– �
R

k
� t�� (6.14)

Step input, 1-D flow with first-order consumptive reaction
A continuous steady release of a biodegradable chemical originating at 

t = 0 into an initially pristine aquifer can also be described adequately by the
simplified Equation (6.13). For example, leakage of a biodegradable chemi-
cal into the aquifer from an underground storage tank can be simulated by
treating it as a step input load. The appropriate boundary and initial condi-
tions for such a scenario can be specified as follows:

BC: C(0, t) = Co for t > 0 and �
∂
∂
C

x
� = 0 for x = ∞

IC: C(x,0) = 0 for x ≥ 0

Under the above conditions, assuming first-order biodegradation of the dis-
solved concentration, C, the solution to Equation (6.13) has been reported to
be as follows:

C � �
C
2

o�	exp��(u2
–
D

�)
�x�
	erf� �


+ �
C
2

o�	exp��(u2
–
D

�)
�x�
	erf� �
 (6.15)

where � = u �1 + �
4

u

k
2

D
�


Additional numerical solutions for other special cases are included in
Appendix 6.1 at the end of this chapter.

Worked Example 6.5

An underground storage tank at a gasoline station has been found to be
leaking. Considering benzene as a target component of gasoline, it is desired
to estimate the time it would take for the concentration of benzene to rise to
10 mg/L at a well located 1000 m downstream of the station. Hydraulic con-
ductivity of the aquifer is estimated as 2 m/day, effective porosity of the
aquifer is 0.2, the hydraulic gradient is 5 cm/m, and the longitudinal disper-
sivity is 8 m. Assume the initial concentration to be 800 mg/L.

(Rx – � t)
�
2�DRt�

(Rx – � t)
�
2�DRt�

�x – �
R

u
�t�

2

��

�
4

R

Et
�

MR
��
2A�πERt�
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Solution

To be conservative, it may be assumed that degradation processes in the
subsurface are negligible. This situation can be modeled using the equation
given for Case 1 in Appendix 6.1:

C(L,t) � �
C
2

0� 	erfc� � – exp��
E
u

x
�L� erfc� �


The second term in the above expression is normally smaller than the first
term and, therefore, may be ignored. Using the given data,

u � K = �2 �
d
m
ay
�� = 0.5 �

d

m

ay
�

Ex = α xu = 8 m × 0.5 m/day = 4 m2/day

The above equation has to be solved for t, with C(L,t) = 10 mg/L; Co = 800
mg/L; L = 1000 m; u = 0.5 m/day; and Ex = 4 m2/day:

100 �
m

L

g
� = 	erfc� � 


which gives

erfc� � = 0.25 or = 0.83

The above can be readily implemented in spreadsheet or equation solver-type
software packages to solve for t. In this example, the Mathematica® equation
solver package is used with the built-in Solve routine as shown:
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�t

��

2�4�
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� t
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� t


1000 m – 0.5 �
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��
0.2

��
d

d

h

x
��

�
n

L � ut
�
2�Ext�

L – ut
�
2�Ex t�

Hence, the time taken is 1724 days or 4.7 years. 
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This example is solved in another equation solver-type package,
Mathcad®6, as shown in Figure 6.7. Here, a plot of C vs. t is generated from
the governing equation, from which it can be seen that the concentration at 
x = 1000 m will reach 100 mg/L after about 1750 days. The plot also shows
that the peak concentration of 800 mg/L at the well will occur after about
3000 days. 

6.2.4 FLOW OF WATER AND CONTAMINANTS THROUGH 
THE UNSATURATED ZONE

The analysis of water flowing past the unsaturated zone, infiltration for
example, is an important consideration in irrigation, pollutant transport,
waste treatment, flow into and out of landfills, etc. Analysis of flow through
the unsaturated zone is more difficult than that of flow through the saturated

6Mathcad® is a registered trademark of MathSoft Engineering & Education Inc. All rights reserved.

Figure 6.7 Mathcad® model of benzene concentration.
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zone, because the hydraulic conductivity, K, which is a function of moisture
content, θ (–), changes as the water flows through the voids. Darcy’s Law has
been shown to be valid for vertical infiltration through the unsaturated zone,
provided the K is corrected for θ as follows:

w = –Kθ �
∂
∂
h

z
� (6.16)

where h is the potential or head = z + ω, ω being the tension or suction (L).
For 1-D flow in the vertical direction, the water material balance for water
simplifies to:

–��
∂
∂
z
�(ρw)� = �

∂
∂
t
� (ρθ) (6.17)

Assuming the soil matrix is nondeformable, the water is incompressible, and
the resistance of airflow is negligible, the last two equations can be combined
to yield the following result, known as the Richard’s equation:

�
∂
∂
θ
t
� = – �

∂
∂
z
� �Kθ �

∂
∂
ω
z

θ
�� – �

∂
∂
K

z
θ

� (6.18)

This nonlinear PDE is very difficult to solve, except in simple special cases
(Bedient et al., 1999). Analytical solutions reported for selected simplified
cases are given next.

Application to leachate concentration and travel time
The concentration of substances in leachates from surface spills and the

time taken for the plume to break through the vadose zone can be estimated
from the above analysis but with several simplifying assumptions as
described by Bedient et al. (1994). First, the bulk concentration, m (ML–3), of
the substance can be found in terms of the dissolved concentration, C (ML–3),
taking into account its partitioning coefficients between air-water (Ka–w),
pure organic phase-water (Ko–w), and soil-water (Ks–w), and the respective
volumetric phase contents, θi :

m � ∏C � (θw � Ka –wθa � Ko–wθo � Ks–w�b)C (6.19)

from which the total mass of the spill, M (M), can be estimated from the area
of contamination, A (L2), and initial depth of the spill, Lo (L):

M � ALo(∏C) (6.20)

Considering only the advective flow of the leachate from the contaminated
zone at a Darcy velocity of w, a material balance on the substance yields:
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�
d

d

M

t
� → �

d

d

t
�[ALo∏C] → ALo∏�

d

d

C

t
� = –wAC (6.21)

which on integration with C = Co at  t = 0 results in:

C � Co exp�– �
L

w

o∏
�t� (6.22)

The travel time can be estimated by assuming a power law model such as that
of Brooks and Corey to relate unsaturated hydraulic conductivity, Kθ, to the
saturated conductivity, K. Assuming the Darcy velocity in the vertical direc-
tion to be the mean infiltration rate, W,

K	 � K ��	n
–

–

	

	

r

r

��
ε

→ 	 = 	r � (n – 	r)��
W

K
��

ε
(6.23)

where θ is the volumetric water content, θr is the irreducible minimum water
content, n is the volumetric water content at saturation, and ε is an experi-
mental parameter. Now, using Darcy’s Law and ignoring capillary pressures,
the seepage velocity, ws, can be approximated as follows:

ws = (6.24)

If R is the retardation factor defined in Equation (6.11), the retarded velocity,
w� (LT–1), can be obtained as

w� = (6.25)

and the travel time tv z through the vadose zone of length Lv z (L) can be 
found from

tv z = �
L

w
v

�

z
� =  (6.26)

Also, if the substance undergoes a first-order degradation reaction at a rate
of k (T –1) as it moves through the vadose zone, then the time course of the
dissolved concentration as the plume reaches the groundwater table can be
found from

C = Co exp	–��w(

L

t

o

–

∏
tvz)

� � ktv z�
 (6.27)

�θr � (n – θr)��
W

K
��

1/ε
� �bKd�Lv z

����
W

W
���

θr � (n – θr)��
W

K
��

1/ε
� �bkb

W
���

θr � (n – θr)��
W

K
��

1/ε
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6.2.5 FLOW OF AIR AND CONTAMINANTS THROUGH 
THE UNSATURATED ZONE

The analysis of airflow through the unsaturated zone is of particular
importance in remediation and treatment technologies, such as soil vapor
extraction, air sparging, bioventing, and biofiltration; in quantifying emis-
sions from land spills; etc. The general gas flow equation in this case can also
be developed from Darcy’s Law, and the solute transport equations can be
developed from the material balance concept.    

A simplified approach to model this phenomenon, specifically for appli-
cation in soil vapor extraction, has been reported by Johnson et al. (1988).
Assuming ideal gas characteristics and horizontal flow, the following equa-
tion has been derived for radial pressure distribution around a well in the
unsaturated zone:

�
1

r
� �

∂
∂
r
��r �

∂(

∂
∆
r

P)
�� = ��


	

P
a

a

µ

tm

���
∂
∂
∆
t

P
� (6.28)

where r is the radial distance from the well (L); ∆P is the pressure devia-
tion from atmospheric pressure, Patm (ML–1T –2); θa is the air-filled poros-
ity (–); µ is the viscosity of air (MLT –1); and κ is the intrinsic permeability
of soil (L2). Equation (6.28) has been solved (Johnson et al., 1990) for the
boundary condition:

r = radius of the well, Rw P = well pressure, Pw

r = radius of influence, Rl P = atmospheric pressure, Patm

to get the following expression for the volumetric flow, Q, toward the well
under pressure of Pw at the well:

Q = ��πH
µ
Pw

�� � � (6.29)

The above result can be used to estimate the airflow Q, which in turn, can be
used in estimating the transport of volatile contaminants during soil venting,
for example. Johnson et al. (1988) proposed an equilibrium-based approach,
where two scenarios may be considered:

• In the presence of the pure liquid phase of a contaminant in the con-
taminated zone, its concentration in the gas phase can be estimated
using Raoult’s Law to give the following:

Ca = �
(vp

R

)(

T

Mw)
� (6.30)

1 – ��
P
P
a

w

tm��
2

��
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R
R

w

l
��
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where vp is the vapor pressure of contaminant, Mw is the molecular
weight of contaminant, R is the Ideal Gas Constant, and T is the
absolute temperature.

• In the case of absence of any liquid phase of the contaminant, its con-
centration in the gas phase can be estimated assuming partitioning of
the contaminant between the soil, soil moisture, and gas phases:

C = (6.31)

where Ka–w is the air-water partition coefficient, Csoil is the concentra-
tion of the contaminant in the soil, θ is the moisture content, k is the
soil sorption constant, and ρsoil is the soil density.

The removal rate of contaminant from the soil, M, can now be estimated by
multiplying the airflow, Q, from Equation (6.29), and the gas phase concen-
tration, C, from Equation (6.30) or Equation (6.31), as M = QC.

6.3 FUNDAMENTALS OF MODELING AQUATIC SYSTEMS

Under aquatic systems, fundamental concepts relating to surface water
bodies (lakes, rivers, and estuaries) are reviewed in this section.   

6.3.1 LAKE SYSTEMS

In a simple analysis of the fate of a substance discharged into a lake, the
lake can be characterized as a completely mixed system. While this assump-
tion may be justified for shallow lakes, in more sophisticated analyses, larger
lakes may be compartmentalized, and each compartment may be analyzed as
completely mixed, with interactions between compartments. It is therefore
useful to begin the modeling of lakes assuming completely mixed conditions.
In that case, because the concentration of the substance in the outlet of the
lake is the same as that inside the lake, the general form of the mass balance
equation is as follows:

�
d(V

d
t

t

Ct)
� = Qin,tCin,t – Qout,tCt ± rVt (6.32)

where Vt is the time-dependent volume of the lake (L3), Ct is the time-
dependent concentration of the substance in the lake (ML–3), Qin,t is the 
time-dependent volumetric flow rate into the lake (L3T–1), Cin,t is the time-
dependent concentration of the substance in the influent (ML–3), Qout,t is the

Ka –wCsoil
��

��K�

a–

so

w

i

θ
l

a
� + θ + k�
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time-dependent volumetric flow rate out of the lake (L3T–1), r is the time-
independent reaction rate of the substance in the lake (ML–3T–1), and t is 
the time (T).

As a first step in modeling a lake and simulating its response to various per-
turbations, the above general equation may be simplified by invoking the fol-
lowing assumptions: the lake volume remains constant at V, the flow rate into
and out of the lake are equal and remain constant at Q, the concentration of the
substance in the influent remains constant at C0 , and all the reactions inside
the lake are consumptive and of first order, of rate constant, k (T–1). With the
above assumptions, using C instead of Ct, Equation (6.32) reduces to:

V �
d

d

C

t
� = QCin – QC – kVC (6.33)

The above result can be rearranged to a standard mathematical form as follows:

�
d

d

C

t
� = �

Q

V

Cin
� – �

(QC �

V

kVC)
� = �

Q

V

Cin
� – ��

Q

V
� � k�C

�
d

d

C

t
� + ��

Q

V
� � k�C = �

Q

V

Cin
�

�
d

d

C

t
� + 
C = �

W

V
� (6.34)

where


 = ��
Q

V
� � k� = ��

1

τ
� + k� (6.35)

τ = �
Q

V
� is the hydraulic residence time (HRT) for the lake (T) (6.36)

W = QCin is the load flowing into the lake (MT–1) (6.37)

The simplifying assumptions make it easier to analyze the response of a
lake under various loading conditions. Results from such simple analyses
help in gaining a better understanding of the dynamics of the system and its
sensitivity to the system parameters. With that understanding, further refine-
ments can be incorporated into the simple model, if necessary. In the follow-
ing sections, the application of simplified equations to several special cases
mimicking real-life situations is illustrated.

6.3.1.1 Steady State Concentration 

One of the elementary scenarios that can be simulated is the steady state
condition to determine the in-lake concentration, Css , of a substance caused
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by a continuous, constant input load of W. The steady state condition is
found by setting the first term in the left-hand side of Equation (6.22) to
zero, yielding:

Css = �
V

W



� = = = �

(1

C

�

in

kτ)
� (6.38)

6.3.1.2 General Solution

A more general situation, where the application of a new step load to a lake
with an initial concentration of Ci causes a transient response, can be simu-
lated by Equation (6.34), giving the solution as follows (Schnoor, 1996):

C = Co exp�–��
1

τ
� + k� t� � �

1

C

+
in

kτ
� 	1 – exp�–��

1

τ
� + k� t�
 (6.39)

It is apparent that, by setting t to infinity, the first term in the right-hand side
of Equation (6.39) dies off to zero, and the second term approaches the steady
state value given by Equation (6.38).

The above equations can be applied to model the fate and transport of sev-
eral water quality parameters such as pathogens, BOD, dissolved oxygen,
nutrients, organic chemicals, metals, etc. Once the water column concentra-
tions of these are established from the above equations, their impacts on other
natural compartments of the lake systems such as suspended solids, biota,
fish, sediments, etc., can also be analyzed. The above results can also be
applied to simulate lakes in series, such as the Great Lakes, and compart-
mentalized lakes. Examples of such modeling are presented in the following
chapters in this book.

Worked Example 6.6

A lake of volume V of 3.15 × 109 ft3 is receiving a flow, Q, of 100 cfs. A
fertilizer has been applied to the drainage basin of this lake, resulting in a
load, W, of 1080 lbs/day to the lake. The first-order decay rate K for this fer-
tilizer is 0.23 yr–1. 

(1) Determine the steady state concentration of the chemical in the lake. 
(2) If a ban is now applied on the application of the fertilizer, resulting in an

exponential decline of its inflow to the lake, this decay can be assumed
to be according to the equation W = 1080e–µt, where µ = 0.05 yr–1 and t
is the time (yrs) after the ban. Develop a model to describe the concen-
tration changes in the lake.

QCin
��

V ��
1

τ
� � k�

W
��

V ��
1

τ
� � k�
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Solution

(1) The steady state concentration before the ban can be found from
Equation (6.38). The detention time is first calculated as follows:

Css = = = 1.63 �
m
L
g
�

(2) Assuming that the concentration in the lake has already reached 1.63
mg/L when the ban is introduced, a new MB equation has to be solved
under the declining waste load. A modified form of Equation (6.34) can
describe the system under the declining waste load:

�
d
d
C
t
� � 
C = �

Wo

V
e–µ t

�

The above ODE has to be solved now, with an initial condition of C =
1.63 mg/L at t = 0. Following the standard mathematical calculi of using
an integrating factor introduced in Section 3.3.2 in Chapter 3, the solu-
tion to the above can be found by applying Equation (3.18) with:

P(x) ≡ 


and

Q(x) ≡ �
W
V

o�e–µt

Thus, the integrating factor is:

e∫P(×)dx = e∫
dt = e
 t

Therefore, the solution to the ODE is as follows:
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or

C � e–
 t ��	�
W

V
o

�
�

1
– µ
�� e(
–µ)t � b�

where


 = [(1/τ) + k] = 1.23 yr–1

µ = 0.05 yr–1

Wo = 1080 lbs/day; and V = 3.5 × 109 ft3

Hence, C � e–1.23t[1.70e1.18t � b].

The integration constant b can be found by substituting the initial condition:

C = 1.63 mg/L at t = 0,

Therefore, b = –0.07. 

Hence, the concentration in the lake, C (mg/L), after the introduction of
the ban can be described by the following equation:

C = e–1.23t[1.70e1.18t – 0.07]

In Chapter 7, several variations of this problem will be modeled with dif-
ferent types of software packages.  

6.3.2 RIVER SYSTEMS

In a simple analysis of the fate of a substance discharged into swiftly flow-
ing rivers and streams, river systems can be characterized as plug flow systems
with negligible dispersion. In a more realistic analysis, dispersion might have
to be included as described in the next section. Under the assumption of ideal
plug flow conditions, the water flows without any longitudinal mixing in the
direction of flow but with instantaneous mixing in all directions normal to the
flow. Thus, the concentration of substances in the water column can vary with
distance along the direction of flow as well as with time, but it is uniform at
any cross-section. Such a condition can be analyzed by setting up a differen-
tial mass balance, assuming constant flow rate and first-order reactions:

�
d(Ax

d
d
t
xC)
� = QtC – (Qt � dQ)(C � dC) ± kAx dxC ± SDAx dx (6.40)

where Ax is the area of flow at a distance X from the origin (L2), x is the dis-
tance measured from origin along direction of flow (L), and, Sd is the strength
of a distributed source or a sink (ML–3T–1). 
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As a first step in modeling a river and simulating its response to various
inputs, the above general equation may be simplified by invoking the follow-
ing assumptions: the flow rate in the river is independent of x and t, remain-
ing constant at Q; the river is prismatic with the area of flow remaining
constant at A; and all the reactions are of first order and are consumptive with
a rate constant, k (T–1). With the above assumptions, Equation (6.40) can be
reduced to:

�
∂
∂
C

t
� = –��

Q

A
�� �

∂
∂
C

x
� – kC ± SD � –u�

∂
∂
C

x
� – kC ± SD (6.41)

where u = Q /A, the flow velocity in the river (LT–1). 
The above equation can be solved to predict the spatial and temporal vari-

ations of C in the river system. Again, several simplified cases may be simu-
lated to better understand the dynamics of the system.

6.3.2.1 Steady State without Source or Sink

The steady state condition can be simulated by setting the left-hand side 
of Equation (6.41) to zero and, in the absence of source or sink, by setting 
SD = 0. Equation (6.41) then simplifies to the following:

�
∂
∂
C

t
� = 0 = –u�

∂
∂
C

x
� – kC or �

∂
∂
C

x
� = –��

u

k
��C (6.42)

Integrating the above between x = 0 to x and C = Co yields the spatial varia-
tion of C along the river:

C = Co exp�– �
u

k
� x� (6.43)

6.3.2.2 Steady State with a Distributed Source

When an infinitely long distributed source is included, Equation (6.41)
under steady state conditions takes the form:

�
∂
∂
C

x
� � ��

u

k
��C = ±SD (6.44)

Its solution with the boundary condition of C = Co = 0 at x = 0 is:

C = �
S

k
D
��1 – exp�– �

u

x
� k�� (6.45)
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The above equations can be applied to model the fate and transport of
pathogens, BOD, dissolved oxygen, nutrients, organic chemicals, metals,
etc., in river systems. The application of river models in the classical “DO sag
curve” studies has been covered in several texts and is not repeated here. 

Once the water column concentrations are established from the above
equations, their impacts on other natural compartments of the system, such as
suspended solids, biota, fish, sediment, etc., can also be modeled. As an
example, the governing MB equations for a comprehensive, 11-variable nutri-
ent-plants-oxygen model suitable for finite segment modeling reported by
Thomann and Mueller (1987) are reproduced here. In the following equa-
tions, the advective and diffusive transports are combined and represented by
J(Ci) for the state variable i, for a segment of length ∆x, where

J(Ci) = 	–Q��
∂
∂
C
x

i�� � EA��
∂
∂

2

x
C
2
i��
∆x (6.46)

• MB equation for phytoplankton (C1) in segment of volume V:

V �
d

d

C

t
1

� = J(C1) � V (GP – DP)C1 – VGC1C2 � W1 (6.47)

where GP and DP are the growth and death rates of phytoplankton, G
is the grazing rate, C2 is the zooplankton concentration, and W1 is the
input rate.

• MB equation for zooplankton (C2) in segment of volume V:

V �
d

d

C

t
2

� = J(C2) � V(GC1 – Dz )C2 (6.48)

where Dz is the respiration rate of zooplankton.
• MB equation for organic nitrogen (C3) in a segment of volume V:

V �
d

d

C

t
3

� = J(C3) � VK3,4C3 � Va2,3DzC2 – vn3AC3 � W3 (6.49)

where K3,4 is the conversion rate of organic nitrogen to ammonia, a2,3

is the conversion factor for dead phytoplankton to organic nitrogen,
vn3 is the settling velocity, A is the surface area, and W3 is the input
rate of organic nitrogen.

• MB equation for ammonia nitrogen (C4) in a segment of volume V:

V �
d

d

C

t
4

� = J(C4) – Va1,4GPC1 – VKNC4 � W4 (6.50)
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where a1,4 is the conversion factor for ammonia nitrogen to phyto-
plankton, and KN is the rate for conversion of ammonia to nitrate 
+ nitrite.

• MB equation for nitrite + nitrate (C5) in a segment of volume V:

V �
d

d

C

t
5

� = J(C5) – Va1,5GPC1 – VKNC4 � W5 (6.51)

• MB equation for organic phosphorous (C6) in a segment of volume V:

V �
d

d

C

t
6

� = J(C6) – VK6,7C6 – Va1,6DPC1 – Va2,6DzC2

– vn6AC6 � W6 (6.52)

• MB equation for orthophosphate phosphorous (C7) in a segment of
volume V:

V �
d

d

C

t
7

� = J(C7) – Va1,7GPC1 � W7 (6.53)

• MB equation for silica (C8) in a segment of volume V:

V �
d

d

C

t
8

� = J(C8) – Va1,8GPC1 � W8 (6.54)

• MB equation for organic carbon (C9) in a segment of volume V:

V �
d

d

C

t
9

� = J(C9) – VKdC9 � Va1,9DPC1

� Va2,9DzC2 – vn9AC9 � W9 (6.55)

• MB equation for dissolved oxygen (C10) in a segment of volume V:

V �
dC

dt
10
� = J(C10) – VKa(Cs,10 – Cs) – Va10,9KdC9 – Va10,4KNC4

� Va10,1(GP – DP)C1 – SBA (6.56)

• MB equation for chlorides (C11) in a segment of volume V:

V �
dC

dt
11
� = J(C11) � W11 (6.57)

The above simultaneous differential equations are nonlinear and are of the
second order. As such, numerical procedures have to be used to solve them.
The steady state solutions can be found using the software packages dis-
cussed later in this text. 
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6.3.3 ESTUARY SYSTEMS

The model for estuaries or rivers with significant dispersion can be derived
by adding the dispersive transport terms to the differential mass balance equa-
tion for the nondispersive river developed in the previous section. This analy-
sis has already been presented in Section 2.3 in Chapter 2 for steady state
conditions.

6.3.4 SPECIAL CASES IN RIVERS AND ESTUARIES 
WITH DISPERSION

The following two special cases of loading are of interest in water quality
studies. They can be used to model tracer studies in determining the charac-
teristics of rivers and estuaries. They can also be used to predict in-stream
concentrations caused by accidental spills into rivers or estuaries.

• in-stream concentration due to an instantaneous spill of a chemical is
as follows:

C(x,t) = exp�–�
(x

4

–

E

u

t

t)2

� – kt� (6.58)

where M is the mass of the spill, A is the area of flow, E is the disper-
sion coefficient, u is the flow velocity, and k is the first-order reaction
rate constant.

• in-stream concentration due to a constant of a chemical for a period of
time τ is as follows:

C(x,t) = �
C
2

o� exp�– �
k

u

x
���erf � �

– erf � �� (6.59)

where

� = �
k

u

E
2�

The above equations are rather difficult to understand or visualize in the
above form. Using mathematical software packages, however, the abstract
equations can be modeled in different ways to gain valuable insight. As an
example, a three-dimensional plot of the in-stream concentration given by
Equation (6.58), as a function of time and distance developed with Mathcad®

is shown in Figure 6.8. 

x – ut(1 � �)
��

x – u(t – �)(1 � �)
��

�4E(t –� �)�

M
��
2A�πEt�
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Figure 6.8 Mathcad® model for concentration.
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EXERCISE PROBLEMS 

6.1 Consider the Worked Example 6.4. Develop the stream function ψ,
describing the problem and generating the stream lines.

6.2 A pump-and-treat system is being evaluated at a groundwater contami-
nation site. The aquifer is unconfined with a uniform flow of 1 ft2/day.
The pumping rate is 50 gpm (10,000 ft3/day). Estimate the maximum
down gradient extent to which the drawdown cone of the well will cap-
ture the water. Note that the velocity potential for this problem can be
constructed from the potential for a uniform flow and a source. 

6.3 Agricultural drains are used to control groundwater level in crop culti-
vation as shown in Figure 6.9. Show that the height of the maximum sat-
urated thickness between two drains is 

hm = �h2
d � �

W
4

L

K

2

�

where W is the recharge and K is the hydraulic conductivity of the soil.

6.4 Show that the following equation can be used to describe the seepage of
water through an earthen dam:

U = ��
2

K

L
��(h2

0 – h2
L)

where U is flow per unit width, K is the hydraulic conductivity of the
dam material, L is its length, and h0 and hL are the depth of water
upstream and downstream of the dam.

Figure 6.9
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6.5 Consider the stream and potential functions for a source, a sink, and uni-
form flow. By placing the source and the sink symmetrically on the 
x-axis on either side of the y-axis, develop the following expressions for
the stream and potential functions to describe the combined flow:

� = �
2

Q

π
� (θ – θ2) � Ur sin 	

� = �
2

Q

π
� ln ��

r

r
2

1

�� – Ur cos 	

Hence, plot the stream lines. 
6.6 A simple model for phytoplankton and its interactions with nutrients in

the epilimnion of Lake Ontario has been reported by Schnoor and
O’Connor (1980). The model consisted of the following ODEs:

�
d

d

P

t
� = kgNiP – k1P –ks P – �

P

τ
�

�
d

d

N

t
i

� = �
W

V
1

� – kgNiP � koNo – �
N

τ
i

�

�
d

d

N

t
o

� = �
W

V
2

� � k1P – ksNo – ko No – �
N

τ
o
�

Figure 6.10
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The above equations are simulated using the following data to generate the
plots shown: τ = 534 d, k1 = 0.25 d–1, kg = 0.0375 d–1, k5 = 0.024 d–1,
ko = 0.14 d–1, W1/V = 0.0268 µg/L-d, and W2/V = 0.0856 µg/L-d.  

Using one of the computational methods illustrated in Chapter 3, solve
the above equations simultaneously to get the steady state concentra-
tions, and compare them with the results from the plot in Figure 6.10. 

APPENDIX 6.1: ANALYTICAL SOLUTIONS FOR SPECIAL CASES
OF GROUNDWATER CONTAMINATION

Case 1: Continuous Source of Conservative Tracer in One Dimension

For an infinite column of background concentration of zero and continu-
ous input of a tracer at x = 0 at a concentration of C0, the groundwater con-
centration at a point x = L as a function of time is given by the following:

C(L,t) = �
C

2
o
� 	erfc � � – exp��

E

u

x

� L� erfc � �


Case 2: Instantaneous Source of a Conservative Tracer in One Dimension

For an infinite column, of background concentration of zero, and slug
input of a tracer of mass M, the concentration as a function of time and dis-
tance is given by the following:

C(x,t) = �–�
(x

4

–

E

u

t

t)2

��

Case 3: Steady State Concentration in Two Dimension

Spatial distribution in two dimension for a plume that has stabilized is
given by the following:

C(x,y) = exp��
2
u
E
x

x
��Ko	�

4
u
E

2

x
���

E
x2

x
2� � �

E
y2

y
2��


where Ko is the modified Bessel function of second kind and zero order.

C0��
�4π2Ex�Ey�

M
��
2A�πEt�

L � ut
�
2�Ex t�

L – ut
�
2�Ext�
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Case 4: Pulse Source in Two Dimension

If a tracer with a concentration of C0 is injected over an area A at x = x0

and y = y0 in a flow field, the concentration as a function of x, y, and t is given
by the following:

C(x,y) = exp�–�
[(x –

4

x

E
0)

xt

– ut]2

� – �
(y

4

–

E

y

y

0

t

)2

��
Case 5: Pulse Radioactive Source in Three Dimension

If a radioactive tracer of first-order decay rate of λ with a concentration of
C0 and volume V0 is released into a flow field at t = 0, the downstream con-
centration as a function of x, y, and t is given by the following:

C(x,y,z,t) = exp�– �
(x

4

–

E

u

x

t

t

)2

� – �
4

y

E

2

y t
� – �

4

z

E

2

z t
� – �t�

Case 6: Plane Source of Reactive Substance in Three Dimension

C0V0��
8(π t)3/2�Ex Ey E�z�

CoA
��
�16π2t2�ExEy�
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CHAPTER 7

Software for Developing 
Mathematical Models

CHAPTER PREVIEW

In this chapter, three distinct types of commercially available software
packages for model development are identified: spreadsheet-based,
equation solver-based, and dynamic simulation-based packages.
Selected examples of software packages belonging to these three types
are discussed. Some of their features, merits, and limitations are illus-
trated by applying them to the same common water quality modeling
problem. The objective is to provide an overview of the available soft-
ware and their capabilities so that readers can make their own choices
appropriate to their modeling goals.

7.1 INTRODUCTION

THE low-cost availability of high-performance desktop computer hard-
ware and equally powerful software applications in recent years has fos-

tered extensive use of computer-based simulation models in all fields of 
science and engineering. The benefits of computer-based simulation models in
understanding, analyzing, and predicting the behavior of complex and large-
scale natural and engineered systems in a safe, timely, and cost-effective man-
ner have been well recognized.

A large number of professionally developed, special purpose modeling and
simulation programs are available commercially and also as shareware/free-
ware. Most such programs in use today have been developed using traditional
computer programming languages such as Fortran, Pascal, C, BASIC, etc. 
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End users often adapted these models in a black-box manner, feeding the
required input parameters in a specific format and obtaining values for cer-
tain output parameters preset by the programmer. The source code of these
models are normally not accessible to the users for them to modify the pro-
gram, if necessary, to meet their particular needs. 

Often, instructors, students, and professionals face situations when pre-
developed packages may not be flexible, readily available, or adequate for
special purpose applications. In such cases, it may be desirable for them to
develop their own programs or “models” to meet their individual needs.
Using traditional programming languages to develop simulation models
demands considerable computer programming expertise in addition to the
subject matter expertise. Even for subject matter experts with advanced 
programming skills, developing special purpose models using traditional pro-
gramming languages may prove to be very tedious and time consuming. To
justify the cost of model development by this approach, the models must have
wide applicability and/or a large market. 

Today’s computer users, who are familiar with software driven by menu
commands and/or mouse clicks with on-screen, format-free data entry via
dialog boxes, expect similar features in simulation models as well. They also
expect built-in features for graphical presentation and statistical analyses of
the model outputs as well as for sharing the outputs among other software
applications and other computers locally and globally. Using traditional pro-
gramming languages to develop models that incorporate these features
demands considerable programming effort.

Recognizing a need for model development tools for nonprogrammers,
software developers have introduced a new breed of applications that non-
programmers can quickly learn and use for developing their own simulation
models. These applications can be thought of as software tool kits for build-
ing or “authoring” special purpose simulation models for limited uses and/or
users. Such applications enable authors to create professional-quality simula-
tion models cost effectively, at a fraction of the time, requiring minimal pro-
gramming skills.

These applications are user-friendly in that model developers can build
models of varying complexity using familiar operators and mathematical
logic in contrast to using syntax and programming logic with traditional pro-
gramming languages. They also feature several built-in routines for plotting,
animation, statistical analysis, and presentation that the model developers can
adapt and incorporate into their models with ease. Above all, these models
can be configured to be flexible so that end users can, within certain limits,
modify and adapt basic models developed by others to suit their own needs.
Such flexibility allows models to be refined, fine-tuned, and upgraded as the
user becomes more familiar with the problem being studied.    
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Currently available software packages suitable for authoring computer-
based models can be categorized into three distinct types: spreadsheet-based
applications, equation solver-based packages, and dynamic simulation-based
packages. Examples of packages falling into the three categories that are
selected for illustration in this book are summarized in Appendix 7.1. In this
chapter, some of the salient features of these example packages are outlined
and illustrated by applying them in modeling the same problem. 

7.2 SPREADSHEET-BASED SOFTWARE

Spreadsheet-based software such as Excel®, Quattro® Pro7, and Lotus®8,
have been available for such a long time that their features and capabilities
are almost identical. Even though spreadsheets were originally designed as
electronic accounting books for financial analysis, they have evolved into
powerful mathematical tools and have been successfully adapted by modelers
to simulate a wide range of scientific and engineering phenomena. In a way,
spreadsheet applications are to numbers what word processors are to text. 

A worksheet in a spreadsheet application takes a tabular format, consisting
of columns, designated by alphabets, and rows, designated by numerals. The
intersection of any column (for example, column P) with any row (for exam-
ple, row 6) forms a cell, identified by its column heading and row number as
P6 in this example. Users can click inside any cell and enter text, numeric 
constants or variables, built-in functions or logical expressions, or custom
equations, all of which in turn can use or refer to constants, variables, or even
functions and custom equations, contained in other cells. Custom equations
can be embedded in the cells by typing them directly on the screen using stan-
dard mathematical notations; the terms in the equations can refer to cells that,
in turn, contain the constants, variables, functions, or other custom equations.
Links between the cells are “live” in that any change entered into a cell will
instantly update the values of all the cells that depend on that cell as well as
plots generated from those cells.

Spreadsheets feature a wide range of built-in mathematical, statistical, and
logical functions that users can enter into cells using standard mathematical
notations with minimal syntax. They also contain built-in, menu-driven rou-
tines for storing, formatting, and sorting data; plotting graphs; performing tri-
als and solutions; data analysis and curve fitting; exporting/importing data,
etc. In addition, they also include an English-like scripting language that
advanced users can adapt to write special purpose functions called “macros”

7Quattro® Pro is a registered trademark of Corel Corporation. All rights reserved.
8Lotus® is a registered trademark of Lotus Development Corporation. All rights reserved.
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to further enhance the capabilities of spreadsheets. A unique feature of Excel®

is that it has a comprehensive set of drawing tools built in, for authors to use
to create sophisticated graphic objects from within the program.

In building a spreadsheet model, the author places model parameters and
the model equations or formulas into the cells. The cells that carry the for-
mulas receive inputs from other cells that are linked to them, and they per-
form the operation specified. The numerical results calculated at any cell can,
in turn, be utilized by other linked cells to perform further calculations or
plotting. Thus, a spreadsheet model contains essentially a series of cells car-
rying the model input parameters, the governing equations, and the model
outputs. The cells display only the numerical values or logical expressions
generated by the embedded equations and not the equations themselves.
However, the embedded equation in any cell will be displayed in the formula
bar when the user clicks the mouse in that cell. Alternatively, all the cells in
a model can be set to display only their respective formulas all at once
through the menu by opening Tools > Preferences > View and checking the
Formulas button under the Window Options.

Spreadsheet applications such as Excel® are relatively inexpensive, com-
monly available, easy to learn and use, and very fast and powerful for alge-
braic operations. Applications of Excel® in modeling environmental systems
have been well documented (Hardisty et al., 1993; Gottfried, 2000). 
However, the program is limited by its inability to maintain internal dimen-
sional homogeneity; incapability of making symbolic manipulations or cal-
culus-based operations such as integration and differentiation, and lack of
advanced math functions such as complex numbers, gamma functions,
numerical procedures, etc. With advanced spreadsheet programming skills,
however, some of these limitations may be circumvented. 

7.3 EQUATION SOLVER-BASED SOFTWARE

Several types of equation solving packages with powerful mathematical
capabilities have become available in the past two decades. Some of the more
common ones are Mathcad®, Mathematica®, MATLAB®, and TK Solver.
They are to mathematical equations what spreadsheets are to numbers and
word processors are to text.

7.3.1 Mathcad®

Mathcad® is designed to process equations numerically and symbolically,
especially for performing engineering analysis. In setting up simulation 
models with Mathcad®, the model constants and variables are declared first at
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the top of a worksheet followed by the governing equations. The governing
equations are entered exactly as they would appear in a textbook, with the
unknown on the left-hand side of the equation and known variables on the
right-hand side. Within a worksheet, Mathcad® performs the calculations
from top to bottom, handling equations numerically or symbolically, but only
in one direction. All the variables in the right-hand side of the equation must
have been previously “declared” above the equation and should have known
values. Mathcad® has a built-in capability for calculus and matrix operations,
complex numbers, series calculations, advanced vector graphics, animations,
curve fitting, interpolating, and numerical procedures. It does not feature any
built-in drawing tools (like those in Excel®), but it allows users to import
graphics from other applications.

In contrast to the other common equation solving packages, Mathcad® fea-
tures several unique attributes. Mathematical notations and equations appear
on the worksheet in true symbolic form and are live—any changes made to
the constants or variables above an equation are immediately reflected in the
results of that equation as well as in the results of all the equations and plots
that depend on them. It does not require any syntax or code to build up mod-
els involving elementary algebra or basic calculus. More importantly, it main-
tains dimensional homogeneity, which is of particular benefit in several
engineering applications when common parameters are quantified in mixed
units. Use of Mathcad® in developing models for solving engineering prob-
lems has been documented in several reports, papers, and books (e.g.,
Pritchard, 1999).

7.3.2. Mathematica®

Mathematica® is structured so that the kernel that performs all the compu-
tations is separate from the front end where the user interacts. The front end
can be set for text-based interface or graphic interface. With the text-based
interface, the users interact primarily through the keyboard; with the graphic
interface, users interact through palettes, buttons, menus, etc. This graphic
interface supports a high degree of interactivity and is available for the PC
and Macintosh platforms.  Users’ inputs and the program’s outputs, graphics,
and animation can be integrated in the notebook to generate publication-
quality materials.

Users interact at the notebook level by entering equations or expressions;
the front end passes the information to the kernel where the computations are
completed, then receives the results from the kernel and presents them at the
notebook level. User inputs can be in the form of regular keyboard characters
or in the two-dimensional form with special characters selected from a palette.
The latter form is known as the standard form. Outputs at the notebook level
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are always expressed in the standard form. Whenever users input an equation
or expression, they are labeled as In[#], and the corresponding outputs are
labeled as Out[#].

The above interface features with the basic input palette are illustrated in
Figure 7.1. When the user inputs line In[1] and line In[3] using the regular
keyboard characters, Mathematica® echoes those as outputs in line Out[1]
and in line Out[3], respectively, in the standard from. The two-dimensional
expression entered in line In[6] in the standard form using the basic input
palette is echoed in line Out[6] in the standard form. The two-dimensional
expression entered in line In[11] is evaluated and returned as an output in the
standard form.  

The last two lines in Figure 7.1 illustrate just one of the many powerful
features of Mathematica® in performing mathematical operations in symbolic
form. The rich collection of features in the program includes numerous built-
in analytical and numerical functions and procedures, plotting, animation,
and visualization tools, expendability, etc. It also has the ability to rearrange
and backsolve an equation for one variable at a time.

Figure 7.1 Mathematica® interface.
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7.3.3 MATLAB®

MATLAB® is yet another equation processing application. It is based on
the matrix approach (the name is derived from MATrix LABoratory) and 
integrates computation, programming, and visualization to model complex
systems mathematically and graphically. Internally, all variables in the
MATLAB® environment are treated as matrices, with 1 × 1 matrices consid-
ered scalers and one-column or one-row matrices considered vectors. The
matrix approach enables complex calculations to be implemented efficiently
and compactly in an elegant manner.

While MATLAB®’s capabilities and features are similar to those of
Mathematica®, its interface is quite different. Modelers and users interact
with MATLAB® through the Command window. Any valid expression
entered in the command window is interpreted and evaluated. The expres-
sions can consist of operators, functions, and variables. The evaluation results
in the answer in a matrix form. The expressions can be entered line-by-line in
the Command window for immediate evaluation. 

When building models in MATLAB®, a sequence of commands is assem-
bled to input the model parameters and to translate the mathematical model
into a MATLAB® “script.” When interacting at the Command window, this
script has to be typed in every time the model is run with different inputs. This
can be tedious when the script contains a large number of commands and
inputs. To avoid this problem, the program allows modelers to store the script
in a specific file format called the M-File and call that file by name from the
Command window to be executed with different inputs. At run time, the call
to the script in the M-File can pass inputs and receive the results generated by
the script through Arguments to the call.  

The scripts can be written using the built-in MATLAB® language or tradi-
tional programming languages. By combining built-in functions and custom-
defined functions, almost any type of problem can be modeled with the
MATLAB® system. The functionality of the M-Files can be twofold. One
type of M-Files, called Script files, can perform a desired operation without
returning any result. For example, a sequence of valid expressions that gen-
erate a plot fall into this type. The second type of M-Files, called Function
files, can receive some variables as inputs, perform some calculations, and
return the result to the Command window or to other M-Files for further 
processing. A sequence of expressions that receives a set of numbers to cal-
culate their mean and standard deviation and return the results is an example
of the second type. 

This interface might sometimes be confusing to users not familiar with the
MATLAB® environment. To minimize this confusion, modelers can make 
use of the program’s built-in tools to build graphical user interfaces (GUIs) 
so that users can run MATLAB® models interactively, without having to
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know the program’s environment. MATLAB®, however, lacks the graphical
two-dimensional interface for entering equations (as in Mathcad® or
Mathematica®) and  the ability to maintain dimensional homogeneity (as in
Mathcad®). Several references to the use of MATLAB® in engineering model
building can be found in the literature, and books on the use of MATLAB®

are also plentiful (e.g., Palm III, 2001).

7.3.4 TK Solver

The interface in TK Solver is built of sheets. The governing equations are
first entered in algebraic form in the Rule Sheet. The equations can be entered
in any sequence. TK Solver will automatically create a Variables Sheet, list-
ing all the variables contained in the equations in the Rule Sheet. The
Variables Sheet consists mainly of an Input column, a Name column, an
Output column, and a Unit column. The known values for the variables are
entered by the user under the Input column of the Variables Sheet, and TK
Solver will solve all of the equations and return the unknown variables in the
Output column of the Variables Sheet.

The model is constructed by assembling the algebraic equations, just as in
the Excel® spreadsheet package. Unlike Mathcad®, TK Solver does not have
the built-in ability to perform the calculations in consistent units. However,
the model developer can specify the units in which each variable is displayed
in the Variable sheet (Display unit) and the units in which it is used in the
equations (Calculation units). To implement consistency, the developer has to
fill in another sheet, called the Unit sheet, where specific conversion factors
between the display units and calculation units are specified.  

Variables in TK Solver can take single values or a List of multiple values.
When all the variables take single values, the model can be Solved perform-
ing one set of calculations to return single values for the unknowns. When 
one or more variables take multiple values, as in a list, the model can be
ListSolved to perform multiple calculations to return multiple values for the
unknowns. The List feature is used to solve equations for a series of input 
values for one variable at a time and generate a series of output values of the
other variables to plot graphs, for example.  

While TK Solver can also be categorized among the equation solving
packages, it has the unique capability of inversion or backsolving the same
basic model. For example, if an equation has n variables, of which any of the
(n – 1) are known, TK Solver can solve the equation for the nth unknown
using just one statement of the equation. Traditional computer programs and
math packages would need n assignment statements to do the same calcula-
tions. If a problem involves m independent equations with an average of n
variable each, then a total of m * n number of assignment statements would
be required in traditional programs and math packages, while TK Solver
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would solve the problem with just m equations. When the equations are inter-
related, building a general model to simulate the system by traditional methods
becomes complex.  

7.4 DYNAMIC SIMULATION-BASED SOFTWARE   

Commonly available dynamic simulation software are Extend™9,
ithink®10, Simulink®11, etc. Dynamic simulation packages typically feature a
flow diagram interface, enabling modelers to assemble a flow diagram of the
system being modeled using graphical icons. The icons contain prepro-
grammed “subroutines” and can take one or more inputs, perform a calcula-
tion, and produce an output. The icons are assembled in an ordered fashion
by the modeler to represent the mathematical model. The flow diagrams are
not only mere visual representations of the system being modeled, but are
also “active” in that they can simulate the system based on the underlying
mathematical model encoded.  

The icons that are used to build the flow diagram are comparable, in a way,
to the cells in the spreadsheet programs. Whereas the links between the cells
are “abstract” and not normally visible in the spreadsheets, the links between
the icons in the dynamic packages are “physical” and visible. (It is possible
to show the links between cells in Excel®, for example, by turning on the
Trace Precedents and Trace Dependents feature through the Tools > Auditing
menu.) Spreadsheets, however, represent a snapshot of a system, while
dynamic simulation packages provide an equivalent of a moving picture. The
following three dynamic simulation packages are illustrated in this book:
Extend™, ithink®, and Simulink®. Specific features of these three packages
are outlined next.

7.4.1 Extend™

The capability of Extend™ to handle dynamic models enables problems
involving time-based variations of the inputs be modeled with ease. Extend™

can handle discrete or continuous variables and linear or nonlinear systems.
It has a built-in library of programmed subroutines in the form of icons that
can take one or more inputs, perform some calculation, and produce an output.
The icons are provided with input and output connectors, and the model is con-
structed in the form of a block diagram, by interconnecting icons in an ordered
fashion. The developer can also build custom icons with custom functions by

9Extend™ is trademarked by Imagine That, Inc. All rights reserved.
10ithink® is a registerd trademark of High Performance Systems, Inc. All rights reserved.
11Simulink® is a registered trademark of The MathWorks, Inc. All rights reserved.
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typing in the equations in algebraic form and feeding in inputs from the input
connectors to produce a desired output at the output terminal of the icon. 

Some of the built-in features of Extend™ that make it ideal for modeling
and simulation are animation, plotting, customizable graphical interface, sen-
sitivity analysis, and optimization. Extend™ allows models to be developed 
in a modular and stepwise manner, whereby users can begin with simple
blocks and add features as they learn more about the problem. Different
groups of users can develop separate blocks and assemble their blocks effort-
lessly to complete the model. Automatic dimensional consistency is not main-
tained by ithink®. 

7.4.2 ithink®

While ithink® also features a flow diagram interface, only four basic 
building blocks are used: stocks, flows, converters, and connectors. Stock
blocks, represented by rectangles in the flow diagram and functioning as
reservoirs, are accumulators that keep track of the state values at any instant
in time. Flow blocks, represented by a pipeline with a spigot, let material flow
into or out of the stocks at rates specified at the spigots. Converters, repre-
sented by circles, function as modifiers of flows or containers for model
parameters. In a way, stocks can be considered the nouns in the ithink® mod-
eling language, flows are the verbs, and converters are the adverbs. The con-
nectors, represented by arrows, link the other three blocks according to the
system logic, serving to transmit information (not material) between them. 

The converters can receive one or more inputs and generate an output by
performing a calculation. The calculation is entered into the dialog box for
the converter in the form of an algebraic equation, just as is done in the cell
in the spreadsheet-based programs. Once the blocks are connected according
to the program logic, and the program is run, ithink® performs a “material
balance” across each stock at every time step to update all the state values.
The ithink® package also includes built-in animation, plotting, customizable
graphical interface, sensitivity analysis, and optimization features. Automatic
dimensional consistency is not maintained by the program. 

7.4.3 Simulink®

Simulink® is another flow diagram-based simulation package for model-
ing dynamic systems. Simulink® is driven by the mathematical equation
solver-based package, MATLAB®. It supports linear as well as nonlinear sys-
tems modeled in continuous time or discrete time or a hybrid of the two. It
has a unique feature of multirating, i.e., different parts of a system are sam-
pled or updated at different times, if necessary. 
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The flow diagram in Simulink® is constructed using Blocks as in Extend™,
by dragging from a library of icons representing sources, sinks, math func-
tions, linear and nonlinear components, connectors, and plotters. Simulink®

also allows custom functions to be created through MATLAB® code. Once
the system is represented by the flow diagram, it can be run using a choice of
integration methods, interactively through the Simulink® menu or, in batch
mode, from the command window from MATLAB®. The results can be 
plotted in Simulink® or put in the MATLAB® workspace for post-processing
and visualization.

Simulink® has access to the eight built-in solvers of MATLAB® such as
Runge-Kutta method, trapezoidal method, etc., with variable steps and fixed
steps, for solving dynamic problems involving differential equations. Higher-
order differential equations have to first be reduced to first order by substitution.

7.4.4 Extend™ vs. ithink® vs. Simulink®

While these three dynamic simulation packages feature a similar flow dia-
gram-based interface and are functionally almost identical, the following dif-
ferences may be noted. The ithink® package is more economical in terms of
the number of icons required for a model. This is due to the fact that the
Converters can hold model parameters, such as constants or time-dependent
parameters in tabular and/or functional forms, as well as equations to process
inputs. In Extend™ and Simulink®, separate icons are required to hold con-
stants, tabular or functional, and time-dependent parameters. Further, when
acting as equation holders, Converters in ithink® can accept any number of
inputs, whereas corresponding icons in Extend™ and Simulink®, accept only
a limited number of parameters at their input terminals. If an equation, for
example, has to multiply six variables to generate an output, a total of seven
Converters would be adequate in ithink®—six for holding the inputs and one
for multiplying. Extend™ would require six Constant blocks, an Equation
block that has a maximum of five input terminals, and a further Multiplier
block with two input terminals. MATLAB® would require six Constant
blocks and five Multiplication blocks, each with only two input terminals.
The multifunctionality of the Converters in ithink® makes building and trou-
bleshooting complex models involving several parameters somewhat easier,
when compared to Extend™ and Simulink®. 

The plotting capabilities of Simulink® and ithink® are limited, while
Extend™ allows some degree of customization. The plotting feature of
ithink® allows up to five variables to be plotted in the same frame, while
Extend™ allows four at a time, and Simulink®’s Scope block allows only one
variable at a time. However, taking advantage of the close integration with
MATLAB®, additional post-processing features of MATLAB® can be
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accessed in Simulink® models. The output from the Plotter block in Extend™

has a useful feature: it presents the plot as well as a table of the underlying
numerical values generated during the simulation in one window. Further,
when the cursor is placed at a point inside the plot area, Extend™ displays the
numerical value of all of the dependent variables in the plot corresponding to
the value of the independent variable at the cursor location. This information
is live in that as the cursor is moved, all the values are instantly updated. In
ithink®, the numerical values generated during a simulation run can be dis-
played in a window separate from the plot window. 

Extend™ and ithink® have a built-in animation feature for its blocks, while
Simulink® does not. The icons in ithink® are rectangles for Stocks and circles
for Converters and Controllers, the icons in Extend™ take different graphic
forms, and Simulink® features icons commonly used in signal processing and
electrical engineering. The icons in Simulink® can be flipped or rotated,
enabling the flow diagram to be made more clear. All three of these packages
allow submodels to be created by grouping related icons into a common
block. Extend™ allows further customization of the icons of the submodels to
represent the real system being modeled visually as well. The variables in the
equations that the model developer enters into the icons can be custom names
in the case of ithink® and Simulink®. In Extend™, the name of the terminal is
used rather than the name of the variable that is connected to the terminal.

In the following sections, all of the above eight packages are applied to
model a common example problem under various scenarios. The objective of
this exercise is to demonstrate their features, advantages, and limitations.  

7.5 COMMON EXAMPLE PROBLEM: WATER QUALITY
MODELING IN LAKES

Consider a lake, of certain volume, V, with a flow rate of Q leaving the
lake. The lake receives a waste load, W(t), where it is consumed by first-order
reactions. The objective is to develop a model to relate the resulting concen-
tration, C, of the pollutant in the lake to the system variables under a range of
loading and initial conditions. This problem can be modeled based on an MB
on the pollutant in the lake as discussed in Section 6.3.1. Assuming the lake
to be completely mixed and to be of constant volume, this MB statement can
be expressed in the form of the following differential equation:

V �
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where K is the sum of the first-order rate constants for all the consumptive
reactions. The solution to the above ordinary differential equation (ODE)
can yield the concentration of the pollutant in the lake, C, as a function of
time under predefined initial conditions, C0, and forcing waste load func-
tions, W(t). The forcing functions can be some function of time, continuous
or discontinuous. Obviously, the nature of W(t) should be known before
attempting to solve this ODE. A general solution to the above can be found
from the following:

C = �
e–

V

� t

��W(t)e
� tdt � C0e–� t (7.2)

where

� = K � �
Q

V
� � K + �

1

τ
� (7.3)

Obviously, the result will depend on the nature of the forcing function, W(t).
The simplest case is the steady state solution, with C0 = 0, under a constant
forcing function, W(t) =  W0, when the result can be found to be the following:

Css = �
V

W

•
0

�
� � �

V • K

W0

� Q
� (7.4)

where Css is the concentration of the pollutant in the lake at steady state. 
Because the explicit solution for the problem as described by the general

equation [Equation (7.1)] will depend on the initial conditions and the forc-
ing function, it is desirable to develop simulation models that can solve the
governing equations in a general manner rather than in a problem-specific
manner. Some common types of W(t) functions in this problem are as follows:

• constant loading:

W(t) = W0

• linearly increasing or decreasing load:

W(t) = W0 ± at

• exponentially increasing or decreasing load:

W(t) = W0 e±λt

• step increase or decrease from a background load of W0:

W(t) = W0 for t < 0 and W(t) = W0 ± W for t < 0

• impulse load of mass, m:

W(t) = mδ(t), where δ(t) = 0 for t ≠ 0 and �∞–∞ δ(t)dt = 1

• sinusoidal loading:

W(t) = Wave + W0 sin (ω t – θ)
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By combining the above simple functions, several different real-life loading
scenarios can be approximated for modeling purposes. Many of these func-
tions are amenable for analytical solutions, while all of them can be analyzed
numerically. However, if parameters of this model are also time-dependent,
such as the flow rate, Q, for example, then the solution has to be found
through numerical simulation. As such, it is desirable to select software
packages that can be readily adapted for numerical analysis. Those that have
built-in routines for numerical analysis will be preferable for building real-
istic models.

7.5.1 LAKE PROBLEM MODELED IN Excel®

The steady state situation is straightforward to model and simulate. Figure 7.2
shows a “graphical” form of this model set up in the Excel® spreadsheet
package. The model inputs Q, W0, V, and K are entered into cells C8, C9,
D12, and D13, respectively. Equation (7.4) is embedded in cell D14 for “C ”
inside the lake with appropriate unit conversion factors. In the spreadsheet
shown in Figure 7.2, the mouse has been clicked at cell D9, displaying the
“one-line” form of Equation (7.4) in the formula bar at the top of the work-
sheet. Excel® allows users to assign custom names to the cells and to refer to
the cells by their names instead of the default column-row notation. This fea-
ture is illustrated in this example, which makes the model self-explanatory. It
can also be of benefit in troubleshooting.

The equations entered into the cells include the proper unit conversion fac-
tors to maintain dimensional consistency in the calculations. The equations

Figure 7.2 Lake problem modeled in Excel®.
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contain references to other cells, which in turn, contain the known input
parameters. These cells are referred to by the column-row notation.
Alternatively, cells can be assigned appropriate names through the Insert >
Name > Define . . . menu sequence and can be referred to by their names
instead of by the generic column-row notation. This feature may be conven-
ient when building and troubleshooting large models in Excel®.

Several simple yet important scenarios may be simulated by this model.
For example, one can vary the Q and V values to understand the impact of 
the detention time on the in-lake steady state concentration or compare the
impact of conservative substances (by setting K = 0) against reactive ones 
(K ≠ 0). This same lake problem can now be posed in different ways: for
example, one way would be to determine the allowable pollutant load, W, that
would not violate a given in-lake concentration as stipulated, for example, by
the water quality standards for the lake. In such a case, this basic spreadsheet
model will not be able to back-calculate the answer instantly unless a trial-
and-error approach or a built-in function such as goal seeking is adapted. 

This form of the spreadsheet model cannot be generalized for different W(t)

functions, because a separate model has to be formulated depending on the
forcing function. The corresponding algebraic solution must be known in
explicit form before constructing the model. To model this lake problem in a
general manner, to simulate, for example, different types of waste load inputs,
numerical approaches have to be adapted. 

For instance, consider the case where the lake is initially under pristine
conditions, and a step input of W = 1080 lbs/day is input to the lake at time 
t = 0. After five years, this load is reduced instantaneously to W = 500 lbs/day.
To solve the governing ODE under the above conditions, Euler’s numerical
method introduced in Chapter 3 has to be used. Figure 7.3 shows such an
implementation. The model parameters are defined first. The time step has
been chosen as h = 0.25 years. (A more accurate solution and a smoother plot
can be obtained by using a smaller step such as h = 0.05 years.) The waste
load input column “W” is filled with the logical expression, if (t < 5, 1080,
500), describing the partial step shutdown. By filling the “W” column in this
manner, one can easily change the time step h in cell D13 to observe its effect
on the final result, without having to adjust the “W” column manually.  The
last column contains dc/dt, which, in essence, is the right-hand side of the
ODE to be solved. As can be seen from this implementation, spreadsheets
enable simple ODEs to be solved relatively easily through numerical methods. 

7.5.2 LAKE PROBLEM MODELED IN Mathcad®

The Mathcad® model of the lake problem is illustrated in Figure 7.4. In
this model, a case in which W(t) is a time-dependent function is illustrated.
Because the particular solutions of the governing differential equations take
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different forms for different initial conditions and forcing functions, the com-
plete solution must be known in advance to build models in Excel®. The 
equation processing engines in mathematical packages such as Mathcad® can
solve differential equations in a general manner without the need to modify
the basic model. The forcing function in this example is defined to be a par-
tial exponentially declining shutdown from 1080 to 500 lbs/day after six
years. In Mathcad®, this partial step shutdown is encoded in a simple state-
ment as follows:

W(t) = if(t > 6 * 365 * 86400, (1080 * e–0.005t + 500), 1080)

which is very similar to the format used in the Excel® spreadsheet package 
for logic statements.

One of Mathcad®’s built-in Runge-Kutta procedures, rkfixed, is called to
model the problem using the basic form of Equation (7.1). This procedure is

Figure 7.3 Lake example modeled in Excel® under unsteady state conditions.
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based on the fourth-order Runge-Kutta algorithm, which is efficient in solv-
ing first-order ODEs. It requires the following arguments to be specified, in
order: the dependent variable, the initial value of the independent variable,
the final value of the independent variable, the number of points beyond the
initial point at which the solution is to be approximated, and the function rep-
resenting the right-hand side of the ODE to be solved. In the example, these
arguments are C, t0, t f, N, and D, respectively, all of which have to be defined
in advance, as shown in Figure 7.4. The procedure returns a matrix, with the
independent variable in the first column, ranging from t0 to t f, the corre-
sponding dependent variables in the second column, and the corresponding
first derivatives in the third column.  

Mathcad®’s built-in ability to perform the calculations to produce results
with consistent units is also illustrated in Figure 7.4: the reaction rate constant
has been entered in day–1 instead of yr–1, and the flow rate is entered in 
cu ft/min instead of cu ft/s. The steady state concentration at W = 1080
lbs/day is returned as 1.63 mg/L as before. This feature is fully automatic,

Figure 7.4 Lake problem modeled in Mathcad®.
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saving considerable model building time and avoiding unit conversion errors.
The figure also illustrates some of the palettes in Mathcad® that enable math-
ematical expressions to be displayed in the standard form.  

To visualize the results of calculations, another built-in plotting feature is
evoked by clicking on the plot button and filling in the placeholders with the
appropriate variables for Mathcad® to generate two- or three-dimensional
plots. In this example, the results from the Runge-Kutta procedure are used 
to plot the transient response of the lake as a function of time. The ability to
perform the calculations and plot the results in an integrated worksheet pro-
vides a clear understanding of the system under dynamic conditions, showing
the time to reach steady state condition under a change in W.

A unique design feature of Mathcad® is that all the components of the
model, such as inputs, constants, equations, etc., are all displayed clearly in
the worksheet; thus, the users can “read” the model like a book without need-
ing to know any syntax or opening other sheets, icons, menus, etc., as in other
packages. The entire worksheet is live, so that users can experiment with 
the model by clicking at a value and changing it, letting Mathcad® recalculate
and update all the results and plots instantly. Mathcad® solves the equations
sequentially by substitution from top to bottom as in traditional programs,
and therefore, does not have the ability to backsolve like TK Solver.

7.5.3 LAKE PROBLEM MODELED IN Mathematica®

Mathematica®’s ability to solve the governing ODE analytically in sym-
bolic form to yield an analytical solution is illustrated in Figure 7.5. In this
example, a constant waste load of W is applied to a pristine lake, starting at
time t = 0. The built-in procedure DSolve is called in line In[6] with the equa-
tion, initial condition, and the dependent and independent variables in the
argument. The algebraic solution is returned in line Out[6] as the result.
Comparing this result with Equation (7.4) (which was derived using tradi-
tional mathematical calculi), it can be seen that they are identical.

The unsteady state lake problem modeled using Mathematica® is shown in
Figure 7.6. The model parameters are defined in line In[27]. In this case, the
waste load is defined as a constant from t <= 6 years and as an exponentially
declining load for t > 6 years. This is specified by a simple logical expression,
as in the case of the Excel® spreadsheet example:

W = 1080 * 454,000 * 365; waste load = If [t > 5, W * e–µt, W]

In this case, a semicolon is used at the end of the input line to suppress the
echoing of the input. A built-in numerical procedure NDSolve is called in line
In[30] to solve the governing ODE. The following arguments are provided
for this call: the complete differential equation, the initial value of the
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Figure 7.5 Analytical solution for the lake problem obtained using Mathematica®.

Figure 7.6 Lake example modeled with Mathematica® under unsteady state conditions.
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dependent variable, the dependent variable, and its range over which the ODE
is to be solved. The procedure returns the solution in the form of an interpo-
lating function in line Out[30].

Finally, the Plot procedure is called in line In[31] to plot the results
returned by the NDSolve procedure. Unlike in Excel® and Mathcad®, where
one clicks a button to generate graphs, in Mathematica®, the Plot procedure
has to be called, specifying all the objects associated with the plot. In the
example shown, the arguments indicate the function to be plotted, the range
of the independent variable, and the titles for the two axes. Additional plot
object specifications can be optionally included with the call to further cus-
tomize the plot.  

7.5.4 LAKE PROBLEM MODELED IN MATLAB®

MATLAB®, like Mathematica®, can solve simple ODEs analytically, when
the Symbolic Math Toolbox is available. This feature is illustrated first in this
example, where a constant waste load of W is applied to a pristine lake, start-
ing at time t = 0. The built-in procedure dsolve is called with the equation and
the initial condition as the arguments. The algebraic solution is returned as
the result, as shown in Figure 7.7. This solution was obtained by entering the
first line in the Command window directly. Comparing this result with
Equation (7.4) (which was derived using traditional mathematical calculi), as
well as that returned by Mathematica®, it can be seen that all can be reduced
to the same form.

The MATLAB® model of the unsteady state lake problem is presented in
Figure 7.8. In this case, an exponential declining load of W = W0e–µ t is
applied to a pristine lake, starting at time t = 0. The objective is to plot the
response of the lake for various values of µ. The governing ODE is first set
up in an M-File named Lake.m, where a custom function, Lake, has been
defined as a two-dimensional matrix in line 1. The model parameters, W, Q,
V, K, and µ are defined in this M-File to be global in line 2, so that they can
be interactively changed in the Command window without having to edit the
M-File that contains the script. The governing ODE is entered in line 3.

The model is run from the Command window, where the model parame-
ters are first defined to be global. Numeric values for the parameters are then

Figure 7.7 Analytical solution for the lake problem in MATLAB®.
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supplied in the following lines. A For loop is set up to solve the governing
ODE for µ ranging from 0 to 0.5, in steps of 0.1. A built-in function, ode45,
is used here to solve that ODE. The custom function Lake defined in the 
M-File is used as one of the arguments for ode45, which identifies the ODE
to be solved. The range of the independent variable over which the solution
is sought and the initial value of the dependent variable are also specified by
the other two arguments of this call. The result from ode45 is returned in the
form of a matrix [t, C], which is then fed to the built-in plot function to gen-
erate the graph of C vs. t. The text command is used to add annotations to 
the plot by specifying the locations and the text to be inserted. The hold on

Figure 7.8 Lake example modeled in MATLAB® for various exponentially decaying loads.
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command is used to keep the plot frame the same until all the µ values have
been evaluated. 

As can be seen from this example, several lines of commands have to be
typed in the Command window every time the program is run. A major part
of the commands shown in this example can be moved to the Lake M-File or
to another M-File to make the program less tedious to maintain and run.
MATLAB® also contains a set of tools to construct a graphic user interface to
improve the interactivity.   

Plotting graphs in MATLAB® also has to be scripted with specifications
for all the plot objects, such as axis labels, annotations, etc., as in the case of
Mathematica®. In addition, unit conversion factors have to be provided by the
modeler/user as MATLAB® does not maintain dimensional homogeneity. As
can be seen from this example, the MATLAB® environment demands some
degree of programming skills, as does the Mathematica® environment.

7.5.5 LAKE PROBLEM MODELED IN TK Solver

Figure 7.9 shows the TK Solver model for the steady state solution for the
lake problem, illustrating the backsolving feature. The equation, as entered in
the Rule Sheet, is in the same form as Equation (7.1), but the Css is entered as
a known value in the Variable Sheet (= 1.63 mg/L) so as to determine the
allowable waste load, W0. When run, TK Solver inverts the equation speci-
fied in the rule sheet to calculate the unknown W0 and returns the result 
(= 1081) in the output column. Also of interest to note, in TK Solver, all the
parameters in the right-hand side of the equation need not be known to solve
the model—this is not possible with the other packages. 

TK Solver also has the ability to maintain dimensional homogeneity and
to perform calculations in a consistent set of units to provide the result in the
correct unit; however, this feature is not fully automatic as in the case of
Mathcad®. The developer has to incorporate a unit conversion sheet specify-
ing the conversion factors between the units in which the calculations are
done and the units in which the variables are displayed in the output sheet.
This feature is also illustrated in Figure 7.9, where the reaction rate constant
is entered in day–1 instead of in yr–1; TK Solver automatically calculates and
displays the same numerical value as before for the waste load in the units
specified in the output sheet.

In contrast to Mathcad®, in TK Solver, the various components of the
model, such as inputs, equations, and plots, etc., are displayed in separate
windows. Also, the model is not live as in the other packages. After making
any changes in the model parameters, the user has to use the menu command
Solve to recalculate the results or update the plots. TK Solver includes a
MathLook window, which reformats the line form of the equation entered into
the Rule sheet, into a standard mathematical form for checking complex
equations or for presentation purposes. 
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The ability of TK Solver to solve differential equations in a general man-
ner using built-in functions is illustrated in Figure 7.10. In this example, the
response of an initially pristine lake to the input of an exponentially decreas-
ing waste load, W(t) = We–λt is modeled. The governing equation in this case
is as follows:

�
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d
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��C

and the initial condition is C = 0 at t = 0. To solve this equation in TK Solver,
a built-in numerical procedure is “called.” The above equation is fed to the
built-in function ODE-BS as the first argument identifying the independent
and independent variables, t and C, respectively. The limits of t = 0 to 3650
days and the lists associated with the dependent and independent variables, C
and t, are also included in the call. The parametric values, K, V, Q, and λ, are
input by the modeler in the input sheet, and the conversions between the
working and display units are specified as before in the units sheet. 

The built-in ODE-BS function used in this example follows the Burlsih-
Stoer extrapolation algorithm with adaptive step-size control for high-precision
numerical solution of first-order, non-stiff, ODEs. Other similar built-in 

Figure 7.9 Steady state lake problem modeled in TK Solver.
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functions for solving systems of equations and/or stiff ODEs are available in
TK Solver. 

7.5.6 LAKE PROBLEM MODELED IN Extend™

The lake model can be modeled in Extend™ as shown in Figure 7.11. The
basic simulation model shown in Figure 7.11 is built using icons from the
Extend™ library menu. The Input data icon, which can take tabular data, is
used in this example to input a partial step shutdown of the waste load as in
the Mathcad® example. The Random input icon is used to simulate random
variations of the flow, Q, with a normal distribution of a specified mean and
standard deviation. In the example shown, a mean of 100 cfs and a standard
deviation of 20 cfs are specified. The three Constant input icons are set up for
inputting values for V, K, and the initial concentration in the lake, Co.

The Equation icon contains Equation (7.3) as entered by the programmer
to calculate and return the output as α at the output terminal, using the three
inputs, Q, V, and K, fed to the input terminals. Another built-in library rou-
tine, Integrate icon, for solving the differential equation is used to yield C. In

Figure 7.10 Lake problem solved with TK Solver for an exponentially decaying load.
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the example shown, Euler’s Forward method is chosen with an initial value 
of Co = 0.5 mg/L. Finally, a built-in Plotter icon is used to plot the variation
of C as a function of time. As shown in Figure 7.11, the error bars indicate
the fluctuations that can be expected in C due to random changes in Q.

As one can note, the Extend™ flow diagram, on the surface, does not
reveal the underlying equations of the model as does the Mathcad® model. Its
object-oriented iconic interface is in sharp contrast to the text/numeric
appearance of the other applications. Users have to “open” the icons by dou-
ble-clicking on them to view or edit their contents. However, model parame-
ters and equations are embedded into the icons, just as is done with the other
applications using traditional mathematical notations. In fact, the icons in
Extend™ are comparable to the cells in a spreadsheet. With advanced skills,
the standard icons can be incorporated into more realistic, user-defined
graphical objects to present visually meaningful and intuitive models.  

The Extend™ package has some advantages over the packages discussed
earlier.  A major advantage is the program’s ability to perform continuous

Figure 7.11 Lake problem modeled in Extend™.
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simulation. This enables, for example, models with differential equations to
be solved in a general way rather than in a problem-specific manner. Inputs
can be random or time variable rather than constant. 

7.5.7 LAKE PROBLEM MODELED IN ithink®

In ithink®, the model is built in the form of a flow diagram, using the three
basic components—stocks, converters, and containers—joined according to
the model equations. Based on this flow diagram, the software compiles all
the equations and the parameters, as shown in Table 7.1. The flow diagram is
shown in Figure 7.12. 

This model is also capable of solving the governing differential equation
directly, for a time-dependent input of W, set by the modeler as a step shutdown
function (as was done in the Mathcad® and Extend™ models). This was done
simply by entering the following expression into its container: Wasteload =
IF(Time<6*365) then 1080 else 500. The Euler’s method was chosen to solve
the differential equation.

The sensitivity analysis feature that is built into ithink® is also illustrated
in this model. The sensitivity of the lake concentration to the reaction rate
constant ranging from 0.0002 to 0.0008 is set in the sensitivity specification
menu for ithink® to generate the concentration profiles at the set K values.
Like Extend™, ithink® also generates a table of the calculated values, but only
on demand, in a sheet separate from the plot sheet. 

7.5.8 LAKE PROBLEM MODELED IN Simulink®

The lake problem modeled using the Simulink® package is illustrated in
Figure 7.13. In this case, the model is set up so that the waste load = We– λt,
where W is a step function. The solution of the governing ODE is computed
by MATLAB®’s built-in routine, ode45, referred to in Section 7.5.4. The ini-
tial concentration in the lake can be set in the dialog box for the Integrator

Table 7.1 Lake Model Equations Generated by ithink®

Stock equation: LakeC(t) = LakeC(t - dt) + (Inflow - RxnLoss - Outflow) * dt
INIT LakeC = 0

Inflows: Inflow = Wasteload*454000/Volume

Outflows: RxnLoss = LakeC*ReactionRate
Outflow = Flow_Rate*LakeC/Volume

Parameters: Flow_Rate = 6000*(60*24*28.32)
ReactionRate = .00063
Volume = 3.15*10^9*(28.32)
Wasteload = IF(Time<6*365) then 1080 else 500
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block. The simulation period of 15 years and a time step of 0.1 year are also
set through the Simulation Parameters menu.

By setting the value of λ to zero, the same basic model can simulate a step
input of W. The step function itself can be customized to simulate different
magnitudes and/or starting times. By adding other blocks from the Simulink®

library, various loading scenarios can be readily simulated. Simulink® also
allows parts of the models to be combined into submodels so that complex
models can be presented in a compact form.

7.6 CLOSURE

As can be seen from the models presented in the last section, the different
software packages have their strengths and limitations. In selecting a package
for developing simulation models, several factors, such as functional ability,
expendability, ease of maintenance, extent of computer skills required, user
friendliness, availability, cross-platform transportability, etc., need to be 

Figure 7.12 Lake problem modeled in ithink® at different reaction rate constants.
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considered. It is, therefore, impossible and unfair to compare them or rank
them or make any specific recommendations. 

Some general recommendations based on the above examples and the
author’s experience are as follows. For those who have not attempted com-
puter-based modeling, Excel® is probably the easiest to learn and to apply to
develop models quickly. For those familiar with Excel®, TK Solver should be
easy to learn, because the equations are entered into TK Solver using the
same one-line style as used in Excel®. Those who have experience in tradi-
tional programming should find the environments in Mathematica® and
MATLAB® familiar and easy to learn. The learning curve for the dynamic
simulation packages is somewhat steep initially, but once some basic under-
standing is gained, complex models can be developed fairly easily and more
quickly than in the other packages.  

If the problem is of a static nature, and if the model has to be simulated
under various values of the same parameters as inputs without having to
rearrange the model equations, then Excel® is probably the most convenient

Figure 7.13 Lake problem modeled in Simulink® for an exponentially declining load.

Chapter 07  11/9/01  9:33 AM  Page 190

© 2002 by CRC Press LLC



to use. If repeated solutions are required for different combinations of the
model parameters by rearranging the model equations, then TK Solver would
be more appropriate. Excel® may be used in such cases using the Goal Seek
and Solver options. 

Dynamic problems involving a single ODE can be solved with all of the
above packages. Mathematica® can find an analytical solution, if possible,
and all of them can be used to find numerical solutions. Systems of ODEs can
also be solved by all of them; however, the equation solver-based packages
and the dynamic simulation packages are more efficient for solving problems
involving ODEs. Higher-order equations can be solved directly by
Mathematica® and MATLAB®, whereas in Mathcad®, TK Solver, Extend™,
ithink®, and Simulink®, they have to be reduced to first order by substitution
beforehand. PDEs can be handled efficiently by Mathematica® and MATLAB®

but with fairly bulky models in the others. Examples of the use of spread-
sheets for solving single, coupled, and partial differential equations have been
presented previously (El Shayal, 1990a; El Shayal, 1990b; Kharab, 1988).

Excel®, TK Solver, Extend™, ithink®, and Simulink® packages are data-
based, in that numerical values have to be input for the solution. Mathcad®,
Mathematica®, and MATLAB® can handle equations symbolically.
Mathcad®, Mathematica®, and MATLAB® are best suited for abstract model-
ing using symbols and for numeric simulations. Mathcad® and Mathematica®

feature the “same sheet” interface, where all the inputs, outputs, and interac-
tions are presented in the same screen. The “multiple sheet” environment in
MATLAB® demands a steeper learning curve. 

Mathcad®, Mathematica®, and MATLAB® feature rich post-processing
capabilities for plotting, visualization, animation, and presentation. In com-
parison, the plotting facilities in Excel®, TK Solver, Extend™, ithink®, and
Simulink® serve basic needs, with limited options for customizing. It should
also be pointed out that all of the above packages incorporate several other
powerful features that are not discussed here, because they are not commonly
utilized in modeling environmental systems. For example, spreadsheet
packages include statistical tools, database functions, etc., and mathemati-
cal packages include curve fitting, complex algebra, etc. 

Shacham and Cutlip (1999) have presented a comparison of Excel®,
Mathematica®, MATLAB®, Mathcad®, and two other equation solver-type
packages, Maple® and POLYMATH, in developing simulation models in
chemical engineering. They concluded that all of them were functionally
capable and ranked them as follows on the basis of user friendliness and
amount of technical effort involved: (1) POLYMATH, (2) Mathcad®,
(3) MATLAB®, (4) Mathematica®, (5) Maple®, and (6) Excel®. 

12Maple® is a registered trademark of Waterloo Maple Inc. All right reserved.
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It is hoped that the above overview of some of the capabilities, features,
and limitations of the different types of software packages will be beneficial
to users in selecting appropriate approaches to satisfy their modeling goals.
From the wide range of modeling examples included in this book, one can get
a general feel for the types of models that can be developed with the differ-
ent packages. It is probable that with enough practice and familiarization, just
about any engineering problem can be modeled with these packages without
having to resort to traditional language-based programming, provided the
problem can be adequately described mathematically. 

As a final note, the quality of many of the plots included in this book may
appear poor, because they are “screen shots,” made intentionally to illustrate
the entire modeling environment. Many of the software packages discussed 
in this book can, however, print presentation-quality plots directly, if neces-
sary. Some can export high-quality plots to other documents.
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Applications
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CHAPTER 8

Modeling of Engineered
Environmental Systems

CHAPTER PREVIEW

In this chapter, 12 examples of engineered systems are illustrated. The
selected examples include steady and unsteady state analyses using
algebraic and differential equations, solved by analytical, trial and
error, and numerical methods. Computer implementation of the math-
ematical models for the above are presented. The rationale for select-
ing appropriate software packages for modeling the different problems
and their merits and demerits are discussed.  

8.1 INTRODUCTION

THIS chapter will serve as the “capstone” chapter for engineered systems
in that the principles and philosophies covered in the previous chapters

are integrated and applied in the modeling of engineered environmental sys-
tems. Engineered systems involving steady and unsteady conditions are mod-
eled applying the general theories presented in Chapter 4 to various reactor
configurations discussed in Chapter 5 utilizing the software packages identi-
fied in Chapter 7. The first example illustrates the entire modeling process
from model development to computer implementation to calibration to vali-
dation. The rest of the examples illustrate the model development and com-
puter implementation procedures. 

8.2 MODELING EXAMPLE: TRANSIENTS IN 
SEQUENCING BATCH REACTORS

This example is based on a treatability study on a high-strength waste from
a soft drink bottling facility, reported by Laughlin et al. (1999). Due to the
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high variation in waste flow rate and its constituents, a sequencing batch reac-
tor (SBR) configuration was chosen to pretreat this waste prior to discharge
into the city sewers. This example illustrates the modeling of the SBR process
to predict the temporal variation of substrate, dissolved oxygen, and biomass
growth during the fill and react phases of the process.

Specifically, the objective of the original study was to investigate whether
the bioprocess would be limited by dissolved oxygen levels due to the high
substrate concentrations at the beginning of the react phase and to test the
hypothesis that an oxygen saturation model can be used to model such limi-
tation. The modeling goal is to achieve a correlation of r2 > 0.8 between pre-
dictions and observations of substrate and biomass concentrations at the end
of the react phase. 

The study consisted of laboratory testing and mathematical modeling. Two
bench-scale reactors (“Blue” and “Green”) we re-operated in parallel under
identical conditions to test reproducibility. These reactors were fed with the
high substrate waste from the bottling plant at various concentrations, but the
concentrations were maintained constant during each test run. One set of
experimental data was used to calibrate the mathematical model, and several
other sets were used to validate the model under various flow rates, initial
COD concentrations, and operating conditions. Details of the experimental
studies can be found in Laughlin et al. (1999).

8.2.1 MODEL DEVELOPMENT

Following the classifications in Section 5.22 in Chapter 5, SBRs can be
categorized as flow, unsteady during the fill phase, and nonflow, unsteady
during the react phase. The significant processes occurring during the fill
period are dilution and endogenous decay. The processes occurring during the
react period are substrate utilization, microbial growth, endogenous decay,
oxygen uptake, and oxygen transfer. Therefore, two sets of material balance
(MB) equations have to be developed—one for the fill phase and one for the
react phase, with MB equations for biomass, substrate, and dissolved oxygen
(DO) for each set. During the fill phase, the only processes occurring are dilu-
tion and decay of biomass; hence, the MB equations are as follows:
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MB on dissolved oxygen:
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During the react phase, the initial high concentration of the substrate can
cause oxygen limiting conditions. To simulate such conditions, a dual Monod’s
kinetic function is included to modify the biomass growth rate and the sub-
strate utilization rate under low DO levels.  

MB on biomass:
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MB on substrate:
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MB on dissolved oxygen:
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The model parameters were determined from independent experiments,
except for the half saturation constant for oxygen Ko, which was established
during the model calibration process. The variables are defined in Table 8.1.

Table 8.1 Parameters for SBR Model

Symbol Definition Value Units

a′ Oxygen-substrate stoichiometric coefficient 0.2 mg/mg
b′fd Respiration rate constant 0.0075 1/hr
Cb Biomass (MLSS) concentration Variable mg/L
Coxy Dissolved oxygen concentration Variable mg/L
C*oxy Saturated dissolved oxygen concentration 7.7 mg/L
kd Biomass death rate 0.0004 1/hr
KLa Overall mass transfer coefficient for aeration 12.8 1/hr
Ko Half saturation constant for oxygen uptake 90 mg/L
Ks Half saturation constant for substrate 800 mg/L
Q Waste flow rate Variable L/hr
t Time Variable hr
V0 Volume remaining in tank at start of fill phase 1.8 L
µmax Maximum specific growth rate 0.2 1/hr
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Because the ODEs are coupled, a numerical method has to be used. Further,
the inputs are constants; hence, mathematical packages as well as dynamic
simulation packages can be used in this example. Models developed with
Mathcad® and ithink® are illustrated in the following sections.

8.2.1.1 Mathcad® Model

The Mathcad® model is shown in Figure 8.1. The model parameters are
first declared in the top section of the sheet. Several parameters are entered
using logical statements to switch their values depending on whether the cal-
culations are in the fill phase (t < t f ) or the react phase (t > t f ). The syntax of
the logic statements in Mathcad® is very similar to that in Excel®. 

The differential equations governing the system are entered as a matrix in
D, which is then fed to the built-in routine, rkfixed. The solution is returned
as a four-column matrix in Z, containing the time, biomass, substrate, and DO
concentrations as a function of time. Finally, the fourth column is plotted to
show the DO variation. Notice that in this model, the aeration is switched off
during the fill period by the following statements: Kla(t) = if(t<tf, 0, 12.8) and
µm(t) = if(t<tf, 0, 5.0). 

8.2.1.2 ithink® Model

The model flow diagram for the SBR developed with ithink® is shown in
Figure 8.2. It shows the three separate, but interconnected, model segments,
each describing the fate of substrate, biomass, and DO. The ghosting feature
of ithink® is used here to minimize the complexity of the flow diagram. For
example, instead of feeding inputs directly from the substrate stock directly
to the converters where it is used, ghosts of the substrate stock (indicated by
dashed lines) are used. 

Model parameters, inputs, and intermediate calculations are contained
within the containers indicated by circles. Components of the MB equations
are embedded into the converters. All the parameters, inputs, and equations
compiled by ithink® are shown in Table 8.2. The initial values for the three
stocks are set for each stock individually. The Runge-Kutta fourth-order
method is selected for the three stocks.

A user-friendly graphic user interface (GUI) for this model is presented in
Figure 8.3. Using the built-in features of ithink®, a GUI is constructed that
enables users to adjust several model parameters such as fill time, waste flow
rate, and influent COD, interactively. The users can also evaluate the effect of
turning on aeration during the fill phase. 
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Figure 8.1 SBR model in Mathcad®.
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8.2.2 MODEL CALIBRATION

One set of experimental data was used to establish a value for Ko. Starting
from literature values, a trial-and-error approach was used to find the optimal
value of Ko = 90 mg/L. The criterion was to achieve a correlation of r2 > 0.8
between calculated and measured COD and biomass values at the end of the
react phase. Some of the biokinetic parameters were also adjusted to be
within ±10% of the measured values to improve the degree of fit between cal-
culated and measured COD and MLSS results.

Figure 8.2 SBR model in ithink®.
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8.2.2.1 Model Validation

The model is validated using the following measures:

(1) Predicted vs. measured concentrations of substrate (COD) and biomass
(MLSS) at the end of the react phase 

(2) Predicted vs. measured temporal concentration profiles of substrate
(COD) and biomass (MLSS) during the fill and react phases

Table 8.2 SBR Model Equations Generated by ithink®

STOCK EQUATIONS:
Biomass(t) = Biomass(t – dt) + (Input2 – Death) * dt

INIT Biomass = 5000
INFLOWS: Input2 = if(TIME < FillTime) then (-(FlowIn/Vol@t)*Biomass) 

else (Monod*OxyControl*Biomass)
OUTFLOWS: Death = Biomass*kd

Oxygen(t) = Oxygen(t – dt) + (Aeration – Endo – Dilution) * dt
INIT Oxygen = .1
INFLOWS: Aeration = if (TIME < FillTime) then 0 else

(Kla*(Csat–Oxygen)–OxyUptake)
OUTFLOWS: Endo = Biomass*b

Dilution = if (TIME < FillTime) then (-FlowIn*Oxygen/Vol@t) 
else 0

Substrate(t) = Substrate(t – dt) + (lput1 – Biouptake) • dt
INIT Substrate = 100
INFLOWS: Iput1 = if(TIME < FillTime) then (FlowIn*SubstrateIn/Vol@t)–

(FlowIn*Substrate/Vol@t) else 0
OUTFLOWS: Biouptake = if (TIME < FillTime) then 0 else

(Monod*Biomass/Yield)*OxyControl
CONSTANTS: b = 0.0075

Yield = 0.53
Csat = 7.7
QDesign = 3.2
SubstrateIn = 338
FillTime = 1
InitVol = 1.8
kd = 0.01/24
KLa = 12
Ko = 9
Ks = 800
MuMax = 5/24
Monod = if (TIME < FillTime) then 0 else

MuMax*Substrate/(Ks+Substrate)
OxyControl = Oxygen/(Oxygen+Ko)
OxyUptake = –a*DERIVN(Substrate,1)
FlowIn = IF(TIME < FillTime) then QDesign else 0
Vol@t = InitVol+ (if(TIME < FillTime) then TIME*QDesign else 

FillTime*Qdesign)
a = if (TIME < FillTime) then 0 else 0.2
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(3) Predicted vs. measured temporal DO profiles during the fill and react
phases

(4) Predicted vs. measured long-term substrate (COD) removal efficiencies 
(5) MB closure at the end of the react phase to check if the increase in bio-

mass equaled the decrease in substrate times yield

Results of these comparisons are presented in Figures 8.4 to 8.7, which indi-
cate that the model performance is within the expected goals. 

8.3 MODELING EXAMPLE: CMFRs IN SERIES 
FOR TOXICITY MANAGEMENT

This example is a modified version adapted from Weber and DiGiano
(1996). An industry is considering equipping an existing tank (of volume V )

Figure 8.3 Graphical user interface for sequencing batch reactor model in ithink®.
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Figure 8.4 Predicted vs. measured COD and MLSS after the react phase.

Figure 8.5 Predicted vs. measured COD and MLSS during the fill and react phases.

as an activated sludge pretreatment system for treating their waste stream to
meet the sewer discharge permit. This pretreatment system is expected to
receive BOD and a nonbiodegradable, toxic chemical according to the sched-
ule shown below, every two days:

0:00 9:00 10:00 11:00 12:00 13:00 14:00 16:00
to to to to to to to to

9:00 10:00 11:00 12:00 13:00 14:00 15:00 0:00

BOD conc., 50 60 75 100 125 142 150 50
C (mg/L)

Toxicant conc., 0 30 45 50 50 50 40 0
CT (mg/L)
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It has been found that if the concentration of the toxicant, CT, exceeds 25 mg/L
in the bioreactor, it will be toxic to the primary strains in activated sludge.
Additional available data are as follows: hydraulic retention times of existing
tank = 0.6 day and biodegradation rate constant, k, assumed first order, = 3 day–1

provided CT in the tank is less than 25 mg/L. The sewer discharge permit spec-
ifies a nominal limit of 20 mg/L BOD and a maximum limit of 30 mg/L BOD.  

It is required to evaluate the feasibility of using the existing tank as an acti-
vated sludge unit to treat the waste to the required levels and to make recom-
mendations to the industry. This problem is best solved by developing a

Figure 8.6 Predicted vs. measured dissolved oxygen at various influent COD levels.

Figure 8.7 Predicted vs. measured long-term COD removal.
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mathematical model. First, a process model is developed based on the exist-
ing conditions:

MB on toxicant:

V �
d

d

C

t
T

� = QCT,in – QCT

�
d

d

C

t
T

� = �
τ
1

�(CT,in – CT)

MB on BOD:

V�
d

d

C

t
� = QCin – QC – kVC

�
d

d

C

t
� = �

1

τ
�Cin – �

1

τ
�C – kC = �

1

τ
�Cin – �C

where α = (1/τ + k); and the reaction rate constant k is defined as follows:

k = 3 day–1 if CT < 25 mg/L and k = 0 if CT > 25 mg/L

The above MB equations are simple ODEs that can be solved analytically
and implemented in a spreadsheet if the inputs are either constants or simple
functions of time. Equation solving and mathematical packages can be used
if the inputs can be expressed as mathematical functions. In this example, the
influent concentrations C and CT are arbitrary functions of time as shown in
the schedule above; hence, numerical methods have to be used for solving
them. The dynamic software packages, Extend™ and ithink®, have all the
built-in features for solving this problem. In the next section, models devel-
oped with ithink® are illustrated. 

Figure 8.8 shows the preliminary model, where the two input variables C
and CT are entered as tables into the containers labeled “CtoxicantIn” and
“CBODin.” The symbol ~ inside the circles representing these containers
indicates that they contain tabular values instead of the normal constant val-
ues. Data from each row in these tables are used to update those variables at
each step of the calculation. Two stocks are used to represent the toxicant con-
centration and the BOD concentration. The container labeled RxnRate con-
tains the reaction rate expressed as RxnRate = if (Toxicant<25)  then 3/24 else
0, where the value for “Toxicant” is drawn from the stock labeled “Toxicant”
at each step of the calculation.  The model flow diagram is easily constructed
using the connectors. As the containers and stocks are connected and filled
in, ithink® automatically compiles all the equations to be used in the calcula-
tions, as shown in Table 8.3.

When the model is run, ithink® can either generate a table of the output
values for every step of the calculation or plot them as a function of time, as
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Figure 8.8 Pretreatment systems: preliminary model using ithink®.

Table 8.3 Pretreatment Model Equations Generated by ithink®

STOCK EQUATIONS: Toxicant(t) = Toxicant(t – dt) + (dCTdt) * dt
INIT Toxicant = 8
INFLOWS: dBODdt = (CBODin/HRT)–Alpha*BOD

BOD(t) = BOD(t – dt) + (dBODdt) * dt
INIT BOD = 20
INFLOWS: dCTdt = (CToxicantln–Toxicant)/HRT

EQUATIONS: Alpha = RxnRate+1/HRT

CONSTANTS: HRT = 0.6*24
RxnRate = if (Toxicant<25) then 3/24 else 0

CBODin = GRAPH(TIME)
(0.00, 50.0), (1.00, 50.0), (2.00, 50.0), (3.00, 50.0), (4.00, 50.0) (5.00, 50.0),
(6.00, 50.0), (7.00, 50.0), (8.00, 50.0), (9.00, 60.0), (10.0, 75.0), (11.0,
100), (12.0, 125), (13.0, 142), (14.0, 150) (15.0, 50.0), (16.0, 50.0), (17.0,
50.0), (18.0, 50.0), (19.0, 50.0), (20.0, 50.0), (21.0, 50.0), (22.0, 50.0),
(23.0, 50.0), (24.0, 50.0)

CToxicantln = GRAPH(TIME)
(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00,
0.00), (6.00, 0.00), (7.00, 0.00), (8.00, 0.00), (9.00, 30.0), (10.0, 45.0)
(11.0, 50.0), (12.0, 50.0), (13.0, 50.0), (14.0, 40.0), (15.0, 0.00), (16.0,
0.00), (17.0, 0.00), (18.0, 0.00), (19.0, 0.00), (20.0, 0.00), (21.0, 0.00),
(22.0, 0.00), (23.0, 0.00), (24.0, 0.00)

shown in Figure 8.9. From the toxicant and BOD concentration profiles
shown, it can be noted that the system as proposed can maintain the toxicant
concentration well below 30 mg/L without inhibiting the bioprocess in 
the reactor; however, the effluent BOD concentration will be in excess of the
discharge permit for over 12 hours of the day.  

One option for meeting the discharge permit is to install a baffle to parti-
tion the tank to form two CMFRs in series. (Refer to Section 5.23 of Chapter 5,

Graph of Toxicant and bOD
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where it was shown that multiple CMFRs in series are more efficient than a
single one.) However, because the decrease in toxicant concentration is due
only to dilution (or washout), smaller tank volumes may result in inhibitory
levels of the toxicant in one or both tanks. An optimal split of the total vol-
ume of the tank should, therefore, be found so that both criteria are ade-
quately met. Or, in other words, adequate hydraulic detention time should be
allowed in each tank so that the reaction can proceed to reduce the BOD con-
centration without being inhibited by the toxicant concentration. This
involves some degree of trial and error, which can be done efficiently with a
modified computer-based model. 

The MB equations can be readily derived as follows, with subscript 1 for
the first reactor and subscript 2 for the second reactor:

MB equations for toxicant:

�
dC

d
T

t
,1

� = �
τ
1

1
�(CT,in,1 – CT,1)
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d
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t
,2
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MB equations for BOD:
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Figure 8.9 Pretreatment system—effluent profile.
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Now, the equations are coupled ODEs with arbitrary inputs, and again, a
numerical method has to be adapted for their solution. The computer imple-
mentation of this problem using ithink® is shown in Figure 8.10. Even though
this diagram can be compacted to be visually more pleasing, it is presented
with all the details to illustrate its development.

Sample plots from the trial-and-error process in the search for the optimal
split of the volume are shown in Figure 8.11 for a fraction of the total volume
in the first tank of 0.40, 0.60, and 0.80. As can be seen from these plots, when
the first tank has a volume of 40% of the total volume, the toxicant concen-
tration in that tank exceeds the limit of 30 mg/L, thus resulting in inhibition
of the bioprocess and increase in effluent BOD. 

The final plots of toxicant and BOD concentrations in the two tanks with
55% of the total volume in the first tank, when all the criteria are adequately
met, are shown in Figure 8.12.

In the ithink® package, the modeler can build a GUI so that users can run
the model under various conditions without having to interact directly at the
modeling layer. One such interface is shown in Figure 8.13 with a slider input
device, where users can set a volume fraction (within a range preset by the
modeler) and click on the Run Model button to plot the effluent profiles from
each tank. A useful feature of the slider is that it lets users change the value
at any time during the run, interactively, and update all calculations thereafter
(however, in this example, that feature is of no practical use). Users can also
click on the two icons depicting the arbitrary toxicant and BOD input profiles
and modify them to simulate other scenarios.  

Figure 8.10 Pretreatment system—ithink® model of modified system.
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Figure 8.11 CMFRs in series: optimization study. 

Figure 8.12 Pretreatment system: concentration profiles under optimized conditions.
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This example illustrates the benefits of a mathematical model as well as
the use of dynamic simulation software. The computer implementation of the
model enables one to evaluate a rather complex problem easily and fairly
accurately under realistic conditions. The model can also be used to conduct
sensitivity analyses and to simulate and evaluate other extreme scenarios that
may not be feasible with pilot-scale or laboratory tests. Further refinements
can be added to this basic model when the users gain a better understanding
of the system and the underlying science. 

For example, the inhibitory effect of the toxicant in the above evaluation
is modeled as an instantaneous shutdown of the reaction beyond a threshold
toxicant concentration level, CT,t = 25 mg/L, by the following expression:

k = 3 day–1 if CT < 25 mg/L; else k = 0

In reality, this effect might be a gradual increase beyond CT,t = 25 mg/L,
increasing with an increase of CT. Such an effect can be readily incorporated
into the above model by an expression such as the following, for example:

k = 3 day–1 if CT < 25 mg/L; else k = 3��
C

K

T

l
��

Figure 8.13 Graphical user interface model for pretreatment system in ithink®.
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Other improvements can include alternate total hydraulic retention times,
temperature effect on reaction rate constant, Monod-type reactions for BOD
removal, oxygen uptake, stripping of volatile chemicals, etc. 

8.4 MODELING EXAMPLE: MUNICIPAL 
WASTEWATER TREATMENT

In this example, development of a model for studying the performance of
a wastewater treatment plant under dynamic conditions is illustrated. A
municipality is evaluating the impact of rapid growth of the city and the con-
sequent increase in the wastewater flow. The plant consists of a primary set-
tling tank, a trickling filter, and a conventional activated sludge unit for BOD
removal. Currently, the plant effluent exceeds the BOD limit under peak flow
conditions. As an interim measure, it is proposed that a flow equalization tank
be added to the existing plant to meet BOD discharge permits under peak
flow conditions. 

Wastewater treatment plant design and analysis in most textbooks and
design manuals are based on average influent flow and BOD values.  Such
procedures involve only algebraic equations that can be readily solved ana-
lytically. In this case, the primary concern is fluctuations of flow and BOD;
hence, a dynamic model has to be developed to aid in the evaluation.
However, because the fluctuations in flow and BOD are arbitrary functions of
time, analytical solutions cannot be found for the governing equations.
Therefore, it is necessary to resort to dynamic simulation of the entire system.  

The plant was originally designed based on conventional design equations
for the trickling filter and the activated sludge processes. Similar equations
for those processes will be adapted in this model. Traditionally, designs of
equalization tanks for environmental systems have followed graphical or
numerical procedures. A mathematical model suitable for continuous
dynamic simulation can be developed, starting from MB on the water and the
BOD across the equalization tank. The following assumptions about the
equalization tank are made: material flow is through the inlet or the outlet
only, the tank is completely mixed, and BOD in the tank does not undergo 
any reaction. Thus, the MB equations are as follows:

MB on water inside the tank:

�
dV

dt
(t)
� = Qin(t) – Qdes

MB on BOD inside the tank:

�
d(V(

d
t)

t

C(t))
� � Qin(t)Cin(t) – QdesC(t)
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where V(t) is the volume remaining in the tank at any time; Qin(t) is the volu-
metric inflow at any time; Qdes is the desired, constant flow out of the tank;
and C(t) and Cin(t) are the instantaneous BOD concentrations in the tank and
the influent, respectively.

In this example, the Extend™ dynamic simulation package is chosen to
model the system. The model segment in which the above two equations for
the equalization tank are implemented is shown in Figure 8.14. This segment
receives three inputs (RawQIn, QdesignIn, and RawBODIn) and produces
two outputs (VolOut and BODOut). Block 1 inside the segment receives two
inputs—Input1 (=RawQin) and Input2 (=QdesignIn)—and executes the equa-
tion (entered by the modeler into its dialog box) to produce the result as
Result1 = Input1 – Input2. (Note that this result is the right-hand side of the
ODE describing the MB equation for water.) This result is fed to Block 2,
which performs the numerical integration of its input, to produce its output,
Result2, which, in this case, is the volume V(t) remaining in the tank at any
time, t. The modeler can set the initial value for this integrator in the dialog
box and choose the preferred numerical model from Euler Forward, Euler
Backward, or Trapezoidal.  

Blocks 3, 4, and 5 are assembled in a similar manner to solve the two MB
equations. It has to be noted that the inputs and outputs are not necessarily
flows of material. They are flows of information or values that the Blocks can
operate upon, following the equations and settings embedded in them. 

The entire plant is modeled with graphic icons representing each process,
as shown in Figure 8.15. The icons mimic the “unit operations” concept in
that each process receives one or more inputs and produces one or more out-
puts, functioning as subroutines or submodels. All the model parameters and
governing equations are fully embedded within each icon, for example, dou-
ble clicking on the equalization tank icon will reveal the submodel shown in

Figure 8.14 Equalization tank model in Extend™.
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Figure 8.14 and double clicking on the individual Blocks inside the submodel
will reveal the governing equations or constants. 

The model as presented here includes a simple GUI so that users can inter-
act with the model at a higher level to set model parameters, without having
to dive into the model structure. For example, a switch is included that would
allow the users to study the system with or without the equalization tank. The
output from the switch (= 1 or 0) is fed to two logic boxes that determine the
flow rate (EqQ or Q1) and BOD concentrations (EqBOD or BOD1) through
the rest of the plant. Similar switches can be added to each process that would

Figure 8.15 Model of wastewater treatment plant in Extend™.
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allow users to study overall impacts of equipment breakdown, scheduling
maintenance shutdown, full load plant capacity, etc. 

Sliders are provided so that users can investigate the set different recycle
ratios for the trickling filter. Recognizing the fact that adjusting the sludge
wastage rate is the primary operational control that is practiced under field
conditions, this model includes a slider so that users can try different values.
The readout displays the sludge retention time corresponding to the sludge
wastage rate. Predictions of effluent BOD with and without the equalization
tank from sample runs are shown in Figure 8.16.

Figure 8.16a Results from wastewater treatment plant model in Extend™ (influent and effluent
BOD with and without equalization).

Figure 8.16b Results from wastewater treatment plant model in Extend™ (effluent BOD with
and without equalization at sludge wastage rates of 600 and 800 lbs/day).
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8.5 MODELING EXAMPLE: CHEMICAL OXIDATION

In this example, the development and computer implementation of a math-
ematical model for a chemical oxidation process are illustrated. This process
involves the use of activated carbon as an adsorbent, copper as a catalyst, and
oxygen as an oxidizing agent in oxidizing cyanide in industrial wastewaters.
The mechanism is surface adsorption and reaction, and the reactor configura-
tion is a CMFR. The operation of the system is as follows: the waste stream
flows continuously in and out of the reactor, but the catalyst, activated car-
bon, is dosed continuously and is retained inside the reactor. Hence, the num-
ber of reactive sites inside the reactor will continue to increase, resulting in
unsteady conditions. A mathematical model has to be developed to under-
stand and characterize the process.

It can be assumed that the increase in the catalyst due to continuous dos-
ing will not significantly increase the reactor volume, V. An MB on cyanide
can now be developed as follows:

�
d(V

dt

C)
� � QCin – QC – η{kC}{aD(t)}V

V �
d

d
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t
� � QCin – �Q – ηk�a�

W

V
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��V�C

where C is the cyanide concentration in the reactor, Q is the waste flow rate,
η is the overall effectiveness factor, k is the reaction rate constant, a is the
reactive surface area per unit reactor volume, D(t) is the cumulative carbon
dose, and W(t) is the cumulative mass of carbon added. Setting W(t) = DQt,
the MB equation reduces to the following (Weber and DiGiano, 1996):
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Even though the final result appears to be simple, it is a nonhomogeneous
ODE, and its solution is not straightforward. Procedures to derive the analytical
solution to the above can be complicated, and as such, numerical approaches
would be appropriate.

Here, Mathematica® is first used to seek an analytical solution. The
Mathematica® notebook shown in Figure 8.17 illustrates two different ways
in which the analytical solution has been found. In the input line In(1), the
built-in function Dsolve is called, with arguments that include the equation,
the initial condition, the dependent variable, and the independent variable. At
this step, the equation is entered in symbolic form, and Mathematica®

instantly returns the solution in the output line, Out(1), also in symbolic
form, evaluating the integration constant automatically based on the initial
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condition provided in the call. If the initial condition is not provided, the solu-
tion will include the integration constant c[1].

In the next input line In(2), the model parameters are first assigned
numeric values (Cin = 40; HRT = 8; and η.k.a = 2.50 ), and Dsolve is called
again in symbolic form. Mathematica® returns the solution in the output line
Out(3), in numeric form, substituting the given parameter values. Finding 
the solution in numeric form is a prerequisite for plotting the results. Finally,
a call to Plot the results is made in the input line In(3), whereupon,
Mathematica® plots the results as specified in the call.

Figure 8.17 Chemical oxidation process modeled analytically in Mathematica®.
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When Mathematica® cannot find analytical solutions, it will return a mes-
sage indicating its inability. In such cases, users can call the Mathematica®

built-in numerical procedure, NDSolve. This approach is illustrated here to
solve the same equation with numeric model parameters. The call to this pro-
cedure includes the equation, an initial condition, the dependent variable, and
the range of the independent variable over which the numerical solution is
found. Of course, in this case, numerical values have to be provided for the
model parameters. For the same values of Cin = 40, HRT = 8, and η.k.a =
2.50, the result for C is returned as an interpolating function. A call to the Plot
procedure is then called to plot a graph of the interpolating function (returned
by the NDSolve) as a function of time, as shown in Figure 8.18.

The same problem can be modeled using MATLAB®. Even though
MATLAB® cannot solve this equation analytically, its numerical procedure,
ode45 can, as shown in Figure 8.19. In MATLAB®, an M-File containing the
model parameters and the right-hand side of the differential equation is first
created and saved under the name of “Oxidation.” Then, a call to the numer-
ical procedure ode45 is evoked from the command window, passing the argu-
ments that indicate the name of the M-File containing the differential
equation (Oxidation, in this case) and the initial condition. The solution is
then plotted using the plot call.

The TK Solver package is used to solve this problem as shown in Figure 8.20,
where the use of custom functions and advanced built-in procedures to 

Figure 8.18 Chemical oxidation process modeled numerically in Mathematica®.

Chapter 08  11/9/01  9:33 AM  Page 219

© 2002 by CRC Press LLC



further enhance the functionality of TK Solver is illustrated. First, the built-
in Runge-Kutta procedure is evoked in the Rule sheet. The first argument to
this call, named “Equation” in this example, specifies the equation to be
solved, which is entered as a custom procedure. The second and third argu-
ments specify the lists for the dependent variable and the independent vari-
able, C and t, respectively, in this example. 

Following the Rule sheet, the Functions sheet automatically lists the built-
in procedure, RK4-se, and the custom procedure, “Equation.” By opening the
procedure sheet for “Equation,” the governing ODE for this problem is
entered in the bottom section, and the parameters and the input and output
variables are specified in the top section. The parameters are automatically
listed by TK Solver in the Variables sheet, where their numerical values can
be entered in the Input column as usual. A list is then created for the inde-
pendent variable, t, specifying the initial value (= 0) , the step (= 0.1), and the
final value (= 5). Finally, a list is created for the dependent variable, C, and
its initial value is also specified (= 0). 

When run, the governing equation is fed to the Runge-Kutta procedure to
solve the equation over the range of values for t specified in its list and the
return solution for C to its list. The Plot sheet can be set up to use the t-list
and the C-list to plot a graph of C vs. t, as shown in Figure 8.20. Note that the
accuracy of the result will depend on the step size specified in the list for t.

Figure 8.19 Chemical oxidation process modeled numerically in MATLAB®.
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The problem is solved in Mathcad® using the built-in numerical routine
rkfixed as shown in Figure 8.21. The model parameters are first declared at
the top of the sheet along with the initial value for the dependent variable,
which is defined as a vector, C0. The governing differential equation is then
entered using standard mathematical notations that are automatically con-
verted to the two-dimensional form by Mathcad®. The left-hand side of this
equation indicates the dependent and independent variables in the equation,
t and C, respectively. The built-in Runge-Kutta numerical method is evoked
by the call rkfixed, with the arguments specifying the dependent variable (C),
the initial and final values for the independent variable (0 and 5), the step for
the numerical procedure (100), and the name of the equation to be solved
(OxidationODE).  

The routine rkfixed returns the solution in the 2-column by i-row matrix Z,
the first column Z <0> contains the values of the independent variable, t, and
the second column Z <1> contains the solution of the equation solved, C. The
number of rows is equal to the number of steps specified in the call to rkfixed.

Figure 8.20 Chemical oxidation process modeled numerically in TK Solver.
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The values contained the matrix Z are then used to plot a curve of C vs. t as
shown in Figure 8.21.

With the Pro version of Mathcad®, a simpler model as shown in Figure 8.22
can be formulated to solve problems involving a single ordinary differential
equation, such as in this example.  Here, the differential equation is entered
in the standard form as a Given statement, along with the initial condition in
a Solver Block. Then, a call to the built-in function Odesolve is made with
arguments specifying the independent variable (t), its final value (= 5), and,
optionally, the number of steps to be used in the numerical procedure (= 100).
The solution is returned as a function of the independent variable, and the
results can be plotted directly as shown in Figure 8.22.  

This example demonstrates the benefits of the advanced capabilities of
equation solving packages that enable users to focus their efforts on model
building and simulation aspects rather than on the mechanics of the underly-
ing mathematical calculi or their computer implementation. While this is a
definite benefit, it should be noted that these packages are run through com-
mands that require familiarity with their respective syntax and the procedures
appropriate to the problem being modeled. For example, each program has 
its own syntax for calling the same numerical procedure Runge-Kutta, even

Figure 8.21 Chemical oxidation process modeled in Mathcad®.
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though the procedures for generating the plots are different in each case, with
some requiring hard coding and some using a graphical interface. Neverthe-
less, compared with traditional programming, these packages require mini-
mal syntax knowledge and are more intuitive.

The dynamic simulation program ithink®, for example, enables this prob-
lem to be set up readily, as shown in Figure 8.23. The “code” shown as an
inset is automatically generated by ithink®, based on the flow diagram assem-
bled using built-in elements—the stock C, the flow dcdt, and the convert-
ers/containers, Cin, HRT, and Constant. While the modeler is expected to
know the different syntax for the different routines in MATLAB® and
Mathematica®, in ithink®, the procedure for assembling the flow diagram is
more or less the same for all types of problems.

The model developed with the dynamic simulation package, Extend™, is
shown in Figure 8.24. The model parameters and the initial concentration,
Co, are stored in Constant blocks. The right-hand side of the ODE is formu-
lated in the Equation block and fed to the Integrator block, which also
receives Co at terminal S. The solution generated by the Integrator block is
then plotted by the Plotter block. 

Figure 8.22 Chemical oxidation process modeled in Mathcad®.
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The model developed using Simulink® and the concentration vs. time plot
generated by the Scope block in that model are shown in Figure 8.25. In
Simulink®, more blocks have to be used to construct the flow diagram to 
complete the model, because the right-hand side of the ODE has to be for-
mulated with elementary blocks. The Integrator block then solves the ODE,
and the Scope block is used to plot the results.

8.6 MODELING EXAMPLE: ANALYSIS 
OF CATALYTIC BED REACTOR

The process model for a new catalytic fixed-bed reactor being developed
for oxidation of pesticides in groundwater is illustrated in this example.
Preliminary laboratory studies have indicated that the surface reaction rate
(moles/cm2-s) of the bed can be approximated by a first-order process with a
reaction rate constant k of 0.01 cm/s. The catalyst is to be coated onto spher-
ical support media of diameters ranging from 0.25–1.5 mm. It is required to
evaluate various combinations of process parameters to define optimal ranges
for further pilot-scale testing. A mathematical model has to be developed to
meet these goals.

Figure 8.23 Chemical oxidation process modeled numerically in ithink®.
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Equation (5.34) developed in Chapter 5 can be applied here for the bed,
assuming dispersive flow with the external resistance controlling the process:

where 

� = �1 + 4k	f a��
v
E
L
�	�	

The mass transfer coefficient, kf , can be found from correlations:
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Figure 8.24 Chemical oxidation process modeled numerically in Extend™.
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where

NSh = Sherwood No. = (2 + 0.644NRe
0.5NSh

0.333)[1 + 1.5(1 – ε)]

NRe = Reynolds No. = �
vd

µ
p�
� = �

v

	

dp
�

NSc = Schmidt No. = �
�

µ

E
� = �

E

	
�

Even though this is a static problem with algebraic equations, Equation
(5.34) cannot be solved explicitly to find the bed length for a desired process
performance. Webber and DiGiano (1996) recommended a graphical proce-
dure for solving this problem. Further, it would be preferable to be able to
solve the equations repeatedly under ranges of input values and under differ-
ent inputs. Hence, a computer-based model can be of significant benefit.
Spreadsheet programs can be used in this case; however, they can become

Figure 8.25 Chemical oxidation process modeled analytically in Simulink®.
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fairly large and may not be suitable for backsolving, if necessary. Equation
solving packages are well suited for modeling these types of problems. In this
case, TK Solver is selected to develop such a model.

The screen-shot of a portion of the TK Solver model displaying the Rule
sheet, the Variables sheet, and the Units sheet is shown in Figure 8.26. It can
be noted that the equations can be entered in any order in the Rule sheet. The
Units sheet allows variables to be entered or displayed in customary or con-
venient units in the Variables sheet and, at the same time, perform the calcu-
lations in a consistent set of units. 

The distinct feature of TK Solver, namely, the ability to backsolve Equa-
tion (5.34), is illustrated here. The influent concentration and the expected
effluent concentration are entered as known values in the Input column, along
with the other known process parameters. The parameter L is specified as an
Output in the Status column by double clicking at the cell and choosing from
a pop-up menu, which is normally not visible. The conversion factors for the
display units and the calculation units are specified in the units sheet. When
run, TK Solver solves the equations iteratively to return the required length,
L, that satisfies the specified removal. To initiate an iterative solution process,
one of the unknowns has to be assigned an arbitrary Guess value as an input

Figure 8.26 Catalyst process modeled in TK Solver.
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in the Input column. In this example, a Guess value was input for the un-
known L. On completion of the iteration process, TK Solver returns the cor-
rect answer for L in the Output column.  

8.7 MODELING EXAMPLE: WASTE MANAGEMENT

In this example, a simple model is developed for multipurpose use in a
metal plating facility. The objective of the model is to simulate the facility
under various scenarios for use in process analysis, product selection, material
balances, record keeping, optimization, waste minimization studies, life cycle
analysis, etc. The processes to be included are paint formulation, spray paint-
ing off-gas treatment, and recovery of solvents. The model is based on simple
material balances using average flows and capacities. The following factors
are to be determined for each scenario examined: the best alkyd:epoxy:thinner
proportion, the volumes of the three components consumed per year (gal/yr),
the concentration (ppmv) of toluene in the off-gases from the painting opera-
tion, the amount of toluene (lbs/yr) that can be recovered by using the carbon
adsorption system, the concentration (ppmv) of toluene in the off-gases after
treatment by activated carbon, the atmospheric emissions (lbs/day) of toluene
after installing the activated carbon system, the concentration (mg/L) of
toluene in the condensate, and the energy (KW) requirement for the activated
carbon system.

Because the model is expected to simulate the system under average con-
ditions, a steady state model would be adequate, and as such, the Excel®

spreadsheet package is chosen in this case. The spreadsheet model is built
with a graphic interface as shown in Figure 8.27. The model parameters are
readily accessible for any changes to be made for evaluation. The appropriate
MB equations are embedded in the cells to calculate the model outputs. It
should be noted that the spreadsheet is built from “top-down,” and specific
parameters must be known in advance so that the model can run through the
calculations using the known data and calculating the unknowns.  

8.8 MODELING EXAMPLE: ACTIVATED 
CARBON TREATMENT

Powdered activated carbon (PAC) is a commonly used adsorbent for treat-
ing a wide range of wastewater. In this example, use of PAC in treating a dye
bath effluent is modeled to evaluate alternative process configurations. In an
existing process, the effluent is contacted with PAC in a CMFR to remove
color, and the PAC is recycled after off-line biological regeneration. The
process was designed based on the experimental observation that interparticle
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Figure 8.27 Model of metal plating facility.
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diffusion would be controlling the adsorption process. Under continuous
operating conditions, however, it was found that the residual biofilm on the
PAC surface was causing additional resistance to adsorption in the liquid
phase, resulting in lower removals.

The objective here is to develop a model to test the hypothesis that by
installing baffles to convert the CMFR to a packed bed PFR configuration
with the same detention time would be a cost-effective alternative. The model
development for the PFR configuration follows the steps detailed by Weber
and DiGiano (1996):

MB on color in liquid phase:

�
d

d

C

t
� = –v�

d

d

C

x
� � D�

d

d

2

x

C
2� – 

The last term in the MB equation can be expressed as follows:

= kf a(C – Ce)

where kf is the mass transfer coefficient; a is the specific external surface area
per unit volume of the reactor;  (C – Ce) is the driving force, Ce being the con-
centration that would be in equilibrium with the adsorbed concentration in
accordance with an appropriate isotherm. An expression for a can be devel-
oped as follows:
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where Dpac is the PAC dose (= mass of carbon/volume of liquid), Rc is the
radius of the carbon particles, and ρc is the density of PAC. 

Thus, MB on color in the liquid phase is:
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and the MB on the solid phase is:
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where q is the mass of color adsorbed per unit mass of PAC. Considering
steady state conditions, the final equations are as follows:
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where Ce and q are related to one another through the isotherm such as:

q � KCe
1/n

The above equations are coupled nonlinear differential equations, the first
one being of second order. Numerical methods have to be used to solve them
with equation solver-based packages such as Mathematica®, for example. In
this case, the use of the ithink® simulation package in solving a second-order
equation is illustrated. 

When solving differential equations with ithink® (or with Extend™), higher-
order equations must be first reduced to first order. This can be achieved in
this case by introducing a new variable U = dC/dx. With this substitution, the
above second-order equation is reduced to a first-order equation, bringing the
total number of ODEs to solve to the following three:
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The three equations and the isotherm equations are implemented in the
ithink® flow diagram as shown in Figure 8.28. The model equations compiled
by ithink® are included here in Figure 8.28 to illustrate how the new variable U
is incorporated into the calculations to handle higher-order differential equa-
tions. Plots of C vs. x and q vs. x from a typical run are shown in Figure 8.29.

The problem can be modeled with Simulink® as shown in Figure 8.30. As
can be seen from the two implementations, the ithink® model is more compact.

8.9 MODELING EXAMPLE: BIOREGENERATION 
OF ACTIVATED CARBON

The merits and demerits of integrating biological treatment with activated
carbon adsorption in a single reactor configuration over separate systems
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have been reported upon recently. As an alternative to such biologically 
activated carbon (BAC) process, off-line biological regeneration (OBR) of 
the spent activated carbon has been proposed to alleviate the problems of
excessive head loss, short circuiting, and nutrient limitations of the BAC
process. In the OBR process, the exhausted packed activated carbon column
is taken out of service and regenerated by recirculating a mixture of accli-
mated biomass, nutrients, and dissolved oxygen. During this regeneration
period, the adsorbed chemicals are biodegraded, thereby regenerating the
adsorption capacity of the carbon bed.

Figure 8.28 Activated carbon process modeled in ithink®.
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Figure 8.29 Results of activated carbon model in ithink®.

Figure 8.30 Activated carbon process modeled in Simulink®.
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In this example, a mathematical model is developed to describe this
process to gain a better understanding of the sensitivity of the process to the
various parameters. The following assumptions are made in model develop-
ment: biological growth is single-substrate limited; biokinetic rates are sub-
strate inhibited according to the Haldane rate expression; the OBR process is
completely mixed; and equilibrium conditions exist at the carbon particle sur-
face, according to the Freundlich isotherm. Model development follows the
work of Goeddertz et al. (1988). The MB equation for substrate concentra-
tion, C (ML–3), can be stated as follows:

�
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� = (biodegradation rate) + (desorption rate)
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where

µ = µmax� �
V is the volume of the bulk liquid phase (L3), X is the biomass concentration
(ML–3), Y is the biomass yield (–), kd is the desorption rate constant (LT–1),
as is the specific surface area of the carbon (L2M–1), m is the mass of carbon
(M), and Cs is the substrate concentration at the carbon-liquid interface
(ML–3). It is convenient to lump the group of variables (kdasm/V) for mea-
surement and computation purposes. Using the Freundlich isotherm relation-
ship, Cs can be expressed as follows:
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where q is the mass of substrate (M) adsorbed on the carbon at any time. An
expression for q is as follows:
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where qo is the initial mass of substrate adsorbed on the carbon (M), Co is the
initial concentration of the substrate in the bulk liquid (ML–3), and ∆G is the
biomass grown during regeneration (ML–3). To determine ∆G, MB on bio-
mass can be written as follows:
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and

�
d

d

X

t
� = (µ – b)X

where b is the biomass death rate (T–1). The regeneration efficiency, R (%),
can be determined from:

R = 100��qo

q

–

o

q
��

The model equations contain coupled algebraic equations and ODEs with
nonlinear terms. They can be solved readily using dynamic simulation-based
packages such as ithink®, Extend™, or Simulink®. In this example, the model
developed with ithink® is illustrated in Figure 8.31. The three ODEs for C,
X, and G are represented by Stocks and are interconnected according to the
equations. The fourth-order Runge-Kutta method is chosen to solve the
model over a time span of 96 hours and a time step of 0.05 hours. The equa-
tions underlying the model and the model parameters are automatically com-
piled by ithink® into a list as shown in Table 8.4.  

Figure 8.31 Bioregeneration process modeled in ithink®.
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In this example, ithink®’s built-in feature for conducting sensitivity stud-
ies is demonstrated. By selecting any one of the model parameters at a time
and assigning a range of values to it and selecting the SensiRun option,
ithink® will run the model repeatedly for each of the values in the range and
produce the results for comparison. For example, the sensitivity of the OBR
process to initial biomass concentration, Xo, is examined in this case, and the
results are shown in Figure 8.32. These model results are comparable to those
presented by Goeddertz et al. (1988) who validated their model with experi-
mentally measured data.

8.10 MODELING EXAMPLE: PIPE FLOW ANALYSIS

In this example, an analysis of sewer flow is illustrated. It is a common
problem in environmental systems and has often been solved using graphical
methods or tabulated data. Even though the governing equations are rela-
tively simple and algebraic, their solution is cumbersome due to power terms
and a trigonometric term. The following equations (in SI units) are well
known in sewer flow analysis:

Velocity = �
1

n
�(Hydraulic radius) �

2
3

� (slope) �
1
2

�

Hydraulic radius = �
Wetted perimeter

Area
�

Table 8.4 Bioregeneration Model Equations Generated by ithink®

C(t) = C(t – dt) + (Noname 1) * dt
INIT C = Co INFLOWS: dcdt = r1 + amkdV*(Cs–C)

G(t) = G(t – dt) + Noname 3) * dt
INIT G = G0 INFLOWS: dGdt = Mu*X

X(t) = X(t – dt) + (Noname 2) * dt
INIT X = Xo INFLOWS: dxdt = (Mu–b)*X

Model Parameters:
amkdV = 12.6; b = .002 Co = 350; V = 1 qo = 4;
G0 = 10; kf = .0585; n = 4.65; Ki = 200; Ks = 150;
m = 20; Xo = 200; Y = .6 MuMax = .175;

Regen = 100*(qo–q)/qo; r1 = –Mu*X/Y
q = qo–(V*((C–Co)+∆G/Y))/1000; Cs = ((q/m)/kf)^n;
Mu = MuMax*C/(Ks+C+(C^2)/Ki); ∆G = G–G0
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Because flow in sewers is often only partially full, the area, the wetted
perimeter, and, hence, the hydraulic radius have to be determined from the
depth of flow, d, and the pipe diameter, D, as follows:
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Spreadsheet packages and equation solver-based packages can be readily
used to solve the above equations. However, with spreadsheet packages, the

Figure 8.32 Results of bioregeneration model from ithink®.

Chapter 08  11/9/01  9:34 AM  Page 237

© 2002 by CRC Press LLC



equations are set up in a certain order and have to be solved in that order, with
specific inputs. With the iterative solver option in Excel®, one variable at a
time can be “backsolved.” Thus, different models have to be set up in Excel®

to evaluate various flow conditions. In the case of the TK Solver package, its
unique feature of backsolving enables the same model to be used for a mul-
titude of scenarios. 

The model setup in TK Solver is illustrated in Figure 8.33. The equations
listed above are entered first into the Rules sheet. Note that it is not necessary
to follow any sequence among those equations. TK Solver automatically gen-
erates the list of variables in the Variables sheet. The model requires any four
of the nine variables to be specified to determine the other five. In the special
case where the depth of flow is unknown, a guess value has to be provided in
order for TK Solver to complete the iterative process and establish the correct
value for the depth and the other unknowns.

The advantage of the TK Solver model is that users can use this model, for
example, to find velocity of flow at a given flow rate to check if self-cleansing
is possible or to find the minimum slope to maintain a certain velocity or to find
the diameter of the sewer to carry a certain flow at a certain velocity. These
scenarios are evaluated by entering known parameters under the input col-
umn and running the model. If the model is unable to solve the equations

Figure 8.33 Pipe flow analysis in TK Solver.
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under a set of known data, the status column in the Rules sheet will indicate
the rule that was not satisfied. In those cases, the status column in the
Variables sheet may be marked with “G,” and a guess value may be entered
in the variables sheet for one of the variables, so that TK Solver can itera-
tively find the correct solution to satisfy all of the equations listed. 

In the model shown, the flow is specified as a List, whereby the model can
solve the same equations for a range of flow values that the user prefers. As
shown, the depth and the velocity are also specified as Lists, so that they will
be filled by TK Solver as each flow value specified in its list is used in the
solution process. Then, the results stored in those Lists are used to plot graphs
of velocity vs. flow and depth vs. flow as shown in Figure 8.33. 

This basic model can be easily modified to generate the well-known
hydraulic elements graph. By entering additional Rules for calculating the full
flow parameters and the ratios for the hydraulic elements in the Rules sheet,
and declaring those as Lists, in the Variables sheet, the model can be run to
calculate the data for generating the graph. The modified model is  shown in
Figure 8.34, and the results from this model are used to generate the graph as
shown in Figure 8.35.

Figure 8.34 Pipe flow analysis in TK Solver.

Chapter 08  11/9/01  9:34 AM  Page 239

© 2002 by CRC Press LLC



8.11 MODELING EXAMPLE: OXYGEN/NITROGEN 
TRANSFER IN PACKED COLUMNS

Oxygenation of aquacultural waters using commercial oxygen has been
demonstrated to be beneficial, both economically and physiologically. Using
commercial oxygen, the carrying capacity of hatcheries can be significantly
increased at nominal costs, and harmful nitrogen can be removed simultane-
ously. One of the most effective process configurations is a countercurrent
packed tower, in which the oxygen-deficient water can flow from the top of
the tower, while commercial oxygen is blown from the bottom. In this exam-
ple, a model for describing the concentration profiles of oxygen and nitrogen
along the packing depth is developed for design and operation purposes.   

The model is based on the Two-Film Theory, and it begins with elemental
MBs on oxygen and nitrogen in the liquid phase (Nirmalakhandan et al.,
1988; Speece et al., 1988):
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Figure 8.35 Results of pipe flow analysis in TK Solver.
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MB across element on oxygen in gas phase:
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where C is the liquid phase concentration (ML–3); KLa is the mass transfer
coefficient (T–1); m is the superficial gas flow rate; subscripts O and N rep-
resent oxygen and nitrogen, respectively; superscript * represents the liquid-
phase concentration that is in equilibrium with the gas phase concentration; u
is the superficial liquid velocity (LT–1); and z is the packing height. Along the
packing height, z, as the oxygen is transferred to the liquid phase, nitrogen is
stripped from the liquid phase. Hence, the compositions of both the liquid and
gas phases will change as a function of depth. Or, in other words, CO, CN, mO,
mN, C*

O, and C*
N will all be functions of z. Hence, additional equations are

required to solve the above four coupled ODEs.
First, assuming that mass transfer coefficients are proportional to (diffu-

sivity)0.5 and that diffusivities are proportional to (molar volume)0.6, a rela-
tionship between the mass transfer coefficients for oxygen and nitrogen can
be derived as follows:

(KLa)N � 0.942(KLa)o

Then, introducing the gas phase mole fraction, y, and the air-water partition
coefficient, H, the following relationships can be derived as follows for oxy-
gen and nitrogen:
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Figure 8.36 Oxygen/nitrogen transfer modeled in ithink®.

Figure 8.37 User interface for oxygen/nitrogen model in ithink®.
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To design a tower of packing height, z, to achieve a desired gain in dis-
solved oxygen, the known variables are the C values in the liquid phase at the
top of the tower, z = Ztop, and CN = 0 at the bottom of the tower, z = zbottom = 0.
The superficial flow rate of water to be oxygenated, u, and the gas-to-liquid
ratio can be two parameters to be selected. The air-water partition coefficients
can be found from handbooks; the mass transfer coefficients can be estimated
from correlations. The above equations can be solved by an iterative trial-
and-error process, by assuming the CN at the bottom of the packing, z = 0, and
checking the CN value at the top. Computer implementation can greatly facil-
itate this iterative process. 

In this example, the equations are implemented in the ithink® simulation
package to take advantage of its interactive capabilities. The model diagram
is shown in Figure 8.36, the user interface is shown in Figure 8.37, and typi-
cal results are shown in Figure 8.38.

8.12 MODELING EXAMPLE: GROUNDWATER 
FLOW MANAGEMENT

A common approach for groundwater cleanup is to extract the contami-
nated water and treat it for use or return the treated water by reinjection or
release to surface drainage. After characterizing the contaminated site, sev-
eral questions have to be answered before a system can be designed for this
purpose. Some of the questions to be answered concern the optimum number
and location of wells required, the optimum pumping rate, and the location
for reinjection. Potential theory can be used as a first step in guiding us in 
this process. This example illustrates the application of potential and stream

Figure 8.38 Typical results of oxygen/nitrogen model in ithink®.
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functions, introduced in Section 6.22 in Chapter 6, in visualizing flow pat-
terns in groundwater flow management. 

Consider a situation in which a contamination plume has been detected in
an aquifer where a uniform flow exists in the x-direction. It is desired to
locate pumping wells on the y-axis symmetrically about the x-axis. The goal
here is to determine a combination of pumping rates and well spacing to
ensure that no contamination will pass between the wells. This can be
achieved analytically in the case of two wells as follows: by superposing the
potential function for the uniform flow field with that for the two wells,
the composite potential function can be obtained as follows:

� = –ux � �
4

Q

π
� ln �x2 � �y – �

L

2
��

2

� � �
4

Q

π
� ln �x2 � �y � �

L

2
��

2

�
where Q is the pumping rate at each well, and L is the spacing between the
wells. The condition of no flow between the wells implies that there is a sin-
gle stagnation point between the wells, or in terms of the potential and
stream functions,

u(x,0) = 0

or

��
∂
∂
�

x
��

x,0

= 0

The task of differentiating the expression for φ, setting the resulting
expression to zero, and then solving it for x to check for stagnation condi-
tions, although straightforward, can be tedious. However, Mathematica® can
be used readily as shown in Figure 8.39 to differentiate the potential function,
set the result to zero, and solve for x, to give the answer for x to check for the
location of the stagnation point. In line In[1] in Figure 8.39, the general
expression for φ is entered, and Mathematica® is asked to substitute y = 0 in
the expression (indicated by the symbol /. {y→ 0}), to find φ(x,0).  The result
is returned in line Out[1]. Then, in line In[2], Mathematica® is asked to take
the last result (indicated by the % symbol), differentiate it with respect to x
(indicated by the symbol D), set it to zero, and solve the result to find x.
Mathematica® performs this sequence of operations in symbolic form and
returns the result in line Out[2] as two possible roots for x. This example illus-
trates the ability of Mathematica® to present equations in two-dimensional
form and to perform standard mathematical calculi in pure symbolic form.

To ensure only one root for the quadratic equation, the terms within the
square root sign should cancel one another, or translating this mathematical
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interpretation to the real system, the spacing for the desired goal will be given
by the following:


64 qT�erm2 –� 16 L2�u2� = 0

or

L = 2� �
Alternatively, the entire analytical calculi can be readily conducted graphi-
cally by plotting the composite stream function:

� = –uy � �
2

Q

π
� tan–1 � � � �

2

Q

π
� tan–1 � �

The implementation of this approach using Mathematica® is illustrated in
Figure 8.40. In this approach, numerical values for the variables are declared
first, and the built-in ContourPlot routine is called as before to generate the
streamlines. By adjusting the values of the variables, users can gain valuable
insights through the visual interpretations of the above equations. This
approach can be more effective and easier to apply than the analytical
approach if more than two wells are to be evaluated.

This problem can be readily modeled with Mathcad® as well, as shown in
Figure 8.41. The model parameters are first declared. A grid network is then
set up in the x- and y-directions to plot the contours. The equation is now

y � �
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2

�

�
x

y – �
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2

�

�
x

qTerm
�

u

Figure 8.39 Mathematica® script for symbolic calculations.
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Figure 8.40 Groundwater flow modeled in Mathematica®.

Figure 8.41 Groundwater flow modeled in Mathcad®.
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entered as a function of x and y, using standard one-line notations, while
Mathcad® automatically formats it to a two-dimensional form. The next line
essentially calculates the value of ψ at each of the node points. The plotting of
the contours and the customizing are done through a GUI, without any scripting.

8.13 MODELING EXAMPLE: DIFFUSION THROUGH 
POROUS MEDIA

As a final example, the diffusion of vapors through porous media is mod-
eled. Examples of such processes include emissions from landfills, drying
out of land spills, etc. This phenomenon can be analyzed assuming one-
dimensional diffusion of the vapors through the air-filled pores. The MB
equation results in a partial differential equation:

�
∂
∂
C

t
� = ��

D

ε
y

���
∂
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2

y

C
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where C is the gas phase concentration of the diffusing chemical (ML–3), Dy

is the diffusion coefficient in the y-direction (L2T), and ε is the void fraction
in the medium (–). The solution to the above PDE will require one initial con-
dition (IC) and two boundary conditions (BC). 

Consider a case in which a land spill has occurred and the pore spaces are
instantly saturated with the chemical vapor. This scenario and its analysis
have been described by Thibodeaux (1996). Suppose it is desired to develop
the concentration profile in the soil as a function of time and to estimate flux
at the soil-air interface and the time it would take for the concentration in the
pore gases to drop to desired level, then, the appropriate IC and BCs for this
condition can be as follows:

Initial condition: C = C0 at t = 0 for all y

Boundary condition (1): C = 0 at y = h for all t

Boundary condition (2): �
∂
∂
C

y
� = 0 at y = 0 for all t

The IC is a result of the assumption that the void spaces are saturated ini-
tially. The first BC implies that the atmospheric concentration at the surface,
y = h, is negligible at all times. The second BC stems from the assumption of
an impervious boundary at y = 0, so that the flux at y = 0 is zero. 

An analytical solution for this problem satisfying the above IC and BCs to
describe the gas phase concentration as a function of depth and time has been
reported, following an analogy with heat transfer (Thibodeaux, 1996):
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In the above form, the result is difficult to interpret or understand. However,
it can be readily plotted in one of the equation solver packages such as
Mathematica® as illustrated in Figure 8.42. 

In this example, use of dynamic simulation packages in modeling PDEs is
illustrated by modeling the above problem. (The examples presented so far
involved single, coupled, first-order, and higher-order ODEs.) The dynamic
simulation package, ithink®, is used here to model the above PDE. The
ithink® package provides an elegant approach to model PDEs, wherein the
Stocks are interconnected to represent the spatial variations, while the time vari-
ation within each Stock is modeled as usual. Increasing the number of Stocks can
improve the accuracy of the solution. This approach is similar to a finite differ-
ence approach, except that the software does all the “account keeping.”

Figure 8.42 Flow through porous media modeled in Mathematica®.
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To generalize the approach, the governing PDE is first transformed into a
nondimensional form. As alluded to in Chapter 1, by generalizing the govern-
ing equations, the same computer model can be easily adapted to solve other
problems that have governing equations that can be reduced to the generalized
form. In this example, this can be achieved by the following substitutions:

Y = �
h

y
�

and

T = ��
D

ε
y

���
h

t
2�

resulting in the following nondimensional PDE:
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2
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C
2�

To implement the above equation in the finite difference form in ithink®,
the last term of the above PDE has to be first expressed as follows:

By drawing the C values at the jth time step from the consecutive Stocks,
i – 1, i, and i + 1, the general equation can be easily implemented in the
ithink® flow diagram as illustrated in Figure 8.43. Here, six Stocks are used
in series to represent the soil layers. If necessary, different soil properties may
be assigned to each layer. 

The results from the ithink® model are plotted in Figure 8.44 (using the
Deltagraph® plotting package) showing the concentration distribution within
the layers as a function of time. A close resemblance can be noted between
the plot generated by Mathematica®, analytically, and the plot generated by
ithink®, numerically. 

Ci�1,j – 2Ci, j � Ci–1, j
���

∆h2
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Figure 8.43 Flow through porous media modeled in ithink®.
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EXERCISE PROBLEMS

8.1. Refer to Exercise Problem 5.1. Solve the coupled differential equations
derived in that problem using the following biokinetic data: µmax = 0.3
hr–1, kd = kr = 0.01 hr–1, Y = 0.45 gr cells/gr C in substrate, and Ks = 150
mg/L. Hence, plot the temporal variation of biomass and substrate.

Assume that the initial concentrations of biomass and substrate are 
5 mg/L as C and 1000 mg/L as C, respectively.

8.2. Refer to Exercise Problem 5.2. Solve the coupled differential equations
derived in that problem using the same biokinetic data in Exercise
Problem 8.1 for three different hydraulic retention times (HRT) of 5 hr,
10 hr, and 20 hr. Hence, plot the temporal variation of biomass and sub-
strate for each HRT.

Use the following additional data: V = 10 L; Sin = 1000 mg/L as C; and
initial concentrations of biomass and substrate in the reactor are 
5 mg/L and 0 mg/L as C, respectively.

Figure 8.44 Concentration in pore gases in the layers as a function of time.
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CHAPTER 9

Modeling of Natural 
Environmental Systems

CHAPTER PREVIEW

In this chapter, 12 examples of natural systems are illustrated. The
selected examples include steady and unsteady state analysis using
algebraic and differential equations, solved by analytical, trial-and-
error, and numerical methods. Computer implementation of the math-
ematical models for the above are presented. The rationale for select-
ing appropriate software packages for modeling the different problems
and their merits and demerits are discussed.

9.1 INTRODUCTION

IN this chapter, the modeling of several examples of natural environmental
systems using the three types of software packages are demonstrated. The

use of Excel®, TK Solver, Mathcad®, Mathematica®, MATLAB®, Extend™,
ithink®, and Simulink® software packages in modeling aquatic, soil, and
atmospheric systems under various conditions are illustrated. The develop-
ment of the mathematical models in each case is outlined, and the rationale
for the selection of the software packages for each example, their ease of use,
applicability, and limitations are pointed out. The examples included here
demonstrate how these software packages can be used to solve various math-
ematical calculi commonly encountered in environmental modeling.

9.2 MODELING EXAMPLE: LAKES IN SERIES

The basic lake models discussed in Chapter 7 can be easily modified and
refined in stages to simulate more complex and realistic situations. The 
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modeling of a sample problem from Thomann and Mueller (1987) involving
two lakes in series is illustrated in this example. A constant load of a conser-
vative substance (K = 0) had been applied to the first lake resulting in con-
centrations of 0.270 mg/L in that lake and 0.047 mg/L in the second lake.
Then, the load to the first lake is instantaneously removed. The goal is to
develop a model to describe the temporal changes in the concentrations in the
two lakes.

The MB equations for the two lakes now yield the following coupled dif-
ferential equations:
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where C is the concentration in the lake (ML–3), V is the volume (L3), K is
the overall first-order reaction rate constant (T–1), subscripts 1 and 2 repre-
sent the first and second lake, Q1,2 is the flow rate from lake 1 to lake 2, and
Q2 is the flow rate from lake 2. These coupled ODEs can be analytically
solved for certain simple input functions as illustrated by Thomann and
Mueller (1987). In the current example, they can be solved for the concentra-
tion in the second lake due to the washout of the first lake, C2,1, and the con-
centration due to its own washout, C2,2. The following result has been
reported by Thomann and Mueller (1987):
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The system response is not obvious from the above equation and is 
counterintuitive: the concentration in the second lake increases for a short
period in response to the shutdown. Spreadsheet packages can be readily used
to model this particular case, because the analytical solution to the governing
ODEs is known for the simple step shutdown of the input function to the first
lake. To model other scenarios, a numerical solution procedure may have to
be used. Implementing a numerical procedure such as the Runge-Kutta
method in a spreadsheet for this problem may be tedious. Equation solver-
type packages and dynamic simulation packages are more suitable for 
modeling this problem under such conditions.

The use of equation solver-based packages would be possible only when
the input parameters are not arbitrary functions of time. As a first example,
the model developed with Mathematica® is shown in Figure 9.1. In this case,
Mathematica®’s built-in function, DSolve, is used to find the analytical solu-
tion for the two coupled ODEs as shown in line In[1]. The result returned in
line Out[5] can be seen to be identical to the above analytical solution. This
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example illustrates the unique and powerful feature of Mathematica® in solv-
ing coupled ODEs, analytically, in symbolic form. A plot of concentration vs.
time for the two lakes is generated using the commands in line In[6].

The Mathcad® model for the above scenario is shown in Figure 9.2.
Because Mathcad® cannot solve the coupled ODEs analytically, a built-in
numerical routine, rkfixed, which is based on the Runge-Kutta method, has to
be used. The right-hand sides of the governing ODEs are specified as a vec-
tor, D, in the call to rkfixed, which returns the solution as a vector C.

MATLAB® is also unable to find the analytical solution. Hence, a numer-
ical approach is used as shown in Figure 9.3. Here, an M-File is first created
in which the model parameters are declared in lines 2 to 6. Line 7 contains
the right-hand side of the two ODEs to be solved. The built-in numerical pro-
cedure, ode45, is called from the Command window, with the following argu-
ments: the name of the M-File containing the model parameters and the
equations, the range of the independent variable over which the solution is

Figure 9.1 Two lakes in series modeled in Mathematica®.
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sought, and the initial values for the two equations. The subsequent com-
mands generate a plot of the results returned by the call to ode45.

If different loading conditions are to be evaluated, dynamic simulation
programs would be more appropriate for this problem. In this example, the
lake model developed using the Extend™ dynamic simulation package in
Chapter 7 is modified for the two lakes as shown in Figure 9.4.

This model allows a wide range of input functions to be specified through
the Function Input blocks. Two sets of Integration blocks are used to solve
each of the differential equations, the output from the first one acting as the
input to the second one, in addition to its own external input. In the example
shown in Figure 9.4, a step shutdown is specified for the first lake.

This model can be further expanded and refined to simulate more realistic
situations. For example, the classical problem of lakes in series (e.g., the
Great Lakes) could be set up by copying and duplicating the basic “lake
block” already developed, and assigning individual parameters. Catchment
areas may be added to estimate the inflows to the lakes due to runoff,
with user-specified runoff characteristics and annual rainfall information

Figure 9.2 Lakes in series modeled in Mathcad®.

Chapter 09  11/9/01  9:37 AM  Page 256

© 2002 by CRC Press LLC



Figure 9.3 Two lakes in series modeled in MATLAB®.
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downloaded from a database via the File Input icon. Additional waste loads
with random time variations can be readily added to the lakes. Submodels
may be added to predict the impact on fish in the lake, buildup of sediment
concentrations, etc.

To simplify the appearance of models with several icons, Extend™ allows
related icons to be grouped and placed inside custom-designed icons as
shown in Figure 9.5 for part of the Great Lakes system. Double clicking the
drainage basin for Lake Superior reveals Constant Input icons for inputting

Figure 9.4 Two lakes in series modeled in Extend™.
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the runoff characteristics and an Equation icon where the equation for calcu-
lating the runoff has been entered by the developer. The output from the
Equation icon, the runoff, is connected to the other icons that use that vari-
able. This feature of customized graphic icons that encode the equations can
provide strong visual appreciation and a global view of the problem.

9.3 MODELING EXAMPLE: RADIONUCLIDES 
IN LAKE SEDIMENTS

Radionuclides or radioactive substances have been released into the envi-
ronment by anthropogenic activities such as energy generation, weapons
development, and some industrial applications. They behave similar to
organic chemicals except in the following regards: they do not volatilize read-
ily, they undergo a decay process often by first order, and they are measured
in curie units instead of mass.

Figure 9.5 Multiple lakes modeled in Extend™.
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In this example, a two-compartment model is developed to evaluate the
impact of fallout of radionuclides resulting from nuclear weapons testing
conducted in the late 1950s and early 1960s. The system is Lake Michigan
and the sediments. The objective is to predict the long-term fate of cesium in
the water column and the sediments. This illustration follows the mathemati-
cal model reported by Chapra (1997), which is based on the simplified sys-
tem illustrated in Figure 9.6.

The MB equations for dissolved concentrations in the water column and
the pore waters, and for solids in the water column and the sediments are 
as follows:

MB on cesium in dissolved form in water column:
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Figure 9.6 Schematic diagram of lake-sediment system.
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where C1 and C2 are the concentrations of cesium in the water column and
the sediment waters, V1 and V2 are the volumes of water column and sedi-
ment, Wc and Ws are the input rates of cesium and solids, Q is the outflow rate
of water, k is the first-order decay rate constant, vs and vr are the settling and
resuspension velocities of solids, A is the water-sediment interfacial area, fp,1

and fd,1 are the particulate and dissolved fractions in the water column, E is
the sediment-water column diffusion coefficient, fd,2 is the fraction dissolved

Figure 9.7 Lake-sediment system modeled in ithink®.
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in the sediments, vb is the burial rate constant, and m1 and m2 are the solids
concentrations in the water column and the sediments.

The above first-order coupled differential equations can be solved numer-
ically, using the Runge-Kutta method, for instance. The Excel® spreadsheet
package or the equation solver-based packages can be used if the model coef-
ficients (parameters) are constant and the forcing function, W, is a constant or
a simple function of time. In this example, because the forcing function W is
an arbitrary function of time, dynamic simulation packages wold be most

Figure 9.8 Fallout, dissolved concentration, and sediment concentration of cesium.
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suitable. The use of the ithink® software package is chosen in this example as
illustrated in Figure 9.7.

The results from this model are presented in Figure 9.8. The slow buildup
of the sediment concentration can be seen from this plot. These results are in
agreement with those presented by Chapra (1997).

9.4 MODELING EXAMPLE: ALGAL GROWTH IN LAKES

In this example, development of a model to describe algal growth in lakes
is illustrated, starting from a simple two-component model and gradually
refining it to make it more realistic. The model assumes the constant volume
of lake, V(L3); complete mixing; nutrient limiting conditions for algae
growth; and phosphorous recycling to the phosphorous pool after death. The
preliminary model assumes a constant maximum growth rate, kg,max (T–1),
and first-order death process of rate constant, kd (T–1). The MB equations for
algae, a, and phosphorous, p, are as follows:
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where Q is the inflow rate (L3T–1), pin is the influent phosphorous concen-
tration (ML–3), Ksp is the half saturation constant for p (ML–3), and apa is the
stoichiometric ratio of p in a (–). The term (V/Q) can be replaced in terms of
the hydraulic detention time, HRT = V/Q (T). The above equations are coupled
nonlinear differential equations and have to be solved numerically. Equation
solver packages such as TK Solver, Mathcad®, MATLAB®, or Mathematica®

can be used for solving them; however, if the model parameters such as pin

are functions of time, dynamic simulation packages such as ithink® or
Extend™ would be more efficient in solving them. In this example, the above
equations are implemented in the ithink® dynamic simulation package.

The model developed using the ithink® simulation package is illustrated in
Figure 9.9. The construction of the flow diagram is relatively straightforward.
The model parameters are first assigned numerical values using the
Containers. Two Stocks are created to represent a and p; the equations are
entered into the Converters, which are automatically compiled by ithink® and
are listed in Table 9.1. The flow diagram visually illustrates the interactions
between the algae and phosphorous compartments, and at the same time, it
encodes the underlying equations governing the system. The model is set to
solve the differential equations using the Runge-Kutta fourth-order method for
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Table 9.1 Model Equations Compiled by ithink®

A(t) = a(t - dt) + (Growth - Death&Washout) * dt
INIT a = 0.5
INFLOWS:  Growth = kgmax*(p/(p+ksp))*a
OUTFLOWS: Death&Washout = kd*a + (1/HRT)*a

p(t) = p(t - dt) + (Inflow&Release - Upake) * dt
INIT p = 1
INFLOWS:  Inflow&Release = apa*kd*a + (1/HRT)*(pin-p)
OUTFLOWS: Uptake = apa*kgmax* (p/(p+ksp))*a

apa = 1.5; HRT = 30; kd = 0.1; kgmax = 1; ksp = 2

30 days, with a time step of 0.1 days. Temporal variations of concentrations 
of algae and phosphorous, resulting from a step input of pin, are shown in
Figure 9.10.

The Extend™ simulation package can also be easily used to model this
problem as illustrated in Figure 9.11. Two Integrator blocks are used to solve
the coupled differential equations: one for a and the other for p. In this case,
the influent concentration of phosphorous, pin, is set as a constant value of 

Figure 9.9 Algal growth modeled in ithink®.
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10 mg/m3. However, it can be readily set to be a variable as in the ithink®

example, using a Table or Function input block.
Unlike in ithink®, the underlying equations are not compiled into a list in

Extend™. The equations underlying each block can be viewed or edited by
double clicking that block. Even though the general setup is nearly the same
in ithink® and Extend™, the ithink® model is visually somewhat more com-
pact than the Extend™ model.

The built-in Plotter block is used to generate a plot of the temporal varia-
tions of algae and phosphorous as shown in Figure 9.12. Unlike ithink®, an
Extend™ plot has more features for reading the plot and customizing it. For
example, by placing the cursor at any point within a graph, the coordinates of
the points on the graph are displayed in the first row of the table below. The
toolbar at the top of the plot allows access to several customizing features. In
addition, the table associated with the plot is readily available for inspection.

Figure 9.10 Results from the ithink® model.
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As the next step, a basic algae-zooplankton grazing model can be repre-
sented by the following two MB equations, assuming constant coefficients:
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Figure 9.11 Algal growth modeled in Extend™.

Figure 9.12 Results of algal growth modeled in Extend™.
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These two equations can be easily implemented in the ithink® simulation
package, as shown in Figure 9.13. Temporal variations of phytoplankton-C,
zooplankton-C, and total C predicted by the ithink® model are also included
in Figure 9.13.

These examples demonstrate the ease with which dynamic models can be
readily assembled for systems that would normally require extensive pro-
gramming expertise for computer implementation by traditional languages.

Figure 9.13 Algae-zooplankton interaction modeled in ithink®.
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Once the basic model is constructed, it can be refined in stages by increas-
ing the complexity. For example, submodels describing the effect of temper-
ature on the maximum growth rate, the influence of sunlight on algae growth
rate, growth-controlling nutrient (nitrogen vs. phosphorous), and predation
can be integrated to generate a comprehensive and more realistic model. The
combined effect of temperature and sunlight on the growth rate of algae, for
instance, can be modeled as follows:

kG = kG,201.066(T–20)��2k
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where kG,20 is the growth rate measured at 20ºC, T is the temperature (ºC), ke

is the light extinction coefficient (L–1), H = H2 – H1 is the depth of algae
activity (L), and (Ia /Is) is the ratio of average light level to the optimal light
level (–).

The growth-controlling phenomenon of multiple nutrients can be incorpo-
rated by modifying the above expression for kG as follows:

kG = kG,201.066(T–20)��2.
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where n is the concentration of available nitrogen (ML–3), and Ks,n is the half
saturation constant for nitrogen (ML–3). To use the above expression, a sub-
model for the fate of available nitrogen has to be included. The interaction
between algal-carbon, ca, and available nitrogen, n, has been modeled by the
following equations (Chapra, 1997):
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where N/C is the nitrogen-carbon conversion ratio, and nin is the available
nitrogen concentration in the influent (ML–3).

As a next step, grazing of algae by zooplankton can be incorporated into
the model by first developing a submodel assuming grazing loss as a first-
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order process with respect to algae concentration, where the rate constant is
a function of zooplankton concentration, with a temperature correction factor:

Grazing loss = –kgzza = –��Cgz�
Ks,a

a

+ a
���gz

(T–20)�za

where Ks,a is the half saturation constant for the zooplankton grazing on algae
(ML–3). In order to use the above, an MB equation for zooplankton is
required, assuming growth of zooplankton due to assimilation of algae and
loss due to respiration and death. Thus, the MB equation based on zooplank-
ton concentration, z, can be formulated as follows:

�
d

d
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t
� = acaε���Cgz�
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���gz

(T–20)�za� – kdzz

where aca is the ratio of carbon to chlorophyll a in algae (–), � is the grazing
efficiency factor, and kdz is the first-order rate constant for respiration and
death (T–1).

A more complete representation of the system is now possible with the
above equations. With some practice, a comprehensive model could be gen-
erated with simulation packages such as ithink®, Extend™, or Simulink®. A
model that incorporates algae, herbivorous zooplankton, carnivorous zoo-
plankton, particulate organic carbon, dissolved organic carbon, ammonium-
nitrogen, nitrate-nitrogen, and soluble phosphorous has been developed based
on the research by Chapra (1997). This model is based on a total of eight cou-
pled differential equations derived from MB on the above species in a lake,
interacting as shown in Figure 9.14, and driven by seasonal variations in tem-
perature and sunlight.

The graphical interface of this model developed with the ithink® package
is illustrated in Figure 9.15. Results from a typical run (included in Figure
9.15) follow the general trend reported by Chapra (1997). The model requires
several simplifying assumptions and over 30 input parameters (Chapra,

Figure 9.14 Interactions between model compartments.
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1997). A model such as this can be used to study the sensitivity of the vari-
ous parameters for optimal design of experiments, to use in field studies, and
to determine the impact of alternative management actions.

9.5 MODELING EXAMPLE: CONTAMINANT 
TRANSPORT VISUALIZATION

In this example, the use of software packages in visualizing a groundwa-
ter contamination site is presented. The contamination is caused by an acci-
dental release of a mass M of a chemical through a reinjection well. A
mathematical model is to be developed to describe the fate of the contaminant
in the aquifer. The model is expected to include advective transport as well as
longitudinal and transverse dispersion and retardation and to be able to pre-
dict contaminant concentration as a function of space and time. The ultimate
objective of the modeling exercise is to develop an appropriate model for use

Figure 9.15 Graphical user interface for a lake model in ithink®.
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in visualizing the temporal and spatial distribution of the contaminant, to aid
in risk assessment.

In this case, it will be assumed that the medium is uniform, advective flow
is one-dimensional in the x-direction, the release is uniformly distributed ver-
tically through the thickness of the aquifer (i.e., fully penetrating screened
reinjection well), the spill volume is small compared to the aquifer volume,
and occurs over a very short time. A material balance under these conditions
simplifies to the following:
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The initial condition necessary to solve the above partial differential equation
(PDE) can be found by a material balance at the point of discharge. While the
above equation cannot be solved analytically by any of the software packages
directly, an analytical solution reported by Charbeneau (2000) can be used 
for visualization:

The above result is not a straightforward one able to be understood intu-
itively. However, it can be visualized with most software packages discussed
in this book. The equation solver-based packages Mathematica®, Mathcad®,
and MATLAB®, with their powerful graphing capabilities, can be particularly
efficient in visualizing the above result.

The application of Mathematica® to generate a variety of images to visu-
alize this problem is summarized first. The basic Mathematica® script encod-
ing the above equation is shown in Figure 9.16, where the variable, time, is
set at 10.

Once the basic script is written to get the solution C[x,y], the result can 
be used with a range of the Mathematica® built-in plot routines to develop 
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Figure 9.16 Basic script in Mathematica® for contaminant transport.
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two- and three-dimensional graphs and animations to visualize the results for
better understanding. For example, Plot3D routine and the ContourGraphics
routine are illustrated in Figure 9.17.

The same basic code is slightly modified to generate a series of three-
dimensional surfaces at increasing time steps (t = 2 to 10) as shown in 
Figure 9.18. This series of figures can also be compiled to generate a movie
to animate the spread of the plume.

The Mathcad® implementation of this example is shown in Figure 9.19.
Again, the true equation-based interface in Mathcad® makes the model
appear to be organized and easily readable. Once the governing equation is
entered, the powerful graphing capabilities of Mathcad® with script-free for-
matting of the plots through a GUI makes Mathcad® most appealing for this
example. The generation of the composite plot of a three-dimensional surface
of the concentration distribution and the corresponding two-dimensional con-
tours; the lighting, colors, and transparency of the surface; the thickness of
the contour lines; the position of axes; and the viewing angle, are all accom-
plished through the GUI without any scripting.

Figure 9.17 Contaminant transport visualization in Mathematica®.
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9.6 MODELING EXAMPLE: METHANE EMISSIONS 
FROM RICE FIELDS

In this example, development of a model to predict methane release 
from rice fields is illustrated, which in turn, can be used in modeling green-
house effects. (Methane emission is a serious environmental issue because it
is 20 times more absorptive than carbon dioxide, and global methane emis-
sions have been increasing at about 1% per year.) The model presented here
is based on the work by Law et al. (1993). The objective of the modeling
effort is to reproduce the two peaks in the methane flux typically noted under
field conditions.

Figure 9.18 Script for generating animation in Mathematica®.
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While the production of methane and its transport to the atmosphere is a
complex process, simplifying assumptions can be made to include the most
important mechanisms and keep the model reasonably simple. Accordingly,
the following assumptions are made in this example: methane is generated
from two sources of carbon—carbon initially in the soil and carbon provided
by the plants—with the same biokinetic rate according to Monod’s kinetic
model, methane transport follows simple mass transfer theory, and carbon
given off by the plant roots is a function of the physiology of the plant.

Following the above assumptions, the material balance equations can be
developed for substrate (S), methanogens (X), and methane (M), respectively:
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Figure 9.19 Contaminant transport visualization in Mathcad®.
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Table 9.2 Parameters Used in Methane Emission Model

Symbol Variable Value

S concentration of substrate (mg/L)
X concentration of methanogenic biomass (mg/L)
M Concentration of methane (mg/L)
t time (days)
V volume of reactor (m3) 0.01
k rate constant (day–1) 4.0
Ks Monod half velocity constant (mg/L) 9.5
Y yield constant (mg biomass/mg substrate) 0.04
b biomass decay rate (day–1) 0.032
Kr Mass transfer coefficient for substrate from root (g/m2-day) 6.0
Ar surface area of roots (m2) 0.01
Kp mass transfer coefficient for methane from root (m-day) 1.0
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where f (t) is a function modifying the rate of release of substrate by plant
roots (known as root exudate) depending on plant physiology. It is set as fol-
lows in this example: f (t) = 0 if time < 22 days, f (t) = 0.8 if time > 22 days
and < 45 days, f (t) = 1.0 if time > 45 days and < 58 days, and f (t) = 0 if time
> 58 days. The other parameters in the model are defined in Table 9.2 along
with baseline values.

In the original study, Law et al. (1993) used the dynamic simulation pack-
age STELLA® (which is the same as ithink®) to model this phenomenon. In
this case, the use of the Extend™ package is illustrated as an alternate soft-
ware, as shown in Figure 9.20.

9.7 MODELING EXAMPLE: CHEMICAL EQUILIBRIUM

In this example, modeling of chemical equilibrium systems is illustrated.
Traditionally, modeling of such systems has been done either graphically or by
using special purpose computer software packages. These models essentially
entail solving a set of linear equations. Here, the ease with which such a model
can be developed using TK Solver is illustrated for a closed carbonate system.

1 – Y + 0.8b(Ks + S)
���

kS

13STELLA® is a registered trademark of High Performance Systems, Inc. All rights reserved.
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Figure 9.20 Methane emission modeled in Extend™.
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The governing equations are developed as follows from the chemical reactions
and the equilibrium constants:
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The above expressions can be simplified to the following set of simulta-
neous equations:

log K1 = log [H+] + log [HCO–
3] – log [H2CO3]

log K2 = log [H+] + log [HCO3
2–] – log [HCO–

3]

log Kw = log [H+] + log [OH–]

In addition to the above equations, a total mass balance on carbon can be
written as follows:

CT = [H2CO3] + [HCO–
3] + [CO3

2–]

The last four equations can be solved to find how a given total carbon mass
can dissociate into the three species at various pH values. (Note that log [H+]
= –pH.) The algebraic solution involves polynomial equations requiring a
somewhat tedious solution process; however, a trial-and-error process can be
readily set up to solve them using a spreadsheet package or an equation solver
package.

The model built with TK Solver is presented in Figure 9.21, where the
equations are solved at various pH values to plot the speciation diagram. The
logarithmic form of the three mass law equations and expressions for pH and
the total carbonate concentration are first entered into the Rule sheet. The
Variable sheet is automatically generated by TK Solver, listing all the vari-
ables and model parameters under the Name column. The model constants
K1, K2, and Kw, and the total carbonate species, CT, are entered as inputs
under the Input column. The remaining six lines are defined as Lists, with pH
as the Input list, set by the modeler to vary from 3 to 14 in steps of 1.

Because the solution procedure involves a trial-and-error process, an arbi-
trary initial guess value has to be provided for one of the unknowns. This is
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done by specifying any one of the unknowns with a guess value. In this exam-
ple, [HCO3] was arbitrarily given an initial guess value of 0.001, identified in
the Status column by the symbol LF, implying that the List for that variable
had a first value as a guess. When Run, the model takes each pH value at a time
from the pH List and solves all the equations to calculate the concentrations of
the other species to generate corresponding Lists for them. These lists are then
used to produce the plots. When an equation is satisfied during a Run, the
Status column in the Rules sheet is filled with the symbol S for that equation.
For a successful solution, all the equations must be satisfied during a run.

The above model can generate speciation diagrams at any total concentra-
tion CT, based on the value entered in the Variables sheet under the Input
column. It can also be readily adapted for any other system by entering appro-
priate mass laws equations in the Rules sheet and corresponding “K” values
in the Variables sheet.

Figure 9.21 Chemical equilibrium modeled in TK Solver.
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9.8 MODELING EXAMPLE: TOXICOLOGICAL 
EXPOSURE EVALUATION

In this example, a model integrating fate and transport of toxicants with
exposure and toxicity assessments is illustrated. Such models can be useful in
environmental impact assessment, risk analysis, accidental release manage-
ment, etc. Consider a situation in which a known amount of a pollutant has
been released into an aquifer. Downstream from the release point, a drinking
water well draws from this aquifer. It is desired to predict the concentration
buildup in animals, for example.

First, the toxicological equations are developed, following the method of
Jorgensen (1994), using a three-compartment model consisting of blood,
liver, and bones, as an example. A compartment in toxicology is defined as a
body component that has uniform kinetics of transformation and transport
and whose kinetics are different from those of other components. The model-
ing framework illustrated can be extended to a greater number of compart-
ments if necessary, and if kinetic data are available for such differentiation.

In the model used here, it is assumed that the intake, R, is through the blood
compartment (1), part of which is excreted (via the kidneys). The amount
transferred to the liver (2) undergoes the metabolic process, modeled by
Michaelis-Menten-type kinetics. The transfer to the bones (3) is assimilated.
All processes other than metabolism are modeled as first-order processes.
These interactions and the kinetics of transfers and transformations are
schematically shown in Figure 9.22.

The following equations can be derived from MB across the three 
compartments:

MB on blood:

�
d

d

P

t
1

� = R – k3,1P1 – k2,1P1 – k0,1P1 + k1,2P2 + k1,3P3

Figure 9.22 Interactions between compartments.
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MB on liver:
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The above equations are first used to build the toxicology model using the
ithink® dynamic simulation software as shown in Figure 9.23. The kinetic
coefficients reported by Jorgensen (1994) are used here and are summarized
in Table 9.3, as generated by the ithink® software package. Typical results
under a constant intake rate of R = 1.3 mg/day are included in Figure 9.23.

The intake of the toxicant by the animal can be established from the toxi-
cant concentration in the aquifer. This concentration, C, as a function of time
and distance from the source of release can be described by the following
generalized, two-dimensional solute transport equation:
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A limited number of analytical solutions have been reported for the above
PDE under certain initial and boundary conditions and inputs. Some of these
solutions are summarized here:

• pulse input of a reactive, sorptive toxicant, one-dimensional flow:

• continuous input of nonreactive, sorptive toxicant, one-dimensional flow:

• pulse input of nonreactive, sorptive toxicant, two-dimensional flow:
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The above equations now form the basis of the integrated model. They can
be implemented using the ithink® software package with a user-friendly inter-
face as shown in Figure 9.24. The necessary tools to construct such an inter-
face in ithink®are built in. This enables users not familiar with the ithink®

environment to run the model under different scenarios.

Figure 9.23 Toxicant in blood, liver, and bone, modeled in ithink®.
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9.9 MODELING EXAMPLE: VISUALIZATION 
OF GROUNDWATER FLOW

This example illustrates the use of equation solver-based packages in per-
forming symbolic series calculations involving abstract mathematics to gen-
erate visual aids to interpret the results. A groundwater flow in small drainage
basins between a water divide and a valley bottom is modeled here as an illus-
tration. The system can be simplified as shown in Figure 9.25.

The governing equation for groundwater flow in this system, derived from
Darcy’s Law, assuming an isotropic, homogeneous aquifer, is the well-known
Laplace equation:

�xx + �zz = 0
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It is desired to develop the flow potential lines and the velocity vectors for the
flow field for the system.

Table 9.3 Model Equations in ithink®

Blood(t) = Blood(t – dt) + (In1 – Out1) * dt
INIT Blood = 2
INFLOWS: In1 = R + k12*Liver + Bone*k13
OUTFLOWS: Out1 = k31*Blood + k21*Blood + kol*Blood

Bone(t) = Bone(t – dt) + (In3 – Out3) * dt
INIT Bone = 0
INFLOWS: In3 = Blood*k31
OUTFLOWS: Out3 – Bone*k13

Liver(t) = Liver(t – dt) + (In2 – Out2) * dt
INIT Liver = 4
INFLOWS: In2 = Blood•k21
OUTFLOWS: Out2 = k12*Liver + Rate*Liver/(km + Liver)

K12 = 0.5
k13 = 0.8
k21 = 0.8
k31 = 0.1
km = 5
kol = 0.4
R = 3
Rate = 1.2
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Four boundary conditions (BCs) are required to solve the above PDE. For
the system shown, the following BCs are appropriate:

BC 1: �(x,z0) = gz0 + gsx

BC 2: �x(0,z) = 0

BC 3: �x(L,z) = 0

BC 4: �y(x,0) = 0

Figure 9.24 Graphical user interface for toxicant modeled in ithink®.
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Classical approaches of mathematical calculi can be used to develop the
analytical solution for the above PDE. The process begins by assuming a
solution of the following form:

�(x,z) = X(x)Z(z)

= e–k x(a cos kx + B sin kx) + e–k z(M cos kz + N sin kz)

where A, B, C, and D are arbitrary constants to be found from the BCs. In this
case, substituting the above BCs, B = N = 0 and A = M. On substitution into
the PDE, a Fourier series results, which on integration, leads to the final solu-
tion for �:

The result in the above form is complicated to comprehend or use; how-
ever, it can be useful in understanding flow patterns by presenting the rela-
tionships between the variables graphically.

In this example, the Mathcad® equation solver-based package is chosen to
illustrate how complex equations such as the above can be graphed in several
ways for better understanding of the system. Figure 9.26 shows the Mathcad®

worksheet, where the model for visualization is encoded.
The same final equation is used to generate the velocity vector plot.

Recognizing that the velocity vector is found by differentiating the velocity
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Figure 9.25 Problem definition for visualization of groundwater flow.
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potential function, the code shown in Figure 9.27 is implemented to deter-
mine the components of the velocity vector and to plot the velocity field.

This problem can also be modeled with Mathematica®, as shown in Figure
9.28. First, the model parameters are declared. Then, the equation describing
the head is entered using the graphic input palette. The ContourPlot routine
is then called, where the arguments specify the equation to be plotted and the

Figure 9.26 Groundwater flow visualization in Mathcad®.

Figure 9.27 Groundwater velocity field visualization in Mathcad®.
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ranges of values of the space coordinates over which the contours are to be
generated, and, optionally, the shading and coloring can be made true, with
an aspect ratio of the plot. The sign % represents the result found in the pre-
vious output line.

9.10 MODELING EXAMPLE: AIR POLLUTION—PUFF MODEL

In this example, modeling of an air pollution problem is illustrated. The
transport of nonreactive pollutants in the atmospheric system has been well
studied. The MB equation for the general case of advective-diffusive trans-
port of gaseous pollutants reduces to the well-known equation:
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Pasquill (1962) and Gifford (1976) have solved the above PDE by intro-
ducing dispersion coefficients, σx , σy , and σz , which are, in turn, related to
atmospheric conditions. These formulations are well known and are, therefore,
not detailed here. The final result for the time-dependent, two-dimensional,
ground-level, spatial concentration profile, for a “puff release” has been
reported as follows:

C(x,y,t) = exp�– �
1

2
����x –

�x

Ut
�� 	 �

σ
y2

y
2

���
where σx , σy , and σz have to be “looked up” from the charts based on wind
speed and atmospheric conditions presented by Gifford (1976).

M
��
�2	π3/2�x�y�z

Figure 9.28 Groundwater flow visualization in Mathematica®.
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Even though the final result is an algebraic equation, it is not intuitively
easy to comprehend. Equation solver-based packages such as MATLAB® and
Mathematica® are best suited for analyzing such equations and interpreting
the results visually. Because the interactivity is somewhat limited in the
Mathematica® environment, the MATLAB® package is used in this example
to model and visually analyze this problem by generating various plots.

The first step in implementing the puff model in the computer is to convert
the graphical information about the atmospheric conditions to numeric form,
either as tables or, preferably, equations. In the case of the puff model, the rela-
tionships between horizontal as well as vertical dispersion coefficients, σx , σy ,
and σz , and downwind distance have been reported as linear in a log-log coor-
dinate system. Thus, correlations for stable, neutral, and unstable conditions
can be developed from those plots as follows, where x is in km:

Stable conditions:

σx = σy = 9x0.9

and

σz = 3.6x0.82

Neutral conditions:

σx = σy = 15x1.1

and

σz = 19.5x0.67

Unstable conditions:

σx = σy = 90x

and

σz = 81.5x0.7

With the above equations for the stability curves, the puff model can now
be implemented on the computer. The M-File for the puff model is shown 
in Figure 9.29, where the custom function “Puffs” is coded using the
MATLAB® language. The call to this function requires three arguments,
which are the three user set variables—mass of chemical released, the wind
velocity, and the atmospheric condition, in this example. The code captures
the values for these variables from the call and assigns the first argument to
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W and the second to V, in line 6. The σx , σy , and σz values are then estimated
based on the third argument using a set of “if” statements, in lines 10 to 22.
Using these values, the concentration, C, at various time values ranging from
T = 1 to T = 15 in steps of three are to be calculated as a function of x and y
and plotted. Line 9 sets up this range for T in the subsequent calculations.
Line 8 is the code telling MATLAB® to keep the same scale for the axis in
the plots to be generated for each T value. Otherwise, MATLAB® automati-
cally sets the scale for different plots. The code is written so that four differ-
ent types of plots could be generated by activating one of lines 28 to 31.

Figure 9.29 M-file for puff model in MATLAB®.
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In the example shown, a three-dimensional contour plot with 10 contours
is chosen, and the other three options are commented out by the percent (%)
sign. In line 33, the hold on command tells MATLAB® to keep the settings
the same for all the calculations specified under the for statement. To run this
code, the user has to type in the call specifying the name of the M-File with
the arguments for MATLAB® to execute the code in that file. The resulting
plots in Figure 9.30 show the spatial distribution of the pollutant at the ground
level at various times, as the puff is carried away by the wind.

This example illustrates some of the mechanics involved in running 
a MATLAB® code interactively. However, for users not familiar with the
MATLAB® environment, this may not be intuitive and easy to adapt. For
example, accessing the M-File or modifying it to pick the desired type of plot,
or changing the grid sizes, etc., requires some familiarity with the MATLAB®

environment. MATLAB® includes tools to create a user-friendly GUI through
which a novice can intuitively run MATLAB® files interactively, by clicking
buttons and entering inputs through dialog boxes. Such an interface will be
included in the next example, where the plume model is illustrated.

9.11 MODELING EXAMPLE: AIR 
POLLUTION—PLUME MODEL

In this example, the computer implementation of the plume model to pre-
dict spatial concentrations resulting from a continuous source of air pollutant
is illustrated. Again, the well-known Gaussian Dispersion Model and its solu-
tion proposed by Pasquill and Gifford are used here. The objective is to
develop a model incorporating a user-friendly interface for novices to run the
model under various scenarios and generate plots to aid in visual appreciation
and analysis of the problem.

The following equations describe the steady state, spatial distribution,
and ground-level concentrations of nonreactive gaseous or aerosol (diameter
< 20 µm) pollutants emitted by a stack of effective height, H:

Spatial distribution:

C(x,y,z) = �
2πσ

M

yσzU
��exp�–�

2

y

σ

2

y
2� – �

(z

2

–

σ
H

z
2

)2

�� + exp�–�
2

y

σ

2

y
2� – �

(z

2

+

σ
H
z
2

)2

���
Ground-level distribution (z = 0):
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where M is the mass rate of emission, U is the mean wind velocity in the x direc-
tion and σy and σz are the horizontal and vertical dispersion coefficients.
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Figure 9.30 Three-dimensional contours for stable, neutral, and unstable conditions in MATLAB®.
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Important assumptions behind these equations are that they are applicable in
the above form only to flat terrains, the pollutant is conservative, and the 
wind velocity is constant.

The effective height of the stack, H, can be found from its physical height,
h, and the plume rise, ∆h, by the following equation:

H = h + ∆h = h + �
v

U
sd
��1.5 + 2.68 × 10–3patm.��Ts –

T

T

s

atm.
��d�

where vs is the stack gas velocity, d is the stack inside diameter, patm. and tatm.

are the atmospheric pressure and temperature, and Ts is the temperature of 
the stack gases. The measured wind velocity, U0, at the height of the
anemometer, h0, may have to be corrected for stack height, h, using the 
following equation:

U = U0��
h

h

0

��
k

where the exponent k is often taken as 1/7.
The dispersion coefficients depend on the downwind distances and the sta-

bility of the atmosphere, and they have to be read off plots. The stability con-
ditions have to be established based on wind speed and weather conditions
according to the following table:

Wind Speed
Day Night

(m/s) Strong Medium C Cloudy Calm and Clear

<2 A A-B B
2 to 3 A-B B C E F
3 to 5 B B-C C D E
5 to 6 C C-D D D D

>6 C D D D D

As part of this example, the curve-fitting feature available in MATLAB®

is also illustrated here in transforming the original plots of Pasquill (1962)
and Gifford (1976) into equations for integrating into the rest of the model.
(Originally, these plots were developed by fitting curves to experimentally
measured data, which is a standard procedure in analyzing experimental data
and developing mathematical models from physical models as discussed in
Chapter 1. Here, that process is mimicked by obtaining the “data” off the
charts and re-creating the curves and equations to approximate them.)

The MATLAB® package is used first to develop polynomial equations to
characterize the stability curves. The equations obtained from this curve-
fitting exercise are summarized here:
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Dispersion Coefficients

Vertical Horizontal

Condition σz r2 σy r2

A 0.003x1.77 0.97 0.422x0.89 0.99
B 0.016x1.34 0.98 0.292x0.89 0.98
C 0.201x0.81 0.99 0.198x0.90 0.99
D 0.275x0.66 0.99 0.135x0.90 0.99
E 0.156x0.69 0.99 0.107x0.89 0.99
F 0.145x0.68 0.99 0.078x0.89 0.99

The above equations are integrated to develop various plots to visualize 
the results. First, a simple script is written and saved as an M-File by the
name of, say, Air3D. The script consists of the following lines: specification
for a meshgrid in the x-y-z space, numerical values for the model parameters,
and the equation for spatial distribution C(x,y,z). A call to the MATLAB®

built-in routine Slice is made, identifying the volumetric data C(x,y,z) to be
plotted and specifying the locations of the sections through the plume in the
x, y, z space. After saving the M-File, by typing its name, Air3D, in the com-
mand window, a volumetric plot is generated with sections drawn through the

Figure 9.31 Volumetric plot of plume in MATLAB®.
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plume to illustrate the spread of the plume in the x, y, and z directions, as
shown in Figure 9.31.

A GUI developed using MATLAB®’s built-in tools is shown in Fig-
ure 9.32. With this GUI, all the model parameters can be set by the user
without having to know anything about the MATLAB® environment. In
addition, the GUI also enables the users to visualize the results with three
different types of plots. These plots can provide valuable insight into the
impacts of air pollution, which cannot be fathomed adequately through the
governing equations.

9.12 MODELING EXAMPLE: FUGACITY-BASED MODELING

In this example, the fugacity-based modeling approach pioneered by
Mackay (1991) and Mackay and Paterson (1981) is adapted to develop a
model of the ecosphere. The fugacity concept can be applied to a model “unit
world” to gain valuable information about a chemical’s behavior in the natu-
ral environment. This information can be of significant value in designing a
chemical with desired environmental characteristics, managing environmen-
tal emissions, ranking chemicals, and environmental policy-making. A basic

Figure 9.32 Graphical user interface for plume model in MATLAB®.
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configuration of the unit world proposed by Mackay consists of the water, soil,
air, and sediment compartments. The fugacity concept can be applied at vari-
ous levels of complexity by including more detailed compartments in the unit
world, inter- and intraphase transport and reactive processes, emissions, etc.

Fugacity, f, is a measure of a chemical’s “escaping tendency” from a phase
and is related to its concentration, C, in the phase by the equation f = C/Z,
where Z is the fugacity capacity of the phase. When phases are at equilibrium,
their fugacities are equal. For example, in an air-water binary system at equi-
librium, fw = fa , and hence, Ca/Cw = Za/Zw = Ka–w, the partition coefficient.
The Z values for air (1), water (2), soil (3), and sediment (4) compartments
can be calculated from the physical-chemical properties of the chemical as
follows:

Z1 = �
R

1

T
�; Z2 = �

H

1
�; Z3 = Ks–wZ2 = (0.41YsoilKo–w
soil)

and

Z4 = Ks–wZ2 = (0.41YsedKo–w
sed )

where R is the Ideal Gas constant, T is the absolute temperature, H is the
chemical’s Henry’s Constant, Y is the organic content of soil or sediments,
Ko–w is the chemical’s octanol-water partition coefficient, and, 
 is the den-
sity of soil or sediment. The fugacity of the system, f, at equilibrium is cal-
culated from the following:

f = �
Σ(ViZik

I

i + GiZi)
� = 

where Vi is the volume of compartment i, Gi is the advective flow through
compartment i, CB,i is the inflow concentration, ki is the first-order reaction
rate constant in compartment i, and E is the total emission into the system.
The above equations enable concentrations in the four compartments, Ci , to
be calculated based on the chemical’s physical-chemical properties, H, Ko–w,
ki; the compartmental characteristics, Vi , Y, 
, Gi, and CB,i ; and the system
temperature, T.

In this example, this Level II fugacity model including air, water, soil, and
sediment compartments and emissions into the air and water compartments is
illustrated. The equations forming the model are all algebraic and can be
computerized readily with a spreadsheet package such as Excel®, as shown in
Figure 9.33. As can be seen from this figure, in Excel®, the equations have to
be set up in a certain order and can be solved only in that order. If the model
has to be backsolved, the utility value of the Excel® model will be very lim-
ited. Excel®’s Goal Seek or Solver functions may be used for backsolving, but

E + Σ(GiCB,i )
��
Σ(ViZiki + GiZi)
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these two features can backsolve for only one variable that is specified as the
target cell.

This simple spreadsheet can be used for preliminary evaluation of the fate
of chemicals in the environment under several simplifying assumptions. It
can also generate a series of graphs as shown in Figure 9.34 to illustrate the
chemical’s environmental behavior.

An ability to backsolve for more than one variable at a time can be of sig-
nificant value in this problem. Some of the situations that can be studied with
models capable of backsolving include finding the maximum emission that

Figure 9.33 Level II fugacity model in Excel®.
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Figure 9.34 Results of Level II fugacity model in Excel® (key for compartments: (1) Air; 
(2) Water; (3) Soil; (4) Sediment).
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can be tolerated without exceeding some specified concentrations in the com-
partments, estimating the range of physical and chemical properties of new
chemicals that can meet desired environmental standards in the various com-
partments, determining or assessing the impacts of waste minimization
efforts, and so on. It is therefore fitting to use the TK Solver package to model
this problem, whereby its backsolving ability can be utilized to the maximum.
A plot generated by the TK Solver model illustrating the compartmental dis-
tribution of a chemical at various Henry’s Constant values and a fixed log Ko w

value of five is shown in Figure 9.35.

9.13 MODELING EXAMPLE: WELL PLACEMENT 
AND WATER QUALITY MANAGEMENT

This example illustrates the use of the potential theory in well placement
and water quality control. A production well is to be located in an unconfined
aquifer adjacent to a river. The current groundwater flow is perpendicular to
the river flow. The total dissolved solids (TDS) measurement in the river is
1200 mg/L, while that in the aquifer recharging the river is 300 mg/L. The
well has to be placed as close as possible to the river, but it should meet a

Figure 9.35 Results of Level II fugacity model in TK Solver.
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water quality standard of 500 mg/L TDS. The proposed pumping rate is 10
gpm (20,000 ft3/day), while the average aquifer flux is U = 5 ft2/day.

Stream function and the velocity potential functions developed from the
potential theory can be used in modeling this scenario. A coordinate system,
with origin at O, is first chosen, as shown in Figure 9.36.

To create a constant potential boundary along the river, an “image” injec-
tion well is used on the opposite side of the river. Using superposition, the
potential at any point P can be expressed as follows:

� = �0 + Ux + �
2

Q

π
� ln (r1) – �

2

Q

π
� ln (r2)

The flow field velocity in the x-direction, Ux, along the river (where x = 0),
for various locations of the well can now be found from the following:

(Ux)(0,y) = –��
∂
∂
�

x
��
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2
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���L2
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+ y2��
When the above result equals zero, or in other words, Ux along the river is
zero, all the flow into the well will come from the aquifer. Setting the above
to zero yields the following condition:

��
L

y
��

2

= �
πL

Q

U
� – 1 = � – 1

which can have one of the following results:

Figure 9.36 Problem definition for well location.
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two roots, at ��
L
y

�� = t �±� – 1	 if � > 1

one root, at y = 0 if � = 1

no real roots if � < 1

The last case represents no flow from the river toward the proposed well, with
the well receiving 100% of the water from the aquifer. Using the given data,
� = 1 when L = Q/πU = 1272 ft. Therefore, if the well is located, say, 1300 ft
from the river, the TDS in the well output will be 300 mg/L. However, this is
well below the water quality standard of 500 mg/L. The well can be moved
closer to the river and receive a fraction of its capacity from the river. This
fraction of flow rate, fr, can be found from a simple mass balance:

500 mg/L = fr × 1200 mg/L + (1 – fr) × 300 mg/L

giving fr = 2/9. The value of L to achieve this split of flow is shown in  
Figure 9.37 and can be found as follows.

The stream function along the river is found by setting x = 0, and θ1 = π – θ2:

�(x = 0,y) = Uy + �
Q

2
� – �

Q

π
� tan–1��

L

y
��

and the stream function at y = L√(� – 1) is as follows:

�(x = 0, L�� – 1	) = UL�� – 1	 + �
Q

2
� – �

Q

π
� tan–1(�� – 1	)

Figure 9.37 Definition diagram for well location.
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Hence,

fr = �
2

9
� = = �

π
2

��tan–1�� – 1	 – �
��

�

– 1	
��

The above can be solved by trial and error to find � as = 2.3, and hence, L
from L = Q/(π U�) as L = 553 ft. Hence, the well can be as close as 600 ft to
the river and meet the water quality standard.

A plot of the stream function can illustrate the above concepts visually.
The composite stream function for this problem can be formulated by adding
the stream functions for a uniform flow field representing the aquifer, a
source representing the proposed well, and a sink representing the image well.
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The Mathematica® model of this problem to generate the streamlines and the
velocity potentials is shown in Figure 9.38 for L = 600 ft.

As a comparison, the streamlines, velocity potentials, and combined plots
for the “safe” case with � = 1 or L = 1300 ft are shown in Figure 9.39.

�
Q
π

� tan–1�� – 1	 – UL�� – 1	
����

Q/2

Figure 9.38a Script for stream lines and velocity potentials in Mathematica®.
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Figure 9.38b Stream lines generated by Mathematica®; L = 600 ft.

Figure 9.38c Velocity potential lines generated by Mathematica®; L = 600 ft.

Chapter 09  11/9/01  9:37 AM  Page 301

© 2002 by CRC Press LLC



Figure 9.38d Stream lines and velocity potential lines in Mathematica®; L = 600 ft.

Figure 9.39a Stream lines generated by Mathematica®; L = 1300 ft.
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Figure 9.39b Velocity potential lines generated by Mathematica®; L = 1300 ft.

Figure 9.39c Stream lines and velocity potential lines generated by Mathematica®; L = 1300 ft.
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