The force on the elevator each time it comes to a
rest, besides the friction force, is equal to the slope of the
potential energy curve at the points where the total energy
line touches the potential energy curve. The condition for
the elevator to stop is that, at a point where its velocity
is zero, the friction force is equal to the resultant of the
gravitational and elastic forces. If, at one of the points
where the potential energy curve and the total energy line
meet, the slope of the potential energy curve is lower

than or equal to the maximum static friction force, the
condition is fulfilled, and the elevator will end its journey
at the first point where this occurs (v on Fig. 2).

This method, when presented to our students, seemed
to please them much more than the usual differential
equation treatment. They understood and successfully
applied it rather easily. It can be used in many situations,
every time the potential energy and the dry friction forces
are known,

Computing the Balmer wavelengths with a hand calculator

Miriam Sidran

The Bernard M. Baruch College, CUNY, New York, New York 10010

I would like to describe how a student’s question in
my general physics class (for premedical students) led
spontaneously to a class project which turned into an ex-
hilarating experience for us all.

It is a fact often stated in elementary physics text-

books that the wavelength A of any hydrogen spectral line
may be exactly calculated by means of the formula:
1 g 1 v Elmye) - Egue) (1)
A " nlowerz M higher? he
This formula is easily derived from Bohr theory. In this ex-
pression, n andn are the principal quantum
numbers of ‘ﬁ‘le initial and final orbits, respectively, of the
electron whose transition gives rise to the line emission.
En highex) and E(nlower) are the energies of the cor-
responding orbits, A is Planck’s constant, and ¢ is the speed
of light 1n vacuum The Rydberg constant RH is given in
units of m~ by the expression:

Ry =2m'mk*e*/hc;  m_=Mm/(M+m), 2

in which e is the electron charge, k the constant of pro-
portionality in Coulomb’s law, m the electron mass, M
the proton mass, and m, is the reduced mass of the electron
orbiting the proton.

The students in my class were surprised to learn that
the Balmer Series wavelengths could be exactly calculated
using such a simple formula as Eq. (1). An enterprising
student tried to verify this “allegation” using his hand cal-
culator. He retained 8 significant digits in each input con-
stant in Eq. (2), in order to guarantee accuracy.* He found
that the wavelengths he computed for the first four Balmer

*With the exception of k, the input constants of Eq. (2) are given
to eight digits in Harvey White, Modern College Physics, 6th edition
(Van Nostrand, 1972) on the page facing the Tear inside cover.
The eight-digit value of k was calculated from k = 10 "¢2,

lines were larger than the observed values listed in the text;
the “error” in each case amounted to several Angstrom
units. I then assigned this as a homework problem, and by
our next meeting, all of the students had repeated the cal-
culation and obtained the same results.

It was noted that the errors in question were not
constant, nor were they a constant percentage of the wave-
lengths; they did however increase with increasing wave-
length. I suggested that we list the possible reasons for these
errors, and assign a volunteer to explore each reason. We
agreed to limit the references used in this study to those
handbooks and elementary/intermediate textbooks which
were available in the department library. We further agreed
that no student should spend too much time on this
project, and that if they could not account for the errors
within two weeks, I would explain them,

The first volunteer looked up the measured wave-
length values in a handbook, and reported that they dif-
fered slightly from those in the text; however, these dif-
ferences were much smaller than the errors. The second
student looked up the most recent values of all the con-
stants in Eq. (2). Using these revised data, the students re-
calculated the wavelengths, They were disappointed to find
that the errors did not vanish as they had hoped.

At this point they strongly challenged the claim that
Eq. (1) really gives exact values for the wavelengths. To
support their challenge, they quoted several textbooks
which stated that the wavelengths derived from Eq. (1)
were ‘“‘very close” to the observed wavelengths, differing
from them by ““only” a few Angstrom units. Furthermore,
a student had come across the Dirac fine structure formula
for correcting E(n) in Eq. (1) for the effect of electron spin.
The class speculated that this might represent the correc-
tion to Eq. (1) which they were seeking. However, these
correction terms turned out to be an order of magnitude
smaller than our errors. Thus the problem was not yet
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solved, although our list of possible reasons for the errors
had not been fully explored. Since the deadline for a solu-
tion was approaching, I suggested that we re-examine the
problem step by step, from the beginning.

This time the students noticed that the errors recal-
culated with the revised data were a constant fraction,
0.00029 of the corresponding wavelengths. Although they
could not explain this fact, they were encouraged by dis-
covering it. Two days before the deadline, the answer
finally emerged. A triumphant student found two ref-
erences which described the decrease in wavelength for
radiation traveling from vacuum into air. The index of
refraction for air was given as 1,00029, which exactly ac-
counted for the errors of 0.00029A.

A =2, (1.00029) (3)

vacuum

On the basis of this new evidence, the students were able
to reason correctly that the errors arose because Eq. (1)
gives the wavelengths in vacuum, while the laboratory
measurements were made in air. Thus the mystery was
finally solved.

The students were jubilant at their success, and their
faith in Eq. (1) was restored. One said she felt like a mem-
ber of a scientific research team. Another said it was like
being part of a detective story. A third criticized the text-
book for giving incomplete information which could lead
to such errors when checked by students with hand calcu-
lators. But all agreed that they had enjoyed the shared
project, and that they would never forget the Bohr Atom.

Geometrical representation of an electrical circuit

William G. Delinger

Northern Arizona University, Flagstaff, Arizona 86011

Sometimes diagrams or graphs provide a means of
solving an electrical circuit problem, or at least, quickly
estimating parameters in the design of electrical circuits.
Also they may show relationships between parameters
which would not be immediately obvious from just the
mathematical equations. Some graphical techniques—for ex-
ample, load lines for tube or transistor circuits—are well
known. In teaching physics the author has used a geometri-
cal representation which does not seem, however, to be as
familiar,

Consider the resistors R; and R, connected in paral-
lel as shown in Fig. 1. The equivalent resistance R of the
combination can be calculated from the reciprocal addi-
tion equation 1/R = 1/R; + 1/R; orR =R R, /(R +R;).
This equivalent resistance can also be determined graphical-
ly by constructing the diagram shown in Fig. 2. To do this,

draw the base line AC of some convenient length and draw
the two perpendicular lines AF and CD scaled to represent
the resistance values of R; and R;. Then form an “X” by
drawing lines AD and FC. The perpendicular distance BE
represents the value of the resistance R. One can see im-
medijately the resistance R will always be less than the smal-
ler of the two resistance values. And in particular, if the re-
sistors Ry and R, are equal, the value of R will be one-half
of one of the resistances.

The formal equivalence between the diagram shown
in Fig. 2 and the parallel resistance equation can be demon-
strated by the following geometrical argument: The triangle
BCE is similar to triangle ACF and the triangle ABE is simi-
lar to triangle ACD. Since corresponding sides of similar
triangles are proportional, R/R; = BC/AC, R/R; = AB/AC.
If these two equations are added together and the fact

F

R Fig. 1.

AC = AB + BC is used, one obtains 1/R
=1/R, + 1/R,.
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Circuit diagram of two resistors
connected in parallel.

Fig. 2. Geometric representation of two

resistors connected in parallel.
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