Lista de Exercícios VIII

- ① Problema 8.18 do H.M. Nussenzveig, vol II.
- ② Um feixe molecular de oxigênio contendo 10^{10} moléculas/cm³ de velocidade média 500 m/s incide sobre uma placa segundo um ângulo de 30° com a normal à placa. Calcule a pressão exercida pelo feixe sobre a placa, supondo as colisões perfeitamente elásticas.
- 3 O livre caminho médio em hélio gasoso a 1 atm e 15° C é de 1.862×10^{-5} cm.
 - (a) Calcule o diâmetro efetivo de um átomo de hélio.
 - (b) Estime o número médio de colisões por segundo que um átomo de hélio sofre nessas condições.
- 4 Um balão esférico, de 4.000 cm³, contém hélio a uma pressão (no seu interior) de $1,2\times10^5$ N/m². Quantos moles de hélio estão no balão, sabendo-se que a energia cinética média por átomo de hélio é de $3,6\times10^{-22}$ J?
- \bullet Se a velocidade quadrática média de um átomo de hélio, à temperatura ambiente, for 1.350 m/s, qual a velocidade quadrática média de uma molécula de oxigênio (O_2) , a esta temperatura? (O peso molecular do O_2 é 32 e o do He é 4.)
- 6 A temperatura da superfície da Lua chega a atingir 127°C. Calcule a velocidade quadrática média do hidrogênio molecular a essa temperatura e compare-a com a velocidade de escape da superfície da Lua. Que conclusão pode ser tirada dessa comparação?
- $\widehat{\mathcal{T}}$ (a) Calcule o expoente adiabático $\gamma = \frac{C_P}{C_V}$ para um gás diatômico a uma temperatura elevada, tal que uma fração x das moléculas se encontram dissociadas em átomos. Verifique que o resultado se reduz aos casos limites esperados quando não há dissociação ou quando ela é total.
 - (b) Se o valor observado é $\gamma = 1, 5$, qual é a porcentagem de dissociação x?
- 8 Coloca-se 1 g de hidrogênio e 1 g de hélio num recipiente de 10 ℓ, à uma temperatura de 27°C.
 - (a) Qual é a pressão?
 - (b) Calcule os calores específicos molares C_P e C_V , bem como $\gamma = \frac{C_P}{C_V}$, para a mistura gasosa.