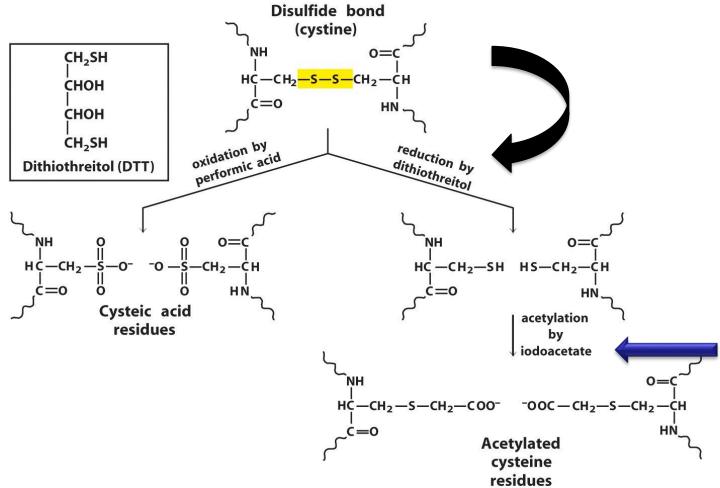

Acompanhamento de expressão e purificação de proteínas

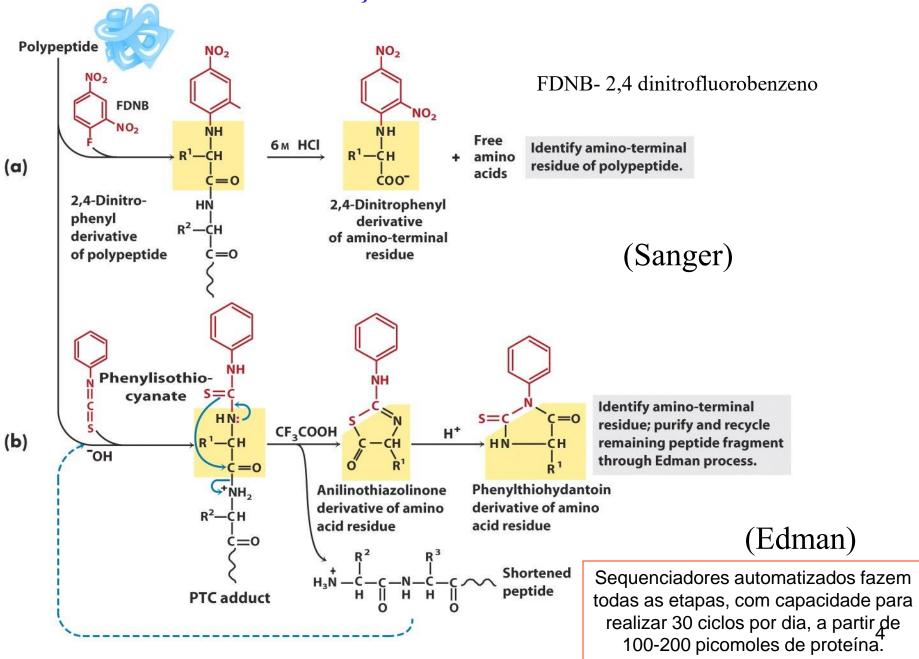
Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Sayuri Miyamoto 2014

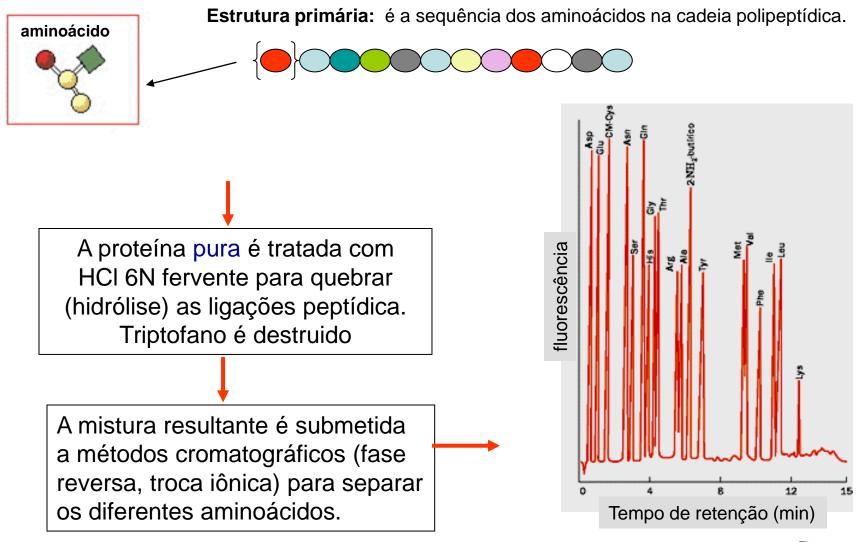
Sequenciamento de proteínas


Etapas:

- 1) separar as cadeias
- 2) reduzir os grupamentos dissulfeto
- 3) hidrólise total


- 4) determinar os resíduos N- terminal
- 5) Hidrólise enzimática da cadeia
- 6) Determinar a sequência

1. Desdobramento da ligação dissulfeto separação das cadeias polipeptídicas


Usar agentes desnaturantes e romper as ligações dissulfeto

Identificação do N-terminal

2. Analise da composição de aminoácidos

A posição do pico no cromatograma identifica o aminoácido. A área do pico quantifica o aminoácido.

3. Separação e análise dos peptídeos

reduce

disulfide

bonds (if present)

ETAPA REALIZADA

Result **Procedure** hydrolyze; separate R 1 S 2 C 2 amino acids D T 1 E 2 Y 2 Polypeptide P 3

> react with FDNB; hydrolyze; separate amino acids

2,4-Dinitrophenylglutamate detected

Conclusion

Polypeptide has 38 amino acid residues. Trypsin will cleave three times (at one R (Arg) and two K (Lys)) to give four fragments. Cyanogen bromide will cleave at two M (Met) to give three fragments.

E (Glu) is aminoterminal residue.

Clivagem da cadeia polipeptídica usando métodos de clivagem específicos (Proteases, CnBr)

cleave with trypsin; separate fragments; sequence by Edman degradation

GASMALIK

EGAAYHDFEPIDPR

DCVHSD

YLIACGPMTK

(T-2) placed at amino terminus because it begins with E (Glu).

T-3 placed at carboxyl terminus because it does not end with R (Arg) or K (Lys).

cleave with cyanogen

bromide; separate fragments; sequence by Edman degradation

EGAAYHDFEPIDPRGASM (C-1)

(C-2)**TKDCVHSD**

ALIKYLIACGPM

(c-3) overlaps with

T-1)and (T-4), allowing them to be ordered.

ordenamento

establish sequence Amino

terminus

Carboxyl terminus

Hidrólise parcial das cadeias polipeptídicas

TABLE 3–7 The Specificity of Some Common Methods for Fragmenting Polypeptide Chains

Reagent (biological source)*	Cleavage points†
Trypsin (bovine pancreas)	Lys, Arg (C)
Submaxillarus protease (mouse submaxillary gland)	Arg (C)
Chymotrypsin (bovine pancreas)	Phe, Trp, Tyr (C)
Staphylococcus aureus V8 protease (bacterium S. aureus)	Asp, Glu (C)
Asp-N-protease (bacterium Pseudomonas fragi)	Asp, Glu (N)
Pepsin (porcine stomach)	Phe, Trp, Tyr (N)
Endoproteinase Lys C (bacterium <i>Lysobacter</i> <i>enzymogenes</i>)	Lys (C)
Cyanogen bromide	Met (C)

^{*}All reagents except cyanogen bromide are proteases. All are available from commercial sources.

[†]Residues furnishing the primary recognition point for the protease or reagent; peptide bond cleavage occurs on either the carbonyl (C) or the amino (N) side of the indicated amino acid residues.

Como ordenar a sequência de peptídeos??

Usar mais de um método de clivagem da cadeia polippetídica....

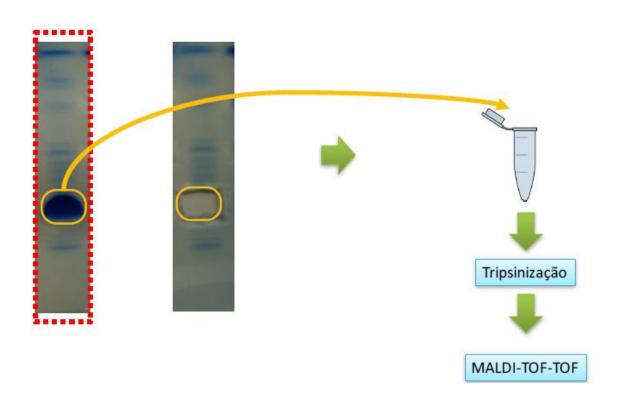
Exemplo: Quimotripsina (Cliva após resíduos aromáticos)

Asp-Ala-Gly-Arg-His-Cys-Lys-Trp Lys-Ser-Glu-Asn-Leu-Ile-Arg-Thr-Tyr

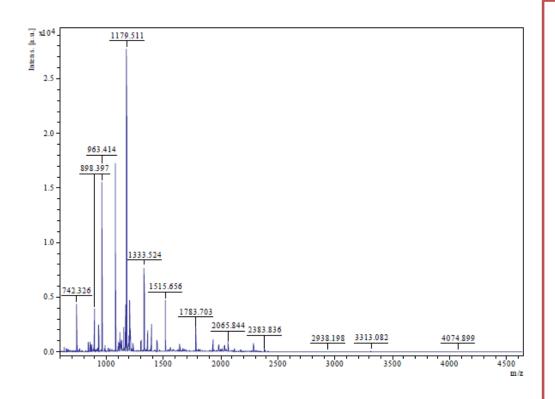
Degradação de Edman

Sequenciadores Automáticos

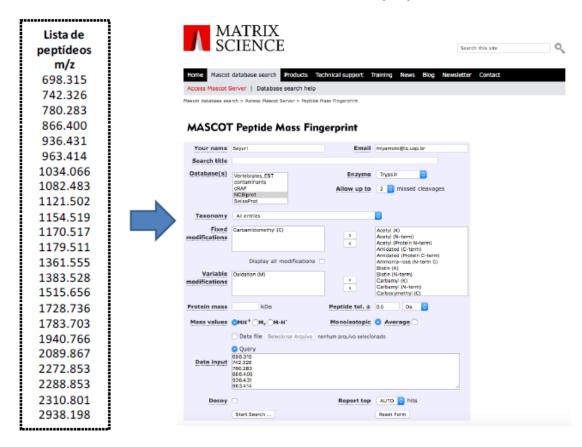



Limitações:

Tempo de análise longo! Grande quantidade de amostra! Muito lento para os padrões de hoje!!!


Hoje em dia o sequenciamento é feito por espectrometria de massas. (+rápido, requer pouquíssima amostra)

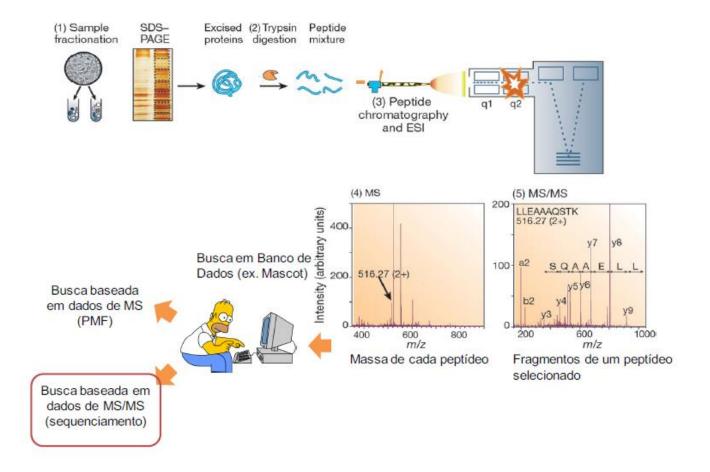
Exemplo de análise de uma enzima Betaglicosidase por SDS e Espectrometria de massas



Espetro de massa dos peptídeos da beta-glicosidase

Lista de peptídeos m/z 698.315 742.326 780.283 866.400 936.431 963.414 1034.066 1082.483 1121.502 1154.519 1170.517 1179.511 1361.555 1383.528 1515.656 1728.736 1783.703 1940.766 2089.867 2272.853 2288.853 2310.801 2938.198

Busca no Mascot utilizando as massas dos peptídeos detectados


Banco de Dados (Database)

Swiss-Prot

Se a proteína é de um organismo bem caracterizado como humanos, camundongos, levedura, ou arabdopsis, o Swiss Prot é o recomendado

NCBIprot

Se a proteína é de bactéria ou planta, usar o NCBIprot, pois é um banco de dados mais amplo que o Swiss-Prot

Resumo: Identificação de Proteínas/Enzimas

- 1. Determinação da massa molecular
- SDS-PAGE
- cromatografia de exclusão molecular
- espectrometria de massas (MALDI-TOF, Q-TOF)
- 2. Determinação da sequência de aminoácidos
- Degradação de Edman
- · Espectrometria de massas

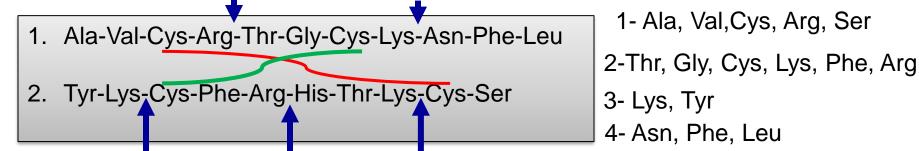
Em ambos os casos proteínas precisam ser clivadas especificamente (ex. Proteases) para gerar peptídeos menores.

A espectrometria de massas é a técnica mais precisa e mais utilizada atualmente.

A clivagem de um polipeptideo com CNBr e quimiotripsina produz fragmentos com as sequencias de aminoácidos listadas. Qual a sequencia do peptídeo intacto?

Tratamento com CNBr

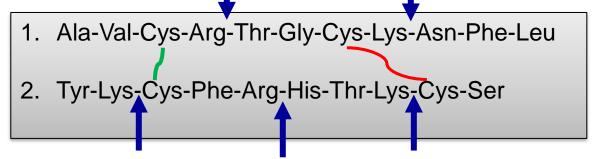
- 1-Arg-Ala-Tyr-Gly-Asn
- 2. Leu-Phe-Met
- 3- Asp-Met


Tratamento com quimiotripsina

- 4. Met-Arg-Ala-Tyr
- 5- Asp-Met-Leu-Phe
- 6- Gly-Asn

Asp-Met-Leu-Phe- Met Arg-Ala-Tyr-Gly-Asn

O tratamento de um polipeptídeo com 2-mercaptoetanol produz dois polipeptideos:


- 1. Ala-Val-Cys-Arg-Thr-Gly-Cys-Lys-Asn-Phe-Leu
- 2. Tyr-Lys-Cys-Phe-Arg-His-Thr-Lys-Cys-Ser

O tratamento do peptideo intacto com tripsina (cliva c-terminal de lys e Arg) produz fragmentos com a seguinte composição de aminoácidos:

- 3. (Ala, Arg, Cys, Ser, Val)
- 4. (Arg, Cys, Gly, Lys, Thr, Phe)
- 5. (Ans, Leu, Phe)
- 6. (Lys, Tyr)

Indique a posição da ponte dissulfeto no polipeptideo intacto.

- 1- Ala, Val, Cys, Arg, Phe
- 2- Tyr, Lys
- 3- Thr, Gly, cys, ser
- 4- Asn, Phe, Leu

18