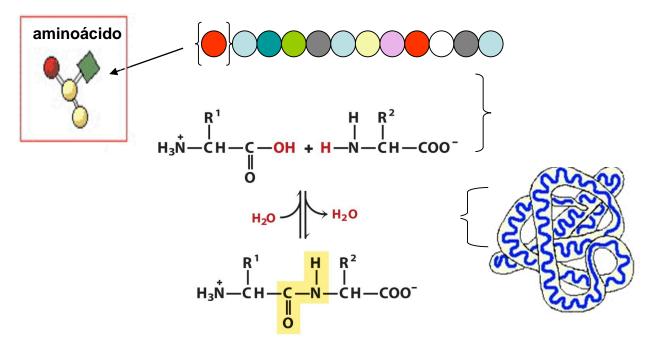
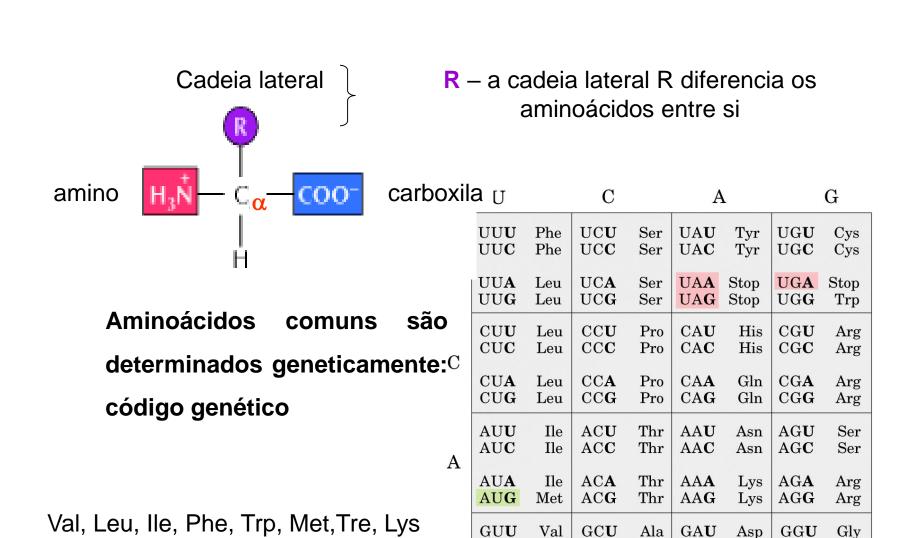
Aula de bioquímica

Tema


Aminoácidos

Prof. Adriane M. F. Milagres

Departamento de Biotecnologia - Escola de Engenharia de Lorena Universidade de São Paulo – USP adriane @debiq.eel.usp.br


Aminoácidos

• subunidades monoméricas que compõe a estrutura de milhares de proteínas diferentes

- fornecem substancias precursoras para os componentes endógenos:
- síntese de melanina a partir da tirosina,
- síntese de serotonina a partir do triptofano,
- síntese de carnitina a partir de lisina e metionina

Aminoácidos

GUC

GUA

GUG

G

Val

Val

Val

GCC

GCA

GCG

Ala

Ala

Ala

GAC

GAA

GAG

Asp

Glu

Glu

GGC

GGA

GGG

Gly

Gly

Gly

Por que as cadeias laterais dos aminoácidos são tão importantes?

Classificação de acordo com as cadeias laterais

Aminoácidos polares neutros Aminoácidos básicos Aminoácidos ácidos coocoo-COO-COO. COO-COO-COO. +H3N-Ç-H ⁺H₃N—Ç—H ĊH, Treonina Serina ĊOO" ĊH, ŃН (Ser - S)(Thr - T)Ácido Aspártico Ácido Glutâmico Ċ=NH₂⁺ NH₂+ (Asp - D)(Glu - E)COO-COO-ŃΗ₂ Histidina Lisina (+) (His - H)**Arginina** Aminoácidos "especiais" (Lys - K)(Arg - R)COO-COO-Os 20 aminoácidos Asparagina Glutamina (Asn - N)(Gln - Q)Prolina Cisteína Glicina proteicos (Pro - P)(Cys - C)(Gly - G)Aminoácidos hidrofóbicos - apolares COO-COO-COOcoo-COO-COO-COO-ÓН Alanina Valina (+) Isoleucina (+) Leucina (+) Metionina (+) Fenilalanina Tirosina Triptofano (Ala - A)(Val – V) (Ile - I)(Leu – L) (Met - M)(+)(Tyr - Y)(+)

(Phe - F)

(Trp - W)

Aminoácidos incomuns

Além dos 20, existem mais 2 aminoácidos protéicos que são determinados geneticamente:

- pirrol-lisina (somente em *Archaea*)
- selenocisteína (presente em animais, algumas bactérias; mas ausente em plantas e Archaea)

Esses aminoácidos são produzidos enzimaticamente, por modificação pós-tradução de um dos 20 aminoácidos clássicos. Exemplos:

Em muitas proteínas:

- aminoácidos glicosilados (Ser, Thr, Asn, Gln)
- aminoácidos fosforilados (Ser, Tyr)

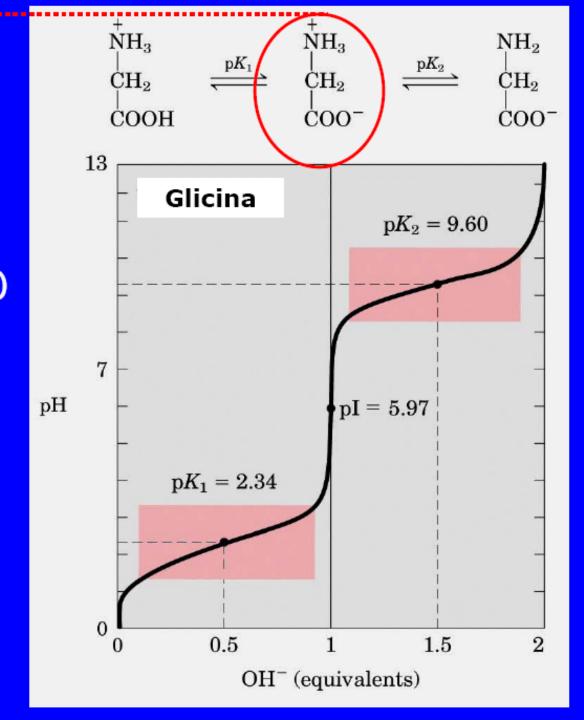
 - Ac. γ-carboxi-glutâmico (protrombina e fatores da coagulação)

-3-hidroxi-prolina

 4 hidroxi-prolina (colágeno)

- 3-metil-histidina (actina)

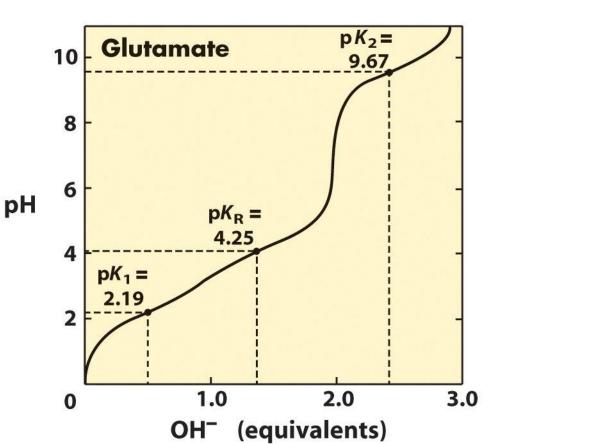
Propriedades Ácido-Base

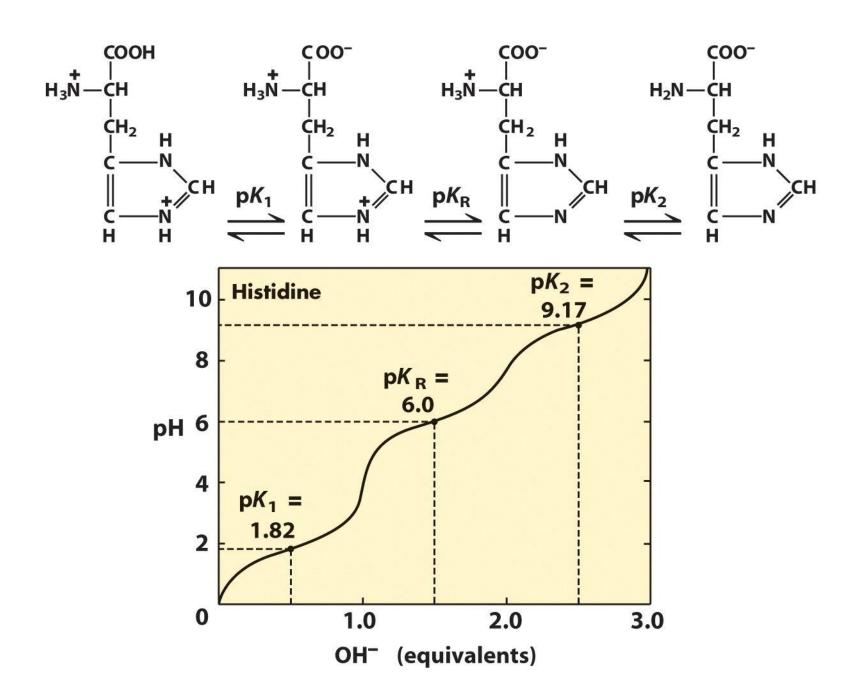

A carga elétrica de um aminoácido varia com o pH

O que acontece quando titulamos um aminoácido?

O íon dipolar pode atuar como um ácido (doador de prótons) ou base (aceptor de prótons)

No pI (ponto isoelétrico) o aminoácido está em sua forma eletricamente neutra (carga líquida = 0)


$$pI = \frac{pK_{a1} + pK_{a2}}{2}$$



$$pI = \underline{pK1 + pKR}$$

Para calcular o pl escolhem-se os pKa de grupamentos de mesma carga

PI do glutamato = 3,22

pKa dos aminoácidos

Aminoácido	pK ₁ (α–COO ⁻)	$\begin{array}{c} pK_2 \\ (\alpha - NH_3^+) \end{array}$	pK _R (grupo R)	pK _R (radical de proteínas
Glicina	2,35	9,78	FI THE STATE OF	
Alanina	2,35	9,87		
Valina	2,29	9,74		
Leucina	2,33	9,74		
Isoleucina	2,32	9,76		
Metionina	2,13	9,28		
Prolina	1,95	10,64		
Fenilalanina	2,20	9.31		
Triptofano	2,46	9,41		
Serina	2,19	9,21		
Treonina	2,09	9,10		
Asparagina	2,14	8,72		
Glutamina	2,17	9,13		
Tirosina	2,20	9,21	10,46	9,5-10,5
Cisteína	1,92	10,70	8,37	8,0-9,0
Lisina	2,16	9.06	10,54	9,5-10,5
Arginina	1,82	8.99	12,48	11,5-12,5
Histidina	1,80	9.33	6,04	6,0-7,4
Aspartato	1,99	9,90	3,90	4,0-5,5
Glutamato	2,10	9,47	4,07	4,0-5,5
Radical	idi Anadoreni ukt	es communication	richael ameion	and it with the same
Carboxila terminal	Market Market			3,5-4,0
Amino terminal				7,6-9,0

Os aminoácidos livres não constituem tampões fisiológicos importantes. Porém o pKa de suas cadeias laterais pode ser alterado no contexto da proteína

Aminoácidos, peptídeos e proteínas são bons tampões

Um tampão é definido como um composto ou conjunto de compostos que impedem variações da concentração de [H+], ou seja do pH, do meio.

Para ter essa propriedade, os compostos devem ter grupos ionizáveis capazes de doar e de receber prótons H⁺

A faixa de pH em que um composto apresenta poder tamponante depende do pK de seus grupos ionizáveis.

Classificação e características

TABLE 3-1 Properties and Conventions Associated with the Common Amino Acids Found in Proteins

			pK _a values					
Amino acid	Abbreviation/ symbol	M_r	рК ₁ (—СООН)	рК ₂ (—NН ₃ +)	pK _R (R group)	pl	Hydropathy index*	Occurrence in proteins (%)†
Nonpolar, aliphatic								
R groups								
Glycine	Gly G	75	2.34	9.60		5.97	-0.4	7.2
Alanine	Ala A	89	2.34	9.69		6.01	1.8	7.8
Proline	Pro P	115	1.99	10.96		6.48	1.6	5.2
Valine	Val V	117	2.32	9.62		5.97	4.2	6.6
Leucine	Leu L	131	2.36	9.60		5.98	3.8	9.1
Isoleucine	lle I	131	2.36	9.68		6.02	4.5	5.3
Methionine	Met M	149	2.28	9.21		5.74	1.9	2.3
Aromatic R groups								
Phenylalanine	Phe F	165	1.83	9.13		5.48	2.8	3.9
Tyrosine	Tyr Y	181	2.20	9.11	10.07	5.66	-1.3	3.2
Tryptophan	Trp W	204	2.38	9.39		5.89	-0.9	1.4

^{*}A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (— values) or a hydrophobic environment (+ values). See Chapter 11. From Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* **157**, 105–132.

[†]Average occurrence in more than 1,150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G.D., ed.), pp. 599–623, Plenum Press, New York.

TABLE 3-1 Properties and Conventions Associated with the Common Amino Acids Found in Proteins

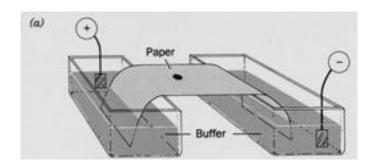
			pĸ _a vaiues					
Amino acid	Abbreviation/ symbol	M_r	рК ₁ (—СООН)	рК ₂ (—NН ₃ +)	pK _R (R group)	pl	Hydropathy index*	Occurrence in proteins (%) [†]
Polar, uncharged								
R groups								
Serine	Ser S	105	2.21	9.15		5.68	-0.8	6.8
Threonine	Thr T	119	2.11	9.62		5.87	-0.7	5.9
Cysteine	Cys C	121	1.96	10.28	8.18	5.07	2.5	1.9
Asparagine	Asn N	132	2.02	8.80		5.41	-3.5	4.3
Glutamine	Gln Q	146	2.17	9.13		5.65	-3.5	4.2
Positively charged								
R groups								
Lysine	Lys K	146	2.18	8.95	10.53	9.74	-3.9	5.9
Histidine	His H	155	1.82	9.17	6.00	7.59	-3.2	2.3
Arginine	Arg R	174	2.17	9.04	12.48	10.76	-4.5	5.1
Negatively charged								
R groups								
Aspartate	Asp D	133	1.88	9.60	3.65	2.77	-3.5	5.3
Glutamate	Glu E	147	2.19	9.67	4.25	3.22	-3.5	6.3

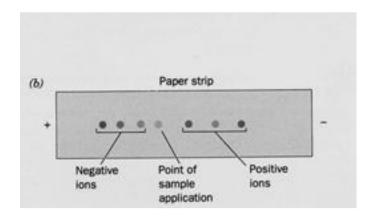
^{*}A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (— values) or a hydrophobic environment (+ values). See Chapter 11. From Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* **157**, 105–132.

[†]Average occurrence in more than 1,150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G.D., ed.), pp. 599–623, Plenum Press, New York.


Exercício:

Usando os valores de pK tabelados e as fórmulas dos aminoácidos apresentados alguns slides atrás, calcule o ponto isoelétrico e desenhe as formas ionizadas em pH 1, 7 e 12 de um aminoácido:


- a) Hidrofóbico
- b) Hidrofílico neutro
- c) Ácido
- d) Básico
- e) da prolina (grupo especial)



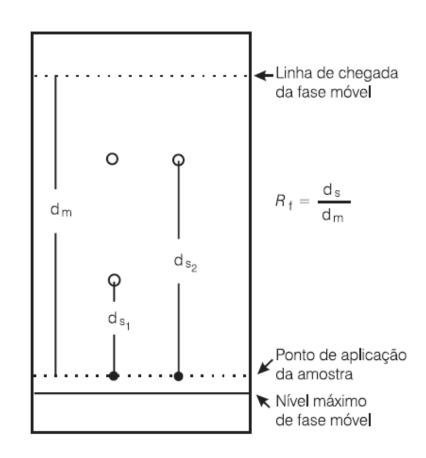
Cromatografia de Troca Iônica

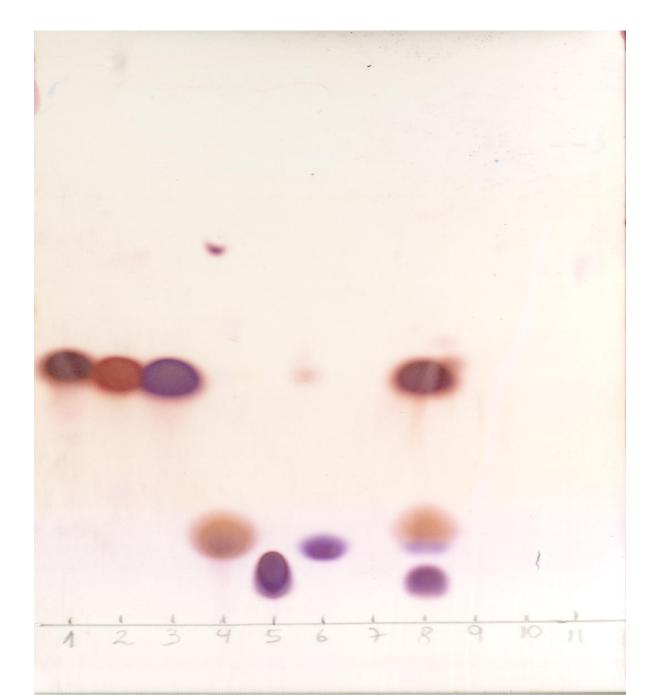
Eletroforese em Papel

Exercícios:

- 1)Qual a ordem de eluição dos seguintes aminoácidos quando aplicados numa coluna cationica em pH 3,2: alanina (pl 6,02), arginina (pl= 10,76), ácido glutâmico (pl=3,22) serina (pl=5,68) e triptofano (pl=5,88)?
- 2)Quais são as mobilidades eletroforéticas relativas em pH 5,68 dos cinco aminoácidos dados no problema 1?

Cromatografia em Papel ou camada fina


A amostra é aplicada em pontos determinados de uma tira de papel (ou sílica), que é suspensa em um recipiente hermeticamente fechado que contém o solvente cromatográfico.


O solvente é geralmente uma mistura de água, álcoois e ácidos ou bases; seus componentes mais polares associam-se ao papel (celulose) e formam a fase estacionária, enquanto os componentes menos polares formam a fase móvel (na cromatografia de fase reversa, o papel é mergulhado inicialmente numa solução de silicone e as polaridades das fases móvel e estacionária são invertidas). O solvente pode migrar para cima ou para baixo no papel.

Este tipo de cromatografia separa os aminoácidos em função das suas solubilidades no solvente, o que depende da estrutura do grupo R.

Os aminoácidos com cadeias laterais não-polares volumosas migram mais rápido do que os aminoácidos com cadeias laterais não-polares mais curtas ou com cadeias laterais polares.

fator de retenção (Rf), o qual é a razão entre a distância percorrida pela substância em questão e a distância percorrida pela fase móvel.

Reações químicas dos aminoácidos

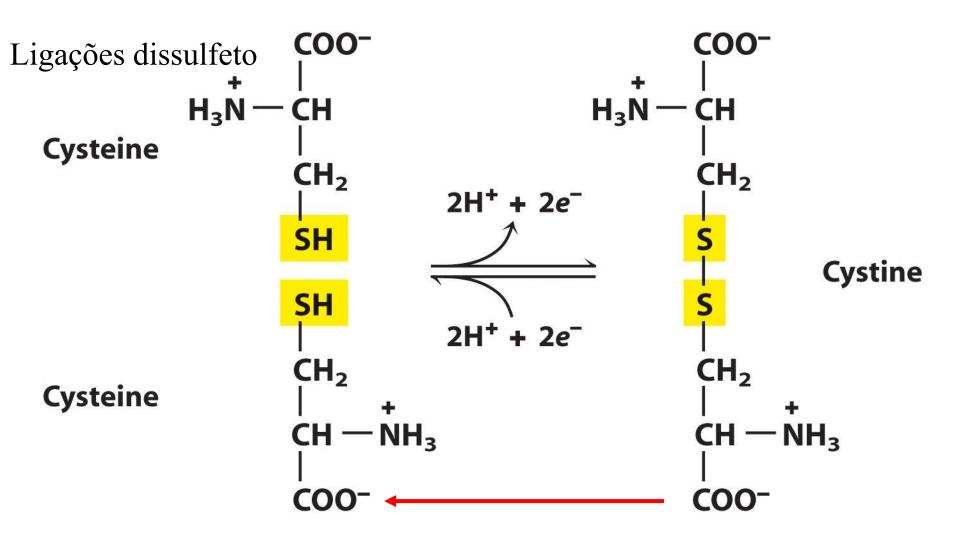
- 1) Reações dos grupamentos carboxílicos
- a) Esterificação com etanol

b) Redução (boroidreto de lítio)

H₃
$$\dot{N}$$
 — C — H \dot{R} $\dot{$

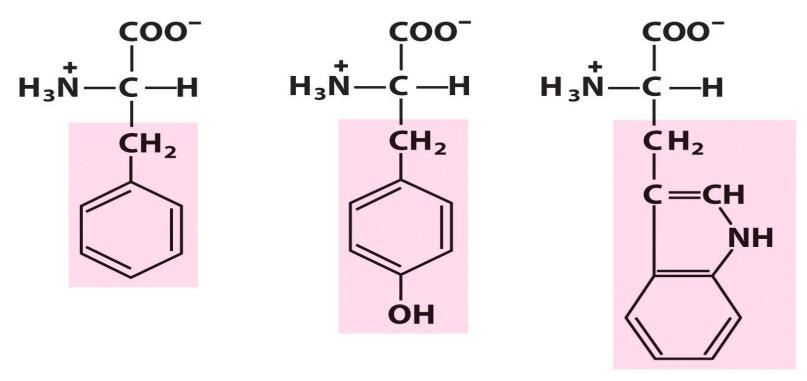
2) Reação do aminogrupo

Ninhidrina

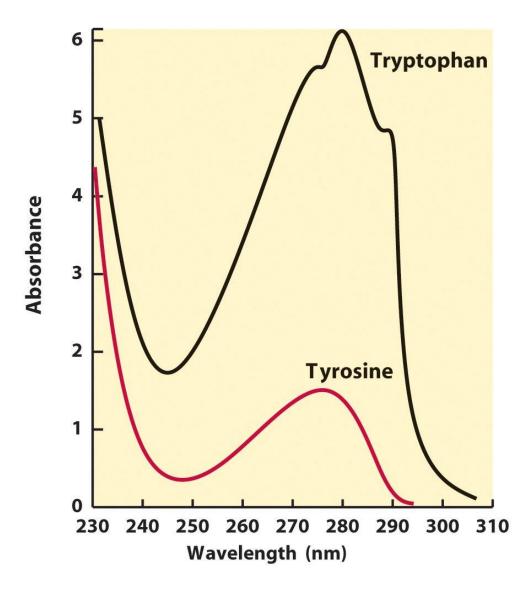

O aminoácido é degradado ao aldeído mais próximo e CO₂. O reagente se combina com a amônia liberada e produz a coloração azul.

OH
$$COO^ COO^ OO^ OO^-$$

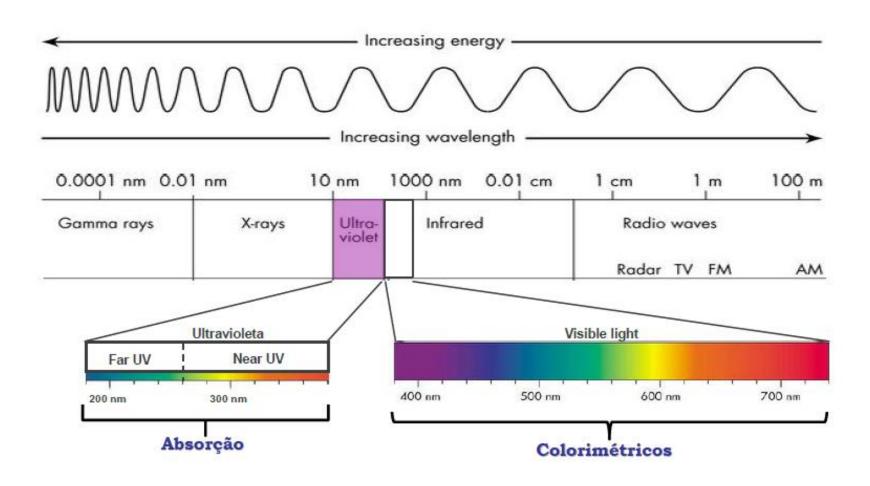
pigmento purpura

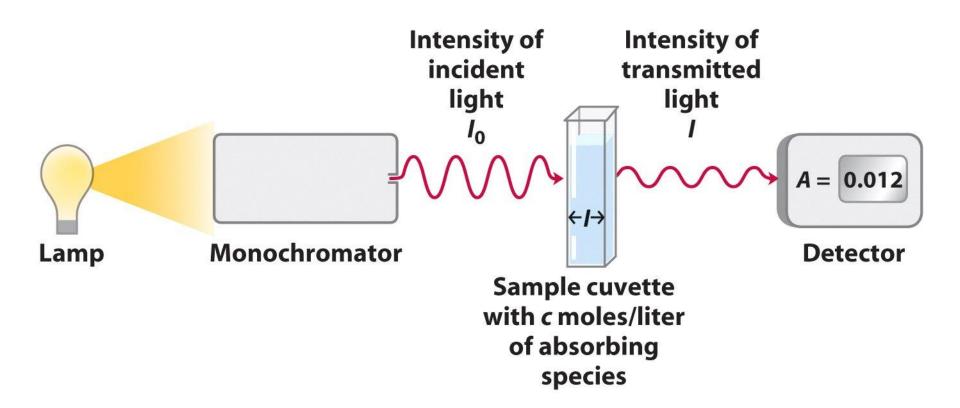

Reações do grupo R

Cisteína - Reação com Hg⁺² e Ag⁺ - Formam mercaptídeos

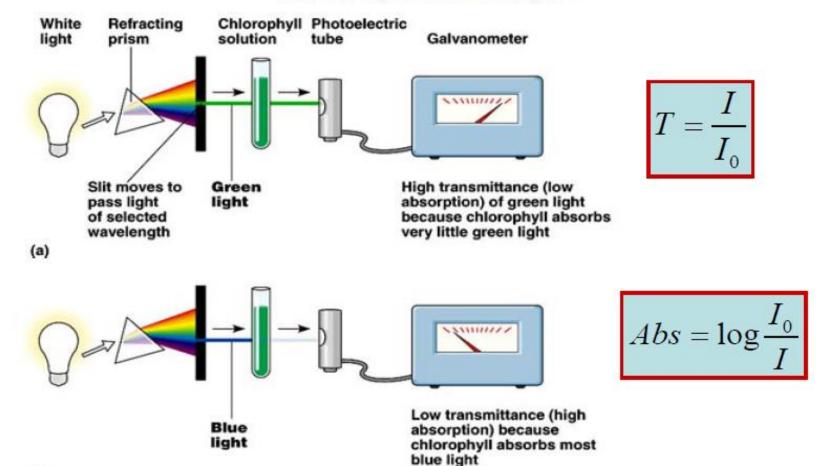

Mercaptoetanol

Aromatic R groups




Phenylalanine Tyrosine Tryptophan

A fenilcetonúria é uma doença que ocorre em indivíduos com carência de fenilalanina hidroxilase, enzima responsável pela transformação deste aminoácido em tirosina



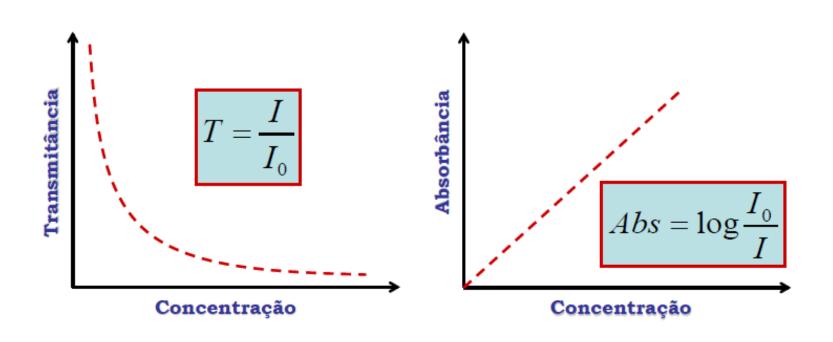
Espectro Eletro-Magnético

Mensuração da Absorção

(b)

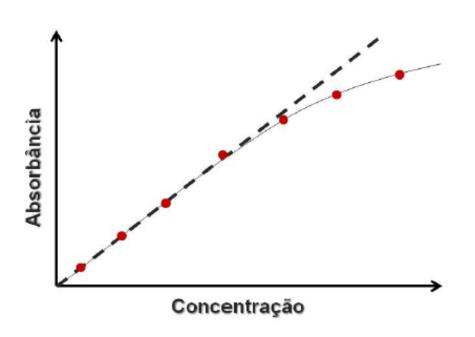
Lei de Beer-Lambert

$$Abs = \varepsilon.l.c$$


$$Abs = log I_0/I = Absorbância (UA)$$

 ε = Coeficiente de absortividade molar (mol/ L^{-1} .cm⁻¹)

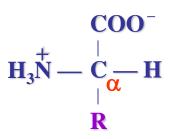
C = Concentração Molar (mol/L)


l = Passo óptico (cm)

Transmitância versus Absorbância

Desvio da Lei de Beer-Lambert

- → Altas concentrações do soluto provoca o "bloqueio" da passagem de Luz
 - → Existe uma faixa ótima para as medidas de Absorbância


$T = I/I_0$	$Abs = logl_{\theta}/l$
95	0.022
90	0,046
50	0,301
10	1,000
5	1,301
2	1,700
1	2,000

Medidas > 90% T e < 10%

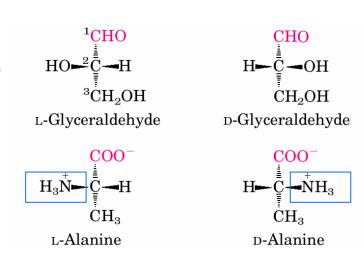
Erros altos

Ideal \rightarrow 90% < T > 10%

Estereoquimica dos aminoácidos

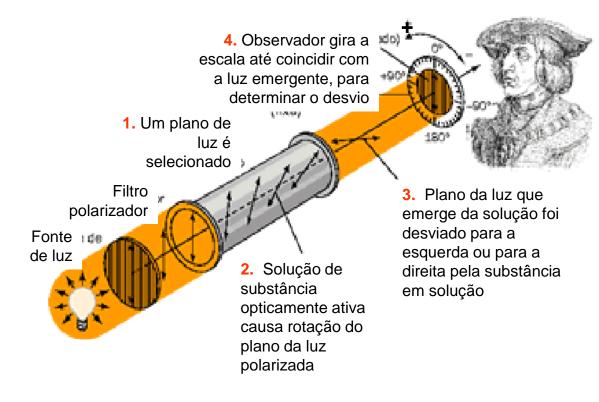
Aminoácidos proteicos são L- α - aminoácidos

O Carbono α é assimétrico, ou seja, tem 4 ligantes diferentes


Essa propriedade define o $C\alpha$ como um centro quiral e confere propriedades ópticas às moléculas.

Existem 2 isômeros ópticos do Cα formas L e D – configurações absolutas

- são enantiômeros (imagens especulares) um do outro
- não são interconversíveis sem quebra de laços covalentes


L- e D-isômeros de gliceraldeído (um açucar) e do aminoácido alanina

Rotação específica em solução aquosa de alguns aminoácidos

aminoácido	Rotação específica
L-Ala	+1,8
L-Arg	+12,5
L-Leu	-11,0
L-Ile	+12,4
L-Phe	-34,5
L-Glu	+12,0
L-His	-38,5
L-Asp	+5,0
L-Met	-10,0
L-Lis	+13,5
L-Ser	-7,5
L-Pro	-86,2
L-Tre	-28,5
L-Trp	-33,7
L-Val	+5,6

Levógiro: indicado por (-) giro da luz para esquerda

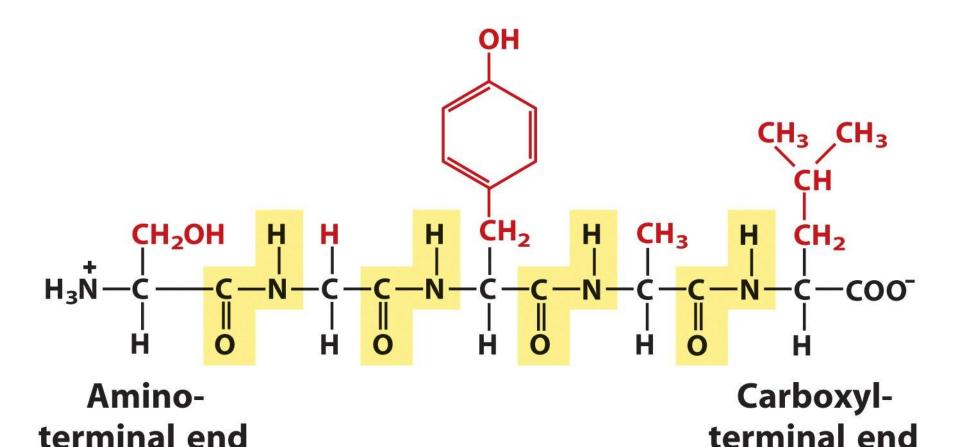
Dextrógiro: indicado por (+) giro da luz para direita

D-aminoácidos

Paredes de células de bactérias (peptideoglicano)

D-serina - bicho-da-seda (entre 5 e 59%)

D-alanina e a D-serina - saliva, urina, plasma sanguíneo, soro sanguíneo, leite e líquido céfalo-raquidiano)


D-aminoácidos componentes de muitos peptídeos antibióticos produzidos por bactérias (valinomicina, gramicidina A, actinomicina D)

Ligação peptidica

$$H_{3}N - CH - C - OH + H - N - CH - COO^{-}$$
 $H_{2}O \longrightarrow H_{2}O$
 $H_{3}N - CH - C - N - CH - COO^{-}$
 $H_{3}N - CH - C - N - CH - COO^{-}$

Oligopetídeos

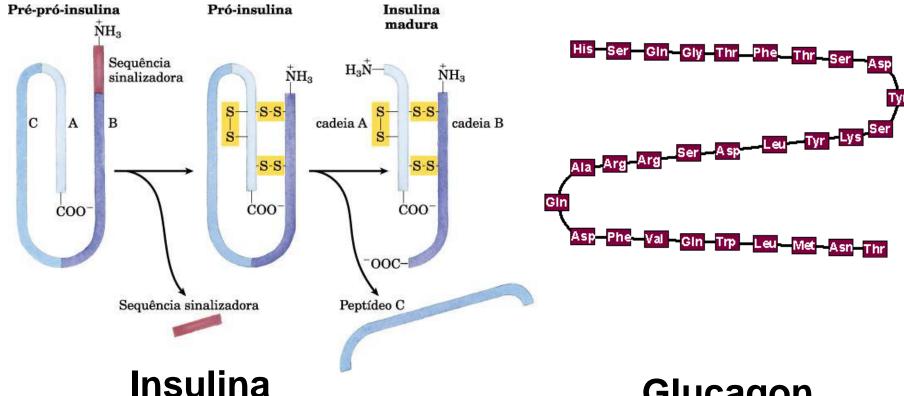
terminal end

Serilgliciltirosilalanilleucina

Aspartame

O aspartame é um sólido branco que foi descoberto acidentalmente em 1965. O químico Schlatter tentava desenvolver um sedativo para úlceras e depois de um dia de trabalho resolveu lamber os dedos sujos e sentiu que eles estavam doces. A molécula de aspartame é um dipeptídio, ou seja, é a combinação de dois aminoácidos, o ácido aspártico e a fenilalanina, esta modificada por um grupo metila.

O ácido aspártico é quase insípido, a fenilalanina é amarga, e o dipeptídio formado pelo dois é doce! Seu sabor é duzentas vezes mais doce do que o da sacarose e não tem o desagradável sabor residual da sacarina.


Como é muito mais doce que a sacarose e é adicionado aos alimentos em pequenas quantidades, não engorda.

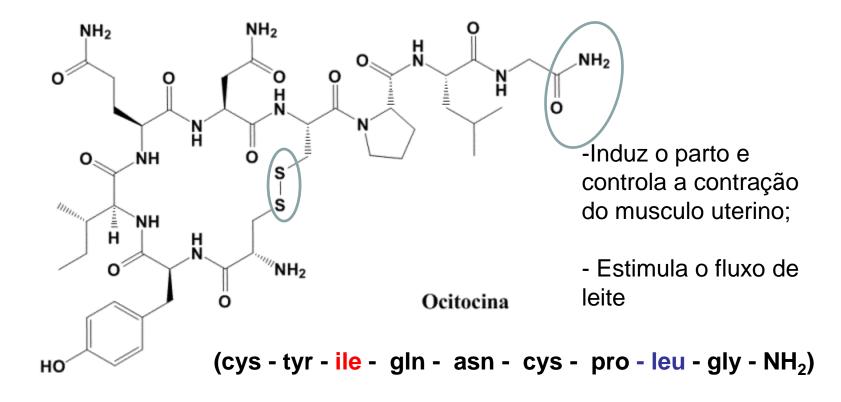
Propriedades ácido-básicas dos peptídeos

Valores de pK de alguns aminoácidos e peptídeos

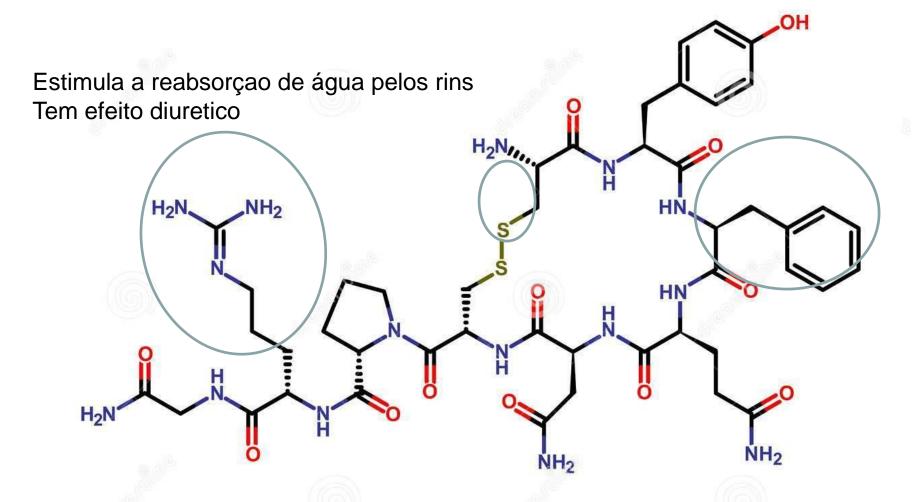
Aminoácido	pk ₁	pk_2	pk_R	PI
Gly	2,34	9,6	_	5,97
Gly-Gly	3,06	8,13	-	5,59
Gly-Gly-Gly	3,26	7,91	-	5,58

Peptídeos com atividade biológica

- 1. Preproinsulina (Líder, cadeia B, cadeia C, cadeia A);
- a proinsulina consiste em BCA, sem L
- 2. Dobra espontânea
- 3. As cadeias A e B ligadas por enxofre
- 4. As cadeias L and C são cortadas
- 5. Molécula de insulina final 51 aa, 5,8 kDa


Glucagon

Uma única cadeia polipeptídica simples, 29 aminoácidos, PM=3,5 kDa


produzido hormônio no pâncreas e nas células do trato gastrointestinal.

Alguns hormonios peptidicos importantes tem estruturas ciclicas:

Ocitocina e vasopressina

Vasopressina

Download from

Dreamstime.com

This watermarked comp image is for previewing purposes only. (cys - tyr - Phe - gln - asn - cys - propreAttickato glayme.com

NH₂)

Importância e diversidade funcional das proteínas

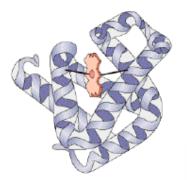
- Macromoléculas mais abundantes das células vivas (70% m.s)
- Expressão gênica informação do DNA é expressa através das proteínas
- Palavra grega que significa "primeira" ou a "mais importante"
- Grande variedade de funções biológicas

Estrutural	Queratina Colágeno (tec. conjuntivo fibroso) Fibroína Elastina (tec. conjuntivo elástico)
Reguladora	Insulina Hormônio de crescimento Repressores
Defesa	Anticorpos Fibrinogênio , Trombina Toxina botulínica Veneno de serpentes, apitoxina Ricina (mamona)
Transporte	Hemoglobina Albumina do soro Mioglobina β ₁ -lipoproteína
Contrátil (movimento)	Actina Miosina Tubulina Dineína
Reserva (nutritivas)	Gliadina (trigo) Ovoalbumina (ovo) Caseína (leite) Ferritina
enzimática (catálise)	Ribonuclease, Tripsina

	Composição em AA de três proteínas			
		Nº de AA por molécula de proteína		
	AA	Quimotripsinogênio (bovino)	Lisozima (clara de ovo)	Citocromo c (humano)
	Glicina	23	12	13
	Alanina	22	12	6
	Valina	23	6	3
\longrightarrow	Leucina	19	8	6
	Isoleucina	10	6	8
\longrightarrow	Metionina	2	2	3
	Prolina	9	2	4
	Fenilalanina	6	3	3
	Triptofano	8	6	1
	Serina	28	10	2
	Treonina	23	7	7
	Asparagina	15	13	5
	Glutamina	10	3	2
	Tirosina	4	3	5
	Cisteína	10	8	2
	Lisina	14	6	18
	Arginina	4	11	2
	Histidina	2	1	3
	Aspartato	8	8	3
	Glutamato	5	2	8

Composição de algumas proteínas

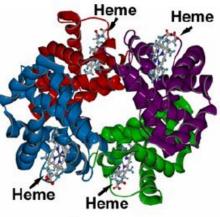
Proteínas	Números de aminoácidos	Número de cadeias polipetídicas
Insulina (bovina)	51	2
Lisozima (clara do ovo)	129	1
Mioglobina (equina)	153	1
Hemoglobina (humana)	574	4
Aspartato transcarbamoilase (<i>E. coli</i>)	2700	12
RNA polimerase (<i>E. coli</i>)	4100	5
Apoliproteína B (Humana)	4536	1

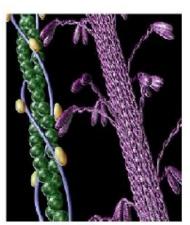

Classificação

a) Quanto à forma

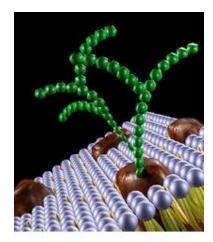
- Globulares
- Fibrosas

b) Quanto ao nº de cadeias polipeptídicas


- Monoméricas
- Oligoméricas
- Multiméricas

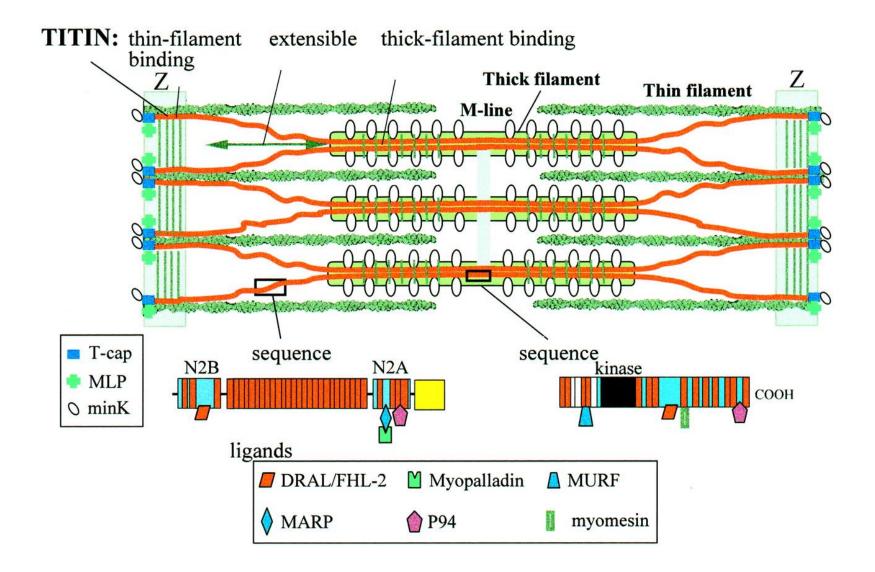

Mioglobina

c) Quanto à composição química


- Simples
- Conjugadas

Hemoglobina

Actina

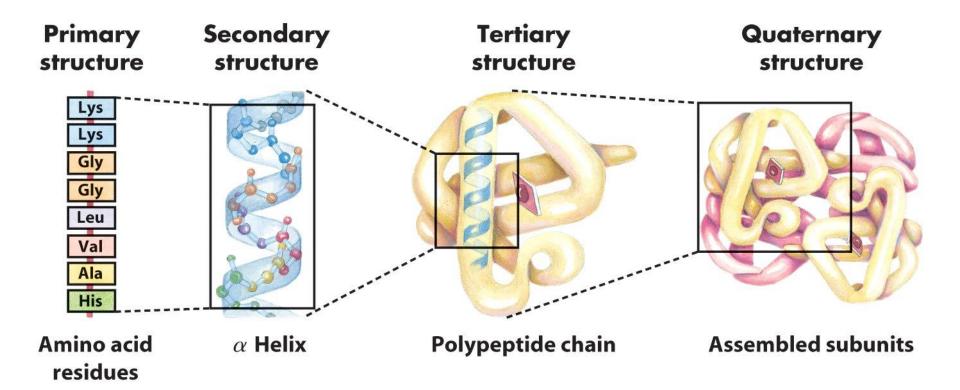


Glicoproteína

TABLE 3–2 Molecular Data on Some Proteins

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (chicken egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (E. coli)	450,000	4,158	5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	12
Titin (human)	2,993,000	26,926	1

Conectina


Proteinas

Simples = só aminoácidos

_Conjugadas = aminoácidos + grupo prostético

TABLE 3-4 Conjugated Proteins

Class	Prosthetic group	Example
Lipoproteins	Lipids	eta_1 -Lipoprotein of blood
Glycoproteins	Carbohydrates	Immunoglobulin G
Phosphoproteins	Phosphate groups	Casein of milk
Hemoproteins	Heme (iron porphyrin)	Hemoglobin
Flavoproteins	Flavin nucleotides	Succinate dehydrogenase
Metalloproteins	Iron	Ferritin
	Zinc	Alcohol dehydrogenase
	Calcium	Calmodulin
	Molybdenum	Dinitrogenase
	Copper	Plastocyanin

