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Spatiotemporal dynamics and risk 
factors for human Leptospirosis in 
Brazil
Oswaldo Santos Baquero   1 & Gustavo Machado   2

Leptospirosis is an emerging neglected tropical disease with a worldwide significant global health 
burden. Between 2000 and 2016, there were 63,302 cases of human leptospirosis and 6,064 deaths 
reported in Brazil. We modeled the spatiotemporal risk dynamics of human leptospirosis morbidity and 
lethality, and attributed an easily interpretable risk-based priority index (PI) for all Brazilian federative 
units to suggest improvements to the national surveillance system. We also developed a conceptual 
framework of causality and estimated the effects of environmental and socioeconomic determinants of 
morbidity and lethality. Spatiotemporal risk patterns of morbidity and lethality differed. For morbidity, 
the pattern was mainly spatial, whereas lethality was mainly explained by the spatiotemporal 
interaction. The hypothesized causal model explained a relevant fraction of the heterogeneity in the 
spatial and spatiotemporal interaction patterns. The increase in soil moisture, precipitation, poverty, 
and the decrease in the proportion of urban households, acted as risk factors. The increase in the 
proportion of households in which waste is directly collected and in temperature were preventive 
factors. The structured temporal trend was increasing for morbidity and decreasing for lethality. In 
terms of morbidity, it was clear that the prioritization should be focused in a couple of states, mainly 
Acre. In terms of lethality, the allocation of resources need not be as asymmetric, but there was 
nonetheless a prioritization order. The proposed approach can be used to characterize spatiotemporal 
dynamics of other diseases and to inform decision makers.

Leptospirosis is a global worldwide emerging zoonotic disease, caused by a spirochete bacterium of the genus 
Leptospira1. Leptospirosis is one of the leading global causes of morbidity and mortality, and it is estimated that 
the greatest burdens are in resource-poor regions and in areas where surveillance is not routinely performed2. 
Each year, there are an estimated 1.0 million cases of Leptospirosis and 58,900 deaths caused by the disease 
worldwide. In Andean and South Latin America, the annual estimated morbidity rates ranged from 1.43 to 39.8 
per 100,000 population2; notably, while Brazil had 40.2% of the reported cases, this country has almost half of the 
total population of Latin America. Brazil was followed in proportion of reported cases by Peru (23.6%), Colombia 
(8.8%), and Ecuador (7.2%)3.

Leptospirosis is often associated with fever, headache, myalgia, and weakness4, and may be confused with 
other disease entities such as influenza and dengue fever5. It has been estimated that 10% to 15% of leptospirosis 
cases show severe clinical signs, a form of the infection known as Weil’s syndrome, and such cases are more likely 
to be correctly diagnosed6. The consequences of severe clinical signs are often associated with lethality6. Brazil fol-
lows the World Health Organization (WHO) guides to identify and confirm cases of leptospirosis. Leptospirosis is 
a disease requiring compulsory notification in Brazil, and confirmation of leptospirosis cases depends on certain 
laboratory (enzyme-linked immunosorbent assay [ELISA] test, microagglutination reaction, and blood or urine 
cultures) and clinical-epidemiological criteria7.

Leptospires have a preference for warm-blooded animals, mainly mammals8. The organism is highly adapt-
able to environmental conditions and can survive for long periods in water and wet soil9,10. Disease transmission 
is favored by climatic variables such as heavy rain, floods, and high temperatures11,12. Socioeconomic variables 
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including occupation and poverty, among others, might also have implications for disease transmission because 
they can increase exposure to environments with rodent infestation, flooded soils, and other risk factors13.

Although many studies have described the spatiotemporal variability of human leptospirosis occurrences, and 
multiple environmental and socioeconomic factors have been associated with the disease, there is a deficiency in 
studies characterizing the spatiotemporal dynamics of the risk of human leptospirosis in an entire country, aimed 
at identifying which regions should be prioritized and to what extent. Moreover, there is a need to synthesize 
previous findings regarding risk factors, in a conceptual framework of causality that can be statistically tested.

Analytical epidemiological studies at the individual level might be too expensive to be implemented in an 
entire country, especially in large countries such as Brazil that still faces major development challenges. Ecological 
studies are an alternative because they use aggregates as units of analysis and aggregated data are widely available 
for all the main administrative areas of many countries. However, if reporting bias vary across aggregates, ecologi-
cal results will be partially explained by this bias. With conceptual frameworks of causality one can identify poten-
tial risk factors that in ecological studies become relevant predictors. This predictors are useful for surveillance 
and decision making but it should be remembered that predictive contributions estimated in ecological studies 
provide no statistical support for individual level hypothesis.

The objectives of the present study were to (i) model the spatiotemporal dynamics of the risk of human lep-
tospirosis morbidity and lethality, across all Brazilian states and the Federal District, from 2000 to 2016; (ii) 
fit statistical spatiotemporal models to estimate the effect of environmental and socioeconomic determinants 
conceptualized in a framework of causality; and (iii) suggest, based on risk estimates, the priority that should be 
given to each Brazilian state.

Methods
This section is divided into six subsections. The first presents the data and their sources, while the second and 
third describe the conceptual framework of our hypothesis, and the statistical models that represented the con-
ceptual framework. The fourth describes the model’s priors, while the last two present the model diagnostic 
procedures and software utilized, respectively.

Data source and collection.  The count number of cases and deaths of human leptospirosis, and the num-
ber of dengue cases, were obtained from the National Information System of Health of the Ministry of Health 
(Sistema de Informação de Agravos de Notificação [SINAN] do Ministério da Saúde [MS])14. To test the concep-
tual framework of causality described below, we collected secondary environmental and socioeconomic covar-
iates. The environmental covariates, obtained from TerraClimate15, consisted of average values of descriptive 
statistics (minimum, mean, maximum, range, standard, deviation, sum), calculated over a grid of approximately 
4 km2. The socioeconomic covariates were obtained from the Brazilian Institute of Geography and Statistics 
(IBGE)16 and the Institute of Applied Economic Research (IPEA)17. All variables were centered by subtracting 
their respective mean and scaled by dividing the centered values to the standard deviation. Table 1 illustrates the 
variables and data sources.

Conceptual framework of causality.  Our conceptual framework rests on the following assumptions. 
First, the morbidity and the lethality of human leptospirosis do not occur at the same rate across the Brazilian 
states. Furthermore, the temporal trends in morbidity and lethality vary across states. Regarding the causal deter-
minants, our simplified assumption is as follows: Rainfall, with precipitation as proxy, might promote the for-
mation and maintenance of stagnated water, increasing the soil suitability for Leptospira survival (Fig. 1a). This 
suitability is also affected by temperature (Fig. 1b) and other environmental variables (Fig. 1c). The soil moisture 
is a proxy of soil suitability and increases the risk of Leptospirosis morbidity (Fig. 1d). Environmental varia-
bles also affect the risk of Leptospirosis morbidity by means other than their effect on soil suitability (Fig. 1e,e’). 
Moreover, the higher the proportion of poor households in Brazilian states, the more common it is to find unfa-
vorable socioeconomic contexts where waste management is inadequate or absent (Fig. 1f) and illiteracy is higher 
(Fig. 1g). In these poverty contexts, which differentially affect urban and rural areas, there is a lower ability to cope 
with floods, prevent the stagnation of water, and perform proper rodent (and other host species in rural areas) 
control. Thus, poverty affects Leptospirosis morbidity through waste management (Fig. 1i), illiteracy (Fig. 1i’) 
and through other socioeconomic factors (Fig. 1i”). An unknown fraction of Leptospirosis cases are misdiag-
nosed as dengue cases, an error that can lead to death of some patients owing to improper or delayed treatment 
(Fig. 1j,j’). To complete the causal network, we include biological agent and host determinants (Fig. 1k). Other 
febrile disease that may confuse the diagnostic of Leptospirosis were not considered because they have a localized 
occurrence (malaria is only present in the north region of Brazil), are almost absent (typhoid fever), or emerged 
or re-emerged recently and therefore there are no data for the entire studied period (yellow fever, zika virus and 
chikungunya).

Statistical models.  We performed exploratory analysis to verify data consistency and to obtain a prelimi-
nary idea of the association between covariates. Environmental covariates such as precipitation, temperature, and 
soil moisture were represented by more than one value (minimum, mean, maximum, standard deviation, range), 
and for each covariate, we selected the value that showed a stronger correlation with the leptospirosis relative risk 
(RR). This selection resulted in: minimum precipitation, maximum temperature, and minimum soil moisture.

All statistical models had a spatiotemporal architecture. The first set of models was used to model the RR of 
human leptospirosis cases, the second for human leptospirosis lethality, and the third to represent the conceptual 
framework of causality. Within each of these sets, models differed in their spatiotemporal architecture; in the last 
set, models also differed in the combination of covariates.
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Given the i (i = 1, …, 27) states and t (t = 2000, …, 2016) years, let yit be the number of human leptospirosis 
cases in state i and year t, Pit be the human population at risk in state i and year t, and Eit be the yearly expected 
number of human leptospirosis cases in state i and year t, calculated by indirect standardization:

=
∑

∑
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Pit it

it it

it it

We assumed that

θ θ| ∼y Poisson E( ),it it it it

and θit is the state-year-specific RR. For lethality, yit represented the number of deaths and Eit the number of cases. 
For the models of the causal network, t ranged from 2002 to 2014.

We evaluated two spatial, two temporal terms, and four spatiotemporal interactions. Let υi and vi be the struc-
tured and unstructured spatial terms, respectively:
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Variable Description (unit) Source

Cases Annual number of human leptospirosis cases SINAN - portalarquivos.saude.gov.br/…/Leptospirose-
casos-05_2017.pdf

Deaths Annual number of human leptospirosis deaths SINAN - portalarquivos.saude.gov.br/…/Leptospirose-
obitos-05_2017.pdf

Precipitation Annual average of *, from monthly raster of spatial resolution of 
1/24. ~ 4 km2 (mm)

TerraClimate - Web https://climate.
northwestknowledge.net/TERRACLIMATE/index_
directDownloads.php

Temperature Annual average of *, from monthly raster of spatial resolution of 
1/24. ~ 4 km2 (°C)

TerraClimate - Web https://climate.
northwestknowledge.net/TERRACLIMATE/index_
directDownloads.php

Soil moisture Annual average of *, from monthly raster of spatial resolution of 
1/24. ~ 4 km2 (mm)

TerraClimate - Web https://climate.
northwestknowledge.net/TERRACLIMATE/index_
directDownloads.php

HH poverty Proportion of households (HH) in poverty (%) IPEA - www.ipeadata.gov.br/

HH urban Proportion of urban households (%) IBGE - https://sidra.ibge.gov.br

Illiterates Proportion of illiterate residents aged 15 years or older (%) IPEA - www.ipeadata.gov.br/

HH collected waste Proportion of households in which waste is directly collected (%) IBGE - https://sidra.ibge.gov.br

Dengue cases Incidence of dengue cases SINAN - portalms.saude.gov.br/images/pdf/…/
Dengue-classica-ate-2016.pdf

Brazil Shapefile with Brazilian states IBGE - https://mapas.ibge.gov.br/bases-e-referenciais/
bases-cartograficas/malhas-digitais.html

Table 1.  Data description and sources, 2000–2016. *Minimum, mean, maximum, range, standard deviation, 
and sum.

Figure 1.  Conceptual framework of causality. SS: soil suitability. Dotted blue lines were not included in 
statistical models owing to lack of data. See the text for details.
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where τς is the marginal precision, ηδi is the number of neighbors of i, and φ measures the proportion of marginal 
spatial variance explained by υ. The overall spatial effect was given by18:

ς
τ

φ φυ= − +
ς

v1 ( 1 ),

This model is known as BYM218. Let also γt and ωt be the structured (random walk of first order: RW1) and 
unstructured temporal terms, respectively:
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The spatiotemporal interactions δit were given by the Kronecker products vi ⊗ ωt, vi ⊗ γt, ωt ⊗ υi and υi ⊗ γt
19. 

vi and ωt were independent and identically distributed random variables (IID).
Considering the previous spatiotemporal terms, the intercept β0 and coefficients βp (where p is the number of 

covariates) all distributed as β
τβ

~ N(0, )1 , Table 2 presents the model nomenclature we will use hereafter. Note 
that for causal models of morbidity, models C1a and C1b estimated the effects of distal determinants (upper boxes 
in Fig. 1). Models C2a and C2b estimated the effect of soil, controlling for the effect of the distal determinants. 
Models C3a and C3b replaced poverty by the percentage of urban households, models C4a and C4b replaced 
poverty by the percentage of households with proper collection of waste, and models C5a and C5b replaced pov-
erty by the number of illiterate persons. Poverty, waste management and illiteracy did not enter in the same model 
due to collinearity. The effect of soil moisture was not controlled when estimating the effect of precipitation and 
temperature because it was not a potential confounder; part of the effect of precipitation and temperature was 
mediated by the soil moisture. The difference between causality models with suffixes a and b is that models with 
suffix a had only unstructured terms ω and v, whereas those with suffix b had all spatial and temporal terms and 
the interaction between unstructured terms δit = vi ⊗ ωt (Table 2).

The percentage of variability in random effects explained by covariates was measured by the relative change in 
the standard deviation (SD) of the random effects. For example, the effect of model C3b covariates in the random 
effect ς, taking RR1 as a model of reference, was given by (SD(ςRR1) − SD(ςC3b))/SD(ςRR1) * 100. The relative change 
was 100 if covariates explained all of the variability, 0 if they did not change the variability, and negative if they 
increased the variability.

The proportion of marginal variance explained by each component of the RR and lethality models was given 
by:

τ τ τ τ ς γ ω= + + =ς γ ω
− − − −f n i1/ ( /( )), { , , },i i

1 1 1 1

where n was the size (10,000) of samples drawn from the marginal posteriors τς, τγ and τρ. fς was further multi-
plied by φ and 1 − φ to obtain the proportion of variance explained by υ and v, respectively.

We characterized the RR and lethality of the correspondent best model in terms of fitted values, excess risk 
(RRit > 1; lethalityit > average lethality), and a priority index (PI):

=PI x ER x max x ER x( )/ ( ( )) 100,it it it it it

where xi is the RR or lethality of the state i, ER is the excess risk, and t is the year; the PI was separately calculated 
for each year. The PI weights the RRs (or lethalities) by the corresponding excess risk, and the maximum value is 
scaled to 100. Other values are relative to that maximum. In addition, we calculated Pearson’s correlation coef-
ficient between excess risk morbidity and lethality. All models were implemented using the Integrated Nested 
Laplace Approximation (INLA)20.

Priors.  The default priors used for this study were penalized complexity (PC) priors. Under the PC priors approach, 
model complexity is specified as the divergence between a flexible model and a base model21. In our case, the base 
model was characterized by τi = ∞, i = {ς, γ, ω, β} and φ = 0. In flexible models, τi < ∞ and φ > 0. The divergence was 
given by the unidirectional Kullback-Leibler divergence: τ τ φ φ= =d KLD d KLD( ) ( ) , ( ) ( )i i  21. The complexity 
was penalized by constant decay-rate, specified in terms of a type-2 Gumbel distribution, using the probability state-
ments τ α φ α> = < =Prob U Prob U(1/ ), ( )i . These statements correspond to a decay rate equal to −log(α)/U22. 
As default priors we used τ > . . = .Prob(1/ 0 3/0 31 0 01)i  and Prob(φ < 0.5 = 0.7). In addition, we refitted the models 
with strong penalizing priors: τ > . . = .Prob(1/ 0 1/0 31 0 01)i  and Prob(φ < 0.1 = 0.9); and with vague priors: 
Prob(φ < 0.5 = 0.5), τi = logGamma(1,0.001).

Model diagnostics.  For each model, we calculated the deviance information criterion (DIC) and the poste-
rior predictive p-value22. The predictive p-value is defined as p ⁎ ≤ yy y( / )i i , where ⁎yi  is the predicted value of yi. 
Models with adequate fit have few p-values within the tail deciles22, so we calculated the proportion of p-values 
within the intervals [0, 0.1] and [0.9, 1]. We explored the sensitivity to priors comparing fitted, fixed, DIC, p-value 
and random posterior distributions. To evaluate the need for nonlinear models of covariate effects, we analyzed 
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plots of each covariate against the model residuals. Plots with fitted locally weighted scatterplot smoothing 
(LOESS) trends around zero indicated that nonlinear effects were unnecessary. The results in the next section are 
based on the first set of priors, and Supplementary Figs 5 to 7 and Supplementary Table 3 present the results of the 
sensitivity analysis.

Software and reproducibility.  For the descriptive analysis and for data curation we used R package 
tidyverse 1.2.123, tabulizer 0.1.2424, spdep 0.7–425, sf 0.6–126, ggsn 0.4.1127, gridExtra 2.328, and animation 2.529. All 
Bayesian models were implemented with INLA 17.12.0120, and model results were processed with INLAOutputs 
1.4.1030. All data and code to reproduce the results are available in Supplementary-Analysis 1.

Role of the funding source.  The funder had no role in the collation of the data, development of the con-
ceptual framework, analysis of data, interpretation of data, writing of the manuscript, or the decision to submit 
the paper for publication.

Results
Descriptive results.  From January 2000 to December 2016, a total of 63,302 cases and 6,064 lethal lepto-
spirosis notifications were registered by the SINAN, Brazil14. The total annual case counts ranged from 2,769 in 
2002 to 4,874 in 2011, and the number of deaths ranged from 234 in 2016 to 436 in 2001. The minimum annual 
RR average was 0.79 (2001), while the maximum was 3.34 in 2014 (Fig. 2). The spatial distribution of the RR 
average is shown in Fig. 2. The minimum average lethality per one hundred thousand cases was 3.34 (2009); the 
maximum was 12.94 in 2001 (Fig. 3). The spatial distribution of the average lethality rates from 2000 to 2016 is 
mapped in Fig. 3 (see Supplementary-Table 1 and Supplementary Figs 1 and 2 for values of each state annual RR 
and lethality, respectively).

In addition, all covariates used in the conceptual framework of causality were described and mapped to show 
each spatiotemporal distribution (Supplementary-Figs 8 to 14).

Spatiotemporal RR and lethality models.  In RR models, the spatial and temporal structured effects 
improved the model fitting, but the better spatiotemporal interaction term δit was among unstructured effects 
(Table 3). In L models, the improvements caused by structured effects were lower and the best spatiotemporal 
interaction term δit was among the unstructured spatial effect and the structural temporal effect. In RR1, the best 
of the RR models, the unstructured spatial effect and the spatiotemporal interaction were the major contributors 

Model Specification

RR

RR01 log(θit) = β0 + vi + ωt

RR02 log(θit) = β0 + ςi + ωt + γt

RR1 log(θit) = β0 + ςi + ωt + γt + δit, δit = vi ⊗ ωt

RR2 log(θit) = β0 + ςi + ωt + γt + δit, δit = vi ⊗ γt

RR3 log(θit) = β0 + ςi + ωt + γt + δit, δit = ωt ⊗ υi

RR4 log(θit) = β0 + ςi + ωt + γt + δit, δit = γt ⊗ υi

Lethality

L01 log(θit) = β0 + vi + ωt

L02 log(θit) = β0 + ςi + ωt + γt

L1 log(θit) = β0 + ςi + ωt + γt + δit, δit = vi ⊗ ωt

L2 log(θit) = β0 + ςi + ωt + γt + δit, δit = vi ⊗ γt

L3 log(θit) = β0 + ςi + ωt + γt + δit, δit = ωt ⊗ υi

L4 log(θit) = β0 + ςi + ωt + γt + δit, δit = γt ⊗ υi

Causality (RR) δit = vi ⊗ ωt

C1a log(θit) = β0 + vi + ωt + β1 precipitationit + β2 temperatureit  + β3 hh_povertyit

C1b log(θit) = β0 + ςi + ωt + δit + β1 precipitationit + β2 temperatureit + β3 hh_povertyit

C2a log(θit) = β0 + vi + ωt + β1 precipitationit + β2 temperatureit + β3 hh_povertyit + β4 soilit

C2b log(θit) = β0 + ςi + ωt + δit + β1 precipitationit + β2 temperatureit + β3 hh_povertyit + β4 soilit

C3a log(θit) = β0 + vi + ωt+ β1 precipitationit + β2 temperatureit + β3 hh_urbanit + β4 soilit

C3b log(θit) = β0 + ςi + ωt + δit + β1 precipitationit + β2 temperatureit + β3 hh_urbanit + β4 soilit

C4a log(θit) = β0 + vi + ωt + β1 precipitationit + β2 temperatureit + β3 hh_collected_wasteit + β4 soilit  

C4b log(θit) = β0 + ςi + ωt + δit + β1 precipitationit + β2 temperatureit +β3 hh_collected_wasteitt + β4 soilit

C5a log(θit) = β0 + vi + ωt + β1 precipitationit + β2 temperatureit + β3 illiteratesit + β4 soilit  

C5b log(θit) = β0 + ςi + ωt + δit + β1 precipitationit + β2 temperatureit + β3 illiteratesit + β4 soilit

Causality (lethality) δit = vi ⊗ ωt

C6a log(θit) = β0 + vi + ωt + β1 dengue_casesit

C6b log(θit) = β0 + ςi + ωt + δit + β1 dengue_casesit

Table 2.  Model nomenclature.



www.nature.com/scientificreports/

6Scientific RepOrtS |  (2018) 8:15170  | DOI:10.1038/s41598-018-33381-3

to the explained variance. In L2, the best of the L models, the spatiotemporal interaction was the major contribu-
tor to the explained variance, followed by the unstructured spatial effect (Table 4). The temporal effects were more 
relevant in L2 than in RR1 (Table 4).

The spatiotemporal patterns of the calculated posterior means were heterogeneous, especially for morbidity 
(Figs 4 and 5, Supplementary Figs 1 to 4, and Supplementary-Anim 1 and Supplementary-Anim 2). The mor-
bidity and lethality patterns tended to be opposed, as demonstrated by the negative correlation between their 
posterior means for the excess risk (Pearson’s correlation coefficient = −0.27, credible interval (CI) 95% = −0.36, 
−0.19). The structured temporal trend increased for morbidity and decreased for lethality (Fig. 6). The morbidity 
PI of the last five years was particularly high in the Acre State (Fig. 7); the lethality PI was less variable (Fig. 8). 
State-year PIs are also described in Supplementary-Table 2.

Causality models.  Based on models with suffix a, soil moisture was the strongest risk factor and an increase 
in this property, equivalent to one SD, increased the risk of leptospirosis morbidity by 55.9%. Poverty and precip-
itation were the other risk factors, with effect sizes of 7.7% and 4.5%, respectively (Table 5). An increase in one SD 
in the percentage of urban households decreased the risk by 14.6%, while an equivalent increase in the percentage 
of households with proper collection of waste decreased the risk by 6% (Table 5). The temperature was a preven-
tive factor, while the number of illiterate individuals had a credible interval compatible with the absence of effect 
(Table 5). The reported effects of soil moisture were calculated controlling for poverty. These effects were similar 
and qualitatively equivalent when poverty was replaced by the percentage of urban households, the percentage of 
households with proper collection of waste or with the number of illiterates individuals. The number of dengue 
cases had no effect on lethality: RR = 1⋅006 (0.944–1.038). The plots of covariates against model residuals did not 
show nonlinear trends (Supplementary-Fig. 15). In models with suffix b, only soil moisture and temperature had 
credible intervals excluding the absence of effect. Models C3a and C3b had the lowest DIC in within each group 
of models (Table 6). As those models had the same spatiotemporal architecture as RR1, we were interested in 
calculating the percentage of variability in the random effects explained by covariates. When compared to RR1, 
all these models reduced the variability of the global spatial effect and of the spatiotemporal interaction; the var-
iability of some temporal effects increased (Table 7).

Figure 2.  Spatiotemporal patterns of leptospirosis relative risk (RR) in Brazil, 2000–2016. Annual (top) and 
state averages (bottom). State’s identification: AC, Acre; AL, Alagoas; AP, Amapá; AM, Amazonas; BA, Bahia; 
CE, Ceará; DF, Distrito Federal; ES, Espírito Santo; GO, Goiás; MA, Maranhão; MT, Mato Grosso; MS, Mato 
Grosso do Sul; MG, Minas Gerais; PR, Paraná; PB, Paraíba; PA, Pará; PE, Pernambuco; PI, Piauí; RJ, Rio de 
Janeiro; RN, Rio Grande do Norte; RS, Rio Grande do Sul; RO, Rondônia; RR, Roraima; SC, Santa Catarina; SE, 
Sergipe; SP, São Paulo; TO, Tocantins.
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Discussion
The morbidity and lethality of human leptospirosis presented different spatiotemporal patterns and did not 
occur systematically in the same states for the entire period. Five out of the seven hypothesized causal network 
covariates had the expected direction of association and explained a fraction of the spatial and spatiotemporal 
interaction variability. The outputs of the analyses presented here highlighted which regions would benefit from 
reinforcement of disease control, surveillance, and funding strategies. The approach developed in this study also 
offered a complementary mapping approach, including a risk-based PI that ranked the states in order for pri-
oritization, generating a valuable evidence base to guide and improve leptospirosis surveillance, control, and 
elimination planning.

The spatiotemporal dynamics of human leptospirosis were explored in the entire national territories of both 
China31 and Colombia32, in China from 2005 to 2015 and in Colombia from 2007 to 2016. In China, the crude 
rates of morbidity and mortality decreased over this period, and the temporal trends were modeled assuming lin-
earity. Crude rates were presented at the province levels and were higher in the south of the country. In Colombia, 
six spatiotemporal high-risk clusters of morbidity were identified using scan statistics. There was an epidemic 
peak over a period of a few months, but no clear trend during the entire period examined. Our study used spati-
otemporal models appropriate for crude rates that can be misleading owing to sparsity or small values, as is the 

Figure 3.  Spatiotemporal patterns of leptospirosis lethality in Brazil, 2000–2016. Annual (top) and state 
averages (bottom). State’s identification: AC, Acre; AL, Alagoas; AP, Amapá; AM, Amazonas; BA, Bahia; CE, 
Ceará; DF, Distrito Federal; ES, Espírito Santo; GO, Goiás; MA, Maranhão; MT, Mato Grosso; MS, Mato Grosso 
do Sul; MG, Minas Gerais; PR, Paraná; PB, Paraíba; PA, Pará; PE, Pernambuco; PI, Piauí; RJ, Rio de Janeiro; RN, 
Rio Grande do Norte; RS, Rio Grande do Sul; RO, Rondônia; RR, Roraima; SC, Santa Catarina; SE, Sergipe; SP, 
São Paulo; TO, Tocantins.

Model DIC p-value Model DIC p-value

RR01 18,279.12 (52.9, 38.1) L01 2178.60 (47.5, 35.3)

RR02 18,282.31 (52.9, 38.1) L02 2,176.11 (47.3, 34.6)

RR1 3,403.36 (7.2, 0.2) L1 2,088.19 (34.9, 19.8)

RR2 3,408.14 (8.7, 1.3) L2 2,042.11 (35.7, 19.4)

RR3 3,412.61 (8.7, 1.3) L3 2,108.19 (39.0, 23.3)

RR4 3,415.16 (10.7, 2.0) L4 2,047.10 (38.3, 21.1)

Table 3.  Model diagnostics for spatiotemporal relative risk (RR) and lethality models. p-value: percentage of 
values in the lower and upper deciles (lower, upper).
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case with the human leptospirosis rates. The models also allowed us to explore nonlinear trends over a period of 
17 years. The spatiotemporal variation we observed was expected, assuming that many of its causes vary across 
space and time. This variation in disease occurrence can be detected at different scales, as demonstrated by our 
study and other studies restricted to smaller areas and shorter periods13,33. However, detection of spatiotemporal 
interactions might be more dependent on scale and methodology. A four-year prospective study in a Brazilian 
slum13 detected spatial and temporal variations but was unable to identify spatiotemporal interactions: although 
incidence varied across years, the spatial pattern was the same, and specific hot-spots consistently had higher risk 
of transmission during the study years. In contrast, we explicitly modeled spatiotemporal interactions over 17 
years and these had considerable explanatory power, more so for lethality (Table 4); in other words, the hot spots 
were not always the same and the temporal trend varied across states (see Supplementary Figs 3 and 4). However, 
the interpretation of the lethality models requires caution due its limited fit to the data suggested by the fraction 
of posterior predictive p-values in the tail deciles (Table 3)22.

The conceptual framework assumed that environmental and socioeconomic determinants affect morbidity 
but not lethality (Fig. 1). These determinants had their own spatiotemporal patterns, and they explained a fraction 
of the spatiotemporal variability in morbidity. The spatiotemporal pattern of lethality was less variable than that 
observed for morbidity, probably because it in fact was not affected, or at least was less affected, by environmental 

Random effect RR1 model L2 model

ν 66.7 26.4

υ 11.2 11.8

ω 0.1 2.0

γ 0.7 7.7

δ 21.3 52.1

Table 4.  Percent contribution of each model’s random effect to the variance explained by the model.

Figure 4.  Spatiotemporal pattern of the posterior mean excess risk morbidity, predicted by the RR1 model.
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Figure 5.  Spatiotemporal pattern of the posterior mean excess risk lethality (per 100,000 cases), predicted by 
the L2 model.

Figure 6.  Spatiotemporal pattern of the posterior mean temporal trends of morbidity (bottom) and lethality 
(top), predicted by the RR1 and L2 models, respectively. IID: independent and identically distributed 
unstructured temporal effect, RW1: structured temporal effect distributed as a random walk of first order.
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and socioeconomic determinants. Moreover, sub-notification, especially for cases in the early stage of disease, 
could have contributed to the spatiotemporal variability of morbidity and lethality, but to the former to a greater 
extent. This could have been related to the negative correlation between the spatiotemporal patterns of morbidity 
and lethaliy. If one assumes that there are more sources of variation for morbidity and that sub-notification is 
more influential on morbidity, one would expect to find, as we did, greater heterogeneity in spatiotemporal pat-
terns of morbidity.

Multiple causal factors establish complex interactions that determine the risk of transmission of human lep-
tospirosis. Although the causal network is not fully understood, ecological10,34, multilevel13,33, and individual- 
level35,36 studies have identified environmental and socioeconomic variables that consistently act as risk factors. 
We decided to synthesize some of these previous findings in an explicit conceptual model of the causal network 
of human leptospirosis, with a focus on variables readily available, and indexed by spatial and temporal units. 
We chose the state and the year as spatial and temporal units, respectively, because these were the units in which 
socioeconomic variables of interest were available, and because they allowed us to test the causal hypothesis at 
the same resolution that supported our spatiotemporal dynamics findings of morbidity and lethality. These units 
implied the aggregation of data over large areas and periods, which could have diluted or reversed the direction 
of the associations under study. However, five of the seven covariates had effects consistent with the literature 
reports, as described below. Furthermore, covariates explained a substantial fraction of the spatial and spatiotem-
poral interaction variability.

Most reports of leptospirosis include exposure to contaminated soil and water but not direct contact with 
animals, so it is thought that the most common method of transmission is mediated by contaminated soil and 
water33,37,38. Leptospira is recurrent in soil with a moisture content > 20%39 and survives in temperatures ranging 
from 4 to 40 °C40. These parameters entail a wide range of environments and offer little guidance for surveillance. 
However, individual-level studies – as concluded by a systematic review – nearly always identify as risk factors 
water-related activities and exposure to floods and rainfall11. An ecological study also found that risk increases 
with increased rainfall41, and we observed that the involvement of rainfall as a risk factor is also verifiable on 
large spatiotemporal scales. The soil type might also influence the occurrence of human leptospirosis, according 
to ecological studies concluding that heavy sabulous clay soils34 and Neossolo Litolítico soils10 have a positive 
association with the occurrence of human leptospirosis. Sabulous clay soils allow water to inundate the soil when 
inclination is favorable (as in the study of Rodd et al.34) and Neossolo Litolítico soils have a low drainage capacity. 

Figure 7.  Spatiotemporal pattern of the morbidity priority index.
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Figure 8.  Spatiotemporal pattern of the lethality priority index.

Covariate RR (95% CI) Model

Precipitation (average minimum) 1.045 (1.023–1.067)
1.020 (0.893–1.159)

C1a
C1b

Temperature (average maximum) 0.541 (0.503–0.581)
0.441 (0.321–0.590)

C1a
C1b

Poverty 1.077 (1.031–1.126)
1.036 (0.858–1.286)

C2a
C2b

Soil moisture 1.559 (1.435–1.691)
1.49 (1.08–1.99)

C2a
C2b

Households (%) in urban areas 0.854 (0.829–0.880)
0.892 (0.782–1.013)

C3a
C3b

Households (%) with proper collection of waste 0.939 (0.909–0.970)
1.045 (0.899–1.204)

C4a
C4b

Number of illiterate individuals 0.941 (0.879–1.004)
1.509 (0.818–1.361)

C5a
C5b

Table 5.  Effect of covariates on the relative risk (RR) of leptospirosis morbidity. CI: Credible Interval.

Model DIC Model DIC

C1a 10377.97 C1b 2615.77

C2a 10270.89 C2b 2616.64

C3a 10161.41 C3b 2615.11

C4a 10268.09 C4b 2616.66

C5a 10277.08 C5b 2616.50

Table 6.  Comparison of causality models.
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Thus, these types of soils might have a higher moisture content suitable for the survival of Leptospira. Our results 
support this rationale and provide ecological evidence based on a variable (soil available water capacity)15 that is 
a more direct measure of the available water that can be stored in the soil. Higher temperatures seem to increase 
the risk of human leptospirosis42, but we found the opposite. A recent German study in muskrats also found 
an inverse association between leptospirosis and maximum temperatures43. One possible explanation for these 
findings may be the fact that warm temperatures deplete the moisture in the environment, which would reduce 
the chances for the survival of Leptospira outside its host5. This contradicting evidence regarding the relationship 
between temperature and leptospirosis morbidity should clarified by modeling individual outcomes under mul-
tilevel approaches, using covariates at finer spatial and temporal scale (e.g., at the municipality and month levels).

Poverty has been considered a risk factor for human leptospirosis13, and we hypothesized that under condi-
tions of poverty, illiteracy is higher, waste management is inadequate, and there is a lower ability to cope with 
floods, prevent the stagnation of water, and ensure proper rodent control. The hypothesized relationship between 
poverty, illiteracy, and waste management was verified among covariates. As expected, poverty was a risk factor 
and better waste management a protective factor. Urbanization was also a protective factor, possibly owing to its 
negative association with poverty and its positive association with waste management. Illiteracy was not a direct 
risk factor, possibly because its effect was confounded by poverty. Illiteracy, waste management and poverty did 
not enter in the same model due to collinearity. It should be noted that disorganized urbanization can promote 
leptospirosis transmission, and living in slums is a risk factor13, but these findings do not necessarily mean that 
urban areas are at greater risk than rural ones. In fact, our results are not the first to point to rural areas as asso-
ciated with greater risk44.

The covariates had no effect in models with structured random effects (causality models with suffix b), perhaps 
because they had a spatiotemporal pattern masked by the structured effects. It is possible that the percentage 
of variability in spatial and spatiotemporal random effects explained by covariates resulted from this masking 
effect, which has been documented in simulation and empirical studies based on spatial models with structured 
effects45,46. Covariates explained a fraction of the variability of most random effects. Some models with covariates 
increased the variability in temporal random effects, but it should be remembered that ω and γ explained only 
0.1% and 0.7% of the model variability. Therefore, these increases were negligible.

Infectious diseases in general are often sensitive to variability on a fine spatiotemporal scale that was not well 
represented in our study. This is problematic because the dynamics of infectious diseases may be particularly 
sensitive to extremes or variability removed in the aggregation of the data13. Therefore, our findings should be 
complemented by more detailed characterizations in order to guide interventions within the states.

The interpretability of numeric information can be conditioned by the format in which the information is 
presented47. The PI used is a risk-based percentage scale that ranks units of analysis and measures the distance 
between them. It might facilitate the communication of spatiotemporal risk predictions, especially to stakeholders 
lacking background to interpret concepts such as spatial RR and excess risk. The PI suggests the order in which 
the units of analysis should be prioritized and how different the prioritization assigned to them should be. In 
terms of morbidity, it was clear that the prioritization should be focused in a couple of states, mainly in Acre (see 
Supplementary Table 2). In terms of lethality, the allocation of resources need not be as asymmetric, but nonethe-
less there was a prioritization order (see Supplementary-Table 2 for each state-year PI).

Spatiotemporal patterns of morbidity were more heterogeneous than those of lethality, probably because there 
are more causal determinants acting on morbidity. Sub-notification might have contributed to these patterns, and 
we urge improvements in leptospirosis reporting in all states. The causal model synthesized previous findings 
regarding the contextual determinants of leptospirosis, most of its components agreed with observed data, and it 
serves as a guide for future research on causal determinants. The PI might facilitate communication with decision 
makers and the general public, showing which states are the most problematic, and to what extent they should 
be prioritized.

Data Availability
All results can be reproduced using the data and code to available as Supplementary data.
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