
09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 1/8

2. Reading, Writing and Converting
Simple Features
Reading and writing through GDAL

Using st_read
Using st_write
Guessing a driver for output
Dataset and layer reading or creation options

Reading and writing directly to and from spatial databases
Conversion to other formats: WKT, WKB, sp

Conversion to and from well-known text
Conversion to and from well-known binary
Conversion to and from sp

This vignetted describes how simple features can be read in R from �les or databases, and how they can be
converted to other formats (text, sp (https://cran.r-project.org/package=sp))

Reading and writing through GDAL
The Geospatial Data Abstraction Library (GDAL (http://www.gdal.org/)) is the swiss army knife for spatial
data: it reads and writes vector and raster data from and to practically every �le format, or database, of
signi�cance. Package sf reads and writes using GDAL by the functions st_read and st_write .

The data model GDAL uses needs

a data source, which may be a �le, directory, or database
a layer, which is a single geospatial dataset inside a �le or directory or e.g. a table in a database.
the speci�cation of a driver (i.e., which format)
driver-speci�c reading or writing data sources, or layers

This may sound complex, but it is needed to map to over 200 data formats! Package sf tries hard to simplify
this where possible (e.g. a �le contains a single layer), but this vignette will try to point you to the options.

Using st_read
As an example, we read the North Carolina counties SIDS dataset, which comes shipped with the sf
package by:

library(sf)
fname <- system.file("shape/nc.shp", package="sf")
fname
[1] "/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp"
nc <- st_read(fname)
Reading layer `nc' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp' us
ing driver `ESRI Shapefile'
Simple feature collection with 100 features and 14 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs

https://cran.r-project.org/package=sp
http://www.gdal.org/

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 2/8

Typical users will use a �le name with path for fname , or �rst set R’s working directory with setwd() and
use �le name without path.

We see here that a single argument is used to �nd both the datasource and the layer. This works when the
datasource contains a single layer. In case the number of layers is zero (e.g. a database with no tables), an
error message is given. In case there are more layers than one, the �rst layer is returned, but a message and
a warning are given:

> st_read("PG:dbname=postgis")
Multiple layers are present in data source PG:dbname=postgis, reading layer `meuse'.
Use `st_layers' to list all layer names and their type in a data source.
Set the `layer' argument in `st_read' to read a particular layer.
Reading layer `meuse' from data source `PG:dbname=postgis' using driver `PostgreSQL'
Simple feature collection with 155 features and 12 fields
geometry type: POINT
dimension: XY
bbox: xmin: 178605 ymin: 329714 xmax: 181390 ymax: 333611
epsg (SRID): 28992
proj4string: +proj=sterea +lat_0=52.15616055555555 ...
Warning message:
In eval(substitute(expr), envir, enclos) :
 automatically selected the first layer in a data source containing more than one.

The message points to the st_layers command, which lists the driver and layers in a datasource, e.g.

> st_layers("PG:dbname=postgis")
Driver: PostgreSQL
Available layers:
 layer_name geometry_type features fields
1 meuse Point 155 12
2 meuse_sf Point 155 12
3 sids Multi Polygon 100 14
4 meuse_tbl Point 155 13
5 meuse_tbl2 Point 155 13
>

A particular layer can now be read by e.g.

st_read("PG:dbname=postgis", "sids")

st_layers has the option to count the number of features in case these are missing: some datasources
(e.g. OSM xml �les) do not report the number of features, but need to be completely read for this. GDAL
allows for more than one geometry column for a feature layer; these are reported by st_layers .

In case a layer contains only geometries but no attributes (�elds), st_read still returns an sf object, with a
geometry column only.

We see that GDAL automatically detects the driver (�le format) of the datasource, by trying them all in turn.

st_read follows the conventions of base R, similar to how it reads tabular data into data.frame s. This
means that character data are read, by default as factor s. For those who insist on retrieving character data
as character vectors, the argument stringsAsFactors can be set to FALSE :

st_read(fname, stringsAsFactors = FALSE)

Alternatively, a user can set the global option stringsAsFactors , and this will have the same e�ect:

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 3/8

options(stringsAsFactors = FALSE)
st_read(fname)
Reading layer `nc' from data source `/tmp/Rtmpaq4C0b/Rinst79437936646a/sf/shape/nc.shp' us
ing driver `ESRI Shapefile'
Simple feature collection with 100 features and 14 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs

Using st_write
To write a simple features object to a �le, we need at least two arguments, the object and a �lename:

st_write(nc, "nc1.shp")

The �le name is taken as the data source name. The default for the layer name is the basename (�lename
without path) of the the data source name. For this, st_write needs to guess the driver. The above
command is, for instance, equivalent to:

st_write(nc, dsn = "nc1.shp", layer = "nc.shp", driver = "ESRI Shapefile")
Writing layer `nc' to data source `nc1.shp' using driver `ESRI Shapefile'
features: 100
fields: 14
geometry type: Multi Polygon

How the guessing of drivers works is explained in the next section.

Guessing a driver for output
The output driver is guessed from the datasource name, either from its extension (.shp : ESRI Shapefile),
or its pre�x (PG: : PostgreSQL). The list of extensions with corresponding driver (short driver name) is:

extension driver short name

bna BNA

csv CSV

e00 AVCE00

gdb FileGDB

geojson GeoJSON

gml GML

gmt GMT

gpkg GPKG

gps GPSBabel

gtm GPSTrackMaker

gxt Geoconcept

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 4/8

extension driver short name

jml JML

map WAsP

mdb Geomedia

nc netCDF

ods ODS

osm OSM

pbf OSM

shp ESRI Shapefile

sqlite SQLite

vdv VDV

xls xls

xlsx XLSX

The list with pre�xes is:

pre�x driver short name

couchdb: CouchDB

DB2ODBC: DB2ODBC

DODS: DODS

GFT: GFT

MSSQL: MSSQLSpatial

MySQL: MySQL

OCI: OCI

ODBC: ODBC

PG: PostgreSQL

SDE: SDE

Dataset and layer reading or creation options
Various GDAL drivers have options that in�uences the reading or writing process, for example what the
driver should do when a table already exists in a database: append records to the table or overwrite it:

st_write(st_as_sf(meuse), "PG:dbname=postgis", "meuse",
 layer_options = "OVERWRITE=true")

In case the table exists and the option is not speci�ed, the driver will give an error. Driver-speci�c options
are documented in the driver manual of gdal (http://www.gdal.org/ogr_formats.html). Multiple options can
be given by multiple strings in options .

http://www.gdal.org/ogr_formats.html

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 5/8

For st_read , there is only options ; for st_write , one needs to distinguish between dataset_options and
layer_options , the �rst related to opening a dataset, the second to creating layers in the dataset.

Reading and writing directly to and from spatial
databases
Package sf supports reading and writing from and to spatial databases using the DBI interface. So far,
testing has mainly be done with PostGIS , other databases might work but may also need more work. An
example of reading is:

library(RPostgreSQL)
conn = dbConnect(PostgreSQL(), dbname = "postgis")
meuse = st_read(conn, "meuse")
meuse_1_3 = st_read(conn, query = "select * from meuse limit 3;")
dbDisconnect(conn)

We see here that in the second example a query is given. This query may contain spatial predicates, which
could be a way to work through massive spatial datasets in R without having to read them completely in
memory.

Similarly, tables can be written:

conn = dbConnect(PostgreSQL(), dbname = "postgis")
st_write(conn, meuse, drop = TRUE)
dbDisconnect(conn)

Here, the default table (layer) name is taken from the object name (meuse). Argument drop informs to drop
(remove) the table before writing; logical argument binary determines whether to use well-known binary
or well-known text when writing the geometry (where well-known binary is faster and lossless).

Conversion to other formats: WKT, WKB, sp

Conversion to and from well-known text
The usual form in which we see simple features printed is well-known text:

st_point(c(0,1))
POINT (0 1)
st_linestring(matrix(0:9,ncol=2,byrow=TRUE))
LINESTRING (0 1, 2 3, 4 5, 6 7, 8 9)

We can create these well-known text strings explicitly using st_as_wkt :

x = st_linestring(matrix(0:9,ncol=2,byrow=TRUE))
str = st_as_text(x)
x
LINESTRING (0 1, 2 3, 4 5, 6 7, 8 9)

We can convert back from WKT by using st_as_sfc :

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 6/8

st_as_sfc(str)
Geometry set for 1 feature
geometry type: LINESTRING
dimension: XY
bbox: xmin: 0 ymin: 1 xmax: 8 ymax: 9
epsg (SRID): NA
proj4string: NA
LINESTRING (0 1, 2 3, 4 5, 6 7, 8 9)

Conversion to and from well-known binary
Well-known binary is created from simple features by st_as_binary :

x = st_linestring(matrix(0:9,ncol=2,byrow=TRUE))
(x = st_as_binary(x))
[1] 01 02 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[24] f0 3f 00 00 00 00 00 00 00 40 00 00 00 00 00 00 08 40 00 00 00 00 00
[47] 00 10 40 00 00 00 00 00 00 14 40 00 00 00 00 00 00 18 40 00 00 00 00
[70] 00 00 1c 40 00 00 00 00 00 00 20 40 00 00 00 00 00 00 22 40
class(x)
[1] "raw"

The object returned by st_as_binary is of class WKB and is either a list with raw vectors, or a single raw
vector. These can be converted into a hexadecimal character vector using rawToHex :

rawToHex(x)
[1] "0102000000050000000000000000000000000000000000f03f00000000000000400000000000000840000
0000000001040000000000000144000000000000018400000000000001c400000000000002040000000000000224
0"

Converting back to sf uses st_as_sfc :

x = st_as_binary(st_sfc(st_point(0:1), st_point(5:6)))
st_as_sfc(x)
Geometry set for 2 features
geometry type: POINT
dimension: XY
bbox: xmin: 0 ymin: 1 xmax: 5 ymax: 6
epsg (SRID): NA
proj4string: NA
POINT (0 1)
POINT (5 6)

Conversion to and from sp
Spatial objects as maintained by package sp can be converted into simple feature objects or geometries by
st_as_sf and st_as_sfc , respectively:

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 7/8

methods(st_as_sf)
[1] st_as_sf.Spatial* st_as_sf.data.frame* st_as_sf.lpp*
[4] st_as_sf.map* st_as_sf.ppp* st_as_sf.psp*
[7] st_as_sf.sf*
see '?methods' for accessing help and source code
methods(st_as_sfc)
[1] st_as_sfc.SpatialLines* st_as_sfc.SpatialMultiPoints*
[3] st_as_sfc.SpatialPixels* st_as_sfc.SpatialPoints*
[5] st_as_sfc.SpatialPolygons* st_as_sfc.TWKB*
[7] st_as_sfc.WKB* st_as_sfc.bbox*
[9] st_as_sfc.blob* st_as_sfc.character*
[11] st_as_sfc.dimensions* st_as_sfc.factor*
[13] st_as_sfc.list* st_as_sfc.map*
[15] st_as_sfc.raw*
see '?methods' for accessing help and source code

An example would be:

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
m.sf = st_as_sf(meuse)
opar = par(mar=rep(0,4))
plot(m.sf)
Warning: plotting the first 10 out of 12 attributes; use max.plot = 12 to
plot all

Conversion of simple feature objects of class sf or sfc into corresponding Spatial* objects is done using
the as method, coercing to Spatial :

09/06/2018 https://cran.r-project.org/web/packages/sf/vignettes/sf2.html

https://cran.r-project.org/web/packages/sf/vignettes/sf2.html 8/8

x = st_sfc(st_point(c(5,5)), st_point(c(6,9)), crs = 4326)
as(x, "Spatial")
SpatialPoints:
coords.x1 coords.x2
[1,] 5 5
[2,] 6 9
Coordinate Reference System (CRS) arguments: +proj=longlat
+datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

