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Abstract Present methodological research on geographically weighted
regression (GWR) focuses primarily on extensions of the basic GWR
model, while ignoring well-established diagnostics tests commonly used in
standard global regression analysis. This paper investigates multicollin-
earity issues surrounding the local GWR coefficients at a single location
and the overall correlation between GWR coefficients associated with two
different exogenous variables. Results indicate that the local regression
coefficients are potentially collinear even if the underlying exogenous
variables in the data generating process are uncorrelated. Based on these
findings, applied GWR research should practice caution in substantively
interpreting the spatial patterns of local GWR coefficients. An empirical
disease-mapping example is used to motivate the GWR multicollinearity
problem. Controlled experiments are performed to systematically explore
coefficient dependency issues in GWR. These experiments specify global
models that use eigenvectors from a spatial link matrix as exogenous
variables.
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1 Introduction

Geographically weighted regression (GWR) aims at identifying spatial het-
erogeneities in regression models of geo-referenced data. The spatial vari-
ability of the estimated local regression coefficients is usually examined to
determine whether the underlying data generating process exhibits spatial
heterogeneities or local deviations from a global regression model. A com-
mon procedure is to map the spatial GWR coefficient pattern associated with
each exogenous variable. This approach, however, ignores potential depen-
dencies among the local regression coefficients associated with different
exogenous variables. Attention in this paper centers on these potential
dependencies among the local coefficients. They can be expressed either as
the correlation between pairs of local regression coefficients at one location or
as the correlation between two overall sets of local coefficient estimates
associated with two exogenous variables at all locations. Weak dependencies
of either form hamper a substantive interpretation of the local GWR esti-
mates, whereas strong dependencies induce artifacts that invalidate any
meaningful interpretation and search for spatial heterogeneities because the
regression coefficients are no longer uniquely defined.

The development of GWR started from local regression and smoothing
techniques (Brunsdon et al. 1996; Fotheringham et al. 1998) and became
increasingly more sophisticated by considering, for example, maximum
likelihood estimation of the kernel bandwidths (Páez et al. 2002a), spatial
autocorrelation among the residuals (Páez et al. 2002b), generalized linear
model specifications (Fotheringham et al. 2002) and Bayesian GWR (LeSage
2001, 2004). Some diagnostic tests in GWR have also become more
sophisticated, for instance, the development of formal test statistics for
spatial nonstationarity and heterogeneity of the local model parameters
(Leung et al. 2000). Aside from coefficient maps associated with single
exogenous variables and local t-values, however, none of these developments
pay much attention to fundamental regression diagnostics, such as residual
analysis or the overall stability of the model. In general terms, model stability
depends very much on the joint-distribution of the exogenous variables as
demonstrated in the classical analysis by Longley (1967), where regression
coefficients changed signs depending on whether specific exogenous variables
or particular observations were in or excluded in the model. The uncer-
tainties and numerical instabilities in this classical analysis are induced by the
multicollinearity among the exogenous variables that lead to correlation
among the estimated regression coefficients. In addition to these technical
dimensions of multicollinearity, there are also more substantive ramifications
affecting our ability to conduct an informed model interpretation: Fox (1997,
p 351) states that ‘‘collinearity deals fundamentally with the inability to
separate the effects of highly correlated variables’’ and Greene (2000, p 256 )
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highlights that ‘‘parameters are unidentified’’ and ‘‘different sets of param-
eters give the same E(yi).’’

Evaluating data in GWR for local multicollinearities and pairwise cor-
relations between sets of local coefficients is even more important than in the
traditional global regression model due to the increased complexities of the
GWR estimation procedure that potentially induces interrelationships
among the local estimates. In a worst-case scenario, these coefficient inter-
relationships lead to parameter redundancies, which clearly invalidate any
attempt to interpret a single GWR coefficient independent of the remaining
local estimates at the same location. Leung et al. (2000, p 14) point out that
‘‘the GWR technique in fact exerts some constraints on the parameters by
the weighted least squares method.’’ These constraints have the tendency to
tie the GWR coefficient estimates locally and spatially together. A new class
of GWR models would be required to formally express the effects of these
constraints. This class would need to connect all location specific GWR
regression equations simultaneously into a seemingly unrelated regression
model, which allows jointly testing across several local models and a nested
specification of a global model with local parameter variations.

Commonly used exploratory tools to uncover potential multicollinearity
among the exogenous variables are bivariate correlation coefficients and
bivariate scatter plots of pairs of exogenous variables. More statistical ori-
ented tools that adopt a simultaneous view to diagnose multicollinearity in a
fitted regression model are variance inflation factors (VIF), the correlation
matrix of the estimated regression parameters (including the model inter-
cept), and the condition index and variance-decomposition proportions by
Belsley et al. (1980). Additional consequences of potential multicollinearity
in a regression model are (a) a large change or even reversal in sign in one
regression coefficient after another exogenous variable is added to the model
or specific observations have been excluded from the analysis, (b) a coun-
terintuitive sign in one regression coefficient, and (c) large parameter stan-
dard errors. It is essential to look for these effects of multicollinearity in
global models and their local GWR counterparts when fitting and inter-
preting a GWR model. Furthermore, while a global regression model may
have acceptable coefficient correlation levels and VIF levels, its GWR
counterpart may have unacceptably high levels of correlation among the
local GWR coefficients. These effects will be overlooked without a proper
diagnostic analysis and may lead to an improper interpretation of the local
regression model.

A critical reexamination of the basic properties of GWR becomes even
more important since GWR is being established as a standard tool in
exploratory spatial data analysis. Exploratory spatial data analysis should
describe, on the one hand, the complex nature of spatial variation in order to
capture facets of the underlying data generating process, which subsequently
will provide input into a more refined model specification (Haining 1990,
2003). On the other hand, methods of exploratory spatial data analysis
should be structurally neutral and not induce unsupported patterns onto the
analysis results. There are numerous examples of the use of GWR as an
exploratory tool. Nakaya (2001) uses the GWR approach for spatial inter-
action modeling with local distance decay and accessibility parameters.
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Huang and Leung (2002) apply GWR to study regional industrialization in
China. Longley and Tobón (2004) perform a comparative study of several
global and local spatial estimation procedures including GWR to investigate
the heterogeneity in patterns of intra-urban hardship. Interestingly, these
applications interpret the local parameter patterns without reporting the
level of correlation in the estimated regression coefficients, even though there
appears to be coefficient correlation in some map patterns.

Our intent in this paper is (a) to raise the awareness of GWR users that
they may encounter multicollinearity problems in their exploratory spatial
data analyses, (b) to demonstrate potential effects of multicollinearity in
specific GWR analyses, and (c) to provide a set of simple diagnostic tools to
explore the severity of the multicollinearity problem. While we provide
sufficient evidence of an inherent multicollinearity problem in GWR and hint
at some underlying causes, an exhaustive discussion of the multicollinearity
inducing mechanisms must be left to future research, which integrates the
local GWR regressions into a simultaneous model. This paper briefly reviews
the GWR modeling approach in Section 2. Also in this section, some rele-
vant diagnostic tools are introduced to facilitate the analysis of the rela-
tionships among the estimated local regression coefficients. Section 3
presents a GWR model of bladder cancer mortality. This model motivated
us to perform this GWR multicollinearity investigation through the visual-
ization and description of the patterns and relationships among the esti-
mated local regression coefficients. Section 4 presents numerous experiments
using different sets of eigenvectors, which are extracted from a spatial con-
nectivity matrix, to systematically investigate the effects of multicollinearity
on GWR parameters. These sets of eigenvectors give results that are con-
sistent with our empirical analysis of the bladder cancer model, and with
results of our analyses of other data sets. The paper concludes with a sum-
mary of the findings and some recommendations to explore GWR multi-
collinearity effects in future research.

2 GWR fundamentals

This section gives a brief review of the basic GWR model specification
and estimation procedure. Greater statistical details can be found in
Fotheringham et al. (2002). In contrast to a global regression model
yi ¼ b0 þ

Pp
k¼1 bk � xik þ ei; where the regression coefficients {b0, ..., bp} are

location invariant, the specification of a basic GWR model is

yi ¼ bi0 þ
Xp

k¼1
bikxik þ ei; i ¼ 1; . . . ; n; ð1Þ

where yi is the dependent variable at location i, xik is the value of the kth
explanatory variable at location i, the bik is the local regression coefficient for
the kth explanatory variable at location i, bi0 is the intercept parameter at
location i, and ei is the random disturbance at location i, which may follow
an independent normal distribution with zero mean and homogeneous var-
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iance. Thus, in contrast to the global model with fixed bks, the regression
coefficients bik are allowed to vary form location to location.

There are m potential prediction locations, which do not need to match
the n calibration locations at which actual data records are observed. In
particular, if m� n then GWR is used for spatial interpolation. From Eq. 1,
there are a total of mÆ(p+1) regression coefficients estimated in GWR, where
p is the number of variables in the model. The intercept term is counted
individually. It is apparent that the number of coefficient estimates may be
substantially larger than the available degrees of freedom based on the given
number of calibration observations. Thus GWR must compensate for the
lack of degrees of freedom by imposing constraints on estimated regression
coefficients (Leung et al. 2000, p 10). The regression coefficients are estimated
for each calibration location independently by location-specific weighted
least squares models. The matrix calculation for the estimated regression
coefficients is

b̂ðiÞ ¼ ½XT �WðiÞ � X��1XT �WðiÞ � y; ð2Þ

where W(i) = diag [w1(i),..., wn(i)] is the diagonal weights matrix that varies
for any calibration or prediction location i, X is the matrix of exogenous
variables with a first column of 1 s for the intercept, y is the vector of

dependent variables, and b̂ðiÞ ¼ b̂i0; b̂i1; . . . ; b̂ip

� �T
is the vector of p+ 1

local regression coefficients at location i.
The weights matrix is specified as a local kernel function that models a

distance decay effect from the n calibration locations to the prediction
location i. There are many specifications of the kernel function (Fothering-
ham et al. 2002). One of the most commonly used kernel functions, and the
one used in this analysis, is the bi-square nearest neighbor function

wðiÞ ¼ ½1� ðdij=bÞ2�2 if j 2 fNig
0 if j 62 fNig

�

; ð3Þ

where dij is the distance between the calibration location j and the prediction
location i, b is the threshold distance to the Nth nearest neighbor, and the set
{Ni } contains the observations that are within the distance range of the
threshold Nth nearest neighbor (see Fotheringham et al. 2002, p 58). The
weights for observations beyond the distance of the Nth nearest neighbor are
zero. Note, in contrast to the Gaussian distance decay weight function that
was used by Leung et al. (2000), the bi-square weight function cannot cap-
ture a global model in which all observations are equally weighted. Thus, it
serves well in investigating GWR multicollinearity effects, even if the
underlying data generating process is assumed to be based on a global model
that lacks spatial heterogeneity. In the parameter estimation, an observation
j in close vicinity to observation i exerts a higher weight on the calculation of
the regression coefficients than a more distant observation. Observations
outside the Nth nearest neighborhood are excluded from the regression
coefficient calculation in Eq. 2. The observations are geo-referenced as point
locations. These points may be representative points of areal objects, such as
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their geometric or population centroids. The N0 is the neighborhood
threshold parameter that must be estimated using a cross-validation ap-
proach. Cross-validation with the bi-square nearest neighbor kernel function
can be summarized using the following equation:

N0 ¼ min
N

Xn

i¼1
½yi � ŷðiÞðNÞ�

2; ð4Þ

where ŷðiÞ is the predicted value of observation i with the calibration obser-
vation i removed from the estimation, and N0 is the value of N that mini-
mizes the residual sum of squares. A golden section search method was used
to find N0 in this research. After the best kernel parameter N0 is found, the
GWR model parameters are estimated at each location using the calibrated
kernel function.

To evaluate the local correlation among the estimated regression coeffi-
cients at location i, analogous to the regression parameter correlation in the
global model, the local parameter correlation matrix can be calculated from
the local covariance matrix. In line with Eq. 2.15 in Fotheringham et al.
(2002, page 55) we calculate the covariance matrix among the local regres-
sion coefficients as

Cov [b̂ðiÞ� ¼ r2 � ½XT �WðiÞ � X��1 � XT �W2ðiÞ � X � ½XT �WðiÞ � X��1: ð5Þ

This expression assumes that the disturbances are distributed as e � Nð0; r2 �
IÞ: Throughout their work Fotheringham et al. (2002) are using this i.i.d.
assumption. This sets GWR aside from a locally weighted regression model
that assumes eðiÞ � N 0;r2

i �W�1ðiÞ
� �

and is used by Páez et al. (2002a, b).
How justified these assumptions of independence are in the light of multiple
GWR estimations at n calibration locations, is left for future research. From
Eq. 5 we derive the local correlation matrix among the regression coefficients
at the i-th calibration location by

RðiÞ ¼ diag�
1
2f Cov [b̂ðiÞ�g � Cov ½b̂ðiÞ� � diag�1

2fCov ½b̂ðiÞ�g ð6Þ

where diag{Æ} extracts the main diagonal from the square covariance matrix.
Subsequently, we refer to these correlations (6) as the local coefficient cor-
relations at prediction location i.

The objective of the paper is to study the local coefficient correlations in
dependence of the multicollinearity among the exogenous variables in the
global model. We also employ alternative tools to address this research
question, such as scatter plots between the kth and lth sets of n local
regression coefficients for the kth and lth exogenous variables, and their
correlation coefficients,

Corr b̂1k; . . . ; b̂nk

n o
; b̂1l; . . . ; b̂nl

n o� �
¼

Pn

j¼1
ðb̂jk �

�̂bkÞ � ðb̂jl �
�̂blÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
ðb̂jk �

�̂bkÞ2 �
Pn

j¼1
ðb̂jl �

�̂blÞ2
s ;

ð7Þ
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where
�̂bk ¼ ð1=nÞ �

Pn
j¼1 b̂jk: This correlation is subsequently called the

overall correlation of two sets of local regression coefficients. It is important
to stress here that overall local coefficient scatter plots are frequently more
informative than the plain linear correlation coefficient, since we observed on
several occasions that overall sets of GWR coefficients are frequently related
in a non-linear way. The following four matrices more clearly make the
distinction between the correlations that are presented in this paper. The
underlying n · (p+1) design matrix at the n calibration locations is

X½n�ðpþ1Þ� ¼

1 x11 � � � x1p

1 x21 � � � x2p

..

. ..
. . .

. ..
.

1 xn1 � � � xnp

0

B
B
B
@

1

C
C
C
A

and the resulting matrix of local GWR coefficients at calibration locations
becomes

B½n�ðpþ1Þ� ¼

b10 b11 � � � b1p
b20 b21 � � � b2p

..

. ..
. . .

. ..
.

bn0 bn1 � � � bnp

0

B
B
B
@

1

C
C
C
A
:

It is apparent that GWR must implicitly impose constraints on this over-
specified calibration problem in order to obtain n · (p+1) local parameter
estimates from only n degrees of freedom. The exact nature of these con-
straints and how they tie the local estimates within one local GWR equation
and across the set of n local models together is left to future research. The
calculated local coefficient correlation matrix (6) at one location provides the
correlation among the estimated parameters in a row of the local GWR
coefficient matrix

B ¼

b10 b11 � � � b1p
b20 $ b21 $ � � � $ b2p

..

. ..
. . .

. ..
.

bn0 bn1 � � � bnp

0

B
B
B
@

1

C
C
C
A

and these correlations are used in local coefficient correlation maps. The
overall correlation (7) among sets of local GWR coefficients provides the
correlation of pairs of parameter estimates over all locations of the local
GWR coefficient matrix

B ¼

b10 $ b11 � � � b1p
b20 $ b21 � � � b2p

..

. ..
. . .

. ..
.

bn0 $ bn1 � � � bnp

0

B
B
B
@

1

C
C
C
A
:
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The overall local coefficient scatter plot among sets of local GWR esti-
mates can be generated immediately from standard GWR output. It thus
serves as an efficient exploratory tool to detect local coefficient dependencies.
In contrast, the local coefficient correlation matrices, or the local variance
inflation factors, are not readily available in any standard GWR software
package and require specialized computational procedures. Pairwise local
coefficient correlations can also be mapped to investigate the spatial vari-
ability of the GWR coefficient dependencies.

3 Multicollinearity in bladder cancer mortality data

To motivate the issue of multicollinearity in GWR, a simple model was built
to explain white male bladder cancer mortality rates in the 508 State Eco-
nomic Areas (SEA) of the United States for the years 1970–1994. The dataset
comes from the Atlas of Cancer Mortality from the National Cancer Insti-
tute (Devesa et al. 1999) and contains age standardized mortality rates (per
100,000 person-years). The model consists of the explanatory variables
population density and lung cancer mortality rate. Population density is used
as proxy for environmental and behavioral differences with respect to an
urban/rural dichotomy. It is expected, as several studies point out, that with
an increase in the population density there is an increase in the rate of
bladder cancer. Lung cancer mortality rates are used as proxy for the risk
factor smoking, which is a known risk factor for bladder cancer. There is
epidemiological evidence that an increase in smoking elevates the risk of
developing bladder cancer, thus we expect a positive relationship between
both variables. This approximation of smoking by lung cancer is reasonable,
since the attributable risk of smoking for lung cancer is >80% and the
attributable risk of smoking for bladder cancer is >55% (Mehnert et al.
1992). A global regression model was first built using bladder cancer mor-
tality as the dependent variable with population density log transformed to
linearize the relationship with the dependent variable. This model was then
fit using a GWR approach implemented by the authors in Matlab. The
summary results of the global regression are listed in Table 1. The risk
factors are significantly positively related to the rate of bladder cancer, as
expected. The variance inflation factors for the two global explanatory
variable parameters are less than 2 and the correlation of the global

Table 1 Global regression and GWR results for the bladder cancer mortality model

Global GWR

Parameter Estimate Standard
error · 2

p-value VIF Parameter
correlation

Estimate
mean

Inter-
quartile
range

P-value

Intercept 3.835 0.398 0.000 3.726 1.580 0.000
Smoking 0.030 0.013 0.000 1.534 �0.596 0.053 0.051 0.000
Pop. density 0.269 0.076 0.000 1.534 �0.596 0.124 0.291 0.000
R-square 0.25 0.73
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regression parameters is moderately negative at �0.59, whereas the corre-
lation of the two variables is 0.59. These results suggest that multicollinearity
is not a significant problem in the global model.

In order to test for heteroscedasticity with respect to the underlying
population at risk popi in the 508 SEAs, a global weighted regression was fit
using maximum likelihood estimation of the power parameter q for the
weights wi = (popi)

q, i=1, ..., 508. While the parameter q is significant, it is
distinctively closer to 0 than to 1, indicating no weights are more appropriate
than the theoretically expected weights equal to the population at risk. In
addition, regression coefficients of the unweighted and weighted models
matched closely. Therefore, we will not account for model heteroscedasticity
with respect to the areal population sizes in either the global model or the
local GWR models.

The summary results of fitting this model with GWR are also listed in
Table 1. The mean of the 508 local smoking regression coefficients is higher
than in the global model and the mean of the local population density
regression coefficients is lower than in the global model. The variance in both
sets of local regression coefficients is higher in the GWR model based on a
comparison of (1) the global standard errors and mean local standard errors
and (2) two times the global standard errors and the inter-quartile range of
the local parameters. The spatial heterogeneity in the GWR parameters is
significant for the parameters of the explanatory variables as well as in the
local intercepts according to the p-values from the Monte Carlo simulation
test, where the test is described in Fotheringham et al. (2002, p. 93). The
coefficient of determination increases notably from 0.25 of the global model
to 0.73 of the local models.

It has been argued that one of the primary advantages of GWR is the
ability to visualize the local regression coefficient estimates in order to
identify local model heterogeneities. Figure 1 shows the map patterns for the
GWR coefficients, which are associated with different explanatory variables.
The two maps show a clear inverse map pattern correlation between the sets
of local regression coefficients: in general, when the local smoking proxy
parameter is high, the local population density parameter is low. This pattern
is most noticeable in the West, Northeast, and portions of the Midwest
immediately south of Lake Michigan.

The important question is whether this complementary relationship in the
parameters is real, meaningful, and interpretable or an artifact of the sta-
tistical method. If the analyst does not ask this question and attempts to
interpret the parameters, a likely interpretation is that in the West and
Northeast smoking has a positive (statistically) relationship with bladder
cancer mortality while population density has a counter-intuitive negative
relationship with bladder cancer mortality. In addition, in parts of the
Midwest and Oklahoma smoking has a counter-intuitive negative relation-
ship with bladder cancer while population density has a positive relationship.
This would lead to a serious mis-interpretation in these areas that is in gross
contradiction to well-established etiological knowledge that smoking is a risk
factor for bladder cancer.

Note that both choropleth map patterns of the local GWR coefficients
must be cartographically symbolized by a bi-polar or diverging cartographic
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map theme (Brewer et al. 1997). In a bi-polar map theme a particular value
denotes a common reference around which the observed values are diverg-
ing. In our case positive and negative local GWR coefficients have a sub-
stantively different interpretation. Since bi-polar map themes are difficult to
display in achromatic maps, we have opted for a connotation of observations
below the reference values by a light gray scale whereas observations above
the reference value are encoded by a heavy gray. A noticeable gap in the
middle section of the gray scale enables us to distinguish immediately be-
tween both branches of the scale.

The next logical step in the analysis is to further explore the overall
correlation between the sets of local regression coefficients. Figure 2 is a
scatter plot of the local coefficient estimates for the two variables and shows
a strong negative relationship. The dashed reference lines are the global

Fig. 1 Estimated GWR coefficients for a bladder cancer mortality model. The top map
displays the spatial pattern of the local regression coefficients associated with the smok-
ing proxy variable, while the bottom map displays the spatial pattern of the local regres-
sion coefficients associated with the log population density variable
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coefficient estimates and the plot shows that there is much variation around
the global estimates. In addition, the local coefficient estimates do not center
on their global counterparts. The overall correlation coefficient for the sets of
local coefficients is �0.85 and helps quantify the visible negative relationship
between the two map patterns illustrated in Fig. 1. While this scatter plot
displays an overall linear relationship among the local GWR coefficients,
some peculiar outlying clusters can be observed.

The local coefficient correlations based on Eq. 6 are mapped in Fig. 3 and
it is clear that the strongest negative local parameter correlation is in the
Midwest and parts of the Northeast. There are many locations in these areas
with absolute magnitude correlation greater than 0.75. Figure 4 shows the
distribution of the local coefficient correlations and highlights that many of
the observations have a local correlation considerably stronger than the
global coefficient correlation of �0.59 (the dashed line in the histogram). It is
clear from these figures that the local coefficient correlation varies substan-
tially over the study area and increases substantially when compared to the
global coefficient correlation.

Another question to consider is whether the GWR coefficient estimate
correlation varies with the size and type of kernel, which acts as a locally
smoothing window of the exogenous variables in the GWR model. Fig. 5 is a
plot of the relationship between kernel size N and the overall correlation of
the sets of GWR coefficient estimates. The dashed reference line denotes the
best N value (75) for the empirical bladder cancer model in terms of lowest
residual sum of squares found through a cross-validation search routine (4).
The relationship between kernel size and overall correlation of coefficients

Fig. 2 Scatter plot of the local estimated regression coefficients associated with the
smoking proxy and population density (r = �0.85). The dashed lines denote the levels
of the related global parameter estimates
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for this model is an almost monotonically decreasing function that reaches
its minimum of just under �0.88 at a kernel size N = 220. A more thorough
and exhaustive study is needed to better understand the influence of the

Fig. 3 Local coefficient correlations for the GWR coefficients associated with the smok-
ing proxy and population density variables

Fig. 4 Histogram of local coefficient correlations for smoking proxy and population
density. The dashed reference line denotes the coefficient correlation in the global model
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kernel function and its bandwidth on the estimated local regression coeffi-
cients and other model statistics.

4 Exploration of GWR multicollinearity in controlled experiments

The preliminary findings from the GWR model for bladder cancer mortality
raise general questions about the presence of multicollinearity effects and the
validity of the local regression coefficient estimates. Controlled experiments
are necessary to further investigate the potential problem of multicollinearity
in GWR and to gain a deeper understanding of the effects observed in the
empirical bladder cancer model. In order to reduce the computational bur-
den and use a more homogeneous study area with respect to the underlying
spatial tessellation, these experiments were conducted for the 1990 Census
layout of the n= 159 counties in Georgia. Fotheringham et al. (2002) used
this tessellation in combination with a census dataset in their monograph as
a benchmark tutorial on the GWR estimation procedure. Using the compact
tessellation of Georgia’s counties will overcome the spatial discontinuities of
Alaska and Hawaii found in the bladder cancer example of the 508 SEAs and
help avoid the potential problem of using the same distance threshold
number of neighbors in Eq. 3 for the vastly expanding SEAs in the western
United States and the densely packed SEAs in the East.

Several experiments are performed here with exogenous variables gen-
erated from the eigenvectors that are based on an n · n binary spatial link

Fig. 5 Relationship between the kernel size and the overall correlation of the sets of
GWR coefficients for smoking proxy and population density. The dashed line reflects
the optimal bandwidth, which was determined by the cross-validation procedure
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matrix C of the 159 counties that captures the mutual adjacency relation-
ships among the counties. The underlying eigenvector extraction was per-
formed on the transformed and re-scaled link matrix C by

e1; e2; . . . ; enf g ¼ evec I� 1 � 1T
n

� �

� n
Pn

i¼1
Pn

j¼1 cij
� C � I� 1 � 1T

n

� � !

in order for the eigenvectors to be orthogonal to the constant unity vector
1=(1,1, ..., 1)T, which is used in regression analysis to model the intercept.
Eigenvectors of this transformed spatial adjacency matrix have specific
properties that make them useful candidates for exogenous variables in our
experiments: (1) they are uncorrelated among each other, so collinearity in a
global data generating process is not an issue and all global regression
coefficients are uncorrelated among each other (Fox 1997); (2) their means
are zero and their variances are (1/n), which we have rescaled for our analysis
to one, thus, their basic distributional characteristics are directly compara-
ble; (3) they exhibit particular spatial patterns and the spatial autocorrela-
tion of these patterns with respect to Moran’s I is identical to the associated
eigenvalue of the eigenvector. In our experimentation, the first eigenvector e1
displays maximal positive autocorrelation with a Moran’s I value of 1.1094,
the last eigenvector e159 exhibits the greatest negative autocorrelation level
with an I value of �0.5784, and the remaining eigenvectors are sorted in
descending autocorrelation order within these two extremes. Details of this
approach of generating uncorrelated spatial patterns with a given autocor-
relation level and sample maps can be found in Boots and Tiefelsdorf (2000)
and Griffith (2003). Note that the largest attainable autocorrelation level for
the Georgia tessellation is clearly above one and that the smallest possible
autocorrelation level does not reach minus one. Hence, as for most empirical
tessellations, the standard bounds of the Pearson correlation coefficient do
not apply (de Jong et al. 1984). Tiefelsdorf (forthcoming) uses spatial pat-
terns derived from eigenvectors to motivate a test procedure for spatial
pattern coherence.

The structure of the data generating process for the dependent variable y
takes a simple form of a linear regression relationship with two exogenous
variables x1 and x2

y ¼ b0 þ b1 � x1 þ b2 � x2 þ e; ð8Þ

where all global regression coefficients are set to b0=b1=b2=1. The
exogenous variables x1 and x2 as well as the disturbances e are taken from
the set of eigenvectors {e1, e2, ..., en}. Note that the data generating
process is specified strictly as a global model and any local heterogeneity
in the GWR regression coefficients must be interpreted as local variation
around the global data-generating process. We choose an eigenvector as a
random disturbance vector instead of some randomly sampled data values
because eigenvectors satisfy by default the theoretical requirement of a
regression model that disturbances are uncorrelated with the exogenous
variables in the model. Depending on the experimental design, the dis-
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turbances had either no spatial autocorrelation (an associated eigenvalue
very close to the expected value of Moran’s I, i.e., E(I)=� (1/(n�1)),
excluding all eigenvectors with an associated eigenvalue of 0, or some
level of spatial autocorrelation. In the first run of the first experiment, the
first exogenous variable x1 in the model is an eigenvector (x1 ” e3) that
exhibits a positively autocorrelated spatial pattern. In the second run of
the first experiment, the first exogenous variable is another positively
autocorrelated eigenvector (x1 ” e4). The second variable x2 in the model
is a linear combination of either the third and the first or the fourth and
first eigenvector using the formula (see Boots and Tiefelsdorf 2000, p. 327)

x2 ¼
sinðhÞ � e3 þ cosðhÞ � e1 for the 1st run;
sinðhÞ � e4 þ cosðhÞ � e1 for the 2nd run;

�

ð9Þ

where h is specified to control the level of correlation between x1 and x2,
which is given by corr(x1, x2) = sin(h).

Various experiments are presented here. Each experiment has a dif-
ferent motivation and/or objective to investigate effects and causes of the
local regression coefficient correlation. Experiment 1 involves a systematic
increase in the level of global correlation among the exogenous variables
using the combined eigenvector approach of Eq. 9. The objective for
Experiment 1 is to investigate if there is a systematic relationship between
the overall coefficient correlation levels with increasingly positive or neg-
ative global correlation levels between the exogenous variables. Specifically
of interest is whether a moderate level of positive global variable corre-
lation induces strong negative correlation in local regression coefficients.
Experiment 2 focuses on the correlation patterns among the locally
weighted exogenous variables. It involves fitting a GWR model with an
orthogonal eigenvector pair as exogenous variables and a spatially un-
correlated error term to investigate the relationship between locally
smoothed exogenous variables and local coefficient correlations. The
objective of this experiment is to see to what extent local kernel weighted
exogenous variable correlation influences the correlation of the local
regression coefficients. Experiment 3 uses a series of increasingly positive
spatially autocorrelated disturbances e in a GWR model with two un-
correlated exogenous variables to explore another possible cause for
correlation of local regression coefficients.

4.1 Experiment 1: correlation among exogenous variables
and bandwidth variation

The first experiment entails increasing the correlation in the exogenous
variable x2 with the variable x1 in a controlled way by increasing h in Eq. 9
and observing the level of correlation in the GWR coefficients. Note that if
h=0 then x2=e1 with x1 uncorrelated with x2 and if h=p /2 then x2=e3.
Two eigenvectors, 1 and 3, with high levels of spatial autocorrelation were
selected for explanatory variables because they have clearly distinguishable
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patterns. In addition, eigenvector 4 was selected as an exogenous variable
paired with eigenvector 1 in another run of the experiment because the two
eigenvectors exhibit a different co-patterning than eigenvectors 1 and 3. The
three eigenvector patterns are illustrated in Fig. 6. The spatial autocorrela-
tion for eigenvector 1 has a Moran’s I value of 1.109, the spatial autocor-
relation for eigenvector 3 has a Moran’s I value of 1.021, and the spatial
autocorrelation for eigenvector 4 has a Moran’s I value of 0.9861. The error
term was equal to standardized eigenvector 61, which had no spatial auto-
correlation as indicated by a Moran’s I close to E(I )=�1/(159�1).

The bi-square nearest neighbor kernel function was used and a fixed N=
143 was selected. In the experiment h was systematically increased from
�0.95 to 0.95 by 0.1 increments except for the step from |0.90| to |0.95| where
the increment of 0.05 was chosen. Overall this leads to a correlation between
x1 and x2 which ranges from �0.81 to 0.81. The overall correlation of the sets
of GWR coefficients was recorded at each value of h for each eigenvector
pair and the results are plotted in Fig. 7. There are several interesting things

Fig. 6 Spatial patterns of the orthogonal eigenvectors associated with eigenvalue 1
(I=1.109), eigenvalue 3 (I=1.021), and eigenvalue 4 (I=0.9861)
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to note in the figure. The figure shows a clear relationship between the
amount of collinearity in the exogenous variables and the overall correlation
between the sets of local GWR coefficients associated with both exogenous
variables. The overall correlation between the coefficients becomes consis-
tently more negative as the correlation in the exogenous variables becomes
more positive. More interestingly, the overall correlation of the sets of GWR
coefficients is �0.34 for eigenvectors 1 and 3 and is �0.84 for eigenvectors 1
and 4 when the exogenous variables are globally uncorrelated. Therefore,
there can be strong negative overall correlation in the local regression
coefficients even if the exogenous variable pair is uncorrelated. The figure
also shows that there can be a fairly rapid increase in the strength of the
overall correlation among the local regression coefficients. The overall cor-
relation in the GWR coefficients is at a level of �0.8 when the global cor-
relation of x1 and x2 reaches 0.64 for eigenvectors 1 and 3. The overall
correlation is dangerously high when x1 and x2 are correlated above the 0.2
level for eigenvectors 1 and 4. In this portion of the graph the coefficients for
eigenvector pair 1 and 4 are almost perfectly negatively correlated.

Figure 8 shows scatter plots of the local regression coefficient estimates at
four levels (0.0, 0.4, 0.6, 0.8) of h in the experiment for eigenvectors 1 and 3.
The reference lines on the axes display the true global parameters. The plots
show the increasingly more negative relationship in the sets of coefficient
estimates as h increases. Also, the variance of the local GWR coefficients
increases as the global correlation in the exogenous variables increases.

Fig. 7 Relationship between the correlation in the exogenous variables and the overall
correlation between the sets of associated GWR coefficients for two different eigenvec-
tor pairs
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Apparently, some spatial structure effects are present in the estimation of the
GWR regression coefficients as illustrated by the distinctive ribbons of points
in the scatter plots. The more extreme case of overall correlation in regres-
sion coefficients using eigenvectors 1 and 4 is shown in Fig. 9 for h=0.0 and
h=0.7. The figure reinforces the impression that the sets of local regression
coefficients are almost perfectly linearly dependent when the exogenous
variables are moderately globally correlated.

To ensure that the results were not specific to the selected kernel size, the
experiment was repeated using two sample kernel sizes, 40 and 159. The
results for both these kernel sizes were similar to those from the initial run of
the experiment (N = 143). More specifically, the trends in the overall cor-
relation in the regression coefficients shown in Figs. 7 and 8 were still pre-
valent with the other kernel sizes.

The GWR regression coefficients for the exogenous variables eigenvector
3 and the combined eigenvector using eigenvector 1 with h = 0.7 (r = 0.64
for explanatory variables) are mapped in Fig. 10. The maps of the correlated
exogenous variables x1 and x2 in the top of the figure show similar but not
exact patterns. The negative relationship (r = �0.8) in the GWR coefficients
is clearly evident in the regression coefficient maps in the bottom of the
figure. The GWR coefficients for the first exogenous variable x1 are highest
in the north and south and lowest in the east. The GWR coefficients for the
second exogenous variable are lowest in the north and south and highest in
the east. The patterns in the two exogenous variables are most similar in the
north, south, and central areas. Comparing the exogenous variable maps of
x1 and x2 and local coefficient maps reveals that when both variables have
similar patterns of values in an area, GWR associates the effect in that area
to only one parameter and the other parameter is pushed away from this and
actually gets the opposite effect. One can speculate that a similar mechanism
is at work in the bladder cancer mortality example. The local regression
coefficients in this experiment are clearly misleading and cannot be inter-
preted individually.

4.2 Experiment 2: local correlation of the exogenous variables

It is reasonable to suspect that the global correlation level in the explanatory
variables may not be representative of the correlation observed among the
exogenous variables at a local scale. This local scale correlation among the
independent variables is specified in this investigation by a weighted spatial
window based on the same local kernel function that is used in the GWR
model. This may offer an explanation for the relatively large local coefficient
correlations in some areas and small local coefficient correlations in other
areas. The local kernel weighted exogenous variables at each calibration
location are a direct transformation of the global exogenous variables and
therefore the correlation of these locally weighted variables can be directly
linked to the local coefficient correlations. In general, one can expect that the
smoothing effects of the weights accentuate positive local correlation in the
exogenous variables. To investigate the relationship between the local cor-
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relations of weighted exogenous variables and local coefficient correlations,
two GWR models were fit for both eigenvector pairs (1 and 3, 1 and 4) from
experiment 1. The spatially independent error term is specified by eigen-
vector 61. The eigenvectors in either set remain pairwise uncorrelated
(h=0.0) and the level of positive spatial autocorrelation in the exogenous
variable is an indicator of its local spatial smoothness. The correlation
among the local regression coefficients is calculated as described earlier in
Sect. 2 by Eqs. 5 and 6.

Figure 11 shows scatter plots of the local coefficient correlations for the
two exogenous variables and the correlation of the locally weighted exoge-
nous variables at the n calibration locations for the two eigenvector pairs. In
both plots there is a clear negative relationship between the local correlations
of the weighted exogenous variables and the local regression coefficient
correlations. Areas with stronger positive weighted exogenous variable cor-
relation have stronger negative local coefficient correlation. The association

Fig. 10 Geographically weighted regression coefficient estimates for a model with eigen-
vector 3 and a combination eigenvector using eigenvector 1 (h=0.7). The reference level
for the eigenvector patterns is zero, whereas the reference level for the estimated GWR
coefficients is b1=1 and b2=1
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is stronger for eigenvectors 1 and 4, although the relationship is less linear.
One can suspect that latent spatial structure effects are responsible for the
ribbons in both scatter plots. The result of this experiment supports the idea
that the correlations among locally weighted exogenous variables are one of
the driving forces behind local coefficient correlations in the GWR coeffi-
cients. This experiment was repeated for other eigenvector pairs and their
results are consistent with this finding.

4.3 Experiment 3: spatial autocorrelation in the error term

All the experiments performed to this point had a specified error term with
no spatial autocorrelation. To investigate the effect of using spatially auto-
correlated disturbances in the model, an experiment was designed with
standardized eigenvectors 1 and 3 as the exogenous variables in a model and
one eigenvector from the range of positively spatially autocorrelated eigen-
vectors as the error term in the model. This is the model in experiment 1 with
h=0, but with a spatially autocorrelated error term with a varying
autocorrelation level. For spatially uncorrelated disturbances, the overall
correlation of the GWR coefficients was �0.34 (see Experiment 1). There are
58 positively spatially autocorrelated eigenvectors remaining to be used for
the error term after eigenvectors 1 and 3 are included in the model. Each one
of these remaining eigenvectors is used as the error term in 58 other GWR
models in the experiment.

The correlation of the sets of GWR coefficients is plotted in Fig. 12 along
with the corresponding autocorrelation level of the eigenvector used as the
error term in each of the 59 models. Figure 12 shows that there is an overall
slightly positive relationship between the level of spatial autocorrelation in
the error term and the level of overall correlation in the GWR coefficients.
However, the overall correlation of the GWR coefficients jumps erratically
between both sides of the neutral reference line (no correlation) throughout
the range of error autocorrelation levels. Therefore, it is not possible to use
the autocorrelation level of the error term to determine whether the overall
correlation in the regression coefficients will be positive or negative. The
strongest overall correlation in the local coefficients (�0.91) is with an error
term of eigenvector 15 (spatial autocorrelation level of Moran’s I = 0.686).
Figure 13 is a scatter plot of the local coefficient estimates for both exoge-
nous variables when eigenvector 15 is used as the error term. The plot has
reference lines for the true global regression coefficients. There is a negative
nonlinear pattern in the regression coefficients and the true global coefficient
values are not jointly included in any pair of the local coefficient estimates.
This indicates the potential for biased GWR coefficients when the error term
is spatially autocorrelated. The results of this experiment suggest that in
some cases, models with spatially autocorrelated error terms may lead to
GWR coefficients that exhibit an artificially strong dependence.

One final note is that the overall GWR R2 goodness of fit (see Fother-
ingham et al. 2003) tends to increase as the spatial autocorrelation in the
error term increases. This is shown in Fig. 14, where there is a nonlinear
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positive relationship between R2 and the error term autocorrelation. There is
also a relatively large jump in R2 when the autocorrelation level reaches 0.87.
This suggests that GWR becomes a better predictor when the global
regression errors are spatially autocorrelated. Thus, GWR utilizes implicitly
the redundancy (see Haining 1991) among the observations that is induced
by spatial autocorrelation, whereas global predictors such as the simulta-
neous autoregressive model explicitly incorporate spatial autocorrelation
among the observations.

5 Conclusions

Little attention has been paid to standard diagnostic techniques in GWR.
This paper demonstrates the need for diagnostic tools, especially regarding
the issues of multicollinearity that may arise in GWR. This paper also found
that the effects of multicollinearity are substantially stronger in the GWR
model than in global regression models. In GWR, moderate to strong cor-
relation of two explanatory variables makes their associated local parameters
almost completely interdependent. This correlation of local regression
coefficients potentially invalidates any interpretation of individual GWR
parameter estimates and can facilitate misleading conclusions if the situation
is not properly diagnosed. It is not a new finding that local spatial estimates
have the tendency to be correlated among each other due to implicit con-
straints that tie local estimates together, such as the sharing of common data
in local estimation procedures. Ord and Getis (1995) discuss the correlations
among local Gi-statistics. Tiefelsdorf (2000, Figs. 11.4 and 11.5) shows that
local Moran’s Ii-statistics are correlated among each other, dependent on the

Fig. 12 Scatter plot of the overall correlation between the sets of local coefficient esti-
mates versus the spatial autocorrelation level in the error terms for the model with
eigenvector 1 and eigenvector 3 as exogenous variables
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spatial lag. Furthermore, in the context of spatial interaction models, Tie-
felsdorf (2003) highlights the case where the correlation between a set of local
distance decay parameters and other estimated parameters voids any sub-
stantive interpretation of the spatial heterogeneity in local distance decay
effects.

The potential repercussions of multicollinearity in GWR require a careful
application of the technique and the use of diagnostic tools. This paper

Fig. 13 Scatter plot of local coefficient estimates for eigenvector 1 and eigenvector 3
with a spatially autocorrelated error term (autocorrelation level 0.686)

Fig. 14 Relationship between the spatial autocorrelation level of the error term and
global GWR R2 for the model with exogenous eigenvectors 1 and 3
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presented some useful multicollinearity diagnostics, including (a) scatter
plots of the local parameter estimates (see Fig. 2), (b) maps of the local
parameter correlation (see Fig. 3), (c) histograms of local parameter corre-
lations (see Fig. 4), and (d) scatter plots of correlation between two local
kernel weighted explanatory variables and the local parameter correlations
(see Fig. 11). One may also produce local VIF maps for each variable to
show areas of large parameter variance inflation. One reviewer of this paper
demonstrated the usefulness of a local variant of Belsley et al. (1980) vari-
ance-decomposition proportions to investigate local multicollinearity in
GWR. The exploratory spatial repertoire of the GeoDa software (Anselin
2003) can be used to investigate the observed spatial structure effects in our
scatter plots (see, for instance, Figs. 2, 8 and 11).

Additional research is needed to summarize the effect of spatially auto-
correlated errors on the GWR parameters. As our initial results presented
here show, spatially autocorrelated errors can produce severely correlated
local regression coefficients. In addition, the effects of different bandwidths,
alternative specifications of the spatial weights function, and their interaction
with exogenous variables and the error term require further investigations.
Potential spatial structure effects, which are apparently inherent in GWR,
also require further investigation. The analysis presented in this paper only
considered simple models with two explanatory variables. Future research
should study, in controlled experiments, the joint impact of multicollinearity
in models with several exogenous variables and spatially varying regression
coefficients.

Currently, GWR ignores that the local models must relate to a global
reference model in order to express the local parameters as variation around
their global counterparts. This link between a global estimate and local
estimates is in line with the interpretation of local Moran’s Ii as variation
around a global spatial autocorrelation level (Anselin 1995; Tiefelsdorf
forthcoming), and with the link between local and global distance decay
parameters in spatial interaction models (Tiefelsdorf 2003). In order to tie
the local models to their global reference model, a system of seemingly
unrelated regression equations may be built that allows for a global reference
model and simultaneous testing of local parameter estimates across several
local models. Gelfand et al. (2003) demonstrate a simultaneous approach
using a Bayesian framework. However, in how well the Bayesian approach
deals with multicollinearity issues is largely unstudied. Clearly, more work is
needed in these research areas.
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