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Preface

Statistical analysis is at the core of most modern
biology, and many biological hypotheses, even
deceptively simple ones, are matched by complex
statistical models. Prior to the development of
modern desktop computers, determining whether
the data fit these complex models was the prov-
ince of professional statisticians. Many biologists
instead opted for simpler models whose structure
had been simplified quite arbitrarily. Now, with
immensely powerful statistical software available
to most of us, these complex models can be fitted,
creating a new set of demands and problems for
biologists.

We need to:

• know the pitfalls and assumptions of
particular statistical models,

• be able to identify the type of model
appropriate for the sampling design and kind
of data that we plan to collect,

• be able to interpret the output of analyses
using these models, and

• be able to design experiments and sampling
programs optimally, i.e. with the best possible
use of our limited time and resources.

The analysis may be done by professional stat-
isticians, rather than statistically trained biolo-
gists, especially in large research groups or
multidisciplinary teams. In these situations, we
need to be able to speak a common language:

• frame our questions in such a way as to get a
sensible answer,

• be aware of biological considerations that may
cause statistical problems; we can not expect a
statistician to be aware of the biological
idiosyncrasies of our particular study, but if he
or she lacks that information, we may get
misleading or incorrect advice, and

• understand the advice or analyses that we
receive, and be able to translate that back into
biology.

This book aims to place biologists in a better
position to do these things. It arose from our
involvement in designing and analyzing our own

data, but also providing advice to students and
colleagues, and teaching classes in design and
analysis. As part of these activities, we became
aware, first of our limitations, prompting us to
read more widely in the primary statistical litera-
ture, and second, and more importantly, of the
complexity of the statistical models underlying
much biological research. In particular, we con-
tinually encountered experimental designs that
were not described comprehensively in many of
our favorite texts. This book describes many of the
common designs used in biological research, and
we present the statistical models underlying
those designs, with enough information to high-
light their benefits and pitfalls.

Our emphasis here is on dealing with biologi-
cal data – how to design sampling programs that
represent the best use of our resources, how to
avoid mistakes that make analyzing our data dif-
ficult, and how to analyze the data when they are
collected. We emphasize the problems associated
with real world biological situations.

In this book

Our approach is to encourage readers to under-
stand the models underlying the most common
experimental designs. We describe the models
that are appropriate for various kinds of biologi-
cal data – continuous and categorical response
variables, continuous and categorical predictor
or independent variables. Our emphasis is on
general linear models, and we begin with the
simplest situations – single, continuous vari-
ables – describing those models in detail. We use
these models as building blocks to understand-
ing a wide range of other kinds of data – all of
the common statistical analyses, rather than
being distinctly different kinds of analyses, are
variations on a common theme of statistical
modeling – constructing a model for the data
and then determining whether observed data fit
this particular model. Our aim is to show how a
broad understanding of the models allows us to



deal with a wide range of more complex situa-
tions.

We have illustrated this approach of fitting
models primarily with parametric statistics. Most
biological data are still analyzed with linear
models that assume underlying normal distribu-
tions. However, we introduce readers to a range of
more general approaches, and stress that, once
you understand the general modeling approach
for normally distributed data, you can use that
information to begin modeling data with nonlin-
ear relationships, variables that follow other stat-
istical distributions, etc.

Learning by example

One of our strongest beliefs is that we understand
statistical principles much better when we see
how they are applied to situations in our own dis-
cipline. Examples let us make the link between
statistical models and formal statistical terms
(blocks, plots, etc.) or papers written in other dis-
ciplines, and the biological situations that we are
dealing with. For example, how is our analysis and
interpretation of an experiment repeated several
times helped by reading a literature about blocks
of agricultural land? How does literature devel-
oped for psychological research let us deal with
measuring changes in physiological responses of
plants?

Throughout this book, we illustrate all of the
statistical techniques with examples from the
current biological literature. We describe why
(we think) the authors chose to do an experiment
in a particular way, and how to analyze the data,
including assessing assumptions and interpret-
ing statistical output. These examples appear as
boxes through each chapter, and we are
delighted that authors of most of these studies
have made their raw data available to us. We
provide those raw data files on a website
http://www.zoology.unimelb.edu.au/qkstats
allowing readers to run these analyses using
their particular software package.

The other value of published examples is that
we can see how particular analyses can be
described and reported. When fitting complex
statistical models, it is easy to allow the biology to

be submerged by a mass of statistical output. We
hope that the examples, together with our own
thoughts on this subject, presented in the final
chapter, will help prevent this happening.

This book is a bridge

It is not possible to produce a book that intro-
duces a reader to biological statistics and takes
them far enough to understand complex models,
at least while having a book that is small enough
to transport. We therefore assume that readers
are familiar with basic statistical concepts, such
as would result from a one or two semester intro-
ductory course, or have read one of the excellent
basic texts (e.g. Sokal & Rohlf 1995). We take the
reader from these texts into more complex areas,
explaining the principles, assumptions, and pit-
falls, and encourage a reader to read the excellent
detailed treatments (e.g, for analysis of variance,
Winer et al. 1991 or Underwood 1997).

Biological data are often messy, and many
readers will find that their research questions
require more complex models than we describe
here. Ways of dealing with messy data or solutions
to complex problems are often provided in the
primary statistical literature. We try to point the
way to key pieces of that statistical literature, pro-
viding the reader with the basic tools to be able to
deal with that literature, or to be able to seek pro-
fessional (statistical) help when things become
too complex.

We must always remember that, for biologists,
statistics is a tool that we use to illuminate and
clarify biological problems. Our aim is to be able
to use these tools efficiently, without losing sight
of the biology that is the motivation for most of us
entering this field.

Some acknowledgments

Our biggest debt is to the range of colleagues who
have read, commented upon, and corrected
various versions of these chapters. Many of these
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Chapter 1

Introduction

Biologists and environmental scientists today
must contend with the demands of keeping up
with their primary field of specialization, and at
the same time ensuring that their set of profes-
sional tools is current. Those tools may include
topics as diverse as molecular genetics, sediment
chemistry, and small-scale hydrodynamics, but
one tool that is common and central to most of
us is an understanding of experimental design
and data analysis, and the decisions that we
make as a result of our data analysis determine
our future research directions or environmental
management. With the advent of powerful
desktop computers, we can now do complex ana-
lyses that in previous years were available only to
those with an initiation into the wonders of early
mainframe statistical programs, or computer pro-
gramming languages, or those with the time for
laborious hand calculations. In past years, those
statistical tools determined the range of sam-
pling programs and analyses that we were
willing to attempt. Now that we can do much
more complex analyses, we can examine data in
more sophisticated ways. This power comes at a
cost because we now collect data with complex
underlying statistical models, and, therefore, we
need to be familiar with the potential and limita-
tions of a much greater range of statistical
approaches.

With any field of science, there are particular
approaches that are more common than others.
Texts written for one field will not necessarily
cover the most common needs of another field,
and we felt that the needs of most common biol-
ogists and environmental scientists of our

acquaintance were not covered by any one partic-
ular text.

A fundamental step in becoming familiar with
data collection and analysis is to understand the
philosophical viewpoint and basic tools that
underlie what we do. We begin by describing our
approach to scientific method. Because our aim is
to cover some complex techniques, we do not
describe introductory statistical methods in
much detail. That task is a separate one, and has
been done very well by a wide range of authors. We
therefore provide only an overview or refresher of
some basic philosophical and statistical concepts.
We strongly urge you to read the first few chapters
of a good introductory statistics or biostatistics
book (you can’t do much better than Sokal & Rohlf
1995) before working through this chapter.

1.1 Scientific method

An appreciation of the philosophical bases for the
way we do our scientific research is an important
prelude to the rest of this book (see Chalmers
1999, Gower 1997, O’Hear 1989). There are many
valuable discussions of scientific philosophy from
a biological context and we particularly recom-
mend Ford (2000), James & McCulloch (1985),
Loehle (1987) and Underwood (1990, 1991).
Maxwell & Delaney (1990) provide an overview
from a behavioral sciences viewpoint and the first
two chapters of Hilborn & Mangel (1997) empha-
size alternatives to the Popperian approach in sit-
uations where experimental tests of hypotheses
are simply not possible.



Early attempts to develop a philosophy of sci-
entific logic, mainly due to Francis Bacon and
John Stuart Mill, were based around the principle
of induction, whereby sufficient numbers of con-
firmatory observations and no contradictory
observations allow us to conclude that a theory or
law is true (Gower 1997). The logical problems
with inductive reasoning are discussed in every
text on the philosophy of science, in particular
that no amount of confirmatory observations can
ever prove a theory. An alternative approach, and
also the most commonly used scientific method
in modern biological sciences literature, employs
deductive reasoning, the process of deriving
explanations or predictions from laws or theories.
Karl Popper (1968, 1969) formalized this as the
hypothetico-deductive approach, based around
the principle of falsificationism, the doctrine
whereby theories (or hypotheses derived from
them) are disproved because proof is logically
impossible. An hypothesis is falsifiable if there
exists a logically possible observation that is
inconsistent with it. Note that in many scientific
investigations, a description of pattern and induc-
tive reasoning, to develop models and hypotheses
(Mentis 1988), is followed by a deductive process in
which we critically test our hypotheses.

Underwood (1990, 1991) outlined the steps
involved in a falsificationist test. We will illustrate
these steps with an example from the ecological
literature, a study of bioluminescence in dinoflag-
ellates by Abrahams & Townsend (1993).

1.1.1 Pattern description
The process starts with observation(s) of a pattern
or departure from a pattern in nature.
Underwood (1990) also called these puzzles or
problems. The quantitative and robust descrip-
tion of patterns is, therefore, a crucial part of the
scientific process and is sometimes termed an
observational study (Manly 1992). While we
strongly advocate experimental methods in
biology, experimental tests of hypotheses derived
from poorly collected and interpreted observa-
tional data will be of little use.

In our example, Abrahams & Townsend (1993)
observed that dinoflagellates bioluminesce when
the water they are in is disturbed. The next step is
to explain these observations.

1.1.2 Models
The explanation of an observed pattern is referred
to as a model or theory (Ford 2000), which is a
series of statements (or formulae) that explains
why the observations have occurred. Model devel-
opment is also what Peters (1991) referred to as the
synthetic or private phase of the scientific
method, where the perceived problem interacts
with insight, existing theory, belief and previous
observations to produce a set of competing
models. This phase is clearly inductive and
involves developing theories from observations
(Chalmers 1999), the exploratory process of
hypothesis formulation.

James & McCulloch (1985), while emphasizing
the importance of formulating models in science,
distinguished different types of models. Verbal
models are non-mathematical explanations of
how nature works. Most biologists have some idea
of how a process or system under investigation
operates and this idea drives the investigation. It
is often useful to formalize that idea as a concep-
tual verbal model, as this might identify impor-
tant components of a system that need to be
included in the model. Verbal models can be
quantified in mathematical terms as either
empiric models or theoretic models. These models
usually relate a response or dependent variable to
one or more predictor or independent variables.
We can envisage from our biological understand-
ing of a process that the response variable might
depend on, or be affected by, the predictor vari-
ables.

Empiric models are mathematical descrip-
tions of relationships resulting from processes
rather than the processes themselves, e.g. equa-
tions describing the relationship between metab-
olism (response) and body mass (predictor) or
species number (response) and island area (first
predictor) and island age (second predictor).
Empiric models are usually statistical models
(Hilborn & Mangel 1997) and are used to describe
a relationship between response and predictor
variables. Much of this book is based on fitting
statistical models to observed data.

Theoretic models, in contrast, are used to
study processes, e.g. spatial variation in abun-
dance of intertidal snails is caused by variations
in settlement of larvae, or each outbreak of
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Mediterranean fruit fly in California is caused by
a new colonization event (Hilborn & Mangel 1997).
In many cases, we will have a theoretic, or scien-
tific, model that we can re-express as a statistical
model. For example, island biogeography theory
suggests that the number of species on an island
is related to its area. We might express this scien-
tific model as a linear statistical relationship
between species number and island area and eval-
uate it based on data from a range of islands of dif-
ferent sizes. Both empirical and theoretic models
can be used for prediction, although the general-
ity of predictions will usually be greater for theor-
etic models. 

The scientific model proposed to explain biolu-
minescence in dinoflagellates was the “burglar
alarm model”, whereby dinoflagellates biolu-
minesce to attract predators of copepods, which
eat the dinoflagellates. The remaining steps in the
process are designed to test or evaluate a particu-
lar model.

1.1.3 Hypotheses and tests
We can make a prediction or predictions deduced
from our model or theory; these predictions are
called research (or logical) hypotheses. If a partic-
ular model is correct, we would predict specific
observations under a new set of circumstances.
This is what Peters (1991) termed the analytic,
public or Popperian phase of the scientific
method, where we use critical or formal tests to
evaluate models by falsifying hypotheses. Ford
(2000) distinguished three meanings of the term
“hypothesis”. We will use it in Ford’s (2000) sense
of a statement that is tested by investigation,
experimentally if possible, in contrast to a model
or theory and also in contrast to a postulate, a new
or unexplored idea.

One of the difficulties with this stage in the
process is deciding which models (and subsequent
hypotheses) should be given research priority.
There will often be many competing models and,
with limited budgets and time, the choice of
which models to evaluate is an important one.
Popper originally suggested that scientists should
test those hypotheses that are most easily falsified
by appropriate tests. Tests of theories or models
using hypotheses with high empirical content
and which make improbable predictions are what

Popper called severe tests, although that term has
been redefined by Mayo (1996) as a test that is
likely to reveal a specific error if it exists (e.g. deci-
sion errors in statistical hypothesis testing – see
Chapter 3). Underwood (1990, 1991) argued that it
is usually difficult to decide which hypotheses are
most easily refuted and proposed that competing
models are best separated when their hypotheses
are the most distinctive, i.e. they predict very dif-
ferent results under similar conditions. There are
other ways of deciding which hypothesis to test,
more related to the sociology of science. Some
hypotheses may be relatively trivial, or you may
have a good idea what the results can be. Testing
that hypothesis may be most likely to produce
a statistically significant (see Chapter 3), and,
unfortunately therefore, a publishable result.
Alternatively, a hypothesis may be novel or
require a complex mechanism that you think
unlikely. That result might be more exciting to the
general scientific community, and you might
decide that, although the hypothesis is harder to
test, you’re willing to gamble on the fame, money,
or personal satisfaction that would result from
such a result.

Philosophers have long recognized that proof
of a theory or its derived hypothesis is logically
impossible, because all observations related to the
hypothesis must be made. Chalmers (1999; see
also Underwood 1991) provided the clever
example of the long history of observations in
Europe that swans were white. Only by observing
all swans everywhere could we “prove” that all
swans are white. The fact that a single observation
contrary to the hypothesis could disprove it was
clearly illustrated by the discovery of black swans
in Australia.

The need for disproof dictates the next step in
the process of a falsificationist test. We specify a
null hypothesis that includes all possibilities
except the prediction in the hypothesis. It is
much simpler logically to disprove a null hypoth-
esis. The null hypothesis in the dinoflagellate
example was that bioluminesence by dinoflagel-
lates would have no effect on, or would decrease,
the mortality rate of copepods grazing on dino-
flagellates. Note that this null hypothesis
includes all possibilities except the one specified
in the hypothesis.
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So, the final phase in the process is the experi-
mental test of the hypothesis. If the null hypothe-
sis is rejected, the logical (or research) hypothesis,
and therefore the model, is supported. The model
should then be refined and improved, perhaps
making it predict outcomes for different spatial
or temporal scales, other species or other new sit-
uations. If the null hypothesis is not rejected, then
it should be retained and the hypothesis, and the
model from which it is derived, are incorrect. We
then start the process again, although the statisti-
cal decision not to reject a null hypothesis is more
problematic (Chapter 3).

The hypothesis in the study by Abrahams &
Townsend (1993) was that bioluminesence would
increase the mortality rate of copepods grazing on
dinoflagellates. Abrahams & Townsend (1993)
tested their hypothesis by comparing the mortal-
ity rate of copepods in jars containing biolumi-
nescing dinoflagellates, copepods and one fish
(copepod predator) with control jars containing
non-bioluminescing dinoflagellates, copepods
and one fish. The result was that the mortality
rate of copepods was greater when feeding on bio-
luminescing dinoflagellates than when feeding
on non-bioluminescing dinoflagellates. Therefore
the null hypothesis was rejected and the logical
hypothesis and burglar alarm model was sup-
ported.

1.1.4 Alternatives to falsification
While the Popperian philosophy of falsificationist
tests has been very influential on the scientific
method, especially in biology, at least two other
viewpoints need to be considered. First, Thomas
Kuhn (1970) argued that much of science is
carried out within an accepted paradigm or
framework in which scientists refine the theories
but do not really challenge the paradigm. Falsified
hypotheses do not usually result in rejection of
the over-arching paradigm but simply its enhance-
ment. This “normal science” is punctuated by
occasional scientific revolutions that have as
much to do with psychology and sociology as
empirical information that is counter to the pre-
vailing paradigm (O’Hear 1989). These scientific
revolutions result in (and from) changes in
methods, objectives and personnel (Ford 2000).
Kuhn’s arguments have been described as relativ-

istic because there are often no objective criteria
by which existing paradigms and theories are
toppled and replaced by alternatives.

Second, Imre Lakatos (1978) was not con-
vinced that Popper’s ideas of falsification and
severe tests really reflected the practical applica-
tion of science and that individual decisions
about falsifying hypotheses were risky and arbi-
trary (Mayo 1996). Lakatos suggested we should
develop scientific research programs that consist
of two components: a “hard core” of theories
that are rarely challenged and a protective belt of
auxiliary theories that are often tested and
replaced if alternatives are better at predicting
outcomes (Mayo 1996). One of the contrasts
between the ideas of Popper and Lakatos that is
important from the statistical perspective is the
latter’s ability to deal with multiple competing
hypotheses more elegantly than Popper’s severe
tests of individual hypotheses (Hilborn & Mangel
1997).

An important issue for the Popperian philoso-
phy is corroboration. The falsificationist test
makes it clear what to do when an hypothesis is
rejected after a severe test but it is less clear what
the next step should be when an hypothesis passes
a severe test. Popper argued that a theory, and its
derived hypothesis, that has passed repeated
severe testing has been corroborated. However,
because of his difficulties with inductive think-
ing, he viewed corroboration as simply a measure
of the past performance of a model, rather an
indication of how well it might predict in other
circumstances (Mayo 1996, O’Hear 1989). This is
frustrating because we clearly want to be able to
use models that have passed testing to make pre-
dictions under new circumstances (Peters 1991).
While detailed discussion of the problem of cor-
roboration is beyond the scope of this book (see
Mayo 1996), the issue suggests two further areas of
debate. First, there appears to be a role for both
induction and deduction in the scientific method,
as both have obvious strengths and weaknesses
and most biological research cannot help but use
both in practice. Second, formal corroboration of
hypotheses may require each to be allocated some
measure of the probability that each is true or
false, i.e. some measure of evidence in favor or
against each hypothesis. This goes to the heart of
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one of the most long-standing and vigorous
debates in statistics, that between frequentists
and Bayesians (Section 1.4 and Chapter 3).

Ford (2000) provides a provocative and thor-
ough evaluation of the Kuhnian, Lakatosian and
Popperian approaches to the scientific method,
with examples from the ecological sciences.

1.1.5 Role of statistical analysis
The application of statistics is important through-
out the process just described. First, the descrip-
tion and detection of patterns must be done in a
rigorous manner. We want to be able to detect gra-
dients in space and time and develop models that
explain these patterns. We also want to be confi-
dent in our estimates of the parameters in these
statistical models. Second, the design and analysis
of experimental tests of hypotheses are crucial. It
is important to remember at this stage that the
research hypothesis (and its complement, the null
hypothesis) derived from a model is not the same
as the statistical hypothesis (James & McCulloch
1985); indeed, Underwood (1990) has pointed out
the logical problems that arise when the research
hypothesis is identical to the statistical hypothe-
sis. Statistical hypotheses are framed in terms of
population parameters and represent tests of the
predictions of the research hypotheses (James &
McCulloch 1985). We will discuss the process of
testing statistical hypotheses in Chapter 3. Finally,
we need to present our results, from both the
descriptive sampling and from tests of hypothe-
ses, in an informative and concise manner. This
will include graphical methods, which can also be
important for exploring data and checking
assumptions of statistical procedures.

Because science is done by real people, there
are aspects of human psychology that can influ-
ence the way science proceeds. Ford (2000) and
Loehle (1987) have summarized many of these in
an ecological context, including confirmation
bias (the tendency for scientists to confirm their
own theories or ignore contradictory evidence)
and theory tenacity (a strong commitment to
basic assumptions because of some emotional or
personal investment in the underlying ideas).
These psychological aspects can produce biases in
a given discipline that have important implica-
tions for our subsequent discussions on research

design and data analysis. For example, there is a
tendency in biology (and most sciences) to only
publish positive (or statistically significant)
results, raising issues about statistical hypothesis
testing and meta-analysis (Chapter 3) and power of
tests (Chapter 7). In addition, successful tests of
hypotheses rely on well-designed experiments
and we will consider issues such as confounding
and replication in Chapter 7.

1.2 Experiments and other tests

Platt (1964) emphasized the importance of experi-
ments that critically distinguish between alterna-
tive models and their derived hypotheses when he
described the process of strong inference:

• devise alternative hypotheses,
• devise a crucial experiment (or several experi-

ments) each of which will exclude one or more
of the hypotheses,

• carry out the experiment(s) carefully to obtain
a “clean” result, and

• recycle the procedure with new hypotheses to
refine the possibilities (i.e. hypotheses) that
remain.

Crucial to Platt’s (1964) approach was the idea of
multiple competing hypotheses and tests to dis-
tinguish between these. What nature should
these tests take?

In the dinoflagellate example above, the
crucial test of the hypothesis involved a manipu-
lative experiment based on sound principles of
experimental design (Chapter 7). Such manipula-
tions provide the strongest inference about our
hypotheses and models because we can assess the
effects of causal factors on our response variable
separately from other factors. James & McCulloch
(1985) emphasized that testing biological models,
and their subsequent hypotheses, does not occur
by simply seeing if their predictions are met in an
observational context, although such results offer
support for an hypothesis. Along with James &
McCulloch (1985), Scheiner (1993), Underwood
(1990), Werner (1998), and many others, we argue
strongly that manipulative experiments are the
best way to properly distinguish between biologi-
cal models.
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There are at least two costs to this strong infer-
ence from manipulative experiments. First,
experiments nearly always involve some artificial
manipulation of nature. The most extreme form
of this is when experiments testing some natural
process are conducted in the laboratory. Even field
experiments will often use artificial structures or
mechanisms to implement the manipulation. For
example, mesocosms (moderate sized enclosures)
are often used to investigate processes happening
in large water bodies, although there is evidence
from work on lakes that issues related to the
small-scale of mesocosms may restrict generaliza-
tion to whole lakes (Carpenter 1996; see also
Resetarits & Fauth 1998). Second, the larger the
spatial and temporal scales of the process being
investigated, the more difficult it is to meet the
guidelines for good experimental design. For
example, manipulations of entire ecosystems are
crucial for our understanding of the role of
natural and anthropogenic disturbances to these
systems, especially since natural resource agen-
cies have to manage such systems at this large
spatial scale (Carpenter et al. 1995). Replication
and randomization (two characteristics regarded
as important for sensible interpretation of experi-
ments – see Chapter 7) are usually not possible at
large scales and novel approaches have been devel-
oped to interpret such experiments (Carpenter
1990). The problems of scale and the generality of
conclusions from smaller-scale manipulative
experiments are challenging issues for experi-
mental biologists (Dunham & Beaupre 1998).

The testing approach on which the methods in
this book are based relies on making predictions
from our hypothesis and seeing if those predic-
tions apply when observed in a new setting, i.e.
with data that were not used to derive the model
originally. Ideally, this new setting is experimen-
tal at scales relevant for the hypothesis, but this is
not always possible. Clearly, there must be addi-
tional ways of testing between competing models
and their derived hypotheses. Otherwise, disci-
plines in which experimental manipulation is dif-
ficult for practical or ethical reasons, such as
meteorology, evolutionary biology, fisheries
ecology, etc., could make no scientific progress.
The alternative is to predict from our
models/hypotheses in new settings that are not

experimentally derived. Hilborn & Mangel (1997),
while arguing for experimental studies in ecology
where possible, emphasize the approach of “con-
fronting” competing models (or hypotheses) with
observational data by assessing how well the data
meet the predictions of the model.

Often, the new setting in which we test the
predictions of our model may provide us with a
contrast of some factor, similar to what we may
have set up had we been able to do a manipula-
tive experiment. For example, we may never be
able to (nor want to!) test the hypothesis that
wildfire in old-growth forests affects populations
of forest birds with a manipulative experiment at
a realistic spatial scale. However, comparisons of
bird populations in forests that have burnt natu-
rally with those that haven’t provide a test of the
hypothesis. Unfortunately, a test based on such a
natural “experiment” (sensu Underwood 1990) is
weaker inference than a real manipulative
experiment because we can never separate the
effects of fire from other pre-existing differences
between the forests that might also affect bird
populations. Assessments of effects of human
activities (“environmental impact assessment”)
are often comparisons of this kind because we
can rarely set up a human impact in a truly
experimental manner (Downes et al. 2001). Well-
designed observational (sampling) programs can
provide a refutationist test of a null hypothesis
(Underwood 1991) by evaluating whether predic-
tions hold, although they cannot demonstrate
causality.

While our bias in favor of manipulative experi-
ments is obvious, we hope that we do not appear
too dogmatic. Experiments potentially provide
the strongest inference about competing hypoth-
eses, but their generality may also be constrained
by their artificial nature and limitations of spatial
and temporal scale. Testing hypotheses against
new observational data provides weaker distinc-
tions between competing hypotheses and the infe-
rential strength of such methods can be improved
by combining them with other forms of evidence
(anecdotal, mathematical modeling, correlations
etc. – see Downes et al. 2001, Hilborn & Mangel
1997, McArdle 1996). In practice, most biological
investigations will include both observational
and experimental approaches. Rigorous and sen-
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sible statistical analyses will be relevant at all
stages of the investigation.

1.3 Data, observations and
variables

In biology, data usually consist of a collection of
observations or objects. These observations are
usually sampling units (e.g. quadrats) or experi-
mental units (e.g. individual organisms, aquaria,
etc.) and a set of these observations should repre-
sent a sample from a clearly defined population
(all possible observations in which we are inter-
ested). The “actual property measured by the indi-
vidual observations” (Sokal & Rohlf 1995, p. 9), e.g.
length, number of individuals, pH, etc., is called a
variable. A random variable (which we will denote
as Y, with y being any value of Y) is simply a vari-
able whose values are not known for certain
before a sample is taken, i.e. the observed values
of a random variable are the results of a random
experiment (the sampling process). The set of all
possible outcomes of the experiment, e.g. all the
possible values of a random variable, is called the
sample space. Most variables we deal with in
biology are random variables, although predictor
variables in models might be fixed in advance and
therefore not random. There are two broad catego-
ries of random variables: (i) discrete random vari-
ables can only take certain, usually integer,
values, e.g. the number of cells in a tissue section
or number of plants in a forest plot, and (ii) con-
tinuous random variables, which take any value,
e.g. measurements like length, weight, salinity,
blood pressure etc. Kleinbaum et al. (1997) distin-
guish these in terms of “gappiness” – discrete var-
iables have gaps between observations and
continuous variables have no gaps between obser-
vations.

The distinction between discrete and continu-
ous variables is not always a clear dichotomy; the
number of organisms in a sample of mud from a
local estuary can take a very large range of values
but, of course, must be an integer so is actually a
discrete variable. Nonetheless, the distinction
between discrete and continuous variables is
important, especially when trying to measure
uncertainty and probability.

1.4 Probability

The single most important characteristic of bio-
logical data is their uncertainty. For example, if
we take two samples, each consisting of the same
number of observations, from a population and
estimate the mean for some variable, the two
means will almost certainly be different, despite
the samples coming from the same population.
Hilborn & Mangel (1997) proposed two general
causes why the two means might be different, i.e.
two causes of uncertainty in the expected value of
the population. Process uncertainty results from
the true population mean being different when
the second sample was taken compared with the
first. Such temporal changes in biotic variables,
even over very short time scales, are common in
ecological systems. Observation uncertainty
results from sampling error; the mean value in a
sample is simply an imperfect estimate of the
mean value in the population (all the possible
observations) and, because of natural variability
between observations, different samples will
nearly always produce different means.
Observation uncertainty can also result from
measurement error, where the measuring device
we are using is imperfect. For many biological var-
iables, natural variability is so great that we rarely
worry about measurement error, although this
might not be the case when the variable is meas-
ured using some complex piece of equipment
prone to large malfunctions.

In most statistical analyses, we view uncer-
tainty in terms of probabilities and understand-
ing probability is crucial to understanding
modern applied statistics. We will only briefly
introduce probability here, particularly as it is
very important for how we interpret statistical
tests of hypotheses. Very readable introductions
can be found in Antelman (1997), Barnett (1999),
Harrison & Tamaschke (1984) and Hays (1994);
from a biological viewpoint in Sokal & Rohlf
(1995) and Hilborn & Mangel (1997); and from a
philosophical perspective in Mayo (1996).

We usually talk about probabilities in terms of
events; the probability of event A occurring is
written P(A). Probabilities can be between zero
and one; if P(A) equals zero, then the event is
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impossible; if P(A) equals one, then the event is
certain. As a simple example, and one that is used
in nearly every introductory statistics book,
imagine the toss of a coin. Most of us would state
that the probability of heads is 0.5, but what do we
really mean by that statement? The classical inter-
pretation of probability is that it is the relative fre-
quency of an event that we would expect in the
long run, or in a long sequence of identical trials.
In the coin tossing example, the probability of
heads being 0.5 is interpreted as the expected pro-
portion of heads in a long sequence of tosses.
Problems with this long-run frequency interpreta-
tion of probability include defining what is meant
by identical trials and the many situations in
which uncertainty has no sensible long-run fre-
quency interpretation, e.g. probability of a horse
winning a particular race, probability of it raining
tomorrow (Antelman 1997). The long-run fre-
quency interpretation is actually the classical sta-
tistical interpretation of probabilities (termed the
frequentist approach) and is the interpretation we
must place on confidence intervals (Chapter 2)
and P values from statistical tests (Chapter 3).

The alternative way of interpreting probabil-
ities is much more subjective and is based on a
“degree of belief” about whether an event will
occur. It is basically an attempt at quantification
of an opinion and includes two slightly different
approaches – logical probability developed by
Carnap and Jeffreys and subjective probability
pioneered by Savage, the latter being a measure of
probability specific to the person deriving it. The
opinion on which the measure of probability is
based may be derived from previous observations,
theoretical considerations, knowledge of the par-
ticular event under consideration, etc. This
approach to probability has been criticized
because of its subjective nature but it has been
widely applied in the development of prior prob-
abilities in the Bayseian approach to statistical
analysis (see below and Chapters 2 and 3).

We will introduce some of the basic rules of
probability using a simple biological example
with a dichotomous outcome – eutrophication in
lakes (e.g. Carpenter et al. 1998). Let P(A) be the
probability that a lake will go eutrophic. Then
P(�A) equals one minus P(A), i.e. the probability of
not A is one minus the probability of A. In our

example, the probability that the lake will not go
eutrophic is one minus the probability that it will
go eutrophic.

Now consider the P(B), the probability that
there will be an increase in nutrient input into
the lake. The joint probability of A and B is:

P(A�B)�P(A)�P(B)�P(A�B) (1.1)

i.e. the probability that A or B occur [P(A�B)] is the
probability of A plus the probability of B minus
the probability of A and B both occurring [P(A�B)].
In our example, the probability that the lake will
go eutrophic or that there will be an increase in
nutrient input equals the probability that the lake
will go eutrophic plus the probability that the
lake will receive increased nutrients minus the
probability that the lake will go eutrophic and
receive increased nutrients.

These simple rules lead on to conditional prob-
abilities, which are very important in practice.
The conditional probability of A, given B, is:

P(A|B)�P(A�B)/P(B) (1.2)

i.e. the probability that A occurs, given that B
occurs, equals the probability of A and B both
occurring divided by the probability of B occur-
ring. In our example, the probability that the lake
will go eutrophic given that it receives increased
nutrient input equals the probability that it goes
eutrophic and receives increased nutrients
divided by the probability that it receives
increased nutrients.

We can combine these rules to develop
another way of expressing conditional probability
– Bayes Theorem (named after the eighteenth-
century English mathematician, Thomas Bayes):

P(A|B)� (1.3)

This formula allows us to assess the probability of
an event A in the light of new information, B. Let’s
define some terms and then show how this some-
what daunting formula can be useful in practice.
P(A) is termed the prior probability of A – it is the
probability of A prior to any new information
(about B). In our example, it is our probability of a
lake going eutrophic, calculated before knowing
anything about nutrient inputs, possibly deter-
mined from previous studies on eutrophication in

P(B|A)P(A)
P(B|A)P(A)� P(B|�A)P( �A)
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lakes. P(B|A) is the likelihood of B being observed,
given that A did occur [a similar interpretation
exists for P(B|�A)]. The likelihood of a model or
hypothesis or event is simply the probability of
observing some data assuming the model or
hypothesis is true or assuming the event occurs.
In our example, P(B|A) is the likelihood of seeing
a raised level of nutrients, given that the lake has
gone eutrophic (A). Finally, P(A|B) is the posterior
probability of A, the probability of A after making
the observations about B, the probability of a lake
going eutrophic after incorporating the informa-
tion about nutrient input. This is what we are
after with a Bayesian analysis, the modification of
prior information to posterior information based
on a likelihood (Ellison 1996).

Bayes Theorem tells us how probabilities might
change based on previous evidence. It also relates
two forms of conditional probabilities – the prob-
ability of A given B to the probability of B given A.
Berry (1996) described this as relating inverse
probabilities. Note that, although our simple
example used an event (A) that had only two pos-
sible outcomes, Bayes formula can also be used for
events that have multiple possible outcomes.

In practice, Bayes Theorem is used for estimat-
ing parameters of populations and testing hypoth-
eses about those parameters. Equation 1.3 can be
simplified considerably (Berry & Stangl 1996,
Ellison 1996):

P(�|data)� (1.4)

where � is a parameter to be estimated or an
hypothesis to be evaluated, P(�) is the “uncondi-
tional” prior probability of � being a particular
value, P(data|�) is the likelihood of observing the
data if � is that value, P(data) is the “uncondi-
tional” probability of observing the data and is
used to ensure the area under the probability dis-
tribution of � equals one (termed “normaliza-
tion”), and P(�|data) is the posterior probability of
� conditional on the data being observed. This
formula can be re-expressed in English as:

posterior probability� likelihood�
prior probability (1.5)

While we don’t advocate a Bayesian philosophy in
this book, it is important for biologists to be aware

P(data|�)P(�)
P(data)

of the approach and to consider it as an alterna-
tive way of dealing with conditional probabilities.
We will consider the Bayesian approach to estima-
tion in Chapter 2 and to hypothesis testing in
Chapter 3.

1.5 Probability distributions

A random variable will have an associated prob-
ability distribution where different values of the
variable are on the horizontal axis and the rela-
tive probabilities of the possible values of the var-
iable (the sample space) are on the vertical axis.
For discrete variables, the probability distribu-
tion will comprise a measurable probability for
each outcome, e.g. 0.5 for heads and 0.5 for tails
in a coin toss, 0.167 for each one of the six sides
of a fair die. The sum of these individual probabil-
ities for independent events equals one.
Continuous variables are not restricted to inte-
gers or any specific values so there are an infinite
number of possible outcomes. The probability dis-
tribution of a continuous variable (Figure 1.1) is
often termed a probability density function (pdf)
where the vertical axis is the probability density
of the variable [ f(y)], a rate measuring the prob-
ability per unit of the variable at any particular
value of the variable (Antelman 1997). We usually
talk about the probability associated with a range
of values, represented by the area under the prob-
ability distribution curve between the two
extremes of the range. This area is determined
from the integral of the probability density from
the lower to the upper value, with the distribu-
tion usually normalized so that the total prob-
ability under the curve equals one. Note that the
probability of any particular value of a continu-
ous random variable is zero because the area
under the curve for a single value is zero
(Kleinbaum et al. 1997) – this is important when
we consider the interpretation of probability dis-
tributions in statistical hypothesis testing
(Chapter 3).

In many of the statistical analyses described in
this book, we are dealing with two or more vari-
ables and our statistical models will often have
more than one parameter. Then we need to switch
from single probability distributions to joint
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probability distributions
where probabilities are meas-
ured, not as areas under a
single curve, but volumes
under a more complex distri-
bution. A common joint pdf is
the bivariate normal distribu-
tion, to be introduced in
Chapter 5.

Probability distributions nearly always refer to
the distribution of variables in one or more popu-
lations. The expected value of a random variable
[E(Y)]is simply the mean (�) of its probability distri-
bution. The expected value is an important concept
in applied statistics – most modeling procedures
are trying to model the expected value of a random
response variable. The mean is a measure of the
center of a distribution – other measures include
the median (the middle value) and the mode (the
most common value). It is also important to be able
to measure the spread of a distribution and the
most common measures are based on deviations
from the center, e.g. the variance is measured as
the sum of squared deviations from the mean. We
will discuss means and variances, and other meas-
ures of the center and spread of distributions, in
more detail in Chapter 2.

1.5.1 Distributions for variables
Most statistical procedures rely on knowing the
probability distribution of the variable (or the
error terms from a statistical model) we are ana-
lyzing. There are many probability distributions
that we can define mathematically (Evans et al.
2000) and some of these adequately describe the
distributions of variables in biology. Let’s consider
continuous variables first.

The normal (also termed Gaussian) distribu-
tion is a symmetrical probability distribution

with a characteristic bell-shape (Figure 1.1). It is
defined as:

f(y)� e�( y��)2/2	2
(1.6)

where f(y) is the probability density of any value y
of Y. Note that the normal distribution can be
defined simply by the mean (�) and the variance
(	2), which are independent of each other. All
other terms in the equation are constants. A
normal distribution is often abbreviated to
N(Y:�,	). Since there are infinitely many possible
combinations of mean and variance, there is an
infinite number of possible normal distributions.
The standard normal distribution (z distribution)
is a normal distribution with a mean of zero and
a variance of one. The normal distribution is the
most important probability distribution for data
analysis; most commonly used statistical proce-
dures in biology (e.g. linear regression, analysis of
variance) assume that the variables being ana-
lyzed (or the deviations from a fitted model)
follow a normal distribution.

The normal distribution is a symmetrical prob-
ability distribution, but continuous variables can
have non-symmetrical distributions. Biological
variables commonly have a positively skewed dis-
tribution, i.e. one with a long right tail (Figure
1.1). One skewed distribution is the lognormal dis-
tribution, which means that the logarithm of the

1

�2
	2
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Figure 1.1. Probability
distributions for random variables
following four common
distributions. For the Poisson
distribution, we show the
distribution for a rare event and a
common one, showing the shift of
the distribution from skewed to
approximately symmetrical.



variable is normally distributed (suggesting a
simple transformation to normality – see Chapter
4). Measurement variables in biology that cannot
be less than zero (e.g. length, weight, etc.) often
follow lognormal distributions. In skewed distri-
butions like the lognormal, there is a positive rela-
tionship between the mean and the variance.

There are some other probability distributions
for continuous variables that are occasionally
used in specific circumstances. The exponential
distribution (Figure 1.1) is another skewed distri-
bution that often applies when the variable is the
time to the first occurrence of an event (Fox 1993,
Harrison & Tamaschke 1984), such as in failure
time analysis. This is a single parameter (�) distri-
bution with the following probability density
function:

f(y)��e��y (1.7)

where 1/� is the mean time to first occurrence. Fox
(1993) provided some ecological examples.

The exponential and normal distributions are
members of the larger family of exponential dis-
tributions that can be used as error distributions
for a variety of linear models (Chapter 13). Other
members of this family include gamma distribu-
tion for continuous variables and the binomial
and Poisson (see below) for discrete variables.

Two other probability distributions for contin-
uous variables are also encountered (albeit rarely)
in biology. The two-parameter Weibull distribu-
tion varies between positively skewed and
symmetrical depending on parameter values,
although versions with three or more parameters
are described (Evans et al. 2000). This distribution
is mainly used for modeling failure rates and
times. The beta distribution has two parameters
and its shape can range from U to J to symmetri-
cal. The beta distribution is commonly used as a
prior probability distribution for dichotomous
variables in Bayesian analyses (Evans et al. 2000).

There are also probability distributions for dis-
crete variables. If we toss a coin, there are two pos-
sible outcomes – heads or tails. Processes with
only two possible outcomes are common in
biology, e.g. animals in an experiment can either
live or die, a particular species of tree can be
either present or absent from samples from a
forest. A process that can only have one of two

outcomes is sometimes called a Bernoulli trial
and we often call the two possible outcomes
success and failure. We will only consider a sta-
tionary Bernoulli trial, which is one where the
probability of success is the same for each trial, i.e.
the trials are independent.

The probability distribution of the number of
successes in n independent Bernoulli trials is
called the binomial distribution, a very important
probability distribution in biology:

P(y�r)� 
r(1�
)n�r (1.8)

where P(y�r) is the probability of a particular
value (y) of the random variable (Y ) being r suc-
cesses out of n trials, n is the number of trials and

 is the probability of a success. Note that n, the
number of trials is fixed, and therefore the value
of a binomial random variable cannot exceed n.
The binomial distribution can be used to calculate
probabilities for different numbers of successes
out of n trials, given a known probability of
success on any individual trial. It is also important
as an error distribution for modeling variables
with binary outcomes using logistic regression
(Chapter 13). A generalization of the binomial dis-
tribution to when there are more than two pos-
sible outcomes is the multinomial distribution,
which is the joint probability distribution of
multiple outcomes from n fixed trials.

Another very important probability distribu-
tion for discrete variables is the Poisson distribu-
tion, which usually describes variables repre-
senting the number of (usually rare) occurrences
of a particular event in an interval of time or
space, i.e. counts. For example, the number of
organisms in a plot, the number of cells in a
microscope field of view, the number of seeds
taken by a bird per minute. The probability distri-
bution of a Poisson variable is:

P(y�r)� (1.9)

where P(y�r) is the probability that the number
of occurrences of an event (y) equals an integer
value (r�0, 1, 2 . . .), � is the mean (and variance) of
the number of occurrences. A Poisson variable can
take any integer value between zero and infinity
because the number of trials, in contrast to the

e���r

r!

n!

r!(n� r)!
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binomial and the multinomial, is not fixed. One of
the characteristics of a Poisson distribution is that
the mean (�) equals the variance (	2). For small
values of �, the Poisson distribution is positively
skewed but once � is greater than about five, the
distribution is symmetrical (Figure 1.1).

The Poisson distribution has a wide range of
applications in biology. It actually describes the
occurrence of random events in space (or time)
and has been used to examine whether organisms
have random distributions in nature (Ludwig &
Reynolds 1988). It also has wide application in
many applied statistical procedures, e.g. counts in
cells in contingency tables are often assumed to
be Poisson random variables and therefore a
Poisson probability distribution is used for the
error terms in log-linear modeling of contingency
tables (Chapter 14).

A simple example might help in understand-
ing the difference between the binomial and the
Poisson distributions. If we know the average
number of seedlings of mountain ash trees
(Eucalyptus regnans) per plot in some habitat, we
can use the Poisson distribution to model the
probability of different numbers of seedlings per
plot, assuming independent sampling. The bino-
mial distribution would be used if we wished to
model the number of plots with seedlings out of a
fixed number of plots, knowing the probability of
a plot having a seedling.

Another useful probability distribution for
counts is the negative binomial (White & Bennetts
1996). It is defined by two parameters, the mean
and a dispersion parameter, which measures the
degree of “clumping” in the distribution. White &
Bennetts (1996) pointed out that the negative
binomial has two potential advantages over the
Poisson for representing skewed distributions of
counts of organisms: (i) the mean does not have to
equal the variance, and (ii) independence of trials
(samples) is not required (see also Chapter 13).

These probability distributions are very impor-
tant in data analysis. We can test whether a partic-
ular variable follows one of these distributions by
calculating the expected frequencies and compar-
ing them to observed frequencies with a goodness-
of-fit test (Chapter 14). More importantly, we can
model the expected value of a response variable
[E(Y)] against a range of predictor (independent)

variables if we know the probability distribution
of our response variable.

1.5.2 Distributions for statistics
The remaining theoretical distributions to
examine are those used for determining probabil-
ities of sample statistics, or modifications thereof.
These distributions are used extensively for esti-
mation and hypothesis testing. Four particularly
important ones are as follows.

1. The z or normal distribution represents
the probability distribution of a random variable
that is the ratio of the difference between a
sample statistic and its population value to the
standard deviation of the population statistic
(Figure 1.2).

2. Student’s t distribution (Figure 1.2)
represents the probability distribution of
a random variable that is the ratio of the
difference between a sample statistic and its
population value to the standard deviation of
the distribution of the sample statistic. The t
distribution is a symmetrical distribution very
similar to a normal distribution, bounded by
infinity in both directions. Its shape becomes
more similar with increasing sample size
(Figure 1.2). We can convert a single sample
statistic to a t value and use the t distribution
to determine the probability of obtaining that
t value (or one smaller or larger) for a specified
value of the population parameter (Chapters 2
and 3).

3. �2 (chi-square) distribution (Figure 1.2)
represents the probability distribution of a
variable that is the square of values from a
standard normal distribution (Section 1.5).
Values from a �2 distribution are bounded by
zero and infinity. Variances have a �2 distribu-
tion so this distribution is used for interval
estimation of population variances (Chapter 2).
We can also use the �2 distribution to determine
the probability of obtaining a sample difference
(or one smaller or larger) between observed
values and those predicted by a model (Chapters
13 and 14).

4. F distribution (Figure 1.2) represents the
probability distribution of a variable that is the
ratio of two independent �2 variables, each

12 INTRODUCTION



divided by its df (degrees of freedom) (Hays 1994).
Because variances are distributed as �2, the F
distribution is used for testing hypotheses about
ratios of variances. Values from the F distribu-
tion are bounded by zero and infinity. We can
use the F distribution to determine the prob-
ability of obtaining a sample variance ratio (or
one larger) for a specified value of the true ratio
between variances (Chapters 5 onwards).

All four distributions have mathematical deri-
vations that are too complex to be of much inter-
est to biologists (see Evans et al. 2000). However,

these distributions are tabled in many textbooks
and programmed into most statistical software,
so probabilities of obtaining values from each,
within a specific range, can be determined. These
distributions are used to represent the probability
distributions of the sample statistics (z, t, �2 or F)
that we would expect from repeated random sam-
pling from a population or populations. Different
versions of each distribution are used depending
on the degrees of freedom associated with the
sample or samples (see Box 2.1 and Figure 1.2).
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these distributions change.



Chapter 2

Estimation

2.1 Samples and populations

Biologists usually wish to make inferences (draw
conclusions) about a population, which is defined
as the collection of all the possible observations of
interest. Note that this is a statistical population,
not a biological population (see below). The collec-
tion of observations we take from the population
is called a sample and the number of observations
in the sample is called the sample size (usually
given the symbol n). Measured characteristics of
the sample are called statistics (e.g. sample mean)
and characteristics of the population are called
parameters (e.g. population mean).

The basic method of collecting the observa-
tions in a sample is called simple random sam-
pling. This is where any observation has the same
probability of being collected, e.g. giving every rat
in a holding pen a number and choosing a sample
of rats to use in an experiment with a random
number table. We rarely sample truly randomly in
biology, often relying on haphazard sampling for
practical reasons. The aim is always to sample in a
manner that doesn’t create a bias in favour of any
observation being selected. Other types of sam-
pling that take into account heterogeneity in the
population (e.g. stratified sampling) are described
in Chapter 7. Nearly all applied statistical proce-
dures that are concerned with using samples to
make inferences (i.e. draw conclusions) about pop-
ulations assume some form of random sampling.
If the sampling is not random, then we are never
sure quite what population is represented by our
sample. When random sampling from clearly

defined populations is not possible, then interpre-
tation of standard methods of estimation
becomes more difficult. 

Populations must be defined at the start of any
study and this definition should include the
spatial and temporal limits to the population and
hence the spatial and temporal limits to our infer-
ence. Our formal statistical inference is restricted
to these limits. For example, if we sample from a
population of animals at a certain location in
December 1996, then our inference is restricted to
that location in December 1996. We cannot infer
what the population might be like at any other
time or in any other place, although we can spec-
ulate or make predictions.

One of the reasons why classical statistics has
such an important role in the biological sciences,
particularly agriculture, botany, ecology, zoology,
etc., is that we can often define a population about
which we wish to make inferences and from
which we can sample randomly (or at least hap-
hazardly). Sometimes the statistical population is
also a biological population (a group of individu-
als of the same species). The reality of random
sampling makes biology a little different from
other disciplines that use statistical analyses for
inference. For example, it is often difficult for
psychologists or epidemiologists to sample ran-
domly because they have to deal with whatever
subjects or patients are available (or volunteer!).

The main reason for sampling randomly from
a clearly defined population is to use sample sta-
tistics (e.g. sample mean or variance) to estimate
population parameters of interest (e.g. population
mean or variance). The population parameters



cannot be measured directly because the popula-
tions are usually too large, i.e. they contain too
many observations for practical measurement. It
is important to remember that population param-
eters are usually considered to be fixed, but
unknown, values so they are not random variables
and do not have probability distributions. Note
that this contrasts with the Bayesian approach
where population parameters are viewed as
random variables (Section 2.6). Sample statistics
are random variables, because their values
depend on the outcome of the sampling experi-
ment, and therefore they do have probability dis-
tributions, called sampling distributions.

What are we after when we estimate popula-
tion parameters? A good estimator of a population
parameter should have the following characteris-
tics (Harrison & Tamaschke 1984, Hays 1994).

• It should be unbiased, meaning that the
expected value of the sample statistic (the mean
of its probability distribution) should equal the
parameter. Repeated samples should produce
estimates which do not consistently under- or
over-estimate the population parameter.

• It should be consistent so as the sample size
increases then the estimator will get closer to
the population parameter. Once the sample
includes the whole population, the sample
statistic will obviously equal the population
parameter, by definition.

• It should be efficient, meaning it has the
lowest variance among all competing esti-
mators. For example, the sample mean is a
more efficient estimator of the population
mean of a variable with a normal probability
distribution than the sample median, despite
the two statistics being numerically equivalent.

There are two broad types of estimation:

1. point estimates provide a single value
which estimates a population parameter, and

2. interval estimates provide a range of values
that might include the parameter with a known
probability, e.g. confidence intervals.

Later in this chapter we discuss different
methods of estimating parameters, but, for now,
let’s consider some common population parame-
ters and their point estimates.

2.2 Common parameters and
statistics

Consider a population of observations of the vari-
able Y measured on all N sampling units in the
population. We take a random sample of n obser-
vations (y1, y2, y3, . . .yi, . . .yn) from the population.
We usually would like information about two
aspects of the population, some measure of loca-
tion or central tendency (i.e. where is the middle
of the population?) and some measure of the
spread (i.e. how different are the observations in
the population?). Common estimates of parame-
ters of location and spread are given in Table 2.1
and illustrated in Box 2.2. 

2.2.1 Center (location) of distribution 
Estimators for the center of a distribution can be
classified into three general classes, or broad types
(Huber 1981, Jackson 1986). First are L-estimators,
based on the sample data being ordered from small-
est to largest (order statistics) and then forming a
linear combination of weighted order statistics. The
sample mean ( ȳ), which is an unbiased estimator of
the population mean (�), is an L-estimator where
each observation is weighted by 1/n (Table 2.1).
Other common L-estimators include the following.

• The median is the middle measurement of a
set of data. Arrange the data in order of
magnitude (i.e. ranks) and weight all
observations except the middle one by zero.
The median is an unbiased estimator of the
population mean for normal distributions,
is a better estimator of the center of skewed
distributions and is more resistant to outliers
(extreme values very different to the rest of the
sample; see Chapter 4).

• The trimmed mean is the mean calculated
after omitting a proportion (commonly 5%) of
the highest (and lowest) observations, usually
to deal with outliers.

• The Winsorized mean is determined as for
trimmed means except the omitted obser-
vations are replaced by the nearest remaining
value.

Second are M-estimators, where the weight-
ings given to the different observations change
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gradually from the middle of the sample and
incorporate a measure of variability in the estima-
tion procedure. They include the Huber M-
estimator and the Hampel M-estimator, which use
different functions to weight the observations.
They are tedious to calculate, requiring iterative
procedures, but maybe useful when outliers are
present because they downweight extreme values.
They are not commonly used but do have a role in
robust regression and ANOVA techniques for ana-
lyzing linear models (regression in Chapter 5 and
ANOVA in Chapter 8).

Finally, R-estimators are based on the ranks of
the observations rather than the observations
themselves and form the basis for many rank-
based “non-parametric” tests (Chapter 3). The only
common R-estimator is the Hodges–Lehmann esti-
mator, which is the median of the averages of all
possible pairs of observations.

For data with outliers, the median and
trimmed or Winsorized means are the simplest to
calculate although these and M- and R-estimators
are now commonly available in statistical software.

2.2.2 Spread or variability
Various measures of the spread in a sample are
provided in Table 2.1. The range, which is the dif-
ference between the largest and smallest observa-
tion, is the simplest measure of spread, but there
is no clear link between the sample range and
the population range and, in general, the range
will rise as sample size increases. The sample var-
iance, which estimates the population variance,
is an important measure of variability in many
statistical analyses. The numerator of the
formula is called the sum of squares (SS, the sum
of squared deviations of each observation from
the sample mean) and the variance is the average
of these squared deviations. Note that we might
expect to divide by n to calculate an average, but
then s2 consistently underestimates 	2 (i.e. it is
biased), so we divide by n�1 to make s2 an unbi-
ased estimator of 	2. The one difficulty with s2 is
that its units are the square of the original obser-
vations, e.g. if the observations are lengths in
mm, then the variance is in mm2, an area not a
length.
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Table 2.1 Common population parameters and sample statistics

Parameter Statistic Formula

Mean (l) ȳ

Median Sample median y(n� 1)/2 if n odd

(yn/2�y(n/2)�1)/2 if n even

Variance (r 2) s2

Standard deviation (r) s

Median absolute deviation (MAD) Sample MAD median[ |yi�median| ]

Coefficient of variation (CV) Sample CV �100

Standard error of ȳ (rȳ) s ȳ

95% confidence interval for l ȳ� t0.05(n�1) 
l
 ȳ� t0.05(n�1)

s
�n

s
�n

s
�n

s
ȳ

��
n

i�1
 
(yi� ȳ)2

n�1

�
n

i�1
 
(yi� ȳ)2

n�1

�
n

i�1
yi

n



The sample standard deviation, which esti-
mates 	, the population standard deviation, is the
square root of the variance. In contrast to the var-
iance, the standard deviation is in the same units
as the original observations.

The coefficient of variation (CV) is used to
compare standard deviations between popula-
tions with different means and it provides a
measure of variation that is independent of the
measurement units. The sample coefficient of
variation CV describes the standard deviation as a
percentage of the mean; it estimates the popula-
tion CV.

Some measures of spread that are more robust
to unusual observations include the following.

• The median absolute deviation (MAD) is
less sensitive to outliers than the above
measures and is the sensible measure of
spread to present in association with 
medians.

• The interquartile range is the difference
between the first quartile (the observation
which has 0.25 or 25% of the observations
below it) and the third quartile (the observa-
tion which has 0.25 of the observations above
it). It is used in the construction of boxplots
(Chapter 4).

For some of these statistics (especially the
variance and standard deviation), there are

equivalent formulae that can be found in any sta-
tistics textbook that are easier to use with a hand
calculator. We assume that, in practice, biologists
will use statistical software to calculate these sta-
tistics and, since the alternative formulae do not
assist in the understanding of the concepts, we do
not provide them.

2.3 Standard errors and confidence
intervals for the mean

2.3.1 Normal distributions and the
Central Limit Theorem

Having an estimate of a parameter is only the first
step in estimation. We also need to know how
precise our estimate is. Our estimator may be the
most precise of all the possible estimators, but if its
value still varies widely under repeated sampling,
it will not be very useful for inference. If repeated
sampling produces an estimator that is very con-
sistent, then it is precise and we can be confident
that it is close to the parameter (assuming that it
is unbiased). The traditional logic for determining
precision of estimators is well covered in almost
every introductory statistics and biostatistics book
(we strongly recommend Sokal & Rohlf 1995), so we
will describe it only briefly, using normally distrib-
uted variables as an example.

Assume that our sample has come from a
normally distributed population (Figure 2.1). For
any normal distribution, we can easily deter-
mine what proportions of observations in the
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population occur within certain distances from
the mean:

• 50% of population falls between ��0.674	
• 95% of population falls between ��1.960	
• 99% of population falls between ��2.576	.

Therefore, ifweknow�and	,wecanworkoutthese
proportions for any normal distribution. These pro-
portionshavebeencalculatedandtabulatedinmost
textbooks, but only for the standard normal distri-
bution, which has a mean of zero and a standard
deviation (orvariance)ofone.Tousethesetables,we
must be able to transform our sample observations
to their equivalent values in the standard normal
distribution. To do this, we calculate deviations
from the mean in standard deviation units:

z� (2.1)

These deviations are called normal deviates or
standard scores. This z transformation in effect
converts any normal distribution to the standard
normal distribution.

Usually we only deal with a single sample
(with n observations) from a population. If we took
many samples from a population and calculated
all their sample means, we could plot the fre-
quency (probability) distribution of the sample
means (remember that the sample mean is a
random variable). This probability distribution is
called the sampling distribution of the mean and
has three important characteristics.

• The probability distribution of means of
samples from a normal distribution is also
normally distributed.

yi��

	

• As the sample size increases, the probability
distribution of means of samples from any dis-
tribution will approach a normal distribution.
This result is the basis of the Central Limit
Theorem (Figure 2.2).

• The expected value or mean of the probability
distribution of sample means equals the mean
of the population (�) from which the samples
were taken.

2.3.2 Standard error of the sample mean
If we consider the sample means to have a normal
probability distribution, we can calculate the vari-
ance and standard deviation of the sample means,
just like we could calculate the variance of the
observations in a single sample. The expected value
of the standard deviation of the sample means is:

	ȳ� (2.2)

where 	 is the standard deviation of the original
population from which the repeated samples
were taken and n is the size of samples.

We are rarely in the position of having many
samples from the same population, so we esti-
mate the standard deviation of the sample means
from our single sample. The standard deviation of
the sample means is called the standard error of
the mean:

sȳ� (2.3)

where s is the sample estimate of the standard
deviation of the original population and n is the
sample size.

s
�n

	

�n
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Figure 2.2. Illustration of the
principle of the Central Limit
Theorem, where repeated samples
with large n from any distribution
will have sample means with a
normal distribution.



The standard error of the mean is telling us
about the variation in our sample mean. It is
termed “error” because it is telling us about the
error in using ȳ to estimate � (Snedecor & Cochran
1989). If the standard error is large, repeated
samples would likely produce very different
means, and the mean of any single sample might
not be close to the true population mean. We
would not have much confidence that any specific
sample mean is a good estimate of the population
mean. If the standard error is small, repeated
samples would likely produce similar means, and
the mean of any single sample is more likely to be
close to the true population mean. Therefore, we
would be quite confident that any specific sample
mean is a good estimate of the population mean.

2.3.3 Confidence intervals for population
mean

In Equation 2.1, we converted any value from a
normal distribution into its equivalent value from
a standard normal distribution, the z score.
Equivalently, we can convert any sample mean
into its equivalent value from a standard normal
distribution of means using:

z� (2.4)

where the denominator is simply the standard
deviation of the mean, 	/�n, or standard error.
Because this z score has a normal distribution, we
can determine how confident we are in the sample
mean, i.e. how close it is to the true population
mean (the mean of the distribution of sample
means). We simply determine values in our distri-
bution of sample means between which a given
percentage (often 95% by convention) of means
occurs, i.e. between which values of ( ȳ��)/	ȳ do
95% of values lie? As we showed above, 95% of a
normal distribution falls between ��1.960	, so
95% of sample means fall between ��1.96	ȳ (1.96
times the standard deviation of the distribution of
sample means, the standard error).

Now we can combine this information to make
a confidence interval for �:

P{ȳ�1.96	ȳ
�
 ȳ�1.96	ȳ}�0.95 (2.5)

This confidence interval is an interval estimate for
the population mean, although the probability
statement is actually about the interval, not

ȳ��
	ȳ

about the population parameter, which is fixed.
We will discuss the interpretation of confidence
intervals in the next section. The only problem is
that we very rarely know 	 in practice, so we never
actually know 	ȳ; we can only estimate the stan-
dard error from s (sample standard deviation).
Our standard normal distribution of sample
means is now the distribution of ( ȳ��)/sȳ. This is
a random variable called t and it has a probability
distribution that is not quite normal. It follows a
t distribution (Chapter 1), which is flatter and
more spread than a normal distribution.
Therefore, we must use the t distribution to calcu-
late confidence intervals for the population mean
in the common situation of not knowing the pop-
ulation standard deviation.

The t distribution (Figure 1.2) is a symmetrical
probability distribution centered around zero
and, like a normal distribution, it can be defined
mathematically. Proportions (probabilities) for a
standard t distribution (with a mean of zero and
standard deviation of one) are tabled in most sta-
tistics books. In contrast to a normal distribution,
however, t has a slightly different distribution
depending on the sample size (well, for mathe-
matical reasons, we define the different t distribu-
tions by n�1, called the degrees of freedom (df)
(see Box 2.1), rather than n). This is because s pro-
vides an imprecise estimate of 	 if the sample size
is small, increasing in precision as the sample size
increases. When n is large (say �30), the t distribu-
tion is very similar to a normal distribution
(because our estimate of the standard error based
on s will be very close to the real standard error).
Remember, the z distribution is simply the prob-
ability distribution of (y��)/	 or ( ȳ��)/	ȳ if we
are dealing with sample means. The t distribution
is simply the probability distribution of ( ȳ��)/sȳ

and there is a different t distribution for each df
(n�1).

The confidence interval (95% or 0.95) for the
population mean then is:

P{ȳ� t0.05(n�1)sȳ
�
 ȳ� t0.05(n�1)sȳ}�0.95 (2.6)

where t0.05(n�1) is the value from the t distribution
with n�1 df between which 95% of all t values lie
and sȳ is the standard error of the mean. Note that
the size of the interval will depend on the sample
size and the standard deviation of the sample,
both of which are used to calculate the standard
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error, and also on the level of confidence we
require (Box 2.3).

We can use Equation 2.6 to determine confi-
dence intervals for different levels of confidence,
e.g. for 99% confidence intervals, simply use the t
value between which 99% of all t values lie. The
99% confidence interval will be wider than the
95% confidence interval (Box 2.3).

2.3.4 Interpretation of confidence
intervals for population mean

It is very important to remember that we usually
do not consider � a random variable but a fixed,
albeit unknown, parameter and therefore the con-
fidence interval is not a probability statement
about the population mean. We are not saying
there is a 95% probability that � falls within this
specific interval that we have determined from
our sample data; � is fixed, so this confidence
interval we have calculated for a single sample
either contains � or it doesn’t. The probability
associated with confidence intervals is inter-
preted as a long-run frequency, as discussed in
Chapter 1. Different random samples from the
same population will give different confidence
intervals and if we took 100 samples of this size (n),
and calculated the 95% confidence interval from
each sample, 95 of the intervals would contain �
and five wouldn’t. Antelman (1997, p. 375) sum-
marizes a confidence interval succinctly as “. . .
one interval generated by a procedure that will
give correct intervals 95% of the time”.

2.3.5 Standard errors for other statistics
The standard error is simply the standard devia-
tion of the probability distribution of a specific
statistic, such as the mean. We can, however, cal-
culate standard errors for other statistics besides
the mean. Sokal & Rohlf (1995) have listed the for-
mulae for standard errors for many different stat-
istics but noted that they might only apply for
large sample sizes or when the population from
which the sample came was normal. We can use
the methods just described to reliably determine
standard errors for statistics (and confidence
intervals for the associated parameters) from a
range of analyses that assume normality, e.g.
regression coefficients. These statistics, when
divided by their standard error, follow a t distri-
bution and, as such, confidence intervals can
be determined for these statistics (confidence
interval� t�standard error).

When we are not sure about the distribution of
a sample statistic, or know that its distribution is
non-normal, then it is probably better to use resam-
pling methods to generate standard errors (Section
2.5). One important exception is the sample vari-
ance, which has a known distribution that is not
normal, i.e. the Central Limit Theorem does not
apply to variances. To calculate confidence inter-
vals for the population variance, we need to use the
chi-square (�2) distribution, which is the distribu-
tion of the following random variable:

�2� (2.7)
( y��)2

	 2
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Box 2.1 Explanation of degrees of freedom

Degrees of freedom (df) is one of those terms that biologists use all the time in sta-
tistical analyses but few probably really understand. We will attempt to make it a
little clearer. The degrees of freedom is simply the number of observations in our
sample that are “free to vary” when we are estimating the variance (Harrison &
Tamaschke 1984). Since we have already determined the mean, then only n�1
observations are free to vary because knowing the mean and n�1 observations,
the last observation is fixed. A simple example – say we have a sample of observa-
tions, with values 3, 4 and 5. We know the sample mean (4) and we wish to esti-
mate the variance. Knowing the mean and one of the observations doesn’t tell us
what the other two must be. But if we know the mean and two of the observa-
tions (e.g. 3 and 4), the final observation is fixed (it must be 5). So, knowing the
mean, only two observations (n�1) are free to vary. As a general rule, the df is the
number of observations minus the number of parameters included in the formula
for the variance (Harrison & Tamaschke 1984).
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Box 2.2 Worked example of estimation: chemistry of
forested watersheds

Lovett et al. (2000) studied the chemistry of forested watersheds in the Catskill
Mountains in New York State. They chose 39 sites (observations) on first and
second order streams and measured the concentrations of ten chemical variables
(NO3

�, total organic N, total N, NH4
�, dissolved organic C, SO4

2�, Cl�, Ca2�, Mg2�,
H�), averaged over three years, and four watershed variables (maximum elevation,
sample elevation, length of stream,watershed area).We will assume that the 39 sites
represent a random sample of possible sites in the central Catskills and will focus
on point estimation for location and spread of the populations for two variables,
SO4

2� and Cl�, and interval estimation for the population mean of these two var-
iables. We also created a modified version of SO4

2� where we replaced the largest
value (72.1 µmol l�1 at site BWS6) by an extreme value of 200 µmol l�1 to illus-
trate the robustness of various statistics to outliers.

Boxplots (Chapter 4) for both variables are presented in Figure 4.3. Note that
SO4

2� has a symmetrical distribution whereas Cl� is positively skewed with outli-
ers (values very different from rest of sample). Summary statistics for SO4

2� (orig-
inal and modified) and Cl� are presented below.

Estimate SO4
2� Modified SO4

2� Cl�

Mean 61.92 65.20 22.84

Median 62.10 62.10 20.50

5% trimmed mean 61.90 61.90 20.68

Huber’s M-estimate 61.67 61.67 20.21

Hampel’s M-estimate 61.85 61.62 19.92

Standard deviation 5.24 22.70 12.38

Interquartile range 8.30 8.30 7.80

Median absolute 4.30 4.30 3.90
deviation

Standard error of 0.84 3.64 1.98
mean

95% confidence 60.22–63.62 57.84–72.56 18.83–26.86
interval for mean

Given the symmetrical distribution of SO4
2�, the mean and median are similar

as expected. In contrast, the mean and the median are different by more than two
units for Cl�, as we would expect for a skewed distribution. The median is a more
reliable estimator of the center of the skewed distribution for Cl�, and the various
robust estimates of location (median, 5% trimmed mean, Huber’s and Hampel’s
M-estimates) all give similar values. The standard deviation for Cl� is also affected
by the outliers, and the confidence intervals are relatively wide.

The modified version of SO4
2� also shows the sensitivity of the mean and the

standard deviation to outliers. Of the robust estimators for location, only Hampel’s
M-estimate changes marginally,whereas the mean changes by more than three units.
Similarly, the standard deviation (and therefore the standard error and 95%



This is simply the square of the standard z score
discussed above (see also Chapter 1). Because we
square the numerator, �2 is always positive,
ranging from zero to �. The �2 distribution is a
sampling distribution so, like the random variable
t, there are different probability distributions for
�2 for different sample sizes; this is reflected in the
degrees of freedom (n�1). For small df, the prob-
ability distribution is skewed to the right (Figure
1.2) but it approaches normality as df increases.

Now back to the sample variance. It turns out
that the probability distribution of the sample var-
iance is a chi-square distribution. Strictly speaking,

(2.8)
(n� 1)s2

	 2

is distributed as �2 with n�1 df (Hays 1994). We
can rearrange Equation 2.8, using the chi-square
distribution, to determine a confidence interval
for the variance:

P 
	2
 �0.95 (2.9)

where the lower bound uses the �2 value below
which 2.5% of all �2 values fall and the upper
bound uses the �2 value above which 2.5% of all �2

values fall. Remember the long-run frequency
interpretation of this confidence interval –
repeated sampling would result in confidence
intervals of which 95% would include the true
population variance. Confidence intervals on

s2(n�1)
�2

n�1
��s2(n�1)

�2
n�1
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confidence interval) is much greater for the modified variable, whereas the inter-
quartile range and the median absolute deviation are unaffected by the outlier.

We also calculated bootstrap estimates for the mean and the median of SO4
2�

concentrations, based on 1000 bootstrap samples (n�39) with replacement from
the original sample of 39 sites. The bootstrap estimate was the mean of the 1000
bootstrap sample statistics, the bootstrap standard error was the standard devia-
tion of the 1000 bootstrap sample statistics and the 95% confidence interval was
determined from 25th and 975th values of the bootstrap statistics arranged in
ascending order. The two estimates of the mean were almost identical, and although
the standard error was smaller for the usual method, the percentile 95% confidence
interval for the bootstrap method was narrower. The two estimates for the median
were identical, but the bootstrap method allows us to estimate a standard error and
a confidence interval.

Usual Bootstrap

Mean 61.92 61.91
Standard error 0.84 0.88
95% confidence interval 60.22–63.62 60.36–63.59
Median 61.72 61.72
Standard error NA 1.34
95% confidence interval NA 58.60–63.40

The frequency distributions of the bootstrap means and medians are presented
in Figure 2.4. The distribution of bootstrap means is symmetrical whereas the boot-
strap distribution of medians is skewed. This is commonly the case and the confi-
dence interval for the median is not symmetrical around the bootstrap estimate.
We also calculated the bias corrected bootstrap confidence intervals. Forty nine
percent of bootstrap means were below the bootstrap estimate of 61.91, so the
bias-corrected confidence interval is basically the same as the standard bootstrap.
Forty four percent of bootstrap medians were below the bootstrap estimate of
61.72, so z0��0.151 and (2z0�1.96)�1.658 and (2z0�1.96)��2.262. The per-
centiles, from the normal cumulative distribution, are 95.2% (upper) and 1.2%
(lower). However, because so many of the bootstrap medians were the same value,
these bias-corrected percentiles did not change the confidence intervals.



variances are very important for the interpreta-
tion of variance components in linear models
(Chapter 8). 

2.4 Methods for estimating
parameters

2.4.1 Maximum likelihood (ML)
A general method for calculating statistics that
estimate specific parameters is called Maximum
Likelihood (ML). The estimates of population
parameters (e.g. the population mean) provided
earlier in this chapter are ML estimates, except for

the variance where we correct the estimate to
reduce bias. The logic of ML estimation is decep-
tively simple. Given a sample of observations from
a population, we find estimates of one (or more)
parameter(s) that maximise the likelihood of
observing those data. To determine maximum
likelihood estimators, we need to appreciate the
likelihood function, which provides the likeli-
hood of the observed data (and therefore our
sample statistic) for all possible values of the
parameter we are trying to estimate. For example,
imagine we have a sample of observations with a
sample mean of ȳ. The likelihood function, assum-
ing a normal distribution and for a given standard
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Box 2.3 Effect of different sample variances, sample sizes
and degrees of confidence on confidence interval
for the population mean

We will again use the data from Lovett et al. (2000) on the chemistry of forested
watersheds in the Catskill Mountains in New York State and focus on interval esti-
mation for the mean concentration of SO4

2� in all the possible sites that could have
been sampled.

Original sample
Sample (n�39) with a mean concentration of SO4

2� of 61.92 and s of 5.24. The t
value for 95% confidence intervals with 38 df is 2.02. The 95% confidence interval
for population mean SO4

2� is 60.22�63.62, i.e. 3.40.

Different sample variance
Sample (n�39) with a mean concentration of SO4

2� of 61.92 and s of 10.48 (twice
original). The t value for 95% confidence intervals with 38 df is 2.02. The 95% con-
fidence interval for population mean SO4

2� is 58.53�65.31, i.e. 6.78 (cf. 3.40).
So more variability in population (and sample) results in a wider confidence

interval.

Different sample size
Sample (n�20; half original) with a mean concentration of SO4

2� of 61.92 and s of
5.24. The t value for 95% confidence intervals with 19 df is 2.09. The 95% confi-
dence interval for population mean SO4

2� is 59.47�64.37, i.e. 4.90 (cf. 3.40).
So a smaller sample size results in wider interval because our estimates of s and

sȳ are less precise.

Different level of confidence (99%)
Sample (n�39) with a mean concentration of SO4

2� of 61.92 and s of 5.24. The t
value for 99% confidence intervals with 38 df is 2.71. The 95% confidence interval
for population mean SO4

2� is 59.65�64.20, i.e. 4.55 (cf. 3.40).
So requiring a greater level of confidence results in a wider interval for a given

n and s.



deviation, is the likelihood of
observing the data for all pos-
sible values of �, the popula-
tion mean. In general, for a
parameter �, the likelihood
function is:

L(y; �)� f(yi; �) (2.10)

where f(yi;�) is the joint prob-
ability distribution of yi and �,
i.e. the probability distribu-
tion of Y for possible values of
�. In many common situations, f(yi;�) is a normal
probability distribution. The ML estimator of � is
the one that maximizes this likelihood function.
Working with products (�) in Equation 2.10 is
actually difficult in terms of computation so it is
more common to maximize the log-likelihood
function:

L(�)� ln f(yi; �) � ln[ f(yi; �)] (2.11)

For example, the ML estimator of � (knowing 	2)
for a given sample is the value of � which maxi-
mises the likelihood of observing the data in the
sample. If we are trying to estimate � from a
normal distribution, then the f(yi;�) would be the
equation for the normal distribution, which
depends only on � and 	2. Eliason (1993) provides
a simple worked example.

The ML estimator can be determined graphi-
cally by simply trying different values of � and
seeing which one maximizes the log-likelihood
function (Figure 2.3). This is very tedious, however,
and it is easier (and more accurate) to use some
simple calculus to determine the value of � that
maximizes the likelihood function. ML estimators
sometimes have exact arithmetical solutions,
such as when estimating means or parameters for
linear models (Chapters 8–12). In contrast, when
analyzing some non-normal distributions, ML
estimators need to be calculated using complex
iterative algorithms (Chapters 13 and 14).

It is important to realize that a likelihood is

�
n

i�1
���n

i�1

�
n

i�1

not the same as a probability and the likelihood
function is not a probability distribution (Barnett
1999, Hilborn & Mangel 1997). In a probability dis-
tribution for a random variable, the parameter is
considered fixed and the data are the unknown
variable(s). In a likelihood function, the data are
considered fixed and it is the parameter that
varies across all possible values. However, the like-
lihood of the data given a particular parameter
value is related to the probability of obtaining the
data assuming this particular parameter value
(Hilborn & Mangel 1997).

2.4.2 Ordinary least squares (OLS)
Another general approach to estimating parame-
ters is by ordinary least squares (OLS). The least
squares estimator for a given parameter is the one
that minimizes the sum of the squared differ-
ences between each value in a sample and the
parameter, i.e. minimizes the following function:

[yi� f(�)]2 (2.12)

The OLS estimator of � for a given sample is the
value of � which minimises the sum of squared
differences between each value in the sample and
the estimate of � (i.e. �(yi� ȳ)2). OLS estimators are
usually more straightforward to calculate than
ML estimators, always having exact arithmetical
solutions. The major application of OLS estima-
tion is when we are estimating parameters of
linear models (Chapter 5 onwards), where
Equation 2.12 represents the sum of squared

�
n

i�1
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Figure 2.3. Generalized log-
likelihood function for estimating a
parameter.



differences between observed values and those
predicted by the model.

2.4.3 ML vs OLS estimation
Maximum likelihood and ordinary least squares
are not the only methods for estimating popula-
tion parameters (see Barnett 1999) but they are
the most commonly used for the analyses we will
discuss in this book. Point and interval estimation
using ML relies on distributional assumptions, i.e.
we need to specify a probability distribution for
our variable or for the error terms from our statis-
tical model (see Chapter 5 onwards). When these
assumptions are met, ML estimators are generally
unbiased, for reasonable sample sizes, and they
have minimum variance (i.e., they are precise esti-
mators) compared to other estimators. In contrast,
OLS point estimates require no distributional
assumptions, and OLS estimators are also gener-
ally unbiased and have minimum variance.
However, for interval estimation and hypothesis
testing, OLS estimators have quite restrictive dis-
tributional assumptions related to normality and
patterns of variance.

For most common population parameters (e.g.
�), the ML and OLS estimators are the same when
the assumptions of OLS are met. The exception is
	2 (the population variance) for which the ML esti-
mator (which uses n in the denominator) is
slightly biased, although the bias is trivial if the
sample size is reasonably large (Neter et al. 1996).
In balanced linear models (linear regression and
ANOVA) for which the assumptions hold (see
Chapter 5 onwards), ML and OLS estimators of
regression slopes and/or factor effects are identi-
cal. However, OLS is inappropriate for some
common models where the response variable(s) or
the residuals are not distributed normally, e.g.
binary and more general categorical data.
Therefore, generalized linear modeling (GLMs
such as logistic regression and log-linear models;
Chapter 13) and nonlinear modeling (Chapter 6)
are based around ML estimation.

2.5 Resampling methods for
estimation

The methods described above for calculating stan-
dard errors for a statistic and confidence intervals

for a parameter rely on knowing two properties of
the statistic (Dixon 1993).

• The sampling distribution of the statistic,
usually assumed to be normal, i.e. the Central
Limit Theorem holds.

• The exact formula for the standard error (i.e.
the standard deviation of the statistic).

These conditions hold for a statistic like the
sample mean but do not obviously extend to other
statistics like the median (Efron & Gong 1983). In
biology, we would occasionally like to estimate
the population values of many measurements for
which the sampling distributions and variances
are unknown. These include ecological indices
such as the intrinsic rate of increase (r) and dissim-
ilarity coefficients (Dixon 1993) and statistics
from unusual types of analyses, such as the inter-
cept of a smoothing function (see Chapter 5; Efron
& Tibshirani 1991). To measure the precision (i.e.
standard errors and confidence intervals) of these
types of statistics we must rely on alternative,
computer-intensive resampling methods. The two
approaches described below are based on the
same principle: in the absence of other informa-
tion, the best guess for the distribution of the pop-
ulation is the observations we have in our sample.
The methods estimate the standard error of a stat-
istic and confidence intervals for a parameter by
resampling from the original sample.

Good introductions to these methods include
Crowley (1992), Dixon (1993), Manly (1997) and
Robertson (1991), and Efron & Tibshirani (1991)
suggest useful general applications. These resam-
pling methods can also be used for hypothesis
testing (Chapter 3).

2.5.1 Bootstrap
The bootstrap estimator was developed by Efron
(1982). The sampling distribution of the statistic is
determined empirically by randomly resampling
(using a random number generator to choose the
observations; see Robertson 1991), with replace-
ment, from the original sample, usually with the
same original sample size. Because sampling is
with replacement, the same observation can obvi-
ously be resampled so the bootstrap samples will
be different from each other. The desired statistic
can be determined from each bootstrapped
sample and the sampling distribution of each
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statistic determined. The boot-
strap estimate of the parame-
ter is simply the mean of the
statistics from the bootstrapped samples. The
standard deviation of the bootstrap estimate (i.e.
the standard error of the statistic) is simply the
standard deviation of the statistics from the boot-
strapped samples (see Figure 2.4).

Techniques like the bootstrap can be used to
measure the bias in an estimator, the difference
between the actual population parameter and the
expected value (mean) of the estimator. The boot-
strap estimate of bias is simply the difference
between the mean of the bootstrap statistics and
the statistic calculated from the original sample
(which is an estimator of the expected value of the
statistic); see Robertson (1991).

Confidence intervals for the unknown popula-
tion parameter can also be calculated based on
the bootstrap samples. There are at least three
methods (Dixon 1993, Efron & Gong 1983,
Robertson 1991). First is the percentile method,
where confidence intervals are calculated directly
from the frequency distribution of bootstrap sta-
tistics. For example, we would arrange the 1000
bootstrap statistics in ascending order. Based on
1000 bootstrap samples, the lower limit of the 95%
confidence interval would be the 25th value and
the upper limit of the 95% confidence interval
would be the 975th value; 950 values (95% of the
bootstrap estimates) would fall between these
values. Adjustments can easily be made for other
confidence intervals, e.g. 5th and 995th value for
a 99% confidence interval.

Unfortunately, the distribution of bootstrap
statistics is often skewed, especially for statistics
other than the mean. The confidence intervals cal-
culated using the percentile method will not be
symmetrical around the bootstrap estimate of the
parameter, so the confidence intervals are biased.

The other two methods for calculating bootstrap
confidence intervals correct for this bias.

The bias-corrected method first works out the
percentage of bootstrap samples with statistics
lower than the bootstrap estimate. This is trans-
formed to its equivalent value from the inverse
cumulative normal distribution (z0) and this value
used to modify the percentiles used for the lower
and upper limits of the confidence interval:

95% percentiles�� (2z0�1.96) (2.13)

where � is the normal cumulative distribution
function. So we determine the percentiles for the
values (2z0�1.96) and (2z0�1.96) from the normal
cumulative distribution function and use these as
the percentiles for our confidence interval. A
worked example is provided in Box 2.2.

The third method, the accelerated bootstrap,
further corrects for bias based on a measure of the
influence each bootstrap statistic has on the final
estimate. Dixon (1993) provides a readable expla-
nation.

2.5.2 Jackknife
The jackknife is an historically earlier alternative
to the bootstrap for calculating standard errors
that is less computer intensive. The statistic is cal-
culated from the full sample of n observations
(call it �*), then from the sample with first data
point removed (�*

�1), then from the sample with
second data point removed (�*

�2) etc. Pseudovalues
for each observation in the original sample are
calculated as:

�̃ i�n�*� (n�1)�*
�i (2.14)

where � *
�i is the statistic calculated from the

sample with observation i omitted. Each pseudo-
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Figure 2.4. Frequency
distributions of (a) bootstrap means
and (b) bootstrap medians, based on
1000 bootstrap samples (n�39) of
SO4

2� for 39 sites from forested
watersheds in the Catskill
Mountains in New York State (data
from Lovett et al. 2000).

(a) (b)



value is simply a combination of two estimates of
the statistic, one based on the whole sample and
one based on the removal of a particular observa-
tion.

The jackknife estimate of the parameter is
simply the mean of the pseudovalues (�̄ ). The stan-
dard deviation of the jackknife estimate (the stan-
dard error of the estimate) is:

(� *
�i��̄ )2 (2.15)

Note that we have to assume that the pseudoval-
ues are independent of each other for these calcu-
lations (Crowley 1992, Roberston 1991), whereas
in reality they are not. The jackknife is not usually
used for confidence intervals because so few
samples are available if the original sample size
was small (Dixon 1993). However, Crowley (1992)
and Robertson (1991) suggested that if normality
of the pseudovalues could be assumed, then con-
fidence intervals could be calculated as usual
(using the t distribution because of the small
number of estimates).

2.6 Bayesian inference – estimation

The classical approach to point and interval esti-
mation might be considered to have two limita-
tions. First, only the observed sample data
contribute to our estimate of the population
parameter. Any previous information we have on
the likely value of the parameter cannot easily be
considered when determining our estimate,
although our knowledge of the population from
which we are sampling will influence the design
of our sampling program (Chapter 7). Second, the
interval estimate we have obtained has a frequen-
tist interpretation – a certain percentage of confi-
dence intervals from repeated sampling will
contain the fixed population parameter. The
Bayesian approach to estimating parameters
removes these limitations by formally incorporat-
ing our prior knowledge, as degrees-of-belief
(Chapter 1), about the value of the parameter and
by producing a probability statement about the
parameter, e.g. there is a 95% probability that �
lies within a certain interval.

�n�1

n
 �

2.6.1 Bayesian estimation
To estimate parameters in a Bayesian framework,
we need to make two major adjustments to the
way we think about parameters and probabilities.
First, we now consider the parameter to be a
random variable that can take a range of possible
values, each with different probabilities or
degrees-of-belief of being true (Barnett 1999). This
contrasts with the classical approach where the
parameter was considered a fixed, but unknown,
quantity. Dennis (1996), however, described the
parameter being sought as an unknown variable
rather than a random variable and the prior and
posterior distributions represent the probabilities
that this unknown parameter might take differ-
ent values. Second, we must abandon our frequen-
tist view of probability. Our interest is now only in
the sample data we have, not in some long run
hypothetical set of identical experiments (or
samples). In Bayesian methods, probabilities can
incorporate subjective degrees-of-belief (Chapter
1), although such opinions can still be quantified
using probability distributions.

The basic logic of Bayesian inference for esti-
mating a parameter is:

P(�|data)� (2.16)

where

� is the population parameter to be
estimated and is regarded as a random variable,

P(�) is the “unconditional” prior probability
of �, expressed as a probability distribution
summarizing our prior views about the
probability of � taking different values,

P(data|�) is the likelihood of observing the
sample data for different values of �, expressed
as a likelihood function (Section 2.4.1),

P(data) is the expected value (mean) of the
likelihood function; this standardization means
that the area under the posterior probability
distribution equals one, and

P(� |data) is the posterior probability of �
conditional on the data being observed,
expressed a probability distribution
summarizing the probability of � taking
different values by combining the prior
probability distribution and the likelihood
function.

P(data|�)P(�)
P(data)
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Equation 2.16 can be re-expressed more simply
as:

posterior probability� likelihood�
prior probability (2.17)

because the denominator in Equation 2.15,
P(data), is a normalizing constant, the mean of the
likelihood function (Ellison 1996).

2.6.2 Prior knowledge and probability
Prior probability distributions measure the rela-
tive “strength of belief” in possible values of the
parameter (Dennis 1996) and can be of two forms
(Barnett 1999).

1. Prior ignorance or only vague prior knowl-
edge, where we have little or no previous infor-
mation to suggest what value the parameter
might take. While some Bayesians might argue
that scientists will always have some prior infor-
mation, and that we will never be in a position
of complete ignorance, prior ignorance is a
conservative approach and helps overcome the
criticism of Bayesian statistics that subjectively
determined prior opinion can have too much
influence on the inferential process. We can
represent prior ignorance with a non-informa-
tive prior distribution, sometimes called a
diffuse distribution because such a wide range of
values of � is considered possible. The most
typical diffuse prior is a rectangular (uniform or
flat) probability distribution, which says that
each value of the parameter is equally likely.

One problem with uniform prior distribu-
tions is that they are improper, i.e. the probabil-
ity distribution does not integrate to one and
therefore the probability of any range of values
might not be less than one. In practice, this is
not a serious problem because improper priors
can be combined with likelihoods to produce
proper posterior distributions. When we use a
non-informative prior, the posterior distribution
of the parameter is directly proportional to the
likelihood function anyway. The uniform prior
distribution can be considered a reference
prior, a class of priors designed to represent
weak prior knowledge and let the data, and
therefore the likelihood, dominate the posterior
distribution. 

2. Substantial prior knowledge or belief repre-
sented by an informative prior probability distri-
bution such as a normal or beta distribution.
The construction of these informative prior
distributions is one of the most controversial
aspects of Bayesian inference, especially if they
are constructed from subjective opinion. Crome
et al. (1996) illustrated one approach based on
surveying a small group of people for the
opinions about the effects of logging. Dennis
(1996) and Mayo (1996) have respectively high-
lighted potential practical and philosophical
issues associated with using subjective prior
information.

2.6.3 Likelihood function
The likelihood function P(data|�), standardized
by the expected value (mean) of likelihood func-
tion [P(data)], is how the sample data enter
Bayesian calculations. Note that the likelihood
function is not strictly a probability distribution
(Section 2.4.1), although we refer to it as the prob-
ability of observing the data for different values
of the parameter. If we assume that our variable
is normally distributed and the parameter of
interest is the mean, the standardized likelihood
function is a normal distribution with a mean
equal to the mean of the sample data and a vari-
ance equal to the squared standard error of the
mean of the sample data (Box & Tiao 1973, Ellison
1996).

2.6.4 Posterior probability
All conclusions from Bayesian inference are
based on the posterior probability distribution of
the parameter. This posterior distribution repre-
sents our prior probability distribution modified
by the likelihood function. The sample data only
enter Bayesian inference through the likelihood
function. Bayesian inference is usually based on
the shape of the posterior distribution, particu-
larly the range of values over which most of the
probability mass occurs. The best estimate of
the parameter is determined from the mean of
the posterior distribution, or sometimes the
median or mode if we have a non-symmetrical
posterior.

If we consider estimating a parameter (�) with
a normal prior distribution, then the mean of the
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normal posterior distribution of � is (Box & Tiao
1973, Ellison 1996):

�̄ � (w0�̄ 0�w1ȳ) (2.18)

where �̄ 0 is the mean of the prior distribution, ȳ is
the mean of the likelihood function (i.e. sample
mean from data), w0 is the reciprocal of the esti-
mate of the prior variance 	0

2 (1/s0
2), w1 is the

reciprocal of the sample variance times the
sample size (n/s2) and n is the sample size. In other
words, the posterior mean is a weighted average of
the prior mean and the sample mean (Berry 1996).
This posterior mean �̄ is our estimate of �, the
parameter of interest.

The variance of the posterior distribution
equals:

	̄2� (2.19)

Note that with a non-informative, flat, prior the
posterior distribution is determined entirely by
the sample data and the likelihood function. The
mean of the posterior then is ȳ (the mean of the
sample data) and the variance is s2/n (the variance
of the sample data divided by the sample size).

The Bayesian analogues of frequentist confi-
dence intervals are termed Bayesian credible or
probability intervals. They are also called highest
density or probability regions because any value
in the region or interval has a higher probability
of occurring than any value outside. If we have a
normal posterior distribution for a parameter,
Bayesian credible intervals for this parameter are:

P{�̄ �2 
�
�̄ �2 }�0.95 (2.20)

where D�	̄2, the variance of the posterior distri-
bution (Ellison 1996). Alternatively, the usual
methods based on the t distribution can be used
(Winkler 1993). Note that because the parameter
is considered a random variable in Bayesian infer-
ence, the interval in Equation 2.20 is telling us
directly that there is a 95% probability that the
value of the parameter falls within this range,
based on the sample data. With a non-informative
(flat) prior distribution, the Bayesian confidence
interval will be the same as the classical, frequen-
tist, confidence interval and Edwards (1996)
argued that the difference in interpretation is
somewhat semantic. He recommended simply

�D�D

1

w0�w1

1

w0�w1

reporting the interval and letting the reader inter-
pret it as required. If we have a more informative
prior distribution (i.e. we knew that some values
of � were more likely than others), then the
Bayesian credible interval would be shorter than
the classical confidence interval.

2.6.5 Examples
We provide a very simple example of Bayesian esti-
mation in Box 2.4, based on the data from Lovett
et al. (2000) on the chemistry of forested water-
sheds. Another biological example of Bayesian
estimation is the work of Carpenter (1990). He
compared eight different models for flux of pesti-
cides through a pond ecosystem. Each model was
given an equal prior probability (0.125), data were
collected from an experiment using radioactively
labeled pesticide and likelihoods were deter-
mined for each model from the residuals after
each model was fitted using OLS (see Chapter 2).
He found that only one of the models had a poste-
rior probability greater than 0.1 (actually it was
0.97, suggesting it was a very likely outcome).

2.6.6 Other comments
We would like to finish with some comments.
First, normal distributions are commonly used for
both prior and posterior distributions and likeli-
hood functions for the same reasons as for classi-
cal estimation, especially when dealing with
means. Other distributions can be used. For
example, Crome et al. (1996) used a mixture of log-
normal distributions for an informative prior (see
also Winkler 1993) and the beta distribution is
commonly used as a prior for binomially distrib-
uted parameters.

Second, the data generally are much more
influential over the posterior distribution than
the prior, except when sample sizes, and/or the
variance of the prior, are very small. Carpenter
(1990) discussed Bayesian analysis in the context
of large-scale perturbation experiments in
ecology and he also argued that prior probabil-
ities had far less impact than the observed data on
the outcome of the analysis and implied that the
choice of prior probabilities was not crucial.
However, Edwards (1996) noted that if the prior
standard deviation is very small, then differences
in the prior mean could have marked effects on
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Box 2.4 Worked example of Bayesian estimation:
chemistry of forested watersheds

To illustrate the Bayesian approach to estimation, we will revisit the earlier example
of estimating the mean concentration of SO4

2� in first and second order stream
sites in the Catskill Mountains in New York State based on a sample of 39 sites
(Lovett et al. 2000). Now we will consider the mean concentration of SO4

2� a
random variable, or at least an unknown variable (Dennis 1996), and also make use
of prior information about this mean, i.e. we will estimate our mean from a Bayesian
perspective. For comparison, we will also investigate the effect of more substantial
prior knowledge, in the form of a less variable prior probability distribution. We will
follow the procedure for Bayesian estimation from Box & Tiao (1973; see also Berry
1996 and Ellison 1996).

1. Using whatever information is available (including subjective assessment;
see Crome et al. 1996), specify a prior probability distribution for Y. Note that
initial estimates of the parameters of this distribution will need to be specified; a
normal prior requires an initial estimate of the mean and variance. Imagine we
had sampled the central Catskill Mountains at a previous time so we had some
previous data that we could use to set up a prior distribution. We assumed the
prior distribution of the concentration of SO4

2� was normal and we used the
mean and the variance of the previous sample as the parameters of the prior
distribution. The prior distribution could also be a non-informative (flat) one if no
such previous information was available.

2. Collect a sample to provide an estimate of the parameter and its variance.
In our example, we had a sample of concentration of SO4

2� from 39 streams and
determined the sample mean and variance.

3. Determine the standardized likelihood function, which in this example is
a normal distribution with a mean equal to the mean of the sample data
and a variance equal to the squared standard error of the mean of the sample
data.

4. Determine the posterior probability distribution for the mean
concentration of SO4

2�, which will be a normal distribution because we used a
normal prior and likelihood function. The mean of this posterior distribution
(Equation 2.18) is our estimate of population mean concentration of SO4

2� and
we can determine credible intervals for this mean (Equation 2.20).

High variance prior distribution

Prior mean�50.00, prior variance�44.00.
Sample mean�61.92, sample variance�27.47, n�39.
Using Equations 2.18, 2.19 and 2.20, substituting sample estimates where
appropriate:
w0�0.023
w1�1.419
Posterior mean�61.73, posterior variance�0.69, 95% Bayesian probability
interval�60.06 to 62.57.
Note that the posterior distribution has almost the same estimated mean as
the sample, so the posterior is determined almost entirely by the sample data.



the posterior mean, irrespective of the data. He
described this as “editorial”, where the results of
the analysis are mainly opinion.

Third, if a non-informative prior (like a rectan-
gular distribution) is used, and we assume the
data are from a normally distributed population,
then the posterior distribution will be a normal
(or t) distribution just like in classical estimation,
i.e. using a flat prior will result in the same esti-
mates as classical statistics. For example, if we
wish to use Bayesian methods to estimate �, and
we use a rectangular prior distribution, then the
posterior distribution will turn out to be a normal
distribution (if 	 is known) or a t distribution (if 	
is unknown and estimated from s, which means
we need a prior distribution for s as well).

Finally, we have provided only a very brief
introduction to Bayesian methods for estimation

and illustrated the principle with a simple
example. For more complex models with two or
more parameters, calculating the posterior distri-
bution is difficult. Recent advances in this area
use various sampling algorithms (e.g. Hastings–
Metropolis Gibbs sampler) as part of Markov chain
Monte Carlo methods. These techniques are
beyond the scope of this book – Barnett (1999) and
Gelman et al. (1995) provide an introduction
although the details are not for the mathemati-
cally challenged. The important point is that once
we get beyond simple estimation problems,
Bayesian methods can involve considerable statis-
tical complexity.

Other pros and cons related to Bayesian infer-
ence, particularly in comparison with classical
frequentist inference, will be considered in
Chapter 3 in the context of testing hypotheses.
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Low variance prior distribution

If we make our prior estimate of the mean much more precise:
Prior mean�50.00, prior variance�10.00.
Sample mean�61.92, sample variance�27.47, n�39.
w0�0.100
w1�1.419
Posterior mean�61.14, posterior variance�0.66, 95% Bayesian probability
interval�59.51 to 62.76.

Now the prior distribution has a greater influence on the posterior than previ-
ously, with the posterior mean more than half one unit lower. In fact, the more dif-
ferent the prior mean is from the sample mean, and the more precise our estimate
of the prior mean is, i.e. the lower the prior variance, the more the prior will influ-
ence the posterior relative to the data.

Note that if we assume a flat prior, the posterior mean is just the mean of the
data (61.92).



Chapter 3

Hypothesis testing

3.1 Statistical hypothesis testing

In Chapter 2, we discussed one component of stat-
istical inference, estimating population parame-
ters. We also introduced the philosophical and
statistical differences between frequentist and
Bayesian approaches to parameter estimation.
The other main component of inference, and one
that has dominated the application of statistics in
the biological sciences, is testing hypotheses
about those parameters. Much of the philosophi-
cal justification for the continued use of statistical
tests of hypotheses seems to be based on Popper’s
proposals for falsificationist tests of hypotheses
(Chapter 1). Although Jerzy Neyman, Egon
Pearson and Sir Ronald Fisher had developed their
approaches to statistical testing by the 1930s, it is
interesting to note that Popper did not formally
consider statistical tests as a mechanism for fal-
sifying hypotheses (Mayo 1996). Hilborn & Mangel
(1997, pp. 15–16) stated that “Popper supplied the
philosophy and Fisher, Pearson, and colleagues
supplied the statistics” but the link between
Popperian falsificationism and statistical tests of
hypotheses is still controversial, e.g. the contrast-
ing views of Mayo (1996) and Oakes (1986). We will
present a critique of statistical hypothesis tests,
and significance tests in particular, in Section 3.6.

The remainder of this section will provide an
overview of statistical tests of hypotheses.

3.1.1 Classical statistical hypothesis testing
Classical statistical hypothesis testing rests on two
basic concepts. First, we must state a statistical

null hypothesis (H0), which is usually (though not
necessarily) an hypothesis of no difference or no
relationship between population parameters (e.g.
no difference between two population means). In
many cases, we use the term effect to describe a
difference between groups or experimental treat-
ments (or a non-zero regression slope, etc.), so the
H0 is usually an hypothesis of no effect. The philo-
sophical basis for the statistical null hypothesis,
at least in part, relates back to Popperian falsifica-
tionism, whereby science makes progress by
severely testing and falsifying hypotheses. The
implication is that rejection of the statistical H0 is
equivalent to falsifying it and therefore provides
support (“corroboration”) for the research hypoth-
esis as the only alternative (Underwood 1997). We
do not test the research hypothesis in this way
because it is rarely more exact than postulating
an effect, sometimes in a particular direction.
Fisher (1935) pointed out that the null hypothesis
is exact, e.g. a difference of zero, and is the result
we would expect from randomizing observations
to different experimental groups when there is no
effect of the experimental treatment (Mulaik et al.
1997). The philosophical justification for testing
the null hypothesis is still a controversial issue.
For example, Oakes (1986) argued that support for
the research hypothesis as a result of the null
being rejected is not true corroboration and statis-
tical tests, as currently practiced, have only super-
ficial philosophical respectability.

Second, we must choose a test statistic to test
the H0. A test statistic is a random variable and, as
such, can be described by a probability distribu-
tion. For example, a commonly used test statistic



for testing hypotheses about population means is
t, where:

t� (3.1)

We introduced the t statistic and its probability
distribution in Chapters 1 and used it in Chapter
2 for determining confidence intervals for popula-
tion means. Test statistics like t have a number of
probability distributions (see Figure 1.2), called
sampling distributions, one for each possible
degrees of freedom (n�1). These sampling distri-
butions represent the probability distributions of
t based on repeated random sampling from popu-
lations when the H0 is true and are sometimes
called central distributions. Probabilities asso-
ciated with particular ranges of values of test sta-
tistics are tabled in most statistics textbooks. Note
that test statistics are continuous random vari-
ables, so we cannot define the probability of a
single t value, for example. We can only talk about
the probability that t is greater (or less than) a
certain value or that t falls in the range between
two values.

Before we look at the practical application of
statistical tests, some consideration of history is
warranted. The early development of statistical
hypothesis testing was led primarily by Sir Ronald
Fisher, whose influence on statistics was enor-
mous. Fisher (1954, 1956) gave us null hypothesis
or significance testing in statistics with the follow-
ing methodology (Huberty 1993).

1. Construct a null hypothesis (H0).
2. Choose a test statistic that measures devia-

tion from the H0 and that has a known sampling
distribution (e.g. t statistic).

3. Collect the data by one or more random
samples from the population(s) and compare the
value of the test statistic from your sample(s) to
its sampling distribution.

4. Determine P value, the associated probabil-
ity of obtaining our sample value of the statistic,
or one more extreme, if H0 is true

5. Reject H0 if P is small; retain H0 otherwise.

Fisher proposed that we should report the
actual P value (e.g. P�0.042), which is a property
of the data and could be viewed as a “strength of
evidence” measure against H0 (Huberty 1994).

( ȳ��)
sȳ

Fisher also introduced the idea of a conventional
probability (of obtaining our sample data or data
more extreme if H0 is true) for rejecting H0; this is
called a significance level. He suggested a probabil-
ity of one in twenty (0.05 or 5%) as a convenient
level and the publication of tables of sampling dis-
tributions for various statistics reinforced this by
only including tail probabilities beyond these con-
ventional levels (e.g. 0.05, 0.01, 0.001). Later,
however, Fisher (1956) recommended that fixed
significance levels (e.g. 0.05) were too restrictive
and argued that a researcher’s significance level
would depend on circumstances. Fisher also intro-
duced the idea of fiducial inference, although this
approach is rarely used in the biological sciences
– Mayo (1996) and Oakes (1986) provide details.

Jerzy Neyman and Egon Pearson (Neyman &
Pearson 1928, 1933) offered a related but slightly
different approach, which has sometimes been
called statistical hypothesis testing. Their
approach differed from Fisher’s in a number of
important ways (Oakes 1986, Royall 1997).

1. They argued that we should set a level of
significance (e.g. 0.05) in advance of the data col-
lection and stick with it – this is sometimes
called fixed level testing. The significance level is
interpreted as the proportion of times the H0

would be wrongly rejected using this decision
rule if the experiment were repeated many times
and the H0 was actually true. Under the
Neyman–Pearson scheme, the P value provides
no additional information beyond indicating
whether we should reject the H0 at our specified
significance level (Oakes 1986). They emphasized
making a dichotomous decision about the H0

(reject or nor reject) and the possible errors asso-
ciated with that decision (see below) whereas
Fisher was more concerned with measuring evi-
dence against the H0. Whether P values provide a
suitable measure of evidence is a matter of
debate (e.g. Royall 1997) that we will consider
further in Section 3.6.

2. Another major difference between the
Fisher and the Neyman–Pearson approaches was
that Neyman and Pearson explicitly incorporated
an alternative hypothesis (HA) into their scheme.
The HA is the alternative hypothesis that must be
true if the H0 is false, e.g. if the H0 is that two
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population means are equal, then the HA is that
they are different by some amount. In contrast,
Fisher strongly opposed the idea of HA in
significance testing (Cohen 1990).

3. Neyman and Pearson developed the con-
cepts of Type I error (long-run probability of
falsely rejecting H0, which we denote �) and Type
II error (long-run probability of falsely not reject-
ing H0, which we denote �) and their a priori
significance level (e.g. ��0.05) was the long-run
probability of a Type I error (Gigerenzer 1993).
This led naturally to the concept of power (the
probability of correctly rejecting a false H0).
Fisher strongly disagreed with Neyman and
Pearson about the relevance of the two types of
error and even criticized Neyman and Pearson
for having no familiarity with practical applica-
tion of hypothesis testing in the natural sciences
(Oakes 1986)!

Statisticians have recently revisited the contro-
versy between the Fisher and Neyman–Pearson
approaches to hypothesis testing (Inman 1994,
Lehmann 1993, Mulaik et al. 1997, Royall 1997),
pointing out their similarities as well as their dis-
agreements and the confusion in terminology.
Biologists, like psychologists (Gigerenzer 1993),
most commonly follow a hybrid approach, com-
bining aspects of both Fisherian inference and
Neyman–Pearson decision-making to statistical
hypothesis testing.

1. Specify H0, HA and appropriate test statistic
2. Specify a priori significance level (e.g. 0.05),

which is the long-run frequency of Type I errors
(�) we are willing to accept.

3. Collect the data by one or more random
samples from the population(s) and calculate the
test statistic from our sample data.

4. Compare that value of the statistic to its
sampling distribution, assuming H0 true.

5. If the probability of obtaining this value or
one greater is less than the specified significance
level (e.g. 0.05), then conclude that the H0 is false
and reject it (“significant” result),

6. If the probability of obtaining this value is
greater than or equal to the specified
significance level (e.g. 0.05), then conclude there
is no evidence that the H0 is false and retain it
(“non-significant” result).

The Fisherian aspect of this hybrid approach is
that some biologists use P�0.05 (significant),
P�0.01 (very significant) and P�0.001 (highly sig-
nificant) or present the actual P values to indicate
strength of evidence against the H0. Although the
latter has been strongly criticized by some in the
psychological literature (Shaver 1993), there is
some logical justification for providing P values
(Oakes 1986). For one thing, it allows readers to
use their own a priori significance levels to decide
whether or not to reject the H0.

To reiterate, interpretations from classical sta-
tistical tests are based on a long-run frequency
interpretation of probabilities, i.e. the probability
in a long run of identical “trials” or “experi-
ments”. This implies that we have one or more
clearly defined population(s) from which we are
sampling and for which inferences are to be made.
If there is no definable population from which
random samples are collected, the inferential
statistics discussed here are more difficult to
interpret since they are based on long-run fre-
quencies of occurrence from repeated sampling.
Randomization tests (Section 3.3.2), which do not
require random sampling from a population, may
be more applicable.

3.1.2 Associated probability and Type I
error

Fisher and Neyman & Pearson both acknowledged
that probabilities from classical statistical
hypothesis testing must be interpreted in the
long-run frequency sense, although the latter
were more dogmatic about it. The sampling distri-
bution of the test statistic (e.g. t) gives us the long-
run probabilities of different ranges of t values
occurring if we sample repeatedly from a popula-
tion(s) in which the H0 is true. The P value, termed
the associated probability by Oakes (1986), then is
simply the long-run probability of obtaining our
sample test statistic or one more extreme, if H0 is
true. Therefore, the P value can be expressed as
P(data|H0), the probability of observing our
sample data, or data more extreme, under
repeated identical experiments if the H0 is true.
This is not the same as the probability of H0 being
true, given the observed data – P(H0|data). As
Oakes (1986) has pointed out, there is rarely a sen-
sible long-run frequency interpretation for the
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probability that a particular hypothesis is true. If
we wish to know the probability of H0 being true,
we need to tackle hypothesis testing from a
Bayesian perspective (Berger & Berry 1988; see
Section 3.7).

The P value is also sometimes misinterpreted
as the probability of the result of a specific analy-
sis being due to chance, e.g. a P value of �0.05
means that there is a less than 5% probability that
the result is due to chance. This is not strictly
correct (Shaver 1993); it is the probability of a
result occurring by chance in the long run if H0 is
true, not the probability of any particular result
being due to chance.

Traditionally, biologists are correctly taught
that a non-significant result (not rejecting H0)
does not indicate that H0 is true, as Fisher himself
stressed. In contrast, the Neyman–Pearson logic is
that H0 and HA are the only alternatives and the
non-rejection of H0 implies the acceptance of H0

(Gigerenzer 1993), a position apparently adopted
by some textbooks, e.g. Sokal & Rohlf (1995) refer
to the acceptance of H0. The Neyman–Pearson
approach is really about alternative courses of
actions based on the decision to accept or reject.
Accepting the H0 does not imply its truth, just that
one would take the action that results from such
a decision.

Our view is that a statistically non-significant
result basically means we should suspend judge-
ment and we have no evidence to reject the H0.
The exception would be if we show that the power
of our test to detect a desired alternative hypothe-
sis was high, then we can conclude the true effect
is probably less than this specific effect size
(Chapter 7). Underwood (1990, 1999) has argued
that retention of the H0 implies that the research
hypothesis and model on which it is based are fal-
sified (see Chapter 1). In this context, a statistically
non-significant result should initiate a process of
revising or even replacing the model and devising
new tests of the new model(s). The philosophical
basis for interpreting so-called ‘negative’ results
continues to be debated in the scientific literature
(e.g. see opinion articles by Allchin 1999, Hull
1999 and Ruse 1999 in Marine Ecology Progress
Series).

The Type I error rate is the long-run probabil-
ity of rejecting the H0 at our chosen significance

level, e.g. 0.05, if the H0 is actually true in all the
repeated experiments or trials. A Type I error is
one of the two possible errors when we make a
decision about whether the H0 is likely to be true
or not under the Neyman–Pearson protocol. We
will consider these errors further in Section 3.2.

3.1.3 Hypothesis tests for a single
population

We will illustrate testing an H0 with the simplest
type of test, the single-parameter t test. We dem-
onstrated the importance of the t distribution for
determining confidence intervals in Chapter 2. It
can also be used for testing hypotheses about
single population parameters or about the differ-
ence between two population parameters if
certain assumptions about the variable hold. Here
we will look at the first type of hypothesis, e.g.
does the population mean equal zero? The value
of the parameter specified in the H0 doesn’t have
to be zero, particularly when the parameter is a
mean, e.g. testing an H0 that the mean size of an
organism is zero makes little biological sense.
Sometimes testing an H0 that the mean equals
zero is relevant, e.g. the mean change from before
to after a treatment equals zero, and testing
whether other parameters equal zero (e.g. regres-
sion coefficients, variance components, etc.) is
very important. We will consider these parame-
ters in later chapters.

The general form of the t statistic is:

ts� (3.2)

where St is the value of the statistic from our
sample, � is the population value against which
the sample statistic is to be tested (as specified in
the H0) and SSt is the estimated standard error of the
sample statistic. We will go through an example of
a statistical test using a one-sample t test.

1. Specify the H0 (e.g.��0) and HA (e.g. ��0).
2. Take a random sample from a clearly

defined population.
3. Calculate t� ( ȳ�0)/sȳ from the sample,

where sȳ is the estimated standard error of the
sample mean. Note that if H0 is true, we would
expect t to be close to zero, i.e. when we sample
from a population with a mean of zero, most

St��
SSt
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samples will have means close
to zero. Sample means
further from zero are less
likely to occur if H0 is true.
The probability of getting a
sample mean a long way from
zero, and therefore a large t,
either positive or negative, is
less if the H0 is true. Large t
values are possible if H0 is
true – they are just unlikely.

4. Compare t with the
sampling distribution of t at
��0.05 (or 0.01 or whatever
significance level you choose a priori) with n�1
df. Look at the t distribution in Figure 3.1.
Values of t greater than �tc or less than �tc have
a less than 0.05 chance of occurring from this t
distribution, which is the probability
distribution of t when H0 is true. This value (tc)
is sometimes called the critical value. If the
probability (P value) of obtaining our sample t
value or one larger is less than 0.05 (our �), then
we reject the H0. Because we can reject H0 in
either direction, if � is greater than zero or if �
is less than zero, then large values of the test
statistic at either end of the sampling
distribution will result in rejection of H0 (Figure
3.1). This is termed a two-tailed test (see Section
3.1.4). To do a test with��0.05, then we reject
H0 if our t value falls in the regions where P�
0.025 at each end of the sampling distribution
(0.025�0.025�0.05). If the probability (P value)
of obtaining our t value or one larger is �0.05,
then we do not reject the H0.

As mentioned earlier, the sampling distribu-
tion of the t statistic when the H0 is true is also
called the central t distribution. The probabilities
for the t distribution for different degrees of
freedom are tabled in most textbooks (usually for
P�0.05, 0.01 and sometimes 0.001). In addition, t
distributions are programmed into statistical

software. When using statistical tables, our value
of t is simply compared to the critical tc value at��
0.05. Larger t values always have a smaller P value
(probability of this or a larger value occurring if H0

is true) so if the statistic is larger than the critical
value at 0.05, then H0 is rejected. Statistical soft-
ware usually gives actual P values for statistical
tests, making the use of tables unnecessary.

We could theoretically use the sampling distri-
bution of the sample mean (which would be a
normal distribution) to test our H0. However, there
are an infinite number of possible combinations
of mean and variance, so in practice such sam-
pling distributions are not calculated. Instead, we
convert the sample mean to a t value (subtracting
� specified in H0 and dividing by the standard
error of the mean), whose central distribution is
well defined.

Finally, it is important to note the relationship
between the hypothesis test illustrated here and
confidence intervals described in Chapter 2. The
H0 that � equals zero is tested using a t distribu-
tion; a confidence interval for � is also con-
structed using the same t distribution (based on n
�1 df ). Not surprisingly then, a test of this H0

with a 0.05 significance level is the equivalent of
seeing whether the 95% (0.95) confidence interval
for � overlaps zero; if it does, we have no evidence
to reject H0.
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Figure 3.1. Probability
distributions of t for (a) two-tailed
and (b) one-tailed tests, showing
critical t values (tc ).



3.1.4 One- and two-tailed tests
In most cases in biology, the H0 is one of no effect
(e.g. no difference between two means) and the HA

(the alternative hypothesis) can be in either direc-
tion; the H0 is rejected if one mean is bigger than
the other mean or vice versa. This is termed a two-
tailed test because large values of the test statistic
at either end of the sampling distribution will
result in rejection of H0 (Figure 3.1). The H0 that a
parameter equals a specific value is sometimes
called a simple hypothesis or a point hypothesis
(Barnett 1999). To do a test with ��0.05, then we
use critical values of the test statistic at ��0.025
at each end of the sampling distribution.
Sometimes, our H0 is more specific than just no
difference. We might only be interested in
whether one mean is bigger than the other mean
but not the other way. For example, we might
expect increased density of organisms to induce
competition and reduce their growth rate, and we
can think of no mechanism whereby the organ-
isms at the higher density would increase their
growth. Here our H0 is that the population mean
growth rate for increased density is greater than
or equal to the population mean growth rate for
lower density. Our HA is, therefore, that the popu-
lation mean growth rate for increased density is
less than the population mean growth rate for
lower density. This is a one-tailed test, the H0 being
directional or composite (Barnett 1999), because
only large values of the test statistic at one end of
the sampling distribution will result in rejection
of the H0 (Figure 3.1). To do a test with ��0.05,
then we use critical values of the test statistic at
��0.05 at one end of the sampling distribution.

We should test one-tailed hypotheses with care
because we are obliged to ignore large differences
in the other direction, no matter how tempting it
may be to deal with them. For example, if we
expect increased phosphorous (P) to increase
plant growth compared to controls (C) with no
added phosphorous, we might perform a one-
tailed t test (H0: �P
�C; HA: �P��C). However, we
cannot draw any formal conclusions if growth
rate is much less when phosphorous is added,
only that it is a non-significant result and we have
no evidence to reject the H0. Is this unrealistic,
expecting a biologist to ignore what might be an
important effect just because it was in the oppo-

site direction to that expected? This might seem
like an argument against one-tailed tests, avoid-
ing the problem by never ruling out interest in
effects in both directions and always using two-
tailed tests. Royall (1997) suggested that research-
ers who choose one-tailed tests should be trusted
to use them correctly, although he used the prob-
lems associated with the one-tail versus two-tail
choice as one of his arguments against statistical
hypothesis testing and P values more generally. An
example of one-tailed tests comes from Todd &
Keough (1994), who were interested in whether
microbial films that develop on marine hard sub-
strata act as cues inducing invertebrate larvae to
settle. Because they expected these films to be a
positive cue, they were willing to focus on changes
in settlement in one direction only. They then
ignored differences in the opposite direction from
their a priori one-tailed hypothesis.

Most statistical tables either provide critical
values for both one- and two-tailed tests but some
just have either one- or two-tailed critical values
depending on the statistic, so make sure you look
up the correct P value if you must use tables.
Statistical software usually produces two-tailed P
values so you should compare the P value to
��0.10 for a one-tailed test at 0.05.

3.1.5 Hypotheses for two populations
These are tests of null hypotheses about the equiv-
alent parameter in two populations. These tests
can be one- or two-tailed although testing a point
null hypothesis with a two-tailed test is more
common in practice, i.e. the parameter is the same
in the two populations. If we have a random sample
from each of two independent populations, i.e. the
populations represent different collections of
observations (i.e. sampling or experimental units),
then to test the H0 that �1��2 (comparing two
independent population means):

t� (3.3)

where

sȳ1� ȳ2
� (3.4)

Equation 3.4 is the standard error of the differ-
ence between the two means. This is just like the

� (n1�1)s 2
1 � (n2�1)s 2

2

n1�n2�2
 � 1

n1
�

1

n2
	

ȳ1� ȳ2

sȳ1�ȳ2
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one-parameter t test except the single sample sta-
tistic is replaced by the difference between two
sample statistics, the population parameter spec-
ified in the H0 is replaced by the difference
between the parameters of the two populations
specified in the H0 and the standard error of the
statistic is replaced by the standard error of the
difference between two statistics:

t� (3.5)

We follow the steps in Section 3.1.1 and compare t
to the t distribution with n1�n2�2 df in the usual
manner. This H0 can also be tested with an ANOVA
F-ratio test (Chapter 8).

We will illustrate tests of hypotheses about two
populations with two examples. Ward & Quinn
(1988) studied aspects of the ecology of the inter-
tidal predatory gastropod Lepsiella vinosa on a
rocky shore in southeastern Australia (Box 3.1). L.
vinosa occurred in two distinct zones on this
shore: a high-shore zone dominated by small
grazing gastropods Littorina spp. and a mid-shore
zone dominated by beds of the mussels
Xenostrobus pulex and Brachidontes rostratus. Both
gastropods and mussels are eaten by L. vinosa.
Other data indicated that rates of energy con-
sumption by L. vinosa were much greater in the
mussel zone. Ward & Quinn (1988) were interested
in whether there were any differences in fecun-
dity of L. vinosa, especially the number of eggs per
capsule, between the zones. From June to
September 1982, they collected any egg capsules
they could find in each zone and recorded the
number of eggs per capsule. There were 37 cap-
sules recorded from the littorinid zone and 42
from the mussel zone. The H0 was that there is no
difference between the zones in the mean
number of eggs per capsule. This is an indepen-
dent comparison because the egg capsules were
independent between the zones.

Furness & Bryant (1996) studied energy
budgets of breeding northern fulmars (Fulmarus
glacialis) in Shetland (Box 3.2). As part of their
study, they recorded various characteristics of
individually labeled male and female fulmars. We
will focus on differences between sexes in meta-
bolic rate. There were eight males and six females
labeled. The H0 was that there is no difference

( ȳ1� ȳ2)� (�1��2)
sȳ1�ȳ2

between the sexes in the mean metabolic rate of
fulmars. This is an independent comparison
because individual fulmars can only be either
male or female.

If we have a random sample from a population
and we have recorded two (paired) variables from
each observation, then we have what are com-
monly called paired samples, e.g. observations at
two times. To test whether the population mean
difference between the two sets of observations
equals zero, we basically use a test for a single pop-
ulation (Section 3.1.3) to test the H0 that �d�0:

t� (3.6)

where d̄ is the mean of the pairwise differences
and sd̄ is the standard error of the pairwise differ-
ences. We compare t with a t distribution with n�
1 df in the usual manner. This H0 can also be tested
with a two factor unreplicated ANOVA F-ratio test
(Chapter 10).

For example, Elgar et al. (1996) studied the
effect of lighting on the web structure of an orb-
spinning spider (Box 3.3). They set up wooden
frames with two different light regimes (con-
trolled by black or white mosquito netting), light
and dim. A total of 17 orb spiders were allowed to
spin their webs in both a light frame and a dim
frame, with six days’ “rest” between trials for each
spider, and the vertical and horizontal diameter
of each web was measured. Whether each spider
was allocated to a light or dim frame first was ran-
domized. The null hypotheses were that the two
variables (vertical diameter and horizontal diam-
eter of the orb web) were the same in dim and
light conditions. Elgar et al. (1996) correctly
treated this as a paired comparison because the
same spider spun her web in a light frame and a
dark frame.

We can also test whether the variances of two
populations are the same. Recall from Chapter 2
that variances are distributed as chi-squares and
the ratio of two chi-square distributions is an F dis-
tribution, another probability distribution that is
well defined. To test the H0 that 	1

2�	2
2 (compar-

ing two population variances), we calculate an F-
ratio statistic:

F� (3.7)
s 2

1

s 2
2

d̄
sd̄
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where s1
2 is the larger sample variance and s2

2 is
the smaller sample variance. We compare this F-
ratio with an F distribution with n1�1 df for
numerator (sample one) and n2�1 df for denomi-
nator (sample two). We will consider F-ratio tests
on variances in more detail in Chapters 5 onwards.

3.1.6 Parametric tests and their
assumptions

The t tests we have just described for testing null
hypotheses about population means are classified
as parametric tests, where we can specify a prob-
ability distribution for the populations of the
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Box 3.1 Fecundity of predatory gastropods 

Ward & Quinn (1988) collected 37 egg capsules of the intertidal predatory gastro-
pod Lepsiella vinosa from the littorinid zone on a rocky intertidal shore and 42 cap-
sules from the mussel zone. Other data indicated that rates of energy consumption
by L. vinosa were much greater in the mussel zone so there was interest in differ-
ences in fecundity between the zones. The H0 was that there is no difference
between the zones in the mean number of eggs per capsule. This is an indepen-
dent comparison because individual egg capsules can only be in either of the two
zones.

Standard SE of 95% CI for 
Zone n Mean Median Rank sum deviation mean mean

Littorinid 37 8.70 9 1007 2.03 0.33 8.03–9.38
Mussel 42 11.36 11 2153 2.33 0.36 10.64–12.08 

Note that standard deviations (and therefore the variances) are similar and box-
plots (Figure 4.4) do not suggest any asymmetry so a parametric t test is appropri-
ate.

Pooled variance test:

t��5.39, df�77, P�0.001.

We would reject the H0 and conclude there was a statistically significant difference
in mean number of eggs per capsule between zones.

Effect size (difference between means)��2.65 (95% CI:�1.674 to �3.635)
Separate variance test:

t��5.44, df�77, P�0.001.

Note that the t values were almost identical and the degrees of freedom were the
same, not surprising since the variances were almost identical.

Although there was little justification for a non-parametric test, we also tested
the H0 that there was no difference in a more general measure of location using
the Mann–Whitney–Wilcoxon test.

U�304.00, v 2 approximation�21.99 with 1 df, P�0.001.

Again we would reject the H0. In this example, the parametric pooled and separ-
ate variance t tests and non-parametric test all give P values�0.001.

A randomization test was done to test the H0 that there is no difference
between the mean number of eggs per capsule so that any possible allocation of
observations to the two groups is equally likely.

Mean difference��2.65, P�0.001 (significant) for difference as or more
extreme than observed based on 10 000 randomizations.



variable from which our samples came. All statis-
tical tests have some assumptions (yes, even so-
called “non-parametric tests” – see Section 3.3.3)
and if these assumptions are not met, then the
test may not be reliable. Basically, violation of
these assumptions means that the test statistic
(e.g. t) may no longer be distributed as a t distribu-
tion, which then means that our P values may not
be reliable. Although parametric tests have these
assumptions in theory, in practice these tests may
be robust to moderate violations of these assump-
tions, i.e. the test and the P values may still be reli-
able even if the assumptions are not met. We
will describe the assumptions of t tests here and

introduce ways of checking these assumptions,
although these methods are presented in more
detail in Chapter 4. The assumptions themselves
are also considered in more detail as assumptions
for linear models in Chapters 5 onwards.

The first assumption is that the samples are
from normally distributed populations. There is
reasonable evidence from simulation studies
(Glass et al. 1972, Posten 1984) that significance
tests based on the t test are usually robust to viola-
tions of this assumption unless the distributions
are very non-symmetrical, e.g. skewed or multi-
modal. Checks for symmetry of distributions can
include dotplots (if n is large enough), boxplots and
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Box 3.2 Metabolic rate of male and female fulmars 

Furness & Bryant (1996) studied energy budgets of breeding northern fulmars
(Fulmarus glacialis) in Shetland. As part of their study, they recorded various char-
acteristics of individually labeled male and female fulmars. We will focus on differ-
ences between sexes in metabolic rate. There were eight males and six females
labeled. The H0 was that there is no difference between the sexes in the mean
metabolic rates of fulmars. This is an independent comparison because individual
fulmars can only be either male or female.

Standard SE of 95% CI for 
Sex n Mean Median deviation mean mean

Male 8 1563.78 1570.55 894.37 316.21 816.06�2311.49
Female 6 1285.52 1226.15 420.96 171.86 843.74�1727.29

Note that variances are very different although the boxplots (Figure 4.5) do not
suggest strong asymmetry. The small and unequal sample sizes, in conjunction with
the unequal variances, indicate that a t test based on separate variances is more
appropriate.

Separate variance test:

t�0.77, df�10.5, P�0.457.

We would not reject the H0 and conclude there was no statistically significant dif-
ference in mean metabolic rate of fulmars between sexes.

The effect size (difference between means)�278.26 (95% CI: �518.804 to
1075.321).
Note that the confidence interval on the mean difference includes zero, as expected
given the non-significant result from the test.

The very different variances would make us reluctant to use a rank-based non-
parametric test. Even a randomization test might be susceptible to unequal vari-
ance, although the results from such a test support the previous conclusion.

Mean difference�278.26, P�0.252 (not significant) for difference as or more
extreme than observed based on 10 000 randomizations.



pplots (see Chapter 4). Transformations of the vari-
able to a different scale of measurement (Chapter
4) can often improve its normality. We do not rec-
ommend formal significance tests for normality
(e.g. Shapiro–Wilk test, Lilliefors test; see Sprent
1993) because, depending on the sample size, these
tests may reject the H0 of normality in situations
when the subsequent t test may be reliable.

The second assumption is that samples are
from populations with equal variances. This is a
more critical assumption although, again, the
usual t test is very robust to moderately unequal
variances if sample sizes are equal (Glass et al.
1972, Posten 1984). While much of the simulation
work relates to analysis of variance (ANOVA) prob-
lems (see Day & Quinn 1989, Wilcox et al. 1986,
Chapter 8), the results also hold for t tests, which
are equivalent to an ANOVA F-ratio test on two
groups. For example, if n equals six and the ratio

of the two standard deviations is four or less, sim-
ulations show that the observed Type I error rate
for the t test is close to the specified rate (Coombs
et al. 1996). If sample sizes are very unequal, espe-
cially if the smaller sample has the larger vari-
ance, then Type I error rates may be much higher
than postulated significance level. If the larger
sample has the larger variance, then the rate of
Type II errors will be high (Judd et al. 1995, Coombs
et al. 1996). Coombs et al. (1996) illustrated this
with simulation data from Wilcox et al. (1986) that
showed that for sample sizes of 11 and 21, a four to
one ratio of standard deviations (largest standard
deviation associated with small sample size)
resulted in a Type I error rate of nearly 0.16 for a
nominal� of 0.05. Note that unequal variances are
often due to skewed distributions, so fixing the
non-normality problem will often make variances
more similar. Checks for this assumption include
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Box 3.3 Orb spider webs and light intensity 

Elgar et al. (1996) exposed 17 orb spiders each to dim and light conditions and
recorded two aspects of web structure under each condition. The H0s are that the
two variables (vertical diameter and horizontal diameter of the orb web) were the
same in dim and light conditions. Because the same spider spun her web in both
light conditions, then this was a paired comparison. Boxplots of paired differences
for both variables suggested symmetrical distributions with no outliers, so a para-
metric paired t test is appropriate.

Horizontal diameter (cm):

Mean difference�46.18, SE difference�21.49.
t�2.15, df�16, P�0.047 (significant).

So we would reject the H0 and conclude that, for the population of female orb
spiders, there is a difference in the mean horizontal diameter of spider webs
between light and dim conditions.

Wilcoxon signed rank z��1.84, P�0.066 (not significant), do not reject H0. Note
the less powerful non-parametric test produced a different result.

Vertical diameter (cm):

Mean difference�20.59, SE difference�21.32.
t�0.97, df�16, P�0.349 (not significant), do not reject H0.

So we would not reject the H0 and conclude that, for the population of female orb
spiders, there is no difference in the mean vertical diameter of spider webs between
light and dim conditions.

Wilcoxon signed rank z��0.78, P�0.434 (not significant). In this case, the non-
parametric test produced the same conclusion as the t test.



examining boxplots of each
sample for similar spreads. We
do not routinely recommend a
preliminary test of equal pop-
ulation variances using an F-
ratio test (Section 3.1.5) for
three reasons.

• The F-ratio test might be more sensitive to non-
normality than the t test it is “protecting”.

• Depending on sample size, an F-ratio test may
not detect variance differences that could
invalidate the following t test, or it might find
unequal variances (and hence recommend the
following analysis not be done), which would
not adversely affect the subsequent t test
(Markowski & Markowski 1990). This
dependence of the results of a statistical
hypothesis test on sample size is well known
and will be discussed further in Section 3.6.

• Statistical hypothesis testing should be used
carefully, preferably in situations where power
and effect sizes have been considered; this is
rarely the case for exploratory checks of
assumptions.

The third assumption is that the observations are
sampled randomly from clearly defined popula-
tions. This is an assumption that must be consid-
ered at the design stage. If samples cannot be
sampled randomly from populations, then a more
general hypothesis about differences between
samples can be tested with a randomization test
(see Section 3.3.2).

These t tests are much more sensitive to
assumptions about normality and equal variances
if sample sizes are unequal, so for this reason
alone, it’s always a good idea to design studies
with equal sample sizes. On an historical note,
testing differences between means when the vari-
ances also differ has been a research area of long-
standing interest in statistics and is usually called
the Behrens–Fisher problem. Solutions to this
problem will be discussed in Section 3.3.1.

An additional issue with many statistical tests,
including parametric tests, is the presence of

outliers (Chapter 4). Outliers are extreme values
in a sample very different from the rest of the
observations and can have strong effects on the
results of most statistical tests, in terms of both
Type I and Type II errors. Note that both paramet-
ric t tests and non-parametric tests based on ranks
(Section 3.3) are affected by outliers (Zimmerman
1994), although rank-based tests are less sensitive
(Zimmerman & Zumbo 1993). Detection and treat-
ment of outliers is considered in Chapter 4.

3.2 Decision errors

3.2.1 Type I and II errors
When we use the Neyman–Pearson protocol to
test an H0, there are four possible outcomes based
on whether the H0 was actually true (no effect) or
not (real effect) for the population (Figure 3.2). A
rejection of a H0 is usually termed a significant
result (statistically significant, not necessarily bio-
logically significant – see Box 3.4) and implies that
some alternative hypothesis (HA) is true. Clearly,
two of the outcomes result in the right statistical
decision being made; we correctly reject a false H0

or we correctly retain a true H0. What about the
two errors?

• A Type I error is when we mistakenly reject a
correct H0 (e.g. when we conclude from our
sample and a t test that the population
parameter is not equal to zero when in fact the
population parameter does equal zero) and is
denoted �. A Type I error can only occur when
H0 is true.

• A Type II error is when we mistakenly accept
an incorrect H0 (e.g. when we conclude from
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Figure 3.2. Statistical decisions
and errors when testing null
hypotheses.
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our sample and a t test that the population
parameter equals zero when in fact the
population parameter is different from zero).
Type II error rates are denoted by � and can
only occur when the H0 is false.

Both errors are the result of chance. Our
random sample(s) may provide misleading infor-
mation about the population(s), especially if the
sample sizes are small. For example, two popula-
tions may have the same mean value but our
sample from one population may, by chance,
contain all large values and our sample from the
other population may, by chance, contain all
small values, resulting in a statistically significant
difference between means. Such a Type I error is
possible even if H0 (�1��2) is true, it’s just
unlikely. Keep in mind the frequency interpreta-
tion of P values also applies to the interpretation
of error rates. The Type I and Type II error prob-
abilities do not necessarily apply to our specific
statistical test but represent the long-run prob-
ability of errors if we repeatedly sampled from the
same population(s) and did the test many times.

Examine Figure 3.3, which shows the probabil-
ity sampling distribution of t when the H0 is true
(left curve) and the probability sampling distribu-
tion of t when a particular HA is true (right curve).
Of course, we never know what this latter distribu-
tion looks like in practice because if H0 is false, we
don’t know what the real HA is. For a particular df,
there will be a different distribution for each pos-
sible HA but only one sampling distribution for H0.
The critical value of t for ��0.05 is indicated. If H0

is actually true, any t value greater than this criti-
cal value will lead to a rejection of H0 and a Type
I error. If H0 is actually false and HA is true, any

value equal to or smaller than
this critical value will lead to
non-rejection of H0 and a
Type II error. Note that if H0 is,
for example, no difference
between means, then HA is a
difference between means.

The bigger the difference, the further the t distri-
bution for HA will be to the right of the t distribu-
tion for H0 and the less likely will be a Type II
error.

Traditionally, scientists have been most con-
cerned with Type I errors. This is probably
because statistically significant results imply fal-
sification of a null hypothesis and therefore
progress in science and maybe because we
wrongly equate statistical significance with bio-
logical significance (see Box 3.4). Therefore, we
protect ourselves (and our discipline) from false
significant results by using a conservative signifi-
cance level (e.g. 0.05); this means that we are con-
trolling our Type I error rate to 0.05 or 5%. If the
probability of obtaining our sample when the H0

is true is less than 0.05, then we reject that H0;
otherwise we don’t reject it. Why don’t we use an
even lower significance level to protect ourselves
from Type I errors even more? Mainly because for
most statistical tests, for a given sample size and
level of variation, lowering the Type I error rate
(the significance level) results in more Type II
errors (imagine moving the vertical line to the
right in Figure 3.3) if it turns out that the HA is
true.

For some activities, especially environmental
monitoring and impact assessment and experi-
ments involving human health issues, Type II
errors may be of much greater importance than
Type I. Consider a monitoring program, and the
consequences of the two kinds of errors. A Type I
error results in an erroneous claim of a significant
environmental change. In an ideal world, the
result would be a requirement by the relevant reg-
ulatory authority for some mitigation or cessa-
tion of the activity causing that change. The
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Figure 3.3. Graphical
representation of Type I and Type II
error probabilities, using a t test as
an example.
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“costs” would be purely financial – the cost of
(unnecessary) mitigation. A Type II error, on the
other hand, is a failure to detect a change that has
occurred. The verdict of “no significant impact”
results in continuation of harmful activities.
There is no added financial cost, but some time in
the future the environmental change will become
large enough to become apparent. The conse-
quence of this error is that significant environ-
mental degradation may have occurred or become
more widespread than if it had been detected
early, and mitigation or rehabilitation may be nec-
essary, perhaps at significant cost. A strong argu-
ment can therefore be made that for many
“applied” purposes, Type II errors are more impor-
tant than Type I errors. A similar argument
applies to other research areas. Underwood (1990,
1997), in describing the logical structure of
hypothesis testing, indicates very clearly how
Type II errors can misdirect research programs
completely.

The inverse of Type II error is power, the prob-
ability of rejecting a false H0. We will consider
power in more detail as part of experimental
design in Chapter 7.

3.2.2 Asymmetry and scalable decision
criteria

One of the problems of fixing our significance
level �, even if we then use power analysis to deter-
mine sample sizes to minimize the probability of
Type II errors, is that there is an implicit asymme-
try in the importance of H0 relative to HA (Barnett
1999, Oakes 1986). In many practical situations,
fixing � to 0.05 will make it difficult to reduce the
probability of Type II errors to a comparable level,
unless sample sizes or effect sizes are very large.
The only solution to this problem, while still
maintaining the structure of statistical tests and
errors associated with decisions, is to abandon
fixed level testing and use decision criteria that
provide a more sensible balance between Type I
and Type II errors.

Mapstone (1995) has proposed one way of
incorporating flexible decision criteria in statisti-
cal hypothesis testing in ecology and environmen-
tal science. He suggested that we should set the
ratio of acceptable Type I and Type II errors a
priori, based on the relative costs of making each
kind of error, and the critical effect size is the
most crucial element. Keough & Mapstone (1995)
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Box 3.4 Biological versus statistical significance

It is important to distinguish between biological and statistical significance. As men-
tioned in Section 3.6.1, if we take larger and larger samples,we can detect even very
small differences. Whenever we  get a (statistically) significant result, we must still
decide whether the effects that we observe are biologically meaningful. For
example, we might measure 100 snails in each of two populations, and we would
almost certainly find that the two populations were different in size. However, if the
mean size differed by 
1%, we may struggle to explain the biological meaning of
such a small difference.

What is biologically significant? The answer has nothing to do with statistics, but
with our biological judgment, and the answer will vary with the questions being
answered. Small effects of experimental treatments may be biologically significant
when we are dealing with rates of gene flow, selection, or some physiological meas-
urements, because small differences can have important repercussions in popula-
tion genetics or organism health. For example, small changes in the concentration
of a toxin in body tissues may be enough to cause mortality. In contrast, small effects
may be less important for ecological processes at larger spatial scales, especially
under field conditions.

It is important for biologists to think carefully about how large an effect has to
be before it is biologically meaningful. In particular, setting biologically important
effect sizes is crucial for ensuring that out statistical test has adequate power.



have incorporated this idea into a framework for
designing environmental monitoring programs,
and included a worked example. Downes et al.
(2001) have also advocated scalable decision crite-
ria for assessing environmental impact in fresh-
water ecosystems. The logic of considering costs of
making errors in statistical decision making is
much closer to the Bayesian approach to making
decisions, although Bayesians eschew the long-
run frequency view of probability (Section 3.7).

3.3 Other testing methods

The statistical tests most commonly used by biol-
ogists, and the tests based on the t distribution we
have just described, are known as parametric
tests. These tests make distributional assumptions
about the data, which for t tests are that the dis-
tributions of the populations from which the
samples came are normal. Most textbooks state
that parametric tests are robust to this assump-
tion, i.e. the sampling distribution of the t statis-
tic still follows the appropriate mathematical
distribution even if the variable has a non-normal
distribution. This means that the conclusions
from the test of H0 are still reliable even if the
underlying distribution is not perfectly normal.
This robustness is limited, however, and the
assumption of normality (along with other
assumptions inherent in all statistical tests – see
Section 3.1.6) should always be checked before
doing a parametric analysis.

3.3.1 Robust parametric tests
A number of tests have been developed for the H0

that �1��2 which do not assume equal variances.
For example, there are approximate versions of
the t test (called variously the Welch test,
Welch–Aspin test, the Satterthwaite-adjusted t
test, Behrens–Fisher test, separate variances t test),
which are available in most statistical software.
The most common version of this test recalculates
the df for the t test as (Hays 1994):

�2 (3.8)

This results in lower df (which may not be an
integer) and therefore a more conservative test.

(s1 /�n1� s2 /�n2)2

(s1/�n1)2 /(n1�1)� (s2 /�n2)2 /(n2�1)

Such a test is more reliable than the traditional t
test when variances are very unequal and/or
sample sizes are unequal.

Coombs et al. (1996) reviewed all the available
tests for comparing two population means when
variances may be unequal. They indicated that the
Welch test is suitable when the samples come
from normally distributed populations but rec-
ommended the Wilcox H test, based on M-
estimators and bootstrapped estimates of
variance (Chapter 2), for skewed distributions.
Unfortunately, this test is not available in most
software.

Some common types of null hypotheses can
also be tested with non-parametric tests. Non-
parametric tests do not assume that the underly-
ing distribution of the population(s) from which
the samples came is normal. Before looking at
“classical” non-parametric tests based on ranks,
let’s consider another type of statistical test called
a randomization test.

3.3.2 Randomization (permutation) tests
These tests resample or reshuffle the original data
many times to generate the sampling distribution
of a test statistic directly. Fisher (1935) first pro-
posed that this method might be suitable for
testing hypotheses but, without computers, could
only analyze very small data sets. To illustrate ran-
domization tests, we will revisit the example
described in Section 3.1.5 where Ward & Quinn
(1988) wished to test the H0 that there is no differ-
ence between the mussel and littorinid zones in
the mean number of eggs per capsule of L.vinosa.
The steps in the randomization test are as follows
(Manly 1997).

1. Calculate the difference between the mean
numbers of eggs per capsule of the two groups
(D0).

2. Randomly reassign the 79 observations so
that 37 are in the littorinid zone group and 42
are in the mussel zone group and calculate the
difference between the means of the two groups
(D1).

3. Repeat this step a large number of times,
each time calculating the Di. How many
randomizations? Manly (1997) suggested 1000
times for a 0.05 test and 5000 times for a
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0.01 test. With modern computer power, these
numbers of randomizations only take a few
seconds.

4. Calculate the proportion of all the Dis that
are greater than or equal to D0 (the difference
between the means in our samples). This is the
“P value” and it can be compared to an a priori
significance level (e.g. 0.05) to decide whether to
reject the H0 or not (Neyman–Pearson tradition),
or used as a measure of “strength of evidence”
against the H0 (Fisher tradition – see Manly
1997).

The underlying principle behind randomiza-
tion tests is that if the null hypothesis is true, then
any random arrangement of observations to
groups is equally possible (Crowley 1992).
Randomization tests can be applied to situations
where we are comparing groups or testing
whether a set of observations occurs in a random
order (e.g. time series). They are particularly
useful when analyzing data for which the distri-
bution is unknown (Potvin & Roff 1993), when
random sampling from populations is not pos-
sible (e.g. we are using data that occurred oppor-
tunistically, such as museum specimens – see
Manly 1997) or perhaps when other assumptions
such as independence of observations are ques-
tionable, as when testing for temporal trends
(Manly 1997). There are some potential interpreta-
tion problems with randomization tests that
users should be aware of. First, they involve resam-
pling the data to generate a probability distribu-
tion of the test statistic. This means that their
results are more difficult to relate to any larger
population but the positive side is that they are
particularly useful for analyzing experiments
where random sampling is not possible but ran-
domization of observations to groups is used
(Ludbrook & Dudley 1998). Crowley (1992, p. 432)
argued that the difficulty of making inferences to
some population is a problem “of greater theoret-
ical than applied relevance” (see also Edgington
1995), particularly as randomization tests give
similar P values to standard parametric tests when
assumptions hold (Manly 1997). Manly (1997) also
did not see this as a serious problem and pointed
out that one of the big advantages of randomiza-
tion tests is in situations when a population is not

relevant or the whole population is effectively
measured. Second, the H0 being tested then is not
one about population parameters, but simply that
there is no difference between the means of the
two groups, i.e. is the difference between group
means “greater then we would expect by chance”.
Finally, the P value is interpreted differently from
the usual “classical” tests. In randomization tests,
the P value is the proportion of possible data rear-
rangements (e.g. between two groups) that are
equal to, or more extreme than, the one we
observed in our sample(s). Interestingly, because
the P value is determined by a (re)sampling
process, confidence intervals for the P value can be
determined (Crowley 1992).

Randomization tests for differences between
group means are not free of assumptions. For
example, randomization tests of the H0 of no dif-
ference between means are likely to be sensitive to
differences in variances (Boik 1987, Stewart-Oaten
et al. 1992). Indeed, randomization tests of loca-
tion (e.g. mean) differences should be considered
to have an assumption of similar distributions in
the different samples, and transformations used
where appropriate (Crowley 1992). So these tests
should not be automatically applied to overcome
problems of variance heterogeneity.

Manly (1997) is an excellent introduction to
randomization tests from a biological perspective
and Crowley (1992) critically summarized many
applications of randomization tests in biology.
Other good references for randomization tests are
Edgington (1995) and Noreen (1989).

3.3.3 Rank-based non-parametric tests
Statisticians have appreciated the logic behind
randomization tests for quite a long time, but the
computations involved were prohibitive without
computers. One early solution to this problem was
to rank the observations first and then randomize
the ranks to develop probability distributions of a
rank-based test statistic. Ranking the observations
has two advantages in this situation. First, deter-
mining the probability distribution of a rank-
based test statistic (e.g. sum of the ranks in each
sample) by randomization is relatively easy,
because for a given sample size with no ties, the
distribution is identical for any set of data. The
critical values for such distributions are tabled in
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many statistics books. In contrast, determining
the probability distribution for a test statistic (e.g.
difference between means) based on randomizing
the original observations was not possible before
computers except for small sample sizes. Second,
using the ranks of the observations removes the
assumption of normality of the underlying distri-
bution(s) in each group, although other assump-
tions may still apply.

Although there is a wide range of rank-based
non-parametric tests (Hollander & Wolfe 1999,
Siegel & Castellan 1988, Sprent 1993), we will only
consider two here. First, consider a test about dif-
ferences between two populations. The Mann–
Whitney–Wilcoxon test is actually two indepen-
dently developed tests (Mann–Whitney and
Wilcoxon) that produce identical results. The H0

being tested is that the two samples come from
populations with identical distributions against
the HA that the samples come from populations
which differ only in location (mean or median).
The procedure is as follows.

1. Rank all the observations, ignoring the
groups. Tied observations get the average of their
ranks.

2. Calculate the sum of the ranks for both
samples. If the H0 is true, we would expect a
similar mixture of ranks in both samples (Sprent
1993).

3. Compare the smaller rank sum to the
probability distribution of rank sums, based on
repeated randomization of observations to
groups, and test in the usual manner.

4. For larger sample sizes, the probability
distribution of rank sums approximates a
normal distribution and the z statistic can be
used. Note that different software can produce
quite different results depending on whether the
large-sample approximation or exact
randomization methods are used, and also how
ties are handled (Bergmann et al. 2000).

Second, we may have a test about differences
based on paired observations. For paired samples,
we can use the Wilcoxon signed-rank test to test
the H0 that the two sets of observations come from
the same population against the HA that the pop-
ulations differ in location (mean or median). This
test is actually a test of a single population param-

eter, analyzing the paired differences, and the
procedure is as follows.

1. Calculate the difference between the obser-
vations for each pair, noting the sign of each dif-
ference. If H0 is true, we would expect roughly
equal numbers of � and � signs.

2. Calculate the sum of the positive ranks and
the sum of the negative ranks.

3. Compare the smaller of these rank sums to
the probability distribution of rank sums, based
on randomization, and test in the usual manner.

4. For larger sample sizes, the probability dis-
tribution of rank sums follows a normal distribu-
tion and the z statistic can be used, although the
concern of Bergmann et al. (2000) about differ-
ences between the large sample approximation
and exact methods for the
Mann–Whitney–Wilcoxon test may also apply to
the Wilcoxon signed-rank test.

Another non-parametric approach using
ranks is the class of rank transformation tests.
This is a more general approach that theoreti-
cally can be applied to any analysis for which
there is a parametric test. The data are trans-
formed to ranks and then these ranks are ana-
lyzed using the appropriate parametric analysis.
Note that this technique is conceptually no differ-
ent to transforming data to logs to meet the
assumptions of a parametric test (Chapter 4) and
is therefore not a true non-parametric test (Potvin
& Roff 1993). The rank transform approach will
generally give the same answer as the appropri-
ate rank-based test, e.g. rank transform t test is the
same as the Mann–Whitney–Wilcoxon test
(Zimmerman & Zumbo 1993), although if there
are a large number of ties the results will vary a
little. Tests based on the rank transform method
have also been used for various linear model ana-
lyses (Chapters 5, 8 and 9).

Although these non-parametric tests of loca-
tion differences do not assume a particular shape
(e.g. normal) of the underlying distributions, they
do assume that the distributions of the popula-
tions are similar, so the assumption of equal
variances still applies (Crowley 1992, Manly 1997,
Sprent 1993, Stewart-Oaten et al. 1992,
Zimmerman & Zumbo 1993). The common
strategy in biological research to use rank-based
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non-parametric tests to overcome variance hetero-
geneity is inappropriate. Variance heterogeneity
in the two-sample hypothesis test should be dealt
with by using a robust test, such as the Welch t test
(Section 3.3.1) or by transforming the data to
remove the relationship between the mean and
variance (Chapter 4).

These non-parametric tests generally have
lower power than the analogous parametric tests
when parametric assumptions are met, although
the difference in power is surprisingly small (e.g.
�5% difference for Mann–Whitney–Wilcoxon test
versus t test) given the former’s use of ranks rather
than the original data (Hollander & Wolfe 1999).
With non-normal distributions, the non-paramet-
ric tests do cope better but because normality by
itself is the least critical of all parametric assump-
tions, its hard to recommend the rank-based tests
except in situations where (i) the distributions are
very weird, and transformations do not help, or
(ii) outliers are present (see Chapter 4). It is some-
times recommended that if the data are not meas-
ured on a continuous scale (i.e. the data are
already in the form of ranks), then tests like the
Mann–Whitney–Wilcoxon are applicable. We dis-
agree because such a test is equivalent to applying
a parametric test (e.g. t test) to the ranks, a much
simpler and more consistent approach. It is also
worth noting that the rank-based randomization
tests don’t really have any advantage over random-
ization tests based on the original data, except in
terms of computation (which is irrelevant with
modern computer power) – see Ludbrook &
Dudley (1998). Both have assumptions of equal dis-
tributions in the two groups, and therefore equal
variances, and neither is very sensitive to non-nor-
mality.

Rank-based tests have been argued to be more
powerful than parametric tests for very skewed
(heavy tailed) distributions. However, this is pri-
marily because rank-based tests deal with outliers
more effectively (Zimmerman & Zumbo 1993).
Indeed, outliers cause major problems for para-
metric tests and their identification should be a
priority for exploratory data analysis (Chapter 4).
The alternative to rank-based tests is to remove or
modify the outlying values by trimming or win-
sorizing (Chapter 2) and using a parametric test.
Note that non-parametric tests are not immune to

outliers; they are just not affected as much as par-
ametric tests (Zimmerman & Zumbo 1993).

3.4 Multiple testing

3.4.1 The problem
One of the most difficult issues related to statisti-
cal hypothesis testing is the potential accumula-
tion of decision errors under circumstances of
multiple testing. As the number of tests
increases, so does the probability of making at
least one Type I error among the collection of
tests. The probability of making one or more Type
I errors in a set (or family) of tests is called the
family-wise Type I error rate, although Day &
Quinn (1989) and others have termed it experi-
ment-wise Type I error rate because it is often
used in the context of multiple comparisons of
means when analyzing experimental data. The
problem of increasing family-wise Type I error
rate potentially occurs in any situation where
there are multiple significance tests that are con-
sidered simultaneously. These include pairwise
comparisons of treatment groups in an experi-
ment (Chapter 8), testing pairwise correlations
between multiple variables recorded from the
same experimental or sampling units (Rice 1989)
or multiple univariate analyses (e.g. t tests) of
these variables.

If the tests are orthogonal (i.e. independent of
each other), the family-wise Type I error can be
calculated:

1� (1��)c (3.9)

where � is the significance level (e.g. 0.05) for each
test and c is the number of tests. For example,
imagine having a random sample from a number
of populations and we wish to test the H0s that
each independent pair of population means is
equal. We keep these comparisons independent by
not using the same population in more than one
test. As the number of populations we wish to
compare increases, so does the number of pair-
wise comparisons required and the probability of
at least one Type I error among the family of tests
(Table 3.1). If the tests are non-orthogonal, then
the family-wise Type I error rate will be lower
(Ramsey 1993), but cannot be calculated as it will
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depend on the degree of non-independence
among the tests.

The different approaches for dealing with the
increased probability of a Type I error in multiple
testing situations are based on how the Type I
error rate for each test (the comparison-wise Type
I error rate) is reduced to keep the family-wise
Type I error rate at some reasonable level. Each
test will then have a more stringent significance
level but as a consequence, much reduced power
if the H0 is false. However, the traditional priority
of recommendations for dealing with multiple
testing has been strict control of family-wise Type
I error rates rather than power considerations.
Before describing the approaches for reducing the
Type I error rate for each test to control the family-
wise Type I error rate, we need to consider two
other issues. The first is how we define the family
of tests across which we wish to control the Type
I error rate and the second is to what level should
we control this error rate.

What comprises a family of tests (Shaffer 1995,
Hancock & Klockars 1996) for determining error
rates is a difficult decision. An extreme view, and
not one to which we subscribe, might be to define
a family as all the tests a researcher might do in a
lifetime (see Maxwell & Delaney 1990 and Miller
1981 for discussion), and try to limit the Type I
error rate over this family. Controlling error rates
over such a family of tests has interesting and
humorous implications for biologists’ career
structures (Morrison 1991). More generally, a
family is defined as some collection of simultane-
ous tests, where a number of hypotheses are tested
simultaneously using a single data set from a
single experiment or sampling program. 

We agree with Hochberg & Tamhane (1987)
that unrelated hypotheses (in terms of intended

use or content) should be analyzed separately,
even if they are not independent of each other. We
recommend that each researcher, in a specific
analytical situation, must make an a priori deci-
sion about what a family of tests is; this decision
should be based, at least in part, on the relative
importance of Type I versus Type II errors.

The other issue is what level to set for family-
wise error rate. It is common practice for biolo-
gists to set the family-wise Type I error rate to the
same level as they use for individual comparisons
(e.g. 0.05). This is not easy to justify, especially as it
reduces the comparison-wise Type I error rate to
very low levels, increasing the probability of Type
II errors if any of the H0s are false. So this is a very
conservative strategy and we should consider
alternatives. One may be to use a procedure that
controls the family-wise error rate but to set a sig-
nificance level above 0.05. There is nothing sacred
about 0.05 (see Section 3.6) and we are talking
here about the probability of any Type I error in a
collection of tests. Setting this significance level a
priori to 0.10 or higher is not unreasonable.
Another approach is the interesting proposal by
Benjamini & Hochberg (1995). They also argued
that control of family-wise Type I error rate may
be too severe in some circumstances and recom-
mended controlling the false discovery rate (FDR).
This is the expected proportion of Type I errors
among the rejected hypotheses.

3.4.2 Adjusting significance levels and/or P
values

Whatever philosophy we decide to use, there will
be situations when some control of family-wise
Type I error rate will be required. The procedures
we will describe here are those which are indepen-
dent of the test statistic used and are based on
adjusting the significance levels for each test
downwards to control the family-wise Type I error
rate. Note that instead of adjusting significance
levels, we could also adjust the P values and use
the usual significance levels; the two approaches
are equivalent.

Bonferroni procedure
This is a general procedure for adjusting signifi-
cance levels to control Type I error rates in multi-
ple testing situations. Each comparison is tested at
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Table 3.1 Accumulation of probability of at least
one Type 1 error among a “family” of tests

Family-wise probability of at
No. of tests least one Type I error

3 0.14
10 0.40
45 0.90



�/c where � is the nominated significance level
(e.g. 0.05) and c is the number of comparisons in
the family. It provides great control over Type I
error but is very conservative when there are lots
of comparisons, i.e. each comparison or test will
have little power. The big advantage is that it can
be applied to any situation where we have a family
of tests, so it has broad applicability.

Dunn–Sidak procedure
This is a modification of the Bonferroni procedure
that slightly improves power for each comparison,
which is tested at 1� (1��)1/c.

Sequential Bonferroni (Holm 1979)
This is a major improvement on the Bonferroni
procedure where the c test statistics (F, t, etc.) or P
values are ranked from largest to smallest and the
smallest P value is tested at �/c, the next at
�/(c�1), the next at �/(c�2), etc. Testing stops
when a non-significant result occurs. This proce-
dure provides more power for individual tests and
is recommended for any situation in which the
Bonferroni adjustment is applicable.

Hochberg (1988) described a similar procedure
that works in reverse. The largest P value is tested
at �, rejecting all other tests if this one is signifi-
cant. If not significant, the next largest is tested
against �/2, and so on. Shaffer (1995) stated that
Hochberg’s procedure is slightly more powerful
than Holm’s.

Resampling-based adjusted P values
Westfall & Young (1993a,b) have developed an
interesting approach to P value adjustment for
multiple testing based around resampling. They
defined the adjusted P value as:

Padj�P(min Prand
P|H0) (3.10)

where Prand is the random P value for any test.
Basically, their procedure measures how extreme
any particular P value is out of a list of P values
from multiple tests, assuming all H0s are true.
Westfall & Young (1993b) argue that their proce-
dure generalizes to Holm’s and other methods as
special cases and also accounts for correlations
among the P values.

3.5 Combining results from
statistical tests

We sometimes need to evaluate multiple studies
in which statistical analyses have been used to test
similar hypotheses about some biological process,
such as the effect of a particular experimental
treatment. Our interest is in summarizing the
size of the treatment effect across studies and also
testing an H0 about whether there is any overall
effect of the treatment.

3.5.1 Combining P values
Fisher (1954) proposed a method for combining
the P values from a number of independent tests
of the same hypothesis, even though different stat-
istical procedures, and therefore different H0s,
may have been used (see also Hasselblad 1994,
Manly 2001, Sokal & Rohlf 1995). For c independent
tests, each producing a P value for the test of a com-
mensurate H0, the P values can be combined by:

�2 ln(P) (3.11)

which is distributed as a �2 with 2c degrees of
freedom. The overall H0 is that all the H0s in the
collection of tests are true (Sokal & Rohlf 1995). If
we reject the overall H0, we conclude that there is
an overall effect of whatever treatment or contrast
was commensurate between the analyses.
Alternative methods, including ones that weight
the outcomes from the different tests differently,
are described in Becker (1994) and Manly (2001).

3.5.2 Meta-analysis
The limitation of Fisher’s method is that P values
are only one piece of information that we use for
drawing conclusions from a statistical test. They
simply indicate whether we would reject the H0 at
the chosen level of significance. The biological
interpretation of that result would depend on the
size of the difference or effect, and the sample
sizes, so a better approach would incorporate
effect sizes, the variances of the effect sizes and
sample sizes when combining results from differ-
ent tests. Such a more sophisticated approach is
called meta-analysis. Meta-analysis is used primar-
ily when reviewing the literature on a particular

�
c

i�1
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topic, e.g. competition between organisms
(Gurevitch et al. 1992), and some overall summary
of the conclusions from different studies is
required.

Basically, meta-analysis calculates, for each
analysis being incorporated, a measure of effect
size (Rosenthal 1994, see also Chapters 7 and 8)
that incorporates the variance of the effect. These
effect sizes from the c different tests are averaged
using the sum of the inverse of the variance of
each effect size (“inverse variance weighted
average”: Hasselblad 1994, p. 695). This average
effect size can be used as a summary measure of
the overall effect of the process being investigated.

Most meta-analyses are based on fixed effects
models (see also Chapter 8) where we are assum-
ing that the set of analyses we are combining
share some true effect size for the process under
investigation (Gurevitch & Hedges 1993). Under
this model, the test of H0 that the true effect size
is zero can be tested by constructing confidence
intervals (based on the standard normal distribu-
tion) for the true average effect size (Gurevitch &
Hedges 1993) and seeing if that confidence inter-
val includes zero at the chosen level (e.g. 95%). We
can also calculate a measure of homogeneity (Q)
for testing whether all c effect sizes are equal. Q is
the sum of weighted (by the inverse of the vari-
ance of each effect size) squared differences
between each effect size and the inverse variance
weighted average of the effect sizes. It sounds
messy but the computations are quite simple
(Gurevitch & Hedges 1993, Hasselblad 1994). Q is
distributed as a �2 with c�1 degrees of freedom.
In some cases, the analyses being combined fall
into different a priori groups (e.g. studies on com-
petition in marine, freshwater and terrestrial
environments) and within-group and between-
group measures of homogeneity can be calculated
(analogous to partitioning the variance in an
ANOVA – Chapter 8).

Meta-analysis can be used in any situation
where an effect size, and its variance, can be cal-
culated so it is not restricted to continuous vari-
ables. Nor is it restricted to fixed effects models,
with both random and mixed models possible
(Gurevitch & Hedges 1993; see also Chapters 8 and
9). Meta-analyses do depend on the quality of the
literature being surveyed. For some studies, not

enough information is provided to measure an
effect size or its variance. There is also the issue of
quality control, ensuring that the design of the
studies we have used in a meta-analysis are accept-
able, and whether we can combine studies based
on experimental manipulations versus those
based on weaker survey designs. Nonetheless,
meta-analysis is increasing in use in the biological
literature and some appreciation of its strengths
and weaknesses is important for biologists. One
important weakness worth noting is the “file-
drawer problem”. The database of published
papers is highly censored, with non-significant
results under-represented, so a meta-analysis of
published work should include careful thought
about what “population” these published studies
represent.

Two detailed texts are Hedges & Olkin (1985)
and the volume edited by Cooper & Hedges (1994),
although excellent reviews from a biological per-
spective include Gurevitch & Hedges (1993) and
Hasselblad (1994).

3.6 Critique of statistical
hypothesis testing

Significance testing, especially null hypothesis
significance testing, has been consistently criti-
cized by many statisticians (e.g. Nester 1996,
Salsburg 1985) and, in particular, in the recent
psychological and educational literature (e.g.
Carver 1978, 1993, Cohen 1990, 1994, Shaver 1993,
Harlow et al. 1997 and chapters therein). Biologists
have also questioned the validity of statistical
hypothesis testing (e.g. Johnson 1999, Jones &
Matloff 1986, Matloff 1991, Stewart-Oaten 1996). A
thorough review of this literature is beyond the
scope of our book but a brief discussion of these
criticisms is warranted.

3.6.1 Dependence on sample size and
stopping rules

There is no question that results for classical stat-
istical tests depend on sample size (Chow 1988,
Mentis 1988, Thompson 1993), i.e. everything else
being the same, larger sample sizes are more
likely to produce a statistically significant result
and with very large sample sizes, trivial effects
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can produce a significant result. However, while
this is true by definition and can cause problems
in complex analyses (e.g. factorial ANOVAs) where
there are numerous tests based on different df,
designing experiments based on a priori power
considerations is crucial here. Rather than arbi-
trarily choosing sample sizes, our sample size
should be based on that necessary to detect a
desired effect if it occurs in the population(s)
(Cohen 1988, 1992, Fairweather 1991, Peterman
1990a,b). There is nothing new in this recommen-
dation and we will consider power analysis
further in Chapter 7.

The sample size problem relates to the stop-
ping rule, how you decide when to stop an experi-
ment or sampling program. In classical
hypothesis testing, how the data were collected
influences how we interpret the result of the test,
whereas the likelihood principle (Box 3.5) requires

the stopping rule to be irrelevant (Oakes 1986).
Mayo (1996) and Royall (1997) provide interesting,
and contrasting, opinions on the relevance of
stopping rules to inference.

3.6.2 Sample space – relevance of data
not observed

A well-documented aspect of P values as measures
of evidence is that they comprise not only the
long-run probability of the observed data if H0 is
true but also of data more extreme, i.e. data not
observed. The set of possible outcomes of an
experiment or sampling exercise, such as the pos-
sible values of a random variable like a test statis-
tic, is termed the sample space. The dependence of
statistical tests on the sample space violates the
likelihood principle (Box 3.5) because the same
evidence, measured as likelihoods, can produce
different conclusions (Royall 1997). The counter
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Box 3.5 Likelihood inference and the likelihood principle

Oakes (1986) described four major schools of statistical inference, three of which
we describe in this chapter – Fisherian and Neyman–Pearson hypothesis testing,
aspects of both being used by many biologists, and the Bayesian methods based on
subjective probabilities. The fourth school is likelihood inference, based on the like-
lihood function that we outlined in Chapter 2 (see also Royall 1997). There are two
important issues involved. First, the evidence that the observed data provide about
the hypothesis is represented by the likelihood function, the likelihood of observing
our sample data given the hypothesis. Second, the likelihood principle states that
two sets of data that produce proportional likelihood functions are equal in terms
of evidence about the hypothesis. One of the arguments often used against statis-
tical significance tests is that they violate the likelihood principle.

Likelihood inference is really about relative measures of evidence of support
between competing hypotheses so the focus is on the likelihood ratio:

although, as discussed in Chapter 2, we often convert likelihoods to log-likelihoods
and the result is a ratio of log-likelihoods. The likelihood ratio can be viewed as a
measure of the relative strength of evidence provided by the data in H1 compared
with H2.

Likelihoods are relevant to both classical and Bayesian inference. Likelihood
ratios can often be tested in a classical framework because, under many conditions,
the ratio follows a v 2 distribution. The observed data contribute to a Bayesian ana-
lysis solely through the likelihood function and,with a non-informative,uniform prior,
the Bayesian posterior probability distribution has an identical shape to the likeli-
hood function.

L(data|H1)
L(data|H2)



argument, detailed by Mayo (1996), is that likeli-
hoods do not permit measures of probabilities of
error from statistical tests. Measuring these errors
in a frequentist sense is crucial to statistical
hypothesis testing.

3.6.3 P values as measure of evidence
Cohen (1994) and others have argued that what we
really want to know from a statistical test is the
probability of H0 being true, given our sample
data, i.e. P(H0|data). In contrast, Mayo (1996) pro-
posed that a frequentist wants to know what is
“the probability with which certain outcomes
would occur given that a specified experiment is
performed” (p. 10). What the classical significance
test tells us is the long-run probability of obtain-
ing our sample data, given that H0 is true, i.e.
P(data|H0). As Cohen (1994) and others have
emphasized, these two probabilities are not inter-
changeable and Bayesian analyses (Section 3.7),
which provide a measure of the P(H0|data), can
produce results very different from the usual sig-
nificance test, especially when testing two-tailed
“point” hypotheses (Berger & Sellke 1987). Indeed,
Berger & Sellke (1987) presented evidence that the
P value can greatly overstate the evidence against
the H0 (see also Anderson 1998 for an ecological
example). We will discuss this further in the next
section. In reply to Berger & Sellke (1987), Morris
(1987) argued that differences between P values
and Bayesian posteriors will mainly occur when
the power of the test is weak at small sample sizes;
otherwise P values work well as evidence against
the H0. Reconciling Bayesian measures and P
values as evidence against the H0 is still an issue of
debate among statisticians.

3.6.4 Null hypothesis always false
Cohen (1990) and others have also argued that
testing an H0 is trivial because the H0 is always
false: two population means will never be exactly
the same, a population parameter will never be
exactly zero. In contrast, Frick (1995) has pointed
out an H0 can be logically true and illustrated this
with an ESP experiment. The H0 was that a person
in one room could not influence the thoughts of
a person in another room. Nonetheless, the argu-
ment is that testing H0s is pointless because most
common H0s in biology, and other sciences, are

always false. Like Chow (1988, 1991) and Mulaik et
al. (1997), we argue that the H0 is simply the com-
plement of the research hypothesis about which
we are trying to make a decision. The H0 repre-
sents the default (or null) framework that
“nothing is happening” or that “there is no effect”
(3.1.1). A rejection of the H0 is not important
because we thought the H0 might actually be true.
It is important because it indicates that we have
detected an effect worth reporting and investigat-
ing further. We also emphasise that H0s do not
have to be of the “no effect” form. There may be
good reasons to test H0s that a parameter equals a
non-zero value. For example, in an environmental
monitoring situation, we might compare control
and impact locations to each other, and look for
changes through time in this control–impact dif-
ference. We might find that two locations are
quite different from each other as a result of
natural processes, but hypothesize that a human
activity will change that relationship.

3.6.5 Arbitrary significance levels
One long-standing criticism has been the arbitrary
use of ��0.05 as the criterion for rejecting or not
rejecting H0. Fisher originally suggested 0.05 but
later argued against using a single significance
level for every statistical decision-making process.
The Neyman–Pearson approach also does not rely
on a single significance level (�), just a value
chosen a priori. There is no reason why all tests have
to be done with a significance level fixed at 0.05.
For example, Day & Quinn (1989) have argued that
there is nothing sacred about 0.05 in the context of
multiple comparisons. Mapstone (1995) has also
provided a decision-making framework by which
the probabilities of Type I and Type II errors are set
based on our assessment of the cost of making the
two types of error (Section 3.2.2). The point is that
problems with the arbitrary use of 0.05 as a signifi-
cance level are not themselves a reason to dismiss
statistical hypothesis testing. Irrespective of which
philosophy we use for making statistical decisions,
some criterion must be used.

3.6.6 Alternatives to statistical hypothesis
testing

In the discussions on significance testing, particu-
larly in the psychological literature, three general
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alternatives have been proposed. First, Cohen
(1990, 1994) and Oakes (1986) and others have
argued that interval estimation and determina-
tion of effect sizes (with confidence intervals) is a
better alternative to testing null hypotheses.
While we encourage the use and presentation of
effect sizes, we do not see them as an alternative
to significance testing; rather, they are comple-
mentary. Interpreting significance tests should
always be done in conjunction with a measure of
effect size (e.g. difference between means) and
some form of confidence interval. However, effect
sizes by themselves do not provide a sensible phil-
osophical basis for making decisions about scien-
tific hypotheses.

Second, Royall (1997) summarized the view
that likelihoods provide all the evidence we need
when evaluating alternative hypotheses based on
the observed data. Finally, the Bayesian approach
of combining prior probability with the likeli-
hood function to produce a posterior probability
distribution for a parameter or hypothesis will be
considered in the next section.

In summary, biologists should be aware of the
limitations and flaws in statistical testing of null
hypotheses but should also consider the philo-
sophical rationale for any alternative scheme.
Does it provide us with an objective and consistent
methodology for making decisions about hypoth-
eses? We agree with Dennis (1996), Levin (1998),
Mulaik et al. (1997) and others that misuse of stat-
istical hypothesis testing does not imply that the
process is flawed. When used cautiously, linked to
appropriate hypotheses, and combined with other
forms of interpretation (including effect sizes and
confidence intervals), it can provide a sensible and
intelligent means of evaluating biological hypoth-
eses. We emphasize that statistical significance
does not necessarily imply biological importance
(Box 3.4); only by planning studies and experi-
ments so they have a reasonable power to detect
an effect of biological importance can we relate
statistical and biological significance.

3.7 Bayesian hypothesis testing

One approach that may provide a realistic alterna-
tive to classical statistical hypothesis testing in

some circumstances is Bayesian methodology. As
we discussed in Chapter 2, the Bayesian approach
views population parameters (e.g. means, regres-
sion coefficients) as random, or at least unknown,
variables. Bayesians construct posterior probabil-
ity distributions for a parameter and use these
probability distributions to calculate confidence
intervals. They also use prior information to
modify the probability distributions of the param-
eters and this prior information may include sub-
jective assessment of prior probabilities that a
parameter may take specific values.

The Bayesian approach rarely incorporates
hypothesis testing in the sense that we have been
discussing in this chapter and Bayesian do not
usually evaluate alternative hypotheses or models
with a reject/accept decision framework. They
simply attach greater or lesser favor to the alterna-
tives based on the shape of the posterior distribu-
tions. Nonetheless, there are some formal ways of
assessing competing hypotheses using Bayesian
methods.

We might, for example, have two or more rival
hypotheses (H1, H2, . . .Hi); in the classical hypothe-
sis testing framework, these would be H0 and HA,
although a null hypothesis of no effect would
seldom interest Bayesians. We can then use a
similar version of Bayes theorem as described for
estimation in Chapter 2:

P(H1|data)� (3.11)

where P(H1|data) is the posterior probability of H1,
P(H1) is the prior probability of H1 and
P(data|H1)/P(data) is the standardized likelihood
function for H1, the likelihood of the data given
the hypothesis. For example, we could test an H0

using the Bayesian approach by:

posterior probability of H0� likelihood
of data given H0 ·prior probability of H0 (3.12)

The posterior probability is obtained by integrat-
ing (if the parameter in the H0 is continuous) or
summing (if discrete) under the posterior prob-
ability distribution for the range of values of the
parameter specified in the H0. For continuous
parameters, the procedure is straightforward for
directional (composite) hypotheses, e.g. H0: � less
than some specified value, but difficult for a point

P(data|H1)P(H1)
P(data)
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(simple) hypothesis, e.g. H0: � equals some spec-
ified value, because we cannot determine the
probability of a single value in a probability distri-
bution of a continuous variable.

We can present the relative evidence for H0

and HA as a posterior odds ratio:

(3.13)

i.e. the ratio of the posterior probabilities, given
the data, of the competing hypotheses (Reckhow
1990). This posterior odds ratio is also the product
of the prior odds ratio with a term called the Bayes
factor (Barnett 1999, Ellison 1996, Kass & Raftery
1995, Reckhow 1990). If the two hypotheses were
considered equally likely beforehand, then the
Bayes factor equals the posterior odds ratio. If the
prior odds were different, then the Bayes factor
will differ from the posterior odds ratio, although
it seems that the Bayes factor is primarily used in
the situation of equal priors (Kass & Raftery 1995).
Both the Bayes factor and the posterior odds ratio
measure the weight of evidence against HA in
favor of H0, although the calculations can be
reversed to measure the evidence against H0.

When both hypotheses are simple (i.e. � equals
a specified value), the Bayes factor is just the like-
lihood ratio (Box 3.5):

B� (3.14)

where the numerator and denominator are the
maxima of the likelihood functions for the values
of the parameter specified in the hypotheses.
When one or both hypotheses are more complex,
the Bayes factor is still a likelihood ratio but the
numerator and denominator of Equation 3.14 are
determined by integrating under the likelihood
functions for the range of parameter values spe-
cific in each hypothesis (Kass & Raftery 1995). We
are now treating the likelihood functions more
like probability distributions. For complex
hypotheses with multiple parameters, this inte-
gration may not be straightforward and the
Monte Carlo posterior sampling methods men-
tioned in Chapter 2 might be required.

To choose between hypotheses, we can either
set up a decision framework with an a priori criti-
cal value for the odds ratio (Winkler 1993) or,

L(data|H0)
L(data|HA)

P(H0|data)
P(HA|data)

more commonly, use the magnitude of the Bayes
factor as evidence in favor of a hypothesis.
A simpler alternative to the Bayes factor is
the Schwarz criterion (or Bayes Information
Criterion, BIC), which approximates the log of the
Bayes factor and is easy to calculate. Ellison (1996)
has provided a table relating different sizes of
Bayes factors (both as log10B and 2logeB) to conclu-
sions against the hypothesis in the denominator
of Equation 3.14. Odds and likelihood ratios will
be considered in more detail in Chapters 13 and
14.

Computational formulae for various types of
analyses, including ANOVA and regression linear
models, can be found in Box & Tiao (1973), while
Berry & Stangl (1996) have summarized other
types of analyses. Hilborn & Mangel (1997) focused
on assessing the fit of models to data using
Bayesian methods. In a fisheries example, they
compared the fit of two models of the dynamics of
hake off the coast of Namibia where one model
was given a higher prior probability of being
correct than the second model. As another
example, Stow et al. (1995) used Bayesian analysis
to estimate the degree of resource dependence (�)
in lake mesocosms with different ratios of grazing
Daphnia. Using a non-informative prior, a high
value of �, indicating much interference among
the predators, had the highest posterior probabil-
ity. Stow et al. (1995) pointed out that, in contrast,
classical statistical analysis would only have
shown that � was significantly different to some
hypothesized value. A third example is Crome et
al. (1996), who compared Bayesian (with a range of
prior distributions) and classical linear model
analyses of a BACI (Before-After-Control-Impact)
design assessing the effects of logging on birds
and mammals in a north Queensland rainforest.
Although the two approaches produced similar
conclusions for some variables, the posterior dis-
tributions for some variables clearly favored some
effect sizes over others, providing more informa-
tion than could be obtained from the classical test
of a null hypothesis. 

When classical P values [P(data|H0)] are com-
pared to Bayes factors or Bayesian posterior prob-
abilities [P(H0|data)], the differences can be
marked, even when H0 and HA are assigned equal
prior probabilities (i.e. considered equally likely).
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Berger & Sellke (1987) and Reckhow (1990) argued
that the differences are due to the P value being
“conditioned” on the sample space, including an
area of a probability distribution that includes
hypothetical samples more extreme than the one
observed (Section 3.6.2). In contrast, the Bayesian
posterior probability is conditioned only on the
observed data through the likelihood. The differ-
ences between P values and Bayesian posterior
probabilities seem more severe for two-tailed
testing problems (Casella & Berger 1987), where
the P value generally overstates the evidence
against H0, i.e. it rejects H0 when the posterior
probability suggests that the evidence against H0

is relatively weak. Nonetheless, P values will
mostly have a monotonic relationship with poste-
rior probabilities of H0, i.e. smaller P values imply
smaller posterior probabilities, and for one-tailed
tests (e.g. ANOVA F-ratio tests), there may be equiv-
alence between the P values and posterior prob-
abilities for reasonable sorts of prior distributions
(Casella & Berger 1987). So it may be that the rela-
tive sizes of P values can be used as a measure of
relative strength of evidence against H0, in the
sense that they are related to Bayesian posterior
probabilities (but see Schervish 1996; also Royall
1997 for alternative view).

One of the main difficulties classical frequen-
tist statisticians have with Bayesian analyses is the
nature of the prior information (i.e. the prior
probabilities). We discussed this in Chapter 2 and
those issues, particularly incorporating subjective
probability assessments, apply just as crucially for
Bayesian hypothesis testing.

So, when should we adopt the Bayesian
approach? We have not adopted the Bayesian phi-
losophy for the statistical analyses described in
this book for a number of reasons, both theoreti-
cal and practical. First, determining prior prob-
abilities is not straightforward in those areas of
biology, such as ecology, where much of the
research is still exploratory and what happened at
other times and places does not necessarily apply
in a new setting. We agree with Edwards (1996)
that initial analyses of data should be “journalis-
tic”, i.e. should not be influenced by our opinions
of what the outcome might be (prior probabilities)
and that there is an argument that using prior
(personal) beliefs in analyses should not be

classified as science. While Carpenter (1990) and
others have argued that the prior probabilities
have relatively little influence on the outcome
compared to the data, this is not always the case
(Edwards 1996). For the types of analyses we will
discuss in this book, any prior information has
probably already been incorporated in the design
components of the experiment. Morris (1987) has
argued that P values are interpretable in well-
designed experiments (and observational studies)
where the power to detect a reasonable HA (effect)
has been explicitly considered in the design
process. Such a well-designed experiment expli-
citly considering and minimizing Type I and Type
II errors is what Mayo (1996) would describe as a
severe test of an hypothesis. Second, treating a
population parameter as a random variable does
not always seem sensible. In ecology, we are often
estimating parameters of real populations (e.g.
the density of animals in an area) and the mean of
that population is a fixed, although unknown,
value. Third, Bayesian analyses seem better suited
to estimation rather than hypothesis testing (see
also Dennis 1996). Some well-known Bayesian
texts (e.g. Box & Tiao 1973, Gelman et al. 1995) do
not even discuss hypothesis testing in their
Bayesian framework. In contrast, the philosophi-
cal position we take in this book is clear. Advances
in biology will be greatest when unambiguously
stated hypotheses are tested with well-designed
sampling or preferably experimental methods.
Finally, the practical application of Bayesian ana-
lyses is not straightforward for complex analyses
and there is little software currently available (but
see Berry 1996, Berry & Stangl 1996 and references
in Ellison 1996). We suspect that if biologists have
enough trouble understanding classical statisti-
cal analyses, Bayesian analyses, with their reli-
ance on defining probability distributions and
likelihood functions explicitly, are more likely to
be misused.

There are some circumstances where the
Bayesian approach will be more relevant. In envi-
ronmental management, managers often wish to
know the probability of a policy having a certain
outcome or the probabilities of different policies
being successful. Whether policies are signifi-
cantly different from one another (or different
from some hypothesized value) is not necessarily

56 HYPOTHESIS TESTING



helpful and Bayesian calculation of posterior
probabilities of competing models might be
appropriate. Hilborn & Mangel (1997) also empha-
size Bayesian methods for distinguishing between
competing models. This in itself has difficulties.
Dennis (1996) correctly pointed out the danger of
various interest groups having input into the
development of prior probabilities, although we
have argued earlier (Section 3.2.2) that such nego-
tiation in terms of error rates in the classical deci-
sion-making framework should be encouraged.
One-off, unreplicated, experiments might also be
more suited to Bayesian analyses (Carpenter 1990)

because the long-run frequency interpretation
doesn’t have much meaning and the probability
of a single event is of interest.

Bayesian approaches are being increasingly
used for analyzing biological data and it is impor-
tant for biologists to be familiar with the
methods. However, rather than simply being an
alternative analysis for a given situation, the
Bayesian approach represents a different philoso-
phy for interpreting probabilities and we, like
Dennis (1996), emphasize that this must be borne
in mind before it is adopted for routine use by
biologists.
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Graphical displays are very important in the ana-
lysis of data. There are four main functions of
graphical displays in data analysis (Snee & Pfeifer
1983).

• Exploration, which involves checking data for
unusual values, making sure the data meet the
assumptions of the chosen analysis and occa-
sionally deciding what analysis (or model) to
use. 

• Analysis, which includes checking assump-
tions but primarily ensuring that the chosen
model is a realistic fit to the data.

• Presentation and communication of results,
particularly summarizing numerical informa-
tion (Chapter 19).

• Graphical aids, which are graphical displays
for specific statistical purposes, e.g. power
curves for determining sample sizes.

We describe graphical displays for the first two
functions here, and the third in our final chapter,
although some graphs are useful for more than
one function, e.g. scatterplots of Y against X are
important exploratory tools and often the best
way of communicating such data to readers.

4.1 Exploratory data analysis

Before any formal statistical analysis is carried
out, it is essential to do preliminary checks of
your data for the following reasons:

• to reassure yourself that you do actually have
some meaningful data,

• to detect any errors in data entry,
• to detect patterns in the data that may not be

revealed by the statistical analysis that you will
use,

• to ensure the assumptions of the analysis are
met,

• to interpret departures from the assumptions,
and

• to detect unusual values, termed outliers
(Section 4.5).

Exploratory data analysis (EDA) was originally
developed by John Tukey (1977) and extended by
Hoaglin et al. (1983). The aim is basically to
describe and find patterns in your data. A good
introduction for biologists is given by Ellison
(1993).

4.1.1 Exploring samples
It is usually very important to become familiar
with your data before doing any formal analysis.
What sort of numbers are they? How variable are
they? What sort of distribution do they have? For
small data sets, simply examining the raw data in
rows and columns is possible. For large samples,
especially with multiple variables, graphical tech-
niques are much more appropriate.

The most important thing we want to know
about our sample data, and therefore about the
population from which our data came, is the
shape of the distribution. Many of the statistical
procedures we describe in this book assume, to
some extent, that the variables being analyzed
have normal distributions. The best way of exam-
ining the distribution of values of a variable

Chapter 4
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is with a density plot, where the frequencies
(“densities”) of different values, or categories, are
represented. Many of the graphs described below
are density plots and show the shape of a sample
distribution.

Histogram
One simple way of examining the distribution of
a variable in a sample is to plot a histogram, a
graphical representation of a frequency (or
density) distribution. A histogram is a type of bar
graph (see Chapter 19) grouping the observations
into a priori defined classes on the horizontal axis
and their frequency on the vertical axis (Figure
4.1). If the variable is continuous, the size (width)
of the classes will depend on the number of obser-
vations: more observations mean that more
classes can be used. The values of a discrete vari-
able usually determine the classes. Histograms
are very useful for examining the shape of a distri-
bution of observations (Figure 4.1). For example, is
the distribution symmetrical or skewed? Is it uni-
modal or multimodal? The vertical axis of a histo-
gram can also be relative frequency (proportions),
cumulative frequency or cumulative relative fre-
quency. Unfortunately, histograms are not always
particularly useful in biology, especially experi-
mental work, because we are often dealing with
small sample sizes (�20).

A useful addition to a histogram is to superim-
pose a more formal probability density function.
For example, we could include a normal probabil-
ity distribution function, based on our sample
mean and variance. An alternative approach is to
not stipulate a specific distribution for the sample

but to use the observed data to
generate a probability density
curve. This is non-parametric
estimation because we are not
assuming a specific underly-
ing population distribution
for our variable. Our estima-
tion procedure may produce
probability density curves that

are symmetrical, asymmetrical or multimodal,
depending on the density pattern in the observed
data. The standard reference to non-parametric
density estimation is Silverman (1986) and the
most common method is kernel estimation. For
each observation, we construct a window of a
certain width, like the categories in a histogram.
We then fit a symmetric probability density func-
tion (called the kernel) to the observations in each
window; commonly, the normal distribution is
used. The estimated density for any value of our
variable is simply the sum of the estimates from
the density functions in each window. The calcu-
lations are tedious, even when the kernel is a
normal distribution, but kernel density estima-
tors are now common options in statistical soft-
ware.

The window width is sometimes termed the
smoothing parameter because it influences the
shape of final estimated density function. For stan-
dard kernel density estimation, the smoothing
parameter is constant for all observations; other
approaches allow the smoothing parameter to
vary depending on the local density of data
(Silverman 1986). If the smoothing parameter is
low (narrow windows), then the density function
can have numerous modes, many artificial if the
sample size is small. If the smoothing parameter is
high (wide windows), then the density function
will be much smoother but important detail, such
as real modes, might be missed. Clearly, kernel
estimation requires a large sample size so that
there can be enough observations to reliably fit a
probability density function (e.g. normal) in each
window and also enough windows to represent
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Figure 4.1. Histograms and
boxplots for (a) normal and
(b) positively skewed data (n�200).



the detail present in the data. The choice of the
probability density function fitted in each window
is also determined by the user. Symmetrical distri-
butions such as normal are most common,
although others are possible (Silverman 1986).

For the positively skewed distribution plotted
in Figure 4.2, it is clear that a normal distribution
function based on the sample mean and variance
is not a good fit to the data. In contrast, the non-par-
ametric kernel smoothing curve is a much more
realistic representation of the distribution of the
data. The kernel density estimator is particularly
useful as an exploratory tool for describing the
shape of a distribution if we have a sample of rea-
sonable size and may indicate what more formal
parametric distribution should be used in model-
ing (see Chapter 13). Other uses include density

estimation for bivariate distributions (see Chapter
5) and for determining density functions for use in
procedures such as discriminant function analysis
(Silverman 1986).

Dotplot
A dotplot is a plot where each observation is rep-
resented by a single dot or symbol, with the value
of the variable along the horizontal axis
(Wilkinson 1999a). Dotplots can be used for uni-
variate and bivariate data (Sasieni & Royston
1996); in the latter case, they are like scatterplots.
Univariate dotplots can be very effective ways of
representing single samples because skewness
and unusually large or small values are easy to
detect (Figure 4.3). 

Boxplot
A good alternative for displaying the sample
observations of a single variable, when we have
a sample size of about eight or more, is to use a
boxplot (Figure 4.4 and Figure 4.5), also called a
box-and-whiskers plot. The boxplot uses the
median to identify location and 25% quartiles for
the hinges (ends of the box). The difference
between the values of the two hinges is called the
spread. Unusually large or small values (outliers)
are highlighted, although the actual formulae
for identifying outliers vary between different
textbooks and statistical software (commonly, an
outlier is any value greater than 1.5 times the
spread outside the closest hinge). The lines (or
whiskers) extend to the extreme values within
1.5 times the spread beyond the hinges. Boxplots
efficiently indicate several aspects of the sample.

• The middle of the sample is identified by the
median, which is resistant (robust) to unusual
values (Chapter 2).
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Figure 4.2. Histogram with normal density function (dashed
line) and kernel density curve or smooth (solid line) for a
positively skewed distribution (n�200). Smoothing
parameter for kernel curve equals one.

Figure 4.3. Dotplots and boxplots
of concentrations of (a) SO4

2� and
(b) Cl� for 39 sites from forested
watersheds in the Catskill
Mountains in New York State (data
from Lovett et al. 2000).



• The variability of the sample is indicated by
the distance between the whiskers (with or
without the outliers).

• The shape of the sample, especially whether it is
symmetrical or skewed (Figure 4.1, Figure 4.3).

• The presence of outliers, extreme values very
different from the rest of the sample (Figure 4.3).

Because boxplots are based on medians and
quartiles, they are very resistant to extreme
values, which don’t affect the basic shape of the
plot very much (Chapter 2). The boxplots and dot-
plots for the concentrations of SO4

2� and Cl� from
39 stream sites in the Catskill Mountains are pre-
sented in Figure 4.3 (Lovett et al. 2000, Chapter 2).
The skewness and outliers present in the sample
of Cl� are clear, in contrast to the symmetrically
distributed SO4

2�. Boxplots can also be used to
graphically represent summaries of data in
research publications (Chapter 19) instead of the
more traditional means (�standard deviations or
similar). This is particularly the case when non-
parametric analyses are used, as the mean might

not be particularly appropri-
ate as a measure of the center
of a distribution.

More elaborate boxplots
are also available. Hyndman
(1996) described a modifica-

tion of the boxplot that graphs high-density
regions and shows bimodality very well.
Rousseeuw et al. (1999) described the bagplot, a
bivariate version of the boxplot. Both papers pro-
vided computer code for these plots.

Scatterplot
When we have two variables, each measured on
the same units, we are often interested in the rela-
tionship between the variables. A very important
graphical technique is the scatterplot, where the
vertical axis represents one variable, the horizon-
tal axis represents the other variable and the
points on the plot are the individual observations
(Chapter 5). Scatterplots are very informative,
especially when bordered by boxplots for each var-
iable (Figure 5.3). Nonlinearity and outliers can be
identified, as well as departures from fitted linear
models.

Scatterplot matrix (SPLOM)
An extension of the scatterplot to three or more
variables is the scatterplot matrix (SPLOM). Each
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Figure 4.4. Components of a
boxplot.

Figure 4.5. (a) Boxplots for
number of eggs per capsule of the
predatory gastropod Lepsiella vinosa
from two zones on a rocky
intertidal shore (see Chapter 3). (b)
Boxplots for metabolic rate of male
and female fulmars (see Chapter 3).



panel in the matrix represents a scatterplot
between two of the variables and the panels along
the diagonal can indicate which variable forms
the horizontal and vertical axes or show other uni-
variate displays such as boxplots or frequency dis-
tributions (Figure 4.6). Recently, Murdoch & Chow
(1996) illustrated a method for displaying large
correlation matrices (Chapter 15), where different
shaped and angled ellipses represent the magni-
tude of the correlation.

Multivariate plots
There are other, more complex, methods for
graphing multivariate data, including icon plots,
such as Chernoff’s faces and the like (see Chapter
15; also Cleveland 1994, Tufte 1983).

4.2 Analysis with graphs

Most of the analyses that we describe in this book
are based on linear models (regression and analy-
sis of variance models). These analyses have impor-
tant assumptions, besides that of random
sampling, that must be assessed before linear
models (or even t tests) can be applied. We discuss
these assumptions in detail in the relevant chap-
ters, but briefly introduce them here in the

context of exploratory data analysis. Sometimes,
these assumptions are not critical because the
result of your analysis (estimation or hypothesis
tests) will be the same even if the assumptions are
violated. Such tests are termed robust. Other
assumptions are critical because the statistical
test may give unreliable results when assump-
tions are violated.

4.2.1 Assumptions of parametric linear
models

The assumptions of linear models apply to the
response (or dependent) variable and also to the
error terms from the fitted model.

Normality
Linear models are based on OLS estimation and
the reliability of interval estimates and tests of
parameters depends on the response variable
being sampled from a population (or populations)
with a normal (Gaussian) distribution. Most ana-
lyses are robust to this assumption, particularly if
sample sizes are equal. Despite this robustness,
the symmetry (roughly equal spreads on each side
of the mean or median) of each sample should be
checked with a graphical procedure like boxplots.
Another way of assessing normality is to use prob-
ability plots (pplots). These plots examine a cumu-
lative frequency distribution of your data, and
compare the shape of that distribution to that
expected of a normal distribution having the
same mean and variance. If your data are normal,
the pplot will be a straight line; various kinds of
skewness, multimodality, etc., will show as a
kinked line. A pplot is shown in Figure 4.7 for a
normal and a lognormal distribution. We don’t
suggest that you do any formal analyses of these
plots, but just look for major kinks. The method is
really only useful for large sample sizes, say 25 or
more; with fewer data points, you’ll always get a
fairly irregular line.

The most common asymmetry in biological
data is positive skewness, i.e. populations with a
long right tail (Figure 4.1). Positive skewness in
biological data is often because the variables have
a lognormal (measurement variables) or a Poisson
(count) distribution. In our experience, skewed
distributions are more common than symmetri-
cal distributions. This makes sense when you
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Figure 4.6. Scatterplot matrix for three variables (site
elevation, concentration of SO4

2� and concentration of Cl�)
for 39 sites from forested watersheds in the Catskill
Mountains in New York State (data from Lovett et al. 2000).



realize that most variables cannot have values less
than zero (lengths, weights, counts, etc.) but have
no mathematical upper limit (although there
may be a biological limit). Their distributions are
usually truncated at zero, resulting in skewness in
the other direction. Transformations of skewed
variables to a different scale (e.g. log or power
transformations) will often improve their normal-
ity (Section 4.3).

The other distribution that will cause major
problems is multimodal, where there are two or
more distinct peaks. There is not much that you
can do about this distribution; both parametric
and non-parametric tests become unreliable. The
best option is to treat each peak of the distribu-
tion as representing a different “population”, and
to split your analyses into separate populations. In
ecological studies, you might get such a problem
with different cohorts in a population of plants or
animals, and be forced to ask questions about the
mean size of the first, second, etc., cohorts. In
physiological or genetic studies, you might get
such a result from using animals or plants of dif-
ferent genotypes. For example, allozymes with
“fast” and “slow” alleles might produce two differ-
ent classes of physiological response, and you
could analyze the response of fast and slow tissues
as an additional factor in your experiment.

One final distribution that often causes prob-
lems in biological data is when we have many
zeroes, and a few non-zero points. In his case, the
distribution is so skewed that no transformation
will normalize the distribution; whatever we do to
these zeros, they will remain a peak in our distri-
bution. Non-parametric approaches will fare little
better, as these values will all be assigned the

same (tied) rank. In this situa-
tion, our only suggestion is
that your data reflect two dif-
ferent processes, such as
whether or not a particular
replicate has a response or
not, and the level of response

when it occurs. We could make two different com-
parisons – does the likelihood of a response differ
between groups (Chapters 13 and 14), regarding
each replicate as zero or not-zero, and a compari-
son of the response between groups, using only
those replicates in which a response occurred.

Homogeneity of variances
Tests of hypotheses in linear models assume that
the variance in the response variable is the same
at each level, or combination of levels, of the pre-
dictor variables. This is a more important assump-
tion than normality although the analyses are
more robust if sample sizes are equal. If the
response variable has a normal distribution, then
unequal variances will probably be due to a few
unusual values, especially if sample sizes are
small. If the response variable has a lognormal or
Poisson distribution, then we would expect a rela-
tionship between the mean (expected or predicted
values from the linear model) and unequal vari-
ances are related to the underlying distribution.
Transformations that improve normality will also
usually improve homogeneity of variances.

There are formal tests for variance homogen-
eity, such as an F-ratio test before a t test. Our
reluctance to recommend such tests has already
been discussed in Chapter 3 and also applies to
the use of Cochran’s, Bartlett’s or Levene’s tests
before an ANOVA model (Chapter 8). Less formal,
but more useful, checks include side-by-side box-
plots for multiple groups, which allow a check of
homogeneity of spread of samples (Figure 4.3,
Figure 4.5). Note that plots of residuals from the
model against predicted values are also valuable
exploratory checks (see Chapters 5 and 8).
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Figure 4.7. Probability plots for (a)
normally (SO4

2�) distributed and (b)
strongly skewed (Cl�) variables.
Data from Lovett et al. (2000).
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Linearity
Parametric correlation and linear regression
analyses are based on straight-line relationships
between variables. The simplest way of checking
whether your data are likely to meet this assump-
tion is to examine a scatterplot of the two vari-
ables, or a SPLOM for more than two variables.
Figure 5.17(a) illustrates how a scatterplot was
able to show a nonlinear relationship between
number of species of invertebrates and area of
mussel clumps on a rocky shore. Smoothing func-
tions through the data can also reveal nonlinear
relationships. We will discuss diagnostics for
detecting nonlinearity further in Chapter 5.

Independence
This assumption basically implies that all the
observations should be independent of each
other, both within and between groups. The most
common situation where this assumption is not
met is when data are recorded in a time sequence.
For experimental designs, there are modifications
of standard analyses of variance when the same
experimental unit is observed under different
treatments or times (Chapters 10 and 11). We will
discuss independence in more detail for each type
of analysis in later chapters.

4.3 Transforming data

We indicated in the previous section that transfor-
mation of data to a different scale of measure-
ment can be a solution to distributional
assumptions, as well as related problems with var-
iance homogeneity and linearity. In this section,
we will elaborate on the nature and application of
data transformations.

The justification for transforming data to dif-
ferent scales before data analysis is based, at least
in part, on the appreciation that the scales of
measurement we use are often arbitrary. For
example, many measurements we take are based
on a decimal system. This is probably related to
the number of digits we have on our hands; char-
acters from the Simpsons would probably
measure everything in units of base eight! Sokal &
Rohlf (1995) point out that linear (arithmetic)

scale of measurement we commonly use can be
viewed in the same way. For example, we might
measure the length of an object in centimeters
but we could just as easily measure the length in
log units, such as log centimeters. In fact, we
could do so directly just by altering the scale on
our measuring device, like using a slide ruler
instead of a normal linear ruler.

Surprisingly, transformations are quite
common for measurements we encounter in
everyday life. Sometimes, these transformations
simply change the zero value, i.e. adding a con-
stant. Slightly more complex transformations
may change the zero value but also rescale the
measurements by a constant value, e.g. the
change in temperature units from Fahrenheit to
Celsius. Such transformations are linear, in that
the relationship between the original variable
and the transformed variable is a perfect straight
line. Statistical tests of null hypotheses will be
identical, in most cases, for the untransformed
and the transformed data.

More commonly in data analysis, particularly
in biology, are transformations that change the
data in a nonlinear fashion. The most common
transformation is the log transformation, where
the transformed data are simply the logs (to any
base) of the original data. The log transformation,
while nonlinear, is monotonic, i.e. the order of
data values after transformation is the same as
before. A log-transformed scale is often the
default scale for commonly used measurements.
For example, pH is simply the log of the concentra-
tion of H� ions, and most cameras measure aper-
ture as f-stops, with each increase in f
representing a halving of the amount of light
reaching the film, i.e. a log2 scale. 

There are at least five aims of data transforma-
tions for statistical analyses, especially for linear
models:

• to make the data and the model error terms
closer to a normal distribution (i.e. to make the
distribution of the data symmetrical),

• to reduce any relationship between the mean
and the variance (i.e. to improve homogeneity
of variances), often as a result of improving
normality,
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• to reduce the influence of outliers, especially
when they are at one end of a distribution,

• to improve linearity in regression analyses,
and

• to make effects that are multiplicative on the
raw scale additive on a transformed scale, i.e.
to reduce the size of interaction effects
(Chapters 6 and 9).

The most common use of transformations in
biology is to help the data meet the distributional
and variance assumptions required for linear
models. Emerson (1991), Sokal & Rohlf (1995) and
Tabachnick & Fidell (1996) provide excellent
descriptions and justification of transformations.
These authors are reassuring to those who are
uncomfortable about the idea of transforming
their data, feeling that they are “fiddling” the
data to increase the chance of getting a significant
result. A decision to transform, however, is always
made before the analysis is done.

Remember that after any transformation, you
must re-check your data to ensure the transforma-
tion improved the distribution of the data (or at
least didn’t make it any worse!). Sometimes, log or
square root transformations can skew data just as
severely in the opposite direction and produce
new outliers!

A transformation is really changing your
response variable and therefore your formal
null hypothesis. You might hypothesize that
growth of plants varies with density, and formal-
ize that as the H0 that the mean growth of plants
at high density equals the mean growth at
low density. If you are forced to log-transform

your data, the null hypothesis
becomes “mean log-growth
does not vary with density”,
or you might say that in the
first case, growth is defined as
mg of weight gained, whereas

after log-transforming, growth is the log-mg
weight gained.

4.3.1 Transformations and distributional
assumptions

The most common type of transformation useful
for biological data (especially counts or measure-
ments) is the power transformation (Emerson
1991, Neter et al. 1996), which transforms Y to Yp,
where p is greater than zero. For data with right
skew, the square root (�) transformation, where
p�0.5, is applicable, particularly for data that are
counts (Poisson distributed) and the variance is
related to the mean. Cube roots (p�0.33), fourth
roots (p�0.25), etc., will be increasingly effective
for data that are increasingly skewed; fourth root
transformations are commonly used for abun-
dance data in ecology when there are lots of zeros
and a few large values (Figure 4.8). For very skewed
data, a reciprocal transformation can help,
although interpretation is a little difficult
because then order of values is reversed.

Transforming data to logarithms (the base is
irrelevant although base 10 logs are more familiar
to readers) will also make positively skewed distri-
butions more symmetrical (Keene 1995; Figure
4.9), especially when the mean is related to the
standard deviation. Such a distribution is termed
lognormal because it can be made normal by log
transforming the values. Use log (Y�c) where c is
an appropriate constant if there are zeros in the
data set because you can’t take the log of zero.
Some people use the smallest possible value for
their variable as a constant, others use an arbi-
trarily small number, such as 0.001 or, most
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Figure 4.8. Distribution of counts
of limpets in quadrats at Point
Nepean: (a) untransformed (raw),
(b) square root transformed, and (c)
fourth root transformed. (M Keough
& G. Quinn, unpublished data.)



commonly, 1. Berry (1987)
pointed out that different
values of c can produce differ-
ent results in ANOVA tests and
recommended using a value of
c that makes the distribution of the residuals as
symmetrical as possible (based on skewness and
kurtosis of the residuals).

If skewness is actually negative, i.e. the distri-
bution has a long left tail, Tabachnick & Fidell
(1996) suggested reflecting the variable before
transforming. Reflection simply involves creating
a constant by adding one to the largest value in
the sample and then subtracting each observation
from this constant.

These transformations can be considered part
of the Box–Cox family of transformations:

when ��0 (4.1)

log(Y) when ��0 (4.2)

When ��1, we have no change to the distribu-
tion, when ��0.5 we have the square root trans-
formation, and when ���1 we have the
reciprocal transformation, etc. (Keene 1995, Sokal

Y��1

�

& Rohlf 1995). The Box–Cox family of transforma-
tions can also be used to find the best transforma-
tion, in terms of normality and homogeneity of
variance, by an iterative process that selects a
value of � that maximizes a log-likelihood func-
tion (Sokal & Rohlf 1995).

When data are percentages or proportions,
they are bounded at 0% and 100%. Power transfor-
mations don’t work very well for these data
because they change each end of the distribution
differently (Emerson 1991). One common
approach is to use the angular transformation,
specifically the arcsin transformation. With the
data expressed as proportions, then transform Y
to sin�1(�Y), and the result is shown in Figure
4.10. It is most effective if Y is close to zero or one,
and has little effect on mid-range proportions.

Finally, we should mention the rank transfor-
mation, which converts the observations to ranks,
as described in Chapter 3 for non-parametric tests.
The rank transformation is different from the

66 GRAPHICAL EXPLORATION OF DATA

Figure 4.9. Frequency distribution
and box plots for concentrations of
Cl� for 39 sites from forested
watersheds in the Catskill
Mountains in New York State:
(a) untransformed and 
(b) log10-transformed (data from
Lovett et al. 2000).

Figure 4.10. Distribution of
percentage cover of the alga
Hormosira banksii in quadrats at
Point Nepean: (a) untransformed
(raw) and (b) arcsin transformed. (M
Keough & G. Quinn, unpublished
data.)
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other transformations discussed here because it is
bounded by one and n, where n is the sample size.
This is an extreme transformation, as it results in
equal differences (one unit, except for ties)
between every pair of observations in this ranked
set, regardless of their absolute difference. It
therefore results in the greatest loss of informa-
tion of all the monotonic transformations.

For common linear models (regressions and
ANOVAs), transformations will often improve nor-
mality and homogeneity of variances and reduce
the influence of outliers. If unequal variances and
outliers are a result of non-normality (e.g. skewed
distributions), as is often the case with biological
data, then transformation (to log or square root
for skewed data) will improve all three at once.

4.3.2 Transformations and linearity
Transformations can also be used to improve line-
arity of relationships between two variables and
thus make linear regression models more appro-
priate. For example, allometric relationships with
body size have a better linear fit after one or both
variables are log-transformed. Note that nonlin-
ear relationships might be better investigated
with a nonlinear model, especially one that has a
strong theoretical justification.

4.3.3 Transformations and additivity
Transformations also affect the way we measure
effects in linear models. For example, let’s say we
were measuring the effect of an experimental
treatment compared to a control at two different
times. If the means of our control groups are dif-
ferent at each time, how we measure the effect of
the treatment is important. Some very artificial
data are provided in Table 4.1 to illustrate the
point. At Time 1, the treatment changes the mean
value of our response variable from 10 to 5 units, a
decrease of 5 units. At Time 2 the change is from 50
to 25 units, a change of 25 units. On the raw scale
of measurement, the effects of the treatments are
very different, but in percentage terms, the effects
are actually identical with both showing a 50%
reduction. Biologically, which is the most mean-
ingful measure of effect, a change in raw scale or a
change in percentage scale? In many cases, the per-
centage change might be more biologically rele-
vant and we would want our analysis to conclude

that the treatment effects are the same at the two
times. Transforming the data to a log scale
achieves this (Table 4.1).

Interpretation of interaction terms in more
complex linear models (Chapter 9) can also be
affected by the scale on which data are measured.
Transforming data to reduce interactions may be
useful if you are only interested in main effects or
you are using a model that assumes no interaction
(e.g. some randomized blocks models; Chapter 10).
Log-transformed data may better reflect the
underlying nature and interpretation of an inter-
action term.

4.4 Standardizations

Another change we can make to the values of our
variable is to standardize them in relation to each
other. If we are including two or more variables in
an analysis, such as a regression analysis or a more
complex multivariate analysis, then converting
all the variables to a similar scale is often impor-
tant before they are included in the analysis. A
number of different standardizations are pos-
sible. Centering a variable simply changes the var-
iable so it has a mean of zero:

yi�yi� ȳ (4.3)

This is sometimes called translation (Legendre &
Legendre 1998).

Variables can also be altered so they range
from zero (minimum) to one (maximum).
Legendre & Legendre (1998) describe two ways of
achieving this:

yi� and yi� (4.4)
yi� ymin

ymax� ymin

yi

ymax
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Table 4.1 Means for treatment and control
groups for an experiment conducted at two times.
Artificial data and arbitrary units used.

Log-
Untransformed transformed

Time 1 Time 2 Time 1 Time 2

Control 10 50 1.000 1.699
Treatment 5 25 0.699 1.398



The latter is called ranging and both methods are
particularly useful as standardizations of abun-
dance data before multivariate analyses that
examine dissimilarities between sampling units
in terms of species composition (Chapter 15).

Changing a variable so it has a mean of zero
and a standard deviation (and variance) of one is
often termed standardization:

yi� (4.5)

The standardized values are also called z scores
and represent the values of the variable from a
normal distribution with a mean of zero and a
standard deviation of one (Chapter 2).

4.5 Outliers

Outliers (or unusual values) are values of a vari-
able that lie outside the usual range of that vari-
able. They can seriously affect the results of
analyses. There are two aspects in dealing with
outliers (i) identifying them, and (ii) dealing with
them. There are formal tests for detecting outliers,
which assume that the observations are normally
distributed. Dixon’s Q test examines the difference
between the outlier and the next closest observa-
tion relative to the overall range of the data (Miller
1993, Sokal & Rohlf 1995), although such tests
have difficulties when there are multiple outliers.
For some linear models (e.g. linear regression),
Cook’s D statistic indicates the influence of each
observation on the result of the analysis (Chapter
5). Outliers are often easier to detect with EDA
methods. For example, boxplots will highlight
unusually large or small values, plots of residuals
from linear models reveal observations a long way
from the fitted model, as will scatterplots with an
appropriate smoothing function.

Once you identify outliers, you should first
check to make sure they are not a mistake, such as
an error typing in your data or in writing values
down. They often show up as impossible values,
e.g. a 3 m ant, a blood pressure that would result
in an animal exploding, etc. If you can classify an
outlier as a mistake, it should be deleted.

The second kind of outlier can occur if
something unusual happened to that particular

yi� ȳ
s

observation. Perhaps the tissue preparation took
longer than usual or an experimental enclosure
was placed in an unusual physical location. In this
case, you may have had a priori cause to be suspi-
cious of that value. It is important to keep detailed
notes of your experiments, to identify potential
outliers. If you were suspicious of this observation
a priori, you may be able to delete such an outlier.

In other cases, you may simply have an anom-
alous value. Although evolutionary biologists
might make their reputations from rare variants,
they are an unfortunate fact of life for the rest of
us. If you have no reason to suspect an outlier as
being a mistake, there are two options. First, you
can re-run the analysis without the outlier(s) to
see how much they influence the outcome of the
analysis. If the conclusions are altered, then you
are in trouble and should try and determine why
those values are so different. Perhaps you are
unwittingly counting two very similar species, or
have a batch of laboratory animals that came from
very different sources. Sometimes thinking about
why particular observations are outliers can stim-
ulate new research questions. Second, use statisti-
cal techniques that are robust to outliers, e.g. for
simple analyses, rank-based tests can provide
some protection (Chapter 3). Don’t forget that out-
liers may be a result of a very skewed underlying
distribution and transformations will often make
the distribution more symmetrical and bring out-
liers more in line with the rest of the sample.

It is crucial that outliers only be deleted when
you have a priori reasons to do so – dropping obser-
vations just because they are messy or reduce the
chance of getting a significant result is unethical,
to say the least. The other unacceptable behaviour
is to run the analysis and then go back and look
for outliers to remove if the analysis is not signifi-
cant.

4.6 Censored and missing data

4.6.1 Missing data
A common occurrence in biology is that, despite
careful field or laboratory work, we might end up
with samples that are missing observations that
were originally planned to be collected. It is very
important to distinguish between missing values
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and zero values. The former are observations
where we did not record a value for a variable (e.g.
there was no response from an experimental unit)
or where we did record a value that went subse-
quently missing (e.g. the observation was lost).
The latter are recorded observations where the
value of the variable was zero, such as the absence
of an organism when we are recording counts.
Zero values are real data and do not represent a
problem in data analysis except that distribu-
tional assumptions might be harder to meet and
some transformations do not deal with zeros (e.g.
logs). Missing observations can cause great diffi-
culties although these problems are much more
severe for multivariate data sets and we will
describe methods for handling missing observa-
tions in those circumstances in Chapter 15. Note
that these methods will be relevant for linear
models with multiple continuous predictor vari-
ables (multiple regression models; Chapter 6).

For univariate analyses described in Chapter 3
and in subsequent chapters on linear models with
categorical predictor variables (ANOVA models),
the main difficulty with missing observations is
that they might result in unequal sample sizes
between the two or more groups that we wish to
compare. These are termed unbalanced data. We
emphasized in Chapter 3 that the results of t tests
comparing two population means are much more
sensitive to assumptions about normality and var-
iance homogeneity when sample sizes are
unequal. There are three general approaches to
handling such missing values. First is to do
nothing because linear model analyses can easily
handle unequal sample sizes. You need to choose
which sum-of-squares to use in factorial models
(Chapter 9) and also to check the assumptions of
the analyses carefully (Sections 4.2.1, Chapters 5, 8,
etc.). There are also difficulties with estimation of
variance components (Chapter 8). Second is to
delete observations from all samples so that the
sample size is equal across groups. It is difficult to
recommend this conservative approach; it wastes
data and sample sizes in biology are often small, so
that power is a real consideration. Third, we can
substitute (impute) replacement values for the
missing observations. These replacement values
might be simply the mean of the remaining values,
although these methods result in underestimation

of the variances and standard errors of the esti-
mates of parameters based on these imputed
values, i.e. our estimates will be artificially more
precise. More complex imputation methods are
available for multivariate data sets (Chapter 15).

Our preferred option is to do nothing and
analyze the data with unequal sample sizes.
However, equal sample sizes make data analysis
and interpretation much easier, so every effort
must be made during the design and execution
stages to achieve this balance.

4.6.2 Censored (truncated) data
A problem related to missing data is that of cen-
sored or truncated data, where some of the obser-
vations in our data set have values but others are
simply recorded as less than or greater than a par-
ticular value, or between two values. Clearly we
have some information about a censored value
independently of the other values whereas we
have no information about a missing value.
Censored data in biology occur most often in two
types of situation.

When we are measuring the concentration of
some substance in the environment (e.g. air or
water quality monitoring), our field and labora-
tory analytical equipment will have limits to its
sensitivity. Sometimes we might only be able to
record the level of a substance as being below a
detection limit (BDL), the smallest concentration
we are able to record. For example, in their study
of chemical characteristics of 39 streams in the
Catskill Mountains in New York State (see worked
example in Chapter 2, Section 4.1.1), Lovett et al.
(2000) recorded the concentration of ammonium
(NH4

�). Over the course of the three years, 38% of
the values of ammonium concentration were
below their detection limit of 1.1 �mol l�1. Data
that are below some detection limit are termed
left censored. Right censoring is also possible, e.g.
counts of organisms in a sampling unit might be
integers up to 100 but larger numbers are simply
recorded as �100. Left censoring of air and water
quality data has been the focus in the literature
(Akritas et al. 1994). When the detection limit is
fixed in advance, such as when we know the limits
of our equipment, and the number of observa-
tions occurring below this limit is random, then
we have Type I censoring.
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The second situation in which censored data
are common is time-to-event, survival or failure-
time analysis (Fox 1993, Lindsey & Ryan 1998). In
these studies, sampling or experimental units are
observed at regular intervals and we usually only
know that an event occurred (e.g. response of
patients in a clinical trial, flowering of plants or
germination of seeds, etc.) after the last recording.
These data are nearly always right censored but
since the observation is actually somewhere in a
time interval, the phrase interval-censored is
often used. Sometimes our variable of interest
might be the time between two events occurring,
e.g. the first introduction of an exotic species to a
system and the first loss of a native species. Both
events will often be interval-censored, i.e. we only
know when each occurred within an interval, and
such data are termed doubly censored. Doubly
censored data are more common in medicine and
clinical trials than in general biological research.
Unfortunately, the area of survival analysis is
beyond the scope of this book (but see Andersen &
Keiding 1996, Fox 1993).

The methods for dealing with censored data
are related to those for dealing with missing data.
We will only provide a brief mention here and
recommend Akritas et al. (1994) for a good intro-
duction to the literature for left-censored environ-
mental data.

Estimation of mean and variance
Three methods have been proposed for dealing
with censored, especially left-censored, data when
the aim is to estimate parameters of a single pop-
ulation.

The first is simple substitution, where the
detection limit, half the detection limit (as used
by Lovett et al. 2000 for their ammonium data) or
zero are substituted for the censored data. A less
common alternative is to assume a distribution
(e.g. normal or uniform) for the values below the
detection limit and substitute random data from
the distribution. Parameters are estimated from
the complete data set, although these estimates
will be biased and the extent of the bias depends
on the actual values of the censored observations,
which, of course, we do not know. As with missing
data, simple substitution is not recommended.

Parametric methods assume a normal

distribution and use maximum likelihood
methods to estimate parameters, based primarily
on the non-censored data but incorporating the
size of the censored and non-censored compo-
nents of the sample (Newman et al. 1989). The ML
estimates can also be used to infill the censored
data (Akritas et al. 1994). These ML estimates are
biased but usually more precise than other
methods; restricted ML (REML; see Chapter 8)
methods are also available that reduce the bias.
There are more robust parametric methods, often
based on order statistics (Chapter 2) where the cen-
sored values are infilled from predicted values
from a regression through a normal or lognormal
probability plot fitted to the ordered data. These
methods are termed normal or lognormal prob-
ability regressions (Akritas et al. 1994) or regres-
sions on expected order statistics (Newman et al.
1989). We have to assume that the censored values
are extensions of the same distribution as the
uncensored values. The simulations of Newman et
al. (1989) indicated that ML estimates are best when
distributional assumptions are met, otherwise the
probability regression method should be used.

Comparing two or more populations
There is some consensus in the literature that
non-parametric, rank-based, tests are most appro-
priate for hypothesis testing with censored data.
Millard & Deveral (1988) compared twelve rank
tests for comparing two populations based on
sample data with single censoring and multiple
censoring (the detection limit varies between
groups). For tests like the Mann–Whitney–
Wilcoxon (Chapter 3), values below the detection
limit are given the same tied rank. Millard &
Deverel (1988) recommended score tests (linear
rank tests) for comparing two populations,
whereas Akritas et al. (1994) preferred a form of
the robust Theil–Sen regression (Sprent 1993; see
also Chapter 5) in which the predictor variable
defines the two groups. For more than two groups,
multiple pairwise tests, with a suitable correction
for multiple testing (Chapter 3), are probably the
simplest approach.

Akritas et al. (1994) also describe regression
methods for censored data. For survival data, pro-
portional hazards models can be used. For left-
censored data, various non-parametric regression

70 GRAPHICAL EXPLORATION OF DATA



analyses (Chapter 5) are possible, with a form of
the Theil–Sen method being the simplest.

4.7 General issues and hints for
analysis

4.7.1 General issues
• Graphical analysis of the data should be the

first step in every analysis. Besides allowing
you to assess the assumptions of your planned
analysis, it allows you to get familiar with your
data.

• Many current statistical packages emphasize
exploratory data analysis, and make it easy to
produce boxplots, residual plots, etc.

• Initial graphical analysis is also very valuable
for identifying outliers, which can have a great
influence on your analyses.

• Transformations are routinely used to improve
the fit of biological data to the assumptions of
the planned statistical analyses, especially
linear models.

• Data transformations should be monotonic, so
that the order of the observations for a
variable does not change.
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Biologists commonly record more than one vari-
able from each sampling or experimental unit.
For example, a physiologist may record blood pres-
sure and body weight from experimental animals,
or an ecologist may record the abundance of a par-
ticular species of shrub and soil pH from a series
of plots during vegetation sampling. Such data are
termed bivariate when we have two random vari-
ables recorded from each unit or multivariate
when we have more than two random variables
recorded from each unit. There are a number of
relevant questions that might prompt us to collect
such data, based on the nature of the biological
and statistical relationship between the variables.
The next two chapters consider statistical proce-
dures for describing the relationship(s) between
two or more continuous variables, and using that
relationship for prediction. Techniques for detect-
ing patterns and structure in complex multivari-
ate data sets, and simplifying such data sets for
further analyses, will be covered in Chapters
15–18.

5.1 Correlation analysis

Consider a situation where we are interested in
the statistical relationship between two random
variables, designated Y1 and Y2, in a population.
Both variables are continuous and each sampling
or experimental unit (i) in the population has a
value for each variable, designated yi1 and yi2.

Land crabs on Christmas Island
Christmas Island in the northeast Indian Ocean is
famous for its endemic red land crabs, Gecarcoidea
natalis, which undergo a spectacular mass migra-

tion back to the ocean each year to release their
eggs. The crabs inhabit the rain forest on the
island where they consume tree seedlings. In a
study on the ecology of the crabs, Green (1997)
tested whether there was a relationship between
the total biomass of red land crabs and the density
of their burrows within 25 m2 quadrats (sampling
units) at five forested sites on the island. The full
analyses of these data are provided in Box 5.1.

5.1.1 Parametric correlation model
The most common statistical procedure for meas-
uring the ‘strength’ of the relationship between
two continuous variables is based on distribu-
tional assumptions, i.e. it is a parametric proce-
dure. Rather than assuming specific distributions
for the individual variables, however, we need to
think of our data as a population of yi1 and yi2

pairs. We now have a joint distribution of two var-
iables (a bivariate distribution) and, analogous to
the parametric tests we described in Chapter 3,
the bivariate normal distribution (Figure 5.1)
underlies the most commonly used measure of
the strength of a bivariate relationship. The bivar-
iate normal distribution is defined by the mean
and standard deviation of each variable and a
parameter called the correlation coefficient,
which measures the strength of the relationship
between the two variables. A bivariate normal dis-
tribution implies that the individual variables
are also normally distributed and also implies
that any relationship between the two variables,
i.e. any lack of independence between the vari-
ables, is a linear one (straight-line; see Box 5.2;
Hays 1994). Nonlinear relationships between two
variables indicate that the bivariate normal distri-
bution does not apply and we must use other

Chapter 5
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procedures that do not assume this distribution
for quantifying the strength of such relationships
(Section 5.1.2).

Covariance and correlation
One measure of the strength of a linear relation-
ship between two continuous random variables is

to determine how much the two variables covary,
i.e. vary together. If one variable increases (or
decreases) as the other increases (or decreases),
then the two variables covary; if one variable does
not change as the other variable increases (or
decreases), then the variables do not covary. We
can measure how much two variables covary in a
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Box 5.1 Worked example: crab and burrow density on
Christmas Island

Green (1997) studied the ecology of red land crabs on Christmas Island and exam-
ined the relationship between the total biomass of red land crabs and the density
of their burrows within 25 m2 quadrats (sampling units) at five forested sites on the
island.We will look at two of these sites: there were ten quadrats at Lower Site (LS)
and eight quadrats at Drumsite (DS). Scatterplots and boxplots are presented in
Figure 5.3. There was slight negative skewness for biomass and burrow density for
LS, and an outlier for burrow density for DS, but no evidence of nonlinearity.
Pearson’s correlation coefficient was considered appropriate for these data
although more robust correlations were calculated for comparison.

Site Correlation type Statistic P value

DS (n�8) Pearson 0.392 0.337
Spearman 0.168 0.691
Kendall 0.036 0.901

LS (n�10) Pearson 0.882 0.001
Spearman 0.851 0.002
Kendall 0.719 0.004

The H0 of no linear relationship between total crab biomass and number of
burrows at DS could not be rejected. The same conclusion applies for monotonic
relationships measured by Spearman and Kendall’s coefficients. So there was no evi-
dence for any linear or more general monotonic relationship between burrow
density and total crab biomass at site DS.

The H0 of no linear relationship between total crab biomass and number of
burrows at LS was rejected. The same conclusion applies for monotonic relation-
ships measured by Spearman and Kendall’s coefficients. There was strong evidence
of a linear and more general monotonic relationship between burrow density and
total crab biomass at site LS.

Figure 5.1. Bivariate normal
distribution for (a) two variables
with little correlation and (b) two
variables with strong positive
correlation.



sample of observations by the
covariance (Table 5.1). The
numerator is the sum of cross-
products (SSCP), the bivariate
analogue of the sum of
squares (SS). The covariance
ranges from �� to ��. Note
that a special case of the covariance is the sample
variance (see Chapter 2), the covariance of a vari-
able with itself.

One limitation of the covariance as a measure
of the strength of a linear relationship is that its
absolute magnitude depends on the units of the
two variables. For example, the covariance
between crab biomass and number of burrows in
the study of Green (1996) would be larger by a
factor of 103 if we measured biomass in grams
rather than kilograms. We can standardize the
covariance by dividing by the standard deviations
of the two variables so that our measure of the
strength of the linear relationship lies between
�1 and �1. This is called the Pearson (product–
moment) correlation (Table 5.1) and it measures
the “strength” of the linear (straight-line) rela-
tionship between Y1 and Y2. If our sample data

comprise a random sample from a population of
(yi1,yi2) pairs then the sample correlation coeffi-
cient r is the maximum likelihood (ML) estimator
of the population correlation coefficient �; r actu-
ally slightly under-estimates �, although the bias
is small (Sokal & Rohlf 1995). Along with the
means and standard deviations of the two vari-
ables, the population correlation coefficient (�) is
the parameter that defines a bivariate normal dis-
tribution. The sample correlation coefficient is
also the sample covariance of two variables that
are both standardized to zero mean and unit var-
iance (Rodgers & Nicewander 1988; see Chapter 4
for details on standardized variables). Note that r
can be positive or negative (Figure 5.2) with �1 or
–1 indicating that the observations fall along a
straight line and zero indicating no correlation.
The correlation coefficient measures linear
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Table 5.1 Parameters used for parametric correlation analysis and their estimates, with standard error for
correlation coefficient. Note that yi1 and yi2 are the values of the two variables for observation i, ȳ1 and ȳ2 are the
sample means for the two variables and n is the number of observations

Parameter Estimate Standard error

Covariance: rY1Y2
sY1Y2

� n/a

Correlation: qY1Y2
rY1Y2

� sr��(1� r2)
(n�2)

�
n

i�1
[(yi1� ȳ1)(yi 2� ȳ2)]

��
n

i�1
(yi1� ȳ1)2�

n

i�1
(yi 2� ȳ2)2

�
n

i�1
(yi1� ȳ1)(yi 2� ȳ2)

n�1

Figure 5.2. Scatterplots illustrating
(a) a positive linear relationship
(r�0.72), (b) a negative linear
relationship (r��0.72), (c) and (d)
no relationship (r�0.10 and �0.17),
respectively, and (e) a nonlinear
relationship (r�0.08).



relationships; two variables may have a strong
nonlinear relationship but not have a large corre-
lation coefficient (Figure 5.2(e)).

Since the sample correlation coefficient is a
statistic, it has a sampling distribution (probabil-
ity distribution of the sample correlation coeffi-
cient based on repeated samples of size n from a
population). When � equals zero, the distribution
of r is close to normal and the sample standard
error of r can be calculated (Table 5.1). When �
does not equal zero, the distribution of r is skewed
and complex (Neter et al. 1996) and, therefore, the
standard error cannot be easily determined
(although resampling methods such as the boot-
strap could be used; see Chapter 2). Approximate
confidence intervals for � can be calculated using
one of the versions of Fisher’s z transformation
(see Sokal & Rohlf 1995) that convert the distribu-
tion of r to an approximately normal distribution.

Hypothesis tests for �
The null hypothesis most commonly tested with
Pearson’s correlation coefficient is that � equals
zero, i.e. the population correlation coefficient
equals zero and there is no linear relationship
between the two variables in the population.
Because the sampling distribution of r is normal
when � equals zero, we can easily test this H0 with
a t statistic:

t� (5.1)

We compare t with the sampling distribution of t
(the probability distribution of t when H0 is true)
with n�2 df. This is simply a t test that a single
population parameter equals zero (where t equals
the sample statistic divided by the standard error

r
sr

of the statistic) as described
for the population mean in
Chapter 3. The value of r can

also be compared to the sampling distribution for
r under the H0 (see tables in Rohlf & Sokal 1969,
Zar 1996). The results of testing the H0 using the
sampling distribution of t or r will be the same;
statistical software usually does not provide a t
statistic for testing correlation coefficients.

Tests of null hypotheses that � equals some
value other than zero or that two population cor-
relation coefficients are equal cannot use the
above approach because of the complex sampling
distribution of r when � does not equal zero. Tests
based on Fisher’s z transformation are available
(Sokal & Rohlf 1995).

Assumptions
Besides the usual assumptions of random sam-
pling and independence of observations, the
Pearson correlation coefficient assumes that the
joint probability distribution of Y1 and Y2 is bivar-
iate normal. If either or both variables have
non-normal distributions, then their joint distri-
bution cannot be bivariate normal and any rela-
tionship between the two variables might not be
linear. Nonlinear relationships can even arise if
both variables have normal distributions.
Remembering that the Pearson correlation coeffi-
cient measures the strength of the linear relation-
ship between two variables, checking for a
nonlinear relationship with a simple scatterplot
and for asymmetrical distributions of the vari-
ables with boxplots is important. Modern statisti-
cal software produces these plots very easily (see
Figure 5.3).

If the assumption of bivariate normality is
suspect, based on either of the two variables
having non-normal distributions and/or apparent
nonlinearity in the relationship between the two
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Figure 5.3. Scatterplots showing
the relationship between number of
burrows of red land crabs and total
crab biomass in 25 m2 quadrats at
two sites (LS, DS) on Christmas
Island (Green 1997). Each plot
includes bordered boxplots for each
variable separately.



variables, we have two options.
First, we can transform one or
both variables if they are
skewed and their nature sug-
gests an alternative scale of
measurement might linearize their relationship
(see Chapter 4 and Section 5.3.11). Second, we can
use more robust measures of correlation that do
not assume bivariate normality and linear rela-
tionships (Section 5.1.2).

5.1.2 Robust correlation
We may have a situation where the joint distribu-
tion of our two variables is not bivariate normal,
as evidenced by non-normality in either variable,
and transformations do not help or are inappro-
priate (e.g. the log of a variable does not make
much theoretical sense). We may also be inter-
ested in testing hypotheses about monotonic rela-
tionships or more general associations between
two variables, i.e. one variable increases (or
decreases) as the other increases (or decreases) but
not necessarily in a linear (straight-line) manner.
One general approach for testing monotonic rela-
tionships between variables that does not assume
bivariate normality is to examine the association
of the ranks of the variables; statistical tests based
on rank transformations were described in
Chapter 3.

Spearman’s rank correlation coefficient (rs) is
simply the Pearson correlation coefficient after
the two variables have been separately trans-
formed to ranks but the (yi1,yi2) pairing is retained
after ranking. An equivalent computation that
uses the ranked data directly is also available (e.g.
Hollander & Wolfe 1999, Sokal & Rohlf 1995,
Sprent 1993). The null hypothesis being tested is
that there is no monotonic relationship between
Y1 and Y2 in the population. An alternative
measure is Kendall’s rank correlation coefficient,
sometimes termed Kendall’s tau (�). The value of

Spearman’s rs will be slightly greater than � for a
given data set (Box 5.1), and both are more conser-
vative measures than Pearson’s correlation when
distribution assumptions hold. Note that these
non-parametric correlation analyses do not detect
all nonlinear associations between variables, just
monotonic relationships.

5.1.3 Parametric and non-parametric
confidence regions

When representing a bivariate relationship with a
scatterplot, it is often useful to include confidence
regions (Figure 5.4, left). The 95% confidence
region, for example, is the region within which we
would expect the observation represented by the
population mean of the two variables to occur
95% of the time under repeated sampling from
this population. Assuming our two variables
follow a bivariate normal distribution, the confi-
dence band will always be an ellipse centered on
the sample means of Y1 and Y2 and the orientation
of the ellipse is determined by the covariance (or
the Pearson correlation coefficient). The two
major axes (length and width) of these ellipses are
determined from the variances (or standard devi-
ations) of Y1 and Y2. These axes are used for some
forms of regression analysis (Section 5.3.14) and
also for some statistical procedures that deal with
multivariate data sets, such as principal compo-
nents analysis (Chapters 15 and 16). Note that if
the linear relationship between Y1 and Y2 is weak,
then the bounds of the ellipse may exceed the
actual and theoretical range of our data, e.g.
include impossible values such as negatives
(Figure 5.4, right).

Sometimes we are not interested in the
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Figure 5.4. Comparison of 95%
confidence ellipses (——) and
kernel density estimators (-------) for
the relationship between total crab
biomass and number of burrows at
sites LS and DS on Christmas Island
(Green 1997).
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population mean of Y1 and Y2 but simply want a
confidence region for the observations them-
selves. In Chapter 4, we introduced kernel density
estimators for univariate data (Silverman 1986).
The estimated density for a value of Y is the sum
of the estimates from a series of symmetrical dis-
tributions (e.g. normal, although others are often
used) fitted to groups of local observations. In the
bivariate case, we determine contours that sur-
round regions of high bivariate density where
these contours are formed from summing a series
of symmetrical bivariate distributions fitted to
groups of local paired observations. Note that the
kernel estimators are not constrained to a specific
ellipsoid shape and will often better represent the
pattern of density of observations in our sample
(Figure 5.4, right).

5.2 Linear models

Most of the analyses in the following chapters are
concerned with fitting statistical models. These
are used in situations where we can clearly specify
a response variable, also termed the dependent
variable and designated Y, and one or more pre-
dictor variables, also termed the independent var-
iables or covariates and designated X1, X2, etc. A
value for each response and predictor variable is
recorded from sampling or experimental units in
a population. We expect that the predictor vari-
ables may provide some biological explanation for
the pattern we see in the response variable. The

statistical models we will use take the following
general form:

response variable�model�error (5.2)

The model component incorporates the predictor
variables and parameters relating the predictors
to the response. In most cases, the predictor vari-
ables, and their parameters, are included as a
linear combination (Box 5.2), although nonlinear
terms are also possible. The predictor variables
can be continuous or categorical or a combination
of both. The error component represents the part
of the response variable not explained by the
model, i.e. uncertainty in our response variable.
We have to assume some form of probability dis-
tribution for the error component, and hence for
the response variable, in our model.

Our primary aim is to fit our model to our
observed data, i.e. confront our model with the
data (Hilborn & Mangel 1997). This fitting is basi-
cally an estimation procedure and can be done
with ordinary least squares or maximum likeli-
hood (Chapter 2). We will emphasize OLS for most
of our models, although we will be assuming nor-
mality of the error terms for interval estimation
and hypothesis testing. Such models are called
general linear models, the term “general” refer-
ring to the fact that both continuous and categor-
ical predictors are allowed. If other distributions
are applicable, especially when there is a relation-
ship between the mean and the variance of the
response variable, then ML must be used for esti-
mation. These models are called generalized
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Box 5.2 What does “linear” mean?

The term linear model has been used in two distinct ways. First, it means a model
of a straight-line relationship between two variables. This is the interpretation most
biologists are familiar with. A second, more correct, definition is that a linear model
is simply one in which any value of the variable of interest (yi) is described by a linear
combination of a series of parameters (regression slopes, intercept), and “no param-
eter appears as an exponent or is multiplied or divided by another parameter”
(Neter et al. 1996, p. 10). Now the term “linear” refers to the combination of
parameters, not the shape of the relationship. Under this definition, linear models
with a single predictor variable can represent not only straight-line relationships
such as Equation 5.3, but also curvilinear relationships, such as the models with poly-
nomial terms described in Chapter 6.



linear models, generalized meaning that other
distributions besides normal and relationships
between the mean and the variance can be accom-
modated.

We nearly always have more than one statisti-
cal model to consider. For example, we might have
the simplest model under a null hypothesis versus
a more complex model under some alternative
hypothesis. When we have many possible predic-
tor variables, we may be comparing a large
number of possible models. In all cases, however,
the set of models will be nested whereby we have
a full model with all predictors of interest
included and the other models are all subsets of
this full model. Testing hypotheses about predic-
tors and their parameters involves comparing the
fit of models with and without specific terms in
this nested hierarchy. Non-nested models can also
be envisaged but they cannot be easily compared
using the estimation and testing framework we
will describe, although some measures of fit are
possible (Hilborn & Mangel 1997; Chapter 6).

Finally, it is important to remember that there
will not usually be any best or correct model in an
absolute sense. We will only have sample data with
which to assess the fit of the model and estimate
parameters. We may also not have chosen all the
relevant predictors nor considered combinations
of predictors, such as interactions, that might
affect the response variable. All the procedure for
analyzing linear models can do is help us decide
which of the models we have available is the best fit
to our observed sample data and enable us to test
hypotheses about the parameters of the model.

5.3 Linear regression analysis

In this chapter, we consider statistical models that
assume a linear relationship between a continu-
ous response variable and a single, usually contin-
uous, predictor variable. Such models are termed
simple linear regression models (Box 5.2) and
their analysis has three major purposes:

1. to describe the linear relationship between
Y and X,

2. to determine how much of the variation
(uncertainty) in Y can be explained by the linear

relationship with X and how much of this
variation remains unexplained, and

3. to predict new values of Y from new values
of X.

Our experience is that biologists, especially
ecologists, mainly use linear regression analysis
to describe the relationship between Y and X and
to explain the variability in Y. They less commonly
use it for prediction (see discussion in Ford 2000,
Peters 1991).

5.3.1 Simple (bivariate) linear regression
Simple linear regression analysis is one of the
most widely applied statistical techniques in
biology and we will use two recent examples from
the literature to illustrate the issues associated
with the analysis.

Coarse woody debris in lakes
The impact of humans on freshwater environments
is an issue of great concern to both scientists and
resource managers. Coarse woody debris (CWD) is
detached woody material that provides habitat for
freshwater organisms and affects hydrological pro-
cesses and transport of organic materials within
freshwater systems. Land use by humans has
altered the input of CWD into freshwater lakes in
North America, and Christensen et al. (1996) studied
the relationships between CWD and shoreline veg-
etation and lake development in a sample of 16
lakes. They defined CWD as debris greater than
5 cm in diameter and recorded, for a number of
plots on each lake, the density (no. km�1) and basal
area (m2 km�1) of CWD in the nearshore water, and
the density (no. km�1) and basal area (m2 km�1) of
riparian trees along the shore. They also recorded
density of cabins along the shoreline. Weighted
averages of these values were determined for each
lake, the weighting based on the relative propor-
tion of lake shore with forest and with cabins. We
will use their data to model the relationships
between CWD basal area and two predictor vari-
ables separately, riparian tree density and cabin
density. These analyses are presented in Box 5.3.

Species–area relationships
Ecologists have long been interested in how abun-
dance and diversity of organisms relate to the area
of habitat in which those organisms are found.
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Box 5.3 Worked example of linear regression analysis:
coarse woody debris in lakes

Christensen et al. (1996) studied the relationships between coarse woody debris
(CWD) and shoreline vegetation and lake development in a sample of 16 lakes in
North America. The main variables of interest are the density of cabins (no. km�1),
density of riparian trees (trees km�1), the basal area of riparian trees (m2 km�1),
density of coarse woody debris (no. km�1), basal area of coarse woody debris
(m2 km�1).

CWD basal area against riparian tree density
A scatterplot of CWD basal area against riparian tree density, with a Loess
smoother fitted, showed no evidence of a nonlinear relationship (Figure 5.13(a)).
The boxplots of each variable were slightly skewed but the residuals from fitting the
linear regression model were evenly spread and there were no obvious outliers
(Figure 5.13(b)). One lake (Tenderfoot) had a higher Cook’s Di than the others that
was due mainly to a slightly higher leverage value because this lake had the great-
est riparian density (X-variable). Omitting this lake from the analysis did not alter
the conclusions so it was retained and the variables were not transformed.

The results of the OLS fit of a linear regression model to CWD basal area
against riparian tree density were as follows.

Standard Standardized 
Coefficient error coefficient t P

Intercept �77.099 30.608 0 �2.519 0.025
Slope 0.116 0.023 0.797 4.929 �0.001

Correlation coefficient (r )�0.797, r2�0.634

Source df MS F P

Regression 1 3.205�104 24.303 �0.001
Residual 14 1318.969

The t test and the ANOVA F test cause us to reject the H0 that b1 equals zero.
Note that F (24.307)� t2 (4.929), allowing for rounding errors.We would also reject
the H0 that b0 equals zero, although this test is of little biological interest. The r2

value (0.634) indicates that we can explain about 63% of the total variation in CWD
basal area by the linear regression with riparian tree density.

We can predict CWD basal area for a new lake with 1500 trees km�1 in the
riparian zone. Plugging 1500 into our fitted regression model:

CWD basal area��77.099�0.116�1500

the predicted basal area of CWD is 96.901 m2 km�1. The standard error of this
predicted value (from Equation 5.10) is 37.900, resulting in a 95% confidence inter-
val for true mean CWD basal area of lakes with a riparian density of 1500 trees
km�1 of�81.296.

CWD basal area against cabin density
A scatterplot of CWD basal area against cabin density,with a Loess smoother fitted,
showed some evidence of a nonlinear relationship (Figure 5.14(a)). The boxplot of



For example, it has been shown that as the area of
islands increases, so does the number of species of
a variety of taxa (Begon et al. 1996). On rocky inter-
tidal shores, beds of mussels are common and
many species of invertebrates use these mussel
beds as habitat. These beds are usually patchy and
isolated clumps of mussels mimic islands of
habitat on these shores. Peake & Quinn (1993)
investigated the relationship between the
number of species of macroinvertebrates, and the
total abundance of macroinvertebrates, and area
of clumps of mussels on a rocky shore in southern
Australia. They collected a sample of 25 clumps of
mussels in June 1989 and all organisms found
within each clump were identified and counted.

We will use their data to model the relationship
between two separate response variables, the total
number of species and the total number of indi-
viduals, and one predictor variable, clump area in
dm2. These analyses are presented in Box 5.4.

5.3.2 Linear model for regression
Consider a set of i�1 to n observations where each
observation was selected because of its specific X-
value, i.e. the X-values were fixed by the investiga-
tor, whereas the Y-value for each observation is
sampled from a population of possible Y-values.
The simple linear regression model is:

yi��0��1xi��i (5.3)
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cabin density was highly skewed, with a number of zero values. The residuals from
fitting the linear regression model to untransformed data suggested increasing
spread of residuals with an unusual value (Arrowhead Lake) with a low (negative)
predicted value and a much higher Cook’s Di than the others (Figure 5.14(b)).
Following Christensen et al. (1996), we transformed cabin density to log10 and refit-
ted the linear model. The scatterplot of CWD basal area against log10 cabin density
suggested a much better linear relationship (Figure 5.15(a)). The boxplot of log10

cabin density was less skewed but the residuals from fitting the linear regression
model still showed increasing spread with increasing predicted values. Lake
Arrowhead was no longer influential but Lake Bergner was an outlier with a mod-
erate Cook’s Di. Finally, we fitted a linear model when both variables were log10

transformed. The scatterplot of log10 CWD basal area against log10 cabin density
suggested a slightly less linear relationship (Figure 5.16(a)) and the boxplot of log10

CWD basal area was now negatively skewed. The residuals from fitting the linear
regression model were much improved with constant spread and no observations
were particularly influential.

Overall, transforming both variables seems to result in a linear model that fits
best to these data, although we will present the analysis with just cabin density trans-
formed as per Christensen et al. (1996). The results of the OLS fit of a linear regres-
sion model to CWD basal area against log10 cabin density were as follows.

Standard Standardized 
Coefficient error coefficient t P

Intercept 121.969 13.969 0 8.732 �0.001
Slope �93.301 18.296 �0.806 �5.099 �0.001
Correlation coefficient (r)��0.806, r2�0.650
Source df MS F P

Regression 1 3.284�104 26.004 �0.001
Residual 14 1262.870

The t test and the ANOVA F test cause us to reject the H0 that b1 equals zero.
We would also reject the H0 that b0 equals zero, although this test is of little bio-
logical interest, especially as the slope of the relationship is negative.
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Box 5.4 Worked example of linear regression analysis:
species richness of macroinvertebrates in mussel
clumps

Peake & Quinn (1993) investigated the relationship between the number of species
of macroinvertebrates, and the total abundance of macroinvertebrates, and area of
clumps of mussels on a rocky shore in southern Australia. The variables of interest
are clump area (dm2), number of species, and number of individuals.

Number of species against clump area
A scatterplot of number of species against clump area, and the plot of residuals
against predicted number of species from a linear regression analysis, both suggested
a nonlinear relationship (Figure 5.17(a,b)). Although only clump area was positively
skewed, Peake & Quinn (1993) transformed both variables because of the nature
of the species–area relationships for other seasons in their study plus the conven-
tion in species–area studies to transform both variables.

The scatterplot of log number of species against log clump area (Figure 5.18)
linearized the relationship effectively except for one of the small clumps. The resid-
ual plot also showed no evidence of nonlinearity but that same clump had a larger
residual and was relatively influential (Cook’s Di�1.02). Reexamination of the raw
data did not indicate any problems with this observation and omitting it did not alter
the conclusions from the analysis (b1 changed from 0.386 to 0.339, r2 from 0.819 to
0.850, all tests still P�0.001) so it was not excluded from the analysis. In fact, just
transforming clump area produced the best linearizing of the relationship with no
unusually large residuals or Cook’s Di statistics but, for the reasons outlined above,
both variables were transformed.

The results of the OLS fit of a linear regression model to log number of species
and log clump area were as follows.

Standard Standardized 
Coefficient error coefficient t P

Intercept 1.270 0.024 0 52.237 �0.001
Slope 0.386 0.038 0.905 10.215 �0.001
Correlation coefficient (r)�0.905, r2�0.819
Source df MS F P

Regression 1 1.027 104.353 �0.001 
Residual 23 0.010

The t test and the ANOVA F test cause us to reject the H0 that b1 equals zero.
We would also reject the H0 that b0 equals zero, indicating that the relationship
between species number and clump area must be nonlinear for small clump sizes
since the model must theoretically go through the origin. The r2 value (0.819) indi-
cates that we can explain about 82% of the total variation in log number of species
by the linear regression with log clump area.

Number of individuals against clump area
A scatterplot of number of individuals against clump area, with a Loess smoother
fitted, suggested an approximately linear relationship (Figure 5.19(a)). The plot of
residuals against predicted number of individuals from a linear regression model



The details of the linear regression model, includ-
ing estimation of its parameters, are provided in
Box 5.5.

For the CWD data from Christensen et al.
(1996), we would fit:

(CWD basal area)i�
�0��1(riparian tree density)i��i (5.4)

where n�16 lakes.
For the species–area data from Peake & Quinn

(1993), we would fit:

(number of species)i�
�0��1(mussel clump area)i��i (5.5)

where n�25 mussel clumps.
In models 5.3 and 5.4:

yi is the value of Y for the ith observation
when the predictor variable X�xi. For example,
this is the basal area of CWD for the ith lake
when the riparian tree density is xi;

�0 is the population intercept, the mean

value of the probability distribution of Y when
xi�0, e.g. mean basal area of CWD for lakes with
no riparian trees;

�1 is the population slope and measures the
change in Y per unit change in X, e.g. the change
in basal area of CWD for a unit (one tree km�1)
change in riparian tree density; and

�i is random or unexplained error associated
with the ith observation, e.g. the error terms for
a linear model relating basal area of CWD to
riparian tree density in lakes are the differences
between each observed value for CWD basal area
and the true mean CWD basal area at each
possible riparian tree density. 

In this model, the response variable Y is a
random variable whereas the predictor variable
X represents fixed values chosen by the
researcher. This means that repeated sampling
from the population of possible sampling units
would use the same values of X; this restriction
on X has important ramifications for the use of
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fitted to number of individuals against clump area (Figure 5.19(b)) showed a clear
pattern of increasing spread of residuals against increasing predicted number of indi-
viduals (or, equivalently, clump area); the pattern in the residuals was wedge-shaped.
The boxplots in Figure 5.19(a) indicated that both variables were positively skewed
so we transformed both variables to logs to correct for variance heterogeneity.

The scatterplot of log number of individuals against log clump area (Figure
5.20(a)) showed an apparent reasonable fit of a linear regression model, with sym-
metrical boxplots for both variables. The residual plot showed a more even spread
of residuals with little wedge-shaped pattern (Figure 5.20(b)).

The results of the OLS fit of a linear regression model to log number of indi-
viduals and log clump area were as follows.

Standard Standardized 
Coefficient error coefficient t P

Intercept 2.764 0.045 0 60.766 �0.001
Slope 0.835 0.071 0.927 11.816 �0.001
Correlation coefficient (r)�0.927, r2�0.859
Source df MS F P

Regression 1 4.809 139.615 �0.001
Residual 23 0.034

The t test and the ANOVA F test cause us to reject the H0 that b1 equals zero.
We would also reject the H0 that b0 equals zero, although this test is of little bio-
logical interest. The r2 value (0.859) indicates that we can explain about 86% of the
total variation in log number of individuals by the linear regression with log clump
area.
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Box 5.5 The linear regression model and its parameters

Consider a set of i�1 to n observations with fixed X-values and random Y-values.
The simple linear regression model is:

yi�b0�b1xi�ei (5.3)

In model 5.3 we have the following.

yi is the value of Y for the ith observation when the predictor variable X�xi.
b0 is the population intercept, the mean value of the probability distribution of

Y when xi equals zero.
b1 is the population slope and measures the change in Y per unit change in X.
ei is random or unexplained error associated with the ith observation. Each ei

measures, for each xi, the difference between each observed yi and the mean
of yi; the latter is the value of yi predicted by the population regression
model, which we never know. We must make certain assumptions about
these error terms for the regression model to be valid and to allow interval
estimation of parameters and hypothesis tests. We assume that these error
terms are normally distributed at each xi, their mean at each xi is zero [E(ei)
equals zero] and their variance is the same at each xi and is designated r

e
2.

This assumption is the same as the homogeneity of variances of yi described
in Section 5.3.8. We also assume that these ei terms are independent of, and
therefore uncorrelated with, each other. Since the ei terms are the only
random ones in our regression model, then these assumptions (normality,
homogeneity of variances and independence) also apply to the response
variable yi at each xi. We will examine these assumptions and their
implications in more detail in Section 5.3.8.

Figure 5.5 illustrates the population linear regression model and shows some
important features:

1. For any particular value of X (xi), there is a population of Y-values with a
probability distribution. For most regression applications, we assume that the
population of Y-values at each xi has a normal distribution. While not necessary
to obtain point estimates of the parameters in the model, this normality
assumption is necessary for determining confidence intervals on these
parameters and for hypothesis tests.

2. These populations of Y-values at each xi are assumed to have the same
variance (r 2); this is termed the homogeneity of variance assumption.

3. The true population regression line joins the means of these populations
of Y-values.

4. The overall mean value of Y, also termed the expected value of Y [E(Y )],
equals b0�b1X. This implies that we can re-express the linear regression model
in terms of means of the response variable Y at each xi:

yi�li�ei

where li is the population mean of Y-values at each xi. This type of linear
model is particularly useful when the predictor variable is categorical and the
effects of the predictor on the response variable are usually expressed in terms of
mean values.



regression analysis in biology because usually
both Y and X are random variables with a joint
probability distribution. For example, the predic-
tor variable in the study by Peake & Quinn (1993)
was the area of randomly chosen clumps of
mussels, clearly a random variable. Some aspects
of classical regression analysis, like prediction
and tests of hypotheses, might not be affected by
X being a random variable whereas the estimates
of regression coefficients can be inaccurate. We

will discuss this issue in some detail in Section
5.3.14.

From the characteristics of the regression
model summarized in Box 5.5, we assume that (a)
there is a population of lakes with a normal distri-
bution of CWD basal areas, (b) the variances of
CWD basal area (	i

2) are the same for all of these
populations and (c) the CWD basal areas in differ-
ent lakes are independent of each other. These
assumptions also apply to the error terms of the
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As we described in Chapter 2, we can use either of two methods for estimat-
ing parameters, (ordinary) least squares (OLS) and maximum likelihood (ML). If we
assume normality of the ei, it turns out that the OLS and ML estimates of b0 and b1

are identical, although, as is usual for variance estimation, the ML estimate of the var-
iance (r

e
2) is slightly biased whereas the OLS estimate of r

e
2 is not. In this book, we

will focus on OLS estimates of these parameters; details of the calculations for ML
estimation of regression parameters can be found in Neter et al. (1996).

The OLS estimates of b0 and b1 are the values that produce a sample regres-
sion line ( ŷi�b0�b1xi) that minimize �(yi� ŷi)

2. These are the sum of the squared
deviations (SS) between each observed yi and the value of yi predicted by the sample
regression line for each xi. This is the sum of squared vertical distances between each
observation and the fitted regression line (Figure 5.6). Note that for any xi, ŷi is our
best estimate of the mean of yi in the usual case of only a single yi at each xi. In prac-
tice, the values of b0 and b1 that minimize �(yi� ŷi)

2 are found by using a little cal-
culus to derive two new equations, termed normal equations, that are solved
simultaneously for b0 and b1 (see Neter et al. 1996, Rawlings et al. 1998 for details).

Because we have different populations of Y for each xi, the estimate of the
common variance of ei and yi (r

e
2) must be based on deviations of each observed

Y-value from the estimated value of the mean Y-value at each xi. As stated above,
our best estimate of the mean of yi is ŷi. This difference between each observed
Y-value and each predicted ŷi is called a residual:

ei�yi� ŷi

These residuals are very important in the analysis of linear models. They provide
the basis of the OLS estimate of r

e
2 and they are valuable diagnostic tools for check-

ing assumptions and fit of our model. The OLS estimate of r
e
2 is the sample vari-

ance of these residuals and is termed the Residual (or Error) Mean Square (Table
5.2). Remember from Chapter 2 that a variance is also termed a mean square. The
numerator of the MSResidual is the sum-of-squares (SS) of the residuals and the quan-
tity that OLS estimation minimizes when determining estimates of the regression
model parameters. The degrees of freedom (the denominator) are n�2 because
we must estimate both b0 and b1 to estimate r

e
2. The SSResidual and MSResidual

measure the variation in Y around the fitted regression line. Two other attributes
of residuals are important: their sum equals zero (�n

i�1ei�0) and, therefore, their
mean must also equal zero (ē�0). Note that the residuals (ei�yi� ŷi) are related
to the model error terms (ei�yi�li) because our best estimate of the mean of Y
at each xi is the predicted value from the fitted regression model.



model, so the common variance of the error terms
is 	

�
2. We will examine these assumptions and

their implications in more detail in Section 5.3.8.

5.3.3 Estimating model parameters
The main aim of regression analysis is to estimate
the parameters (�0 and �1) of the linear regression
model based on our sample of n observations with
fixed X-values and random Y-values. Actually,
there are three parameters we need to estimate:
�0, �1 and 	

�
2 (the common variance of �i and

therefore of yi). Once we have estimates of these
parameters (Box 5.5), we can determine the
sample regression line:

ŷi�b0�bixi (5.6)

In model 5.6:

ŷi is the value of yi

predicted by the fitted
regression line for each xi, e.g.
the predicted basal area of
CWD for lake i.

b0 is the sample estimate
of �0, the Y-intercept, e.g. the
predicted basal area of CWD
for a lake with no riparian
trees; and

b1 is the sample estimate
of �1, the regression slope,
e.g. the estimated change in

basal area of CWD for a unit (one tree km�1)
change in riparian tree density.

The OLS estimates of �0 and �1 are the values
that minimize the sum of squared deviations (SS)
between each observed value of CWD basal area
and the CWD basal area predicted by the fitted
regression model against density of riparian trees.
The estimates of the linear regression model are
summarized in Table 5.2.

Regression slope
The parameter of most interest is the slope of the
regression line �1 because this measures the
strength of the relationship between Y and X. The
estimated slope (b1) of the linear regression
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Figure 5.5. Diagrammatic
representation of a linear regression
model showing the population of yi

at two values of xi. Note that the
population regression model relates
the mean of Y at each X-value (xi ) to
�0��1xi.

1

2

�

Figure 5.6. Illustration of the least
squares regression line and residual
values.

 



model derived from the solution of the normal
equations is the covariance between Y and X
divided by the sum of squares (SS) of X (Table 5.2).
The sample regression slope can be positive or
negative (or zero) with no constraints on upper
and lower limits.

The estimate of the �1 is based on X being fixed
so in the common case where X is random, we
need a different approach to estimating the
regression slope (Section 5.3.14). Nonetheless,
there is also a close mathematical relationship
between linear regression and bivariate correla-
tion that we will discuss in Section 5.4. For now,
note that we can also calculate b1 from the sample
correlation coefficient between Y and X as:

b1�r (5.7)

where sX and sY are the sample standard deviations
of X and Y and r is the sample correlation coeffi-
cient between X and Y.

Standardized regression slope
Note that the value of the regression slope
depends on the units in which X and Y are meas-
ured. For example, if CWD basal area was meas-
ured per 10 km rather than per kilometer, then
the slope would be greater by a factor of ten. This
makes it difficult to compare estimated regression
slopes between different data sets. We can calcu-

sY

sX

late a standardized regression slope b1
*, termed a

beta coefficient:

b1
*�b1 (5.8)

This is simply the sample regression slope multi-
plied by the ratio of the standard deviation of X
and the standard deviation of Y. It is also the
sample correlation coefficient. The same result
can be achieved by first standardizing X and Y
(each to a mean of zero and a standard deviation
of one) and then calculating the usual sample
regression slope. The value of b1

* provides an esti-
mate of the slope of the regression model that is
independent of the units of X and Y and is useful
for comparing regression slopes between data
sets. For example, the estimated slopes for regres-
sion models of CWD basal area and CWD density
against riparian tree density were 0.116 and 0.652
respectively, suggesting a much steeper relation-
ship for basal area. The standardized slopes were
0.797 and 0.874, indicating that when the units of
measurement were taken into account, the
strength of the relationship of riparian tree
density on CWD basal area and CWD density were
similar. Note that the linear regression model for
standardized variables does not include an inter-
cept because its OLS (or ML) estimate would always
be zero. Standardized regression slopes are pro-
duced by most statistical software.

sX

sY
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Table 5.2 Parameters of the linear regression model and their OLS estimates with standard errors

Parameter OLS estimate Standard error

b1 b1� sb1
�

b0 b0� ȳ�b1x̄ sb0
�

ei ei�yi� ŷi (approx.)�MSResidual

�MSResidual�1n� x̄2

�
n

i�1
(xi� x̄)2�

� MSResidual

�
n

i�1
(xi� x̄)2

�
n

i�1
[(xi� x̄)(yi� ȳ)]

�
n

i�1
(xi� x̄)2



Intercept
The OLS regression line must pass through ȳ and
x̄. Therefore, the estimate (b0) of the intercept of
our regression model is derived from a simple
rearrangement of the sample regression equa-
tion, substituting b1, ȳ and x̄. The intercept might
not be of much practical interest in regression
analysis because the range of our observations
rarely includes X equals zero and we should not
usually extrapolate beyond the range of our
sample observations. A related issue that we will
discuss below is whether the linear regression
line should be forced through the origin (Y equals
zero and X equals zero) if we know theoretically
that Y must be zero if X equals zero. 

Confidence intervals
Now we have a point estimate for both 	

�
2 and �1,

we can look at the sampling distribution and stan-
dard error of b1 and confidence intervals for �1. It
turns out that the Central Limit Theorem applies
to b1 so its sampling distribution is normal with
an expected value (mean) of �1. The standard error
of b1, the standard deviation of its sampling distri-
bution, is the square root of the residual mean
square divided by the SSX (Table 5.2). Confidence
intervals for �1 are calculated in the usual manner
when we know the standard error of a statistic
and use the t distribution. The 95% confidence
interval for �1 is:

b1� t0.05,n�2sb1
(5.9)

Note that we use n�2 degrees of freedom (df) for
the t statistic. The interpretation of confidence
intervals for regression slopes is as described for
means in Chapter 2. To illustrate using 95% confi-
dence interval, under repeated sampling, we
would expect 95% of these intervals to contain the
fixed, but unknown, true slope of our linear
regression model. The standard error (Table 5.2)
and confidence intervals for �0 can also be deter-
mined (Neter et al. 1996, Sokal & Rohlf 1995) and
are standard output from statistical software.

We can also determine a confidence band (e.g.
95%) for the regression line (Neter et al. 1996, Sokal
& Rohlf 1995). The 95% confidence band is a bicon-
cave band that will contain the true population
regression line 95% of the time. To illustrate with

the data relating number of individuals of macro-
invertebrates to mussel clump area from Peake &
Quinn (1993), Figure 5.20(a) shows the confidence
bands that would include the true population
regression line 95% of the time under repeated
sampling of mussel clumps. Note that the bands are
wider further away from x̄, indicating we are less
confident about our estimate of the true regression
line at the extremes of the range of observations.

Predicted values and residuals
Prediction from the OLS regression equation is
straightforward by substituting an X-value into
the regression equation and calculating the pre-
dicted Y-value. Be wary of extrapolating when
making such predictions, i.e. do not predict from
X-values outside the range of your data. The pre-
dicted Y-values have a sampling distribution that
is normal and we provide the equation for the
standard error of a new predicted Y-value because
these standard errors are not always produced by
statistical software:

sŷ� (5.10)

where xp is the new value of X from which we are
predicting and the other terms have already been
used in previous calculations. This predicted
Y-value is an estimate of the true mean of Y for
the new X-value from which we are predicting.
Confidence intervals (also called prediction inter-
vals) for this mean of Y can be calculated in the
usual manner using this standard error and the t
distribution with n�2 df.

This difference between each observed yi and
each predicted ŷi is called a residual (ei):

ei�yi� ŷi (5.11)

For example, the residuals from the model relat-
ing CWD basal area to riparian tree density are the
differences between each observed value of CWD
basal area and the value predicted by the fitted
regression model. We will use the residuals for
checking the fit of the model to our data in
Section 5.3.9.

�MSResidual �1�
1

n
�

(xp� x̄)2

�
n

i�1
(xi� x̄)2

�
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5.3.4 Analysis of variance
A fundamental component of the analysis of
linear models is partitioning the total variability
in the response variable Y into the part due to the
relationship with X (or X1, X2, etc. – see Chapter 6)
and the part not explained by the relationship.
This partitioning of variation is usually presented
in the form of an analysis of variance (ANOVA)
table (Table 5.3). The total variation in Y is
expressed as a sum of squared deviations of each

observation from the sample mean. This SSTotal has
n�1 df and can be partitioned into two additive
components. First is the variation in Y explained
by the linear regression with X, which is meas-
ured as the difference between ŷi and ȳ (Figure
5.7). This is a measure of how well the estimated
regression model predicts ȳ. The number of
degrees of freedom associated with a linear model
is usually the number of parameters minus one.
For a simple linear regression model, there are
two parameters (�0 and �1) so dfRegression�1.

Second is the variation in Y not explained by
the regression with X, which is measured as the
difference between each observed Y-value and the
value of Y predicted by the model ( ŷi) (Figure 5.7).
This is a measure of how far the Y-values are from
the fitted regression line and is termed the resid-
ual (or error) variation (see Section 5.3.3). The
dfResidual�n�2, because we have already esti-
mated two parameters (�0 and �1) to determine
the ŷi.

The SS and df are additive (Table 5.3):

SSRegression�SSResidual�SSTotal

dfRegression�dfResidual�dfTotal

Although the SS is a measure of variation, it is
dependent on the number of observations that
contribute to it, e.g. SSTotal will always get bigger as
more observations with different values are
included. In contrast to the SS, the variance (mean
square, MS) is a measure of variability that does
not depend on sample size because it is an average
of the squared deviations and also has a known
probability distribution (Chapter 2). So the next
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Table 5.3 Analysis of variance (ANOVA) table for simple linear regression of Y on X

Source of variation SS df MS Expected mean square

Regression ( ŷi� ȳ)2 1 r
e
2�b1

2 (xi� x̄)2

Residual (yi� ŷi)
2 n�2 r

e
2

Total (yi� ȳ)2 n�1�
n

i�1

�
n

i�1
(yi� ŷi)2

n�2�
n

i�1

�
n

i�1

�
n

i�1
(ŷi� ȳ)2

1�
n

i�1

Figure 5.7. Illustration of explained and residual variation in
regression analysis. Residual variation: (a) and (b) have
identical regression lines but the differences between
observed and predicted observations in (b) are greater than
in (a) so the MSResidual in (b) is greater than in (a). Explained
variation: (c) and (d) have identical MSResidual (the differences
between the observed and predicted values are the same)
but the total variation in Y is greater in (c) than (d) and the
differences between the predicted values and the mean of Y
are greater in (c) than in (d) so MSRegression would be greater
in (c) than in (d).



step in the analysis of variance is to convert the SS
into MS by dividing them by their df:

The MS are not additive:

MSRegression�MSResidual�MSTotal

and the “MSTotal” does not play a role in analyses of
variance.

These MS are sample variances and, as such,
they estimate parameters. But unlike the situa-
tion where we have a single sample, and therefore
a single variance (Chapter 2), we now have two var-
iances. Statisticians have determined the
expected values of these mean squares, i.e. the
average of all possible values of these mean
squares or what population values these mean
squares actually estimate (Table 5.3).

The MSResidual estimates 	
�

2, the common vari-
ance of the error terms (�i), and therefore of the
Y-values at each xi. The implicit assumption here,
that we mentioned in Section 5.3.2 and will detail
in Section 5.3.8, is that the variance of �i (and
therefore of yi) is the same for all xi (homogeneity
of variance), and therefore can be summarized by
a single variance (	

�
2). If this assumption is not

met, then MSResidual does not estimate a common
variance 	

�
2 and interval estimation and hypothe-

sis tests associated with linear regression will be
unreliable. The MSRegression also estimates 	

�
2 plus

an additional source of variation determined by
the strength of the absolute relationship between
Y and X (i.e. �1

2 multiplied by the SSX).
Sometimes the total variation in Y is

expressed as an “uncorrected” total sum-of-
squares (SSTotal uncorrected; see Neter et al. 1996,
Rawlings et al. 1998). This is simply �n

i�1yi
2 and can

be “corrected” by subtracting nȳ2 (termed “correct-
ing for the mean”) to convert SSTotal uncorrected into
the SSTotal we have used. The uncorrected total SS
is occasionally used when regression models are
forced through the origin (Section 5.3.12) and in
nonlinear regression (Chapter 6).

5.3.5 Null hypotheses in regression
The null hypothesis commonly tested in linear
regression analysis is that �1 equals zero, i.e. the
slope of the population regression model equals
zero and there is no linear relationship between Y
and X. For example, the population slope of the
regression model relating CWD basal area to

riparian tree density is zero or there is no linear
relationship between number of species and
mussel clump area in the population of all pos-
sible mussel clumps. There are two equivalent
ways of testing this H0.

The first uses the ANOVA we have described in
Section 5.3.4. If H0 is true and �1 equals zero, then
it is apparent from Table 5.3 that MSRegression and
MSResidual both estimate 	

�
2 because the term

�1
2�n

i�1(xi� x̄)2 becomes zero. Therefore, the ratio
of MSRegression to MSResidual should be less than or
equal to one. If H0 is not true and �1 does not equal
zero, then the expected value of MSRegression is
larger than that of MSResidual and their ratio should
be greater than one.

If certain assumptions hold (Section 5.3.8), the
ratio of two sample variances (the F-ratio) follows
a well-defined probability distribution called the F
distribution (Chapter 2). A central F distribution is
a probability distribution of the F-ratio1 when the
two sample variances come from populations
with the same expected values. There are different
central F distributions depending on the df of the
two sample variances. Therefore, we can use the
appropriate probability distribution of F (defined
by numerator and denominator df) to determine
whether the probability of obtaining our sample
F-ratio or one more extreme (the usual hypothesis
testing logic; see Chapter 3), is less than some spec-
ified significance level (e.g. 0.05) and therefore
whether we reject H0. This F test basically com-
pares the fit to the data of a model that includes a
slope term to the fit of a model that does not.

We can also test the H0 that �1 equals zero
using a single parameter t test, as described in
Chapter 3. We calculate a t statistic from our data:

t� (5.12)

In Equation 5.12, � is the value of �1 specified in
the H0. We compare the observed t statistic to a
t distribution with (n�2) df with the usual logic of

b1��

sb1
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1 F-ratio versus F. Hypothesis tests that involve comparisons of
variance (ANOVA, ANCOVA, etc.) use an F-ratio, which is the
ratio of two variances. This ratio follows an F distribution.
Strictly speaking, any test statistic that we calculated as part
of an ANOVA or ANCOVA is an F-ratio, but in much of the
biological literature, there is reference to the less
cumbersome F. We will often use this abbreviation.



a t test. Note that the F test of the H0 that �1 equals
zero is mathematically identical to the t test; in
fact, the F-ratio equals t2 for a given sample. So, in
practice, it does not matter which we use and both
are standard output from statistical software. We
offer some suggestions about presenting results
from linear regression analyses in Chapter 19.

While the test of the H0 that �1 equals zero is
most common, a test whether �1 equals some
other value may also be relevant, especially when
variables have been log transformed. Examples
include increases in metabolic rate with body
size, an allometric relationship with a predicted
slope of 0.75, and the self-thinning rule, that
argues that the relationship between log plant
size and log plant density would have a slope of
�3/2 (Begon et al. 1996). 

We can also test the H0 that �0 equals zero, i.e.
the intercept of the population regression model
is zero. Just as with the test that �1 equals zero, the
H0 that �0 equals zero can be tested with a t test,
where the t statistic is the sample intercept
divided by the standard error of the sample inter-
cept. Alternatively, we can calculate an F test by
comparing the fit of a model with an intercept
term to the fit of a model without an intercept
term (Section 5.3.6). The conclusions will be iden-
tical as the F equals t2 and the t test version is stan-
dard output from statistical software. This H0 is
not usually of much biological interest unless we
are considering excluding an intercept from our
final model and forcing the regression line
through the origin (Section 5.3.12).

Finally, we can test the H0 that two regression
lines come from populations with the same slope
using a t test, similar to a test of equality of means
(Chapter 3). A more general approach to compar-
ing regression slopes is as part of analysis of covar-
iance (ANCOVA, Chapter 12).

5.3.6 Comparing regression models
Methods for measuring the fit of a linear model to
sample data fall into two broad categories based
on the way the parameters of the models are esti-
mated (see also Chapter 2).

1. Using OLS, the fit of a model is determined
by the amount of variation in Y explained by the
model or conversely, the lack of fit of a model is
determined by the unexplained (residual)

variation. This approach leads to the analysis of
variance described above and F tests of null
hypotheses about regression model parameters.

2. Using maximum likelihood (ML), the fit of
a model is determined by the size of likelihood
or log-likelihood. This approach leads to
likelihood ratio tests of null hypotheses about
regression model parameters and is most
commonly used when fitting generalized linear
models (GLMs) with non-normal error terms
(Chapter 13).

The logic of comparing the fit of different
models is the same whichever approach is used to
measure fit. We will illustrate this logic based on
the OLS estimation we have been using throughout
this chapter. We can measure the fit of different
models to the data and then compare their fits to
test hypotheses about the model parameters. For
example, smaller unexplained (residual) variation
when a full model that includes �1 is fitted com-
pared with when a reduced model is fitted that
omits �1 is evidence against the H0 that �1 equals
zero. Including a slope term in the model results in
a better fit to the observed data than omitting a
slope term. If there is no difference in the explana-
tory power of these two models, then there is no
evidence against the H0 that �1 equals zero.

Let’s explore this process more formally by
comparing the unexplained, or residual, SS (the
variation due to the difference between the
observed and predicted Y-values) for full and
reduced models (Box 5.6). To test the H0 that �1

equals zero, we fit the full model with both an
intercept and a slope term (Equation 5.3):

yi��0��1xi��i

We have already identified the unexplained SS
from the full model as �n

i�1(yi� ŷi)
2. This is the

SSResidual from our standard regression ANOVA in
Table 5.3.

We then fit a reduced model that omits the
slope term, i.e. the model expected if the H0 that
�1 equals zero is true: 

yi��0��i (5.13)

This is a model with zero slope (i.e. a flat line). The
predicted Y-value for each xi from this model is the
intercept, which equals ȳ. Therefore, the unex-
plained SS from this reduced model is the sum of
squared differences between the observed Y-
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values and ȳ (i.e. �n
i�1(yi� ȳ)2), which is the SSTotal

from our standard regression ANOVA.
The difference between the unexplained varia-

tion of the full model (SSResidual) and the unex-
plained variation from the reduced model (SSTotal) is
simply the SSRegression. It measures how much more
variation in Y is explained by the full model than by
the reduced model. It is, therefore, the relative mag-
nitude of the SSRegression (which equals MSRegression

with one df) that we use to evaluate the H0 that �1

equals zero (Box 5.6). So describing the SSRegression or
MSRegression as the variation explained by the regres-
sion model is really describing the SSRegression or
MSRegression as how much more variation in Y the full
model explains over the reduced model.

The same logic can be used to test H0 that �0

equals zero by comparing the fit of the full model
and the fit of a reduced model that omits the
intercept:

yi��1xi��i (5.14)

This is the model expected if the H0 that �0 equals
zero is true and therefore, when xi equals zero
then yi equals zero (Box 5.6).

For most regression models, we don’t have to
worry about comparing full and reduced models
because our statistical software will do it auto-
matically and provide us with the familiar
ANOVA table and F tests and/or t tests. While com-
parisons of full and reduced models are trivial for
linear models with a single predictor variable,
the model comparison approach has broad appli-
cability for testing null hypotheses about particu-
lar parameters in more complex linear (Chapter
6) and generalized linear models (Chapter 13).

5.3.7 Variance explained
A descriptive measure of association between Y
and X is r2 (also termed R2 or the coefficient of
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Box 5.6 Model comparisons in simple linear regression

We can use the model relating CWD basal area to riparian tree density to illustrate
comparing the fit of full and reduced models to test null hypotheses about popu-
lation parameters.

Test H0: b1 equals zero:

Full model:

(CWD basal area)i�b0�b1(riparian tree density)i�e i

SSResidual�18 465.56 (14 df ).

Reduced model:

(CWD basal area)i�b0�ei

SSResidual�50 520.00 (15 df ).

Reduced SSResidual�Full SSResidual�32 054.44 (1 df ). This is identical to MSRegression

from the ANOVA from fitting the original full model (Box 5.3).
Test H0: b0 equals zero:

Full model:

(CWD basal area)i�b0�b1(riparian tree density)i�ei

SSResidual�18 465.56 (14 df ).

Reduced model:

(CWD basal area)i�b1(riparian tree density)i�e i

SSResidual�26 834.35 (15 df ).

Reduced SSResidual�Full SSResidual�8368.79 (1 df ).



determination), which measures the proportion
of the total variation in Y that is explained by its
linear relationship with X. When we fit the full
model, it is usually calculated as (Kvalseth 1985,
Neter et al. 1996):

r2� �1� (5.15)

Anderson-Sprecher (1994) argued that r2 is better
explained in terms of the comparison between the
full model and a reduced (no slope parameter)
model:

r2�1� (5.16)

Equations 5.15 and 5.16 are identical for models
with an intercept (see below for no intercept
models) but the latter version emphasizes that r2 is
a measure of how much the fit is improved by the
full model compared with the reduced model. We
can also relate explained variance back to the
bivariate correlation model because r2 is the
square of the correlation coefficient r. Values of r2

range between zero (no relationship between Y and
X) and one (all points fall on fitted regression line).
Therefore, r2 is not an absolute measure of how
well a linear model fits the data, only a measure of
how much a model with a slope parameter fits
better than one without (Anderson-Sprecher 1994).

Great care should be taken in using r2 values
for comparing the fit of different models. It is
inappropriate for comparing models with differ-
ent numbers of parameters (Chapter 6) and can be
problematical for comparing models based on dif-
ferent transformations of Y (Scott & Wild 1991). If
we must compare the fit of a linear model based
on Y with the equivalent model based on, say
log(Y), using r2, we should calculate r2 as above
after re-expressing the two models so that Y is on
the same original scale in both models (see also
Anderson-Sprecher 1994).

5.3.8 Assumptions of regression analysis
The assumptions of the linear regression model
strictly concern the error terms (�i) in the model,
as described in Section 5.3.2. Since these error
terms are the only random ones in the model,
then the assumptions also apply to observations
of the response variable yi. Note that these
assumptions are not required for the OLS estima-

SSResidual(Full)

SSResidual(Reduced)

SSResidual

SSTotal

SSRegression

SSTotal

tion of model parameters but are necessary for
reliable confidence intervals and hypothesis tests
based on t distributions or F distributions.

The residuals from the fitted model (Table 5.4)
are important for checking whether the assump-
tions of linear regression analysis are met.
Residuals indicate how far each observation is from
the fitted OLS regression line, in Y-variable space
(i.e. vertically). Observations with larger residuals
are further from the fitted line that those with
smaller residuals. Patterns of residuals represent
patterns in the error terms from the linear model
and can be used to check assumptions and also the
influence each observation has on the fitted model.

Normality
This assumption is that the populations of
Y-values and the error terms (�i) are normally dis-
tributed for each level of the predictor variable xi.
Confidence intervals and hypothesis tests based
on OLS estimates of regression parameters are
robust to this assumption unless the lack of nor-
mality results in violations of other assumptions.
In particular, skewed distributions of yi can cause
problems with homogeneity of variance and line-
arity, as discussed below.

Without replicate Y-values for each xi, this
assumption is difficult to verify. However, reason-
able checks can be based on the residuals from
the fitted model (Bowerman & O’Connell 1990).
The methods we described in Chapter 4 for check-
ing normality, including formal tests or graphical
methods such as boxplots and probability plots,
can be applied to these residuals. If the assump-
tion is not met, then there are at least two
options. First, a transformation of Y (Chapter 4
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Table 5.4 Types of residual for linear regression
models, where hi is the leverage for observation i

Residual ei�yi� ŷi

Standardized
residual

Studentized
residual

Studentized
deleted residual

ei� n�1
SSResidual(1�hi)�e 2

i

ei

�MSResidual(1�hi)

ei

�MSResidual



and Section 5.3.11) may be appropriate if the dis-
tribution is positively skewed. Second, we can fit a
linear model using techniques that allow other
distributions of error terms other than normal.
These generalized linear models (GLMs) will be
described in Chapter 13. Note that non-normality
of Y is very commonly associated with heterogene-
ity of variance and/or nonlinearity.

Homogeneity of variance
This assumption is that the populations of Y-
values, and the error terms (�i), have the same var-
iance for each xi:

	1
2�	2

2� . . .�	i
2� . . .�	

�
2 for i�1 to n (5.17)

The homogeneity of variance assumption is
important, its violation having a bigger effect on
the reliability of interval estimates of, and tests of
hypotheses about, regression parameters (and
parameters of other linear models) than non-
normality. Heterogeneous variances are often a
result of our observations coming from popula-
tions with skewed distributions of Y-values at each
xi and can also be due to a small number of
extreme observations or outliers (Section 5.3.9).

Although without replicate Y-values for each
xi, the homogeneity of variance assumption
cannot be strictly tested, the general pattern of
the residuals for the different xi can be very infor-
mative. The most useful check is a plot of residu-
als against xi or ŷi (Section 5.3.10). There are a
couple of options for dealing with heterogeneous
variances. If the unequal variances are due to
skewed distributions of Y-values at each xi, then
appropriate transformations will always help
(Chapter 4 and Section 5.3.11) and generalized
linear models (GLMs) are always an option
(Chapter 13). Alternatively, weighted least squares
(Section 5.3.13) can be applied if there is a consis-
tent pattern of unequal variance, e.g. increasing
variance in Y with increasing X.

Independence
There is also the assumption that the Y-values and
the �i are independent of each other, i.e. the
Y-value for any xi does not influence the Y-values
for any other xi. The most common situation in
which this assumption might not be met is when
the observations represent repeated measure-
ments on sampling or experimental units. Such

data are often termed longitudinal, and arise
from longitudinal studies (Diggle et al. 1994, Ware
& Liang 1996). A related situation is when we have
a longer time series from one or a few units and
we wish to fit a model where the predictor vari-
able is related to a temporal sequence, i.e. a time
series study (Diggle 1990). Error terms and
Y-values that are non-independent through time
are described as autocorrelated. A common occur-
rence in biology is positive first-order autocorrela-
tion, where there is a positive relationship
between error terms from adjacent observations
through time, i.e. a positive error term at one time
follows from a positive error term at the previous
time and the same for negative error terms. The
degree of autocorrelation is measured by the auto-
correlation parameter, which is the correlation
coefficient between successive error terms. More
formal descriptions of autocorrelation structures
can be found in many textbooks on linear regres-
sion models (e.g Bowerman & O’Connell 1990,
Neter et al. 1996). Positive autocorrelation can
result in underestimation of the true residual var-
iance and seriously inflated Type I error rates for
hypothesis tests on regression parameters. Note
that autocorrelation can also be spatial rather
than temporal, where observations closer
together in space are more similar than those
further apart (Diggle 1996).

If our Y-values come from populations in
which the error terms are autocorrelated between
adjacent xi, then we would expect the residuals
from the fitted regression line also to be corre-
lated. An estimate of the autocorrelation parame-
ter is the correlation coefficient between adjacent
residuals, although some statistical software cal-
culates this as the correlation coefficient between
adjacent Y-values. Autocorrelation can therefore
be detected in plots of residuals against xi by an
obvious positive, negative or cyclical trend in the
residuals. Some statistical software also provides
the Durbin–Watson test of the H0 that the auto-
correlation parameter equals zero. Because we
might expect positive autocorrelation, this test is
often one-tailed against the alternative hypothe-
sis that the autocorrelation parameter is greater
than zero. Note that the Durbin–Watson test is
specifically designed for first-order autocorrela-
tions and may not detect other patterns of non-
independence (Neter et al. 1996).

LINEAR REGRESSION ANALYSIS 93



There are a number of approaches to modeling
a repeated series of observations on sampling or
experimental units. These approaches can be used
with both continuous (this chapter and Chapter 6)
and categorical (Chapters 8–12) predictor vari-
ables and some are applicable even when the
response variable is not continuous. Commonly,
repeated measurements on individual units occur
in studies that also incorporate a treatment struc-
ture across units, i.e. sampling or experimental
units are allocated to a number of treatments (rep-
resenting one or more categorical predictor vari-
ables or factors) and each unit is also recorded
repeatedly through time or is subject to different
treatments through time. Such “repeated meas-
ures” data are usually modeled with analysis of
variance type models (partly nested models incor-
porating a random term representing units; see
Chapter 11). Alternative approaches, including
unified mixed linear models (Laird & Ware 1982,
see also Diggle et al. 1994, Ware & Liang 1996) and
generalized estimating equations (GEEs; see Liang
& Zeger 1986, Ware & Liang 1996), based on the
generalized linear model, will be described briefly
in Chapter 13.

When the data represent a time series, usually
on one or a small number of sampling units, one
approach is to adjust the usual OLS regression
analysis depending on the level of autocorrela-
tion. Bence (1995) discussed options for this
adjustment, pointing out that the usual estimates
of the autocorrelation parameter are biased
and recommending bias-correction estimates.
Usually, however, data forming a long time series
require more sophisticated modeling procedures,
such as formal time-series analyses. These can be
linear, as described by Neter et al. (1996) but more
commonly nonlinear as discussed in Chatfield
(1989) and Diggle (1990), the latter with a biologi-
cal emphasis. 

Fixed X
Linear regression analysis assumes that the xi are
known constants, i.e. they are fixed values con-
trolled or set by the investigator with no variance
associated with them. A linear model in which the
predictor variables are fixed is known as Model I
or a fixed effects model. This will often be the case
in designed experiments where the levels of X are
treatments chosen specifically. In these circum-

stances, we would commonly have replicate Y-
values for each xi and X may well be a qualitative
variable, so analyses that compare mean values of
treatment groups might be more appropriate
(Chapters 8–12). The fixed X assumption is prob-
ably not met for most regression analyses in
biology because X and Y are usually both random
variables recorded from a bivariate distribution.
For example, Peake & Quinn (1993) did not choose
mussel clumps of fixed areas but took a haphazard
sample of clumps from the shore; any repeat of
this study would use clumps with different areas.
We will discuss the case of X being random (Model
II or random effects model) in Section 5.3.14 but it
turns out that prediction and hypothesis tests
from the Model I regression are still applicable
even when X is not fixed.

5.3.9 Regression diagnostics
So far we have emphasized the underlying
assumptions for estimation and hypothesis
testing with the linear regression model and pro-
vided some guidelines on how to check whether
these assumptions are met for a given bivariate
data set. A proper interpretation of a linear regres-
sion analysis should also include checks of how
well the model fits the observed data. We will
focus on two aspects in this section. First, is a
straight-line model appropriate or should we
investigate curvilinear models? Second, are there
any unusual observations that might be outliers
and could have undue influence on the parameter
estimates and the fitted regression model?
Influence can come from at least two sources –
think of a regression line as a see-saw, balanced on
the mean of X. An observation can influence, or
tip, the regression line more easily if it is further
from the mean (i.e. at the ends of the range of
X-values) or if it is far from the fitted regression
line (i.e. has a large residual, analogous to a heavy
person on the see-saw). We emphasized in Chapter
4 that it is really important to identify if the
conclusions from any statistical analysis are influ-
enced greatly by one or a few extreme observa-
tions. A variety of “diagnostic measures” can be
calculated as part of the analysis that identify
extreme or influential points and detect nonline-
arity. These diagnostics also provide additional
ways of checking the underlying assumptions of
normality, homogeneity of variance and indepen-
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dence. We will illustrate some of the more
common regression diagnostics that are standard
outputs from most statistical software but others
are available. Belsley et al. (1980) and Cook &
Weisberg (1982) are the standard references, and
other good discussions and illustrations include
Bollen & Jackman (1990), Chatterjee & Price (1991)
and Neter et al. (1996).

Leverage
Leverage is a measure of how extreme an observa-
tion is for the X-variable, so an observation with
high leverage is an outlier in the X-space (Figure
5.8). Leverage basically measures how much each
xi influences ŷi (Neter et al. 1996). X-values further
from x̄ influence the predicted Y-values more than
those close to x̄. Leverage is often given the symbol
hi because the values for each observation come
from a matrix termed the hat matrix (H) that
relates the yi to the ŷi (see Box 6.1). The hat matrix
is determined solely from the X-variable(s) so Y
doesn’t enter into the calculation of leverage at all.

Leverage values normally range between 1/n
and 1 and a useful criterion is that any observa-
tion with a leverage value greater than 2(p/n)
(where p is the number of parameters in the
model including the intercept; p�2 for simple
linear regression) should be checked (Hoaglin &
Welsch 1978). Statistical software may use other
criteria for warning about observations with high
leverage. The main use of leverage values is when
they are incorporated in Cook’s Di statistic, a
measure of influence described below.

Residuals
We indicated in Section 5.3.8 that patterns in
residuals are an important way of checking
regression assumptions and we will expand on
this in Section 5.3.10. One problem with sample
residuals is that their variance may not be con-
stant for different xi, in contrast to the model
error terms that we assume do have constant var-
iance. If we could modify the residuals so they had
constant variance, we could more validly compare
residuals to one another and check if any seemed
unusually large, suggesting an outlying observa-
tion from the fitted model. There are a number of
modifications that try to make residuals more
useful for detecting outliers (Table 5.4).

Standardized residuals use the �MSResidual as

an approximate standard error for the residuals.
These are also called semistudentized residuals by
Neter et al. (1996). Unfortunately, this standard
error doesn’t solve the problem of the variances of
the residuals not being constant so a more sophis-
ticated modification is needed. Studentized resid-
uals incorporate leverage (hi) as defined earlier.
These studentized residuals do have constant var-
iance so different studentized residuals can be
validly compared. Large (studentized) residuals
for a particular observation indicate that it is an
outlier from the fitted model compared to the
other observations. Studentized residuals also
follow a t distribution with (n�1) df if the regres-
sion assumptions hold. We can determine the
probability of getting a specific studentized resid-
ual, or one more extreme, by comparing the stu-
dentized residual to a t distribution. Note that we
would usually test all residuals in this way, which
will result in very high family-wise Type I error
rates (the multiple testing problem; see Chapter 3)
so some type of P value adjustment might be
required, e.g. sequential Bonferroni.

The deleted residual for observation i, also
called the PRESS residual, is defined as the differ-
ence between the observed Y-values and those pre-
dicted by the regression model fitted to all the
observations except i. These deleted residuals are
usually calculated for studentized residuals.
These studentized deleted residuals can detect
outliers that might be missed by usual residuals
(Neter et al. 1996). They can also be compared to a
t distribution as we described above for the usual
studentized residual.

Influence
A measure of the influence each observation has on
the fitted regression line and the estimates of the
regression parameters is Cook’s distance statistic,
denoted Di. It takes into account both the size of
leverage and the residual for each observation and
basically measures the influence of each observa-
tion on the estimate of the regression slope (Figure
5.8). A large Di indicates that removal of that obser-
vation would change the estimates of the regres-
sion parameters considerably. Cook’s Di can be used
in two ways. First, informally by scanning the Dis of
all observations and noting if any values are much
larger than the rest. Second, by comparing Di to an
F1,n distribution; an approximate guideline is that
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an observation with a Di greater than one is partic-
ularly influential (Bollen & Jackman 1990). An
alternative measure of influence that also incorpo-
rates both the size of leverage and the residual for
each observation is DFITSi, which measures the
influence of each observation (i) on its predicted
value ( ŷi).

We illustrate leverage and influence in Figure
5.8. Note that observations one and three have
large leverage and observations two and three
have large residuals. However, only observation
three is very influential, because omitting obser-
vations one or two would not change the fitted
regression line much.

Transformations of Y that overcome problems
of non-normality or heterogeneity of variance
might also reduce the influence of outliers from
the fitted model. If not, then the strategies for
dealing with outliers discussed in Chapter 4
should be considered.

5.3.10 Diagnostic graphics
We cannot over-emphasize the importance of pre-
liminary inspection of your data. The diagnostics
and checks of assumptions we have just described
are best used in graphical explorations of your data
before you do any formal analyses. We will describe
the two most useful graphs for linear regression
analysis, the scatterplot and the residual plot.

Scatterplots
A scatterplot of Y against X, just as we used in
simple correlation analysis, should always be the
first step in any regression analysis. Scatterplots
can indicate unequal variances, nonlinearity and
outlying observations, as well as being used in
conjunction with smoothing functions (Section
5.5) to explore the relationship between Y and X
without being constrained by a specific linear
model. For example, the scatterplot of number of
species of invertebrates against area of mussel
clump from Peake & Quinn (1993) clearly indicates
nonlinearity (Figure 5.17(a)), while the plot of
number of individuals against area of mussel
clump indicates increasing variance in number of
individuals with increasing clump area (Figure
5.19(a)). While we could write numerous para-
graphs on the value of scatterplots as a prelimi-
nary check of the data before a linear regression
analysis, the wonderful and oft-used example
data from Anscombe (1973) emphasize how easily
linear regression models can be fitted to inappro-
priate data and why preliminary scatterplots are
so important (Figure 5.9).

Residual plots
The most informative way of examining residuals
(raw or studentized) is to plot them against xi or,
equivalently in terms of the observed pattern, ŷi

(Figure 5.10). These plots can tell us whether the
assumptions of the model are met and whether
there are unusual observations that do not match
the model very well.

If the distribution of Y-values for each xi is pos-
itively skewed (e.g. lognormal, Poisson), we would
expect larger ŷi (an estimate of the population
mean of yi) to be associated with larger residuals.
A wedge-shaped pattern of residuals, with a
larger spread of residuals for larger xi or ŷi as
shown for the model relating number of individ-
uals of macroinvertebrates to mussel clump area
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Figure 5.8. Residuals, leverage, and influence.The solid
regression line is fitted through the observations with open
symbols. Observation 1 is an outlier for both Y and X (large
leverage) but not from the fitted model and is not influential.
Observation 2 is not an outlier for either Y or X but is an
outlier from the fitted model (large residual). Regression line
2 includes this observation and its slope is only slightly less
than the original regression line so observation 2 is not
particularly influential (small Cook’s Di ). Observation 3 is not
an outlier for Y but it does have large leverage and it is an
outlier from the fitted model (large residual). Regression line
3 includes this observation and its slope is markedly different
from the original regression line so observation 3 is very
influential (large Cook’s Di, combining leverage and residual).



in our worked example (Box 5.4 and Figure
5.19(b)), indicates increasing variance in �i and yi

with increasing xi associated with non-normality
in Y-values and a violation of the assumption of
homogeneity of variance. Transformation of Y
(Section 5.3.11) will usually help. The ideal
pattern in the residual plot is a scatter of points
with no obvious pattern of increasing or decreas-
ing variance in the residuals. Nonlinearity can be
detected by a curved pattern in the residuals
(Figure 5.17b) and outliers also stand out as
having large residuals. These outliers might be
different from the outliers identified in simple
boxplots of Y, with no regard for X (Chapter 4).
The latter are Y-values very different from the rest
of the sample, whereas the former are observa-
tions with Y-values very different from that pre-
dicted by the fitted model.

Searle (1988) pointed out a commonly observed
pattern in residual plots where points fall along
parallel lines each with a slope of minus one
(Figure 5.11). This results from a number of obser-
vations having similar values for one of the vari-
ables (e.g. a number of zeros). These parallel lines
are not a problem, they just look a little unusual.
If the response variable is binary (dichotomous),
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Figure 5.9. Scatterplots of four data sets provided in
Anscombe (1973). Note that despite the marked differences
in the nature of the relationships between Y and X, the OLS
regression line, the r2 and the test of the H0 that �1 equals
zero are identical in all four cases: yi�3.0�0.5xi, n�11,
r2�0.68, H0:�1�0, t�4.24, P�0.002.

Figure 5.10. Diagrammatic representation of residual plots
from linear regression: (a) regression showing even spread
around line, (b) associated residual plot, (c) regression
showing increasing spread around line, and (d) associated
residual plot showing characteristic wedge-shape typical of
skewed distribution.

Figure 5.11. Example of parallel lines in a residual plot.
Data from Peake & Quinn (1993), where the abundance of
the limpets (Cellana tramoserica) was the response variable,
area of mussel clump was the predictor variable and there
were n�25 clumps.



then the points in the residual plot will fall along
two such parallel lines although OLS regression is
probably an inappropriate technique for these
data and a generalized linear model with a bino-
mial error term (e.g. logistic regression) should be
used (Chapter 13). The example in Figure 5.11 is
from Peake & Quinn (1993), where the response
variable (number of limpets per mussel clump)
only takes three values: zero, one or two.

5.3.11 Transformations
When continuous variables have particular
skewed distributions, such as lognormal or
Poisson, transformations of those variables to a
different scale will often render their distribu-
tions closer to normal (Chapter 4). When fitting
linear regression models, the assumptions under-
lying OLS interval estimation and hypothesis
testing of model parameters refer to the error
terms from the model and, therefore, the
response variable (Y). Transformations of Y can
often be effective if the distribution of Y is non-
normal and the variance of yi differs for each xi,
especially when variance clearly increases as xi

increases. For example, variance heterogeneity for
the linear model relating number of individuals
of macroinvertebrates to mussel clump area was
greatly reduced after transformation of Y (and
also X – see below and compare Figure 5.19 and
Figure 5.20). Our comments in Chapter 4 about
the choice of transformations and the interpreta-
tion of analyses based on transformed data are
then relevant to the response variable.

The assumption that the xi are fixed values
chosen by the investigator suggests that transfor-
mations of the predictor variable would not be
warranted. However, regression analyses in
biology are nearly always based on both Y and X
being random variables, with our conclusions
conditional on the xi observed in our sample or
we use a Model II analysis (Section 5.3.14).
Additionally, our discussion of regression diag-
nostics shows us that unusual X-values determine
leverage and can cause an observation to have
undue influence on the estimated regression coef-
ficient. Transformations of X should also be con-
sidered to improve the fit of the model and
transforming both Y and X is sometimes more
effective than just transforming Y.

The other use of transformations in linear
regression analysis is to linearize a nonlinear rela-
tionship between Y and X (Chapter 4). When we
have a clear nonlinear relationship, we can use
nonlinear regression models or we can approxi-
mate the nonlinearity by including polynomial
terms in a linear model (Chapter 6). An alternative
approach that works for some nonlinear relation-
ships is to transform one or both variables to make
a simple linear model an appropriate fit to the
data. Nonlinear relationships that can be made
linear by simple transformations of the variables
are sometimes termed “intrinsically linear”
(Rawlings et al. 1998); for example, the relationship
between the number of species and area of an
island can be modeled with a nonlinear power
function or a simple linear model after log trans-
formation of both variables (Figure 5.17 and Figure
5.18). If there is no evidence of variance heteroge-
neity, then it is best just to transform X to try and
linearize the relationship (Neter et al. 1996).
Transforming Y in this case might actually upset
error terms that are already normally distributed
with similar variances. The relationship between
number of species and area of mussel clump from
Peake & Quinn (1993) illustrates this point, as a log
transformation of just clump area (X) results in a
linear model that best fits the data although both
variables were transformed in the analysis (Box
5.4). However, nonlinearity is often associated with
non-normality of the response variable and trans-
formations of Y and/or Y and X might be required.

Remember that the interpretation of our
regression model based on transformed variables,
and any predictions from it, must be in terms of
transformed Y and/or X, e.g. predicting log
number of species from log clump area, although
predictions can be back-transformed to the origi-
nal scale of measurement if required.

5.3.12 Regression through the origin
There are numerous situations when we know
that Y must equal zero when X equals zero. For
example, the number of species of macroinverte-
brates per clump of mussels on a rocky shore must
be zero if that clump has no area (Peake & Quinn
1993), the weight of an organism must be zero
when the length of that organism is zero etc. It
might be tempting in these circumstances to force
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our regression line through the origin (Y equals
zero, X equals zero) by fitting a linear model
without an intercept term:

yi��1xi��i (5.14)

There are several difficulties when trying to inter-
pret the results of fitting such a no-intercept
model. First, our minimum observed xi rarely
extends to zero, and forcing our regression line
through the origin not only involves extrapolat-
ing the regression line outside our data range but
also assuming the relationship is linear outside
this range (Cade & Terrell 1997, Neter et al. 1996).
If we know biologically that Y must be zero when
X is zero, yet our fitted regression line has an inter-
cept different to zero, it suggests that the relation-
ship between Y and X is nonlinear, at least for
small values of X. We recommend that it is better
to have a model that fits the observed data well
than one that goes through the origin but pro-
vides a worse fit to the observed data.

Second, although residuals from the no-inter-
cept model are (yi� ŷi) as usual, they no longer
sum to zero, and the usual partition of SSTotal into
SSRegression and SSResidual doesn’t work. In fact, the
SSResidual can be greater than SSTotal (Neter et al.
1996). For this reason, most statistical software
presents the partitioning of the variance in terms
of SSTotal uncorrected (Section 5.3.4) that will always
be larger than SSResidual. However, the value of r2

for a no-intercept model determined from
SSTotal uncorrected will not be comparable to r2 from
the full model calculated using SSTotal (Cade &
Terrell 1997, Kvalseth 1985). The residuals are still
comparable and the MSResidual is probably better for
comparing the fit of models with and without an
intercept (Chatterjee & Price 1991).

If a model with an intercept is fitted first and
the test of the H0 that �0 equals zero is not
rejected, there may be some justification for
fitting a no-intercept model. For example, Caley &
Schluter (1997) examined the relationship
between local species richness (response variable)
and regional species richness (predictor variable)
for a number of taxa and geographic regions at
two spatial scales of sampling (1% of region and
10% of region). They argued that local species rich-
ness must be zero when regional richness was zero
and that no-intercept models were appropriate.

Re-analysis of their data showed that when a
model with an intercept was fitted to each combi-
nation of region and spatial scale, the test of the
H0 that �0 equals zero was not rejected and the
MSResidual was always less for a no-intercept model
than a model with an intercept. This indicates
that the no-intercept model was probably a better
fit to the observed data. So no-intercept models
were justified in this case, although we note that
the estimates of �1 were similar whether or not an
intercept was included in the models.

Generally, however, we recommend against
fitting a model without an intercept. The interpre-
tation is more difficult and we must assume line-
arity of the relationship between Y and X beyond
the range of our observed data.

5.3.13 Weighted least squares
The usual OLS approach for linear regression
assumes that the variances of �i (and therefore the
yi) are equal, i.e. the homogeneity of variance
assumption discussed in Section 5.3.8. If the vari-
ance of yi varies for each xi, we can weight each
observation by the reciprocal of an estimate of its
variance (	i

2):

wi� (5.18)

We then fit our linear regression model using
generalized least squares which minimizes
�n

i�1wi(yi� ŷi)
2. This is the principle of weighted

least squares (Chaterjee & Price 1991, Myers 1990,
Neter et al. 1996). The difficulty is calculating the
wi because we can’t calculate si

2 unless we have
replicate Y-values at each xi. One approach is to
group nearby observations and calculate si

2

(Rawlings et al. 1998), although there are no clear
guidelines for how many observations to include
in each group. A second approach uses the abso-
lute value of each residual (|ei|) from the OLS
regression as an estimate of 	i. Neter et al. (1996)
suggested that the predicted values from an OLS
regression of |ei| against xi could be used to calcu-
late the weights for each observation, where wi is
the inverse of the square of this predicted value.
These weights can be used in statistical software
with a weighted least squares option or, equiva-
lently, OLS regression used once yi and xi in each
pair has been multiplied (i.e. weighted) by wi.

1

s 2
i
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Weighted least squares seems to have been
rarely applied in the biological literature, most
biologists including us preferring to transform
one or both variables to meet the assumption of
homogeneity of variance or else use generalized
linear models (Chapter 13).

5.3.14 X random (Model II regression)
The linear regression model we have been using
in this chapter is sometimes called Model I regres-
sion because X is a fixed variable, i.e. the xi are
fixed values set by the investigator and a new
sample of observations from the population
would use the same xi. As we have previously dis-
cussed, most applications of linear regression in
biology are unlikely to involve fixed X-values.
Although we can usually conceptually distin-
guish a response variable (Y) from a predictor var-
iable (X), the (xi,yi) pairs are commonly a sample
from a bivariate distribution of two random vari-
ables, X and Y. For example, number of species per
clump and area of mussel clump were clearly
both random variables in the study by Peake &
Quinn (1993) because clumps were chosen

haphazardly from the shore and both variables
recorded from each clump. Fitting a linear regres-
sion model for Y on X to data where both variables
are random, and assumed to be jointly distributed
with a bivariate normal distribution has been
termed Model II regression (Legendre & Legendre
1998, Sokal & Rohlf 1995). It is a topic of some con-
troversy and there are several ways of looking at
the problem.

If the main aim of our regression analysis is
prediction, then we can use the usual OLS regres-
sion model when Y and X are random as long as
the probability distributions of yi at each xi are
normal and independent. We must constrain our
inferences about Y to be conditional given partic-
ular values of X (Neter et al. 1996).

If the main aim of our regression analysis is
not prediction but to describe the true nature of
the relationship between Y and X (i.e. estimate �1),
then OLS regression might not be appropriate.
There is error variability associated with both Y
(	

�
2) and X (	

�
2) and the OLS estimate of �1 is biased

towards zero (Box 5.7). The extent of the bias
depends on the ratio of these error variances
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Box 5.7 Model II regression.

For the data from Christensen et al. (1996), both the response variable (CWD basal
area) and the predictor variable (riparian tree density) are random. These variables
are measured in different units, so reduced major axis (RMA; also called standard
major axis) and ranged MA regression are appropriate. We used the program
“Model II regression” from Pierre Legendre at the University of Montreal.

Statistic RMA Ranged MA OLS

b1 0.145 0.164 0.116

95% CI 0.103 to 0.204 0.109 to 0.275 0.065 to 0.166

b0 �113.904 �137.108 �77.099

95% CI �187.152 to �275.514 to �142.747 to 
�61.767 �70.160 �11.451 

The correlation coefficient was nearly 0.8, so we would not expect much difference
in the estimates of the regression slope. The estimated regression slope from the
RMA model and the ranged MA model were both larger than the OLS estimate,
and, not surprisingly, the estimates of the intercept also differed. Note that the width
of the confidence interval for b1 was the same for RMA and OLS, but wider for
ranged MA. A randomization test of the H0 that b1 equals zero for ranged MA
resulted in a P value of 0.001. The test for the OLS regression is the same as the
test for the correlation coefficient and provides a test for the RMA slope, with a P
value less than 0.001.



(Legendre & Legendre 1998, Prairie et al. 1995,
Snedecor & Cochran 1989):

�� (5.19)

If X is fixed then 	
�

2 equals zero and the usual OLS
estimate of �1 is unbiased; the greater the error
variability in X relative to Y, the greater the down-
ward bias in the OLS estimate of �1. Remember
that the usual OLS regression line is fitted by mini-
mizing the sum of squared vertical distances from
each observation to the fitted line (Figure 5.12).
Here, 	

�
2 equals zero (fixed X) and � equals �. The

choice of method for estimating a linear regres-
sion model when both Y and X are random vari-
ables depends on our best guess of the value of �,
which will come from our knowledge of the two
variables, the scales on which they are measured
and their sample variances.

Major axis (MA) regression is estimated by
minimizing the sum of squared perpendicular
distances from each observation to the fitted line
(Figure 5.12). For MA regression, 	

�
2 is assumed to

equal 	
�

2 so � equals one. The calculation of the
estimate of the slope of the regression model is a
little tedious, although it can be calculated using
the estimate of the slope of the Model I regression
and the correlation coefficients:

b1(MA)� (5.20)
d��d2�4

2

	 2
�

	 2
�

If r is �ve, use the �ve square root and vice versa.
In Equation 5.20:

d� (5.21)

Standard errors and confidence intervals are best
estimated by bootstrapping and a randomization
test used for testing the H0 of zero slope. Legendre
& Legendre (1988) argued that MA regression was
appropriate when both variables are measured on
the same scales with the same units, or are dimen-
sionless. They described a modification of MA
regression, termed ranged MA regression. The var-
iables are standardized by their ranges, the MA
regression calculated, and then the regression
slope is back-transformed to the original scale. The
advantage of ranged MA regression is that the var-
iables don’t need to be in comparable units and a
test of the H0 of zero slope is possible (see below).

Reduced major axis (RMA) regression, also
called the standard major axis (SMA) regression by
Legendre & Legendre (1998), is fitted by minimiz-
ing the sum of areas of the triangles formed by
vertical and horizontal lines from each observa-
tion to the fitted line (Figure 5.12). For RMA regres-
sion, it is assumed that 	

�
2 and 	

�
2 are

proportional to 	Y
2 and 	X

2 respectively so � equals
	Y

2/	X
2. The RMA estimate of �1 is simply the ratio

of standard deviation of Y to the standard devia-
tion of X:

b1� (5.22)

This is also the average of the OLS estimate of the
slope of Y on X and the reciprocal of the OLS esti-
mate of the slope of X on Y. The standard error for
the RMA estimate can be determined by boot-
strapping but it turns out that the standard error
of �1 is, conveniently, the same as the standard
error of the OLS estimate. Confidence intervals
for �1 can then be determined in the usual
manner (Section 5.3.3). The H0 that �1 equals
some specified value (except zero) can also be
tested with a T-statistic (McArdle 1988, modified
from Clarke 1980):

T� (5.23)

where b1 is the RMA estimate of �1, �1
* is the value

of �1 specified in the H0 and the denominator is

|log b1� log � *
1 |

�(1� r2)(n�2)

sY

sX

b 2
1(OLS) � r2

r2b1(OLS)
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Figure 5.12. Distances or areas minimized by OLS (1), MA
(2) and RMA (shaded area 3) linear regressions of Y on X.



the standard error of the cor-
relation coefficient (r). Note
again the close relationship
between RMA regression and the correlation
coefficient. Testing �1 against a specific non-
zero value is applicable in many aspects of
biology, such as the scaling of biological pro-
cesses with body size of organisms (LaBarbera
1989). The H0 that �1 equals zero cannot be tested
because log zero is undefined; the RMA regres-
sion slope is related to � and cannot be strictly
zero unless 	Y

2 is also zero, an unlikely occur-
rence in practice (Legendre & Legendre 1998,
McArdle 1988, Sokal & Rohlf 1995). The inability
to formally test the H0 that �1 equals zero is actu-
ally a trivial problem because the H0 that the pop-
ulation correlation coefficient (�) equals zero is
essentially the same.

Prairie et al. (1995) proposed the slope-range
method, which estimates �1 when X is random
from the relationship between the OLS estimate
and (1/sX

2) for subsets of the data covering different
ranges of X. This is a modification of methods
based on instrumental variables (a third variable
which may separate the data into groups). The
main limitation of the method is that it needs a

reasonably large sample size – at least ten potential
groups in the data set with n�20 in each
group.

The intercepts are straightforward to calculate
for any of these estimates of the slope because
each regression line passes through the point ( ȳ,
x̄) – see Section 5.3.3. The MA and RMA regression
lines can be related to principal components ana-
lysis (see Chapter 17); the former is the first prin-
cipal component of the covariance matrix
between Y and X and the latter is the first princi-
pal component of the correlation matrix between
Y and X. The RMA regression line is also the long
axis of the bivariate confidence ellipse (Figure 5.4),
indicating a close relationship between the corre-
lation coefficient and the RMA regression line
that we will elaborate on below.

Note that fitting a regression model of Y on X
will produce a different OLS regression line than
a regression model of X on Y for the same data
because the first is minimizing deviations from
the fitted line in Y and the latter is minimizing
deviations from the fitted line in X. Interestingly,
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Figure 5.13. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of CWD basal area
against riparian tree density. (b)
Scatterplot of residuals against
predicted CWD basal area from
linear regression of CWD basal area
against riparian tree density.

Figure 5.14. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of CWD basal area
against cabin density. (b) Scatterplot
of residuals against predicted CWD
basal area from linear regression of
CWD basal area against cabin
density.
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as pointed out by Jackson (1991), the RMA line
seems to most observers a more intuitive and
better “line-of-best-fit” than the OLS line since it
lies half way between the OLS line for Y on X and
the OLS line for X on Y.

Simulations by McArdle (1988) comparing OLS,
MA and RMA regression analyses when X is
random showed two important results. First, the
RMA estimate of �1 is less biased than the MA esti-
mate and is preferred, although he did not con-
sider the ranged MA method. Second, if the error
variability in X is more than about a third of the
error variability in Y, then RMA is the preferred
method; otherwise OLS is acceptable. As the corre-
lation coefficient between Y and X approaches one
(positive or negative), the difference between the
OLS and RMA estimates of �1, and therefore the
difference between the fitted regression lines,
gets smaller. Legendre & Legendre (1998) pre-
ferred the ranged MA over RMA, partly because
the former permits a direct test of the H0 that �1

equals zero. We don’t regard this as a crucial issue

because the test of the H0 that
the correlation coefficient
equals zero is the same test. A
more sophisticated decision

tree for choosing between methods for Model II
regression is provided by Legendre & Legendre
(1998), in addition to a detailed but very readable
discussion of the issues.

Examples of the application of Model II regres-
sion analyses are most common in studies of
scaling of aspects of biology with body size of
organisms. Herrera (1992) calculated the OLS, MA
and RMA estimates of the slope of the linear
regression of log fruit width on log fruit length
for over 90 species of plants from the Iberian
Peninsula. He showed that, averaging across the
species, the RMA estimate of the regression slope
was greater than MA, which in turn was greater
than OLS. He argued that MA regression was
appropriate because the error variabilities for log
width and log length were similar. Trussell (1997)
used RMA regression for describing relationships
between morphological characteristics (e.g. shell
height, shell length, foot size, etc.) of an intertidal
snail. However, he used OLS regressions to
compare between shores as part of an analysis of
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Figure 5.15. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of CWD basal area
against log10 cabin density. (b)
Scatterplot of residuals against
predicted CWD basal area from
linear regression of CWD basal area
against log10 cabin density.

Figure 5.16. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of log10 CWD
basal area against log10 cabin density.
(b) Scatterplot of residuals against
predicted log10 CWD basal area
from linear regression of log10

CWD basal area against log10 cabin
density.



covariance (see Chapter 12).
Both Herrera (1992) and
Trussell (1997) tested whether
their regression slopes were significantly differ-
ent from unity, the value predicted if the relation-
ships were simply allometric.

It is surprising that there are not more uses of
Model II regression, or acknowledgment of the
potential biases of using OLS estimates when both
Y and X are random, in biological research litera-
ture, particularly given the extensive discussion
in the influential biostatistics text by Sokal &
Rohlf (1995). This may be partly because many
excellent linear models textbooks are based on
examples in industry or business and marketing
where the assumption of fixed X is commonly
met, so the issue X being random is not discussed
in detail. Also, biologists seem primarily inter-
ested in the test of the H0 that �1 equals zero. Since
the test is identical for OLS regression of Y on X
and X on Y, and both are identical to the test that
the correlation coefficient (�) equals zero, then it
essentially does not matter whether OLS or RMA
regression is used for this purpose. Biologists less
commonly compare their estimates of �1 with

other values, so underestimating the true slope
may not be costly.

5.3.15 Robust regression
One of the limitations of OLS is that the estimates
of model parameters, and therefore subsequent
hypothesis tests, can be sensitive to distributional
assumptions and affected by outlying observa-
tions, i.e. ones with large residuals. Even general-
ized linear model analyses (GLMs; see Chapter 13)
that allow other distributions for error terms
besides normal, and are based on ML estimation,
are sensitive to extreme observations. Robust
regression techniques are procedures for fitting
linear regression models that are less sensitive to
deviations of the underlying distribution of error
terms from that specified, and also less sensitive
to extreme observations (Birkes & Dodge 1993).

Least absolute deviations (LAD)
LAD, sometimes termed least absolute residuals
(LAR; see Berk 1990), is where the estimates of �0
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Figure 5.17. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of number of
species against clump area. (b)
Scatterplot (with Loess smoother,
smoothing parameter�0.5) of
residuals against predicted number
of species from linear regression of
number of species against clump
area.
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Figure 5.18. (a) Scatterplot (with
linear regression line fitted) of log10

number of species against log10

clump area. (b) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of residuals against
predicted number of species from
linear regression of log10 number of
species against log10 clump area.
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and �1 are those that minimize the sum of abso-
lute values of the residuals:

|ei|� |(yi� ŷi) (5.24)

rather than the sum of squared residuals (�n
i�1ei

2)
as in OLS. By not squaring the residuals, extreme
observations have less influence on the fitted
model. The difficulty is that the computations of
the LAD estimates for �0 and �1 are more complex
than OLS estimates, although algorithms are
available (Birkes & Dodge 1993) and robust regres-
sion techniques are now common in statistical
software (often as part of nonlinear modeling rou-
tines).

M-estimators
These were introduced in Chapter 2 for estimating
the mean of a population. In a regression context,
M-estimators involve minimizing the sum of some
function of ei, with OLS (minimizing �n

i�1ei
2) and

LAD (minimizing �n
i�1|ei|) simply being special

�
n

i�1
�

n

i�1

cases (Birkes & Dodge 1993).
Huber M-estimators, described
in Chapter 2, weight the obser-

vations differently depending how far they are
from the center of the distribution. In robust
regression analyses, Huber M-estimators weight
the residuals (ei) differently depending on how far
they are from zero (Berk 1990) and use these new
residuals to calculate adjusted Y-values. The esti-
mates for �0 and �1 are those that minimize both
�n

i�1ei
2 (i.e. OLS) when the residuals are near zero

and �|ei| (i.e. LAD) when the residuals are far
from zero. We need to choose the size of the resid-
ual at which the method switches from OLS to
LAD; this decision is somewhat subjective,
although recommendations are available (Huber
1981, Wilcox 1997). You should ensure that the
default value used by your statistical software for
robust regression seems reasonable. Wilcox (1997)
described more sophisticated robust regression
procedures, including an M-estimator based on
iteratively reweighting the residuals. One
problem with M-estimators is that the sampling
distributions of the estimated coefficients are
unlikely to be normal, unless sample sizes are
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Figure 5.19. (a) Scatterplot (with
Loess smoother, smoothing
parameter�0.5) of number of
individuals against clump area.
(b) Scatterplot of residuals against
predicted number of individuals
from linear regression of number of
individuals against clump area.
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Figure 5.20. (a) Scatterplot (with
linear regression line and 95%
confidence band fitted) of log10

number of individuals against log10

clump area. (b) Scatterplot of
residuals against predicted number
of individuals from linear regression
of log10 number of individuals against
log10 clump area.
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large, and the usual calculations for standard
errors, confidence intervals and hypothesis
testing may not be valid (Berk 1990). Resampling
methods such as bootstrap (Chapter 2) are prob-
ably the most reliable approach (Wilcox 1997).

Rank-based (“non-parametric”) regression
This approach does not assume any specific distri-
bution of the error terms but still fits the usual
linear regression model. This approach might be
particularly useful if either of the two variables is
not normally distributed and nonlinearity is
evident but transformations are either ineffective
or misrepresent the underlying biological
process. The simplest non-parametric regression
analysis is based on the [n(n�1)]/2 OLS slopes of
the regression lines for each pair of X values (the
slope for y1x1 and y2x2, the slope for y2x2 and y3x3,
the slope for y1x1 and y3x3, etc.). The non-paramet-
ric estimator of �1 (b1) is the median of these
slopes and the non-parametric estimator of �0 (b0)
is the median of all the yi�b1xi differences (Birkes
& Dodge 1993, Sokal & Rohlf 1995, Sprent 1993). A
t test for �1 based on the ranks of the Y-values is
described in Birkes & Dodge (1993); an alternative
is to simply use Kendall’s rank correlation coeffi-
cient (Sokal & Rohlf 1995).

Randomization test
A randomization test of the H0 that �1 equals zero
can also be constructed by comparing the
observed value of b1 to the distribution of b1 found
by pairing the yi and xi values at random a large
number of times and calculating b1 each time
(Manly 1997). The P value then is the % of values of
b1 from this distribution equal to or larger than
the observed value of b1.

5.4 Relationship between
regression and correlation

The discussion on linear regression models when
both Y and X are random variables in Section
5.3.14 indicated the close mathematical and con-
ceptual similarities between linear regression and
correlation analysis. We will formalize those sim-
ilarities here, summarizing points we have made
throughout this chapter. The population slope of

the linear regression of Y on X (�YX) is related to the
correlation between Y and X (�YX) by the ratio of
the standard deviations of Y and X:

�YX��YX (5.25)

Therefore, the OLS estimate of �1 from the linear
regression model for Y on X is:

bYX�rYX (5.26)

The equivalent relationship also holds for the pop-
ulation slope of the linear regression of X on Y
with the ratio of standard deviations reversed.
Therefore the sample correlation coefficient
between Y and X can be calculated from the stan-
dardized slope of the OLS regression of Y on X
(Rodgers & Nicewander 1988).

These relationships between regression slopes
and correlation coefficients result in some inter-
esting equivalencies in hypothesis tests. The test
of the H0 that �YX equals zero is also identical to
the test of the H0 that �XY equals zero, although
the estimated values of the regression slopes will
clearly be different. These tests that �YX or �XY

equal zero are also identical to the test of the H0

that �YX equals zero, i.e. the test of the OLS regres-
sion slope of Y on X is identical to the test of the
OLS regression slope of X on Y and both are iden-
tical to the test of the Pearson correlation coeffi-
cient between Y and X, although neither
estimated value of the slope will be the same as
the estimated value of the correlation coefficient.
The sample correlation coefficient is simply the
geometric mean of these two regression slopes
(Rodgers & Nicewander 1988):

r�� (5.27)

Simple correlation analysis is appropriate when
we have bivariate data and we simply wish to
measure the strength of the linear relationship
(the correlation coefficient) between the two vari-
ables and test an H0 about that correlation coeffi-
cient. Regression analysis is called for when we
can biologically distinguish a response (Y) and a
predictor variable (X) and we wish to describe the
form of the model relating Y to X and use our esti-
mates of the parameters of the model to predict Y
from X.

�bYXbXY

sY

sX

	Y

	X

106 CORRELATION AND REGRESSION



5.5 Smoothing

The standard OLS regression analysis, and the
robust regression techniques, we have described
in this chapter specify a particular model that we
fit to our data. Sometimes we know that a linear
model is an inappropriate description of the rela-
tionship between Y and X because a scatterplot
shows obvious nonlinearity or because we know
theoretically that some other model should apply.
Other times we simply have no preconceived
model, linear or nonlinear, to fit to the data and
we simply want to investigate the nature of the
relationship between Y and X. In both situations,
we require a method for fitting a curve to the rela-
tionship between Y and X that is not restricted to
a specific model structure (such as linear).
Smoothers are a broad class of techniques that
describe the relationship between Y and X, etc.,
with few constraints on the form the relationship
might take (Goodall 1990, Hastie & Tibshirani
1990). The aim of the usual linear model analysis
is to separate the data into two components:

model�residual (error) (5.28)

Smoothing also separates data into two compo-
nents:

smooth�rough (5.29)

where the rough component should have as little
information or structure as possible (Goodall
1990). The logic of smoothing is relatively simple.

• Each observation is replaced by the mean or
the median of surrounding observations or the
predicted value from a regression model
through these local observations.

• The surrounding observations are those within
a window (sometimes termed a band or a
neighbourhood) that covers a range of observa-
tions along the X-axis and the X-value on
which the window is centered is termed the
target. The size of the window, i.e. the number
of observations it includes, is determined by a
smoothing parameter for most smoothers
(Hastie & Tibshirani 1990).

• Successive windows overlap so that the result-
ing line is smooth.

• The mean or median in one window are not
affected by observations in other windows so
smoothers are robust to extreme observations.

• Windows at the extremes of the X-axis often
extend beyond the smallest or largest X-value
and must be handled differently (see Section
5.5.5).

Smoothing functions are sometimes termed
non-parametric regressions; here, non-parametric
refers to the absence of a specified form of the
relationship between Y and X rather than the dis-
tribution of the error terms from the fit of a
model. Smoothing functions don’t set any specific
conditions for Y or X. For example, the observa-
tions may come from a joint distribution of Y and
X (both Y and X random) or X may be considered
fixed (Hastie & Tibshirani 1990). There are numer-
ous varieties of smoothers and our descriptions
are based on Goodall (1990) and Hastie &
Tibshirani (1990).

5.5.1 Running means
A running (moving) means (averages) smoother is
determined from the means of all the observa-
tions in a window. Each window is centered on the
target X-value and the remaining X-values
included in the window can be determined in two
ways: (i) including a fixed number of observations
both sides of the target X-value, or (ii) including a
fixed number of nearest observations to the target
xi irrespective of which side of the target they
occur (Hastie & Tibshirani 1990, Neter et al. 1996).
The latter tend to perform better (Hastie &
Tibshirani 1990), especially for locally weighted
smoothers (see Cleveland’s Loess below). Note that
any observation might be included in a number of
neighbouring windows. Using running medians
instead of means makes the smoothing more
resistant to extreme observations, i.e. more robust
(Figure 5.21(a,b)). Running means or medians have
been used commonly for analyzing data from
simple time series (Diggle 1990), although the
resulting line is rarely smooth (Hastie &
Tibshirani 1990).

5.5.2 LO(W)ESS
A simple modification of running means or
medians is to calculate the OLS regression line
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within a window and replace
the observed yi with that pre-
dicted by the local regression
line for the target X-value. A
modification of this approach
is locally weighted regression
scatterplot smoothing (Loess
or Lowess; Cleveland 1979,
1994; see Figure 5.21). Here, the observations in a
window are weighted differently depending on
how far they are from the target X-value using a
tri-cube weight function (see Hastie & Tibshirani
1990 and Trexler & Travis 1993 for details). In
essence, observations further from the target X-
value are downweighted compared with values
close to the target X-value (Goodall 1990). Further
refinement can be achieved by repeating the
smoothing process a number of times during
which observations with large residuals (differ-
ence between observed yi and those predicted by
the smooth) are downweighted. The final Loess
smooth is often an excellent representation of the
relationship between Y and X, although the
choice of smoothing parameter (window size) can
be important for interpretation (see Section 5.5.5).
A related smoother is distance weighted least
squares (DWLS) that also weights observations dif-
ferently within each window. DWLS is slightly less
sensitive to extreme observations than Loess for a
given smoothing parameter.

5.5.3 Splines
Splines approach the smoothing problem by
fitting polynomial regressions (see Chapter 6),
usually cubic polynomials, in each window. The
final smoother is termed a piecewise polynomial.

The windows are separated at user-defined break-
points termed knots and the polynomials within
each window are forced to be continuous between
windows, i.e. two adjacent polynomials join
smoothly at a knot (Hastie & Tibshirani 1990). The
computations are complex and a rationale for the
choice of the number of knots, that will influence
the shape of the smooth, is not obvious. Our expe-
rience is that regression splines are less useful
than Loess smoothers as an exploratory tool for
bivariate relationships.

5.5.4 Kernels
We have already discussed kernel functions as
non-parametric estimators of univariate (Chapter
2) and bivariate (Section 5.1.3) probability density
functions. Hastie & Tibshirabni (1990) also
described a kernel smoother for Y versus X rela-
tionships. Within a window, observations are
weighted based on a known function (e.g. normal
distribution), termed the kernel, so that the
weights decrease the further the observation is
from the target X-value (just like in Loess smooth-
ing). The estimated smoother results from the
means of the Y-values within each window. Again,
a smoothing parameter sets the size of the
window and this, along with the kernel (the func-
tion that sets the weights of the observations

108 CORRELATION AND REGRESSION

Figure 5.21. Smoothing functions
through species–area data from
Peake & Quinn (1993). (a) Running
median smoother with smoothing
parameter of 0.25, (b) running
median smoother with smoothing
parameter of 0.75, (c) Loess
smoother with smoothing
parameter of 0.25, and (d) Loess
smoother with smoothing
parameter of 0.75. Plotted in
SYSTAT.



within each window), are defined by the user.
Kernels are not often used as smoothers for esti-
mating the relationship between Y and X but are
useful as more general univariate or bivariate
density estimators.

5.5.5 Other issues
All the above smoothers describe the relationship
between Y and X, and a predicted Y-value ( ŷi) can
be determined for each xi. Therefore, residuals
(yi� ŷi) can also be calculated for each observation,
and are produced from some statistical software.
These residuals can be used in a diagnostic
fashion to assess the fit of the smooth to the data,
similar to the methods described in Section 5.3.10
for OLS linear regression. In particular, large
residuals might indicate influential observations,
although most smoothing techniques are consid-
ered robust to outliers because the components of
the smoother are fitted to local observations
within windows. Also, standard errors for ŷi can be
determined using bootstrap techniques (Efron &
Tibshirani 1991; Chapter 2) and hypotheses about
ŷi tested with randomization procedures (Chapter
3).

There are several important issues related to
the practical application of all the smoothers
described here. First, whichever smoothing
method is used, an important decision for the
user is the value for the smoothing parameter, i.e.
how many observations to include in each
window. Hastie & Tibshirani (1990) have discussed
this in some detail. Increasing the number of
observations in each window (larger smoothing
parameter) produces a flatter and “smoother”
smooth that has less variability (Figure 5.21(a,c))
but is less likely to represent the real relationship
between Y and X well (the smooth is probably
biased). In contrast, fewer observations in each
window (smaller smoothing parameter) produces
a “jerkier”, more variable, smooth (Figure
5.21(b,d)) but which may better match the pattern
in the data (less biased). Hastie & Tibshirani (1990)
have described complex, data-based methods for
choosing the smoothing parameter (window-size)
and producing a smooth that best minimizes both
variance and bias. These methods might be useful
if low variance is important because the smooth is
being used as part of a modeling process, e.g.

generalized additive modeling (GAM; see Chapter
13). Lower variance will result in predictions from
such models being more precise. Trexler & Travis
(1993) recommended the approach of Cleveland
(1994) for Loess smoothing whereby the smooth-
ing parameter (window-size) is as large as possible
without resulting in any relationship between the
residuals and X. In our experience, such a relation-
ship is not common irrespective of the value of
the smoothing parameter so this recommenda-
tion does not always work. Since smoothers are
most commonly used as an exploratory tool
rather than for model-fitting, we recommend
trying different values of smoothing functions as
part of the phase of exploring patterns in data
before formal analyses.

A second issue is what we do when the end-
points (the smallest and largest X-values) are the
targets, because their windows will usually
exceed the range of the data. Goodall (1990) sug-
gested a step-down rule so that the window size
decreases as the largest and smallest X-values are
approached, although he emphasized that defini-
tive recommendations are not possible.

In summary, smoothing functions have a
number of applications. First, they are very useful
for graphically describing a relationship between
two variables when we have no specific model in
mind. Second, they can be used as a diagnostic
check of the suitability of a linear model or help
us decide which form of nonlinear model might
be appropriate. Third, they can be used for model-
ing and prediction, particularly as part of general-
ized additive models (Chapter 13).

5.6 Power of tests in correlation
and regression

Since H0s about individual correlation and regres-
sion coefficients are tested with t tests, power cal-
culations are relatively straightforward based on
non-central t distributions (Neter et al. 1996; see
also Chapters 3 and 7). In an a priori context, the
question of interest is “How many observations do
we need to be confident (at a specified level, i.e.
power) that we will detect a regression slope of a
certain size if it exists, given a preliminary esti-
mate of 	

�
2?” Equivalent questions can be phrased
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for correlation coefficients. As always with power
analyses, the difficult part is determining what
effect size, e.g. size of regression slope, is impor-
tant (see Chapter 7).

5.7 General issues and hints for
analysis

5.7.1 General issues
• Estimating and testing correlations are

straightforward for linear (straight-line) rela-
tionships. Use robust methods (e.g. non-para-
metric) if relationships are nonlinear but
monotonic.

• Classical linear regression models fitted by OLS
assume that X is a fixed variable (Model I). In
biology, both Y and X are usually random
(Model II) and alternative methods are avail-
able for estimating the slope. Even with X
random, predictions and tests of hypotheses
about the regression slope can be based on
Model I analyses. 

• The null hypothesis that the slope of the
Model I regression equals zero can be tested
with either a t test or an ANOVA F-ratio test.
The conclusions will be identical and both are
standard output from statistical software.
These are also identical to the tests of the null
hypotheses that the correlation coefficient
equals zero and the slope of the RMA (Model II)
regression equals zero.

• The standardized regression slope provides a
measure of the slope of the linear relationship
between the response and the predictor vari-
able that is independent of their units.

• The assumptions of linear regression analysis
(normality, homogeneity of variance, indepen-
dence) apply to the error terms from the model
and also to the response variable. Violations of
these assumptions, especially homogeneity of
variances and independence, can have impor-
tant consequences for estimation and testing
of the linear regression model.

• If transformations are ineffective or inapplica-
ble, robust regression based on M-estimation or
on ranks should be considered to deal with
outliers and influential observations.

• Smoothing functions are very useful
exploratory tools, suggesting the type of model
that may be most appropriate for the data, and
also for presentation, describing the relation-
ship between two variables without being con-
strained by a specific model.

5.7.2 Hints for analysis
• Tests of null hypotheses for non-zero values of

the correlation coefficient are tricky because
of complex distribution of r; use procedures
based on Fishers’s z transformation.

• A scatterplot should always be the first step in
any correlation or simple regression analysis.
When used in conjunction with a smoothing
function (e.g. Loess), scatterplots can
reveal nonlinearity, unequal variances and out-
liers.

• As always when fitting linear models, use diag-
nostic plots to check assumptions and ade-
quacy of model fit. For linear regression, plots
of residuals against predicted values are valu-
able checks for homogeneity of residual vari-
ances. Checks for autocorrelation, especially if
the predictor variable represents a time
sequence, should also precede any formal
analysis. Cook’s Di statistic (or DFITSi) is a valu-
able measure of the influence each observation
has on the fitted model.

• Transformations of either or both variables
can greatly improve the fit of linear regression
models to the data and reduce the influence of
outliers. Try transforming the response vari-
able to correct for non-normality and unequal
variances and the predictor if variances are
already roughly constant.

• Think carefully before using a no-intercept
model. Forcing the model through the origin
is rarely appropriate and renders measures of
fit (e.g. r2) difficult to interpret.
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In Chapter 5, we examined linear models with a
single continuous predictor variable. In this
chapter, we will discuss more complex models,
including linear models with multiple predictor
variables and models where one predictor inter-
acts with itself in a polynomial term, and also
nonlinear models. Note that this chapter will
assume that you have read the previous chapter
on bivariate relationships because many aspects
of multiple regression are simply extensions from
bivariate (simple) regression.

6.1 Multiple linear regression
analysis

A common extension of simple linear regression
is the case where we have recorded more than one
predictor variable. When all the predictor vari-
ables are continuous, the models are referred to as
multiple regression models. When all the predic-
tor variables are categorical (grouping variables),
then we are dealing with analysis of variance
(ANOVA) models (Chapters 8–11). The distinction
between regression and ANOVA models is not
always helpful as general linear models can
include both continuous and categorical predic-
tors (Chapter 12). Nonetheless, the terminology is
entrenched in the applied statistics, and the bio-
logical, literature. We will demonstrate multiple
regression with two published examples.

Relative abundance of C3 and C4 plants
Paruelo & Lauenroth (1996) analyzed the geo-
graphic distribution and the effects of climate

variables on the relative abundance of a number
of plant functional types (PFTs) including shrubs,
forbs, succulents (e.g. cacti), C3 grasses and C4

grasses. The latter PFTs represent grasses that
utilize the C from the atmosphere differently in
photosynthesis and are expected to have different
responses to CO2 and climate change. They used
data from 73 sites across temperate central North
America and calculated the relative abundance of
each PFT, based on cover, biomass and primary
production, at each site. These relative abundance
measures for each PFT were the response vari-
ables. The predictor variables recorded for each
site included longitude and latitude (centesimal
degrees), mean annual temperature (°C), mean
annual precipitation (mm), the proportion of pre-
cipitation falling in winter between December
and February, the proportion of precipitation
falling in summer between June and August, and
a categorical variable representing biome (one for
grassland, two for shrubland). The analyses of
these data are in Box 6.1.

Abundance of birds in forest patches
Understanding which aspects of habitat and
human activity affect the biodiversity and abun-
dance of organisms within remnant patches of
forest is an important aim of modern conserva-
tion biology. Loyn (1987) was interested in what
characteristics of habitat were related to the abun-
dance and diversity of forest birds. He selected 56
forest patches in southeastern Victoria, Australia,
and recorded the number of species and abun-
dance of forest birds in each patch as two response
variables. The predictor variables recorded for

Chapter 6

Multiple and complex regression
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Box 6.1 Worked example of multiple linear regression:
relative abundance of plant functional types

Paruelo & Lauenroth (1996) analyzed the geographic distribution and the effects of
climate variables on the relative abundance of a number of plant functional types
(PFTs) including shrubs, forbs, succulents (e.g. cacti), C3 grasses and C4 grasses.
There were 73 sites across North America. The variables of interest are the rela-
tive abundance of C3 plants, the latitude in centesimal degrees (LAT), the longitude
in centesimal degrees (LONG), the mean annual precipitation in mm (MAP), the
mean annual temperature in oC (MAT), the proportion of MAP that fell in June, July
and August ( JJAMAP) and the proportion of MAP that fell in December, January
and February (DJFMAP). The relative abundance of C3 plants was positively skewed
and transformed to log10�0.1 (log10C3).

A correlation matrix between the predictor variables indicated that some pre-
dictors are strongly correlated.

LAT LONG MAP MAT JJAMAP DJFMAP

LAT 1.00
LONG 0.097 1.000
MAP �0.247 �0.734 1.000
MAT �0.839 �0.213 0.355 1.000
JJAMAP 0.074 �0.492 0.112 �0.081 1.000
DJFMAP �0.065 0.771 �0.405 0.001 �0.792 1.00

Note the high correlations between LAT and MAT, LONG and MAP, and
JJAMAP and DJFMAP, suggesting that collinearity may be a problem with this analy-
sis.

With six predictor variables, a linear model with all possible interactions would
have 64 model terms (plus an intercept) including four-, five- and six-way interac-
tions that are extremely difficult to interpret. As a first pass, we fitted an additive
model:

(log10C3)i�b0�b1(LAT)i�b2(LONG)i�b3(MAP)i�b4(MAT)i�b5( JJAMAP)i�

b6(DJFMAP)i�ei

Coefficient Estimate Standard Standardized Tolerance t P
error coefficient

Intercept �2.689 1.239 0 �2.170 0.034
LAT 0.043 0.010 0.703 0.285 4.375 �0.001
LONG 0.007 0.010 0.136 0.190 0.690 0.942
MAP �0.001 �0.001 0.181 0.357 1.261 0.212
MAT �0.001 0.012 �0.012 0.267 �0.073 0.942
JJAMAP �0.834 0.475 �0.268 0.316 �1.755 0.084
DJFMAP �0.962 0.716 �0.275 0.175 �1.343 0.184

It is clear that collinearity is a problem with tolerances for two of the
predictors (LONG & DJFMAP) approaching 0.1.

Paruelo & Lauenroth (1996) separated the predictors into two groups for
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their analyses. One group included LAT and LONG and the other included
MAP, MAT, JJAMAP and DJFMAP. We will focus on the relationship between
log-transformed relative abundance of C3 plants and latitude and longitude.
We fitted a multiplicative model including an interaction term that measured how
the relationship between C3 plants and latitude could vary with longitude and vice
versa:

(log10C3)i�b0�b1(LAT)i�b2(LONG)i�b3(LAT�LONG)i�ei

Coefficient Estimate Standard Tolerance t P
error

Intercept 7.391 3.625 2.039 0.045
LAT �0.191 0.091 0.003 �2.102 0.039
LONG �0.093 0.035 0.015 �2.659 0.010
LAT�LONG 0.002 0.001 0.002 2.572 0.012

Note the very low tolerances indicating high correlations between the predic-
tor variables and their interactions. An indication of the effect of collinearity is that
if we omit the interaction and refit the model, the partial regression slope for lati-
tude changes sign.We refitted the multiplicative model after centring both LAT and
LONG.

Coefficient Estimate Standard Tolerance t P
error

Intercept �0.553 0.027 20.130 �0.001
LAT 0.048 0.006 0.829 8.483 �0.001
LONG �0.003 0.004 0.980 �0.597 0.552
LAT�LONG 0.002 0.001 0.820 2.572 0.012

Now the collinearity problem has disappeared. Diagnostic checks of the model
did not reveal any outliers nor influential values. The boxplot of residuals was rea-
sonably symmetrical and although there was some heterogeneity in spread of resid-
uals when plotted against predicted values, and a 45o line representing sites with
zero abundance of C3 plants, this was not of a form that could be simply corrected
(Figure 6.2).

The estimated partial regression slope for the interaction hasn’t changed and
we would reject the H0 that there is no interactive effect of latitude and longitude
on log-transformed relative abundance of C3 plants. This interaction is evident in
the DWLS smoother fitted to the scatterplot of relative abundance of C3 plants
against latitude and longitude (Figure 6.11). If further interpretation of this interac-
tion is required, we would then calculate simple slopes for relative abundance of C3

plants against latitude for specific values of longitude or vice versa. We will illustrate
the simple slopes analysis with Loyn’s (1987) data in Box 6.2.

Out of interest, we also ran the full model with all six predictors through both
a forward and backward selection routine for stepwise multiple regression. For both
methods, the significance level for entering and removing terms based on partial F
statistics was set at 0.15.



each patch included area (ha), the number of years
since the patch was isolated by clearing (years),
the distance to the nearest patch (km), the dis-
tance to the nearest larger patch (km), an index of
stock grazing history from 1 (light) to 5 (heavy),
and mean altitude (m). The analyses of these data
are in Box 6.2.

6.1.1 Multiple linear regression model
Consider a set of i�1 to n observations where each
observation was selected because of its specific
X-values, i.e. the values of the p ( j�2 to p) predic-
tor variables X1, X2, . . .Xj . . .Xp were fixed by the
investigator, whereas the Y-value for each observa-
tion was sampled from a population of possible
Y-values. Note that the predictor variables are
usually random in most biological research and
we will discuss the implications of this in Section
6.1.17. The multiple linear regression model that
we usually fit to the data is:

yi��0��1xi1��2xi2� . . .��jxij� . . .��pxip��i

(6.1)

The details of the linear regression model, includ-
ing estimation of its parameters, are provided in
Box 6.3.

For Loyn’s (1987) data, p equals six and a linear
model with all predictors would be:

(bird abundance)i��0��1(patch area)i�
�2(years isolated)i��3(nearest patch distance)i�
�4(nearest large patch distance)i�
�5(stock grazing)i��6(altitude)i��i (6.2)

Using the data from Paruelo & Lauenroth
(1996), we might fit a model where p equals two to
represent geographic pattern of C3 grasses:

(relative abundance of C3 grasses)i��0�

�1(latitude)i��2(longitude)i�� i (6.3)

A multiple regression model cannot be repre-
sented by a two-dimensional line as in simple
regression and a multidimensional plane is
needed (Figure 6.1). We can only graphically
present such a model with two predictor variables
although such graphs are rarely included in
research publications.

Note that this is an additive model where all
the explained variation in Y is due to the additive
effects of the response variables. This model does
not allow for interactions (multiplicative effects)
between the predictor variables, although such
interactions are possible (even likely) and will be
discussed in Section 6.1.12.

We have the following in models 6.1 and 6.3.

yi is the value of Y for the ith observation
when the predictor variable X1 equals xi1, X2

equals xi2, Xj equals xij, etc.
�0, �1, �2, �j etc. are population parameters,

also termed regression coefficients, where
�0 is the population intercept, e.g. the true

mean value of the relative abundance of C3

grasses when latitude and longitude equal zero.
�1 is the population slope for Y on X1 holding

X2, X3, etc., constant. It measures the change in
relative abundance of C3 grasses for a one
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The backward selection is as follows.

Coefficient Estimate Standard error t P

JJAMAP �1.002 0.433 �2.314 0.024
DJFMAP �1.005 0.486 �2.070 0.042
LAT 0.042 0.005 8.033 �0.001

The forward selection is as follows.

Coefficient Estimate Standard error t P

MAP �0.001 �0.001 1.840 0.070
LAT 0.044 0.005 66.319 �0.001

Note the marked difference in the final model chosen by the two methods,
with only latitude (LAT) in common.
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Box 6.2 Worked example of multiple linear regression:
abundance of birds in forest patches

Loyn (1987) selected 56 forest patches in southeastern Victoria, Australia, and
related the abundance of forest birds in each patch to six predictor variables: patch
area (ha), distance to nearest patch (km), distance to nearest larger patch (km),
grazing stock (1 to 5 indicating light to heavy), altitude (m) and years since isolation
(years). Three of the predictor variables (patch area, distance to nearest patch or
dist, distance to nearest larger patch or ldist) were highly skewed, producing obser-
vations with high leverage, so these variables were transformed to log10. A corre-
lation matrix indicated some moderate correlations between predictors, especially
between log10 dist and log10 ldist, log10 area and graze, and graze and years.

Log10 dist Log10 ldist Log10 area Grazing Altitude Years

Log10 dist 1.000
Log10 l dist 0.604 1.000
Log10 area 0.302 0.382 1.000
Grazing �0.143 �0.034 �0.559 1.000
Altitude �0.219 �0.274 0.275 �0.407 1.000
Years �0.020 0.161 �0.278 0.636 �0.233 1.000

As for the data set from Paruelo & Lauenroth (1996), a multiple linear regres-
sion model relating abundance of forest birds to all six predictor variables and their
interactions would have 64 terms plus an intercept, and would be unwieldy to inter-
pret. So an additive model was fitted:

(bird abundance)i�b0�b1(log10 area)i�b2(log10 dist)i�b3(log10 ldist)i�

b4(grazing)i�b5(altitude)i�b6(years)i�ei

Estimate Standard Standardized Tolerance t P
error coefficient

Intercept 20.789 8.285 0 2.509 0.015
Log10 area 7.470 1.465 0.565 0.523 5.099 �0.001
Log10 dist �0.907 2.676 �0.035 0.604 �0.339 0.736
Log10 ldist �0.648 2.123 �0.035 0.498 �0.305 0.761
Grazing �1.668 0.930 �0.229 0.396 �1.793 0.079
Altitude 0.020 0.024 0.079 0.681 0.814 0.419
Years �0.074 0.045 �0.176 0.554 �1.634 0.109

Diagnostic checks of the model did not reveal any outliers or influential values.
The response variable (bird abundance) was not skewed, the boxplot of residuals
was reasonably symmetrical and although there was some heterogeneity of spread
of residuals when plotted against predicted values, this was not of a form that could
be simply corrected (Figure 6.3). The r2 was 0.685, indicating that about 69% of the
variation in bird abundance can be explained by this combination of predictors.
Note that none of the tolerances were very low suggesting that despite some cor-
relations among the predictors, collinearity may not be a serious issue for this data
set. There was a significant positive partial regression slope for bird abundance
against log10 area. No other partial regression slopes were significant.
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Source df MS F P

Regression 6 723.513 17.754 �0.001
Residual 49 40.752

The H0 that all partial regression slopes equal zero was also rejected.
Now we will fit a second model to investigate possible interactions between

predictor variables. A model with six predictors plus interactions is unwieldy so we
will simplify the model first by omitting those predictors that contributed little to
the original model (log10 dist, log10 ldist, altitude). The first two were correlated with
each other and with log10 area anyway. Refitting the additive model with these three
predictors omitted changed the estimated regression slopes of the remaining terms
only slightly, suggesting that any bias in the estimates of the remaining predictors
from omitting other predictors is small. This leaves us with a model with three pre-
dictors and their interactions:

(bird abundance)i�b0�b1(log10 area)i�b2(grazing)i�b3(years)i�

b4(log10 area�grazing)i�b5(log10 area�years)i�b6(grazing�years)i�

b7(log10 area�grazing�years)i�ei

Tolerance values were unacceptably low (all �0.10) unless the predictor vari-
ables were centered so the model was based on centered predictors.

Estimate Standard Standardized Tolerance t P
error coefficient

Intercept 22.750 1.152 0 19.755 �0.001

Log10 area 8.128 1.540 0.615 0.373 5.277 �0.001

Grazing �2.979 0.837 �0.408 0.386 �3.560 0.001

Years 0.032 0.057 0.076 0.280 0.565 0.574

Log10 area� 2.926 0.932 0.333 0.450 3.141 0.003
Grazing

Log10 area� �0.173 0.063 �0.305 0.411 �2.748 0.008
Years

Grazing�Years �0.101 0.035 �0.343 0.362 �2.901 0.006

Log10 area� �0.011 0.034 �0.037 0.397 �0.329 0.743
Grazing�Years

The three-way interaction was not significant so we will focus on the two-way
interactions. The log10 area�grazing term indicates how much the effect of grazing
on bird density depends on log10 area. This interaction is significant, so we might
want to look at simple effects of grazing on bird density for different values of log10

area. We chose mean log10 area (0.932)�one standard deviation (0.120, 1.744).
Because the three-way interaction was not significant, we simply set years since iso-
lation to its mean value (33.25). We could also just have ignored years since isola-
tion and calculated simple slopes as for a two predictor model and got similar
patterns. The simple slopes of bird abundance against grazing for different log10 area
values and mean of years since isolation were as follows.
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Log10 area Simple slopes Standard error Standardized slope t P

0.120 �5.355 1.223 �0.734 �4.377 �0.001
0.932 �2.979 0.837 �0.408 �3.560 0.001
1.744 �0.603 1.024 �0.083 �0.589 0.558

As we predicted, the negative effect of grazing on bird abundance is stronger in
small fragments and there is no relationship between bird abundance and grazing
in the largest fragments.

Box 6.3 The multiple linear regression model and its
parameters

Consider a set of i�1 to n observations where each observation was selected
because of its specific X-values, i.e. the values of the p ( j�2 to p) predictor vari-
ables X1, X2, . . .Xj . . .Xp were fixed by the investigator, whereas the Y-value for each
observation was sampled from a population of possible Y-values. The multiple linear
regression model that we usually fit to the data is:

yi�b0�b1xi1�b2xi2� . . .�bjxij� . . .�bpxip�ei (6.1)

In model 6.1 we have the following.

yi is the value of Y for the ith observation when the predictor variable X1

equals xi1, X2 equals xi2, Xj equals xij, etc.
b0 is the population intercept, the true mean value of Y when X1 equals zero,

X2 equals zero, Xj equals zero, etc.
b1 is the partial population regression slope for Y on X1 holding X2, X3, etc.,

constant. It measures the change in Y per unit change in X1 holding the value
of all other X-variables constant.

b2 is the partial population regression slope for Y on X2 holding X1, X3, etc.,
constant. It measures the change in Y per unit change in X2 holding the value
of all other X-variables constant.

bj is the partial population regression slope for Y on Xj holding X1, X2, etc.,
constant; it measures the change in Y per unit change in Xj holding the value
of the other p�1 X-variables constant.

ei is random or unexplained error associated with the ith observation. Each ei

measures the difference between each observed yi and the mean of yi; the
latter is the value of yi predicted by the population regression model, which
we never know. We assume that when the predictor variable X1 equals xi1,
X2 equals xi2, Xj equals xij, etc., these error terms are normally distributed,
their mean is zero (E(ei) equals zero) and their variance is the same and is
designated r

e
2. This is the assumption of homogeneity of variances. We also

assume that these ei terms are independent of, and therefore uncorrelated
with, each other. These assumptions (normality, homogeneity of variances
and independence) also apply to the response variable Y when the predictor
variable X1 equals xi1, X2 equals xi2, Xj equals xij, etc.



centesimal degree change in latitude, holding
longitude constant.

�2 is the population slope for Y on X2 holding
X1, X3, etc., constant. It measures the change in
relative abundance of C3 grasses for a one
centesimal degree change in longitude, holding
latitude constant.

�j is the population slope for Y on Xj holding
X1, X2, etc., constant; it measures the change in Y
per unit change in Xj holding the value of the
other p�1 X-variables constant.

�i is random or unexplained error associated
with the ith observation of relative abundance of
C3 grasses not explained by the model.

The slope parameters (�1, �2, . . ., �j, . . ., �p) are
termed partial regression slopes (coefficients)
because they measure the change in Y per unit
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Fitting the multiple regression model to our data and obtaining estimates of the
model parameters is an extension of the methods used for simple linear regression,
although the computations are complex. We need to estimate the parameters (b0,
b1, b2, . . ., bp and r

e
2) of the multiple linear regression model based on our random

sample of n (xi1, xi2, . . ., xip, yi) observations. Once we have estimates of the param-
eters, we can determine the sample regression line:

ŷi�b0�b1xi1�b2xi2� . . .�bjxij� . . .�bpxip

where:

ŷi is the value of yi for xi1, xi2, . . ., xij, . . ., xip predicted by the fitted regression line,
b0 is the sample estimate of b0, the Y-intercept,
b1, b2, . . ., bj, . . .bp are the sample estimates of b1, b2, . . ., bj, . . ., bp, the partial

regression slopes.

We can estimate these parameters using either (ordinary) least squares (OLS)
or maximum likelihood (ML). If we assume normality, the OLS estimates of b0, b1,
etc., are the same as the ML estimates. As with simple regression, we will focus on
OLS estimation. The actual calculations for the OLS estimates of the model param-
eters involve solving a set of simultaneous normal equations, one for each param-
eter in the model, and are best represented with matrix algebra (Box 6.4).

The OLS estimates of b0, b1, b2, etc., are the values that produce a sample
regression line (ŷi�b0�b1xi1�b2xi2� . . .�bjxij� . . .�bpxip) that minimizes
�n

i�1(yi� ŷi)
2. These are the sum of the squared deviations (SS) between each

observed yi and the value of yi predicted by the sample regression line for each xij.
Each (yi� ŷi) is a residual from the fitted regression plane and represents the ver-
tical distance between the regression plane and the Y-value for each observation
(Figure 6.1). The OLS estimate of r

e
2 (the variance of the model error terms) is the

sample variance of these residuals and is the Residual (or Error) Mean Square from
the analysis of variance (Section 6.1.3).

Figure 6.1. Scatterplot of the log-transformed relative
abundance of C3 plants against longitude and latitude for 73
sites from Paruelo & Lauenroth (1996) showing OLS fitted
multiple regression linear response surface.
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change in a particular X holding the other p�1
X-variables constant. It is important to distinguish
these partial regression slopes in multiple linear
regression from the regression slope in simple
linear regression. If we fit a simple regression
model between Y and just one of the X-variables,
then that slope is the change in Y per unit change
in X, ignoring the other p�1 predictor variables
we might have recorded plus any predictor vari-
ables we didn’t measure. Again using the data
from Paruelo & Lauenroth (1996), the partial
regression slope of the relative abundance of C3

grasses against longitude measures the change in
relative abundance for a one unit (one centesimal
degree) change in longitude, holding latitude con-
stant. If we fitted a simple linear regression model
for relative abundance of C3 grasses against longi-
tude, we completely ignore latitude and any other
predictors we didn’t record in the interpretation
of the slope. Multiple regression models enable us
to assess the relationship between the response
variable and each of the predictors, adjusting for
the remaining predictors.

6.1.2 Estimating model parameters
We estimate the parameters (�0, �1, �2, . . ., �p and
	
�

2) of the multiple linear regression model, based
on our random sample of n (xi1, xi2, . . ., xij, . . ., xip, yi)
observations, using OLS methods (Box 6.3). The
fitted regression line is:

ŷi�b0�b1xi1�b2xi2� . . .�bjxij� . . .�bpxip (6.4)

where:

ŷi is the value of relative abundance of C3

grasses for xi1, xi2, . . ., xij, . . ., xip (e.g. a given
combination of latitude and longitude)
predicted by the fitted regression model,

b0 is the sample estimate of �0, the Y-
intercept,

b1, b2, . . ., bj, . . .bp are the sample estimates of
�1, �2, . . ., �j, . . ., �p, the partial regression slopes.
We can also determine standardized partial
regression slopes that are independent of the
units in which the variables are measured
(Section 6.1.6).

The OLS estimates of these parameters are
the values that minimize the sum of squared
deviations (SS) between each observed value of rel-

ative abundance of C3 grasses and the relative
abundance of C3 grasses predicted by the fitted
regression model. This difference between each
observed yi and each predicted ŷi is called a resid-
ual (ei). We will use the residuals for checking the
fit of the model to our data in Section 6.1.8.

The actual calculations for the OLS estimates
of the model parameters involve solving a set of
simultaneous normal equations (see Section
5.2.3), one for each parameter in the model, and
are best represented with matrix algebra (Box 6.4).
The computations are tedious but the estimates,
and their standard errors, should be standard
output from multiple linear regression routines
in your statistical software. Confidence intervals
for the parameters can also be calculated using
the t distribution with n�p df. New Y-values can
be predicted from new values of any or all of the p
X-variables by substituting the new X-values into
the regression equation and calculating the pre-
dicted Y-value. As with simple regression, be
careful about predicting from values of any of the
X-variables outside the range of your data.
Standard errors and prediction intervals for new
Y-values can be determined (see Neter et al. 1996).
Note that the confidence intervals for model
parameters (slopes and intercept) and prediction
intervals for new Y-values from new X-values
depend on the number of observations and the
number of predictors. This is because the divisor
for the MSResidual, and the df for the t distribution
used for confidence intervals, is n� (p�1).
Therefore, for a given standard error, our confi-
dence in predicted Y-values from our fitted model
is reduced when we include more predictors.

6.1.3 Analysis of variance
Similar to simple linear regression models
described in Chapter 5, we can partition the total
variation in Y (SSTotal) into two additive compo-
nents (Table 6.1). The first is the variation in Y
explained by its linear relationship with X1, X2, . . .,
Xp, termed SSRegression. The second is the variation
in Y not explained by the linear relationship with
X1, X2, . . ., Xp, termed SSResidual and which is meas-
ured as the difference between each observed yi

and the Y-value predicted by the regression model
( ŷi). These SS in Table 6.1 are identical to those in
Table 5.1 for simple regression models. In fact, the
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Box 6.4 Matrix algebra approach to OLS estimation of
multiple linear regression models and
determination of leverage values

Consider an additive linear model with one response variable (Y) and p predictor
variables (X1, X2 . . .Xp) and a sample of n observations. The linear model will have
p�1 parameters, a slope term for each X-variable and an intercept. Let Y be a
vector of observed Y-values with n rows, Ŷ be a vector of predicted Y-values with
n rows and X be an n�(p�1) matrix of the values of the X-variables (one
X-variable per column) plus a column for the intercept. The linear model can be
written as:

Y�bX�e

where b is a vector of model parameters (b0, b1, . . ., bp) with p�1 rows and e is a
vector of error terms with n rows. The OLS estimate of b can be found by solving
the normal equations:

X�Xb�X�Y

The OLS estimate of b then is:

b�(X�X)�1(X�Y)

where b is a vector of sample partial regression coefficients (b0, b1, . . ., bp) with p�1
rows. Note that (X�X)�1 is the inverse of (X�X) and is critical to the solution of
the normal equations and hence the OLS estimates of the parameters. The calcu-
lation of this inverse is very sensitive to rounding errors, especially when there are
many parameters, and also to correlations (linear dependencies – see Rawlings et
al. 1998) among the X-variables, i.e. collinearity. Such correlations exaggerate the
rounding errors problem and make estimates of the parameters unstable and their
variances large (see Box 6.5).

The matrix containing the variances of, and the covariances between, the
sample partial regression coefficients (b0, b1, . . ., bp ) is:

sb
2�MSResidual(X�X)�1

From the variances of the sample partial regression coefficients, we can calculate
standard errors for each partial regression coefficient.

We can also create a matrix H whereby:

H�X(X�X)�1X�

H is an n�n matrix, usually termed the hat matrix, whose n diagonal elements are
leverage values (hii) for each observation (Neter et al. 1996). These leverage values
measure how far an observation is from the means of the X-variables.We can then
relate Y to Ŷ by:

Ŷ�HY

So the hat matrix transforms observed Y into predicted Y (Bollen & Jackman 1990).



partitioning of the SSTotal for the simple linear
regression model is just a special case of the multi-
ple regression model where p equals one,
although the calculation of the SS for multiple
regression models is more complex. These SS can
be converted into variances (mean squares) by
dividing by the appropriate degrees of freedom.
For example, using the data from Paruelo &
Lauenroth (1996) and the regression model 6.3,
the SSTotal in relative abundance of C3 grasses
across the 73 sites is partitioned into the SS
explained by the linear regression on latitude and
longitude and that unexplained by this regres-
sion.

The expected values of these two mean squares
are again just an extension of those we described
for simple regression (Table 6.2). The expected
value for MSResidual is 	

�
2, the variance of the error

terms (�i), and of yi, which are assumed to be con-
stant across each combination of xi1, xi2, . . ., xij, etc.
The expected value for MSRegression is more complex
(Neter et al. 1996) but importantly it includes the
square of each regression slope plus 	

�
2.

6.1.4 Null hypotheses and model
comparisons

The basic null hypothesis we can test when we fit
a multiple linear regression model is that all the
partial regression slopes equal zero, i.e. H0: �1��2

� . . .��j� . . .�0. For example, Paruelo &

Lauenroth (1996) might have tested the H0 that
the partial regression slopes for abundance of C3

plants on latitude and longitude both equal zero.
We test this H0 with the ANOVA partitioning of the
total variation in Y into its two components, that
explained by the linear regression with X1, X2, etc.,
and the residual variation. If the H0 is true, then
MSRegression and MSResidual both estimate 	

�
2 and

their F-ratio should be one. If the H0 is false, then
at least one of the partial regression slopes does
not equal zero and MSRegression estimates 	

�
2 plus a

positive term representing the partial regression
slopes, so the F-ratio of MSRegression to MSResidual

should be greater than one. So we can test this H0

by comparing the F-ratio statistic to the appropri-
ate F distribution, just as we did with simple
linear regression in Chapter 5.

Irrespective of the outcome of this test, we
would also be interested in testing null hypothe-
ses about each partial regression coefficient, i.e.
the H0 that any �j equals zero. We can use the
process of comparing the fit of full and reduced
models that we introduced in Chapter 5 to test
these null hypotheses. Imagine we have a model
with three predictor variables (X1, X2, X3). The full
model is:

yi��0��1xi1��2xi2��3xi3��i (6.5)

Using the data from Loyn (1987), we might model
the abundance of forest birds against patch area,
years since isolation and grazing intensity:

(bird abundance)i��0��1(patch area)i�
�2(years isolated)i��3(stock grazing)i��i (6.6)

To test the H0 that the partial regression slope for
bird abundance against patch area holding years
since isolation and grazing intensity constant (i.e.
�1) equals zero, we compare the fit of models 6.5
and 6.6 to the reduced models:

yi��0��2xi2��3xi3��i (6.7)

(bird abundance)i��0��2(years isolated)i�
�3(stock grazing)i��i (6.8)

Models 6.7 and 6.8 assume the H0 (�1 equals zero)
is true. If the explained variance (SSRegression) of
models 6.6 and 6.8 is not different, then there is
no evidence to reject H0; if there is an increase in
explained variation for the full model compared

MULTIPLE LINEAR REGRESSION ANALYSIS 121

Table 6.1 Analysis of variance table for a
multiple linear regression model with an intercept,
p predictor variables and n observations

Source of
variation SS df MS

Regression (ŷi� ȳ)2 p

Residual (yi� ŷi)
2 n�p�1

Total (yi� ȳ)2 n�1�
n

i�1

�
n

i�1
(yi� ŷi)2

n�p�1�
n

i�1

�
n

i�1
(ŷi� ȳ)2

p�
n

i�1



to the reduced model, we have evidence suggest-
ing the H0 is false. We calculate the extra SS
explained by including �1 in the model:

SSExtra�Full SSRegression�Reduced SSRegression (6.9)

This SSExtra is sometimes expressed as
SSRegression(X1|X2,X3), the increase in SSRegression

when X1 is added to a model already including X2

and X3, e.g. SSRegression(patch area|years isolated,
grazing stock). This is identical to measuring the
drop in unexplained variation by omitting �1

from the model:

SSDrop�Reduced SSResidual�Full SSResidual (6.10)

also expressed as SSResidual(X1|X2,X3), the decrease
in SSResidual when X1 is added to a model already
including X2 and X3. We convert the SSExtra or SSDrop

into a MS by dividing by the df. There is one df in
this case because we are testing a single regression
parameter. In general, the df is the number of pre-
dictor variables in the full model minus the
number of predictor variables in the reduced
model. We can then use an F test, now termed a
partial F test, to test the H0 that a single partial
regression slope equals zero:

F1,n�p� (6.11)

For any predictor variable Xj, we can also test the
H0 that �j equals zero with a t statistic with (n�
(p�1)) df:

t� (6.12)

where sbj
is the standard error of bj (see Box 6.4).

These t tests are standard multiple regression
output from statistical software. Note that the F
and t tests for a given H0 are equivalent and F
equals t2. We prefer the F tests, however, because
the model fitting procedure (comparing full and
reduced models) can be used to test any subset of
regression coefficients, not just a single coeffi-
cient. For example, we could calculate the
SSRegression(X2,X3|X1) to test the H0 that �2 equals �3

equals zero. We just need to fit a full and a reduced
(H0 is true) model. In general, the full model will
contain all the predictor variables and the
reduced model omits those predictors that are
specified in H0 to be zero. In Section 6.1.15, we will

bj

sbj

MSExtra

Full MSResidual

see that it is also possible to test partial regression
coefficients in a sequential fashion, omitting
those terms found to be not significantly different
from zero from the model.

The H0 that�0 (population intercept) equals zero
can also be tested, either with a t test or with an F
test by comparing a full model with an intercept to
a reduced model without. The test of zero intercept
is usually of much less interest because it is testing
a parameter using an estimate that is usually
outside the range of our data (see Chapter 5).

6.1.5 Variance explained
The multiple r2 is the proportion of the total vari-
ation in Y explained by the regression model:

r2� �1� �1�

(6.13)

Here the reduced model is one with just an inter-
cept and no predictor variables (i.e. �1��2� . . .�
�j� . . .�0). Interpretation of r2 in multiple linear
regression must be done carefully. Just like in
simple regression, r2 is not directly comparable
between models based on different transforma-
tions (Anderson-Sprecher 1994; Chapter 5).
Additionally, r2 is not a useful measure of fit when
comparing models with different numbers of, or
combinations of, predictor variables (e.g. interac-
tion terms, see Section 6.1.12). As more predictors
are added to a model, r2 cannot decrease so that
models with more predictors will always appear
to fit the data better. Comparing the fit of models
with different numbers of predictors should use
alternative measures (see Section 6.1.15).

6.1.6 Which predictors are important?
Once we have fitted our multiple linear regression
model, we usually want to determine the relative
importance of each predictor variable to the
response variable. There are a number of related
approaches for measuring relative importance of
each predictor variable in multiple linear regres-
sion models.

Tests on partial regression slopes
The simplest way of assessing the relative impor-
tance of the predictors in a linear regression

Full SSResidual

Reduced SSResidual

SSResidual

SSTotal

SSRegression

SSTotal
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model is to use the F or t statistics, and their asso-
ciated P values, from the tests of the null hypothe-
ses that each �j equals zero. These tests are
straightforward to interpret but only tell us the
probability of observing our sample observations
or ones more extreme for these variables if the H0

for a given predictor is true. Also, some statisti-
cians (Neter et al. 1996, Rawlings et al. 1998) have
argued that we are testing null hypotheses about a
number of regression coefficients simultaneously
from a single data set, so we should adjust the sig-
nificance level for each test to limit the overall
probability of at least one Type I error among all
our tests to �. Such an adjustment will reduce the
power of individual tests, and as we discussed in
Chapter 3, seems unnecessarily harsh. If you deem
such an adjustment necessary, however, one of the
sequential Bonferroni procedures is appropriate.

Change in explained variation
The change in variation explained by the model
with all predictors and the model with a specific
predictor omitted is also a measure of importance
of that predictor. This is basically comparing the
fit of two models to the data; because the number
of predictors differs between the two models, the
choice of measure of fit is critical and will be dis-
cussed further when we consider model selection
in Section 6.1.15. To measure the proportional
reduction in the variation in Y when a predictor
variable Xj is added to a model already including
the other predictors (X1 to Xp except Xj) is simply:

rXj
2� (6.14)

where SSExtra is the increase in SSRegression, or the
decrease in SSResidual, when Xj is added to the
model and Reduced SSResidual is unexplained SS
from the model including all predictor variables
except Xj. This rXj

2 is termed the coefficient of
partial determination for Xj and its square root is
the partial correlation coefficient between Y and
Xj holding the other predictor variables constant
(i.e. already including them in the model).

A related approach is hierarchical partitioning
(Chevan & Sutherland 1991, Mac Nally 1996),
which quantifies the independent correlation
of each predictor variable with the response
variable. It works by partitioning any measure of

SSExtra

Reduced SSResidual

explained variance (e.g. r2) into components meas-
uring the independent contribution of each pre-
dictor. It is an important tool for multivariate
inference, especially in multiple regression
models, and we will describe it in more detail in
Section 6.1.16.

Standardized partial regression slopes
The sizes of the individual regression slopes are
difficult to compare if the predictor variables are
measured in different units (see Chapter 5). We
can calculate standardized regression slopes by
regressing the standardized response variable
against the standardized predictor variables, or
alternatively, calculate for predictor Xj:

bj
*�bj (6.15)

These standardized regression slopes are compar-
able independently of the scales on which the pre-
dictors are measured. Note that the regression
model based on standardized variables doesn’t
include an intercept, because its OLS (and ML) esti-
mate will always be zero. Note also that if the pre-
dictor variables are not correlated with each
other, then the standardized regression slopes
relating Y to each Xj are the same as the correla-
tion coefficients relating Y to Xj.

For model 6.3, standardized regression slopes
would not assist interpretation because both pre-
dictors (latitude and longitude) are in the same
units (centesimal degrees). However, if we
included mean annual temperature (°C) and mean
annual precipitation (mm) in the model, then the
magnitudes of the unstandardized regression
slopes would not be comparable because of the dif-
ferent units, so standardization would help.

Bring (1994) suggested that the size of each
standardized slope should relate to the reduction
in explained variation when each predictor is
omitted from the full model (see Equation 6.14).
He argued that standardization should be based
on partial standard deviations rather than ordi-
nary standard deviations, so that the size of the bj

*

relates to the reduction in r2 when that Xj is
omitted from the model. The partial standard
deviation of predictor variable j (Xj) is:

sXj

*� (6.16)
sXj

�VIFj
 �n�1

n�p

sXj

sY
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VIF is the variance inflation factor and will be
defined in Section 6.1.11 when we examine the
problem of multicollinearity. This partial stan-
dard deviation can then be incorporated in the
formula for the standardized regression slope
(Equation 6.15).

Regressions on standardized variables will
produce coefficients (except for the intercept)
that are the same as the standardized coeffi-
cients described above. The hypothesis tests on
individual standardized coefficients will be iden-
tical to those on unstandardized coefficients.
Standardization might be useful if the variables
are on very different scales and the magnitude of
coefficients for variables with small values may
not indicate their relative importance in influ-
encing the response variable. However, it is the
predictor variables that are important here and
standardizing the response variable may not be
necessary and will make predicted values from
the model more difficult to interpret. Regression
models using standardized (or simply centered)
predictors are very important for detecting and
treating multicollinearity and interpreting inter-
actions between predictors (Sections 6.1.11 and
6.1.12).

6.1.7 Assumptions of multiple regression
As with simple linear regression (Chapter 5), inter-
val estimation and hypothesis tests of the param-
eters of the multiple linear regression model rely
on a number of assumptions about the model
error terms at each combination of xi1, xi2, . . ., xip.
We assume that the error terms, and therefore the
Y-values, are normally distributed, they have con-
stant variance and they are independent of each
other. Checks of these assumptions are carried
out as for simple linear regression (Chapter 5).
Boxplots and probability plots of the residuals can
be used to check for normality, plots of residuals
against ŷ i can detect heterogeneity of variance
(Section 6.1.9; Figure 6.2, Figure 6.3) and plots of
residuals against each Xj can detect autocorrela-
tion if Xj is a time sequence.

We also assume that each X is a fixed variable
with the values xi1, xi2, etc., being constants that
would not vary from sample to sample. This is
unlikely in biological research with some or all of
the predictors likely to be random variables and
our observations actually coming from a multi-
variate distribution that we assume is normal.
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Figure 6.2. Plot of residuals against predicted values (with
boxplots) from fitting the multiplicative model (log10C3)i��0

��1(LAT)i��2(LONG)i��3(LAT�LONG)i��i to data
with centered predictors from Paruelo & Lauenroth (1996).

Figure 6.3. Plot of residuals against predicted values (with
boxplots) from multiple linear regression of bird abundance
in forest patches against patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log10

transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).



Both of our examples illustrate this point: Paruelo
& Lauenroth (1996) did not choose specific lati-
tudes and longitudes for their sampling sites and
Loyn (1987) did not choose forest patches with spe-
cifically chosen values of area, number of years
since the patch was isolated by clearing, distance
to the nearest patch, distance to the nearest larger
patch, stock grazing history, or altitude. Our infer-
ences are then conditional on the particular
values of xi1, xi2, etc., that we have in our sample.
Model II multiple regression when the predictor
variables are random will be discussed in Section
6.1.17.

An additional assumption that affects multi-
ple linear regression is that the predictor vari-
ables must be uncorrelated with each other.
Violation of this assumption is called (multi)col-
linearity and is such an important issue for multi-
ple regression that we will discuss it separately in
Section 6.1.11.

Finally, the number of observations must
exceed the number of predictor variables or else
the matrix calculations (Box 6.4) will fail. Green
(1991) proposed specific minimum ratios of obser-
vations to predictors, such as p�104 observations
for testing individual predictor variables, and
these guidelines have become recommendations
in some texts (e.g. Tabachnick & Fidell 1996). These
numbers of observations are probably unrealistic
for many biological and ecological research pro-
grams. Neter et al. (1996) are more lenient, recom-
mending six to ten times the number of
predictors for the number of observations. We can
only suggest that researchers try to maximize the
numbers of observations and if trade-offs in terms
of time and cost are possible, reducing the
numbers of variables to allow more observations
is nearly always preferable to reducing the
number of observations.

6.1.8 Regression diagnostics
Diagnostic checks of the assumptions underlying
the fitting of linear models and estimating their
parameters, and to warn of potential outliers and
influential observations, are particularly impor-
tant when there are multiple predictor variables.
We are usually dealing with large data sets and
scanning the raw data or simple bivariate scatter-
plots (see Section 6.1.9) that might have worked

for simple regression models will rarely be ade-
quate for checking the appropriateness of a multi-
ple regression model. Fortunately, the same
diagnostic checks we used for simple regression in
Chapter 5 apply equally well for multiple regres-
sion. All are standard output from regression or
linear model routines in good statistical software.

Leverage
Leverage measures how extreme each observation
is from the means of all the Xj (the centroid of the
p X-variables), so in contrast to simple regression,
leverage in multiple regression takes into account
all the predictors used in the model. Leverage
values greater than 2(p/n) should be cause for
concern, although such values would also be
detected as influential by Cook’s Di.

Residuals
Residuals in multiple regression are interpreted in
the same way as for simple regression, the differ-
ence between the observed and predicted Y-values
for each observation (yi� ŷi). These residuals can be
standardized and studentized (see Chapter 5) and
large residuals indicate outliers from the fitted
model that could be influential.

Influence
Measures of how influential each observation is
on the fitted model include Cook’s Di and DFITSi

and these are as relevant for multiple regression
as they were for simple regression (Chapter 5).
Observations with a Di greater than one are
usually considered influential and such observa-
tions should be checked carefully.

6.1.9 Diagnostic graphics
As we emphasized for simple regression models,
graphical techniques are often the most informa-
tive checks of assumptions and for the presence of
outliers and influential values.

Scatterplots
Bivariate scatterplots between the Xjs are impor-
tant for detecting multicollinearity (see Section
6.1.11) and scatterplots between Y and each Xj, par-
ticularly in conjunction with smoothing func-
tions, provide an indication of the nature of
relationships being modeled. Scatterplot matrices
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(SPLOMs; see Chapter 4) are the easiest way of dis-
playing these bivariate relationships. However,
scatterplots between Y and X1, Y and X2, etc.,
ignore the other predictor variables in the model
and therefore do not represent the relationship
we are modeling, i.e. the relationship between Y
and Xj holding all other Xs constant.

A scatterplot that does show this relationship
for each predictor variable is the added variable,
or partial regression, plot, which is a plot between
two sets of residuals. Let’s say we are fitting a
model of Y against p predictor variables and we
want a scatterplot to show the relationship
between Y and Xj, holding the other p�1 X-vari-
ables constant. The residuals for the vertical axis
of the plot (ei1) come from the OLS regression of Y
against all p predictors except Xj. The residuals for
the horizontal axis of the plot (ei2) come from the
OLS regression of Xj against all p predictors except
Xj. This scatterplot of ei1 against ei2 shows the rela-
tionship between Y and Xj holding the other X-
variables constant and will also show outliers that
might influence the regression slope for Xj. If we
fit an OLS regression of ei1 against ei2, the fitted
slope of this line is the partial regression slope of
Y on Xj from the full regression model of Y on all
p predictors.

Three partial regression plots are illustrated in
Figure 6.4 from a model relating bird abundance
in forest patches to patch area, distance to nearest
patch, distance to nearest larger patch (these
three variables log10 transformed), stock grazing,
altitude, and years since isolation for the 56
patches surveyed by Loyn (1987). The partial
regression plot for patch area (Figure 6.4, left) has
the residuals from a model relating bird abun-
dance to all predictors except patch area on the
vertical axis and the residuals from a model relat-
ing patch area to the other predictors on the hor-
izontal axis. Note the strong positive relationship
for log10 area and the weak negative relationships
for grazing and years since isolation. There was
little pattern in the plots for the other three pre-
dictors. The slopes of the OLS regression lines
fitted to these residual plots are the partial regres-
sion slopes from the multiple regression model
relating bird abundance to these predictors.

Residual plots
There are numerous ways residuals from the fit of
a multiple linear regression model can be plotted.
A plot of residuals against ŷi, as we recommended
for simple regression (Chapter 5), can detect het-
erogeneity of variance (wedge-shaped pattern)
and outliers (Figure 6.2 and Figure 6.3). Plots of
residuals against each Xj can detect outliers spe-
cific to that Xj, nonlinearity between Y and that Xj

and can also detect autocorrelation if Xj is a time
sequence. Finally, residuals can be plotted against
predictors, or interactions between predictors,
not included in the model to assess whether these
predictors or their interactions might be impor-
tant, even if they were deleted from the model
based on other criteria (Neter et al. 1996).
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Figure 6.4. Partial regression plots for three of the
predictors from a linear model relating bird abundance in
forest patches to patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log10

transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).Vertical
axis is residuals from OLS regression of bird abundance
against all predictors except the one labelled, horizontal axis
is residuals from OLS regression of labelled predictor against
remaining predictors. See Section 6.1.9 for full analysis.

Grazing



6.1.10 Transformations
Our general comments on transformations from
Chapter 4, and specifically for bivariate regression
in Chapter 5, are just as relevant for multiple
regression. Transformations of the response vari-
able can remedy non-normality and heterogene-
ity of variance of error terms and transformations
of one or more of the predictor variables might be
necessary to deal with nonlinearity and influen-
tial observations due to high leverage. For
example, the abundance of C3 plants in the study
by Paruelo & Lauenroth (1996) was transformed to
logs to reduce strong skewness and three of the
predictor variables in the study by Loyn (1987)
were also log transformed to deal with observa-
tions with high leverage (Box 6.2). Transforma-
tions can also reduce the influence of interactions
between predictors on the response variable, i.e.
make an additive model a more appropriate fit
than a multiplicative model (see Section 6.1.12).

6.1.11 Collinearity
One important issue in multiple linear regression
analysis, and one that seems to be ignored by many
biologists who fit multiple regression models to
their data, is the impact of correlated predictor
variables on the estimates of parameters and
hypothesis tests. If the predictors are correlated,
then the data are said to be affected by (multi)col-
linearity. Severe collinearity can have important,
and detrimental, effects on the estimated regres-
sion parameters. Lack of collinearity is also very
difficult to meet with real biological data, where
predictor variables that might be incorporated
into a multiple regression model are likely to be
correlated with each other to some extent. In the
data set from Loyn (1987), we might expect heavier
grazing history the longer the forest patch has
been isolated and lighter grazing history for
bigger patches since domestic stock cannot easily
access larger forest fragments (Box 6.2).

The calculations for multiple linear regression
analysis involve matrix inversion (Box 6.4).
Collinearity among the X-variables causes compu-
tational problems because it makes the determi-
nant of the matrix of X-variables close to zero and
matrix inversion basically involves dividing by the
determinant. Dividing by a determinant that is
close to zero results in values in the inverted

matrix being very sensitive to small differences
in the numbers in the original data matrix
(Tabachnick & Fidell 1996), i.e. the inverted matrix
is unstable. This means that estimates of parame-
ters (particularly the partial regression slopes) are
also unstable (see Philippi 1993). Small changes in
the data or adding or deleting one of the predic-
tor variables can change the estimated regression
coefficients considerably, even changing their
sign (Bowerman & O’Connell 1990).

A second effect of collinearity is that standard
errors of the estimated regression slopes, and
therefore confidence intervals for the model
parameters, are inflated when some of the predic-
tors are correlated (Box 6.5). Therefore, the overall
regression equation might be significant, i.e. the
test of the H0 that all partial regression slopes
equal zero is rejected, but none of the individual
regression slopes are significantly different from
zero. This reflects lack of power for individual
tests on partial regression slopes because of the
inflated standard errors for these slopes.

Note that as long as we are not extrapolating
beyond the range of our predictor variables and
we are making predictions from data with a
similar pattern of collinearity as the data to which
we fitted our model, collinearity doesn’t necessar-
ily prevent us from estimating a regression model
that fits the data well and has good predictive
power (Rawlings et al. 1998). It does, however,
mean that we are not confident in our estimates
of the model parameters. A different sample from
the same population of observations, even using
the same values of the predictor variables, might
produce very different parameter estimates.

Detecting collinearity
Collinearity can be detected in a number of ways
(e.g. Chaterjee & Price 1991, Neter et al. 1996,
Philippi 1993) and we illustrate some of these in
Box 6.1 and Box 6.2 with our example data sets.
First, we should examine a matrix of correlation
coefficients (and associated scatterplots) between
the predictor variables and look for large correla-
tions. A scatterplot matrix (SPLOM) is a very useful
graphical method (Chapter 4) and, if the response
variable is included, also indicates nonlinear rela-
tionships between the response variable and any
of the predictor variables.
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Second, we should check the tolerance value
for each predictor variable. Tolerance for Xj is
simply 1�r2 from the OLS regression of Xj against
the remaining p�1 predictor variables. A low tol-
erance indicates that the predictor variable is cor-
related with one or more of the other predictors.
An approximate guide is to worry about tolerance
values less than 0.1. Tolerance is sometimes

expressed as the variance inflation factor (VIF),
which is simply the inverse of tolerance (and can
also be calculated from the eigenvectors and
eigenvalues derived from a PCA on the predictor
variables – see Chapter 17); VIF values greater than
ten suggest strong collinearity.

Third, we can extract the principal compo-
nents from the correlation matrix among the
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Box 6.5 Collinearity

Here is a simple illustration of the effects of collinearity in a multiple regression
model with one response variable (Y) and two predictor variables (X1, X2). Two
artificial data sets were generated for the three variables from normal distributions.
In the first data set, X1 and X2 are relatively uncorrelated (r�0.21). A multiple linear
regression model, including an intercept, was fitted to these data.

Coefficient Standard error Tolerance t P

Intercept �1.045 1.341 �0.779 0.447
Slope X1 0.893 0.120 0.954 7.444 �0.001
Slope X2 �0.002 0.112 0.954 �0.017 0.987

Note that tolerance is 0.95 indicating no collinearity problems and standard
errors are small. The partial regression slope for Y on X1 holding X2 constant is sig-
nificant.

For the second data set, the values of X2 were re-arranged between observa-
tions (but the values, their mean and standard deviation were the same) so that they
are highly correlated with X1 (r�0.99), which along with Y is unchanged. Again a
multiple linear regression model, including an intercept, was fitted.

Coefficient Standard error Tolerance t P

Intercept 0.678 1.371 0.495 0.627
Slope X1 �0.461 0.681 0.024 �0.678 0.507
Slope X2 1.277 0.634 0.024 2.013 0.060

Note that tolerance is now very low indicating severe collinearity. The standard
error for the partial regression slope of Y against X1 is much bigger than for the first
data set and the test of the H0 that this slope equals zero is now not significant,
despite the values of Y and X1 being identical to the first data set.

Now let’s add a third predictor (X3) that is correlated with both X1 and X2.

Coefficient Standard error Tolerance t P

Intercept �0.306 1.410 �0.217 0.831
Slope X1 �0.267 0.652 0.023 �0.410 0.687
Slope X2 0.495 0.746 0.015 0.664 0.516
Slope X3 0.657 0.374 0.068 1.758 0.098

Note that the estimated regression coefficients for X1 and X2 have changed
markedly upon the addition of X3 to the model.



predictor variables (see Chapter 17). Principal
components with eigenvalues (i.e. explained vari-
ances) near zero indicate collinearity among the
original predictor variables, because those compo-
nents have little variability that is independent of
the other components. Three statistics are com-
monly used to assess collinearity in this context.
First, the condition index is the square root of the
largest eigenvalue divided by each eigenvalue
( ). There will be a condition index for
each principal component and values greater
than 30 indicate collinearities that require atten-
tion (Belsley et al. 1980, Chaterjee & Price 1991).
The second is the condition number, which is
simply the largest condition index ( ).
Third, Hocking (1996) proposed an indicator of
collinearity that is simply �min and suggested
values less than 0.5 indicated collinearity prob-
lems.

It is worth noting that examining eigenvalues
from the correlation matrix of the predictor vari-
ables implicitly standardizes the predictors to
zero mean and unit variance so they are on the
same scale. In fact, most collinearity diagnostics
give different results for unstandardized and stan-
dardized predictors and two of the solutions to
collinearity described below are based on stan-
dardized predictor variables.

Dealing with collinearity
Numerous solutions to collinearity have been pro-
posed. All result in estimated partial regression
slopes that are likely to be more precise (smaller
standard errors) but are no longer unbiased. The
first approach is the simplest: omit predictor vari-
ables if they are highly correlated with other pre-
dictor variables that remain in the model.
Multiple predictor variables that are really meas-
uring similar biological entities (e.g. a set of
morphological measurements that are highly cor-
related) clearly represent redundant information
and little can be gained by including all such var-
iables in a model. Unfortunately, omitting vari-
ables may bias estimates of parameters for those
variables that are correlated with the omitted var-
iable(s) but remain in the model. Estimated
partial regression slopes can change considerably
when some predictor variables are omitted or
added. Nonetheless, retaining only one of a

��max /�min

��max /�

number of highly correlated predictor variables
that contain biologically and statistically redun-
dant information is a sensible first step to dealing
with collinearity.

The second approach is based on a principal
components analysis (PCA) of the X-variables (see
Chapter 17) and is termed principal components
regression. The p principal components are
extracted from the correlation matrix of the pre-
dictor variables and Y is regressed against these
principal components, which are uncorrelated,
rather than the individual predictor variables.
Usually, components that contribute little to the
total variance among the X-variables or that are
not related to Y are deleted and the regression
model of Y against the remaining components
refitted. The regression coefficients for Y on the
principal components are not that useful,
however, because the components are often diffi-
cult to interpret as each is a linear combination of
all p predictor variables. Therefore, we back-
calculate the partial regression slopes on the orig-
inal standardized variables from the partial
regression slopes on the reduced number of prin-
cipal components. The back-calculated regression
slopes are standardized because the PCA is usually
based on a correlation matrix of X-variables, so we
don’t have to worry about an intercept term.
Because principal components regression
requires an understanding of PCA, we will
describe it in more detail in Chapter 17; see also
Jackson (1991), Lafi & Kaneene (1992) and Rawlings
et al. (1998).

Note that deciding which components to omit
is critical for principal components regression.
Simply deleting those with small eigenvalues
(little relative contribution to the total variation
in the X-variables) can be very misleading (Jackson
1991, Hadi & Ling 1998). The strength of the rela-
tionship of each component with Y must also be
considered.

The third approach is ridge regression,
another biased regression estimation technique
that is somewhat controversial. A small biasing
constant is added to the normal equations that
are solved to estimate the standardized regression
coefficients (Chaterjee & Price 1991, Neter et al.
1996). Adding this constant biases the estimated
regression coefficients but also reduces their
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variability and hence their standard errors. The
choice of the constant is critical. The smaller its
value, the less bias in the estimated regression
slopes (when the constant is zero, we have an OLS
regression); the larger its value, the less collinear-
ity (increasing the constant reduces the VIF).
Usually a range of values is tried (say, increasing
from 0.001) and a diagnostic graphic (the ridge
trace) used to determine the smallest value of the
constant that is the best compromise between
reducing the variation in the estimated regres-
sion slopes and reducing their VIFs. Neter et al.
(1996) provided a clear worked example.

Careful thought about the predictor variables
to be included in a multiple linear regression
model can reduce collinearity problems before
any analysis. Do not include clearly redundant
variables that are basically measuring similar bio-
logical entities. If the remaining predictor vari-
ables are correlated to an extent that might affect
the estimates of the regression slopes, then we
prefer principal components regression over ridge
regression for two reasons. First, it is relatively
straightforward to do with most statistical soft-
ware that can handle multiple regression and
PCA, although some hand calculation might be
required (e.g. for standard errors). Second, PCA is
also a useful check for collinearity so is often done
anyway. The calculations required for ridge regres-
sion, in contrast, are complex and not straightfor-
ward in most statistical software.

6.1.12 Interactions in multiple regression
The multiple regression model we have been using
so far is an additive one, i.e. the effects of the pre-
dictor variables on Y are additive. In many biolog-
ical situations, however, we would anticipate
interactions between the predictors (Aiken & West

1991, Jaccard et al. 1990) so that their effects on Y
are multiplicative. Let’s just consider the case
with two predictors, X1 and X2. The additive multi-
ple linear regression model is:

yi��0��1xi1��2xi2��i (6.17)

This assumes that the partial regression slope of Y
on X1 is independent of X2 and vice-versa. The
multiplicative model including an interaction is:

yi��0��1xi1��2xi2��3xi1xi2��i (6.18)

The new term (�3xi1xi2) in model 6.18 represents the
interactive effect of X1 and X2 on Y. It measures the
dependence of the partial regression slope of Y
against X1 on the value of X2 and the dependence
of the partial regression slope of Y against X2 on the
value of X1. The partial slope of the regression of Y
against X1 is no longer independent of X2 and vice
versa. Equivalently, the partial regression slope of
Y against X1 is different for each value of X2.

Using the data from Paruelo & Lauenroth
(1996), model 6.2 indicates that we expect no
interaction between latitude and longitude in
their effect on the relative abundance of C3 plants.
But what if we allow the relationship between C3

plants and latitude to vary for different longi-
tudes? Then we are dealing with an interaction
between latitude and longitude and our model
becomes:

(relative abundance of C3 grasses)i��0�

�1(latitude)i��2(longitude)i�
�3(latitude)i� (longitude)i��i (6.19)

One of the difficulties with including interaction
terms in multiple regression models is that lower-
order terms will usually be highly correlated with
their interactions, e.g. X1 and X2 will be highly cor-
related with their interaction X1X2. This results in
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Table 6.2 Expected values of mean squares from analysis of variance for a multiple linear regression
model with two predictor variables

Mean square Expected value
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all the computational problems and inflated vari-
ances of estimated coefficients associated with
collinearity (Section 6.1.11). One solution to this
problem is to rescale the predictor variables by
centering, i.e. subtracting their mean from each
observation, so the interaction is then the product
of the centered values (Aiken & West 1991, Neter et
al. 1996; see Box 6.1 and Box 6.2). If X1 and X2 are
centered then neither will be strongly correlated
with their interaction. Predictors can also be stan-
dardized (subtract the mean from each observa-
tion and divide by the standard deviation) which
has an identical affect in reducing collinearity.

When interaction terms are not included in
the model, centering the predictor variables does
not change the estimates of the regression slopes
nor hypothesis tests that individual slopes equal
zero. Standardizing the predictor variables does
change the value of the regression slopes, but not
their hypothesis tests because the standardization
affects the coefficients and their standard errors
equally. When interaction terms are included,
centering does not affect the regression slope for
the highest-order interaction term, nor the
hypothesis test that the interaction equals zero.
Standardization changes the value of the regres-
sion slope for the interaction but not the hypoth-
esis test. Centering and standardization change all
lower-order regression slopes and hypothesis tests
that individual slopes equal zero but make them
more interpretable in the presence of an interac-
tion (see below). The method we will describe for
further examining interaction terms using simple
slopes is also unaffected by centering but is
affected by standardizing predictor variables.

We support the recommendation of Aiken &
West (1991) and others that multiple regression
models with interaction terms should be fitted to
data with centered predictor variables.
Standardization might also be used if the vari-
ables have very different variances but note that
calculation and tests of simple slopes must then
be based on analyzing standardized variables but
using the unstandardized regression coefficients
(Aiken & West 1991).

Probing interactions
Even in the presence of an interaction, we can still
interpret the partial regression slopes for other

terms in model 6.18. The estimate of �1 deter-
mined by the OLS fit of this regression model is
actually the regression slope of Y on X1 when X2 is
zero. If there is an interaction (�3 does not equal
zero), this slope will obviously change for other
values of X2; if there is not an interaction (�3

equals zero), then this slope will be constant for
all levels of X2. In the presence of an interaction,
the estimated slope for Y on X1 when X2 is zero is
not very informative because zero is not usually
within the range of our observations for any of the
predictor variables. If the predictors are centered,
however, then the estimate of �1 is now the regres-
sion slope of Y on X1 for the mean of X2, a more
useful piece of information. This is another
reason why variables should be centered before
fitting a multiple linear regression model with
interaction terms.

However, if the fit of our model indicates that
interactions between two or more predictors are
important, we usually want to probe these inter-
actions further to see how they are structured.
Let’s express our multiple regression model as
relating the predicted yi to two predictor variables
and their interaction using sample estimates:

ŷi�b0�b1xi1�b2xi2�b3xi1xi2 (6.20)

This can be algebraically re-arranged to:

ŷi� (b1�b3xi2)xi1� (b2xi2�b0) (6.21)

We now have (b1�b3xi2), the simple slope of the
regression of Y on X1 for any particular value of X2

(indicated as xi2). We can then choose values of X2

and calculate the estimated simple slope, for
either plotting or significance testing. Cohen &
Cohen (1983) and Aiken & West (1991) suggested
using three different values of X2: x̄2, x̄2�s, x̄2�s,
where s is the sample standard deviation of X2. We
can calculate simple regression slopes by substi-
tuting these values of X2 into the equation for the
simple slope of Y on X1.

The H0 that the simple regression slope of Y on
X1 for a particular value of X2 equals zero can also
be tested. The standard error for the simple regres-
sion slope is:

(6.22)

where s11
2 and s2

33 are the variances of b1 and b3

respectively, s2
13 is the covariance between b1 and b3

�s2
11� 2x2s2

13� x2
2s2

33
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and x2 is the value of X2 chosen. The variance and
covariances are obtained from a covariance
matrix of the regression coefficients, usually stan-
dard output for regression analyses with most
software. Then the usual t test is applied (simple
slope divided by standard error of simple slope).
Fortunately, simple slope tests can be done easily
with most statistical software (Aiken & West 1990,
Darlington 1990). For example, we use the follow-
ing steps to calculate the simple slope of Y on X1

for a specific value of X2, such as x̄2�s.

1. Create a new variable (called the condi-
tional value of X2, say CVX2), which is xi2 minus
the specific value chosen.

2. Fit a multiple linear regression model for Y
on X1, CVX2, X1 by CVX2.

3. The partial slope of Y on X1 from this
model is the simple slope of Y on X1 for the
specific value of X2 chosen.

4. The statistical program then provides a
standard error and t test.

This procedure can be followed for any condi-
tional value. Note that we have calculated simple
slopes for Y on X1 at different values of X2.
Conversely, we could have easily calculated simple
slopes for Y on X2 at different values of X1.

If we have three predictor variables, we can
have three two-way interactions and one three-
way interaction:

yi��0��1xi1��2xi2��3xi3��4xi1xi2�

�5xi1xi3��6xi2xi3��7xi1xi2xi3��i ( 6.23)

In this model, �7 is the regression slope for the
three-way interaction between X1, X2 and X3 and
measures the dependence of the regression slope
of Y on X1 on the values of different combinations
of both X2 and X3. Equivalently, the interaction is
the dependence of the regression slope of Y on X2

on values of different combinations of X1 and X3

and the dependence of the regression slope of Y
on X3 on values of different combinations of X1

and X2. If we focus on the first interpretation, we
can determine simple regression equations for Y
on X1 at different combinations of X2 and X3 using
sample estimates:

ŷi� (b1�b4xi2�b5xi3�b7xi2xi3)xi1�

(b2xi2�b3xi3�b6xi2xi3�b0) (6.24)

Now we have (b1�b4xi2�b5xi3�b7xi2xi3) as the
simple slope for Y on X1 for specific values of X2

and X3 together. Following the logic we used for
models with two predictors, we can substitute
values for X2 and X3 into this equation for the
simple slope. Aiken & West (1991) suggested using
x̄2 and x̄3 and the four combinations of x̄2�sx2

and
x̄3�sx3

. Simple slopes for Y on X2 or X3 can be cal-
culated by just reordering the predictor variables
in the model. Using the linear regression routine
in statistical software, simple slopes, their stan-
dard errors and t tests for Y on X1 at specific values
of X2 and X3 can be calculated.

1. Create two new variables (called the condi-
tional values of X2 and X3, say CVX2 and CVX3),
which are xi2 and xi3 minus the specific values
chosen.

2. For each combination of specific values of
X2 and X3, fit a multiple linear regression model
for Y on X1, CVX2, CVX3, X1 by CVX2, X1 by CVX3,
CVX2 by CVX3, and X1 by CVX2 by CVX3.

3. The partial slope of Y on X1 from this
model is the simple slope of Y on X1 for the
chosen specific values of X2 and X3.

With three or more predictor variables, the
number of interactions becomes large and they
become more complex (three-way interactions
and higher). Incorporating all possible interac-
tions in models with numerous predictors
becomes unwieldy and we would need a very large
sample size because of the number of terms in the
model. There are two ways we might decide which
interactions to include in a linear regression
model, especially if our sample size does not allow
us to include them all. First, we can use our biolog-
ical knowledge to predict likely interactions and
only incorporate this subset. For the data from
Loyn (1987), we might expect the relationship
between bird density and grazing to vary with
area (grazing effects more important in small frag-
ments?) and years since isolation (grazing more
important in new fragments?), but not with dis-
tance to any forest or larger fragments. Second, we
can plot the residuals from an additive model
against the possible interaction terms (new vari-
ables formed by simply multiplying the predic-
tors) to see if any of these interactions are related
to variation in the response variable.
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There are two take-home messages from this
section. First, we should consider interactions
between continuous predictors in multiple linear
regression model because such interactions may
be common in biological data. Second, these inter-
actions can be further explored and interpreted
using relatively straightforward statistical tech-
niques with most linear regression software.

6.1.13 Polynomial regression
Generally, curvilinear models fall into the class of
nonlinear regression modeling (Section 6.4)
because they are best fitted by models that are
nonlinear in the parameters (e.g. power func-
tions). There is one type of curvilinear model that
can be fitted by OLS (i.e. it is still a linear model)
and is widely used in biology, the polynomial
regression.

Let’s consider a model with one predictor var-
iable (X1). A second-order polynomial model is:

yi��0��1xi1��2xi1
2��i (6.25)

where �1 is the linear coefficient and �2 is the
quadratic coefficient. Such models can be fitted by
simply adding the xi1

2 term to the right-hand side
of the model, and they have a parabolic shape.
Note that xi1

2 is just an interaction term (i.e. xi1 by
xi1). There are two questions we might wish to ask
with such a model (Kleinbaum et al. 1988). First, is
the overall regression model significant? This is a
test of the H0 that �1 equals �2 equals zero and is
done with the usual F test from the regression
ANOVA. Second, is a second-order polynomial a
better fit than a first-order model? We answer this
with a partial F statistic, which tests whether the
full model including X2 is a better fit than the
reduced model excluding X2 using the principle of
extra SS we described in Section 6.1.4:

F(X2|X)� (6.26)

where the SSExtra is the difference between the
SSRegression for the full model with the second-order
polynomial term and the SSRegression for the
reduced model with just the first-order term.

For example, Caley & Schluter (1997) examined
the relationship between local and regional
species diversity for a number of taxa and geo-
graphic regions at two spatial scales of sampling

(SSExtra due to added X2)/1
Full MSResidual

(1% of region and 10% of region). Regional species
diversity was the predictor variable and local
species diversity was the response variable and
Caley & Schluter (1997) showed that adding a
quadratic term to the model explained signifi-
cantly more of the variance in local species diver-
sity compared with a simple linear model (Box 6.6;
Figure 6.5).

Polynomial regressions can be extended to
third-order (cubic) models, which have a sigmoid
shape:

yi��0��1xi1��2xi1
2��3xi1

3��i (6.27)

Polynomial models can also contain higher orders
(quartic, quintic, etc.) and more predictors. We
have to be very careful about extrapolation
beyond the range of our data with polynomial
regression models. For example, a quadratic
model will have a parabolic shape although our
observations may only cover part of that function.
Imagine fitting a quadratic model to the species
area data in Figure 5.17. Predicting species
number for larger clumps using this quadratic
model would be misleading as theory suggests
that species number would not then decline with
increasing clump area.
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Figure 6.5. Scatterplot of local species richness against
regional species richness for 10% of regions sampled in
North America for a range of taxa (Caley & Schluter 1997)
showing linear (solid line) and second-order polynomial
(quadratic; dashed line) regression functions.
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Box 6.6 Worked example of polynomial regression

We will use the data set from Caley & Schluter (1997), examining the regression of
local species richness against regional species richness just for North America and
at a sampling scale of 10% of the region. Although there was some evidence that
both local and regional species richness were skewed, we will, like the original
authors, analyze untransformed variables. Caley & Schluter (1997) forced their
models through the origin, but because that makes interpretation difficult, we will
include an intercept in the models. First, we will fit a second-order polynomial to
the data:

(local species richness)i�b0�b1(regional species richness)i�b2(regional species
richness)i

2�ei

Coefficient Standard error Tolerance t P

b0 8.124 6.749 1.204 0.283
b1 0.249 0.170 0.066 1.463 0.203
b2 0.003 0.001 0.066 3.500 0.017

We would reject the H0 that b2 equals zero. Note that the tolerances are very low,
indicating collinearity between regional species richness and (regional species rich-
ness)2 as we would expect. This collinearity might affect the estimate and test of b1

but won’t affect the partitioning of the variance and the calculation of SSExtra

[(regional species richness)2 | regional species richness], so we, like Caley & Schluter
(1997) will continue the analysis with uncentered data.

The partitioning of the variation resulted in the following ANOVA.

Source SS df MS F P

Regression 2.781�104 2 1.390�104 184.582 �0.001
Residual 376.620 5 75.324

Note the SSRegression has two df because there are three parameters in the
model. We would reject the H0 that b1 equals b2 equals zero.

Now we fit a reduced model without the quadratic term:

(local species richness)i�b0�b1(regional species richness)i�ei

Source SS df MS F P

Regression 2.688�104 1 2.688�104 124.152 �0.001
Residual 1299.257 6 216.543

The SSRegression from the full model is 2.781�104 and the SSRegression from the
reduced model is 2.688�104. Therefore SSExtra is 922.7 with one df and F [(regional
species richness)2 | regional species richness] equals 12.249 with P�0.018. We
would conclude that adding the second-order polynomial term to this model con-
tributes significantly to explained variation in local species richness. It is apparent
from Figure 6.5, despite the small sample size, that the second-order polynomial
model provides a better visual fit than a simple linear model. Note that quadratic
models were not better fits than linear for any of the other combinations of region
(worldwide,Australia, North America) and spatial scale (1% and 10% of region).



Polynomial terms in these models will always
be correlated with lower-order terms, so collinear-
ity can be a problem, causing unstable estimates
of the coefficients for the lower order terms and
increasing their standard errors. Since the polyno-
mial term is just an interaction, centring the pre-
dictors will reduce the degree of collinearity,
without affecting the estimate and test of the
slope for the highest-order term in the model nor
the partitioning of the SS. However, the estimate
of the slope for the lower-order terms will be dif-
ferent but also more reliable with smaller stan-
dard errors once collinearity has been reduced.

6.1.14 Indicator (dummy) variables
There are often situations when we would like to
incorporate a categorical variable into our multi-
ple regression modeling. For example, Loyn (1987)
included a predictor variable indicating the his-
torical intensity of grazing in each of his forest
patches. This variable took values of 1, 2, 3, 4 or 5
and was treated as a continuous variable for the
analysis. We could also treat this as a categorical
variable, with five categories of grazing. While the
values of this variable actually represent a quanti-
tative scale (from low grazing intensity to high
grazing intensity), many categorical variables will
be qualitative. For example, Paruelo & Lauenroth
(1996) included a categorical variable that separ-
ated sites into shrubland and grassland. To
include categorical variables in a regression
model, we must convert them to continuous vari-
ables called indicator or dummy variables.
Commonly, dummy variables take only two
values, zero or one, although other types of
coding are possible.

In the example from Paruelo & Lauenroth
(1996) where there are only two categories, we

could code grasslands as zero and shrublands as
one, although the authors used coding of one and
two. As long as the interval is the same, the coding
doesn’t matter in this case. For Loyn’s (1987)
grazing history variable, there are five categories
that we will call zero, low, medium, high, and
intense grazing. The dummy variables would be as
follows.
X1 1 if low

0 if not
X2 1 if medium

0 if not
X3 1 if high

0 if not
X4 1 if intense

0 if not

This defines all our categories (Table 6.3) and
we would fit a linear model including each of
these dummy variables as predictors. For a predic-
tor variable with c categories, we only need c�1
dummy variables. Interpreting the regression
coefficients is a little tricky. The coefficients for X1,
X2, X3 and X4 indicate how different the effects of
low, medium, high and intense grazing respec-
tively are compared to zero grazing, i.e. the coeffi-
cients for dummy variables measure the
differential effects of each category compared to a
reference category (in which all dummy variables
equal zero). The choice of the reference category
should be made prior to analysis. In this example,
we used the zero grazing category (“control”) as
the reference category. An alternative method of
coding dummy variables is using the deviation of
each category mean from the overall mean, which
is commonly used in analysis of variance models
(see Chapter 8 onwards) and is termed effects
coding.
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Table 6.3 Dummy variable coding for grazing effect from Loyn (1987)

Grazing intensity Grazing1 Grazing2 Grazing3 Grazing4

Zero (reference category) 0 0 0 0
Low 1 0 0 0
Medium 0 1 0 0
High 0 0 1 0
Intense 0 0 0 1



If our linear model only has categorical pre-
dictor variables (“factors”), then they are usually
considered as classical analyses of variance
models. Commonly, we have linear models with
a mixture of categorical and continuous vari-
ables. The simplest case is one categorical pre-
dictor (converted to dummy variables) and one
continuous predictor. For example, consider a
subset of the data from Loyn (1987) where we
will model the abundance of forest birds against
grazing intensity (1 to 5 indicating no grazing
to intense grazing) and patch area (transformed
to log10) – see Box 6.7. Because the levels of
grazing categories are quantitative, grazing
intensity can be treated as a continuous vari-
able with the following typical multiple regres-
sion model:

(bird abundance)i��0��1(grazing)i�
�2(log10 area)i��i (6.28)

Alternatively, we could consider grazing intensity
as a categorical variable and we would create four
dummy variables (Table 6.3) and include these in
our model:

(bird abundance)i��0��1(grazing1)i�
�2(grazing2)i��3(grazing3)i�
�4(grazing4)i��5(log10 area)i��i (6.29)

This model can be envisaged as separate linear
regression models between Y and log10 area for
each level of the categorical predictor (grazing).
The partial regression slope for each dummy vari-
able measures the difference in the predicted
value of Y between that category of grazing and
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Box 6.7 Worked example of indicator (dummy) variables

We will consider a subset of the data from Loyn (1987) where abundance of forest
birds is the response variable and grazing intensity (1 to 5 from least to greatest)
and log10 patch area are the predictor variables. First, we treat grazing as a contin-
uous variable and fit model 6.28.

Coefficient Estimate Standard error t P

Intercept 21.603 3.092 6.987 �0.001
Grazing �2.854 0.713 �4.005 �0.001
Log10 area 6.890 1.290 5.341 �0.001

Note that both the effects of grazing and log10 area are significant and the partial
regression slope for grazing is negative, indicating that, holding patch area constant,
there are fewer birds in patches with more intense grazing.

Now we will convert grazing into four dummy variables with no grazing (level
1) as the reference category (Table 6.3) and fit model 6.29.

Estimate Standard error t P

Intercept 15.716 2.767 5.679 �0.001
Grazing1 0.383 2.912 0.131 0.896
Grazing2 �0.189 2.549 �0.074 0.941
Grazing3 �1.592 2.976 �0.535 0.595
Grazing4 �11.894 2.931 �4.058 �0.001
Log10 area 7.247 1.255 5.774 �0.001

The partial regression slopes for these dummy variables measure the difference in
bird abundance between the grazing category represented by the dummy variable
and the reference category for any specific level of log10 area. Note that only the
effect of intense grazing (category: 5; dummy variable: grazing4) is different from the
no grazing category.



the reference category (zero grazing) for any spe-
cific value of log10 area. Using analysis of covari-
ance terminology (Chapter 12), each regression
slope measures the difference in the adjusted
mean of Y between that category and the refer-
ence category (Box 6.7). Interaction terms between
the dummy variables and the continuous variable
could also be included. These interactions
measure how much the slopes of the regressions
between Y and the log10 area differ between the
levels of grazing. Most statistical software now
automates the coding of categorical variables in
regression analyses, although you should check
what form of coding your software uses. Models
that incorporate continuous and categorical pre-
dictors will also be considered as part of analysis
of covariance in Chapter 12.

6.1.15 Finding the “best” regression model
In many uses of multiple regression, biologists
want to find the smallest subset of predictors that
provides the “best fit” to the observed data. There
are two apparent reasons for this (Mac Nally 2000),
related to the two main purposes of regression
analysis – explanation and prediction. First, the
“best” subset of predictors should include those
that are most important in explaining the varia-
tion in the response variable. Second, other things
being equal, the precision of predictions from our
fitted model will be greater with fewer predictor
variables in the model. Note that, as we said in the
introduction to Chapter 5, biologists, especially
ecologists, seem to rarely use their regression
models for prediction and we agree with Mac
Nally (2000) that biologists are usually searching
for the “best” regression model to explain the
response variable.

It is important to remember that there will
rarely be, for any real data set, a single “best”
subset of predictors, particularly if there are many
predictors and they are in any way correlated with
each other. There will usually be a few models,
with different numbers of predictors, which
provide similar fits to the observed data. The
choice between these competing models will still
need to be based on how well the models meet the
assumptions, diagnostic considerations of outli-
ers and other influential observations and biolog-
ical knowledge of the variables retained.

Criteria for “best” model
Irrespective of which method is used for selecting
which variables are included in the model (see
below), some criterion must be used for deciding
which is the “best” model. One characteristic of
such a criterion is that it must protect against
“overfitting”, where the addition of extra predic-
tor variables may suggest a better fit even when
these variables actually add very little to the
explanatory power. For example, r2 cannot
decrease as more predictor variables are added to
the model even if those predictors contribute
nothing to the ability of the model to predict or
explain the response variable (Box 6.8). So r2 is not
suitable for comparing models with different
numbers of predictors.

We are usually dealing with a range of models,
with different numbers of predictors, but all are
subsets of the full model with all predictors. We
will use P to indicate all possible predictors, p is
the number of predictors included in a specific
model, n is the number of observations and we
will assume that an intercept is always fitted. If
the models are all additive, i.e. no interactions,
the number of parameters is p�1 (the number of
predictors plus the intercept). When interactions
are included, then p in the equations below
should be the number of parameters (except the
intercept) in the model, including both predictors
and their interactions. We will describe four crite-
ria for determining the fit of a model to the data
(Table 6.4).

The first is the adjusted r2 which takes into
account the number of predictors in the model
and, in contrast to the usual r2, basically uses
mean squares instead of sum of squares and can
increase or decrease as new variables are added to
the model. A larger value indicates a better fit.
Using the MSResidual from the fit of the model is
equivalent where a lower value indicates a better
fit.

The second is Mallow’s Cp, which works by
comparing a specific reduced model to the full
model with all P predictors included. For the full
model with all P predictors, Cp will equal P�1 (the
number of parameters including the intercept).
The choice of the best model using Cp has two com-
ponents: Cp should be as small as possible and as
close to p as possible.
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Box 6.8 Hierarchical partitioning and model selection.

The data from Loyn (1987) were used to compare model selection criteria. Only
the best two models (based on the BIC) for each number of predictors are pre-
sented as well as the full model. The model with the lowest BIC is in bold.

No. predictors Model r2 Adj r2 Cp AIC Schwarz (BIC)

1 log10 area 0.548 0.539 18.4 224.39 228.45

1 grazing 0.466 0.456 31.1 223.71 237.76

2 log10 area�grazing 0.653 0.640 4.0 211.59 217.67
2 log10 area�years 0.643 0.630 5.4 213.06 219.14

3 log10 area�grazing� 0.673 0.654 2.8 210.19 218.29
years

3 log10 area�grazing� 0.664 0.644 4.3 211.77 219.88
log10 ldist

4 log10 area�grazing� 0.682 0.657 3.4 210.60 220.73
years�altitude

4 log10 area�grazing� 0.679 0.654 3.9 211.15 221.28
years� log10 ldist

5 log10 area�grazing� 0.681 0.649 5.1 212.89 225.05
years� log10 ldist�
log10 dist

5 log10 area�grazing� 0.668 0.635 5.1 215.11 227.27
altitude� log10 ldist
� log10 dist

6 log10 area�grazing� 0.685 0.646 7.0 214.14 228.32
years�altitude� log10
ldist� log10 dist

The Schwarz criterion (BIC) selects a model with just two predictors (log10 area
and grazing). In contrast, the AIC and Mallow’s Cp selected a model that included
these two predictors and years since isolation, and the adjusted r2 selected a four-
predictor model that added altitude to the previous three predictors. Note that the
unadjusted r2 is highest for the model with all predictors.

For these data, automated forward and backward selection procedures (the sig-
nificance level for entering and removing terms based on partial F-ratio statistics
was set at 0.15) produced the same final model including log10 area, grazing and
years since isolation. The results from a hierarchical partitioning of r2 from the model
relating abundance of forest birds to all six predictor variables from Loyn (1987) are
shown below.

Independent Joint Total

Log10 area 0.315 0.232 0.548
Log10 dist 0.007 0.009 0.016
Log10 ldist 0.014 �0.001 0.014
Altitude 0.057 0.092 0.149
Grazing 0.190 0.275 0.466
Years 0.101 0.152 0.253

Clearly, log10 area and grazing contribute the most to the explained variance in
abundance of forest birds, both as independent effects and joint effects with other
predictors, with some contribution also by years since isolation.



The remaining two measures are in the cate-
gory of information criteria, introduced by Akaike
(1978) and Schwarz (1978) to summarize the infor-
mation in a model, accounting for both sample
size and number of predictors (Table 6.4).
Although these information criteria are usually
based on likelihoods, they can be adapted for use
with OLS since the estimates of parameters will be
the same when assumptions hold. The first of
these criteria is the Akaike information criterion
(AIC), which tends to select the same models as
Mallow’s Cp as n increases and the MSResidual

becomes a better estimate of 	
�

2 (Christensen
1997; see Box 6.8). The Bayesian (or Schwarz) infor-
mation criterion (BIC) is similar but adjusts for
sample size and number of predictors differently.
It more harshly penalizes models with a greater
number of predictors than the AIC (Rawlings et al.
1998).

For both AIC and BIC, smaller values indicate
better, more parsimonious, models (Box 6.8). We
recommend the Schwarz criterion for determin-
ing the model that best fits the data with the
fewest number of parameters (see also Mac Nally
2000). It is simple to calculate and can be applied
to linear and generalized linear models (see
Chapter 13).

Selection procedures
The most sensible approach to selecting a subset
of important variables in a complex linear model
is to compare all possible subsets. This procedure
simply fits all the possible regression models (i.e.
all possible combinations of predictors) and

chooses the best one (or more than one) based on
one of the criteria described above. Until rela-
tively recently, automated fitting of all subsets
was beyond the capabilities of most statistical
software because of the large number of possible
models. For example, with six predictors, there
are 64 possible models! Consequently, stepwise
procedures were developed that avoided fitting
all possible models but selected predictor vari-
ables based on some specific criteria. There are
three types of stepwise procedures, forward
selection, backward selection and stepwise selec-
tion.

Forward selection starts off with a model with
no predictors and then adds the one (we’ll call Xa)
with greatest F statistic (or t statistic or correlation
coefficient) for the simple regression of Y against
that predictor. If the H0 that this slope equals zero
is rejected, then a model with that variable is
fitted. The next predictor (Xb) to be added is the
one with the highest partial F statistic for Xb given
that Xa is already in the model [F(Xb|Xa)]. If the H0

that this partial slope equals zero is rejected, then
the model with two predictors is refitted and a
third predictor added based on F(Xc|Xa,Xb). The
process continues until a predictor with a non-sig-
nificant partial regression slope is reached or all
predictors are included.

Backward selection (elimination) is the oppo-
site of forward selection, whereby all predictors
are initially included and the one with the small-
est and non-significant partial F statistic is
dropped. The model is refitted and the next pre-
dictor with the smallest and non-significant
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Table 6.4 Criteria for selecting “best” fitting model in multiple linear regression. Formulae are for a specific
model with p predictors included. Note that p excludes the intercept

Criterion Formula

Adjusted r 2 1�

Mallow’s Cp � [n�2(p�1)]

Akaike Information Criterion (AIC) n[ln(SSResidual)]�2(p�1)�nln(n)

Schwarz Bayesian Information Criterion (BIC) n[ln(SSResidual)]�(p�1)ln(n)�nln(n)

Reduced SSResidual

Full MSResidual

SSResidual /[n� (p�1)]
SSTotal /(n�1)



partial F statistic is dropped. The process contin-
ues until there are no more predictors with non-
significant partial F statistics or there are no
predictors left.

Stepwise selection is basically a forward selec-
tion procedure where, at each stage of refit-
ting the model, predictors can also be
dropped using backward selection. Predictors
added early in the process can be omitted later
and vice versa.

For all three types of variable selection, the
decision to add, drop or retain variables in the
model is based on either a specified size of partial
F statistics or significance levels. These are some-
times termed F-to-enter and F-to-remove and obvi-
ously, the values chosen will greatly influence
which variables are added or removed from the
model, especially in stepwise selection.
Significance levels greater than 0.05, or small F
statistics, are often recommended (and are
default settings in stepwise selection routines of
most regression software) because this will result
in more predictors staying in the model and
reduce the risk of omitting important variables
(Bowerman & O’Connell 1990). However, as
always, the choice of significance levels is arbi-
trary. Note that so many P values for tests of
partial regression slopes are generated in variable
selection procedures that these P values are diffi-
cult to interpret, due to the multiple testing
problem (see Chapter 3) and lack of independence.
Variable selection is not suited to the hypothesis
testing framework.

It is difficult to recommend any variable selec-
tion procedure except all subsets. The logical and
statistical problems with the forward, backward
and stepwise procedures have been pointed out
elsewhere (e.g. James & McCulloch 1990,
Chaterjee & Price 1991, Neter et al. 1996). They all
use somewhat arbitrary statistical rules (signifi-
cance levels or the size of F statistics) for deciding
which variables enter or leave the model and
these rules do not consider the increased prob-
ability of Type I errors due to multiple testing.
These approaches seem to be an abuse of the logic
of testing a priori statistical hypotheses; statistical
hypothesis testing and significance levels are ill-
suited for exploratory data-snooping. Also, the
forward, backward and stepwise approaches for

including and excluding variables can produce
very different final models even from the same set
of data (James & McCulloch 1990, Mac Nally 2000),
particularly if there are many predictors.
Additionally, simulation studies have shown that
these stepwise procedures can produce a final
model with a high r2, even if there is really no rela-
tionship between the response and the predictor
variables (Flack & Chang 1987, Rencher & Pun
1980). Finally, variable selection techniques are
sensitive to collinearity between the predictors
(Chaterjee & Price 1991). This is because collinear-
ity will often result in large variances for some
regression slopes that may result in those predic-
tor variables being excluded from the model irre-
spective of their importance.

The all-subsets procedure is limited by the
large number of models to be compared when
there are many predictor variables, although
most statistical software can now compare all
subsets for reasonable numbers of predictors. It is
difficult to envisage a data set in biology with too
many variables for all subsets comparisons that is
also not plagued by serious collinearity problems,
which would invalidate any variable selection pro-
cedure.

If the number of observations is large enough,
then we recommend using cross-validation tech-
niques to check the validity of the final model.
The simplest form of cross-validation is randomly
to split the data set in two and fit the model with
half the data set and then see how well the model
predicts values of the response variable in the
other half of the data set. Unfortunately, splitting
the data for cross-validation is not always possible
because of small sample sizes often encountered
in biology.

In the end, however, the best argument against
stepwise variable selection methods is that they
do not necessarily answer sensible questions in
the current age of powerful computers and sophis-
ticated statistical software. If a regression model
is required for explanation, then we wish to know
which variables are important, and the criteria we
described above, combined with hierarchical par-
titioning (Section 6.1.16), are the best approaches.
If a model is required for prediction, with as few
predictor variables as possible, then comparing
all-subsets is feasible and probably the most
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sensible, although more complex procedures are
possible (Mac Nally 2000). We conclude with a
quote from James & McCulloch (1990, pp.
136–137): “Many authors have documented the
folly of using stepwise procedures with any multi-
variate method. Clearly, stepwise regression is not
able to select from a set of variables those that are
most influential.”

6.1.16 Hierarchical partitioning
Hierarchical partitioning is a method that has
been around for some time but its utility for inter-
preting the importance of variables in linear
models has only recently been appreciated in the
statistical (Chevan & Sutherland 1991) and biolog-
ical literature (Mac Nally 1996). Its purpose is to
quantify the “independent” correlation of each
predictor variable with the response variable. It
works by measuring the improvement in the fit of
all models with a particular predictor compared
to the equivalent model without that predictor
and the improvement in fit is averaged across all
possible models with that predictor. We can use
any of a number of measures of fit, but for linear
models, it is convenient to use r2.

Consider a model with a response variable (Y)
and three predictor variables (X1, X2, X3). There are
2p possible models when there are p “indepen-
dent” predictor variables, so here, there are 23

equals eight models. We can calculate r2 for the
eight possible models listed in Table 6.5. Note that
there are four hierarchical levels of model com-
plexity, representing the number of predictors in
the model. Hierarchical partitioning splits the
total r2 for each predictor, i.e. the r2 for the linear
relationship between Y and each predictor by
itself (as in Models 2, 3 and 4), into two additive
components.

• The “independent” contributions of each
predictor variable, which is a partitioning of
the r2 for the full model with all predictors
(Model 8).

• The “joint” contributions of each predictor in
conjunction with other predictors.

For the independent contributions, we calcu-
late for each predictor variable the improvement
in fit by adding that predictor to reduced models
without that predictor at each hierarchical level.

For example, for X1, we would compare the follow-
ing r2 values:

r2(X1) vs r2(Null)

r2(X1,X2) vs r2(X2)

r2(X1,X3) vs r2(X3)

r2(X1,X2,X3) vs r2(X2,X3)

The differences in r2 values are averaged within
each hierarchical level (first order, second order,
third order) and then averaged across the levels to
produce the independent contribution of X1 to
the explained variance in Y. The same procedure
is followed for the other predictor variables.
These independent contributions of all the pre-
dictor variables represent a partitioning of the r2

from the full model with all predictors included.
For example, the sum of the independent contri-
butions of log10 area, log10 dist, log10 ldist, alti-
tude, grazing and years to forest bird abundance
for the data from Loyn (1987) equals the r2 from
the fit of the full model with all these predictors
(Box 6.8).

If the predictor variables are completely inde-
pendent of (i.e. uncorrelated with) each other,
then there will be no joint contributions and the
sum of the r2 for Models 2, 3 and 4 (Table 6.5) will
equal the total r2 from the full model. This latter
r2 can be unambiguously partitioned into the
independent contributions of each predictor and
the analysis would be complete. We know,
however, that correlations between predictors
nearly always occur within real data sets so the
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Table 6.5 Eight possible models with one
response variable and three predictor variables

Label Model Level of hierarchy

1 No predictors, 0
r 2 equals zero

2 X1 1
3 X2 1
4 X3 1
5 X1�X2 2
6 X1�X3 2
7 X2�X3 2
8 X1�X2�X3 3



sum of the r2 for Models 2, 3 and 4 will exceed the
total r2 from the full model because of the joint
effects of predictors. These joint effects represent
the variation in Y that is shared between two or
more predictors. The joint effects for each predic-
tor are calculated from the difference between the
squared partial correlation for the model relating
Y to that predictor and the average r2 representing
the independent contribution of that predictor
already determined. This simply uses the additive
nature of the independent and joint contribu-
tions of each predictor to the total r2 for each pre-
dictor, as described above.

The sum of the average independent and
average joint contribution to r2 is the total contri-
bution of each predictor variable to the variation
in the response variable, measured by the r2 for
the model relating Y to each predictor. We might
like to test the H0 that this total contribution
equals zero for each predictor. Unfortunately,
hypothesis tests for r2 are not straightforward,
although Mac Nally (1996) suggested an expedient
solution of using the appropriate critical value of
the correlation coefficient (�r2).

As Mac Nally (1996) has pointed out, hierarchi-
cal partitioning uses all possible models and aver-
ages the improvement in fit for each predictor
variable, both independently and jointly, across
all these models. Note that hierarchical partition-
ing does not produce a predictive model nor does
it provide estimates of, and tests of null hypothe-
ses about, parameters of the regression model.
With anything more than a few predictors, hier-
archical partitioning cannot be done manually
and the algorithm of Chevan & Sutherland (1991)
needs to be programmed.

Mac Nally (1996) illustrated the utility of hier-
archical partitioning for a data set relating breed-
ing passerine bird species richness to seven
habitat variables. The two predictor variables
retained by hierarchical partitioning were the
same as those with significant bivariate correla-
tions with the response variable but were quite
different from those chosen by a full model multi-
ple regression and variable selection (backwards
and forwards) procedures (Box 6.8).

6.1.17 Other issues in multiple linear
regression

Regression through the origin
We argued in Chapter 5 that forcing a regression
model through the origin by omitting an inter-
cept was rarely a sensible strategy. This is even
more true for multiple regression because we
would need to be sure that Y equals zero when all
Xj equal zero. Even if this was the case, forcing our
model through the origin will nearly always
involve extrapolating beyond the range of our
observed values for the predictor variables and
measures of fit for no-intercept models are diffi-
cult to interpret.

Weighted least squares
Weighting each observation by a value related to
the variance in yi is one way of dealing with het-
erogeneity of variance although determining the
appropriate weights is not straightforward
(Chapter 5). As with simple linear regression, our
preference is to transform Y and/or the X-variables
if the heterogeneity of variance is due to skewed
distributions of the variables, particularly if our
understanding of the biology suggests a different
scale of measurement is more appropriate for one
or more of the variables. Alternatively, general-
ized linear models with an appropriate non-
normal distribution of the error terms should be
used (Chapter 13).

X random (Model II regression)
The extension of Model II bivariate regression
techniques (Chapter 5) to the situation with multi-
ple predictor variables was reviewed by McArdle
(1988). To calculate the RMA equivalent estimates
for each �j, first produce a correlation matrix
among all the variables (Y and all p X-variables).
Then run a principal components analysis (see
Chapter 17) on this correlation matrix and extract
the eigenvector for the last component with the
smallest eigenvalue (explained variance). The esti-
mate of the regression slope for each predictor
variable (Xj) is:

bj� (6.30)

where bj is the regression slope for Xj, �j is the coef-
ficient for Xj and �Y is the coefficient for Y from the

�j

�Y

142 MULTIPLE AND COMPLEX REGRESSION



eigenvector for the principal component with the
smallest eigenvalue. McArdle (1988) refers to this
method as the standard minor axis (SMA) and
simply becomes the RMA method when p equals
one. Note that these are standardized regression
slopes, because they are based on a correlation
matrix, so the regression model does not include
an intercept.

The choice between OLS and SMA is not as
straightforward as that between OLS and RMA for
simple bivariate regression. McArdle’s (1988) sim-
ulations suggested that if the error variance in Xj

is greater than about half the error variance in Y,
then SMA is better. However, the relative perfor-
mance of OLS and SMA depended on the correla-
tion between Y and Xj so definitive guidelines
cannot be given.

Robust regression
When the underlying distribution of error terms
may not be normal, especially if extreme observa-
tions (outliers) occur in the data that we cannot
deal with via deletion or transformation, then the
usual OLS procedure may not be reliable. One
approach is to use robust fitting methods that are
less sensitive to outliers. The methods described
in Chapter 5, least absolute deviations, Huber M-
estimation and non-parametric (rank-based)
regression, all extend straightforwardly to multi-
ple predictor variables. The major difficulty is that
the computations and associated algorithms are
complex (Birkes & Dodge 1993). Fortunately,
robust regression procedures are now common
components of good statistical software.

The randomization test of the H0 that �1 equals
zero in simple linear regression can also be
extended to multiple regression. We compare the
observed partial regression slopes to a distribu-
tion of partial regression slopes determined by
randomly allocating the yi to observations but not
altering the xi1, xi2, etc., for each observation
(Manly 1997). Other randomization methods can
be used, including using the residuals, although
the different methods appear to give similar
results (Manly 1997).

Missing data
It is common for biological data comprising two
or more variables to have missing data. In data
sets suited to multiple regression modeling, we

may be missing values for some of the predictor
variables or the response variable for some sam-
pling units. It is important to distinguish missing
values (no data) from zero values (data recorded
but the value was zero) – see Chapter 4. If missing
values for the response variable reflect a biologi-
cal process, e.g. some organisms died during an
experiment and therefore growth rate could not
be measured, then analyzing the pattern of
missing values in relation to the predictor vari-
ables may be informative. More commonly, we
have missing values for our predictor variables,
often due to random events such as equipment
failure, incorrect data entry or data being subse-
quently lost. In these circumstances, most linear
models software will omit the entire sampling
unit from analysis, even if data are only missing
for one of the variables. Alternatives to deletion
when missing data occur, including imputing
replacement values, will be discussed in Chapter
15. 

Power of tests
The tests of whether individual partial regression
coefficients equal zero are based on t statistics and
therefore the determination of power of these
tests is the same as for any simple t test that a
single population parameter equals zero
(Chapters 3 and 7). Our comments on power calcu-
lations for simple regression analyses (Chapter 5)
apply similarly for multiple regression.

6.2 Regression trees

An alternative to multiple linear regression anal-
ysis for developing descriptive and predictive
models between a response variable and one or
more predictor variables is regression tree analy-
sis (Brieman et al. 1984, De’ath & Fabricius 2000).
A “upside-down” tree is created where the root at
the top contains all observations, which are
divided into two branches at a node, then each
branch is further split into two at subsequent
nodes and so on. A branch that terminates
without further branching is called a leaf.

Consider the data from Loyn (1987), where we
have a continuous response variable (abundance
of forest birds) and six predictor variables describ-
ing 56 forest patches, in this case all continuous.
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All possible binary splits of the observations are
assessed for each predictor variable. The first split
is based on the predictor that results in two
groups with the smallest within-group (residual)
sums-of-squares for the response variable. Other
measures of (lack of) fit can be used, including
absolute deviations around the mean or median
for a more robust measure of fit (see Chapter 5).
These splitting criteria are different indices of
impurity, a measure of heterogeneity of the
groups at a split (De’ath & Fabricius 2000). This
“recursive binary-partitioning” process is
repeated within each of the two groups for all the
predictors, again choosing the next split based on
the predictor that results in the minimum resid-
ual SS within groups. Groups further along in the
splitting process are more homogeneous than
those higher up. The regression tree looks like a
dendrogram from cluster analysis (Chapter 18),
but is really a tree with the root (the undivided
complete data set) at the top, branches with nodes
for each division and leaves where branches termi-
nate (terminal nodes).

Regression trees produce a predictive model.
For any observation, a predicted value is the mean
of the observations at a leaf, i.e. in a terminal
group. Obviously, predicted values for observa-
tions in the one group (leaf) will be the same. This
is in contrast to the usual linear model, which will
have different predicted values for all observa-
tions unless they have identical values for all pre-
dictors. Because we have observed and predicted
values, we can also calculate residuals for each
observation and use these residuals as a diagnos-
tic check for the appropriateness of the model and
whether assumptions have been met. Normality
of predictor variables is not a concern because
only the rank order of a variable governs each
split, although transformation of the response
variable to alleviate variance heterogeneity may
be important (De’ath & Fabricius 2000). 

The splitting process (tree building) could con-
tinue until each leaf contains a single observation
and for the Loyn (1987) data, we would have 56 ter-
minal nodes. In this situation, the tree would
predict the observed values of the response vari-
able perfectly and explain all the variance in the
response variable, the equivalent of fitting a satu-
rated linear regression model (Section 6.1.4).

Usually, we want the best compromise between
tree simplicity (few nodes) and explained variance
in the response variable. In practice, therefore, a
priori stopping criteria are used, such as a
maximum number of nodes allowed, a minimum
number of objects in each group or a minimum
reduction in explained variance from adding
more nodes. Different software for building trees
will use different measures of fit and different
default stopping rules so don’t expect trees based
on the same data built using different programs
to be the same unless these criteria are set to be
the same. Once the tree is built, using the stop-
ping criteria, we can also “prune” or “shrink”
trees to produce simpler models that achieve a
better compromise between fit and simplicity,
often using criteria similar to those used for
model selection in standard multiple regression
(Section 6.1.15). Alternatively, we can assess the
predictive capabilities of different sized trees and
choose the “best” tree as the one with the small-
est prediction error, i.e. the model that provides
the most accurate predictions.

De’ath & Fabricius (2000) argue strongly that
the best approach for determining prediction
error and thus appropriate tree size is using cross-
validation (Section 6.1.15; De’ath & Fabricius
2000). One method for cross-validation is where
the observations are divided randomly into two
groups of a specified size, e.g. 10% and 90% of the
observations, and the regression tree model is
fitted to the larger group (“training group”) to
predict values in the smaller group (“validation
group”). The difference between the observed and
predicted values of the response variable in the
smaller group is a measure of prediction error. Of
interest is how much of the total variation in
the observed values of the response variable is
explained by the predicted values. Cross-
validation is usually repeated many times, each
with a new random allocation of observations to
the groups of pre-defined size, i.e. in a randomiza-
tion testing framework. Randomization testing
can also be used to test whether the derived
regression tree explains more of the variation in
the response variable than we would expect by
chance. Brieman et al. (1984) and De’ath &
Fabricius (2000) provide more detail on cross-
validation for regression trees. 
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Regression trees are often included in statisti-
cal software under the acronym CART (classifica-
tion and regression tree analyses). The main
distinction between classification and regression
trees is that the former is based on categorical
response variables and the latter on continuous
response variables. Two common algorithms are
AID (Automatic Interaction Detection) for regres-
sion trees and CHAID (Chi-squared Automatic
Interaction Detection) for classification trees.

We will use two biological examples of regres-
sion tree analysis. The first comes from Rejwan et
al. (1999), who used both standard multiple
regression and regression trees to analyze the
relationship between the density of nests of small-
mouth bass (continuous response variable) and
four predictor variables (wind/wave exposure,
water temperature, shoreline reticulation and lit-
toral-floor rugosity) for 36 sites in Lake Opeongo,
Canada. There were nonlinear relationships
between both exposure and littoral-floor rugosity
and nest density. The standard multiple regres-
sion analysis showed that shoreline reticulation,
temperature and (temperature)2, and exposure
were significant predictors, the final model
explaining 47% of the variation in nest density
between sites. However, cross-validation analysis
showed that the model had little predictive
power, with almost none of the variation in nest
density in random samples of 10% of the sites pre-
dictable from the model fitted to the other 90% of
the sites.

Their regression tree analysis split the sites
based on a temperature cut-off of 17.05 oC into two
initial groups of 28 and 8 sites, and then split the
latter group into two groups of four sites each
based on shoreline reticulation below and above
100m. This tree explained 58% of the variation in
nest density and cross-validation analysis showed
that the tree model had more predictive power
and could explain about 20% of the variation nest
density in random samples of 10% of sites.

The second example, illustrated in Box 6.9,
uses the data set from Loyn (1987), who recorded
the abundance of forest birds in 56 forest frag-
ments and related this response variable to six
predictors that described aspects of each patch
(area, distance to nearest patch and nearest larger
patch, stock grazing, altitude and years since iso-

lation) – see Box 6.2. We built a regression tree
model for these data, after transforming area and
the two distances to logs. The first split was
between patches with grazing indices from one to
four and those with a grazing index of five. This
former group was further split into two groups
with log10 area�1.176 (approx. 15 ha). The final
tree is presented in Figure 6.6. This tree is a little
different from the results of the multiple linear
regression analysis of these data in Box 6.2. There,
log10 area was a significant predictor, with grazing
not significant (P�0.079), although model selec-
tion and hierarchical partitioning both resulted
in a model with log10 area and grazing as the two
predictors (Box 6.8). The fit of the regression tree
model was 0.699. The equivalent multiple linear
regression model including just grazing and log10

area as predictors resulted in an r2 of 0.653 so the
regression tree model produced a slightly better
fit.

This brief introduction might encourage you
to explore these methods further. The standard
reference is Brieman et al. (1984), and De’ath &
Fabricius (2000) provide an excellent and up-dated
overview with ecological applications.

6.3 Path analysis and structural
equation modeling

The linear model we fit for a multiple regression
represents our best guess at causal relationships.
The model is postulating that the predictor vari-
ables we have incorporated may have biological
effects on our response variable. The multiple
regression model is, however, a conveniently
simple representation of potential causal path-
ways among our variables as it only considers
direct effects of each predictor, adjusting for the
others, on the response variable. We may hypoth-
esize much more complex causal links between
variables. For example, we may include indirect
effects where one predictor affects a second pre-
dictor, which in turn affects the response variable,
and we may have two or more response variables
that can affect each other. The statistical tech-
nique we use to analyze models of potential causal
relationships was first developed over 50 years ago
by Wright (1920, 1934) and is called path analysis
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(see also Mitchell 1993 for a review). Path analysis
was originally designed for simple multiple
regression models and is now considered a subset
of a more sophisticated collection of analytical
tools called structural equation modeling (SEM),
also called analysis of covariance (correlation)

structure (Tabachnick & Fidell 1996). It is very
important to remember that causality can only
really be demonstrated by carefully designed and
analyzed manipulative experiments, not by any
specific statistical procedure. SEM and path analy-
sis are basically analyses of correlations, although

146 MULTIPLE AND COMPLEX REGRESSION

Box 6.9 Worked example of regression trees: abundance
of birds in forest patches

A regression tree for the data from Loyn (1987) related the abundance of forest
birds in 56 forest fragments to log area, log distance to nearest patch and nearest
larger patch, grazing intensity, altitude and years since isolation.We used OLS as our
measure of fit and set stopping criteria so that no split would result in less than five
observations in a group, the maximum number of nodes was less than 20 (although
this latter criterion turned out to be irrelevant) and the minimum proportional
reduction in residual variance was 5%. The first node in the tree was between 43
habitat patches with grazing indices from one to four and the 13 patches with a
grazing index of five (Figure 6.6). This former group was further split into two
groups, 24 patches with log10 area less than 1.176 (approx. 15 ha) and 19 patches
with log10 area greater than 1.176.

The fit of this tree model was 0.699. The plot of residuals from the tree model
is shown in Figure 6.8(a) with four observations in the group of small patches with
low grazing (less than five) standing out from the others and warranting checking
and possibly re-running the analysis after their omission to evaluate their influence.

Out of interest,we refitted the tree with looser stopping criteria (smaller allow-
able reduction in residual variance) to see what subsequent splits in the data would
have occurred (Figure 6.7). On one side of the tree, the 13 patches with a grazing
index of five were further split by log10 dist. On the other side, the 24 small patches
were further split by age (and then by log10 area and log10 dist) and the 19 larger
patches were further split by log10 area again. The fit of the model was improved
to 0.84 but the model is much more complex with additional variables, some
repeated throughout the tree (e.g. log10 area) so the improvement in fit is at least
partly a consequence of the increased number of predictors in the tree model. The
residuals show a more even pattern, with no obvious outliers (Figure 6.8(b)).

Figure 6.6. Regression tree modeling bird abundance in
forest patches against patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log10

transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).The
criteria for each node are included, with left-hand branches
indicating observations with values for that predictor below
the cut-off and right-hand branches indicating observations
with values for that predictor above the cut-off.The
predicted value (mean) and number of observations for each
leaf (terminal group) are also provided.

Grazing



they can be used to analyze experimental data
(Smith et al. 1997), and simply test how well postu-
lated causal pathways fit the observed data in a
modeling context.

The fundamental component of SEM or path
analysis is the a priori specification of one or more
causal models, although most published applica-
tions of path analysis in biology do not seem to
compare competing models. Let’s consider a
simple path diagram, based on the data from
Loyn (1987), that relates the abundance of forest
birds in isolated patches of remnant forest to a
number of predictor variables (Figure 6.9). We
will include three of these predictors (log10 patch
area, years since isolation, grazing) and include
all correlations among the predictors and all sup-
posed causal links between each predictor and
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Figure 6.7. Regression tree based
on the same data as in Figure 6.6,
except that branching was
continued to a lower level.

Grazing 4.50

1.15

l

Figure 6.8. Plots of residuals
against predicted values from (a) the
regression tree model illustrated in
Figure 6.6 and (b) the model
illustrated in Figure 6.7.

Figure 6.9. Path diagram for simple multiple regression
model relating three predictor variables (log10 patch area,
grazing, years since isolation) to one response variable
(abundance of forest birds) using the data from Loyn (1987).



the response variable in our path diagram.
Single-headed arrows represent supposed causal
links between variables and double-headed
arrows represent correlations between variables
with no directional causality postulated. U repre-
sents unexplained causes (variables we have not
measured) that might affect a response variable.

The process starts by specifying the model for
each response variable. In our simple example,
there is only one response variable and the model
is a standardized multiple regression model
without an intercept:

(bird abundance)i��1(log10 area)i�
�2(years)i��3(grazing)i��i (6.31)

Path analyses basically represent a restructuring
of the correlations (or covariances) between all
the variables under consideration (Mitchell 1993).
The correlation (rjY) between any predictor vari-
able Xj and the response variable Y can be parti-
tioned into two components: the direct and the
indirect effects (Mitchell 1993). This partitioning
simply represents the normal equations that we
used for fitting the regression model using OLS
(Box 6.3). The direct effect is measured by the stan-
dardized partial regression coefficient between Y
and Xj, holding all other predictor variables con-
stant. This direct effect is now the path coefficient
relating Y to Xj. Path coefficients are identical to
standardized regression coefficients if all correla-
tions between predictor variables are included in
our path diagram. The indirect effect is due to the
correlations between Xj and the other predictors,
which may in turn have direct effects on Y.

Mathematically, this decomposition of the cor-
relations can be derived from the set of normal
equations used for estimating the parameters of
the multiple regression model (Petraitis et al. 1996).
For example, for predictor variable one (log10 area):

r1Y�b1�r12b2�r13b3 (6.32)

where r represents simple correlations and b rep-
resents standardized partial regression coeffi-
cients.

For the Loyn (1987) data:

rlog10 area.abundance�blog10 area.abundance�

rlog10 area.yearsbyears.abundance�

rlog10 area.grazingbgrazing.abundance (6.33)

The direct effect of log10 area on bird abundance is
represented by the standardized regression slope.
The indirect effect of log10 area on bird abundance
via the former’s correlation with years since isola-
tion and with grazing is calculated from the sum
of the last two terms in the right hand side of
Equation 6.33 above. The correlations between
years since isolation and bird abundance and
between grazing and bird abundance can be simi-
larly decomposed into direct and indirect effects.
The path identified by U (unexplained effects) can
be determined from �(1�r2) from the fit of the
model for a given response variable (Mitchell
1993). The results are summarized in Box 6.10 and
Figure 6.9.

Complex path models, with multiple response
variables, are not as easily handled by the multi-
ple regression approach to path analysis we have
just described (Mitchell 1992). More sophisticated
forms of structural equation modelling, such as
those implemented in software based on CALIS
(Covariance Analysis of Linear Structural equa-
tions; in SAS) and LISREL (Linear Structural
Relations; in SPSS) algorithms, offer some advan-
tages, especially in terms of model testing and
comparison. These procedures estimate the path
coefficients and the variances and covariances of
the predictor variables simultaneously from the
data using maximum likelihood, although other
estimation methods (including OLS) are available
(Tabachnick & Fidell 1996). A covariance matrix is
then determined by combining these parameter
estimates and this covariance matrix is compared
to the actual covariance matrix based on the data
to assess the fit of the model. Most software pro-
duces numerous measures of model fit, the AIC
(see Section 6.1.15) being one of the preferred
measures. As pointed out by Mitchell (1992) and
Smith et al. (1997), such goodness-of-fit statistics
can only be determined when there are more cor-
relations between variables than there are coeffi-
cients being estimated, i.e. the model is
over-identified. For example, we cannot test the fit
of the path model in Figure 6.9 because we have
estimated all the direct and indirect effects pos-
sible, i.e. there are no unestimated correlations.
The number of unestimated correlations contrib-
utes to the df of the goodness-of-fit statistic
(Mitchell 1993).
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Box 6.10 Worked example of path analysis: abundance of
birds in forest patches

We will use the data from Loyn (1987) to relate the abundance of forest birds in
isolated patches of remnant forest to three predictor variables: log10 patch area,
years since isolation, grazing (Figure 6.9). Our path model includes all correlations
among the predictors and all supposed causal links between each predictor and the
response variable. The path model outlined in Figure 6.9 was evaluated by calculat-
ing both direct and indirect effects of predictors on the response variable. The full
correlation matrix was as follows.

Abundance Log10 area Years Grazing

Abundance 1.000
Log10 area 0.740 1.000
Years �0.503 �0.278 1.000
Grazing �0.683 �0.559 0.636 1.000

The direct and indirect effects for log10 area were calculated from:

rlog10 area.abundance�blog10 area.abundance� rlog10 area.yearsbyears.abundance� rlog10

area.grazingbgrazing.abundance

where blog10 area.abundance is the direct effect of log10 area on abundance (the partial
regression coefficient), rlog10 area.yearsbyears.abundance is the indirect effect of log10 area on
abundance via years and rlog10 area.grazingbgrazing.abundance is the indirect effect of log10 area
on abundance via grazing. Equivalent equations were used for the other predictors.
Correlations between predictor variables were also calculated. The final results
were as follows.

Predictor Direct effects Indirect effects Total effects

Log10 area 0.542 0.198 0.740
via years 0.542
via grazing 0.146

Years since isolation �0.187 �0.317 �0.503
via log10 area �0.151
via grazing �0.166

Grazing �0.261 �0.422 �0.683
via log10 area �0.303
via years �0.119

It is clear that the “effect” of log10 area on bird abundance is primarily a direct
effect whereas the “effects” of grazing and years since isolation are primarily indi-
rect through the other predictors. Our use of quotation marks around “effect” here
emphasizes that this is simply a correlation analysis; attributing causality to any of
these predictor variables can only be achieved by using manipulative experiments.
The r2 for this model is 0.673 so the coefficient of the path from U to bird abun-
dance is 0.572.



These programs also allow for latent (unmeas-
ured) variables, which are unfortunately termed
factors in the SEM literature. Latent variables are
not commonly included in path models in the
biological literature, although Kingsolver &
Schemske (1991) discussed the inclusion of
unmeasured phenotypic factors in path analyses
of selection in evolutionary studies. The difficulty
with these sophisticated SEM programs is they are
more complex to run. For example, LISREL
requires that a number of matrices be specified,
representing the variances, covariances and rela-
tionships between variables. Detailed compari-
sons of these different programs, including
required input and interpretation of the output,
are available in Tabachnick & Fidell (1996)

The limitations and assumptions of classical
path analysis are the same as those for multiple
regression. The error terms from the model are
assumed to be normally distributed and indepen-
dent and the variances should be similar for dif-
ferent combinations of the predictor variables.
Path analysis will also be sensitive to outliers and
influential observations, and missing observa-
tions will have to be addressed, either by replace-
ment or deletion of an entire observation (see
Chapters 4 and 15). Collinearity among the predic-
tor variables can seriously distort both the accu-
racy and precision of the estimates of the path
coefficients, as these are simply partial regression
coefficients (Petraitis et al. 1996; Section 6.1.11).
There is still debate over whether more sophisti-
cated SEM techniques, such as those based on
LISREL, are more robust to these issues (Petraitis et
al. 1996, Pugusek & Grace 1998). Diagnostics, such
as residual plots, should be an essential compo-
nent of any path analysis. Irrespective of which
method is used, all estimates of path coefficients
are sensitive to which variables are included or
which coefficients (correlation or path) are set to
zero (Mitchell 1992, Petraitis et al. 1996). This is no
different to multiple regression, where estimates
of partial regression slopes are sensitive to which
predictors are included or not.

Finally, we repeat our earlier caution that,
although structural equation modeling analyzes
postulated causal relationships, it cannot
“confirm or disprove the existence of causal links”
(Petraitis et al. 1996 p. 429). Such causal links can

only be demonstrated by manipulative experi-
ments. SEM and path analyses do allow complex
linear models to be evaluated and path diagrams
provide a useful graphical representation of the
strengths of these relationships.

6.4 Nonlinear models

When the relationship between Y and X is clearly
curvilinear, there are a number of options. We
have already discussed using a polynomial model
(Section 6.1.13) or linearizing transformations of
the variables (Section 6.1.10), but these are not
always applicable. For example, the relationship
between Y and X might be complex and cannot be
approximated by a polynomial nor can it be line-
arized by transformations of the variables. The
third option is to fit a model that is nonlinear in
the parameters. For example, the relationship
between number of species (S) and island area (A)
can be represented by the power function:

S��A� (6.34)

where � and � are the parameters to be estimated
(Loehle 1990) – see Box 6.11. This is a two parame-
ter nonlinear model. A three parameter non-
linear model which is very useful for relating a
binary variable (e.g. presence/absence, alive/dead)
to an independent variable is the logistic model:

Y� (6.35)

where �, � and � are the parameters to be esti-
mated. Ratkowsky (1990) has described a large
range of multiparameter nonlinear models, both
graphically and statistically, and some of their
practical applications.

OLS or ML methods can be used for estimation
in nonlinear regression modeling, as we have
described for linear models. The OLS estimates of
the parameters are the ones that minimize the
sum of squared differences between the observed
and fitted values and are determined by solving a
set of simultaneous normal equations. Solving
these equations is much trickier than in linear
models and some sort of iterative search proce-
dure is required, whereby different estimates are
tried in a sequential fashion. Obviously, with two

�

1� e(���X)
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or more parameters, the number of possible com-
binations of values for the parameters is essen-
tially infinite so these searching procedures are
sophisticated in that they only try values that
improve the fit of the model (i.e. reduce the
SSResidual).

The most common method is the Gauss–
Newton algorithm or some modification of it

(Myers 1990). Starting values of the parameters
must be provided and these are our best guess of
what the values of the parameters might be. The
more complex the model, the more important it
is for the starting values to be reasonably close to
the real parameter values. Starting values may
come from fits of the equivalent model to other,
similar, data (e.g. from the published literature),
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Box 6.11 Worked example of nonlinear regression:
species richness of macroinvertebrates in
mussel clumps

As described in Chapter 5, Peake & Quinn (1993) collected 25 clumps of an inter-
tidal mussel from a rocky shore at Phillip Island in Victoria. The relationship between
the number of species (Y) per clump and clump area in m2 (X) was examined. The
scatterplot suggested a nonlinear relationship between number of species and
clump area (Figure 5.17) and theory suggests that a power function might be appro-
priate:

species�a(area)b

This power function was fitted using a modified Gauss–Newton method (quasi-
Newton). No starting values were provided. The algorithm took six iterations to
converge on the following estimates, with their approximate standard errors.

Parameter Estimate Standard error t P

a 18.540 0.630 29.449 �0.001
b 0.334 0.035 9.532 �0.001

The MSResidual was 7.469. The fitted model was, therefore:

species�18.540(area)0.334

Note that the MSResidual for the nonlinear power function (7.469) is about half that
for a linear model (14.133), indicating the former is a better fit to the data. The
fitted model is shown in Figure 6.10(a) and the residual plot (Figure 6.10(b))
suggested no strong skewness in the response variable and there were no unusual
outliers.

Figure 6.10. (a) Plot of number of
species against mussel clump area
from Peake & Quinn (1993) showing
fitted nonlinear model: number of
species�18.540� (area)0.334.
(b) Plot of residuals against
predicted values (with boxplots)
from fitted nonlinear model in (a)
fitted to number of species against
mussel clump area from Peake &
Quinn (1993).



theoretical considerations or, for relationships
that can be linearized by transformation, back-
transformed values from a linear model fitted to
transformed data. The Gauss–Newton search
method is complex, using partial derivatives from
the starting values and X-values to fit an iterative
series of essentially linear models and using OLS
to estimate the parameters. The best estimates are
reached when the sequential iterations converge,
i.e. don’t change the estimates by very much.
Variances and standard errors for the parameter
estimates can be determined; the calculations are
tedious but most statistical software provides this
information. Confidence intervals, and t tests for
null hypotheses, about parameters can also be
determined (Box 6.11).

There are a number of difficulties with nonlin-
ear modeling. First, sometimes the iterative
Gauss–Newton procedure won’t converge or con-
verges to estimates that are not the best possible
(“local minimum”). Most statistical software use
modified Gauss–Newton procedures, which help
convergence, and choosing realistic starting
values is very important. It is usually worth refit-
ting nonlinear models with different starting
values just to be sure the final model can be
achieved consistently. Second, OLS works fine for
linear models if the errors (residuals) are indepen-
dent, normally distributed with constant vari-
ance; however, for nonlinear models, even when
these assumptions are met, OLS estimators and
their standard errors, and confidence intervals
and hypothesis tests for the parameters, are only
approximate (Myers 1990; Rawlings et al. 1998). We
can be more certain of our estimates and confi-
dence intervals if different combinations of
search algorithms and starting values produce
similar results. Finally, measuring the fit of non-
linear models to the data is tricky; r2 cannot be
easily interpreted because the usual SSTotal for the
response variable cannot always be partitioned
into two additive components (SSRegression and
SSResidual). Comparing different models, some of
which might be nonlinear, can only be done with
variables measured on the same scale (i.e.
untransformed; see Chapter 5) and the MSResidual is
probably the best criterion of fit.

Once a nonlinear model has been estimated,
diagnostic evaluation of its appropriateness is

essential. Residuals can be calculated in the usual
manner and large values indicate outliers.
Because OLS estimation is commonly used for
nonlinear models, assumptions of normality,
homogeneity of variance and independence of the
error terms from the model are applicable.
Boxplots of residuals and scatterplots of residuals
against predicted values (Figure 6.10) can detect
problems with these assumptions as described for
linear models. Other estimation methods, such as
maximum likelihood, might be more robust than
OLS.

For simple nonlinear structures, transforming
the variables to achieve linearity is usually recom-
mended, particularly if the transformed variables
can be easily interpreted because the transformed
scale is a natural alternative scale of measure-
ment for that variable. Note that the transformed
model is not the same as the untransformed non-
linear model, in the same way that a t test on
untransformed data is not testing the same H0 as
a t test on the same data transformed. Our param-
eter estimates from the transformed model
cannot easily be interpreted in terms of the origi-
nal nonlinear model, which may have the
stronger theoretical basis.

6.5 Smoothing and response
surfaces

The linear plane representing the linear regres-
sion model of Y against X1 and X2 illustrated in
Figure 6.1 is sometimes referred to as a response
surface, a graphical representation of the rela-
tionship between a response variable and two pre-
dictors. Response surfaces obviously also exist
when there are more than two predictors but we
cannot display them graphically. Response sur-
faces, in this graphical context, are often used to
display the model chosen as the best fit based on
the model-fitting techniques we have already
described. Additionally, exploring a range of
response surfaces may help decide what sort of
model is best to use and detect patterns we might
have missed by being restricted to a specific
model.

Model-based surfaces that are linear in param-
eters include linear and curvilinear relationships.
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For example, polynomial models (quadratic,
cubic, etc.) are often good approximations to more
complex relationships and provide a more realis-
tic representation of the relationship between Y
and X1 and X2 than a simple linear model. Figure
6.11(a) shows a quadratic response surface, repre-
senting a model including linear and quadratic
terms for both predictors as well as their interac-
tion, fitted to the data from Paruelo & Lauenroth
(1996). Note that compared with the first-order
linear model in Figure 6.1, the quadratic model
allows a hump-shaped response of log-trans-
formed C3 plant abundance to longitude for a
given latitude. The choice of whether to use this
response surface would depend on the results of
fitting this model compared with a simpler first-
order model.

Smoothing functions, like we discussed in
Chapter 5, can sometimes also be applied to three-
dimensional surfaces. While the Loess smoother
cannot easily be extended to three dimensions,
DWLS can and allows a flexible exploration of the
nature of the relationship between Y and X1 and
X2 unconstrained by a specific model. For the data
from Paruelo & Lauenroth (1996), the DWLS
surface (Figure 6.11(b)) suggests a potentially
complex relationship between log transformed C3

plant abundance and longitude in the northern,
high latitude, sites, a pattern not revealed by the
linear or polynomial models. Note that, like the
bivariate case, parameters for these smoothing
functions cannot be estimated because they are
not model-based; they are exploratory only.

Response surfaces also have other uses. For
example, comparing the fitted response surfaces
for linear models with and without an interaction

between two predictors can
help interpret the nature of
such an interaction. Again for
the data from Paruelo &

Lauenroth (1996), the DWLS smoothing function
suggests that the relationship between log-trans-
formed abundance of C3 plants and latitude
depends on longitude and vice versa (Figure
6.11(b)). Most statistical software can plot a range
of model-based and smoothing response surfaces
on three-dimensional scatterplots.

6.6 General issues and hints for
analysis

6.6.1 General issues

• Multiple regression models are fitted in a
similar fashion to simple regression models,
with parameters estimated using OLS
methods.

• The partial regression slopes in a multiple
regression model measure the slope of the
relationship between Y and each predictor,
holding the other predictors constant. These
relationships can be represented with partial
regression plots.

• Comparisons of fit between full and reduced
models, the latter representing the model
when a particular H0 is true, are an important
method for testing null hypotheses about
model parameters, or combinations of
parameters, in complex models.

• Standardized partial regression slopes should
be used if the predictors and the response vari-
able are measured in different units.

• Collinearity, correlations between the predic-
tor variables, can cause estimates of parame-
ters to be unstable and have artificially large
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Figure 6.11. Response surfaces
relating log-transformed relative
abundance of C3 plants to latitude
and longitude for 73 sites in North
America (Paruelo & Lauenroth
1996). (a) Quadratic model fitted,
and (b) distance-weighted least
squares (DWLS) fitted.

(a) (b)



variances. This reduces the power of tests on
individual parameters.

• Interactions between predictors should be con-
sidered in multiple regression models and
multiplicative models, based on centered pre-
dictors to avoid collinearity, should be fitted
when appropriate.

• Hierarchical partitioning is strongly recom-
mended for determining the relative indepen-
dent and joint contribution of each predictor
to the variation in the response variable.

• Regression trees provide an alternative to mul-
tiple linear models for exploring the relation-
ships between response and predictor variables
through successive binary splits of the data,
although cross-validation is necessary for eval-
uation of predictive power and hypothesis
testing.

• Path analysis can be a useful technique for
graphically representing possible causal links
between response and predictor variables, and
also between predictor variables themselves.

• Nonlinear models can be fitted using OLS,
although the estimation procedure is more
complex. The trick is deciding a priori what the
most appropriate theoretical model is.

6.6.2 Hints for analysis
• Multiple regression analyses are sensitive to

outliers and influential values. Plots of residu-
als and Cook’s Di statistic are useful diagnostic
checks.

• Information criteria, such as Akaike’s (AIC) or
Schwarz’s (BIC) are the best criteria for distin-
guishing the fit of different models, although
MSResidual is also applicable for regression
models fitted using OLS.

• Avoid automated selection procedures
(forward, backward, etc.) in model fitting.
Their results are inconsistent and hard to
interpret because of the large number of
significance tests. For moderate numbers of
predictors, compare the fit of all possible
models.

• Use simple slopes for further interpretation of
interactions between predictor variables in
multiple regression models.

• Causality can only be demonstrated by careful
research and experimentation, not by a partic-
ular statistical analysis. For example, path
analysis is a method for summarizing correla-
tion structures among variables and cannot
show causality.

• Always examine scatterplots and correlations
among your variables, to detect nonlinear rela-
tionships but also to detect collinearity among
predictors. Tolerance (or the variance inflation
factor) will also indicate collinearity. Choose
which predictor variables to include in the
final model carefully, avoiding variables that
are highly correlated and measuring a similar
quantity.
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7.1 Sampling

Fundamental to any statistical analysis, including
the regression models we described in the previ-
ous two chapters, is the design of the sampling
regime. We are assuming that we can clearly
define a population of interest, including its
spatial and temporal boundaries, and that we have
chosen an appropriate type and size of sampling
unit. These units may be natural units (e.g. stones,
organisms, and lakes) or artificially delineated
units of space (e.g. plots or quadrats). Our aim is to
design a sampling program that provides the most
efficient (in terms of costs) and precise estimates
of parameters of the population. It is important to
remember that we are talking about a statistical
population, all the possible sampling or experi-
mental units about which we wish to make some
inference. The term population has another
meaning in biology, a group of organisms of the
same species (Chapter 2), although this might also
represent a statistical population of interest.

We will only provide a brief overview of some
sampling designs. We recommend Levy &
Lemeshow (1991), Manly (2001) and Thompson
(1992), the latter two having more of a biological
emphasis, as excellent references for more detail
on the design of sampling programs and using
them to estimate population parameters.

7.1.1 Sampling designs
Simple random sampling was introduced in
Chapter 2 and is where all the possible sampling
units in our population have an equal chance of

being selected in a sample. Technically, random
sampling should be done by giving all possible sam-
pling units a number and then choosing which
units are included in the sample using a random
selection of numbers (e.g. from a random number
generator). In practice, especially in field biology,
this method is often difficult, because the sampling
units do not represent natural distinct habitat
units (e.g. they are quadrats or plots) and cannot be
numbered in advance or because the sampling
units are large (e.g. 20 m2 plots) and the population
covers a large area. In these circumstances, biolo-
gists often resort to “haphazard” sampling, where
sampling units are chosen in a less formal manner.
We are assuming that a haphazard sample has the
same characteristics as a random sample.

The formulae provided in Chapter 2 for esti-
mating population means and variances, stan-
dard errors of the estimates and confidence
intervals for parameters assume simple random
sampling. If the size of the total population of
sampling units is finite, then there are correction
factors that can be applied to the formulae for var-
iances and standard errors, although many popu-
lations in biological research are essentially
infinite.

You can’t really go wrong with simple random
sampling. Estimates of the parameters of the pop-
ulation, especially the mean, will be ML estima-
tors and generally unbiased. The downside of
simple random sampling is that it may be less effi-
cient than other sampling designs, especially
when there is identified heterogeneity in the
population or we wish to estimate parameters at a
range of spatial or temporal scales.

Chapter 7

Design and power analysis



Other sampling designs take into account het-
erogeneity in the population from which we are
sampling. Stratified sampling is where the popu-
lation is divided into levels or strata that repre-
sent clearly defined groups of units within the
population and we sample independently (and
randomly) from each of those groups. For
example, we may wish to estimate characteristics
of a population of stones in a stream (our variable
might be species richness of invertebrates). If the
stones clearly fall into different habitat types, e.g.
riffles, pools and backwaters, then we might take
random samples of stones from each habitat
(stratum) separately. Stratified sampling is likely
to be more representative in this case than a
simple random sample because it ensures that the
major habitat types are included in the sample.
Usually, the number of units sampled from each
stratum is proportional to the total number of
possible units in each stratum or the total size of
each stratum (e.g. area). Estimating population
means and variances from stratified sampling
requires modification of the formulae provided in
Chapter 2 for simple random sampling. If sam-
pling within a stratum is random, the estimate of
stratum population mean is as before but the esti-
mate of the overall population mean is:

ȳstr� Wh ȳh (7.1)

where there are h�1 to l strata, Wh is the propor-
tion of total units in stratum h (often estimated
from the proportion of total area in stratum h)
and ȳh is the sample mean for stratum h (Levy &
Lemeshow 1991). If our sample size within each
stratum is proportional to the number of possible
units within each stratum, Equation (7.1) sim-
plifies to:

ȳstr� (7.2)

where there are i�1 to nh observations sampled
within stratum h, yhi is the ith observation from
the hth stratum and n is the total sample size
across all strata. The standard error of this mean
is:
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where sh
2 is the sample variance for stratum h.

Approximate confidence intervals can also be
determined (Levy & Lemeshow 1991, Thompson
1992). When statistical models are fitted to data
from stratified sampling designs, the strata
should be included as a predictor variable in the
model. The observations from the different strata
cannot be simply pooled and considered a single
random sample except maybe when we have evi-
dence that the strata are not different in terms of
our response variable, e.g. from a preliminary test
between strata.

Cluster sampling also uses heterogeneity in
the population to modify the basic random sam-
pling design. Imagine we can identify primary
sampling units (clusters) in a population, e.g. indi-
vidual trees. For each primary unit (tree), we then
record all secondary units, e.g. branches on each
tree. Simple cluster sampling is where we record
all secondary units within each primary unit. Two
stage cluster sampling is where we take a random
sample of secondary units within each primary
unit. Three stage cluster sampling is where we
take a random sample of tertiary units (e.g. leaves)
within each secondary unit (e.g. branches) within
each primary unit (e.g. trees). Simple random sam-
pling is usually applied at each stage, although
proportional sampling can also be used. These
designs are used to estimate variation at a series
of hierarchical (or nested) levels, often represent-
ing nested spatial scales and nested linear ANOVA
models are often fitted to data from two or more
stage cluster sampling designs (Section 9.1).

Systematic sampling is where we choose sam-
pling units that are equally spaced, either spa-
tially or temporally. For example, we might choose
plots along a transect at 5 m intervals or we might
choose weekly sampling dates. Systematic sam-
pling is sometimes used when we wish to describe
an environmental gradient and we want to know
where changes in the environment occur. For
example, we want to measure the gradient in
species richness away from a point source of pol-
lution. Simple random sampling away from the
source might miss the crucial region where the
species richness undergoes rapid change.
Sampling at regular intervals is probably a better
bet. Various methods exist for estimating means
and variances from systematic sampling,
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although the estimates are biased unless certain
conditions are met (Levy & Lemeshow 1991).

The big risk with systematic sampling is that
the regular spacing may coincide with an
unknown environmental gradient and so any
inference to the whole population of possible
sampling units would be biased (Manly 2001). This
is probably more likely in field biology (e.g.
ecology) where environmental gradients can
occur at a range of different spatial and temporal
scales.

Systematic sampling can have a single random
starting point, where the first unit is chosen ran-
domly and then the remainder evenly spaced.
Alternatively, a cluster design could be used,
where clusters are chosen at random and then
systematic selection on secondary sampling units
within each cluster is used.

Finally, we should briefly mention adaptive
sampling. When a sampling program has a tempo-
ral component, which is often the case in biology,
especially when sampling ecological phenomena
or environmental impacts, then we might modify
our sampling design on the basis of estimates of
parameters early in the program. For example, we
might change our sample size based on prelimi-
nary estimates of variance or we might even
change to a stratified design if the initial simple
random sampling indicates clear strata in the pop-
ulation that were not detected early on.
Thompson (1992) provides an introduction to
adaptive sampling but a more detailed text is
Thompson & Seber (1995).

7.1.2 Size of sample
If we have idea of the level of variability between
sampling units in our population, we can use this
information to estimate the required sample size
to be confident (e.g. 95% confident) that any
sample mean will not be different from the true
mean by more than a specified amount under
repeated sampling. The calculations are simple,
assuming we have sampled randomly and the
Central Limit Theorem (Chapter 2) holds:

n� (7.4)

where z is the value from a standard normal dis-
tribution for a given confidence level (z equals 1.96

z2	 2

d2

for 95% confidence so z2 approximately equals
four – Manly 2001), 	2 is the variance of the popu-
lation (usually estimated with s2 from some pilot
sample or previous information) and d is the
maximum allowable absolute difference between
the estimated mean and the true population
mean. Note that the estimation of sample sizes
depends on the variance estimate from the pilot
study matching the variance in the population
when we sample.

7.2 Experimental design

While our emphasis is on manipulative experi-
ments, most of the principles we will outline
below also apply to non-manipulative contrasts
that we might make as part of sampling pro-
grams. General principles of experimental design
are described in many standard statistical texts,
and in great statistical detail in some very good,
specialized books, such as Mead (1988) and
Underwood (1997). Hairston (1989) and Resetarits
& Fauth (1998) describe many examples of ecolog-
ical experiments and evaluate their design.

The most important constraint on the unam-
biguous interpretation of an experiment is the
problem of confounding. Confounding means
that differences due to experimental treatments,
i.e. the contrast specified in your hypothesis,
cannot be separated from other factors that might
be causing the observed differences. A simple,
albeit trivial, example will illustrate the problem.
Imagine you wished to test the effect of a particu-
lar hormone on some behavioral response of cray-
fish. You create two groups of crayfish, males and
females, and inject the hormone into the male
crayfish and leave the females as the control
group. Even if other aspects of the design are OK
(random sampling, controls, etc.), differences
between the means of the two groups cannot be
unambiguously attributed to effects of the
hormone. The two groups are also different
genders and this may also be, at least partly, deter-
mining the behavioral responses of the crayfish.
In this example, the effects of hormone are con-
founded with the effects of gender. The obvious
solution is to randomize the allocation of crayfish
to treatments so that the two groups are just as
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likely to have males and
females. Unfortunately, pos-
sible confounding is rarely
this obvious and confounding can sneak into an
experimental design in many ways, especially
through inappropriate replication, lack of proper
controls and lack of randomized allocation of
experimental units to treatments. These issues
will be our focus in this chapter.

Sometimes, confounding is a deliberate part of
experimental design. In particular, when we have
too many treatment combinations for the
number of available replicate units, we might con-
found some interactions so we can test main
effects (Chapter 9). Designs with such deliberate
confounding must be used with care, especially in
biology where interactive effects are common and
difficult to ignore.

7.2.1 Replication
Replication means having replicate observations
at a spatial and temporal scale that matches the
application of the experimental treatments.
Replicates are essential because biological
systems are inherently variable and this is partic-
ularly so for ecological systems. Linear model
analyses of designed experiments usually rely on
comparing the variation between treatment
groups to the inherent variability between experi-
mental units within each group. An estimate of
this latter variability requires replicate units.

Replication at an appropriate scale also helps
us avoid confounding treatment differences with
other systematic differences between experimen-
tal units. For example, to test if there are effects of
fish predation on the abundance of a species of
bivalve on intertidal mudflats, we might set up a
field experiment using fish exclusion cages and
suitable cage controls (see Section 7.2.2 for discus-
sion of controls) over plots (experimental units)
on the mudflat. If we simply have a single exclu-
sion plot and a single control plot, then the effects
of our treatment (fish exclusion) are confounded

with inherent differences between the two plots
related to their spatial location, such as tidal
height, sediment composition, etc. With two or
more replicate plots for each of the two treat-
ments (exclusion and control), we can be much
more confident in attributing differences
between treatment and control plots to fish exclu-
sion rather than inherent plot differences. Note
that replication does not guarantee protection
from confounding because it is still possible that,
by chance, all our treatment plots are different
from our control plots in some way besides access
to fish. However, the risk of confounding is
reduced by replication, especially when combined
with randomized allocation of treatments to
experimental units (Section 7.2.3).

While most biologists are well aware of the
need for replication, we often mismatch the scale
of those replicates relative to treatments being
applied. Probably no other aspect of experimental
design causes more problems for biologists
(Hurlbert 1984). Imagine a study designed to test
the effects of fire on the species richness of soil
invertebrates. Fire is difficult to manipulate in the
field, so investigators often make use of a natural
wildfire. In our example, one burnt area might be
located and compared to an unburnt area nearby.
Within each area, replicate cores of soil are col-
lected and the species richness of invertebrates
determined for each core (Figure 7.1). The mean
number of species of invertebrates between the
two areas was compared with a t test, after verify-
ing that the assumptions of normality and equal
variances were met.

There is nothing wrong with the statistical test
in this example. If the assumptions are met, a t test
is appropriate for testing the H0 that there is no
difference in the mean number of invertebrate
species between the two areas. The difficulty is
that the soil cores are not the appropriate scale of
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Figure 7.1. Example of an
inappropriately replicated study on
the effects of fire on soil
invertebrates. Each area is sampled
with five replicate soil cores.



replication for testing the effects of fire. The
spatial unit to which fire was either applied or not
applied was the whole area, and the measures of
species richness from within the burned area
measure the impact of the same fire. Therefore,
there is only one replicate for each of the two treat-
ments (burnt and unburnt). With only a single rep-
licate area for each of our treatments, the effect of
fire is completely confounded with inherent dif-
ferences between the two areas that may also
affect invertebrates, irrespective of fire. It is very
difficult to draw conclusions about the effect of
fire from this design; we can only conclude from
our analysis that the two areas are different.

The replicate soil cores within each area
simply represent subsamples. Subsampling of
experimental units does not provide true replica-
tion, only pseudoreplication (sensu Hurlbert 1984).
Pseudoreplication is a piece of jargon that has
been adopted by many biologists and used to refer
to a wide range of flawed experimental designs. In
many cases, biologists using this term do not have
a clear understanding of the problem with a par-
ticular design, and are using the phrase as a catch-
all to describe different kinds of confounding. We
will avoid the term, in part to encourage you to
learn enough of experimental design to under-
stand problem designs, but also because the term
is a little ambiguous. The design is replicated, but
the replication is at the wrong scale, with repli-
cates that allow us to assess each area, and the dif-
ferences between areas, but no replicates at the
scale of the experimental manipulation.

Confounding as a result of inappropriate rep-
lication is not restricted to non-manipulative field
studies. Say as marine biologists, we wished to test
the effects of copper on the settlement of larvae of
a species of marine invertebrate (e.g. a barnacle).
We could set up two large aquaria in a laboratory
and in each aquarium, lay out replicate substrata
(e.g. Perspex panels) suitable for settling barnacle
larvae. We dose the water in one aquarium with a
copper solution and the other aquarium with a
suitable inert control solution (e.g. seawater). We
then add 1000 cyprid larvae to each aquarium and
record the number of larvae settling onto each of
the panels in each aquarium. The mean number
of settled larvae between the two aquaria was
compared with a t test.

We have the same problem with this experi-
ment as with the fire study. The appropriate
experimental units for testing the effects of
copper are the aquaria, not individual panels
within each aquarium. The effects of copper are
completely confounded with other inherent dif-
ferences between the two aquaria and panels are
just subsamples. We emphasize that there is
nothing wrong with the t test; it is just not testing
a null hypothesis about copper effects, only one
about differences between two aquaria. To prop-
erly test for the effects of copper (rather than just
testing for differences between two aquaria), this
experiment requires replicate treatment and
control aquaria. Note that this experiment has
other problems, particularly the lack of indepen-
dence between the multiple larvae in one aquar-
ium – barnacle cyprids are well known to be
gregarious settlers.

As a final example, consider a study to inves-
tigate the effects of a sewage discharge on the
biomass of phytoplankton in a coastal habitat.
Ten randomly chosen water “samples1” are taken
from the sea at a location next to the outfall and
another ten water “samples” are taken from the
sea at a location away (upcurrent) from the
outfall. As you might have guessed, the appropri-
ate units for testing the effects of sewage are
locations, not individual volumes of water. With
this design, the effect of sewage on phytoplank-
ton biomass is completely confounded with
other inherent differences between the two loca-
tions and the water “samples” are just subsam-
ples.

How do we solve these problems? The best
solution is to have replicates at the appropriate
scale. We need replicate burnt and unburnt areas,
replicate aquaria for each treatment, replicate
locations along the coast with and without
sewage outfalls. Such designs with correct replica-
tion provide the greatest protection against
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1 Biologists and environmental scientists often use the term
sample to describe a single experimental or sampling unit,
e.g. a sample of mud from an estuary, a sample of water from
a lake. In contrast, a statistical sample is a collection of one or
more of these units (“samples”) from some defined
population. We will only use the term sample to represent a
statistical sample, unless there are no obvious alternative
words for a biological sample, as in this case.



confounding. In some cases, though, replication
is either very difficult or impossible. For example,
we might have an experiment in which constant
temperature rooms are the experimental units,
but because of their cost and availability within a
research institution, only two or three are avail-
able. In the example looking at the effects of
sewage outfalls, we usually only have a single
outfall to assess, although there may be no limit
to the availability of locations along the coast
without outfalls. Experiments at very large
spatial scales, such as ecosystem manipulations
(Carpenter et al. 1995), often cannot have replica-
tion because replicate units simply don’t exist in
nature.

In situations where only one replicate unit is
possible for each treatment, especially in a true
manipulative experiment that is relatively short-
term, one possibility is to run the experiment a
number of times, each time switching the treat-
ments between the experimental units. For
example, run the copper experiment once, and
then repeat it after reversing which aquarium is
the treatment and which is the control.
Repositioning the aquaria and repeating the
experiment a number of times will reduce the
likelihood that differences between aquaria will
confound the effects of copper. Alternatively, we
could try and measure all variables that could pos-
sibly influence settlement of barnacles and see if
they vary between our aquaria – if not, then we
are more confident that the only difference
between aquaria is copper. Of course, we can never
be sure that we have accounted for all the relevant
variables, so this is far from an ideal solution.

For the sewage outfall example, the problem of
confounding can be partly solved by taking
samples at several places well away from the
outfall, so we can at least assess the amount of
variation between places. Ideally, however, we
need samples from several outfalls and corre-
sponding areas far away, but it is difficult to rec-
ommend the installation of multiple outfalls just
for statistical convenience. A substantial litera-
ture has developed to try and make a conclusion
about impacts of human activities when there is
only one place at which a potential impact occurs.
These designs are generally called Before-After-
Control-Impact (BACI) designs (Green 1979,

Stewart-Oaten et al. 1986), and various suggestions
include sampling through time to provide replica-
tion, sampling multiple control areas, etc. These
designs have been contentious, and a critical eval-
uation of their pros and cons can be found in
Keough & Mapstone (1995) and Downes et al.
(2002).

The above examples illustrate spatial con-
founding, but confounding with time can also
occur, although it is less common. Consider an
experiment to test for the effects of floods on drift-
ing insects in streams. We might set up six artifi-
cial stream channels with drift nets at the end –
six stream channels are all we have available. We
want to impose two treatments, high flow and
normal flow, and we know from previous work
that we will need a minimum of six replicates per
treatment to detect the desired effect if it occurs
(see Section 7.3 on power analyses). We could do
the experiment at two times with six replicates of
high flow at time one and six replicates of normal
flow at time two. Unfortunately, the effects of flow
would be completely confounded with differences
between the two times. The appropriate design of
this experiment would be to have three replicates
of each treatment at each time, therefore becom-
ing a two factor experiment (treatment and time).
If we only have enough experimental units to have
one replicate for each treatment, then we can use
time as a blocking factor (see Chapter 10).

7.2.2 Controls
In most experimental situations, many factors
that could influence the outcome of the experi-
ment are not under our control and are allowed to
vary naturally. Therefore, it is essential to know
what would happen if the experimental manipu-
lation had not been performed. This is the func-
tion of controls. An excellent example of the need
for controls comes from Hairston (1980, see also
1989) who wished to test the hypothesis that two
species of salamanders (Plethodon jordani and P. glu-
tinosus) in the Great Smoky Mountains compete.
He set up experiments where P. glutinosus was
removed from plots. The population of P. jordani
started increasing during the three years follow-
ing P. glutinosus removal, but the population of P.
jordani on control plots (with P. glutinosus not
removed) showed an identical increase. Without
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the control plots, the increase in P. jordani might
have been incorrectly attributed to P. glutinosus
removal.

Simply deciding to have controls is not
enough. The controls must also allow us to elimi-
nate as many artifacts as possible introduced by
our experimental procedure. For example,
research in animal physiology often looks at the
effects of a substance (e.g. some drug or hormone
or toxin) on experimental animals, e.g. rats, or in
vitro tissue preparations. The effects of the sub-
stance are assessed by comparing the response of
animals injected with the substance to the
response of control animals not injected.
However, differences in the responses of the two
groups of animals may be due to the injection pro-
cedure (handling effects, injury from needle etc.),
not just the effect of the substance. The effects of
the substance are confounded with differences in
experimental procedure. Such an experiment
would need control animals that are injected with
some inert substance (e.g. saline solution), but
which undergo the experimental procedure iden-
tically to the treatment animals; such a control is
sometimes termed a procedural control. Then any
difference between the groups can be more confi-
dently attributed to the effect of the substance
alone.

Ecological field experiments also offer chal-
lenges in designing appropriate controls (Hairston
1989, Underwood 1997). For example, to examine
the effect of predatory fish on marine benthic
communities, we might compare areas of substra-
tum with fish exclusion cages to areas of substra-
tum with no cages. However, the differences
between two types of area may be due to effects of
the cages other than excluding fish (e.g. shading,
reduced water movement, presence of hard struc-
ture). The effects of fish exclusion are confounded
with these other caging effects. We must use cage
controls, e.g. cages that have larger gaps in the
mesh that allow in fish but are otherwise as
similar to the exclusion cages as possible. Then,
any difference between treatments can be more
confidently attributed to the effect of excluding
fish alone. This is not a simple matter – if a major
effect of cages is to alter water movement (and
hence sedimentation), it may be difficult to leave
big enough gaps for fish to enter at the same rate

as they enter uncaged areas, without changing
flow rates. In many cases, the cage control will be
physically intermediate between caged and
uncaged areas. The marine ecological literature
contains many examples of different kinds of cage
controls, including the step of using cages to both
enclose and exclude a particular predator.

Ecological experiments sometimes involve
translocating organisms to different areas to test
a specific hypothesis. For example, to test what
determines the lower limit of intertidal gastro-
pods on intertidal rocky shores, we might con-
sider translocating gastropods to lower levels of
the shore. If they die, it may be an effect of height
on the shore or an effect of translocation proce-
dure. Appropriate controls should include gastro-
pods that are picked up and handled in exactly
the same way as translocated animals except they
are replaced at the original level. Additional con-
trols could include gastropods at the original level
that are not moved, as a test for the effects of han-
dling by themselves. Controls for translocation
experiments are tricky – see Chapman (1986) for a
detailed evaluation.

7.2.3 Randomization
There are two aspects of randomization that are
important in the design and analysis of experi-
ment. The first concerns random sampling from
clearly defined populations, as we discussed in
Chapter 2 and in Section 7.1.1. It is essential that
the experimental units within each of our treat-
ments represent a random (or at least haphazard)
sample from an appropriate population of experi-
mental units. This ensures that our estimates of
population parameters (means, treatment effects,
mean squares) are unbiased and our statistical
inferences (conclusions from the statistical test)
are reliable.

For example, our experimental animals that
received a substance in a treatment should repre-
sent a random sample of all possible animals that
we could have given the substance and about
which we wish to draw conclusions. Our caged
plots in the marine example must be a random
sample of all possible caged plots in that habitat –
similarly for our control plots. We must clearly
define our treatment (and control) populations
when we design our experiment. The converse is
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that we can only draw conclu-
sions about the population
from which we have taken a
random sample. If our plots on
a mud flat were scattered over
a 20 m�20 m area, then our
conclusions only apply to that
area; if we used a particular
strain of rats, then we have
only a conclusion about that genetic strain, and so
on.

The second aspect of randomization concerns
the allocation of treatments to experimental
units or vice versa. One of the standard recom-
mendations in experimental design is that the
experimental units be randomly allocated to
treatment groups. This means that no pattern of
treatments across experimental units is subjec-
tively included or excluded (Mead 1988) and
should ensure that systematic differences
between experimental units that might confound
our interpretation of treatment effects are mini-
mized (Hurlbert 1984, Underwood 1997). The cray-
fish example described at the beginning of
Section 7.2 is an illustration, if somewhat con-
trived, of the problem.

An artificial example, analogous to one
described by Underwood (1997), involves an
experiment looking at the difference in growth
rates of newly hatched garden snails fed either the
flowers or the leaves of a particular type of plant.
The flowers are only available for a short period of
time, because the plant flowers soon after rain.
When the flowers are available, we feed it to any
snails that hatch over that period. Snails that
hatch after the flowering period are given the
leaves of the plant. The obvious problem here is
that the two groups of snails may be inherently
different because they hatched at different times.
Snails that hatch earlier may be genetically differ-
ent from snails that hatch later, have had differ-
ent levels of yolk in their eggs, etc. Our results may

reflect the effect of diet, or they may reflect differ-
ences in the snails that hatch at different times,
and these two sources of variation are con-
founded. Clearly, we should take all the snails that
hatch over a given period, say the flowering
period, and give some of them flowers and others
leaves to eat.

The allocation of experimental units to treat-
ments raises the difficult issue of randomization
versus interspersion (Hurlbert 1984). Reconsider
the experiment described earlier on the effects of
fish predation on marine benthic communities.
Say we randomly choose ten plots on an intertidal
mudflat and we randomly allocate five of these as
fish exclusion (E) plots and five as cage-control (C)
plots. What do we do if, by chance, all the control
plots end up higher on the shore than all the
exclusion plots (Figure 7.2)? Such an arrangement
would concern us because we really want our
treatment and control plots to be interspersed to
avoid confounding fish effects with spatial differ-
ences such as tidal height. The simplest solution if
we end up with such a clumped pattern after an
initial randomization is to re-randomize – any
other pattern (except the complete reverse with all
control plots lower on the shore) will incorporate
some spatial interspersion of treatments and con-
trols. However, we must decide a priori what
degree of spatial clumping of treatments is unac-
ceptable; re-randomizing until we get a particular
pattern of interspersion is not really randomiza-
tion at all.

Why not guarantee interspersion by arranging
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Figure 7.2. Possible result of
random allocation of ten plots on an
intertidal mudflat to two treatments
– fish exclusion (E) and cage-control
(C).



our plots regularly spaced along the shore and
alternating which is exclusion and which is
control (Figure 7.3)? One problem with this design
is that our plots within each group no longer rep-
resent a random sample of possible plots on this
shore so it is difficult to decide what population of
plots our inferences refer to. Also, it is possible
that the regular spacing coincides with an
unknown periodicity in one or more variables
that could confound our interpretation of the
effects of excluding fish. A compromise might be
to randomly select plots on the shore but then
ensure interspersion by alternating exclusions
and controls. At least we have chosen our plots
randomly to start with so the probability of our
treatments coinciding with some unknown, but
systematic, gradient along the shore won’t change
compared to a completely randomized design.
There is still a problem, however; because, once we
have allocated an E, the next plot must be a C, and
it becomes more difficult to know what popula-
tion our E and C plots refer to. This example has
additional complications – our replicates will not
be truly random, as we will have some minimal
separation of replicates. We would not place plots
on top of each other, and, as biologists, we have
some feeling for the distance that we need to keep
plots apart to ensure their independence. If the
minimum separation distance is large, we may
tend towards uniformly spaced replicates. In a
field study, it is also possible that plots are easier
to find when they are regular, or, for example if we
are working on an intertidal mudflat, with plots

not marked clearly, regular
spacing of plots makes it
easier for researchers and
their assistants to avoid
walking on one plot acciden-
tally when moving across the
area. The eventual positioning
of replicates will be a combina-

tion of desired randomization, minimum
spacing, and logistic considerations.

This issue of randomization versus intersper-
sion illustrates one of the many grey areas in
experimental design (and in philosophy – see
debate between Urbach 1984 and Papineau 1994).
Randomization does not guarantee avoidance of
confounding but it certainly makes it less likely.
With only a small number of experimental units,
spatial clumping is possible and deliberate inter-
spersion, but combined with random sampling,
might be necessary. It is crucial that we recognize
the potential problems associated with non-
randomized designs.

7.2.4 Independence
Lack of independence between experimental
units will make interpretation difficult and may
invalidate some forms of statistical analysis.
Animals and plants in the same experimental
arena (cage, aquarium, zoo enclosure, etc.) may be
exposed to a set of physical and biological condi-
tions that are different from those experienced by
organisms in other arenas. We may have a
number of preparations of tissue from a single
animal, and other such sets taken from other
animals. The animals may differ from each other,
so two tissue samples from the same animal
might have more similar responses than two
pieces of tissue chosen at random from different
animals or plants. We will consider statistical
problems arising from lack of independence in
the appropriate chapters.
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Figure 7.3. Regular positioning of
ten plots on mudflat combined with
systematic allocation of plots to two
treatments – fish exclusion (E) and
cage-control (C) – to guarantee
interspersion.



7.2.5 Reducing unexplained variance
One of the aims of any biological research project
is to explain as much about the natural world as
possible. Using linear models, we can estimate the
amount of variation in our response variable that
we have explained with our predictor variables.
Good experimental design will include considera-
tion of how to reduce the unexplained variation
(MSResidual) as much as possible. There are two
broad strategies to achieve this.

• Including additional predictor variables in our
analyses. We have discussed this in the context
of multiple regression in Chapter 6 and will
examine it further in the analysis of
multifactor experiments in Chapter 9.

• Change the spatial structure of the design,
particularly by incorporating one or more
blocking variables. This will be discussed in
Chapters 10 and 11.

7.3 Power analysis

Recall from Chapter 3 that the complement to a
Type II error is the concept of power – the long-run
probability of detecting a given effect with our
sample(s) if it actually occurs in the population(s).
If � is the risk of making a Type II error, 1��, or
power, is the probability that we haven’t made an
error. More usefully, statistical power is a measure
of our confidence that we would have detected an
important effect if one existed.

This concept can be used in a range of situa-
tions. In designing an experiment or making an a
posteriori assessment of the usefulness of an experi-
ment, the important questions are as follows.

Supposing that there is a change of a particu-
lar size, what kind of sampling program would be
needed to detect that change with reasonable cer-
tainty (or to estimate the magnitude of such a
change)? Or, given a particular level of resources,
what kind of change could we reasonably expect
to detect? For post hoc assessment (of a non-signifi-
cant result), we must ask, if our treatments really
did have an effect (of a particular size), would we
have detected that effect with our experimental
design and analysis?

Power analysis is therefore a useful tool for

designing an experiment, and it should (but will
not, unfortunately, in many cases) also provide
justification for publishing non-significant
results.

An emerging body of the statistical and biolog-
ical literature is concerned with questions of
power. Here we provide a very broad overview of
the uses of statistical power, but for detailed plan-
ning of specific experiments or programs, good
general reviews are provided by Cohen (1988,
1992), Peterman (1990a,b), National Research
Council (1990), Fairweather (1991), and Keough &
Mapstone (1995). We will also return to power
analysis as we begin to consider more complex
designs later in this book.

To determine the power of an analysis, we
need to specify the alternative hypothesis (HA), or
effect size, that we wish to detect. For most types
of analyses (e.g. simple two group comparisons,
ANOVA and regression models), power is propor-
tional to the following.

• Effect size (ES) – how big a change is of inter-
est. We are more likely to detect large effects.

• Sample size (n) – a given effect is easier to
detect with a larger sample size.

• Variance (	2) between sampling or experimen-
tal units – it is harder to detect an effect if the
population is more variable.

• Significance level (�) to be used. Power varies
with �. As mentioned in Chapter 3, most biolo-
gists use a value of ��0.05.

More formally, 

Power � (7.5) 

Exactly how we link values of these parameters to
power depends on the particular statistical test
being used (hence the proportional sign in the
equation). For individual cases, we construct a spe-
cific equation, usually using the relevant non-
central statistical distribution2, which in turn
requires precise knowledge of the statistical test
that will be used (see Box 7.1 and Figure 7.4).

ES � �n
	

164 DESIGN AND POWER ANALYSIS

2 A non-central distribution describes the distribution of our
test statistic that would be expected if HA, rather than H0, is
correct.
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Figure 7.4. Power functions for
the abalone example.The panel on
the left is for n�24, and the dashed
lines indicate the solution for 80%
power.The right panel shows
detectable effect size vs sample size,
and the dashed line shows the
calculated effect size.

Box 7.1 Simple example of power analysis

In an earlier project (Keough & King 1991), we were examining the effect of closing
a range of shores to collection of abalone, through proclamation of two marine
parks. The closure was contentious, denying both commercial and recreational
divers the chance to collect, and, therefore, it was imperative to collect information
to test whether the management strategy had worked. The assumption (untested)
was that exploitation of abalone had reduced abundances. The intention was to
survey a range of rocky headlands after a few years of protection, surveying areas
where collection was still allowed and areas where it had been banned (there were
no differences between these areas before proclamation of the marine parks). The
important question was the feasibility of these surveys. The parameters of the
power equation were estimated as follows:

• the test of management could be simplified to a t test, with a replicate obser-
vation being a rocky reef site (with some replicate observations within each
reef, to get a better idea of its state),

• a was left at 0.05, and 1�b set to 0.80, by convention, and
• r was estimated by sending teams of divers out to sample a range of sites in

the same way planned for the real monitoring. Those pilot surveys produced a
mean density of abalone of 47.5 legal-sized animals per 50 m2 area, with a
standard deviation of 27.7. This latter value was used as an estimate of r.

In the first case, let’s calculate the number of observations (sites) required.
Determining the effect size was very difficult, as little work had been done on these
animals in the areas concerned, and was eventually calculated using a range of
unconnected data sets. As a working assumption, recreational divers and poachers
were assumed to take approximately as many animals as commercial divers.
Commercial divers were required to file regular reports listing the mass of abalone
taken, broken down into small reporting regions. An earlier paper (McShane &
Smith 1990) had described size–frequency relationships for commercial catches of
abalone, and length–weight relationships (McShane et al. 1988), so it was possible
to convert a mass of abalone into an average number of animals taken per year
from each reporting region. Another fisheries publication provided maps of major
abalone reefs, giving their approximate areas. From these data, the number of
animals taken could be converted into an approximate number per 50 m2. In this
case, the value for heavily fished areas (averaged over 6 years of diver returns) was



7.3.1 Using power to plan experiments
(a priori power analysis)

There are two ways that power analysis can be
used in the design of an experiment or sampling
program.

Sample size calculation (power, �, �, ES known)
The most common use of power analysis during
the planning of an experiment is to decide how
much replication is necessary. We can then decide
whether it is feasible to use this many replicates.
To do these calculations, we need to specify the
effect size and have an estimate of 	. At the plan-
ning stage, you may not have a good idea of the
variation you are likely to get, and need to get an
estimate, either from previous studies or pilot
work. The most difficult step will be specifying the
effect size (Section 7.3.3).

Effect size (power, n, �, known)
If external factors are likely to restrict the number
of observations (sample size) to relatively low
levels, the alternative approach is to calculate the
constraints of the experiment – using this many
observations, and with the likely background

variability, what is the smallest change that we
could expect confidently to identify? This situa-
tion is common when the sampling itself is expen-
sive. For example: 

• expensive laboratory analyses for trace chemi-
cals, 

• benthic marine sampling requiring large
ships, 

• if there are few laboratories capable of doing
assays,

• if processing each observation takes a large
amount of your time,

• experimental units are expensive, such as
doing physiological work on small mammals,
where the cost of each animal may be very
restrictive, especially for students.

At either the planning stage, or after an
experiment or sampling program has been com-
pleted, it is possible to calculate the size of change
that could be or could have been detected. This
has been termed “reverse power analysis” by
Cohen (1988), and the effect size that we calculate
has been labelled the Minimum Detectable Effect
Size (MDES). We are asking, for a given level of
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11.6 animals m�2, or approximately 25% of the standing stock. Adding supposed
recreational and poaching catches, these values become 23.2, and 50%, respectively.

The power calculations then become quite simple, and can be done using a
range of software packages. For these values, the number of sites to be sampled is
24.

In the second case, if we are unhappy with the number of approximations made
in calculating the effect size, we could construct a curve of MDES vs n (Figure 7.4)3.
The relationship is also shown as a curve of power vs effect size for n equals 24, to
illustrate the comparison with the first approach. Note that the solution for 80%
power corresponds to an effect size of 23.

The important panel is the one for detectable effect size vs sample size, showing
that small numbers of sites (less than seven) would require at least a doubling of
the number of legal-sized abalone in the area for an effect to show up, whereas our
best guess is that the change is more likely to be around 50%, and the dashed line
shows that an effect size of 23 corresponds to n�24. The curve also emphasizes
the rapid returns resulting from an increase in sample size, if you start with a poorly
replicated experiment – the detectable effect declines dramatically at low n values,
but tapers off, indicating a region of diminishing return.

3 We constructed the curve shown on using the free software package Power Pack, written by
Russell Lenth. His web site (www.divms.uiowa.edu/~rlenth/Power) includes several options for
doing power calculations.



background variability, sample size, and a desired
certainty or power, how big would the change
need to be before we would detect it as signifi-
cant? Again, it is best to use this calculation
beforehand, to decide if the work is worth doing,
and although it might also be used afterwards to
reassure readers that everything was done prop-
erly. Calculating the detectable effect may be a
preferred solution when you are not comfortable
with specifying an a priori effect size.

For example, from surveys of intertidal mol-
luscs in protected and collected areas near
Williamstown in Victoria, we found changes of
15–25% in the mean size of species that are col-
lected by humans (Keough et al. 1993). Because
these data came from surveys, rather than con-
trolled experiments, we also measured sizes of a
set of species that are not collected by humans in
great numbers. To be confident that the patterns
seen for collected species did not reflect a
response to some unmeasured environmental var-
iable, we analysed the non-collected species, and
found no significant difference between sites with
and without human access. For non-collected
species to be an appropriate control, we need to be
confident that we could have detected a pattern
the same as that shown by collected species. We
used power analysis to show that our sampling
program would have detected a change as small as
10% for some of these species, i.e., if non-collected
species changed as much as collected ones, we
would have detected it (Keough et al. 1993).

Sequence for using power analysis to design
experiments

The statistical design stage of any experiment or
sampling program should include the following
steps.

1. State clearly the patterns to be expected if
no effect occurs, and the patterns expected if
there are changes. In formal statistical terms,
this corresponds to clear formulations of the
null hypothesis and its alternative.

2. Identify the statistical model to be applied
to the data, and state the desired power and the
significance levels to be used.

3. Identify the assumptions of that statistical
procedure. If possible, use existing or compara-

ble data as a rough guide to whether those
assumptions are likely to be satisfied. Consider
possible data transformations. If you expect to
use transformed data, the effect size must be
expressed on that transformed scale. For
example, if you are interested in a doubling of
numbers of a particular organism, and will
analyze log-transformed data, your effect size
will be 0.301 when converted to a log10 scale.

4. Obtain some pilot estimate of variation in
the variable to be analyzed. In some cases, we
require estimates of variation in space and time,
while in other cases we may only be comparing
in space or through time alone. In some
ecological studies, estimating variation through
time requires pre-existing data sets involving
time periods of at least a few years. If there are
no local data, some ballpark estimates may be
obtained from the literature from other
geographic regions. It is crucial that the estimate
of variability must be based on same scales of
space and time as your final data. There is no
reason to expect that variation on one scale will
be a good predictor of variation on a different
scale.

If you have complex experimental designs
(e.g. Chapters 9–11), you need to think about the
variation that is used to test a particular
hypothesis. If you have, for example, nested or
split-plot designs, different hypotheses will be
tested against different measures of variation,
and you would need to do power analyses for
each separate hypothesis. Importantly in this
context, you must get an estimate of 	 at the
appropriate level.

5. The next step depends on whether your
design will be limited by logistical constraints.

(a) If our aim is to design the best possible
experiment, we should specify the effect size
that we wish to detect – how large a change is of
biological interest? The implication here is that
detecting changes less than the specified
amount has low priority. In practice, this
decision is very difficult, but it is nevertheless
critical. The effect size may be chosen from a
range of sources, e.g. other studies of the same
biological system, studies of other processes that
you might wish to compare to the one you are
investigating, etc. (Section 7.3.3). Using our
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desired ES, an estimate of 	 and the specified
value of �, it should then be possible to calculate
the number of replicates needed to detect that
effect size with power 1��.

(b) If we have constraints on the size of our
experiment or sampling program, we can use an
estimate of 	, the chosen values of � and � and
the upper limit to the number of observations
possible to determine the Minimum Detectable
Effect Size (MDES). It is often useful to calculate
MDES values for a range of sampling efforts, and
to represent the results as a plot of MDES versus
sample size. This relationship can then be used
to show how much return we would get for a big
change in sampling effort, or the sample size
necessary to reach a particular MDES value (see
Peterman 1989).

7.3.2 Post hoc power calculation
If an experiment or sampling program has been
completed, and a non-significant result has been
obtained, post hoc power analysis can be used to
calculate power to detect a specified effect, or to
calculate the minimum detectable effect size for
a given power. Calculating post hoc power requires
that we define the effect size we wished to detect,
given that we know n and have an estimate of 	.
Obviously, once the experiment has been done, we
have estimates of 	, e.g. from the MSResidual from a
regression or ANOVA model, and we know how
much replication we used. The effect size should
be the size of change or effect that it is important
for us to detect. It is obviously useful to demon-
strate that our test had high power to detect a bio-
logically important and pre-specified effect size
(Thomas 1997). The downside is that if power is
low, all that you have demonstrated is your inabil-
ity to design a very good experiment, or, more
charitably, your bad luck in having more variable
data than expected! It is far more useful to use
these calculations at the planning stage (Section
7.3.1; Underwood 1999). After an experiment, we
would expect to use the calculations to satisfy our-
selves that power is high enough, that our initial
power calculations, often based on very rough
estimates of variance, were correct.

Some statistical packages offer a flawed kind of
post hoc power calculation, sometimes called
“observed power” (Hoenig & Heisey 2001). In this

approach, we use the existing analysis to estimate
both the effect size and sample variance, and use
those values in the power equation. For example,
in a two-sample t test, we would use the difference
between the two means as the effect size. This
observed effect size is unlikely to match a differ-
ence that we decide independently is important.
Perhaps most importantly, Hoenig & Heisey (2001)
have demonstrated that observed power has a 1:1
relationship with the P value so higher P values
mean lower power and calculation of observed
power tells us nothing new (see also Thomas
1997). We emphasize again the importance of
thinking carefully about the kinds of effects that
you wish to detect in any experiment, and the
value of making this and other decisions before
you sample.

Post hoc power calculations can be used to con-
vince reviewers and editors that our non-signifi-
cant results are worth publishing. Despite the
clear value of a confident retention of a null
hypothesis (see Underwood 1990, 1999), it can still
be difficult in practice to get such results pub-
lished. We have already emphasized in Chapter 3
that any assessment of the literature can be seri-
ously compromised by the “file-drawer problem”.
If non-significant results are less likely to be pub-
lished, because of an active policy of editors and
referees or lack of enthusiasm of the researchers,
then unbiased syntheses of a particular discipline
are not possible. Providing measures of observed
effect size and showing you had good power to
detect pre-specified effect sizes of biological inter-
est will make non-significant results much more
interpretable.

7.3.3 The effect size
The most difficult step of power analyses is decid-
ing an effect size. Our aim is to identify an effect
of experimental treatments that we consider
important, and that, therefore, we would want to
detect. How do we decide on an important effect?
The decision is not statistical, but in most cases
uses biological judgment by the research worker,
who must understand the broad context of the
study. In most pieces of research, the work is not
self-contained, but our aim is to investigate a phe-
nomenon and to compare that phenomenon to
related ones. We might want to:
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• compare results for our species to those for
other species,

• compare the role of a particular biological
process to other processes acting on a particu-
lar species or population, or

• contrast the physiological responses to a chem-
ical, gas mixture, exercise regime, etc., to other
such environmental changes.

In these cases, we should be guided by two
questions. Can we identify a change in the
response variable that is important for the organ-
ism, such as a change in a respiration parameter,
blood pressure, etc., that would be likely to impair
an organism’s function, or a change in population
density that would change the risk of local extinc-
tion? What were the levels of response observed in
the related studies that we intend to compare to
our own? These questions sound simple, but are
in practice very difficult, especially in whole-
organism biology, where we are often dealing
with biological systems that are very poorly
studied. In this case, we may not be able to predict
critical levels of population depletion, changes in
reproductive performance, etc., and will have very
little information with which to make a decision.
The available information gets richer as we move
to sub-organismal measurements, where work is
often done on broadly distributed species, stan-
dard laboratory organisms, or on systems that are
relatively consistent across a wide range of
animals or plants. In any case, we must decide
what kind of change is important to us.

What if we can not identify an effect size about
which we feel confident?

Quite often, we will not be able to select an effect
size that we could defend easily. In this case, there
are three options available. 

1. Use an arbitrary value as a negotiating
point. In many published ecological studies,
including a range of environmental impact
studies, an arbitrary change, usually of 50 or
100% (relative to a control group) in the
abundance of a target species, has been used.
These values seem to be accepted as being
“large”, and with the potential to be important.
They are not necessarily biologically meaningful
– a much smaller change may be important for

some populations, while others that vary widely
through time may routinely change by 50% or
more between years or places. The major value of
this approach is in environmental monitoring,
where a sampling program may be the result of
negotiation or arbitration between interested
parties arguing for increases and decreases in
the scope of the monitoring program.

2. Cohen (1988) proposed conventions of large,
medium, and small effects. Rather than
expressing an effect size as, for example, a
difference between two means, he standardized
the effect size by dividing by 	. For a simple case
of comparing two groups, he suggested, based on
a survey of the behavioral and psychological
literature, values of 0.2, 0.5, and 0.8 for
standardized differences (i.e., ( ȳa� ȳb)/	, for small,
medium, and large). He acknowledged that these
values are arbitrary, but argued that we use
arbitrary conventions very often, and proposed
this system as one for dealing with cases where
there is no strong reason for a particular effect
size. These values may or may not be appropriate
for his field of research, but they are not
necessarily appropriate for the range of biological
situations that we deal with. A critical change in
migration rates between geographically
separated populations, for example, will be very
different when we are investigating genetic
differentiation between populations, compared
to measuring ecologically important dispersal
that produces metapopulations. Considerable
exchange is necessary for ecological links, but
very low rates of exchange are sufficient to
prevent genetic separation. Any broad
recommendation such as Cohen’s must be
tempered by sensible biological judgment.

3. A more useful approach may be the one we
describe above, in which, rather than use a
single effect size, we plot detectable effect size
versus sampling effort or power versus effect
size. In this case, we get an idea of the kinds of
changes that we could detect with a given
sampling regime, or, the confidence that we
would have in detecting a range of effects. While
we don’t have a formal criterion for deciding
whether to proceed, this approach is useful for
giving an idea of the potential of the
experiment.
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Environmental monitoring – a special case
One common activity for biologists is to assess the
effects of various human interventions in the
natural environment, and, in this case, we are not
always comparing our results to a broader litera-
ture, but collecting information to make deci-
sions about the acceptability of a particular
activity, in a particular region. The question, then,
is whether the activity in question has an unac-
ceptable impact. We need to decide how big a
change in the response variable is unacceptable.
In this case, we may get advice on the effect size
from formal regulations (e.g. criteria for water
quality, setting standards for human health or
environmental “health”). There may also be occa-
sions when the level at which the human popula-
tion becomes concerned defines the target effect
size. This level may be unrelated to biological cri-
teria. For example, oiled seabirds washing up on
beaches triggers public complaints, but the
number of sick or dead animals may not result in
a population decline. There will, however, be
intense pressure to monitor charismatic mega-
fauna, with an effect size determined by political
considerations. In other monitoring situations,
we may fall back on arbitrary values, using them
as a negotiating point, as described above. Keough
& Mapstone (1995, 1997) have described this
process, and there is a good discussion of effect
sizes in Osenberg et al. (1996).

7.3.4 Using power analyses
The importance of these power calculations is
that the proposed experiment or sampling
program can then be assessed, to decide whether
the MDES, power, or sample size values are accept-
able. For example, if the variable of interest is the
areal extent of seagrass beds, and a given sam-
pling program would detect only a thousand-fold
reduction over ten years, it would be of little
value. Such a reduction would be blindingly
obvious without an expensive monitoring
program, and public pressure would stimulate
action before that time anyway.

If the results of the power analyses are accept-
able because the MDES is small enough, or the rec-
ommended number of observations is within the
budget of the study, we should proceed. If the
solution is unacceptable, the experiment will not

be effective, and the level of replication should be
increased. If you decide to go ahead with no
increase in sample size, it is important that you
are aware of the real limitations of the sampling.
Proceeding with such a program amounts to a
major gamble – if a real effect does occur, the
chance of your actually detecting it may be very
low – often less than 20%, rather than the com-
monly used 80%. That means that there is a high
probability that you’ll get a non-significant result
that is really a non-result – a result in which you
have little confidence, and your resources will
have been wasted. You may be lucky, and the effect
of your treatments may be much larger than the
one you aimed to detect, but that result is
unlikely.

How much should you gamble? Again, there’s
no simple answer, as we are dealing with a contin-
uum, rather than a clear cut-off. If the power is
75%, you wouldn’t be too worried about proceed-
ing, but what of 70%? 50%? The decision will most
often be the result of a suite of considerations.
How exciting would a significant result be? How
important is it that we get some information,
even if it’s not conclusive? Will some other people
add to my data, so eventually we’ll be able to get a
clear answer to the hypothesis? Would an unpub-
lishable non-significant result be a career impedi-
ment? The answer to the last question depends on
who you are, what stage of your career you are at,
how strong your scientific record is, and so on.

If you aren’t willing to gamble, you have only
a couple of options. The first is to look hard at the
experimental design. Are there ways to make the
experiment more efficient, so I need less time or
money to deal with each replicate? Decreasing the
resources needed for each experimental unit
may allow you to increase the sample size.
Alternatively, are there other variables that could
be incorporated into the design that might reduce
the background noise?

The second option, which is intermediate
between a calculated gamble and rethinking the
analysis, is the approach described in Chapter 3,
in which we don’t regard the rates of Type I and
Type II errors as fixed. One conventional approach
would be to use a less stringent criterion for statis-
tical significance, i.e., increase �, producing an
increase in power. This solution isn’t satisfactory,
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as we would still be allowing the Type II error rate
to fluctuate according to logistic constraints, and
just fixing the Type I error rate at a new value. The
solution proposed by Mapstone (1995) is that,
when we must compromise an experimental
design, we do so by preserving the relative sizes of
the two errors. He suggests that, as part of the
design phase, we have identified the desirable
error rates, and those two rates should be chosen
to reflect our perception of the importance of the
two kinds of errors. He suggested that compro-
mises should preserve those relative rates, so that
if we proceed with a less than optimal experi-
ment, we are more likely to make both kinds of
decision errors. That approach has been detailed
for environmental monitoring by Keough &
Mapstone (1995, 1997), including a flow diagram
to detail those authors’ view of how a sampling
program gets designed. This approach is sensible,
but it is too soon to see if it will gain wide accep-
tance in the broader scientific literature.

Occasionally, the calculations may show that
the MDES is much less than the desirable effect
size, suggesting that the experimental/sampling
program is more sensitive than expected. In this
case, you could consider reducing the replication,
with the possibility of using “spare” resources for
further studies. Our experience suggests that this
latter situation is uncommon.

While formal power analysis is part of the
Neyman–Pearson approach (Chapter 3), and most
often discussed as part of hypothesis testing, the
general principles apply to other statistical tasks.
When estimating the value of a particular param-
eter, we may wish to be certain that we produce an
accurate estimate of that parameter (Section
7.1.2), and the confidence that we have in that esti-
mate will be similar to power, depending on sam-
pling effort, variability, etc. If our aim is to
produce a confidence interval around an esti-
mate, the procedures become even more similar –
a confidence interval requires a statement about
the level of confidence, e.g. 0.95, and depends also
on sampling effort and variation. We must also
make some decision about the distribution of our
parameter, either by assigning a formal distribu-
tion (e.g. normal, Poisson), or by opting for a ran-
domization procedure.

A priori power analysis should, we think, be a

routine part of planning any experiment. Our
initial power estimates may be quite crude, espe-
cially when we have a poor estimate of the varia-
tion present in our data. As we will see in later
chapters, too, for complex designs, we may be
faced with a large range of power curves, corre-
sponding to different patterns among our treat-
ments, and we will not be sure what pattern to
expect. However, we will at least know whether
“important” effects are likely to be detected, given
our available resources. Having that knowledge
makes us decide whether to reallocate our
resources to maximize the power for our key
hypotheses.

Perhaps the most valuable part of a priori
power analysis is that, to do the calculations, we
must specify the alternative hypothesis, and, most
importantly, the statistical model that we will
apply to the data. Specifying the model makes us
think about the analysis before the data have been
collected, a habit that we recommend strongly.

The final, important point is that power calcu-
lations, especially at the planning stage, are
approximate. We usually use pilot estimates of
variation that, if we do the appropriate calcula-
tions, tend to have alarmingly large confidence
intervals, so our power estimates will also have
considerable imprecision. If our target power
value is 0.80, we should be looking for calcula-
tions that give power values in this region. Often,
our sample sizes in biological work are quite
small, and power values move in substantial incre-
ments, because the sample size, n, is an integer. In
planning, we should not focus on whether power
is 0.75, 0.80, etc., but on making sure we have
enough samples to approach the desirable value,
rather than giving values of 0.30 or 0.40.

7.4 General issues and hints for
analysis

7.4.1 General issues

• When thinking about experimental design,
the need for appropriate controls is familiar to
most researchers, but less attention is often
paid to appropriate units of replication. It is
crucial to identify, for a particular hypothesis,
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and set of experimental treatments, the
experimental units to which these treatments
are applied. These experimental units are the
replicates for testing that hypothesis.

• In more complex designs, testing several
hypotheses, the experimental units may occur
at several temporal and spatial scales.
Attention must be paid to identifying the
appropriate amount of replication for each of
these hypotheses.

• Power analysis, used when planning a
sampling or experimental program, provides a
means of determining whether our plan is
feasible, or of deciding the resources that are
necessary for a particular experiment.

• A power analysis can only be done when we
have an estimate of the variation in the system
under study. If the power analysis is done
before sampling, we must obtain an estimate
of variation on the same spatial and temporal
scale as our planned experimental units.

• Power analysis also requires us to specify the
statistical model that will be applied to the
data – without this step, no calculations can be
made. While we may be forced to make
changes when the real data arrive, this step is
useful in formalizing our experimental design.

• Power equations can be used to determine the
number of replicates (at the planning stage),
the change that could be detected (at planning

or analysis stages), or the degree of confidence
in the analysis (after a non-significant result).

• The most difficult task is almost always
determining an important effect size, but
doing so focuses our attention on what is
biologically important, rather than just
looking for statistical significance.

7.4.2 Hints for analysis
• At the planning stage, write out an analysis

table and its associated statistical model, to be
sure that you understand the design clearly.
Identify the key hypothesis tests.

• Determine the effect size by thinking about
what would be important biologically.

• Focus on using power analysis to determine
appropriate sample sizes in the design stage.
Post hoc power calculations can be useful for
pre-specified effect sizes. Calculating observed
power, the power to detect the observed effect,
is pointless.

• The formal analysis of power for simple
designs can now be done using a wide range of
software packages.

• More complex analyses require an understand-
ing of the calculation of non-centrality para-
meters. After making that calculation,
non-central distribution functions are freely
available for most common statistical distri-
butions.
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The analysis of variance (ANOVA) is a general sta-
tistical technique for partitioning and analyzing
the variation in a continuous response variable.
We used ANOVA in Chapters 5 and 6 to partition
the variation in a response variable into that
explained by the linear regression with one or
more continuous predictor variables and that
unexplained by the regression model. In applied
statistics, the term “analysis of variance” (ANOVA)
is commonly used for the particular case of parti-
tioning the variation in a response variable into
that explained and that unexplained by one or
more categorical predictors, called factors,
usually in the context of designed experiments
(Sokal & Rohlf 1995, Underwood 1997). The catego-
ries of each factor are the groups or experimental
treatments and the focus is often comparing
response variable means between groups. We
emphasized in Chapter 5 that the statistical dis-
tinction between “classical regression” and “clas-
sical ANOVA” is artificial. Both involve the general
technique of partitioning variation in a response
variable (analysis of variance) and of fitting linear
models to explain or predict values of the
response variable. It turns out that ANOVA can
also be used to test hypotheses about group (treat-
ment) means.

The two main aims of classical ANOVA, there-
fore, are:

• to examine the relative contribution of differ-
ent sources of variation (factors or combina-
tion of factors, i.e. the predictor variables) to
the total amount of the variability in the
response variable, and

• to test the null hypothesis (H0) that population
group or treatment means are equal.

8.1 Single factor (one way) designs

A single factor or one way design deals with only
a single factor or predictor, although that factor
will comprise several levels or groups. Designs
that can be analyzed with single factor ANOVA
models are completely randomized (CR) designs,
where there is no restriction on the random allo-
cation of experimental or sampling units to factor
levels. Designs that involve restricted randomiza-
tion will be described in Chapters 10 and 11. We
will use two recent examples from the literature
to illustrate use of this analysis.

Diatom communities and heavy metals in rivers
Medley & Clements (1998) studied the response of
diatom communities to heavy metals, especially
zinc, in streams in the Rocky Mountain region of
Colorado, USA. As part of their study, they sampled
a number of stations (between four and seven) on
six streams known to be polluted by heavy metals.
At each station, they recorded a range of physico-
chemical variables (pH, dissolved oxygen etc.), zinc
concentration, and variables describing the
diatom community (species richness, species
diversity H� and proportion of diatom cells that
were the early-successional species, Achanthes min-
utissima). One of their analyses was to ignore
streams and partition the 34 stations into four
zinc-level categories: background (�20 �g l�1,
8 stations), low (21–50 �g l�1, 8 stations), medium
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51–200�g l�1, 9 stations), and high (�200�g l�1, 9
stations) and test the null hypothesis that there
were no differences in diatom species diversity
between zinc-level groups, using stations as repli-
cates. We will also use these data to test the null

hypothesis that there are no differences in diatom
species diversity between streams, again using sta-
tions as replicates. The full analyses of these data
are in Box 8.1.
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Box 8.1 Worked example: diatom communities in metal-
affected streams

Medley & Clements (1998) sampled a number of stations (between four and seven)
on six streams known to be polluted by heavy metals in the Rocky Mountain region
of Colorado, USA. They recorded zinc concentration, and species richness and
species diversity of the diatom community and proportion of diatom cells that were
the early-successional species, Achanthes minutissima.

Species diversity versus zinc-level group
The first analysis compares mean diatom species diversity (response variable)
across the four zinc-level groups (categorical predictor variable), zinc level treated
as a fixed factor. The H0 was no difference in mean diatom species diversity
between zinc-level groups. Boxplots of species diversity against group (Figure
8.1(a)) showed no obvious skewness; two sites with low species diversity were high-
lighted in the background and medium zinc groups as possible outliers. The results
from an analysis of variance from fitting a linear model with zinc level as the predic-
tor variable were as follows.

Source SS df MS F P

Zinc level 2.567 3 0.856 3.939 0.018
Residual 6.516 30 0.217
Total 9.083 33

The residual plot from this model (Figure 8.1(b)) did not reveal any outliers or any
unequal spread of the residuals, suggesting the assumptions of the ANOVA were
appropriate. Additionally, Levene’s test produced no evidence that the H0 of no dif-
ferences in variances of species diversity between the zinc-level groups should be
rejected (Levene-mean: F3,30�0.087, P�0.967; Levene-median: F3,30�0.020,
P�0.996).

Tukey’s pairwise comparison of group means: mean differences with Tukey
adjusted P values for each pairwise comparison in brackets.

Background Low Medium High

Background 0.000 (1.000)
Low 0.235 (0.746) 0.000 (1.000)
Medium 0.080 (0.985) 0.315 (0.515) 0.000 (1.000)
High 0.520 (0.122) 0.755 (0.012) 0.440 (0.209) 0.000 (1.000)

The only H0 to be rejected is that of no difference in diatom diversity between
sites with low zinc and sites with high zinc.

We could also analyze these data with more robust methods, especially if we
were concerned about underlying non-normality or outliers. To test the H0 that
there is no difference in the location of the distributions of diatom diversity between

Figure 8.1. (a) Boxplots of diatom
diversity against zinc-level group
from Medley & Clements (1998). B
is background, L is low, M is medium
and H is high zinc level. (b) Residual
plot from fit of single factor ANOVA
model relating diatom diversity to
zinc-level group from Medley &
Clements (1998).
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zinc levels, irrespective of the shape of these distributions, we would use the
Kruskal–Wallis non-parametric test based on ranks sums.

Zinc level Rank sum

Background 160.0
Low 183.0
Medium 166.5
High 85.5

The Kruskal–Wallis H-statistic equals 8.737. The probability of getting this value
of one more extreme when the H0 is true (testing with a chi-square distribution
with 3 df ) is 0.033, so we would reject the H0.

We might also consider a randomization test,where we reallocate observations
to the four groups at random many times to generate a distribution of a suitable
test statistic.We used Manly’s (1997) program RT, the percentage of total SS attrib-
utable to zinc levels (groups) as the statistic and used 1000 randomizations. The
percentage of SSTotal accounted for by SSGroups was 28.3% and the probability of
getting this value or one more extreme if the H0 of no effects of zinc level on diatom
diversity was true was 0.023. Again, we would reject the H0 at the 0.05 level.

Species diversity versus stream
The second analysis compared diatom species diversity across the streams.
Streams are treated as a random factor, assuming these streams represent a
random sample of all possible streams in this part of the Rocky Mountains. The H0

then is that there is no added variance (above the variation between stations) due
to differences in diatom species diversity between streams in this part of the Rocky
Mountains.

Source SS df MS F P

Stream 1.828 5 0.366 1.411 0.251
Residual 7.255 28 0.259
Total 9.083 33

The residual plot (Figure 8.2) indicates no variance heterogeneity, although the
sample sizes within each stream are too small for useful boxplots. We used the
ANOVA, ML and REML methods to estimate the two variance components (r

e
2

and r
a
2). ML and REML estimates are tedious to calculate by hand so we used SPSS

(Ver 9.0) to obtain these estimates. Confidence intervals (95%) are provided for
r

e
2 only; unequal sample sizes preclude reliable confidence intervals for r

a
2.

Method Estimate of r
e
2 Estimate of r

a
2

ANOVA 0.259 (0.159–0.452) 0.0189
ML 0.257 0.0099
REML 0.258 0.0205

Note that there is little difference in the estimates of r
e
2, although both ML and

REML estimates will be biased. The estimates of r
a
2 differ considerably between

estimation methods, however. Based on Section 8.2.1, the REML estimate of 0.0205
is probably the most reliable. Most of the variance is due to differences between
stations within streams rather than due to differences between all possible streams.

Figure 8.2. Residual plot from fit
of single factor random effects
ANOVA model relating diatom
diversity to stream group from
Medley & Clements (1998).



Settlement of invertebrate larvae
Keough & Raimondi (1995) were interested in the
degree to which biofilms – films of diatoms, algal
spores, bacteria, and other organic material –
that develop on hard surfaces influence the set-
tlement of invertebrate larvae. In an earlier
paper, from southeastern Australia, Todd &
Keough (1994) had manipulated these biofilms
by covering experimental surfaces with fine
mesh that excluded most larvae, but allowed
diatoms, etc., to pass through. These nets were
then removed to allow invertebrates to settle.
Keough & Raimondi focused on the ability of
larvae to respond to successional changes that
occur in biofilms, and, because the earlier proce-
dure was time-consuming, decided to test
whether the films that developed in laboratory
seawater systems had similar effects to those
developing in the field. At the same time, they
tested whether covering a surface with netting
altered the biofilm (or at least its attractiveness
to larvae). They used four experimental treat-
ments: substrata that had been conditioned in
sterile seawater, surfaces immersed in laboratory
aquaria, surfaces in laboratory aquaria, but with
fine mesh netting over the surface, and surfaces
immersed in the field, and covered with identi-
cal netting. After one week for biofilms to
develop, the experimental surfaces (11 cm�11
cm pieces of Perspex (Plexiglas)) were placed in
the field in a completely randomized array. They
were left for one week, and then the newly
settled invertebrates identified and counted. To
control for small numbers of larvae passing
through the netting during the conditioning
period, they used an additional treatment,
which was netted, and returned to the labora-
tory after one week and censused. The values of
this treatment were used to adjust the numbers
in the treatment that started in the field. The
data for analysis then consisted of four treat-
ments: sterile, lab films with net, lab films
without net, and field films with net. We will use
their data to test the null hypothesis that there
are no differences in recruitment of one family
of polychaete worms, the serpulids, and to spe-
cifically compare some combinations of treat-
ments. The analyses of these data are in Box 8.2
and Box 8.4.

8.1.1 Types of predictor variables (factors)
There are two types of categorical predictor vari-
ables in linear models. The most common type is
a fixed factor, where all the levels of the factor (i.e.
all the groups or treatments) that are of interest
are included in the analysis. We cannot extrapo-
late our statistical conclusions beyond these spe-
cific levels to other groups or treatments not in
the study. If we repeated the study, we would
usually use the same levels of the fixed factor
again. Linear models based on fixed categorical
predictor variables (fixed factors) are termed fixed
effects models (or Model 1 ANOVAs). Fixed effect
models are analogous to linear regression models
where X is assumed to be fixed. The other type of
factor is a random factor, where we are only using
a random selection of all the possible levels (or
groups) of the factor and we usually wish to make
inferences about all the possible groups from our
sample of groups. If we repeated the study, we
would usually take another sample of groups
from the population of possible groups. Linear
models based on random categorical predictor
variables (random factors) are termed random
effects models (or Model 2 ANOVAs). Random
effects models are analogous to linear regression
models where X is random (Model II regression;
see Chapter 5).

To illustrate the difference between these
types of factors, the zinc-level groups created by
Medley & Clements (1998) clearly represent a fixed
factor. These groups were specifically chosen to
match the USA EPA chronic criteria values for zinc
and any further study would definitely use the
same groupings. Any conclusions about differ-
ences in diatom communities between zinc levels
are restricted to these specific groups. In contrast,
we might consider the six streams used by Medley
& Clements (1998) as a possible random sample
from all metal-polluted streams in the southern
Rocky Mountain ecoregion of Colorado and hence
treat streams as a random factor. A new study
might choose a different sample of streams from
this region. Conclusions from our analysis could
be extrapolated to all metal-polluted streams in
this region.

We argue that the random (or at least haphaz-
ard) nature of the selection of groups for a random
factor is important for valid interpretation of
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the subsequent analysis. Selecting specific levels
of a factor and then calling the factor random
simply to allow extrapolation to some popula-
tion of levels is inappropriate, just as would be
selecting a specific set of observations from a
population and calling that set a random
sample.

Our conclusions for a fixed factor are
restricted to those specific groups we used in the
experiment or sampling program. For a random
factor, we wish to draw conclusions about the
population of groups from which we have ran-
domly chosen a subset. Random factors in biology
are often randomly chosen spatial units like sites
or blocks. Time (e.g. months or years) is also some-

times considered a random factor but it is much
more difficult to envisage a sequence of months
(or years) being a random sample from a popula-
tion of times to which we would wish to extrapo-
late.

Although the distinction between fixed and
random factors does not affect the model fitting
or calculations for subsequent hypothesis tests in
a single factor model, the hypotheses being tested
are fundamentally different for fixed and random
factors. When we consider more complex experi-
mental designs in later chapters, it will be clear
that the distinction between fixed and random
factors can also affect the calculation of the
hypothesis tests.
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Box 8.2 Worked example: serpulid recruitment onto
surfaces with different biofilms

Keough & Raimondi (1995) set up an experiment to examine the response of ser-
pulid (polychaete worms) larvae to four types of biofilms on hard substrata in
shallow marine waters. The four treatments were: sterile substrata, biofilms devel-
oped in the lab with a covering net, lab biofilms without a net, and biofilms devel-
oped in the field with a net. The substrata were left for one week, and then the
newly settled worms identified and counted. To control for small numbers of larvae
passing through the netting during the conditioning period, they used an additional
treatment, which was netted, and returned to the laboratory after one week and
censused. The values of this treatment were used to adjust the numbers in the
treatment that started in the field.

We have not shown the initial data screening stages, but the response variable
was log-transformed to improve skewed distributions. The H0 was that there was
no difference between treatments in the mean log-transformed number of serpulid
recruits per substratum. The residual plot from the single factor model 8.3 with log-
transformed numbers of serpulid recruits revealed a single outlier, but very similar
spread of data between groups, suggesting that the assumptions were met. The sim-
ilarity of data ranges is probably a more reliable guide to the reliability of the
ANOVA than the formal identification of outliers from boxplots, when there are
only seven observations per group.

The results from the analysis of variance were as follows.

Source SS df MS F P

Biofilms 0.241 3 0.080 6.006 0.003
Residual 0.321 24 0.013
Total 0.562 27

We would reject the H0 of no difference between treatments in the log
numbers of serpulid recruits. In this particular example, however,we are more inter-
ested in the planned contrasts between specific treatments (Box 8.4).



8.1.2 Linear model for single factor
analyses

Linear effects model
We introduced linear models in Chapters 5 and 6
for regression analysis. The structure of the linear
model when the predictor variable is categorical
is similar to those models, although there are two
types of models we can fit (Box 8.3). Consider a
data set consisting of p groups or treatments (i�1
to p) and n replicates ( j�1 to n) within each group
(Figure 8.1). From Medley & Clements (1998), p
equals four zinc levels and n equals eight or nine
stations. From Keough & Raimondi (1995), p
equals four biofilm treatments and n equals seven
substrata.

The linear effects model is:

yij����i��ij (8.1)

The details of the linear single factor ANOVA
model, including estimation of its parameters
and means, are provided in Box 8.3 and Table 8.1.
OLS means and their standard errors are standard
output from linear models routines in statistical
software.

From Medley & Clements (1998):

(diatom species diversity)ij���
(effect of zinc level)i� ij (8.2)

From Keough & Raimondi (1995):

(no. of serpulids)ij���
(effect of biofilm type)i��ij (8.3)
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Box 8.3 Single factor ANOVA models,
overparameterization and estimable functions

Consider a data set consisting of p groups or treatments (i�1 to p) and n repli-
cates ( j�1 to n) within each group (Figure 8.4).

The linear effects model is:

yij�l�ai�eij

In this model:

yij is the jth replicate observation of the response variable from the ith group of
factor A;

l is the overall population mean of the response variable (also termed the
constant because it is constant for all observations);

if the factor is fixed, ai is the effect of ith group (the difference between each
group mean and the overall mean li�l);

if the factor is random, ai represents a random variable with a mean of zero
and a variance of r

a
2, measuring the variance in mean values of the

response variable across all the possible levels of the factor that could have
been used;

eij is random or unexplained error associated with the jth replicate observation
from the ith group. These error terms are assumed to be normally
distributed at each factor level, with a mean of zero (E(eij) equals zero) and a
variance of r

e
2.

This model is structurally similar to the simple linear regression model described in
Chapter 5. The overall mean replaces the intercept as the constant and the treat-
ment or group effect replaces the slope as a measure of the effect of the predictor
variable on the response variable. Like the regression model, model 8.1 has two
components: the model (l�ai) and the error (eij).

We can fit a linear model to data where the predictor variable is categorical in
a form that is basically a multiple linear regression model with an intercept. The
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factor levels (groups) are converted to dummy variables (Chapter 6) and a multi-
ple regression model is fitted of the form:

yij�l�b1(dummy1)ij�b2(dummy2)ij�b3(dummy3)ij� . . .�bp�1(dummyp�1)ij�eij

Fitting this type of model is sometimes called dummy coding in statistical software.
The basic results from estimation and hypothesis testing will be the same as when
fitting the usual ANOVA models (effects or means models) except that estimates
of group effects will often be coded to compare with a reference category so only
p�1 effects will be presented in output from statistical software.You should always
check which category your preferred software uses as its reference group when
fitting a model of this type.

The linear effects model is what statisticians call “overparameterized” (Searle
1993) because the number of group means (p) is less than the number of param-
eters to be estimated (l, ai . . .ap). Not all parameters in the effects model can be
estimated by OLS unless we impose some constraints because there is no unique
solution to the set of normal equations (Searle 1993). The usual constraint, some-
times called a sum-to-zero constraint (Yandell 1997), a �-restriction (Searle 1993),
or a side condition (Maxwell & Delaney 1990), is that the sum of the group effects
equals zero, i.e. �p

i�1 ai�0. This constraint is not particularly problematical for
single factor designs, although similar constraints for some multifactor designs
are controversial (Chapter 9). The sum-to-zero constraint is not the only way of
allowing estimation of the overall mean and each of the ai. We can also set one
of the parameters, either l or one of the ai, to zero (set-to-zero constraint;Yandell
1997), although this approach is only really useful when one group is clearly a
control or reference group (see also effects coding for linear models in Chapter
5).

An alternative single factor ANOVA model is the cell means model. It
simply replaces l�ai with li and therefore uses group means instead of group
effects (differences between group means and overall mean) for the model com-
ponent:

yij�li�eij

The cell means model is no longer overparameterized because the number
of parameters in the model component is obviously the same as the number of
group means. While fitting such a model makes little difference in the single factor
case, and the basic ANOVA table and hypothesis tests will not change, the cell
means model has some advantages in more complex designs with unequal sample
sizes or completely missing cells (Milliken & Johnson 1984, Searle 1993; Chapter 9).

Some linear models statisticians (Hocking 1996, Searle 1993) regard the sum-
to-zero constraint as an unnecessary complication that limits the practical and ped-
agogical use of the effects model and can cause much confusion in multifactor
designs (Nelder & Lane 1995). The alternative approach is to focus on parameters
or functions of parameters that are estimable. Estimable functions are “those func-
tions of parameters which do not depend on the particular solution of the normal
equations” (Yandell 1997, p. 111). Although all of the ai are not estimable (at least,
not without constraints), (l�ai) is estimable for each group. If we equate the effects
model with the cell means model:

yij�l�ai�eij�li�eij
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we can see that each estimable function (l�ai) is equivalent to the appropriate
cell mean (li), hence the emphasis that many statisticians place on the cell means
model. In practice, it makes no difference for hypothesis testing whether we fit the
cell means or effects model. The F-ratio statistic for testing the H0 that l1�l2� . . .
�li� . . .�l is identical to that for testing the H0 that all ai equal zero.

We prefer the effects model for most analyses of experimental designs because,
given the sum-to-zero constraints, it allows estimation of the effects of factors and
their interactions (Chapter 9), allows combinations of continuous and categorical
variables (e.g. analyses of covariance, Chapter 12) and is similar in structure to the
multiple linear regression model. The basic features of the effects model for a single
factor ANOVA are similar to those described for the linear regression model in
Chapter 5. In particular, we must make certain assumptions about the error terms
(eij) from the model and these assumptions equally apply to the response variable.

1. For each group (factor level, i) used in the design, there is a population of
Y-values (yij) and error terms (eij) with a probability distribution. For interval
estimation and hypothesis testing, we assume that the population of yij and
therefore eij at each factor level (i) has a normal distribution.

2. These populations of yij and therefore eij at each factor level are assumed
to have the same variance (r

e
2, sometimes simplified to r 2 when there is no

ambiguity). This is termed the homogeneity of variance assumption and can be
formally expressed as r1

2�r2
2� . . .�ri

2� . . .�r
e
2.

3. The yij and the eij are independent of, and therefore uncorrelated with,
each other within each factor level and across factor levels if the factor is fixed or,
if the factor is random, once the factor levels have been chosen (Neter et al.
1996).

These assumptions and their implications are examined in more detail in
Section 8.3.

There are three parameters to be estimated when fitting model 8.1: l, ai and
r

e
2, the latter being the variance of the error terms, assumed to be constant across

factor levels. Estimation of these parameters can be based on either OLS or ML
and when certain assumptions hold (see Section 8.3), the estimates for l and ai are
the same whereas the ML estimate of r

e
2 is slightly biased (see also Chapter 2).We

will focus on OLS estimation, although ML is important for estimation of some
parameters when sample sizes differ between groups (Section 8.2).

The OLS estimates of l, li and ai are presented in Table 8.1. Note the estimate
of ai is simply the difference between the estimates of li and l. Therefore, the pre-
dicted or fitted values of the response variable from our model are:

ŷij� ȳ�( ȳi� ȳ)� ȳi

So any predicted Y-value is simply predicted by the sample mean for that factor
level.

In practice, we tend not to worry too much about the estimates of l and ai

because we usually focus on estimates of group means and of differences or con-
trasts between group means for fixed factors (Section 8.6) and components of var-
iance for random factors (Section 8.2). Standard errors for these group means are:

syi
��MSResidual

ni
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and confidence intervals for li can be constructed in the usual manner based on
the t distribution.

The error terms (eij) from the linear model can be estimated by the residuals,
where a residual (eij) is simply the difference between each observed and predicted
Y-value (yij� ȳi). Note that the sum of the residuals within each factor level equals
zero (�n

j�1 eij�0). The OLS estimate of r
e
2 is the sample variance of these residu-

als and is termed the Residual (or Error) Mean Square (Table 8.1); remember from
Chapter 2 that a mean square is just a variance.

Box 8.4 Worked example: planned comparisons of
serpulid recruitment onto surfaces with different
biofilms

The mean log number of serpulid recruits for each of the four biofilm treatments
from Keough & Raimondi (1995) were (see also Figure 8.3) as follows.

Treatment Field (F) Netted lab (NL) Sterile lab (SL) Un-netted lab (UL)

Log mean number of
serpulid recruits 2.117 2.185 1.939 2.136

A series of planned comparisons were done, each testing a hypothesis about
the nature of the biofilms. The contrasts were done in sequence, with each com-
parison depending on the result of previous ones.

First, Keough & Raimondi (1995) tested whether the presence of a net over a
surface affected recruitment, by comparing the netted and un-netted laboratory
treatments. The H0 is:

lNL�lUL or lNL�lUL�0

We use the latter expression to define the linear contrast equation:

(0)ȳF�(�1)ȳNL�(0)ȳSL�(�1)ȳUL

Note that this contrast specifically represents the H0 and we use coefficients of zero
to omit groups that are not part of the H0. This linear contrast can be used to cal-
culate the SS due to this comparison. The complete ANOVA table below indicates
that we would not reject this H0.

Second, the laboratory and field films were compared. Because the two kinds
of laboratory-developed films did not differ, we can pool them, so the H0 is:

(lNL�lUL)/2�lF or (lNL�lUL)/2�lF�0

The linear contrast equation is:

(�1)ȳF�(�0.5)ȳNL�(0)ȳSL�(�0.5)ȳUL or

(�2)ȳF�(�1)ȳNL�(0)ȳSL�(�1)ȳUL

Note that the coefficients for the two lab treatments produce the average of those
two groups, which is contrasted to the field treatment. The ANOVA table below
indicates that we would not reject this H0.

Figure 8.3. Plot of means and
standard errors of log number of
serpulid recruits for the four
biofilm treatments used by Keough
& Raimondi (1995). F denotes the
treatment with biofilms developing
in the field; NL, UL and SL indicates
biofilms developed under
laboratory conditions, with NL and
UL being substrata in laboratory
aquaria with (N) and without (U)
nets, and SL substrata being
immersed in sterile seawater.
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Finally, we compare the whole set of substrata with biofilms present, to the
single, unfilmed treatment. The H0 is:

(lF�lNL�lUL)/3�lSL or (lF�lNL�lUL)/3�lSL�0

The linear contrast equation is:

(�1)ȳF�(�0.33)ȳNL�(�0.33)ȳSL�(�0.33)ȳUL or

(�3)ȳF�(�1)ȳNL�(�1)ȳSL�(�1)ȳUL

Now the coefficients for the three lab treatments represent the average of
those three groups and is contrasted to the field treatment. We would reject this
H0.

Source SS df MS F P

Biofilms 0.241 3 0.080 6.006 0.003
NL vs UL 0.008 1 0.008 0.635 0.433
F vs average (NL & UL) 0.008 1 0.008 0.644 0.423
SL vs average (F & NL & UL) 0.217 1 0.217 16.719 �0.001
Linear trend 0.079 1 0.079 6.096 0.021

Residual 0.321 24 0.013
Total 0.562 27

Note that as long as the coefficients sum to zero (i.e. �p
i�1nici�0) and repre-

sent the contrast of interest, the size of the coefficients is irrelevant, e.g. in the first
example above, we could have used 1,�1,0,0 or 0.5,�0.5,0,0 or 100,�100,0,0, the
results would be identical. Note also that these comparisons are orthogonal. For
example, for the first two comparisons, we can use the formal test of orthogonal-
ity �p

i�1ci1ci2�(0)(1)�(1)(�0.5)�(0)(0)�(�1)(�0.5)�0�0.5�0�0.5�0.
Although Keough & Raimondi did not ask this question, it could have been that

the sterile water and the three biofilm treatments became monotonically richer as
a cue for settlement. If so, a test for trend would have been appropriate, with the
four treatments ranked SL,NL,UL, F and considered equally spaced. Using the infor-
mation in Table 8.8, the contrast equation is:

(�3)ȳF�(�1)ȳNL�(�3)ȳSL�(�1)ȳUL

The results for this contrast are in the ANOVA table above and we would reject
the H0 and conclude that there is a trend, although inspection of the means (Figure
8.3) suggests that the trend is influenced by the low settlement of worms onto the
unfilmed (SL) treatment. If we had decided to test for a quadratic trend, our coef-
ficients would be of the form 1 �1 �1 1, and, in the order in which our treatments
are listed, the coefficients would be 1 �1 1 �1. Such a trend is not of much inter-
est here.



In models 8.1 and 8.2 we have the following.

yij is the jth replicate observation from the
ith group, e.g. the diatom species diversity in the
jth station from the ith zinc-level group.

� is the overall population mean diatom
species diversity across all possible stations from
the four zinc-level groups.

If the factor is fixed, �i is the effect of ith
group (the difference between each group mean
and the overall mean �i��), e.g. the effect of the
ith zinc-level group on diatom species diversity,
measured as the difference between the mean
species diversity for the ith zinc level and the
overall mean species diversity. If the factor is
random, �i represents a random variable with a
mean of zero and a variance of 	

�
2, e.g. the

variance in the mean diatom species diversity
per stream across all the possible streams in the
southern Rocky Mountains that Medley &
Clements (1998) could have used in their study.

�ij is random or unexplained error
associated with the jth replicate observation
from the ith group. For example, this measures
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Figure 8.4. General data layout for single factor ANOVA
where factor A has p (i�1 to p) groups and there are n
( j�1 to n) replicates.

Table 8.1 Parameters, and their OLS estimates, from a single factor linear model with example calculations
illustrated for diatom species diversity in different zinc-level groups from Medley & Clements (1998)

Parameter Estimate Medley & Clements (1998)

li Group mean (�SE) diversity:
Background 1.797�0.165

ȳi� Low 2.033�0.165
Medium 1.718�0.155
High 1.278�0.155

l ȳ� Overall mean diversity: 1.694

ai�li�l ȳi� ȳ Background: 1.797�1.694�0.103
Low: 2.033�1.694�0.339
Medium: 1.718�1.694�0.024
High: 1.278�1.694��0.416

eij eij�yij� ȳi Background:
Obs 1: 2.270�1.797�0.473
Obs 2: 2.200�1.797�0.403
Obs 3: 1.890�1.797�0.093
Obs 4: 1.530�1.797��0.267
etc.

r
e
2 MSResidual �[(0.473)2�(0.403)2�(0.093)2� . . .] / [(8�8�9�9)�4]

�
p

i�1
�

n

j�1
(yij� ȳi)2

�
n

i�1
ni�p

�
p

i�1
ȳi

p

�
n

j�1
yij

ni



the error associated with each replicate
observation of diatom species diversity at any
possible station within any of the four zinc
levels.

For interval estimation and tests of hypothe-
ses about model parameters, we must make
certain assumptions about the error terms (�ij)
from model 8.1 and these assumptions also apply
to the response variable. First, the population of
yij and therefore �ij at each factor level (i) has a
normal distribution. We assume that there is a
population of stations with normally distributed
diatom species diversity for each zinc level.
Second, these populations of yij and therefore �ij

at each factor level are assumed to have the same
variance (	

�
2, sometimes simplified to 	2 when

there is no ambiguity). We assume the variances
in diatom species diversity among stations for
each zinc level are equal. Finally, the yij and the
�ij are independent of, and therefore uncorre-
lated with, each other within each factor level
and across factor levels if the factor is fixed or, if
the factor is random, once the factor levels have
been chosen (Neter et al. 1996). In the study of
Medley & Clements (1998), some stations were on
the same stream so what happens upstream
might influence what happens downstream, an
issue of concern for all stream ecologists (see
Downes et al. 2001). We will examine these
assumptions and their implications in more
detail in Section 8.3.

Predicted values and residuals
The Y-values predicted from the linear model are
simply the sample means for the factor level
containing the observed value:

ŷij� ȳi (8.4)

The error terms (�ij) from the linear model can be
estimated by the residuals, where each residual
(eij) is the difference between the observed and the
predicted Y-value:

eij�yij� ȳi (8.5)

For example, the residuals from the model relat-
ing diatom species diversity to zinc-level group are
the differences between the observed species
diversity at each station and the mean species
diversity for the zinc level that station came from.
As in regression analysis, residuals provide the
basis of the OLS estimate of 	

�
2 and they are valu-

able diagnostic tools for checking assumptions
and fit of our model (Section 8.4).

8.1.3 Analysis of variance
As described in Chapters 5 and 6 for regression
models, ANOVA partitions the total variation in
the response variable into its components or
sources. This partitioning of variation is
expressed in the form of an ANOVA table (Table
8.2). We first describe the variation in Y as sums
of squares (SS). The SSTotal for Y is the sum of
the squared differences between each yij and the
overall mean ȳ. The degrees of freedom (df) is the
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Table 8.2 ANOVA table for single factor linear model showing partitioning of variation

Source of SS df MS

Between groups ni(ȳi� ȳ)2 p�1

Residual (yij� ȳi)
2 ni�p

Total (yij� ȳ)2 ni�1�
p

i�1
�

n

j�1
�

p

i�1

�
p

i�1
�

n

j�1
(yij� ȳi)2

�
n

i�1
ni�p

�
p

i�1
�

n

j�1
�

p

i�1

�
p

i�1
ni(ȳi� ȳ)2

p�1�
p

i�1



total number of observations across all groups
minus one. SSTotal can be partitioned into two addi-
tive components.

First is the variation due to the difference
between group means, calculated as the differ-
ence between each ȳi and the overall mean ȳ. This
is a measure of how different the group means are
and how much of the total variation in Y is
explained by the difference between groups, or in
an experimental context, the effect of the treat-
ments. The df associated with the variation
between group means is the number of groups
minus one.

Second is the variation due to the difference
between the observations within each group, cal-
culated as the difference between each yij and

relevant group mean ȳi. This is a measure of how
different the observations are within each group,
summed across groups, and also how much of the
total variation in Y is not explained by the differ-
ence between groups or treatments. The df asso-
ciated with the SSResidual is the number of
observations in each group minus one, summed
across groups, which is equal to the sum of the
sample sizes minus the number of groups.

These SS and df are additive:

SSTotal�SSGroups�SSResidual

dfTotal�dfGroups�dfResidual

As pointed out in Chapter 5, the sum-of-squares
(SS) is a measure of variation that is dependent on
the number of observations that contribute to it.
In contrast to the SS, the variance (mean square) is
a measure of variability that does not depend on
sample size because it is an average of the squared
deviations (Chapter 2). We convert the SS into
Mean Squares (MS) by dividing them by their df
(Table 8.2).

A detailed description of the algebra behind
this partitioning of the variation can be found
in Underwood (1997). Note that there are re-
expressions of the formulae in Table 8.2 that are
much easier to use when doing the calculations
by hand (Sokal & Rohlf 1995, Underwood 1981,
1997). In practice, however, statistical software
will calculate the SS and MS by fitting and compar-
ing linear models (Section 8.1.5).

The best way to appreciate the variation
between groups and the residual variation is to
look at two extreme imaginary data sets, based on
species diversity of stream diatoms at different
zinc levels (Medley & Clements 1998). The data in
Table 8.3(a) show a situation in which all the vari-
ation is between observations within each group
(residual) with no variation between groups (iden-
tical group means). In contrast, the data in Table
8.3(b) are where all the variation is between
groups with no residual variation (all observa-
tions within each group are identical).

The mean squares from the ANOVA are sample
variances and, as such, they estimate population
parameters. Statisticians have determined the
expected values of MSGroups and MSResidual, termed
expected mean squares (EMS), i.e. the means
of the probability distributions of these sample
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Table 8.3 Imaginary data based on Medley &
Clements (1998) showing diatom species diversity at
eight stream stations in each of four zinc levels
(background, low, medium, high) – see text for
details. In (a), all the variation is residual and
SSGroups explains none of the variation in Y (no
difference between group means). In (b), there is no
residual variation and SSGroups explains all the
variation in Y

(a) Zinc level B L M H
0.8 0.7 1.8 2.6
0.9 1.7 2.1 0.6
2.4 1.0 0.6 1.2
1.4 1.4 1.1 1.3
1.3 1.2 2.4 2.2
1.8 2.4 1.2 0.9
2.1 1.1 0.9 1.9
1.0 2.2 1.6 1.0

Means 1.4625 1.4625 1.4625 1.4625

(b) Zinc level B L M H
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7
1.2 2.3 1.8 0.7

Means 1.2 2.3 1.8 0.7



variances or what population values these mean
squares actually estimate (Table 8.4; see
Underwood 1997 for a clear, biologically orien-
tated, explanation).

The MSResidual estimates 	
�

2, the pooled popula-
tion variance of the error terms, and hence of the
Y-values, within groups. Note that we must
assume homogeneity of error variances across
groups (homogeneity of variances assumption;
see Sections 8.1.2 and 8.3) for this expectation to
hold.

The MSGroups estimates the pooled variance of
the error terms across groups plus a component
representing the squared effects of the chosen
groups if the factor is fixed, or the variance
between all possible groups if the factor is random
(Table 8.4). Note that these EMS are subject to the
important constraint that �p

i�1�i equals zero, i.e.
the sum of the group effects equals zero. Without
this constraint, we cannot get unbiased estima-
tors of individual treatment effects (Box 8.3;
Underwood 1997, Winer et al. 1991).

8.1.4 Null hypotheses
The null hypothesis tested in a single factor fixed
effects ANOVA is usually one of no difference
between group means:

H0: �1��2� . . .��i� . . .��

We defined group effects (�i) in Section 8.1.2 and
Box 8.3 as �i��, the difference between the pop-
ulation mean of group i and the overall mean.

This is a measure of the effect of the ith group, or
in an experimental context, the ith treatment.
The null hypothesis can therefore also be
expressed as no effects of groups or treatments,
i.e. all treatment or group effects equal zero:

H0: �1��2� . . .��i� . . .�0

For a random effects ANOVA, the null hypothesis
is that the variance between all possible groups
equals zero:

H0: 	�
2�0

The EMS from our ANOVA table (Table 8.4) allow us
to determine F-ratios for testing these null hypoth-
eses.

If the H0 for a fixed factor is true, all �i equal
zero (no group effects). Therefore, both MSGroups

and MSResidual estimate 	
�

2 and their ratio should
be one. The ratio of two variances (or mean
squares) is called an F-ratio (Chapter 2). If the H0 is
false, then at least one �i will be different from
zero. Therefore, MSGroups has a larger expected
value than MSResidual and their F-ratio will be
greater than one. A central F distribution is a prob-
ability distribution of the F-ratio when the two
sample variances come from populations with the
same expected values. There are different central
F distributions depending on the df of the two
sample variances (see Figure 1.2). Therefore, we
can use the appropriate probability distribution
of F (defined by numerator and denominator df) to
determine whether the probability of obtaining

186 COMPARING GROUPS OR TREATMENTS

Table 8.4 Expected mean squares for a single factor ANOVA

Source Fixed factor (Model 1) Random factor (Model 2) F-ratio

MSGroups r
e
2� ni r

e
2�

If equal n: r
e
2�n If equal n: r

e
2�nr

a
2

MSResidual r
e
2 r

e
2

(ai)2

p�1�
p

i�1

MSGroups

MSResidual

���p

i�1
ni	

2

��
p

i�1
ni

2�ra
2

�
p

i�1
ni(p�1)

(ai)2

p�1�
p

i�1



our sample F-ratio or one more extreme (the usual
hypothesis testing logic; see Chapter 3), is less
than some specified significance level (e.g. 0.05)
and therefore whether we reject H0 or not.

If the H0 for a random factor is true, then 	
�

2

equals zero (no added variance due to groups) and
both MSGroups and MSResidual estimate 	

�
2 so their F-

ratio should be one. If the H0 is false, then 	
�

2 will
be greater than zero, MSGroups will have a larger
expected value than MSResidual and their F-ratio will
be greater than one. 

These F-ratio tests (usually abbreviated to F
tests) of null hypotheses for fixed and random
factors are illustrated for our worked examples in
Box 8.1 and Box 8.2. The construction of the tests
of null hypotheses is identical for fixed and
random factors in the single factor ANOVA model,
but these null hypotheses have very different
interpretations. The H0 for the fixed factor refers
only to the groups used in the study whereas the
H0 for the random factor refers to all the possible
groups that could have been used. It should also
be clear now why the assumption of equal within
group variances is so important. If 	1

2 does not
equal 	2

2, etc., then MSResidual does not estimate a
single population variance (	

�
2), and we cannot

construct a reliable F-ratio for testing the H0 of no
group effects.

8.1.5 Comparing ANOVA models
The logic of fitting ANOVA models is the same as
described in Chapters 5 and 6 for linear regression
models. Either OLS or ML can be used, the fit being
determined by explained variance or log-likeli-
hoods respectively. We will use OLS in this
chapter.

The full effects model containing all parame-
ters is:

yij����i��ij (8.1)

The reduced model when H0 that all �i equal
zero is true is:

yij����ij (8.6)

Model 8.6 simply states that if there are no group
effects, our best prediction for each observation is
the overall mean, e.g. if there are no effects of zinc
level on diatom species diversity, then our best
predictor of species diversity at each station is the

overall species diversity across all stations. The
residual variation when the full model is fitted is
the SSResidual from the ANOVA in Table 8.2. The
residual variation when the reduced model is
fitted is the SSTotal from the ANOVA in Table 8.2.
The difference between the unexplained variation
of the full model (SSResidual) and the unexplained
variation from the reduced model (SSTotal) is
simply the SSGroups. It measures how much more of
the variation in Y is explained by the full model
compared to the reduced model. It is, therefore,
the relative magnitude of the MSGroups that we use
to evaluate the H0 that there are no group effects.
Although comparing full and reduced models is
trivial for a single factor ANOVA, the model com-
parison approach has broad applicability for
testing null hypotheses about particular parame-
ters in more complex linear and generalized
linear models.

8.1.6 Unequal sample sizes (unbalanced
designs)

Unequal sample sizes within each group do not
cause any computational difficulties, particularly
when the ANOVA is considered as a general linear
model as we have described. However, unequal
sample sizes can cause other problems. First, the
different group means will be estimated with dif-
ferent levels of precision and this can make inter-
pretation difficult (Underwood 1997). Note that
sample size is only one contributor to the preci-
sion of an estimate and some statisticians have
suggested that experiments should be designed
with different sample sizes depending on the
inherent variability of the variable in each group
or the relative importance of each group (Mead
1988). Second, the ANOVA F test is much less
robust to violations of assumptions, particularly
homogeneity of variances, if sample sizes differ
(Section 8.3). The worst case is when larger vari-
ances are associated with smaller sample sizes.
This is a very important reason to design experi-
ments and sampling programs with equal sample
sizes where possible. Third, estimation of group
effects, particularly variance components, is
much more difficult (see Section 8.2). Finally,
power calculations for random effects models are
difficult because when 	

�
2 is greater than zero and

sample sizes are unequal, then the F-ratio
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MSGroups/MSResidual does not follow an F distribution
(Searle et al. 1992). For testing null hypotheses
with fixed effects, unequal sample sizes are only
really a worry if the analysis produces a result that
is close to the critical level; you will not be confi-
dent enough that the P value is accurate for you to
be comfortable interpreting the result of your
analysis. If, however, the result is far from signifi-
cant, or highly significant (e.g. P� 0.001), you may
still be confident in your conclusions.

One solution to unequal sample sizes in single
factor designs is deleting observations until all
groups have the same n. We regard this practice as
unnecessarily extreme; the linear models
approach can deal with unequal sample sizes and
biological studies often suffer from lack of power
and deleting observations will exacerbate the sit-
uation, particularly if one group has a much lower
sample size than others. Alternatively, we can sub-
stitute group means to replace missing observa-
tions. In such circumstances, the dfResidual should
be reduced by the number of substituted observa-
tions (Chapter 4). However, if there is no evidence
that the assumption of homogeneity of variance is
seriously compromised, and the difference in
sample sizes is not large (which is usually the case
as unequal sample sizes are often caused by one or
two observations going missing), then we recom-
mend simply fitting the linear ANOVA model.
Nonetheless, we support the recommendation of
Underwood (1997) that experimental and sam-
pling programs in biology with unequal sample
sizes should be avoided, at least by design.

8.2 Factor effects

In linear regression, we could measure the
“effect” of the predictor variable on the response
variable in a number of ways, including the stan-
dardized regression slope or the proportion of
variation in Y explained by the linear regression
with X (e.g. r2). These are measures of effect size
(the “effects” of X on Y), although linear regres-
sion models are often fitted to non-experimental
data so we are not implying any cause–effect rela-
tionship. In designs where the predictor variable
is categorical, measuring effect size is of much
more interest. One measure of group or treatment
effects is the variance associated with the groups

over and above the residual variance. The propor-
tion of total variance in the population(s)
explained by the groups then can be expressed as
(Smith 1982):

�2� (8.7)

where 	
�

2 is the residual variance, 	
�

2 is the vari-
ance explained by the groups and 	Y

2 is the total
variance in the response variable. Our aim, then,
is to estimate the parameter �2. Petraitis (1998)
termed indices like �2 PEV (proportion of
explained variance) measures. One measure of �2

is r2, defined here, as for linear regression models
(Chapters 5 and 6), as the proportion of the total
SS explained by the predictor variable (groups),
i.e. SSGroups / SSTotal. Unfortunately, r2 is dependent
on the sample size in each group and also tends to
overestimate the true proportion of the total vari-
ance explained by group effects (Maxwell &
Delaney 1990). We need to consider other PEV
measures, noting that their calculation and inter-
pretation depend on whether we are talking
about fixed or random factors.

8.2.1 Random effects: variance
components
Let’s first look at random effects models because
they are straightforward, at least when sample
sizes are equal. In the random effects model, there
are two components of variance (termed “vari-
ance components”) of interest (Table 8.5). The true
variance between replicate observations within
each group, averaged across groups, is 	

�
2 and is

estimated by MSResidual. The true variance between
the means of all the possible groups we could have
used in our study is 	

�
2 and is termed the added

variance component due to groups. We can esti-
mate this added variance explained by groups by
equating the observed and expected values of the
mean squares (Brown & Mosteller 1991, Searle et
al. 1992; see Table 8.4 and Table 8.5). This method
of estimating variance components is termed the
ANOVA or expected mean square (EMS) method
(also method of moments). There are no distribu-
tional assumptions underlying these point esti-
mates unless confidence intervals are developed
or null hypotheses tested.

Confidence intervals can be calculated for
these variance components (Table 8.5; Brown &

	 2
Y �	

2
�

	 2
Y

�
	 2
�

	 2
� �	
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�
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Mosteller 1991, Burdick & Graybill 1992, Searle et
al. 1992). The confidence intervals are based on the
�2 distribution, or equivalently the F distribution
(�2

�;df1
�df1F�;df1,�), because variances are distrib-

uted as a chi-square. For 95% confidence intervals,
we use critical values of the �2 or F distribution at
0.975 for upper confidence intervals and 0.0125
for lower confidence intervals (covers range of
0.95). These confidence intervals are interpreted
as a 95% probability under repeated sampling that
this interval includes the true population vari-
ance explained by the groups. Note that the confi-
dence interval for 	

�
2 is only an approximation

(Searle et al. 1992), although exact confidence
intervals can be determined for various ratios of
	
�

2 to 	
�

2 and 	
�

2�	
�

2. With unbalanced data, a
confidence interval for 	

�
2 based on the ANOVA

method is not possible, although approximations

are again available but tedious to calculate
(Burdick & Graybill 1992, Searle et al. 1992).

Note that sometimes, MSGroups will be less than
MSResidual (and the F-ratio will be less than one),
resulting in a negative estimate for 	

�
2. This is a

problem, because variances obviously cannot be
negative, by definition. The usual recommenda-
tion is to convert a negative variance component
estimate to zero (Brown & Mosteller 1991).
Hocking (1993) and Searle et al. (1992) argued that
negative variance components suggest an inap-
propriate model has been applied or there may be
serious outliers in the data and therefore that
negative variance components might be a useful
diagnostic tool.

An alternative approach is to use a method of
variance component estimation that specifically
excludes negative estimates (Searle et al. 1992). This
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Table 8.5 ANOVA estimates of variance components and confidence intervals for a single factor random effects
model. For 95% confidence intervals, we use critical values of the v2 and F distributions at 0.975 for upper
confidence intervals and 0.025 for lower confidence intervals (covers range of 0.95)

Variance component ANOVA estimate Confidence interval

r
a
2 Unequal n: Approximate for equal n only:

�

where:
Equal n: F is F-ratio from ANOVA

Fp�1,p(n�1) is value from F distribution with

p�1 and p(n�1) df

v 2 is value from v 2 distribution with p�1 df

r
e
2 MSResidual �

where:
v 2 is value from v 2 distribution with

ni�p df

q1� Equal n: Equal n:

�

where:
F and Fp�1,p(n�1) as defined above

F /Fp�1,p(n�1)�1

n� F /Fp�1,p(n�1)�1
MSGroups�MSResidual

MSGroups� (n�1)MSResidual

r 2
a

r 2
e �r 2

a

�
p

i�1

SSResidual

v 2

MSGroups�MSResidual

n

SSGroups(1� Fp�1,p(n�1) /F)

nv 2
p�1

MSGroups�MSResidual

(�ni��n 2
i /�ni)/(p�1)



is particularly important in multifactor unbal-
anced designs (Chapter 9; see also Underwood
1997). These alternatives include the following.

• Maximum likelihood estimation (MLE) that
involves deriving ML equations and their itera-
tive solutions, although the estimators are
biased (remember from Chapter 2 that ML esti-
mators for variances are biased).

• Restricted maximum likelihood estimation
(REML) that is a modification of MLE that
excludes � (the only fixed parameter in the
random effects model) from the likelihood
function, partly to correct the bias in ML esti-
mates.

• Minimum norm quadratic unbiased estima-
tion (MINQUE), a method that requires solving
linear equations and a priori “guesses” of the
components to be used in the estimation pro-
cedure.

REML produces the same estimates as the
ANOVA method for 	

�
2 in balanced designs

whereas the ML estimate will be slightly biased.
Both ML and REML also preclude negative vari-
ance estimates for 	

�
2. However, in contrast to the

ANOVA method, likelihood methods must assume
normality for point estimates and all methods
assume normality for interval estimates and
hypothesis testing. Searle et al. (1992) summarized
the merits of the different methods for unbal-
anced data in the single factor model and recom-
mended REML for estimating the added variance
components due to groups (	

�
2) and the ANOVA

method for estimating the residual variance (	
�

2).
Ideally, estimated variance components

should be provided with confidence intervals. It
might be tempting for biologists working with
few df to talk about an “important” factor effect
based on a large estimated variance component
despite a non-significant F statistic and P value.
However, the confidence interval associated with
the variance component is likely to include zero
under such circumstances. Interpretation of vari-
ance components should only follow a rejection of
the H0 of no added variance.

To calculate the proportion of total variance
due to the random factor, we simply substitute
our estimators into 	

�
2/(	

�
2�	

�
2), which is some-

times called the intraclass correlation (�1).

8.2.2 Fixed effects
Now let’s look at PEV measures for fixed factors,
which are more problematical. In many cases, the
effects are displayed most simply using the means
for each group, but we may be interested in
describing or estimating the pattern of effects
across all groups. For a fixed factor, the effect of
any group is �i, the difference between that group
mean and the overall mean �i�� and we can cal-
culate the variance of these group effects
[�p

i�1�i
2/(p�1)]. This measures the true variance

among the fixed population group means in the
specific populations from which we have sampled.
Brown & Mosteller (1991) pointed out that it is
somewhat arbitrary whether we use p or p�1 in
the denominator for this variance, although since
we have used the entire population of groups (a
fixed factor), dividing by p (the number of groups)
may actually be more appropriate. If we use p�1,
the estimate of this variance is identical to the
estimate of the added variance component for a
random effect (Table 8.5), although its interpreta-
tion is different.

Petraitis (1998) has discussed the limitations of
trying to calculate the proportion of total vari-
ance in the response variable that is explained by
the fixed groups. One approach (see Hays 1994) is
termed omega squared (�2) and is the variance of
the fixed group means (using p in the denomina-
tor) as a proportion of this variance plus the resid-
ual variance (Table 8.6). If we base the estimate of
�2 in Table 8.6 with p�1 instead of p in the
denominator, we end up with the proportion of
total variance due to a random factor (the intra-
class correlation). So the main computational dif-
ference between the PEV based on �2 (fixed factor)
or �I (random factor) is whether p or p�1 is used
in the denominator for the variance between
groups.

Another measure of group effects for a fixed
factor was provided by Cohen (1988), based on his
work on power analyses. He defined effect size ( f )
as the difference among means measured in units
of the standard deviation between replicates
within groups (Table 8.6; see also Kirk 1995). The
formula looks complex but is basically measuring
the ratio of the standard deviation between group
means and the standard deviation between repli-
cates within each group (Cohen 1992). In this
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context, we are measuring the effect in the
observed data. Cohen’s effect size is more com-
monly used to set effect sizes, based on the alter-
native hypothesis, in power calculations (Section
8.9, Box 8.5). Note that �2 equals f 2/(1� f 2)(Petraitis
1998).

Glass & Hakstian (1969), Underwood &
Petraitis (1993) and Underwood (1997) have criti-
cized measures of variance explained for fixed
factors. They argued that the population “vari-
ance” of a set of fixed groups makes no sense and
this measure cannot be compared to the average
population variance between observations within
groups, which is a true variance (see also Smith
1982). For instance, confidence intervals around
estimates of explained between groups variance
are silly for fixed factors because the sampling dis-
tribution would always be based on the same fixed
groups. Also, these measures of proportion of var-
iance explained by fixed groups are difficult to
compare between different analyses. However,
like Smith (1982), we recommend that PEV
measures are useful descriptive summaries of
explained variance for fixed factor ANOVA
models, and recommend that using the method
of equating mean squares to their expected values
provides the simplest measure that is computa-
tionally equivalent to the variance component for
a random effects model. We will discuss the issue
of measuring explained variance for fixed and
random factors in the context of multifactor
ANOVA (Chapter 9).

It is important to realize that the interpreta-
tion of a fixed treatment variance and an added

variance component for a random factor is very
different (Underwood 1997). The former is an esti-
mate of the variance between these particular
group means in the specific population(s) being
sampled. It is not an estimate of a variance of a
larger population of groups. In contrast, the vari-
ance component for a random factor estimates
the variance between the means of all the pos-
sible groups that could have been used in the
analysis; this variance is due to the random
sample of groups chosen and represents a real var-
iance.

8.3 Assumptions

The assumptions for interval estimation and
hypothesis testing based on the single factor
ANOVA model actually concern the residual or
error terms (�ij) but can be equivalently expressed
in terms of the response variable Y. These assump-
tions are similar to those for linear regression
models (Chapters 5 and 6). Most textbooks state
that the single factor ANOVA is robust to these
assumptions, i.e. the F test and interval estimates
of effects are reliable even if the assumptions are
not met. However, this robustness is very difficult
to quantify and is also very dependent on bal-
anced sample sizes. The F test can become very
unreliable when unequal sample sizes are com-
bined with non-normal data with heterogeneous
variances. We strongly recommend that the
assumptions of the ANOVA be carefully checked
before proceeding with the analysis.
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Table 8.6 Measures of explained group (or treatment) variance in a single factor fixed effects model illustrated
for diatom species diversity in different zinc-level groups from Medley & Clements (1998)

Measure Formula Medley & Clements (1998)

Omega squared (x2)

Cohen’s effect size (f ) � 3
34

 (0.856�0.217)

0.217
�0.509�

p�1

�
p

i�1
ni

 (MSGroups�MSResidual)

MSResidual

2.567� (4�1)0.217
9.083�0.217

�0.206
SSGroups� (p�1)MSResidual

SSTotal�MSResidual



8.3.1 Normality
We assume that the error terms, and the observa-
tions, within each group come from normally dis-
tributed populations, i.e. the �ijs are normally
distributed within each group. If sample sizes and
variances are similar, then the ANOVA tests are
very robust to this assumption. Check for outliers,
skewness and bimodality. We can check the nor-
mality assumption in a number of ways because
we have replicate observations within each group
(Chapter 4). Boxplots of observations or residuals
(Section 8.4) within groups should be symmetri-
cal. Means and variances from a normal distribu-
tion are independent so a plot of sample means

against sample variances should show no relation-
ship. Samples from skewed distributions will
show a positive relationship between means and
variances. Probability plots of the residuals are
also informative (Chapter 4). There are some
formal tests of normality (e.g. the Wilks & Shapiro
tests; goodness-of-fit tests such as Kolmogorov–
Smirnov), but we find graphical methods much
more informative for checking assumptions
before a linear models analysis (Chapter 4).

Because lack of normality is really only a
serious problem for ANOVA models when it
results in variance heterogeneity, we will consider
solutions in Section 8.3.2.
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Box 8.5 Variation in formal implementations of power
analysis

There are two possible sources for confusion when calculating power. First, effect
sizes can be expressed differently. In some cases, the effect is described as the
pattern of means, or, in the case of fixed effects, the ai values. Other authors, e.g.
Cohen (1988), combine the variation among means and an estimate of r

e
2, to

produce a standardized effect.
For example, for a two sample t test, Cohen’s effect size parameter is

d�(l1�l2)/re
, and for a one factor ANOVA, his parameter f, is given by 

f�

which can then be estimated from the ai values specified by the alternative hypoth-
esis, and an estimate of residual variance.

In a similar way, the non-centrality parameter is most often expressed as k, as
defined in Equation 8.9. However, Searle (1971) defines the non-centrality param-
eter as k /2, and sometimes non-centrality is defined as �k/(p�1), or as
u��(k/p), with p being the number of groups.

If power is to be calculated using tabulated values, we find that most authors
provide power values tabulated against u (e.g. Kirk 1995, Winer et al. 1991),
although Cohen (1988) provides very extensive tables of power against f and n.
Note that f�u/ . This reflects a difference in philosophy, with the use of u rep-
resenting a standardization using the standard error of the mean, and f a standard-
ization using r

e
.

These different formulations are mathematically equivalent, but it is confusing
initially to encounter different definitions of ostensibly the same parameter. It is
essential that you check the formulation used by a particular author or piece of soft-
ware. A good check is to use a standard example from one of the major texts, and
run it through the new calculations. When the same answer is obtained, begin your
own calculations.

�n

��
p

i�1
ai

2/p
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8.3.2 Variance homogeneity
A very important assumption is that the vari-
ances of the error terms (and of the observations
in the populations being sampled) should be
approximately equal in each group. This is
termed the assumption of homogeneity of vari-
ances. This is a more serious assumption than
that of normality; unequal variances can seri-
ously affect the ANOVA F test (reviewed by
Coombs et al. 1996). Wilcox et al. (1986) showed by
simulation that with four groups and n equal to
eleven, a 4:1 ratio of largest to smallest standard
deviation (i.e. a 16:1 ratio of variances) resulted in
a Type I error rate of 0.109 for a nominal � of 0.05.
With sample sizes of six, ten, 16 and 40 and the
same standard deviation ratio (largest standard
deviation associated with smallest sample size),
the Type I error rate could reach 0.275. The situa-
tion is similar to that described for t tests in
Chapter 3, where larger variances associated with
smaller sample sizes result in increased Type I
error rates and larger variances associated with
larger sample sizes result in reduced power
(Coombs et al. 1996). Unequal variances, particu-
larly when associated with unequal sample sizes,
can therefore be a problem for hypothesis tests in
linear ANOVA models.

There are a number of useful checks of the
homogeneity of variance assumption. Boxplots of
observations within each group should have
similar spread. The spread of residuals (see
Section 8.4) should be similar when plotted
against group means. There are formal tests of
homogeneity of variance that test the H0 that pop-
ulation variances are the same across groups (e.g.
Bartlett’s, Hartley’s, Cochran’s, Levene’s tests; see
Neter et al. 1996, Sokal & Rohlf 1995, Underwood
1997). We will discuss these in Section 8.8 when
the research hypothesis of interest concerns
group variances rather than group means.
However, we suggest that such tests should not be
used by themselves as preliminary checks before
fitting an ANOVA model for three reasons. First,
some of them are very sensitive to non-normality,
especially positive skewness (Conover et al. 1981,
Rivest 1986), a common trait of continuous biolog-
ical variables. Second, we really want to know if
the variances are similar enough for the ANOVA F
test to still be reliable. Tests for homogeneity of

variance simply test whether sample groups come
from populations with equal variances. If the
sample size is large, these tests could reject the H0

of equal variances when the ANOVA F test would
still be reliable. Conversely, and more impor-
tantly, if sample sizes are small, they might not
reject the H0 of equal variances when the ANOVA
F test would be in trouble. Finally, tests of homo-
geneity of variances provide little information on
the underlying cause of heterogeneous variances,
and diagnostic techniques (e.g. residual plots) are
still required to decide what corrective action is
appropriate.

There are a number of solutions to variance
heterogeneity when fitting ANOVA models. If the
heterogeneity is related to an underlying posi-
tively skewed distribution of the response vari-
able, and hence the error terms from the ANOVA
model, then transformations of the response var-
iable will be particularly useful (see Chapter 4).
Alternatively, fitting generalized linear models
that allow different distributions for model error
terms (Chapter 13) can be effective for linear
models with categorical predictors. Weighted
least squares, as described for linear regression
models in Chapter 5, can also be used and various
robust test statistics have been developed for
testing hypotheses about means when variances
are unequal (see Section 8.5.1).

8.3.3 Independence
The error terms and the observations should be
independent, i.e. each experimental or sampling
unit is independent of each other experimental
unit, both within and between groups.
Underwood (1997) has provided a detailed exam-
ination of this assumption in the context of
ANOVA in biology. He distinguished different
types of non-independence (see also Kenny & Judd
1986).

• Positive correlation between replicates within
groups, which results in an underestimation of
the true 	

�
2 and increased rate of Type I errors.

Such correlation can be due, for example, to
experimental organisms responding positively
to each other (Underwood 1997) or sequential
recording of experimental units through time
(Edwards 1993).

ASSUMPTIONS 193



• Negative correlation between replicates within
groups, which results in an overestimation of
	
�

2 and increased rate of Type II errors.

Lack of independence can also occur between
groups if the response of experimental units in
one treatment group influences the response in
other groups. For example, an experimental treat-
ment that results in animals leaving experimen-
tal units may increase abundances on nearby
controls. Additionally, if time is the grouping
factor and the data are repeated observations on
the same experimental or sampling units, then
there will often be positive correlations between
observations through time.

This assumption must usually be considered at
the design stage. Note that we are not arguing
that non-independent observations preclude sta-
tistical analysis. However, if standard linear
models are to be used, it is important to ensure
that experimental units are independent of each
other, both within and between groups.
Randomization at various stages of the design
process can help provide independence, but can’t
guarantee it. For some specific designs, hypothesis
tests for linear models can be adjusted conserva-
tively to correct for increasing Type I error rates
resulting from positive autocorrelations
(Chapters 10 and 11), and these tests fall in the
general category of unified mixed linear models
(Laird & Ware 1982). Alternatively, the lack of inde-
pendence (e.g. spatial correlations) can be incor-
porated into the design and the modeling
(Legendre 1993, Ver Hoef & Cressie 1993).
Generalized estimating equations (GEEs; see
Chapter 13), as developed for handling correlated
observations in regression models, may also be
useful for ANOVA models because they can be

applied to models with both continuous and cate-
gorical predictors (Ware & Liang 1996). Finally,
measuring and testing hypotheses about spatial
patterns, especially when we anticipate that sam-
pling units closer together will be more corre-
lated, are more suited to the fields of spatial
statistics and geostatistics (see Koenig 1999, Manly
2001 and Rossi et al. 1992 for ecological perspec-
tives).

8.4 ANOVA diagnostics

The predictor variable (factor) in a single factor
ANOVA model is categorical, so the range of avail-
able diagnostics to check the fit of the model and
warn about influential observations is limited
compared with linear regression models (Chapter
5). Leverage (“outliers” in the X-variable) has no
useful meaning for a categorical predictor and
Cook’s Di is also hard to interpret, partly because
it is based on leverage. However, residuals are still
a crucial part of checking any linear model (Box
8.1 and Box 8.2, Table 8.7). Studentized residuals,
the residual divided by its standard deviation
(Neter et al. 1996), are usually easier for compari-
son between different models because they have
constant variance (Table 8.7). Plots of residuals or
studentized residuals against predicted values
(group means) are the most informative diagnos-
tic tools for ANOVA models. The residuals should
show equal spread across groups, indicating vari-
ance homogeneity. Increasing spread of residuals
(a wedge shape) suggests a skewed (non-normal)
distribution of Y in each group and unequal vari-
ances (Figure 8.5). These residual plots can also
indicate autocorrelation, just as in regression
analysis (Chapter 5).

Outliers can either be observations very differ-
ent from the rest in a sample (Chapter 4) or obser-
vations with a large residual that are a long way
from the fitted model compared with other obser-
vations (Chapter 5). Outliers will usually have
undue influence on estimates of group effects (or
variances) and the conclusions from the ANOVA F
test. Such observations should always be checked.
If they are not a mistake and cannot be corrected
or deleted, then one solution is to fit the ANOVA
model twice, with the outlier(s) omitted and with
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the outlier(s) included (Chapter 4). If there is little
difference between the two analyses, it suggests
that the outlier(s) are not influential. In the worst
case, the outlier(s) may change the result between
significant and non-significant. There is not much
that you can do in this case, other than to describe
both results, and discuss biological explanations
for the outliers.

8.5 Robust ANOVA

We have already pointed out that the F test in a
single factor ANOVA is sensitive to large differ-
ences in within group variances, especially when
sample sizes are unequal. This has led to the devel-
opment of a number of alternative tests for differ-
ences between groups that are more robust to
either heterogeneity of variances or outliers or
both. We won’t present formulae for these tests
because, except for the rank versions, the compu-
tations are reasonably tedious and we figure biol-
ogists are unlikely to use these tests until they
appear in statistical software. These robust tests
fall into three categories.

8.5.1 Tests with heterogeneous variances
A number of procedures have been developed for
testing equality of group means (and specific com-
parisons; Section 8.6) when variances are very dif-
ferent (Wilcox 1987a, 1993). One of the earliest
was Welch’s test (Day & Quinn 1989, Wilcox 1993),
which uses adjusted degrees of freedom to protect
against increased Type I errors under variance
heterogeneity. Wilcox (1997) described a modifica-
tion of Welch’s test that extends Yuen’s use of
trimmed means to more than two groups (the

Yuen–Welch test). Other tests
include the Brown–Forsythe
test and James second order
method (see review by Coombs
et al. 1996). These tests gener-

ally have less power than the standard ANOVA F
test and are relatively complicated to calculate.
Wilcox (1993) described the Z test, which is an
extension of his H test (Chapter 3) for two groups;
it is based on M-estimators and bootstrap methods
to determine critical values. Coombs et al. (1996)
recommended this test for unequal variances and
non-normal distributions and the James second-
order method for normal distributions. These
tests are not yet available in most statistical soft-
ware. Our preference is to examine outlying
values and, if appropriate, apply a sensible trans-
formation of the data. This encourages research-
ers to explore their data and think carefully about
the scale of measurement. Alternatively, if the
underlying distribution of the observations and
the residuals is known, and hence why a transfor-
mation might be effective, generalized linear
modeling (GLM) can be applied (Chapter 13).

8.5.2 Rank-based (“non-parametric”) tests
For non-normal distributions (but similar vari-
ances), methods based on ranks (Chapter 3) might
be used. There are two broad types of rank-based
tests for comparing more than two groups. First is
the Kruskal–Wallis test, which is a rank-random-
ization test and an extension of the Mann–
Whitney–Wilcoxon test described in Chapter 3 for
comparing two groups. It tests the H0 that there is
no difference in the location of the distributions
between groups or treatments and is based on
ranking the pooled data, determining the rank
sums within each group and calculating the H sta-
tistic that follows a �2 distribution with (p�1) df
(Hollander & Wolfe 1999, Sokal & Rohlf 1995).
Although the Kruskal–Wallis test is non-
parametric in the sense that it does not assume
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Figure 8.5. Diagrammatic residual
plots for single factor ANOVA with
three groups and n equals four: (a)
similar variances, (b) variance
increasing with mean, suggesting
positively skewed distribution.



that the underlying distribution is normal, it does
assume that the shapes of the distributions are
the same in the different groups (the only possible
difference being one of location, as tested in the
H0). This implies that variances should be similar
(Hollander & Wolfe 1999). Therefore, the Kruskal–
Wallis test is not a recommended solution for
testing under unequal variances. However, it is a
useful approach for dealing with outliers that
do not represent more general variance hetero-
geneity. The Kruskal–Wallis test is sometimes
described as a “non-parametric ANOVA” but this is
a little misleading; there is no partitioning of var-
iance and the H0 does not test means unless the
distributions are symmetric.

In the rank transform (RT) method, we trans-
form the data to ranks and then fit a parametric
ANOVA model to the ranked data (Conover &
Iman, 1981). This really is an “analysis of variance”
because the RT approach can be viewed as just an
extreme form of transformation resulting in an
ANOVA on rank-transformed data. It turns out
that, for a single factor design, an RT F test will
produce the same result as the Kruskal–Wallis test
(Neter et al. 1996), but it is a more general proce-
dure and can potentially be used for complex
ANOVAs (Chapter 9). The RT approach also does
not deal with unequal variances; if the variances
are unequal on the raw scale, the ranks may also
have unequal variances. We would also need to
conduct the usual model-checking diagnostics on
the ranked data.

8.5.3 Randomization tests
We can also use a randomization test to test the H0

of no difference between groups (Crowley 1992,
Edgington 1995, Manly 1997; Chapter 3). The pro-
cedure randomly allocates observations (or even
residuals) to groups (keeping the same sample
sizes) many times to produce the distribution of a
test statistic (e.g. F-ratio or SSGroups or MSGroups; see
Manly 1997) under the H0 of no group effects. If
this H0 is true, we would expect that all random-
ized allocations of observations to groups are
equally likely. We simply compare our observed
statistic to the randomized distribution of the sta-
tistic to determine the probability of getting our
observed statistic, or one more extreme, by
chance. Manly (1997) indicated, based on simula-

tions, that randomization of observations and
residuals produced similar results. However, such
a randomization test to compare group means
may not be robust against unequal variances, as
Crowley (1992) and Manly (1997) have both
pointed out that the H0 can be rejected because of
different variances without any differences
between the means. While the conclusions from a
randomization test also cannot easily be extrapo-
lated to a population of interest, in contrast to the
traditional approaches, randomization tests don’t
rely on random sampling from populations and
therefore will be useful when random sampling is
not possible (Ludbrook & Dudley 1998).

8.6 Specific comparisons of means

Very few aspects of applied statistics have created
as much discussion and controversy as multiple
comparisons, particularly comparisons of group
means as part of ANOVAs (see reviews by Day &
Quinn 1989, Hancock & Klockars 1996, Hochberg
& Tamhane 1987). We discussed the issues related
to multiple significance testing in Chapter 3.
Much of the debate and development of tech-
niques for dealing with this problem have arisen
in the context of multiple comparisons of group
means following ANOVA models. Two issues are of
particular importance. The first is the general
multiple testing problem and increased rate of
Type I errors (Chapter 3). For example, if we have
five groups in our design, we would need ten pair-
wise tests to compare all groups with each other.
The probability of at least one Type I error among
the family of ten tests, if each test is conducted at
� equals 0.05 and the comparisons are indepen-
dent of each other, is 0.40 (Table 3.1). Much of the
discussion about specific group contrasts in
ANOVA models has focused on the need to correct
for this increase in family-wise Type I error rates
and the best methods to achieve this correction.

The second issue is independence (the statisti-
cal term is orthogonality) of the contrasts. For
example, say we have three groups with equal
sample sizes and our sample mean for group A is
greater than that for group B with group C having
the smallest mean. If our pairwise tests reject the
null hypotheses that group A and B have equal
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population means and that group B and C have
equal population means, then the contrast of
groups A and C is redundant. We know that the
mean for group A is significantly greater than the
mean for group C without needing to do the test.
Ensuring a set of contrasts is independent (orthog-
onal) is important for two reasons. First, indepen-
dent contrasts are straightforward to interpret
because the information each contains is inde-
pendent. Second, the family-wise Type I error rate
can be easily calculated if necessary, using
Equation 3.9; the family-wise Type I error rate
cannot be easily calculated for non-independent
contrasts.

As discussed in Chapter 3, traditional adjust-
ments to significance levels to correct for multiple
testing are very severe, restricting the family-wise
Type I error rate to the same level as the compari-
son-wise level for each comparison (e.g. 0.05). It
seems strange to us that we are willing to allocate
a significance level of 0.05 for individual compar-
isons but as soon as we consider a family of com-
parisons, we constrain the probability of at least
one Type I error to the same level (0.05). The cost
of this very tight control of family-wise Type I
error is that our individual comparisons have
decreasing power as the number of comparisons
in our family increases.

Our broad recommendation is that the default
position should be no adjustment for multiple
testing if the tests represent clearly defined and
separate hypotheses (Chapter 3). The exception is
when we are scanning all possible comparisons in
an exploratory manner where the aim is to detect
significant results from all possible tests that
could be carried out on a data set. Under these
circumstances, we agree with Stewart-Oaten
(1995) that some protection against increasing
Type I error rates should be considered and, when
comparing all possible group means in an ANOVA
design, the procedures outlined in Section 8.6.2
should be adopted. However, we also urge biolo-
gists not to be constrained to the convention of
0.05 as a significance level. A sensible balance
between power and Type I error rate in situations
where adjustments are made for multiple testing
can also be achieved by setting family-wise Type I
error rates at levels above 0.05.

8.6.1 Planned comparisons or contrasts
These are interesting and logical comparisons
(often termed contrasts) of groups or combina-
tions of groups, each comparison commonly
using a single df. They are usually planned as part
of the analysis strategy before the data are exam-
ined, i.e. the choice of contrasts is best not deter-
mined from inspection of the data (Day & Quinn
1989, Ramsey 1993, Sokal & Rohlf 1996). Many
texts recommend that planned contrasts should
be independent of each other, where the compari-
sons should contain independent or uncorrelated
information and represent a non-overlapping par-
titioning of the SSGroups. The number of indepen-
dent comparisons cannot be more than the dfgroups

(p�1). This means that the outcome of one com-
parison should not influence the outcome of
another (see Maxwell & Delaney 1990 for exam-
ples) and the family-wise Type I error rate can be
easily calculated (Chapter 3). Even the question of
orthogonality is not without differences of
opinion among statisticians, and some argue that
the set of planned comparisons need not be
orthogonal (e.g. Winer et al. 1991), and that it is
more important to test all of the hypotheses of
interest than to be constrained to an orthogonal
set. We agree with Toothaker (1993) that orthogo-
nality has been given too much emphasis in dis-
cussions of group comparisons with ANOVA
models, especially in terms of error rates, and that
it is more important to keep the number of con-
trasts small than worrying about their orthogo-
nality.

There is some consensus in the literature that
each planned contrast, especially when they are
orthogonal, can be tested at the chosen compari-
son-wise significance level (e.g. equals 0.05), and
no control over familywise Type I error rate is nec-
essary (Day & Quinn 1989, Kirk 1995, Sokal & Rohlf
1995). We agree, although we place much less
emphasis on the need for orthogonality. The argu-
ments in favour of not adjusting significance
levels are that the number of comparisons is small
so the increase in family-wise Type I error rate will
also be small and each comparison is of specific
interest so power considerations are particularly
important. Another argument is that contrasts
represent independent hypotheses, so there is no
multiple testing involved. This approach is not
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universally supported. For example, Ramsey
(1993) argued that the family-wise error rate
should be controlled in any multiple testing situ-
ation, although the power of individual tests in
complex ANOVAs with numerous hypotheses
(main effects and interactions) surely would be
unacceptable with this strategy. Additionally,
some statisticians have argued that adjustment is
necessary only when non-orthogonal contrasts
are included and Keppel (1991) proposed adjust-
ing the significance level of only those compari-
sons that are not orthogonal – see Todd & Keough
(1994) for an example of this approach.

The H0 being tested is usually of the form �A�

�B (e.g. the mean of group A equals the mean of
group B). The hypotheses can be more compli-
cated, such as (�A��B)/2��C (e.g. the average of
the means of group A and group B equals the
mean of group C); note that this comparison will
still have one df because there are only two
“groups”, one being formed from a combination
of two others. For example, Newman (1994) exam-
ined the effects of changing food levels on size
and age at metamorphosis of tadpoles of a desert
frog. He used small plastic containers as the
experimental units, each with a single tadpole.
There were four treatments: low food (one-quarter
ration, n equals 5 containers), medium food (half-
ration, n equals 8), high food (full ration, n equals
6), and food decreasing from high to low during
the experiment (n equals 7). Single factor ANOVAs
were used to test for no differences between the
four treatments on size and age at metamorpho-
sis. In addition to the overall effect of food level,
Newman (1994) was particularly interested in the
hypothesis that a deteriorating growth environ-
ment changes timing of metamorphosis com-
pared to a constant good environment so he
included a single planned contrast: decreasing
food vs constant high food.

Another example is from Marshall & Keough
(1994), who examined the effects of increasing
intraspecific densities of two size classes (large
and small) of the intertidal limpet Cellana tramoser-
ica on mortality and biomass of large limpets.
There were seven treatments (one large limpet per
experimental enclosure, two large, three large,
four large, one large and ten small, one large and
20 small, one large and 30 small), four replicate

enclosures for each treatment and a single factor
ANOVA was used to test for treatment effects. They
included three specific contrasts to test for the
effects of small limpets on large limpets: ten small
vs ten small and one large, ten small vs ten small
and two large, ten small vs ten small and three
large.

In our worked example, Keough & Raimondi
(1995) used three specific contrasts to identify
effects of different kinds of biofilms on settlement
of serpulid worms: lab netted vs lab un-netted, then,
with a non-significant result, the average of the two
lab films were compared to field biofilms, and,
finally, if these did not differ, the average of all three
filmed treatments were compared to the substrata
that had been in sterile seawater (Box 8.4).

There are two ways of doing these planned
comparisons, partitioning the between groups SS
or using two group t tests.

Partitioning SS
The SSGroups can be partitioned into the contribu-
tion due to each comparison. Each SSComparison will
have one df (we are only comparing two means or
two combinations of means) and, therefore, the
SSComparison equals the MSComparison. The H0 asso-
ciated with each comparison is tested with an
F-ratio (MSComparison/MSResidual). This approach is
simply an extension of the partitioning of the
variation that formed the basis of the ANOVA and
is illustrated in Box 8.4.

We need to define a linear combination of the
p means representing the specific contrast of
interest:

c1ȳ1� . . .�ci ȳi� . . .etc. (8.8)

where ci are coefficients, �p
i�1nici equals zero (this

ensures a valid contrast) and ȳi are treatment or
group means. The details for working out these
linear contrasts are provided for the worked
example from Keough & Raimondi (1995) in Box
8.4. Note that the absolute values of the coeffi-
cients are not relevant as long as the coefficients
sum to zero and represent the contrast of interest.
We prefer to use integers for simplicity. We can
also define orthogonality in terms of coefficients.
Two comparisons, A and B, are independent
(orthogonal) if �p

i�1ciAciB equals zero, i.e. the sum of
the products of their coefficients equals zero. It is
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often not intuitively obvious whether two com-
parisons are orthogonal, and the only way to be
sure is to do these calculations. If comparisons are
orthogonal, then the sum of the SSComparison will
not exceed SSGroups. If comparisons are not orthog-
onal, then sum of SSComparison can exceed available
SSGroups, indicating we are using the same informa-
tion in more than one comparison.

t test
A t test can be used to compare groups A and B
with the modification that

is used as the standard error of the comparison.
This standard error makes use of the better esti-
mate of residual variance from the ANOVA (if the
assumption of homogeneity of variance holds)
and has more df than the usual t test which would
just use the data from the two groups being com-
pared.

Partitioning the SS and t test are functionally
equivalent; the F-ratio will equal t2 and the P values
will be identical. Both approaches can handle
unequal sample sizes and the t test approach can
be adjusted for unequal variances (Chapter 3). We
prefer the former because it is a natural extension
of the ANOVA and the results are easy to present as
part of the ANOVA table. Note that a significant
ANOVA F test is not necessary before doing
planned comparisons. Indeed, the ANOVA might
only be done to provide the MSResidual. 

8.6.2 Unplanned pairwise comparisons
Now we will consider multiple testing situations,
and specifically multiple comparisons of means,
where control of family-wise Type I error rate
might be warranted. There are two broad
approaches to adjusting significance levels for
multiple testing. The first is to use specific tests,
often based on the F or q distributions. A more
general method, which can be used for any family
tests, is to adjust the P values (Chapter 3).

Unplanned pairwise comparisons, as the name
suggests, compare all possible pairs of group
means (i.e. each group to every other group) in a
post hoc exploratory fashion to find out which

�� 1

nA
�

1

nB
	MSResidual

groups are different after a significant ANOVA F
test. These multiple comparisons are clearly not
independent (there are more than p�1 compari-
sons), there are usually lots of them and they
involve data snooping (searching for significant
results, or picking winners (Day & Quinn 1989),
from a large collection of tests). There seems to be
a much stronger argument that, in these circum-
stances, some control of family-wise Type I error
rate is warranted. The usual recommendation is
that the significance level (�) for each test is
reduced so the family-wise Type I error rate stays
at that chosen (e.g. 0.05).

Underwood (1997) has argued that there has
been too much focus on Type I error rates at the
expense of power considerations in multiple com-
parisons. We agree, although controlling family-
wise error rates to a known maximum is
important. We do not support increasing power of
individual comparisons by using procedures that
allow a higher, but unknown, rate of Type I errors
under some circumstances (e.g. SNK or Duncan’s
tests – see below). To increase power when doing
all pairwise comparisons, we would prefer using a
multiple comparison procedure that has a known
upper limit to its family-wise error rate and then
setting that rate (significance level) above 0.05.

There are many unplanned multiple compari-
son tests available and these are of two broad
types. Simultaneous tests, such as Tukey’s test, use
the value of the test statistic based on the total
number of groups in the analysis, irrespective of
how many means are between any two being com-
pared. These simultaneous tests also permit
simultaneous confidence intervals on differences
between means. Stepwise tests use different
values of the test statistic for comparisons of
means closer together and are generally more
powerful, although their control of the family-
wise Type I error rate is not always strict. Both
types of test can handle unequal sample sizes,
using minor modifications, e.g. harmonic means
of sample sizes. Day and Quinn (1989) and Kirk
(1995) provide detailed evaluation and formulae
but brief comments are included below.

Tukey’s HSD test
A simple and reliable multiple comparison is
Tukey’s (honestly significant differenced, or HSD)
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test, which compares each group mean with every
other group mean in a pairwise manner and con-
trols the family-wise Type I error rate to no more
than the nominal level (e.g. 0.05). Tukey’s HSD test
is based on the studentized range statistic (q),
which is a statistic used for multiple significance
testing across a number of means. Its sampling
distribution is defined by the number of means in
the range being compared (i.e. the number of
means between the two being compared after the
means are arranged in order of magnitude) and
the dfResidual. The q distribution is programmed
into most statistical software and critical values
can be found in many textbooks.

We illustrate the logic of Tukey’s HSD test as an
example of an unplanned multiple comparison
test (see also Day & Quinn 1989 and Hays 1994 for
clear descriptions):

• As we did for planned comparisons using a t
test, calculate the standard error for the
difference between two means from

Using the harmonic mean of the sample sizes
is sometimes called the Tukey–Kramer
modification (Day & Quinn 1989) and reduces
to 1/n for equal sample sizes.

• Determine appropriate value of (q) from the q
distribution at the chosen significance level
(for family-wise Type I error rate), using
dfResidual and the number of means being
compared (i.e. the number of groups, a).

• Calculate the HSD (honestly significant
difference, sometimes termed the minimum
significant difference, MSD; Day & Quinn,
1989). The HSD is simply q times the standard
error and is the smallest difference between
two means that can be declared significant at
the chosen family-wise significance level.

• Compare the observed difference between two
sample means to the HSD. If the observed
difference is larger, then we reject the H0 that
the respective population means are equal.
Repeat this for all pairs of means.

• Presenting the results of multiple comparisons
is not straightforward because the number of
tests can be large. Two common approaches

�� 1

nA
�

1

nB
	MSResidual

are to join those means not significantly
different with an underline (e.g. A B�C D) or
to indicate groups not significantly different
from each other with the same subscript or
superscript in tables or figures.

Fisher’s Protected Least Significant Difference
test (LSD test)

This test is based on pairwise t tests using pooled
within groups variance (MSResidual) for the standard
error, as described for planned comparisons
(Section 8.6.1) and applied only if the original
ANOVA F test is significant (hence “protected”).
However, it does not control family-wise Type I
error rate unless the true pattern among all
groups is that there are no differences. It is not
recommended for large numbers of unplanned
comparisons (Day & Quinn 1989).

Duncan’s Multiple Range test
This stepwise test based on the q statistic for com-
paring all pairs of means was historically popular.
However, it does not control the family-wise Type
I error rate at a known level (nor was it ever
designed to!) and is not recommended for
unplanned pairwise comparisons.

Student–Neuman–Keuls (SNK) test
This test is very popular, particularly with ecolo-
gists, because of the influence of Underwood’s
(1981) important review of ANOVA methods. It is a
relatively powerful stepwise test based on the q sta-
tistic. Like the closely related Duncan’s test, it can
fail to control the family-wise Type I error rate to a
known level under some circumstances when there
are more than three means (specifically when there
are four or more means and the true pattern is two
or more different groups of two or more equal
means). Although Underwood (1997) argued that
the SNK test might actually be a good compromise
between Type I error and per comparison power, we
prefer other tests (Tukey’s, Ryan’s, Peritz’s) because
they provide known control of family-wise Type I
error. Underwood (1997) provided formulae and a
worked example of the SNK test.

Ryan’s test
This is one of the most powerful stepwise multiple
comparison procedures that provides control over
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the family-wise Type I error rate and is often
referred to as the Ryan, Einot, Gabriel and Welsch
(REGW) procedure. It can be used with either the
q or the F-ratio statistic and it is the recommended
multiple comparison test if software is available,
but it is a little tedious to do by hand.

Peritz’s test
This is basically an SNK test that switches to a
REGW-type test in situations where the SNK
cannot control Type I error, so it is a combined
SNK and Ryan’s test. It is probably too complicated
for routine use.

Scheffe’s test
This is a very conservative test, based on the F-ratio
statistic, designed for testing comparisons
suggested by the data. It is not restricted to pair-
wise comparisons, in contrast to Tukey’s test, but
is not very efficient for comparing all pairs of
means.

Dunnett’s test
This is a modified t test designed specifically for
comparing each group to a control group. Under
this scenario, there are fewer comparisons than
when comparing all pairs of group means, so
Dunnett’s test is more powerful than other multi-
ple comparison tests in this situation.

Robust pairwise multiple comparisons
Like the ANOVA F test, the multiple comparison
tests described above assume normality and, more
importantly, homogeneity of variances. Pairwise
multiple comparison procedures based on ranks
of the observations are available (Day & Quinn
1989) and there are also tests that are robust to
unequal variances, including Dunnett’s T3,
Dunnett’s C and Games–Howell tests (Day &
Quinn 1989, Kirk 1995). They are best used in con-
junction with robust ANOVA methods described
in Section 8.5.

Tests based on adjusting P values
Multiple comparisons of group means are simply
examples of multiple testing and therefore any of
the P value adjustment methods described in
Chapter 3 can be applied to either t or F tests (or
the robust procedures) used to compare specific

groups. Sequential Bonferroni methods are partic-
ularly appropriate here.

8.6.3 Specific contrasts versus unplanned
pairwise comparisons

A small number of planned contrasts is always a
better approach than comparing all pairs of
means with an unplanned multiple comparison
procedure. In most cases, you probably have in
mind some specific hypotheses about the groups
and tests of these hypotheses are usually more
powerful because there is less of an argument for
adjusting error rates and they are nearly always
more interpretable. They also encourage biolo-
gists to think about their hypotheses more care-
fully at the design stage. Unplanned comparisons
are usually only done when the ANOVA F test indi-
cates that there is a significant result to be found;
then we often wish to go “data-snooping” to find
which groups are different from which others.

As we have already discussed, the adjustment
of Type I error rates for most standard unplanned
multiple comparison procedures means that the
power of individual comparisons can be weak,
especially if there are lots of groups, and this can
make the unplanned tests difficult to interpret.
For example, an unplanned multiple comparison
test (with family-wise adjustment), following a
“marginally significant” (0.01�P�0.05) ANOVA F
test may not reveal any differences between
groups. Also, some unplanned multiple compari-
sons can produce ambiguous results, e.g. with
three means in order smallest (A) to largest (C), the
test might show C�A but A�B and B�C!
Underwood (1997) has argued that no conclusions
can be drawn from such a result because no alter-
native hypothesis can be unambiguously iden-
tified. We view the multiple comparison test as a
set of different hypotheses and suggest that such
a result allows us to reject the H0 that A equals C,
but no conclusion about whether B is different
from A or C.

Finally, specific contrasts of groups are mainly
relevant when the factor is fixed, and we are spe-
cifically interested in differences between group
means. When the factor is random, we are more
interested in the added variance component
(Section 8.2.1) and not in specific differences
between groups.
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8.7 Tests for trends

If the factor in an ANOVA is fixed and quantitative
(i.e. the treatment levels have some numerical
value), then tests for trends in the group means
may be more informative than tests about
whether there are specific differences between
group means. Usually, we wish to test for a linear
trend or some simple nonlinear (e.g. quadratic or
cubic – see Chapter 6) trend. For example,
Glitzenstein et al. (1995) studied the mortality of
sandhill oak (Quercus spp.) across eight season-of-
burn treatments (eight two-week periods during
1981/1982). They used a single factor ANOVA
(season-of-burning, with seven df) but were more
interested in trends in oak mortality through the
eight seasons than specific differences between
season means. They tested for linear and quad-
ratic patterns in mortality across burn season.
Marshall & Keough (1994) examined the effects of
increasing intraspecific densities of two size
classes (large and small) of the intertidal limpet
Cellana tramoserica on mortality and biomass of
large limpets. There were seven treatments (one
large, two large, three large, four large, one large
and ten small, one large and 20 small, one large
and 30 small), four replicate enclosures for each
treatment and a single factor ANOVA was used to
test the overall H0 of no treatment differences.
Marshall & Keough (1994) also included a trend
analysis to test for a linear relationship in mean
mortality (or biomass) across the intra-size-class
treatments (one, two, three, four large limpets per
enclosure). We will illustrate a linear trend analy-
sis with the data on serpulid recruitment from
Keough & Raimondi (1995), where the equally
spaced levels of biofilm represented an increas-
ingly stronger cue for settlement (Box 8.4). Note
that the factor is not really quantitative in this

example, but can be considered a rank order and
therefore still suitable for testing trends.

The method of orthogonal polynomials fits
polynomial equations to the group means using
contrast coefficients, just as for planned contrasts
between specific group means. A linear polyno-
mial represents a straight-line relationship
through the group means, a quadratic represents
a U-shaped relationship with a single “change of
direction” and the cubic represents a more
complex pattern with two “changes of direction”
(Figure 8.6; Kirk 1995). We don’t provide computa-
tional details for fitting orthogonal polynomials
to group means (see Kirk 1995, Maxwell & Delaney
1990, Winer et al. 1991) but the logic is similar to
contrasts of means described in Section 8.6.1 and
they are simple to do with most statistical soft-
ware. The SSGroups is partitioned up into SSLinear,
SSQuadratic, SSCubic, etc., each with one df. The null
hypothesis of no linear (or quadratic, etc.) trend is
tested with F tests, using the MSResidual. Our experi-
ence is that polynomials above cubic are difficult
to interpret biologically and are rarely fitted in
practice, even when there are enough df to do so.
If the levels of the factor are equally spaced and
sample sizes are equal, the coefficients for the
contrasts equations for linear, quadratic, etc.,
trends can be found in Table 8.8; unequal sample
sizes and/or spacing of factor levels are discussed
below.

The rules for contrast coefficients still apply.
The coefficients for each polynomial should sum
to zero and we could multiply the coefficients for
any contrast by a constant and still get the same
result (e.g. �30, �10, 10, 30 is the same linear con-
trast as �3, �1, 1, 3). Successive polynomials
(linear, quadratic, etc.) are independent (orthogo-
nal) as long as the number of successive polynomi-
als, starting with linear, doesn’t exceed the
dfGroups, i.e. if there are four groups, there are
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Figure 8.6. Diagrammatic
representation of (a) linear, (b)
quadratic and (c) cubic trends in Y
across four equally spaced,
quantitative, groups.



three df and we can have three orthogonal polyno-
mials: linear, quadratic, cubic.

When sample sizes are equal in all groups, the
SS from fitting a linear contrast across the means
using orthogonal polynomials will be the same as
the SSRegression from fitting a linear regression
model to the original observations. Note that the
SSResidual, and therefore the test of linearity, will be
different in the two cases because the classical
regression and ANOVA partitions of SSTotal are dif-
ferent. The SSResidual from fitting the ANOVA model
will be smaller but also have fewer df, as only one
df is used for the regression but (p�1) is used for
the groups. The difference in the two SSResidual

(from the regression model and the ANOVA
model) is termed “lack-of-fit” (Neter et al. 1996),
representing the variation not explained by a
linear fit but possibly explained by nonlinear
(quadratic, etc.) components.

The SS from fitting a quadratic contrast across
the means will be the same as the SSExtra from
fitting a quadratic regression model over a linear
regression model to the original observations
(Chapter 6). So the quadratic polynomial is testing
whether there is a quadratic relationship between
the response variable and the factor over and
above a linear relationship, the cubic polynomial
is testing whether there is a cubic relationship
over and above a linear or quadratic relationship,

and so on. Sometimes, the remaining SS after
SSLinear is extracted from SSGroups is used to test for
departures from linearity (Kirk 1995).

When sample sizes are unequal or the spacing
between factor levels is unequal, contrast coeffi-
cients can be determined by solving simultaneous
equations (Kirk 1995) and good statistical software
will provide these coefficients. Alternatively, we
could simply fit a hierarchical series of polyno-
mial regression models, testing the linear model
over the intercept-only model, the quadratic
model over the linear model, etc. (Chapter 6).
Unfortunately, the equality of the SS due to a par-
ticular contrast between group means and the SS
due to adding that additional polynomial in a
regression model fitted to the original observa-
tions breaks down when sample sizes are different
(Maxwell & Delaney 1990) so the two approaches
will produce different (although usually not
markedly) results. We prefer using the contrast
coefficients and treating the test for a linear trend
as a planned contrast between group means.

8.8 Testing equality of group
variances

It may sometimes be of more biological interest to
test for differences in group variances, rather
than group means, when we expect that experi-
mental treatments would affect the variance in
our response variable. Tests on group variances
may also be a useful component of diagnostic
checks of the adequacy of the ANOVA model and
the assumption of homogeneity of variance
(Section 8.3).

Traditional tests for the H0 of equal population
variances between groups include Bartlett’s test,
which is based on logarithms of the group vari-
ances and uses a �2 statistic, Hartley’s Fmax test,
which is based on an F-ratio of the largest to the
smallest variance, and Cochran’s test, which is the
ratio of the largest variance to the sum of the var-
iances. Unfortunately, Conover et al. (1981) and
Rivest (1986) have shown that all these tests are
very sensitive to non-normality. Given the preva-
lence of skewness in biological data, this lack of
robustness is a serious concern and these tests
cannot be recommended for routine use.
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Table 8.8 Coefficients for linear, quadratic and
cubic polynomials for between three and six
equally spaced group levels. See Kirk (1995) or
Winer et al. (1991) for more orders and levels

X1 X2 X3 X4 X5 X6

Linear �1 0 1
�3 �1 1 3
�2 �1 0 1 2
�5 �3 �1 1 3 5

Quadratic 1 �2 1
1 �1 �1 1
2 �1 �2 �1 2
5 �1 �4 �4 �1 5

Cubic �1 3 �3 1
�1 2 0 �2 1
�5 7 4 �4 �7 5



Alternative tests recommended by Conover et al.
(1981) basically calculate new (pseudo)observations
that represent changes in the variance and then
analyze these pseudo-observations (Ozaydin et al.
1999). Levene’s test is based on absolute deviations
of each observation from its respective group mean
or median (i.e. absolute residuals) and is simply an
F test based on using these absolute deviations in a
single factor ANOVA. The H0 is that the means of the
absolute deviations are equal between groups.
Although Levene’s test is robust to non-normality
of the original variable (Conover et al. 1981), the
pseudo-observations are not necessarily normal
nor will their variances be equal (assumptions of
the F test). Suggested solutions have been to use
robust methods for single factor ANOVAs to analyze
the pseudo-observations (see Section 8.5), such as
ranking them (Conover et al. 1981) and then modify-
ing the ranks with score functions (Fligner &
Killeen 1976) or even using a randomization test,
although we have not seen this recommended.

8.9 Power of single factor ANOVA

The F-ratio statistic, under the H0 of equal group
means, follows a central F distribution (see
Chapter 1). When the H0 is false, the F-ratio statis-
tic follows a non-central F distribution. The exact
shape of this distribution depends on dfGroups,
dfResidual and on how different the true population
means are under HA. This difference is summar-
ized by the non-centrality parameter (�), which is
defined as:

�� (8.9)

To determine the power of a single factor ANOVA,
we need to calculate � (or ���(�/p)). This
requires us to specify the alternative hypothesis
(HA) and to know (or guess) the residual variation.
Remember the general formula relating power
and effect size that we used in Chapter 7:

Power � (7.5)

The non-centrality parameter � incorporates the
effect size [group effects (�i) squared] and the
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within group standard deviation 	. We can then
calculate power by referring to power charts (e.g.
Neter et al. 1996, Kirk 1995), which relate power to
� or � for different df (i.e. n). Alternatively, we can
use software designed for the purpose. It is impor-
tant to note, however, that the formal calculations
can vary between different texts and software
packages (Box 8.5).

These calculations can be used to:

• determine the power of an experiment post hoc,
usually after a non-significant result,

• determine the minimum detectable effect size
for an experiment post hoc, and

• calculate sample size required to detect a
certain effect size when planning an
experiment.

An example of power calculations is included
in Box 8.6 and Underwood (1981, 1997) has also
provided worked biological examples. These
power calculations are straightforward for two
groups but become more difficult with more than
two groups. When there are only two groups, the
effect size is simply related to the difference
between the two means. However, when we have
more than two groups, the HA could, for example,
have the groups equally spaced or two the same
and one different. These different patterns of
means will lead to different values of �, and,
hence, power. The difficulty of specifying HA

becomes greater as the number of groups
increases, unless we have a very specific HA that
details a particular arrangement of our groups
(e.g. a linear trend across groups). 

If the number of groups is not too large, one
option is to calculate the power for a range of
arrangements of treatments. For example, we can
calculate the power characteristics for four differ-
ent arrangements of groups for a given difference
in means (between the largest and smallest), such
as groups equally spaced, one group different
from all others (which are equal), and so on. An
example of such power curves are plotted in
Figure 8.7 where for a given effect size you can
easily see the range of power values. Note that
there is little difference for very large or very
small differences between the largest and small-
est group means. For planning experiments, it
may be enough to know the range of power values
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Box 8.6 Worked example: power analysis for serpulid
recruitment onto surfaces with different biofilms

Two of the other response variables in the study of recruitment by Keough &
Raimondi (1995), the number of spirorbid worms, and bryozoans in the genus
Bugula, showed no differences between any of the filming treatments, so power
becomes an issue. For the spirorbids, the analysis of variance was as follows.

Source SS df MS F P

Biofilms 0.296 3 0.099 1.624 0.210
Residual 1.458 24 0.061
Total 1.754 27

The mean for the unfilmed (SL) treatment was 0.273.We can use this informa-
tion to look at the power of the test for this species.

If we define the effect size as an increase in settlement of 50% over the value
for unfilmed surfaces, our ES�0.137.

First, let’s look at the overall power of the test. Suppose that we wanted to
detect any effect of biofilms, in which case, the SL treatment would have a value of
0.273, and the other three would be 0.41. The grand mean would be 0.375, giving
estimates of ai of �0.102, 0.034, 0.034, and 0.034. For these values, �p

i�1ai
2�0.014,

and, from the table above, our estimate of r
e
2 is 0.061. Using Equation 8.9,

k�(7�0.014)/0.061�1.614, and substituting this value into any software that cal-
culates power, using dfGroups�3 and dfResidual�24, we get power of 0.143.
Remember, power is the probability of statistically detecting this effect size if it
occurred. This experiment had little chance of detecting an increase in settlement
of 50% above the value for unfilmed surfaces.

To see how our specification of HA affects power, let’s look at the power for a
pattern that is one of the hardest to detect using an overall F test, a gradual trend
from largest to smallest mean. Using the example here, the four means would be
0.271, 0.319, 0.364, and 0.410. Then, the power is 0.117. These differences don’t
seem very large, mainly because the overall power is so low for this group of poly-
chaetes. For comparison,we can look at the data for the bryozoans. Here, the mean
for the sterile treatment is 0.820, and the MSResidual is 0.063. For these bryozoans,
our general HA would produce means of 0.82, 1.23, 1.23, and 1.23 for our four treat-
ments. The non-centrality parameter, k, is 14.01, giving power of 0.84, so we would
feel confident that our non-significant result for this group of animals really repre-
sents an effect of less than 50%. If we calculate for the general trend case, the four
hypothetical means would be 0.82, 0.96, 1.09, and 1.23,k�10.38, and power is 0.70,
a drop of 15%.



for a given effect, and to make decisions around
one particular arrangement of groups, taking into
account where that arrangement fits on the
power spectrum.

8.10 General issues and hints for
analysis

8.10.1 General issues

• General experimental design principles, espe-
cially randomization and choice of appropriate
controls, are nearly always important when
designing studies for the application of single
factor ANOVA models.

• Estimates of explained variance have different
interpretations for fixed and random factors.
Added variance component for a random
factor is straightforward with equal sample
sizes and confidence intervals should be used.
Explained variance for a fixed factor is also
useful as a descriptor but cannot be easily com-
pared for different models and data sets and
must be interpreted carefully.

• Be aware that some alternatives that may be
suggested as an option when ANOVA assump-
tions are violated are rarely assumption free.
For example, the rank-based non-parametric
methods don’t assume normality, but have an

assumption equivalent to the homogeneity of
variances.

• We recommend planned comparisons (con-
trasts) rather than unplanned multiple com-
parisons. In most cases, you are not interested
in comparing all possible groups, but can iden-
tify particular questions that are of greater
interest.

• Power calculations are relatively simple for
single factor models. However, once the
number of groups is greater than two, you
must think hard about the kind of differences
between groups that is of interest to you.
Different alternative patterns of means have
different power characteristics.

• A problem for inexperienced biologists is that
many of the decisions (how normal should the
data be?, etc.) involve an informed judgment
about where a particular data set fits along a
continuum from assumptions being satisfied
completely to major violations. There is no
unambiguous division, but, in many cases, it
doesn’t matter because the P values will be far
from any grey zone.

8.10.2 Hints for analysis
• Aim for equal sample sizes. The linear model

calculations can easily handle unequal
samples, but the analysis is more sensitive to
the underlying assumptions and parameter
estimates and hypothesis tests will be more
reliable if sample sizes are equal.

• Homogeneity of variances is an important
assumption. ANOVA is robust to small and
moderate violations (especially with equal
sample sizes), but big differences (e.g. many-
fold differences between largest and smallest
variances) will alter the Type I error rate of the
F test.

• Examine homogeneity of variances with
exploratory graphical methods, e.g. look at the
spread of boxplots, plot group variances or
standard deviations against group means, or
plot residuals against group means and look
for patterns. We don’t recommend formal tests
of equal group variances as a preliminary
check before an ANOVA.

• Transformations will be effective when the
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Figure 8.7. Power envelope, showing, for a given effect size,
the power for different arrangement of groups.The example
used five groups, n equals five in each group, standard
deviation equals one in each group. Effect size is measured as
the difference between the largest and smallest mean.



error terms, and the observations, have posi-
tively skewed distributions. For biological data,
the most likely effective transformations are
log and square (or fourth) root. Although
ANOVA models are robust to violations of non-
normality, such normalizing transformations
will usually make variances more similar
between groups. 

• For moderate violations of normality and
homogeneity of variances, we recommend pro-
ceeding with the analysis, but being cautious
about results that are marginally significant or

non-significant. Otherwise we recommend
using generalized linear models when the
underlying distribution of the response vari-
able can be determined, or one of the robust
tests.

• Use planned contrasts wherever possible for
testing specific differences between groups. If
unplanned comparisons must be used, Ryan’s
(REGW) or Tukey’s tests are recommended, the
latter if simultaneous confidence intervals are
required.
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In Chapter 8, we examined designs with a single
factor where the appropriate linear model had a
single categorical predictor variable. Commonly
in biology, however, we design studies with more
than one factor and there are two main reasons
why we might include additional factors. First, to
try and reduce the unexplained (or residual)
variation in our response variable, similarly to
multiple regression (Chapter 6). Second, to
examine the interactions between factors, i.e.
whether the effect of a particular factor on the
response variable is dependent on another
factor. In this chapter, we will examine two types
of multifactor design, nested and factorial, and
describe the appropriate linear models for their
analysis. The emphasis is on completely random-
ized (CR) designs, following from Chapter 8,
where the experimental units are randomly allo-
cated to factor groups or combinations of factor
groups.

9.1 Nested (hierarchical) designs

A common extension of the single factor design,
and the single factor ANOVA linear model, is when
additional factors are included that are nested
within the main factor of interest. An example
based on a manipulative experiment comes from
Quinn & Keough (1993) who examined the effect
of different enclosure (fence) sizes on growth of
the rocky intertidal limpet Cellana tramoserica. Part
of that experiment used two enclosure sizes (1225
cm2 and 4900 cm2), with five replicate enclosures
nested within each size and four or five replicate

limpets from each enclosure. The response
variable was limpet shell height. These nested
designs can also be part of sampling programs. For
example, Caselle & Warner (1996) looked at
recruitment densities of a coral reef fish at five
sites on the north shore of the US Virgin Islands,
with six random transects within each site and
replicate observations of density of recruits along
each transect.

Both these examples are two factor nested (or
hierarchical) designs, where the levels (categories)
of the nested factor are different within each level
of the main factor. Quinn & Keough (1993) used
enclosure size as the main factor, replicate enclo-
sures within enclosure size as the nested factor
and replicate limpets from each enclosure as the
residual. Caselle & Warner (1996) used sites as
the main factor, transects within each site as the
nested factor and replicate observations of fish
density as the residual.

The characteristic feature of nested designs
that distinguish them from other multifactor
designs is that the categories of the nested
factor(s) within each level of the main factor are
different. The main factor can be fixed or
random whereas the nested factor(s) is(are)
usually random in biology, often representing
levels of subsampling or replication in a spatial
or temporal hierarchy. In the example from
Quinn & Keough (1993), the enclosures are repli-
cates for the enclosure size treatments, the indi-
vidual limpets are replicates for the enclosures.
However, fixed nested factors can also occur.
Bellgrove et al. (1997), studying the abundance of
algal propagules along exposed rocky coastlines,

Chapter 9
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collected volumes of water from an intertidal
shore at different dates within two seasons. The
dates within each season were chosen specifi-
cally to correspond to the start and end of other
experiments (i.e. they were not randomly chosen
and so represent a fixed factor) but they were
clearly different dates in each of the two seasons
(so date was a nested, fixed, factor). Caselle &
Warner (1996) also analyzed temporal variation
in recruitment of reef fish and chose specific
(fixed) months (from the time of the year when
the fish recruited) nested within each of two
years.

Grazing by sea urchins
To illustrate the formal analysis of nested designs,
we will use a recent example from the marine eco-
logical literature. Andrew & Underwood (1993)
studied the effects of sea urchin grazing on a
shallow subtidal reef in New South Wales,
Australia. They set up four urchin density treat-
ments (0% original, 33% original, 66% original,
100% original), with four patches (3–4 m2) of reef
for each treatment and five quadrats from each
patch. The response variable was percentage cover
of filamentous algae in each quadrat. The com-
plete analysis of these data is in Box 9.1.
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Box 9.1 Worked example of nested ANOVA: grazing by
sea urchins 

Andrew & Underwood (1993) manipulated the density of sea urchins in the shallow
subtidal region of a site near Sydney to test the effects on the percentage cover of
filamentous algae. There were four urchin treatments (no urchins, 33% of original
density, 66% of original density and 100% of orginal density). The treatments were
replicated in four distinct patches (3–4 m2) per treatment and percentage cover of
filamentous algae (response variable) was measured in five random quadrats per
patch. This is a nested design with treatment (fixed factor), patch nested within
treatment (random factor) and quadrats as the residual.

Null hypotheses
No difference in the mean amount of filamentous algae between the four sea urchin
density treatments.
No difference in the mean amount of filamentous algae between all possible
patches in any of the treatments.

ANOVA
There were large differences in within-cell variances. Even the variances among
patch means within treatments varied, with very low variance among control patch
means. These data are percentages, although an arcsin� had no effect in improv-
ing variance homogeneity, nor did a log transformation. Like Andrew & Underwood
(1993), we analyzed untransformed data, relying on the robustness of tests in bal-
anced ANOVA designs.

Var.
Source of variation df MS F P comp.

Treatment 3 4809.71 2.72 0.091 (151.98)
Patches (treatment) 12 1770.16 5.93 �0.001 294.31
Residual 64 298.60 298.60

There was significant variation between the replicate patches within each treat-
ment but there was no significant difference in amount of filamentous algae



9.1.1 Linear models for nested analyses

Linear effects model
Complex designs can be represented with factor
relationship diagrams (Bergerud 1996). Let us con-
sider the two factor nested design, shown in
Figure 9.1 and illustrated with the specific

example from Andrew & Underwood (1993) in
Table 9.1. The main factor A (sea urchin density
treatment) has p equals four groups (i�1 to p), the
nested factor B (patch) has q equals four groups
within each level of A ( j�1 to q) and there are n
equals five replicate quadrats (k�1 to n) within
each combination of A and B categories (patch and
density treatment). Note that the groups (levels) of
factor B, the patches, are different within each
level of A (sea urchin density), so any patch within
0% original density cannot be the same as any
patch within 33% original density and so on.
Clearly, the same applies to replicate quadrats
that are different within each combination of
density and patch. Analysis of designs with
unequal numbers of levels of B within each level
of A, and of replicate observations within each
level of B will be discussed in Section 9.1.4. 

The mean for each level of A is �i (the average
of the means for all possible levels of B within
each level of A) and the mean for each level of B
within each level of A is �j(i) (Table 9.1). Note the
subscripting, where j(i) represents the jth level of
factor B within the ith level of factor A.
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between treatments. The very low variances between observations within control
patches and between control patch means would cause us concern about the reli-
ability of this analysis. However, when the control group is omitted, the test com-
paring treatments results in a P value of 0.397. Any treatment effect might be due
to the low means of, or the low variance between, control patches compared to
the rest, although this analysis cannot separate effects on means from effects on var-
iances. A robust Welch test comparing the four treatment groups, based on patch
means, also did not find any significant differences.

The variance in algal cover due to patches was very similar to that due to quad-
rats within patches. Because the design was balanced, ANOVA, ML and REML all
gave identical estimates of components of variance for the random nested factor
and the residual. If we equate the mean squares to their expected values and cal-
culate the “variance” component for the fixed treatment effects, we can see that
less of the total variation in algal cover was explained by the fixed density effects
than by the random patch and quadrat terms.

A one factor ANOVA comparing the four treatments with patch means as rep-
licates produces an identical F test for the main effect (note that the MS values are
smaller, by a factor of five, the number of quadrats, but the F-ratios are identical).

Source of variation df MS F P

Treatment 3 961.9 2.72 0.091
Residual 12 354.0

Figure 9.1. Part of data set for two factor nested ANOVA,
with p levels of factor A (i�1 to p), q levels of factor B ( j�1
to q), where the levels of B are different within each level of
A, and n replicate observations within each combination (cell)
of A and B nested within A (k�1 to n).



The linear (effects) model used to analyze this
nested design is:

yijk����i��j(i)��ijk (9.1)

The details of the nested linear ANOVA model,
including estimation of its parameters and
means, are provided in Box 9.2 and Table 9.2. OLS
means and their standard errors are standard
output from linear models routines in statistical
software and can handle unequal sample sizes.

The model used by Andrew & Underwood
(1993) was:

(% cover algae)ijk��� (sea urchin density)i�
(patch within sea urchin density)j(i)��ijk (9.2)

In models 9.1 and 9.2 we have the following.

yijk is the percentage cover of algae in the kth
replicate quadrat from the jth patch within the
ith density.

� is the (constant) mean percentage cover of
algae over all possible quadrats in all possible
patches in the four sea urchin density
treatments.

In this study, sea urchin density is a fixed
factor, so �i is the effect of the ith density, which
is the difference between the mean algal cover
for the ith sea urchin density treatment and the
overall mean algal cover for all the sea urchin
density treatments.

Factor B is nearly always random in biology so
�j(i) is a random variable with a mean of zero and
a variance of 	

�
2, measuring the variance among

all patches that could have been chosen within
each of the four sea urchin density treatments.

�ijk is residual or unexplained error
associated with the kth quadrat within the jth
patch within the ith density. This term measures
the error associated with each replicate
observation (quadrat) of algal cover within each
patch within each sea urchin density treatment.
The variance of these error terms is 	

�
2.

The model used by Caselle & Warner (1996)
was:

(recruit densities)ijk��� (site)i�
(transect within site)j(i)��ijk (9.3)
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Table 9.1 Data structure and sample means for percentage cover of algae from Andrew & Underwood (1993).
Factor A was four densities of sea urchins (100%, 66%, 33% and 0% of natural density), factor B was four patches of
reef nested within each density treatment and there were n equals five replicate quadrats within each patch
within each density

Density mean Patch mean
Factor A (Ai) Density ȳi est li Factor B (Bj(i)) Patch ȳj(i) est lj(i)

A1 0% 39.2 B1(1) 1 34.2
B2(1) 2 62.0
B3(1) 3 2.2
B4(1) 4 58.4

A2 33% 19.0 B1(2) 5 2.6
B2(2) 6 0.0
B3(2) 7 37.6
B4(2) 8 35.8

A3 66% 21.6 B1(3) 9 28.4
B2(3 10 36.8
B3(3) 11 1.0
B4(3 12 20.0

A4 100% 1.3 B1(4) 13 1.6
B2(4) 14 0.0
B3(4) 15 1.0
B4(4) 16 2.6
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Table 9.2 OLS estimates of cell and marginal means, with standard errors, in a two factor linear model with
equal sample sizes per cell

Population mean Sample mean Standard error

Cell mean lij

Nested design 

Factor A mean li

Crossed design 

Factor A mean li

Factor B mean li �MSResidual

pn

�
p

i�1
ȳi j

p

�MSResidual

qn

�
q

j�1
ȳi j

q

�MSB(A)

qn

�
q

j�1

ȳj(i)

q

�MSResidual

n

�
n

k�1
yijk

n

Box 9.2 The nested ANOVA model and its parameters

The main factor A has p groups (i�1 to p), the nested factor B has q groups within
each level of A ( j�1 to q) and there are ni replicates (k�1 to ni) within each com-
bination of A and B categories. Assume the number of levels of B in each level of A
is the same and the number of replicates (n) in each combination of A and B is the
same. There are a total of pq cells in this nested design with n replicate observa-
tions in each cell. The mean for each level of A is li (the average of the means for
all possible levels of B within each level of A) and the mean for each level of B within
each level of A is l j( i ). Note the subscripting, where j(i) represents the jth level of
factor B within the ith level of factor A. The linear (effects) model used to analyze
this nested design is:

yijk�l�ai�bj(i)�ei jk (9.1)

In model 9.1 we have the following:

yijk is the kth replicate observation from the jth group of factor B within the ith
group of factor A.

l is the overall (constant) mean of the response variable.
If factor A is fixed, ai is the effect of the ith group which is the difference

between each A group mean and the overall mean li�l. If factor A is
random, ai represents a random variable with a mean of zero and a variance
of r

a
2, measuring the variance in mean values of the response variable across

all the possible levels of factor A that could have been used. Factor B is
nearly always random in biology so bj(i) is a random variable with a mean of
zero and a variance of r

b
2, measuring the variance in mean values of the

response variable across all the possible levels of factor B that could have
been used within each level of factor A.



Imagine that Cassele & Warner (1996) had chosen
sites at random from a population of possible sites
on the north shore of the US Virgin Islands. Then
factor A is random and �i has a mean of zero and a
variance of	

�
2, measuring the variance in the mean

number of fish recruits per transect across all the
possible sites that could have used in their study.

Predicted values and residuals
The predicted or fitted values of the response var-
iable from model (9.1) are:

ŷijk� ȳ� ( ȳi� ȳ)� ( ȳj(i)� ȳi)� ȳj(i) (9.4)

Any predicted Y-value is predicted by the sample
mean for the cell (level of B within each level of A)
that contains the Y-value. For example, the pre-
dicted percentage cover of algae for quadrat one
in patch one for the zero density treatment is the
sample mean for patch one for the zero density
treatment.

The error terms (�ijk) from the linear model can
be estimated by the residuals, where a residual
(eijk) is simply the difference between each
observed and predicted Y-value:

eijk�yijk� ȳj(i) (9.5)
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ei jk is residual or unexplained error associated with the kth replicate within the
jth level of B within the ith level of A. These error terms are assumed to be
normally distributed at each combination of A and B, with a mean of zero
(E(ei j)�0) and a variance of r

e
2.

Model 9.1 is overparameterized (see Box 8.1) because the number of cell means
is less than the number of model parameters to be estimated (l, a1 . . .ap, b1(1) . . .
bq(p)). In the usual situation of factor A being fixed and factor B being random, esti-
mation of the parameters of the effects model 9.1 can still be achieved using the
sum-to-zero constraint �p

i�1ai�0, as outlined in Box 8.1. Alternatively, a simpler
means model could be fitted:

yijk�li j�ei jk

where li j is the mean of the response variable for each combination of A and B
(each cell). Cell means models don’t offer many advantages for nested designs but
do become important when we consider missing cells designs in Section 9.2.6.

OLS estimates of the parameters of the nested linear model 9.1 follow the pro-
cedures outlined for a single factor model in Chapter 8 with the added complica-
tion of two of more factor effects.When the nested factors are random, the means
of levels of factor A are estimated from the average of the cell means in each level
of A. With different sample sizes within each cell, this results in unweighted means
for factor A groups (Table 9.2). OLS standard errors of means in nested designs are
calculated using the mean square in the denominator of F-ratio statistic used for
testing the H0 that the means are equal.With A fixed and B(A) random, then MSB(A)

will be used for standard errors for factor A means (Table 9.2).
The estimate of the effect of any level of factor A (ai�li�l) is simply the dif-

ference between the sample marginal mean for that group and the overall mean:

ȳi� ȳ

Factor B is usually random, so bj(i) is a random variable with a mean of 0 and a var-
iance of r

b
2 and it is this variance which is of interest, the variance in mean values

of the response variable between all the possible levels of factor B that could have
been used within each level of factor A. This is estimated as a variance component
(Section 9.1.6).



For example, the residuals from the model relat-
ing algal cover to sea urchin density and patch
nested within density are the differences between
the observed algal cover on each quadrat and the
mean algal cover for the patch and density com-
bination (cell) that contained that quadrat. Note
that the sum of the residuals within each cell
(�n

k�1eijk) equals zero. As for all linear models,
residuals provide the basis of the OLS estimate of
	
�

2 and they are valuable diagnostic tools for
checking assumptions and fit of our model
(Section 9.1.7). The OLS estimate of 	

�
2 is the

sample variance of these residuals and is termed
the Residual (or Error) Mean Square and is deter-
mined as part of the partitioning of the total vari-
ation in the response variable described in the
next section.

9.1.2 Analysis of variance
The partitioning of the variation in the response
variable Y proceeds in a similar manner to that for
a single factor model described in Chapter 8. The
SSTotal in Y can be partitioned into its additive com-
ponents as illustrated for balanced designs in
Table 9.3. These formulae are not really used in
practice (and are for balanced designs only), as we
estimate the ANOVA terms and test relevant
hypotheses by comparing the fit of general linear
models (Section 9.1.5). Nonetheless, the formulae
in Table 9.3 illustrate the logic behind the parti-
tioning of the total variation in Y.

SSA measures the sum of squared differences

between each A mean and the overall mean, e.g.
sum of squared differences between the mean
percentage cover of algae for each density treat-
ment and the overall mean percentage cover of
algae.

SSB(A) measures the sum of squared differences
between each B mean (i.e. cell mean) and the
mean of the appropriate level of A, summed
across the levels of A, e.g. the sum of squared dif-
ferences between the mean percentage cover of
algae for each patch and the mean percentage
cover of algae for the density treatment contain-
ing that patch, summed over all density treat-
ments.

SSResidual measures the sum of squared differ-
ences between each replicate observation and the
appropriate B mean within each cell, summed
across all cells, e.g. the sum of squared differences
between the percentage cover of algae in each
quadrat and the mean percentage cover of algae
for the patch containing that quadrat, summed
over all patches in all density treatments.

These SS are divided by the appropriate df to
produce mean squares (MS or variances). The dfA is
simply the number of A levels minus one [p�1],
the dfB is the number of B levels within each A
level minus one summed over the A levels [p(q�1)]
and the dfResidual is the number of observations in
each cell minus one summed over all cells
[pq(n�1)].

Statisticians have determined what popula-
tion values these sample mean squares estimate,
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Table 9.3 ANOVA table for two factor nested linear model with factor A (p
levels), factor B (q levels) nested within A, and n replicates within each
combination of A and B

Source SS df MS

A nq (ȳi� ȳ)2 p�1

B(A) n (ȳj(i)� ȳi)
2 p(q�1)

Residual (yijk� ȳj(i))
2 pq(n�1)

Total (yijk� ȳ)2 pqn�1�
n

k�1
�

q

j�1
�

p

i�1

SSResidual

pq(n�1)�
n

k�1
�

q

j�1
�

p

i�1

SSB(A)

p(q�1)�
q

j�1
�

p

i�1

SSA

p�1�
p

i�1



i.e. what their expected values are, if the assump-
tion of homogeneity of variance (see Section 9.1.7)
holds (Table 9.4). In the usual situation of factor A
being fixed and factor B random, the MSResidual

estimates 	
�

2 (the variance in the error terms in
each cell, pooled across cells), MSB(A) estimates 	

�
2

plus added variance due to the effects of factor B
and MSA estimates the sum of both these compo-
nents plus the added effect of fixed levels of factor
A.

9.1.3 Null hypotheses
There are two null hypotheses that we test in a two
factor nested model, the test for no effects of A
and the test for no effects of B nested within A. The
expected values of the MS (Table 9.4) provide the
logic for testing these null hypotheses, analogous
to the single factor model (Chapter 8).

Factor A
H0(A): �1��2� . . .��i��, i.e. no difference
between the means for factor A. This is equivalent
to H0(A): �1��2� . . .��i�0, i.e. no effect of any
level of factor A. In the Andrew & Underwood
(1993) example, this null hypothesis is that there
is no difference in the mean percentage algal
cover between urchin densities. This H0 is essen-
tially that for a single factor model, using the
means for each patch (B level) as replicate observa-
tions for the test of urchin density (A level).

If A is random, then H0(A) is 	
�

2 equals zero, i.e.
no added variance due to differences between all
the possible levels of A.

Factor B
H0(B): 	

�
2 equals zero if factor B is random, i.e. no

added variance due to differences between all the
possible levels of B with any level of A. In the
Andrew & Underwood (1993) example, this H0 is
that there is no added variation due to differences
in mean percentage algal cover between patches
within any urchin density treatment.

In the rarer case of B being a fixed factor, then
H0(B) is �1(1)��2(1)� . . .��j(i)� . . .��, i.e. no differ-
ence between the means of the specifically chosen
levels of B within any level of factor A. This H0

when B is fixed is equivalent to H0: �1(1)��2(1)� . . .
��j(i)�0, i.e. no effect of any of the specifically
chosen levels of factor B within any level of factor
A. This is a pooled test of differences between the
levels of B for each level of A and the H0 is false if
the mean values for the levels of B are different
from each other within one or more of the levels
of A.

F-ratios
The F-ratios for testing these H0s are provided in
Table 9.4. If H0(A) that there is no effect of factor A
is true, then all �is equal zero and MSA and MSB(A)

both estimate 	
�

2�n	
�

2 so their ratio (F-ratio)
should be less than or equal to one. If H0(B) that
there is no added variance due to differences
between the possible levels of factor B within each
level A is true, then all �j equal zero (and therefore
n	

�
2 equals zero) and MSB(A) and MSResidual both esti-

mate 	
�

2 so their ratio (F-ratio) should be one.
These F-ratios follow an F distribution under
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Table 9.4 Expected mean squares and F-ratios for tests of null hypotheses for two factor nested ANOVA model

A fixed, B random A fixed, B fixed

Source Expected mean square F-ratio Expected mean square F-ratio

A r
e
2�nr

b
2�nq r

e
2�nq

B(A) r
e
2�nr

b
2 r

e
2�n

Residual r
e
2 r

e
2

MSB(A)

MSResidual

�
p

i�1
�

q

j�1
b2

j(i)

p(q�1)
MSB(A)

MSResidual

MSA

MSResidual

�
p

i�1
a 2

i

p�1
MSA

MSB(A)

�
p

i�1
a 2

i

p�1



homogeneity of variance and normality assump-
tions (Section 9.1.7) with one exception. If B is
random and the number of replicate observations
within each level of B varies, then the F-ratio of
MSB(A) and MSResidual does not follow an F distribu-
tion when 	

�
2 is greater than zero because MSB(A)

is not distributed as a multiple of a �2 distribution
(Searle et al. 1992, see Chapter 8). This also affects
estimates of variance components (Chapter 8) and
power calculations (Section 9.1.10) for unbalanced
nested models. Fortunately, the F-ratio of MSB(A)

and MSResidual does follow an F distribution when
	
�

2 equals zero, so the F-ratio test of the H0 for B(A)
with unbalanced data is unaffected. 

When B is a random factor, MSB(A) provides the
denominator for the F-ratio for the test of A, i.e.
the units of replication for testing the effects of A
are the means of B. This has important considera-
tions for the power of the test for factor A (Section
9.1.10) and the design of experiments based on
nested models. When B is fixed, the expected MS
for A does not include a component for B so the F-
ratio for testing A uses MSResidual as the denomina-
tor. If A is random, the F-ratios are the same as if A
is fixed. Note that some statistical software
assumes all factors are fixed so will not, by default,
provide the correct F tests for nested ANOVAs
when the nested factors are random. This problem
was pointed out by Ouborg & van Groenendael
(1996), who correctly criticized the paper of
Heschel & Paige (1995) for incorrectly using the
MSResidual instead of MSB(A) in their nested ANOVAs
comparing populations of the scarlet gilia (a
species of plant), with random seed families
nested within populations, and replicates within
each seed family (see also response by Paige &
Heschel 1996).

9.1.4 Unequal sample sizes (unbalanced
designs)

Unequal sample sizes can occur in nested designs
in two ways. First, there can be unequal numbers
of observations within each cell (unequal nij).
Second, there can be unequal numbers of levels of
the nested factor(s) within each level of the higher
factor. Neither case is different to unequal sample
sizes for single factor ANOVA models and neither
causes any computational difficulties. However, as
for all linear models fitted by OLS, tests of hypoth-

eses using F-ratios are more sensitive to violations
of the assumptions (normality, homogeneity of
variances) when sample sizes are unequal (see
Chapter 8). Additionally, estimation of variance
components for random nested factors is difficult
with unequal sample sizes (Chapter 8). When the
test for factor A is based on different numbers of
B means within each A level, the analysis could be
based on a missing cells design and the cell means
model used (Kirk 1995; see also Chapter 8). How-
ever, as there are no interactions involved, this
seems an unnecessary complication.

9.1.5 Comparing ANOVA models
The relative importance of different terms in the
linear model for a nested design can be measured,
and tests of hypotheses about these terms can also
be done, by comparing full and reduced models as
described in Section 8.1.5. For example, to test the
H0 that 	

�
2 equals zero, we would compare the fit

of the full model (9.1) to a reduced model that
omits the B(A) term:

yijk����i��ijk (9.6)

Using the example from Andrew & Underwood
(1993), we would compare the fit of model 9.2 to
the reduced model:

(% cover algae)ijk���
(sea urchin density)i��ijk (9.7)

The difference in fit of these two models is simply
the difference in their SSResidual. This difference
can be converted to a mean square by dividing by
the difference in the dfResidual. The H0 of no differ-
ence in fit of the two models (i.e. 	

�
2 equals zero;

no added variance due to all the possible levels of
factor B within each level of factor A) can be tested
with an F test using MSResidual of the full model as
the denominator. This is, of course, the identical
test to that carried out as part of the nested
ANOVA.

9.1.6 Factor effects in nested models
The estimation of the effect of the main fixed
factor in these nested models is described in Box
9.2, although biologists usually examine fixed
factors with planned contrasts or unplanned pair-
wise comparisons. The estimation of components
of variance for random factors in nested models
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follows the procedures outlined in Chapter 8 for
single factor models. The sample mean squares
are equated to their expected values (the ANOVA
approach) and the added variance due to the
nested factors and the residual can be estimated
(Table 9.5). The individual variance components
for nested models with two or more nested
factors are straightforward extensions of those
for two factor models once the expected mean
squares are known (Table 9.6). Note that these
estimates of variance components for random
nested factors are only valid for equal sample
sizes within each level of the random factor. If the
design is unbalanced, estimation of variance
components and derivation of confidence inter-
vals is more difficult (Searle et al. 1992), although
Burdick & Graybill (1992) provide formulae. In
general, the REML approach dicussed in Section
8.2 is considered more reliable than the ANOVA
method for estimating variance components of
random factors above the residual (Searle et al.
1992).
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Table 9.5 Estimates of variance components
(using ANOVA approach) for two factor nested
design with B(A) random

Source Estimated variance component

A
*

B(A)

Residual MSResidual

Note:
*This represents variance between population
means of specific levels of A if factor A is fixed
and a true added variance component if A is
random.

MSB(A)�MSResidual

n

MSA�MSB(A)

nq

Table 9.6 (a) Estimates of variance components (using ANOVA approach) for three factor nested design with
factors A (p levels), B within A (q levels) and C within B within A (r levels) random and n replicates within each cell.
(b) Illustration of variance components for nested design from Downes et al. (1993) – see Section 9.1.6 for details

(a)
Source Expected mean square Estimated variance component F-ratio

A r
e
2�nr

c
2�nrr

b
2�nrqr

a
2

B(A) r
e
2�nr

c
2�nrr

b
2

C(B(A)) r
e
2�nr

c
2

Residual r
e
2 MSResidual

(b)
Source df MS Estimated variance component % of total variance

Site 2 36188.34 �691.94* 0
Riffle 3 56946.62 2991.15 28
Group 24 12074.12 2103.87 19
Stone (residual) 60 5762.52 5762.52 53

Note:
*Negative variance component converted to zero.

MSC(B(A))

MSResidual

MSC(B(A))�MSResidual

n

MSB(A)

MSC(B(A))

MSB(A)�MSC(B(A))

nr

MSA

MSB(A)

MSA�MSB(A)

nrq



Confidence intervals for 	
�

2 are calculated in
the same way as for single factor designs and work
for both balanced and unbalanced designs (Table
8.5). Confidence intervals on the remaining vari-
ance components can also be calculated, with
approximations based on unweighted SS for
unbalanced designs, although the formulae are
somewhat tedious (Burdick & Graybill 1992). Note
that for a nested model with A fixed and B
random, the test of the H0 that 	

�
2 equals zero is

still reliable; it is only when 	
�

2 is greater than
zero that the F-ratio of MSB(A)/MSResidual no longer
follows an F distribution, and estimation of a non-
zero variance component is difficult.

These nested designs are commonly used to
partition the variation in a response variable
among levels of a spatial or temporal hierarchy
and we are often interested in calculating the rel-
ative contribution of random nested terms to the
total variation in Y. For example, Downes et al.
(1993) examined spatial variation in the distribu-
tion of invertebrates living on stones in a stream.
They used three randomly chosen sites (covering
about 1.5 km of stream), two riffles (shallow, fast-
flowing, stony areas) at each site, five groups of
stones from each riffle and three stones from
each group and wished to test the relative contri-
bution of each of the spatial scales to the varia-
tion in total density of invertebrates. The
components of variance for each of the random
factors can be estimated using an appropriate
method (ANOVA for balanced designs, REML or
ML for unblanced designs) and the percentage
contribution of each random term to the total
variance of the random terms can be calculated
(Table 9.5).

In the common situation of a fixed main factor
with one or more random nested factors, we can
also partition the total variance using the ANOVA
approach for both the fixed and nested random
factors (Table 9.5). It is very important to remem-
ber that the interpretation of the true variance
components for B(A) and Residual is quite differ-
ent from the variance between fixed treatment
effects for A, as we discussed in Chapter 8.
Nonetheless, partitioning the total variation in a
response variable between that explained by the
fixed factor and one or more nested random
factors is a useful interpretative tool.

9.1.7 Assumptions for nested models
The assumptions of normality and homogeneity of
within-cell variances apply to hypothesis tests in
nested ANOVA models and they are checked using
the same techniques (boxplots, mean vs variance
plots and residuals vs mean plots) already
described in Chapters 4 and 8. Traditionally, the
observations within each cell (combination of
main and nested factors) in the data set are used to
check the assumptions. However, because the test
of the main effect of A is based on the means of the
levels of B when B is random, the normality and
homogeneity of variance assumptions for the test
of factor A apply to these means rather than
within cell observations. You may, therefore, need
to look at the assumptions separately for each
hypothesis that uses a different denominator to
make up the F-ratio. Transformations are appli-
cable as usual (Chapter 4) but we know of no
accepted non-parametric or robust (at least to
unequal variances) tests specifically for nested
designs. Any approach would require the main
effect of A to be tested using the nested factor
means as observations with one of the robust
single factor tests described in Chapter 8. For non-
normal data, the RT (rank transform, see Section
9.2.9) approach may also be useful, particularly
when outliers are present. Of course, generalized
linear models (GLMs; see Chapter 13) would also be
applicable when the underlying distribution of
the response variable is not normal but known to
fit one from the exponential family suited to GLMs.

In many cases, it is the higher levels in the hier-
archy that are of most interest. We would expect,
from the Central Limit Theorem, that normality
will be satisfied for all levels other than the lowest
one in the hierarchy, because we are effectively
working with means at higher levels. Means are
more likely to be normally distributed, regardless
of the underlying distribution of the observa-
tions.

The assumption of independence is also rele-
vant for nested ANOVA models. The observations
within each cell (e.g. level of B with A) are com-
monly measured at small spatial scales, such as
quadrats within patches (Andrew & Underwood
1993). We need to design our study to ensure that
these observations are independent of each other
within each level of B.
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9.1.8 Specific comparisons for nested
designs

The logic and mechanics of planned and unplanned
comparisons are the same as for single factor
ANOVA models (Chapter 8) with two exceptions.
First, we are usually only interested in comparisons
between levels of factor A if it is fixed. The nested
factors are commonly random so specific compari-
sons of levels of these factors within each level of
the higher factor are rarely relevant. Second, we
must use the appropriate standard error for com-
parisons of means of the fixed factor. The standard
error for contrasts between A means should be
based on MSB(A) if B is random, just as for the F test
for factor A in the ANOVA model (see Table 9.4).

9.1.9 More complex designs
These designs can be extended to three or more
nested factors (Table 9.6(a)) and are often used
when there are multiple levels of subsampling,
e.g. plants within treatments, pieces of tissue
within each plant, sections cut from each piece of
tissue, cells measured from each section. We have
already described the study of Downes et al. (1993)
who used three sites along a river, two riffles
(shallow stony areas) at each site, with five groups
of three stones within each riffle to examine hier-
archical spatial variation in the distribution of
stream invertebrates (Table 9.6(b)). Their linear
model incorporated site, riffle nested within site,
group nested within riffle within site and repli-
cate stones within group within riffle within site:

(density)ijkl��� (site)i�
(riffle within site)j(i)�
(group within riffle within site)k(j(i))��ijkl (9.8)

Another example is from Abrams et al. (1994),
who examined variation in leaf structural param-
eters across three sites (xeric, mesic, wet-mesic) in
Pennsylvania, with five or six different species at
each site, six sapling trees of each species and rep-
licate leaves from each tree. Their linear model
incorporated site, species nested within site, tree
nested within species within site and replicate
measurements within tree within species within
site:

(leaf structure)ijkl��� (site)i�
(species within site)j(i)�
(trees within species within site)k(j(i))��ijkl (9.9)

Both Abrams et al. (1994) and Downes et al.
(1993) calculated variance components for each
factor (Table 9.6(b)). Since all nested factors were
random in these studies, the F-ratio for the null
hypothesis for each term in the model used the
term immediately below as the denominator.

9.1.10 Design and power
If the main (highest) factor in a nested design is
fixed, we could use formal power analysis based
on specified and negotiated effect sizes (Chapters
7 and 8) to determine the number of groups
nested within that main factor that we need to
detect a particular treatment effect. If the nested
factor B is random, then the power of the test for
A will depend on the level of replication of B, and
on the amount of variation among levels of B. For
example, based on the experiment of Andrew &
Underwood (1993) manipulating sea urchin den-
sities, we would specify the desired effect size
between density treatments and use an estimate
of the variance between patches within each treat-
ment to determine the number of patches
required to achieve a given power. This simply
becomes a single factor design using patch means
so the methods outlined in Chapter 8 are appro-
priate. 

This has implications for the design of nested
experimental and sampling programs. The higher
level “units” in nested designs are often increas-
ingly costly, either because they are more expen-
sive (e.g. whole animals vs pieces of tissue) or take
longer to record (large spatial areas vs small quad-
rats). It is then tempting to take more replicates at
lower levels in the design hierarchy. It is very
important to realize that to increase the power of
the test for fixed main effects, we need to increase
the number of levels of the random factor imme-
diately below the fixed factor. For example,
Andrew & Underwood (1993) could improve the
power of the test for differences in algal cover
among sea urchin densities more by increasing
the number of patches per treatment rather than
the number of quadrats per patch. Nonetheless,
smaller-scale noise as part of the apparent varia-
tion in factor B can still be important. From the
expected mean squares for a two factor nested
design (Table 9.4), we see that the MSB(A) includes
two components, small-scale variation (	

�
2) and
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the true variance between B groups (n	
�

2). As we
increase our subsampling effort (i.e. raise n), MSB

becomes increasingly dominated by 	
�

2.
Therefore, while subsampling at levels below B
has no direct effect on the power of the test of A,
if there is considerable small-scale variation, then
taking some replicates at lower levels will provide
better variance estimates, and improve power.

At lower levels of nested designs, power is
much less an issue, as degrees of freedom gener-
ally increase from top to bottom of hierarchical
designs. Increases in replication at higher levels of
the hierarchy will have cascading effects on power
at lower levels. However, it must be remembered
that formal power calculations would need to be
done separately for each level, i.e., for each
hypothesis of interest.

Note that power of tests of particular terms in
a model may be increased by pooling non-signifi-
cant terms with their error term, thus creating a
pooled residual term with more degrees of
freedom for tests of other terms. Issues and guide-
lines for pooling terms in multifactor ANOVA
models will be discussed in Section 9.3.

Another important aspect of the design of
studies that use a series of nested random factors is
the allocation of limited resources to multiple

spatial or temporal scales of sampling. For example,
imagine we were following up the study of Andrew
& Underwood (1993) who set up four sea urchin
density treatment with four replicate patches
within each treatment and five replicate quadrats
within each patch. The number of treatments is
obviously fixed, but in the new study, how should
we allocate our sampling effort to the two different
spatial levels in this design? Given limited
resources, do we use more patches within each
treatment, or more quadrats within each patch?

There are two criteria we use to decide on this
relative allocation. First is the precision of the
means for each level of the design or, conversely,
the variance of these means. Second is the cost, in
terms of money and/or time, of sampling each
level in the design. We will illustrate the calcula-
tions for determining this relative allocation of
resources for the study by Andrew & Underwood
(1993) – see Box 9.3. This is a two factor nested
design with p levels of A (density treatment), q
levels of B (patches) nested within A (B(A)) and n
replicate observations (quadrats) within each
combination of density treatment and patch
(C(B(A)), i.e. the Residual). Sokal & Rohlf (1995)
illustrate the calculations for a three factor
design. We use the variance components for each
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Box 9.3 Calculations for optimal allocation of subsampling
resources for two factor nested design based on
Andrew & Underwood (1993)

Using the data from Andrew & Underwood (1993) as a pilot study and based on
costs of 5 min to record a quadrat within a patch and 23 min to set up and work
a patch (excluding quadrat recording time), we can estimate the optimal number of
quadrats per patch:

n� �0.88

Therefore, we would use a single quadrat per patch. If we set the total cost per
density treatment at 4 h (240 min), we can determine the optimal number of
patches per treatment if we have one quadrat per patch:

CA�qCB(A)�nqCC(B(A))

240�q�23�1�q�5
q�8.57

The optimal experiment design would have nine patches per density treatment and
one quadrat per patch.

�CB(A)sC
2

(B(A))

CC(B(A))sB
2
(A)
��23�298.60

5�1770.16



random term in the model to estimate the vari-
ance associated with each term in the model sep-
arately from the other components of variation
(Section 9.1.6). The costs (C) must also be deter-
mined, preferably from our pilot study where
costs can be estimated empirically. The cost for
each quadrat is simply the time and/or money
required to place the quadrat and estimate the
percentage cover of algae, say five minutes. The
cost for each patch would be the time taken to
move all the gear to each patch (20 minutes) and
the time taken to move between quadrats in each
patch (three minutes) but NOT the time taken to
process a quadrat.

A number of textbooks (Snedecor & Cochran
1989, Sokal & Rohlf 1995, Underwood 1997)
provide equations for relating costs and variances
to determine the optimum number of replicates
at each level of sampling (and see Andrew &
Mapstone 1987). In a two factor design, the
optimum number of replicates (e.g. quadrats) in
each level of B (e.g. each patch) is:

n� (9.10)

where C is the cost for the appropriate level and s2

is the estimate of the variance, i.e. the mean
square. Note that if the costs of recording a single
quadrat are the same as the costs of setting up a
new patch, then the sample size is just based on
the ratio of the two variance components. Based
on the variances and the costs listed above, the
optimal number of quadrats per patch is 0.88, i.e.
one (Box 9.3).

The number of patches (q) for each density
treatment can be determined in two ways based
on either the desired variance of the mean for
each site (sA

2) or the fixed total cost of sampling a
site (CA):

sA
2� (9.11)

CA�qCB(A)�nqCC(B(A)) (9.12)

In the first case, we fix the desired level of preci-
sion for the mean of each site (sA

2) and, using our
values for n and the estimated variance compo-
nents for quadrats and patches, solve for q. In the
second case, we fix the total available cost for

ns2
B(A)� s2

C(B(A))

nq

�CB(A)s2
C(B(A))

CC(B(A))s2
B(A)

sampling each density and, again using our values
for n and the estimated variance components for
quadrats and patches, solve for q. In practice,
having a fixed total cost, in time or money, is likely
so the latter approach might be used more often.
If we set the total cost for setting up each density
treatment as four hours (240 minutes), then the
number of patches would be 8.6, i.e. nine (Box 9.3).
So based on these estimates, the most efficient
design would be one quadrat per patch and nine
quadrats per treatment. Note that these costs are
guesses on our part so we are not suggesting that
there was anything wrong with the design used by
Andrew & Underwood (1993).

Keough & Mapstone (1995) made a number of
sensible recommendations for deriving and
using these values for sample size at each level of
subsampling. First, the calculated sample sizes
depend on the quality of the pilot data, particu-
larly the variance estimates, and how well the var-
iances in the subsequent main study will match
those from the pilot study. It is important, there-
fore, that the pilot study is done in similar loca-
tions and at a similar time (e.g. season) to the
main study. It is also important to check that
these variance estimates still hold once the main
research has started and adjust the sample sizes
if necessary. It is much easier to reduce sample
size during an ongoing research program than to
increase them, so the initial sample sizes should
be generous. Second, the sample size values will
usually not be integers so they should be rounded
up to the nearest integer. Finally, the calculations
may recommend sample sizes of less than one,
because the variance at that level is so small or
the costs so cheap. However, some level of replica-
tion is necessary for sensible inference and,
remembering that pilot studies may underesti-
mate the true variance, we recommend that more
than one replicate at any level should always be
used.

9.2 Factorial designs

An alternative multifactor linear model is used
when our design incorporates two or more factors
that are crossed with each other. The term crossed
indicates that all combinations of the factors are
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included in the design and that every level (group)
of each factor occurs in combination with every
level of the other factors. Such designs are also
termed factorial. This pattern is in contrast to
nested designs, where the levels of the nested
factor are different within each level of the main
factor. We will first consider factorial (crossed)
designs with two factors, where every level of one
factor occurs at every level of the other factor and
both factors are of equal importance – see Figure
9.2 and Table 9.7.

Factorial designs are most often used for
manipulative experiments. For example, Poulson
& Platt (1996) examined the effects of light micro-
environment (three levels: beneath canopy, single
treefall gap, multiple treefall gap) and seedling
height class (three levels: 1–2 m small, 2–4 m
medium, 4–8 m large) on the difference in growth
between sugar maple and beech saplings (the
response variable was the difference in growth of
paired seedlings of each species). There were five
replicate seedling pairs for each of the nine micro-
environment–height combinations. Another
example comes from Maret & Collins (1996), who
set up an experiment to test the effects of inverte-
brate food level and the presence or absence of
tadpoles on variation in size among larval sala-
manders. There were two factors: two levels of
ration of invertebrate prey (low and high amounts
of brine shrimp per day) and two levels of tadpole
supplementation (with and without). There were
originally eight replicate aquaria in each of the
four cells, although some aquaria were omitted
from analysis because one or more salamander
larvae died. The response variable was mean
snout–vent length of salamanders in each aquar-
ium.

In these two examples, both factors in the
design are fixed, i.e. all possible levels of interest
for the two factors have been used in the study
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Figure 9.2. Part of data set for two factor crossed ANOVA,
with p levels of factor A (i�1 to p), q levels of factor B ( j�1
to q), where the levels of B are the same and crossed with
each level of A, and n replicate observations within each
combination (cell) of A and B (k�1 to n).

Table 9.7 Illustration of marginal and cell means for a two factor factorial ANOVA design. Data from Quinn
(1988) where factor A is limpet density, factor B is season and the response variable is number of egg masses per
limpet in three replicate enclosures per cell

B1 B2 Bj Marginal means A
A1 l11 l12 l1j li�1
A2 l21 l22 l2j li�2
Ai li1 li2 lij li
Marginal means B lj�1 lj�2 lj Grand mean l

Factor B (Bj) B1 B2
Season Spring Summer Factor A marginal means

Factor A (Ai) Density
A1 8 ȳ11 � 2.417 ȳ12 �1.833 ȳi�1�2.125
A2 15 ȳ21 �2.177 ȳ22 �1.178 ȳi�2�1.677
A3 30 ȳ31 �1.565 ȳ32 �0.811 ȳi�3�1.188
A4 45 ȳ41 �1.200 ȳ42 �0.593 ȳi�4�0.896
Factor B marginal means ȳj�1�1.840 ȳj�2�1.104 ȳ�1.472



and our inference is restricted to these levels.
These are analyzed with fixed effects linear
models, also termed Model 1 analyses of variance.

Factorial designs can include random factors
that are often randomly chosen spatial or tempo-
ral units. Designs that include only random
factors are analyzed with random effects models,
termed Model 2 analyses of variance, although
these are unusual in biology. One example is from
Kause et al. (1999), who examined phenotypic plas-
ticity in the foraging behavior of sawfly larvae
with an experiment that used six species of saw-
flies and 20 individual mountain birch trees that
represented a range of leaf qualities for the herbiv-
orous sawfly larvae. There were between four and
six larvae per tree and species combination and
the response variable was an aspect of foraging
behavior (e.g. number of meals, relative consump-
tion rate etc.). Both sawfly species and individual
tree were random factors as they were a sample
from all possible herbivorous sawflies and all pos-
sible trees.

Designs with a combination of fixed and
random factors are analyzed with mixed linear
models, also termed Model 3 analyses of variance.
Including a random factor in a multifactor design
is important in biology, because it allows us to
generalize the effects of a fixed factor to the pop-
ulation of spatial or temporal units (Beck 1997).
For example, Brunet (1996) tested the effects of
position on an inflorescence and randomly
chosen plants on fruit and seed production of a
perennial herb. This was a two factor design with
flower position as the fixed factor and individual
plant as the random factor. A second example
comes from Twombly (1996), who randomly
assigned copepod nauplii from 15 sibships to one
of four food treatments (high constant food and
high switched to low at three different naupliar
stages); there were four replicate dishes (each con-
taining two nauplii) per factor combination and
the response variable was age at metamorphosis.
Food treatment was a fixed factor and sibship was
a random factor.

Factorial designs can include three or more
factors (Section 9.2.12), although we will illustrate
the principles based on two factor designs.
Factorial designs allow us to measure two differ-
ent sorts of factor effects.

1. The main effect of each factor is the effect
of each factor independent of (pooling over) the
other factors.

2. The interaction between factors is a
measure of how the effects of one factor depend
on the level of one or more additional factors.
The absence of an interaction means that the
combined effect of two or more factors is pre-
dictable by just adding their individual effects
together. The presence of an interaction indi-
cates a synergistic or antagonistic effect of the
two factors.

We can only measure interaction effects in fac-
torial (crossed) designs. In nested designs where
factor B is nested within factor A, different levels of
B are used in each level of A so any interaction
between A and B cannot be assessed. When all pos-
sible combinations of the two (or more) factors are
used in factorial designs they are called complete
factorials. Sometimes this is logistically impossible
because the experiment would be too big and/or
costly, so a subset of factor combinations is used and
the design is termed a fractional factorial. Such
designs are more difficult to analyze because not all
interactions can be measured – see Section 9.2.12.

Fecundity of limpets: effects of season and
adult density

Our first worked example of a factorial ANOVA
design and analysis is from Quinn (1988). He
examined the effects of season (two levels,
winter/spring and summer/autumn) and adult
density (four levels, 8, 15, 30 and 45 animals per
225 cm2) on the production of egg masses by rocky
intertidal pulmonate limpets (Siphonaria diemenen-
sis). Limpets (approx. 10 mm shell length) were
enclosed in 225 cm2 stainless steel mesh enclo-
sures attached to the rocky platform. There were
eight treatment combinations (four densities at
each of two seasons) and three replicate enclo-
sures per treatment combination. Note that all
four densities were used in both seasons, hence a
factorial or crossed design. One of the important
questions being asked with this experiment was
whether the effect of density on number of egg
masses per limpet depended on season. Quinn
(1988) predicted that the density effect would be
greater in summer/autumn, when algal food was
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scarce, than in winter/spring, when algal food was
more abundant.

Quinn (1988) described another experiment
looking at the same species of limpet lower on the
shore. Here the limpets were bigger (15–20 mm
shell length) and there was much less seasonal
variation in the availability of algal food, algal
cover being high all year round. The same two
factors were used for this experiment but only
three densities were included: 6, 12 and 24

limpets per 225 cm2. So there were six treatment
combinations (three densities at each of two
seasons) and three replicate enclosures per treat-
ment combination. The analyses of both experi-
ments are in Box 9.4.

Oysters, limpets and mangrove forests
Our second example is from Minchinton & Ross
(1999), who examined the distribution of oysters,
and their suitability as habitat for limpets in a
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Box 9.4 Worked example of two factor fixed effects
ANOVA

Quinn (1988) examined the effects of season (winter/spring and summer/autumn)
and adult density (8, 15, 30 and 45 animals per 225 cm2 enclosure) on the produc-
tion of egg masses by intertidal pulmonate limpets (Siphonaria diemenensis). There
were three replicate enclosures per treatment combination and the response var-
iable was the number of egg masses per limpet in each enclosure.

The null hypotheses were as follows.

No difference between mean number of egg masses laid in each season,
pooling densities.

No difference in mean number of egg masses laid at each density, pooling
seasons.

No interaction between season and density, i.e. the effect of density on mean
numbers of egg masses laid is independent of season and vice versa.

Source df MS F P

Density 3 1.76 9.67 0.001
Linear 1 5.02 27.58 �0.001
Quadratic 1 0.24 1.29 0.272

Season 1 3.25 17.84 0.001
Density�season 3 0.06 0.30 0.824
Residual 16 0.18

There were no outliers and the residual plot (Figure 9.4(a)) did not suggest prob-
lems with assumptions. There was no evidence of an interaction (P�0.824, see
Figure 9.5(a)). There were significant effects of season (more egg masses in
winter/spring than summer/autumn) and density. The main effect of density was
further analyzed with orthogonal polynomials (see Chapter 8 and Section 9.2.10).
There was a significant negative linear trend in egg mass production with density
but no quadratic trend.

Quinn (1988) did a similar experiment at a lower level of the same shore where
the limpets were larger. Different densities were used (6, 12, 24) but the same two
seasons with three replicate enclosures per treatment combination. The null
hypotheses were the same as above, except that there were only three densities.
Again, the residual plot did not suggest any problem with variance heterogeneity
(Figure 9.4(b)).



temperate mangrove forest. They chose two sites
about 600 m apart and at each site recorded the
density of oysters in four zones running up the
shore: seaward zone without mangrove trees,
seaward zone with mangrove trees, middle zone
with trees, and a landward zone at the upper
levels. In each of the eight combinations of site
and zone, they used five quadrats to sample
oysters (response variable) on the forest floor. An
additional study examined the distribution of
limpets on oysters on bent mangrove tree trunks.
They used two sites, three zones (obviously the
seaward zone without trees was not included) and
two orientations of mangrove trunk (upper facing
canopy and lower facing forest floor). This was a
three factor sampling design with five quadrats in
each of the 12 cells and densities of limpets per
oyster surface as the response variable. For both
designs, site was a random factor, representing all
possible sites within the mangrove forest, and
zone and orientation were fixed factors. The anal-
yses of these data are in Box 9.5.

9.2.1 Linear models for factorial designs
In the sections that follow, we will describe two
factor designs and their associated linear models.

Designs with more than two factors will be exam-
ined in Section 9.2.12. A two factor factorial
design is illustrated in Figure 9.2 with a factor
relationship diagram. Factor A has p groups (i�1
to p), factor B has q groups ( j�1 to q) crossed with
each level of A and there are ni replicates (k�1 to
ni) within each combination of A and B categories,
i.e. each cell. Note that every level of factor B is
crossed with every level of factor A and vice versa.
For the moment, assume the number of replicate
observations (n) in each combination of A and B is
the same. Unequal sample sizes will be discussed
in Section 9.2.6. There will be a total of pq cells in
this factorial design with n replicate observations
in each cell. From Quinn (1988), p was four limpet
density treatments (factor A), q was two seasons
(factor B) and n was three enclosures within each
cell. From Minchinton & Ross (1999), p was four
zones (factor A), q was two sites (factor B) and n was
five quadrats within each cell.

We need to distinguish between two types
of means in multifactor crossed designs (Table
9.7).

• Marginal means are the means for the levels
of one factor pooling over the levels of the
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Source df MS F P

Density 2 2.00 13.98 0.001
Season 1 17.15 119.85 �0.001
Density�season 2 0.85 5.91 0.016

Density 6 vs 12 & 24�season 1 1.53 10.66 0.007
Linear density�season 1 1.44 10.07 0.008

Residual 12 0.14

There was a significant interaction between density and season (P�0.016, Figure
9.5(b)). Treatment–contrast interaction tests showed that the comparison between
control density and increased density varied between seasons and the linear trend
in density was also significantly different between seasons. We also tested simple
main effects of density separately for each season.

Source df MS F P

Winter density 2 0.17 1.21 0.331
Summer density 2 2.67 18.69 �0.001
Residual 12 0.14

The effect of density was only significant in summer, not in winter. Note that the
original MSResidual was used for both tests.
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Box 9.5 Worked example of two factor mixed effects
ANOVA

Minchinton & Ross (1999) examined the distribution of oysters, and their suitabil-
ity as habitat for limpets in a temperate mangrove forest. There were two factors:
randomly chosen sites (two sites about 600 m apart) and fixed zones (four levels
running up the shore: seaward zone without mangrove trees, seaward zone with
mangrove trees, middle zone with trees, and a landward zone at the upper levels).
In each of the eight combinations of site and zone, they used five quadrats to sample
limpets on oyster shells (response variable) on the forest floor. There was a strong
relationship between cell means and cell variances (Figure 9.6), indicating that
number of limpets was positively skewed. After transformation to square roots
(�100, representing limpets per 100 oyster shells),much of the mean–variance rela-
tionship was removed, indicating that the distribution of the response variable was
more symmetrical. Like Minchinton & Ross (1999), we analyzed the transformed
variable.

The null hypotheses were as follows.

No difference in the mean square root number of limpets per quadrat
between zones, pooling across all possible sites.

No difference in the mean square root number of limpets per quadrat
between all possible sites, pooling across zones.

No interaction between zone and site, i.e. the effect of zone on the mean
square root number of limpets per quadrat is independent of all possible
sites that could have been used and vice versa.

The two factor mixed model ANOVA tested the fixed effect of zone against the
interaction term, with only 3 and 3 df, because site was random.

Variance
Source df MS F P component %

Zone 3 13.08 1.24 0.433 (0.25)
Site 1 6.37 1.84 0.184 0.15 2.90
Zone�site 3 10.59 3.06 0.042 1.43 28.36
Residual 32 3.46 3.46 68.74

The H0 of no interaction between zone and site was rejected, indicating that
the effect of zone was not consistent between sites in this mangrove forest. This is
clear in Figure 9.7 where site A has fewest limpets in the middle zone whereas site
B has the most limpets in this zone. Most of the variance in limpet densities was
unexplained, although the interaction explained nearly ten times more than the
main effect of site.

Note that the F-ratio for zone would have been 3.78 with 3 and 32 df (P�
0.020) if site had been considered fixed, resulting in rejection of the H0 of no effect
of zone. We would be more confident of a zone effect for just the two sites used
(site fixed), than a zone effect for all possible sites we could have used (site random).



second factor, so the marginal mean A1 is the
mean for the first level of A pooling over the
levels of B. For example, the marginal mean for
density eight from Quinn (1988) is the mean
number of egg masses per limpet from all
possible enclosures with eight limpets, pooling
both seasons. The marginal mean for each level
of A is �i and the marginal mean for each level
of B is �j.

• Cell means are the means of the observations
within each combination of A and B. For
example, the mean number of egg masses per
limpet from enclosures within each

density–season combination. The cell means
for each combination of A and B are �ij.

Model 1 – both factors fixed
The linear ANOVA model for a factorial design
with two fixed factors is an extension of the model
used for single factor designs in Chapter 8. The
two factor effects model is:

yijk����i��j� (��)ij��ijk (9.13)

Statistical details of the crossed ANOVA model,
including estimation of its parameters, are pro-
vided in Box 9.6.
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Box 9.6 The fixed effects factorial ANOVA model and its
parameters

The linear ANOVA models for a factorial design with two fixed factors are exten-
sions of the models used for single factor designs in Chapter 8. The effects model
is:

yijk�l�ai�bj�(ab)ij�eijk

In model 9.13:

yijk is the kth replicate observation from the combination of the ith level of
factor A and jth level of factor B, i.e. cell ij.

l is the overall (constant) population mean of the response variable.
ai is effect of ith level factor A, pooling the levels of factor B. This is the main

effect of factor A, the effect of A pooling (independent of) factor B, and is
defined as the difference between each A marginal mean and the overall
mean (li�l).

bj is effect of jth level of factor B, pooling the levels of factor A, which is the
difference between each B marginal mean and the overall mean. This is the
main effect of factor B, the effect of B pooling (independent of) factor A, and
is defined as the difference between each B marginal mean and the overall
mean (lj�l).

(ab)ij is the effect of the interaction of the ith level of A and the jth level of B
and is defined as (lij�li�lj�l). Interactions measure whether the effect of
one factor depends on the levels of the other factor and vice versa. This can
also be viewed as measuring whether the effects of one factor are
independent of the other second factor.

eijk is random or unexplained error associated with the kth replicate
observation from the combination of the ith level of factor A and jth level of
factor B. These error terms are assumed to be normally distributed at each
combination of factor levels, with a mean of zero [E(eij)�0] and a variance of
r

e
2.

This fixed effects model is overparameterized because the number of means
(combinations of factors plus overall mean) is less than the number of model
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parameters to be estimated (l,a1,a2, . . .,b1,b2, . . ., (ab)11, (ab)12, . . .). Overcoming this
problem so we can estimate model parameters requires a series of “sum-to-zero”
constraints:

ai�0, bi�0, (ab)ij�0, (ab)ij�0.

These constraints appear formidable but simply imply that the sum of the effects of
factor A, pooling B, and the sum of the effects of factor B, pooling A, are both zero.
Additionally, the sum of the interaction effects for each level A and for each level of
B are also zero. These constraints are necessary for fitting effects models, although
such constraints have been criticized (Chapter 8), and further technical discussion
of this issue can be found in Hocking (1996), Searle (1993) and Yandell (1997).

An alternative to imposing constraints on the effects model is to fit a much
simpler means model:

yijk�lij�eijk

where lij is the mean of cell ij and eijk is random or unexplained variation. The means
model basically treats the analysis as a large single factor ANOVA comparing all cells
and tests specific hypotheses about interactions and main effects. The means model
estimates A and B means by averaging the cell means across rows or columns
(Searle 1993), so it has certain advantages for unbalanced designs by ignoring the
sample sizes completely. Means models are mainly useful for missing cells designs
(see Section 9.2.6).

Estimating the parameters of the factorial linear model 9.13 follows the
methods outlined for a single factor model in Chapter 8 and nested models in Box
9.2 with the added complication of estimating interaction effects. Cell means (lij)
for each combination of A and B are estimated from the sample mean of the obser-
vations in each cell, based on the sample size of the particular cell if sample sizes
are unequal.

The factor level (marginal) mean for each level of A pooling levels of B is simply
the mean of the sample means for each cell at level i of factor A, averaged across
the levels of B (Table 9.2). An analogous calculation can be done for factor B means.
These are unweighted means and ignore any difference in sample sizes between
cells.

An alternative approach is to calculate a weighted marginal mean, which aver-
ages the observations for each level of A taking into account different nij within each
cell. If we have a fully balanced design (all nij equal), then the unweighted and
weighted estimates of factor level means will obviously be the same. If we have
unequal numbers of observations per cell (some nij different), then the estimates
will be different. In unbalanced crossed designs, only Type III SS are based on
unweighted marginal means and therefore only F-ratio statistics based on Type III
SS test hypotheses about unweighted marginal means (Section 9.2.6). Our prefer-
ence for unbalanced designs is to estimate and test hypotheses about unweighted
means.

Standard errors for these means are based on the mean squares used in the
denominator of the appropriate F test of the H0 that the population means are
equal (Table 9.11). Note that the OLS standard error for a specific mean will be dif-
ferent from that calculated if we treat the observations producing that mean as a

�
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�
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Using the example from Quinn (1988):

(no. egg masses per limpet)ijk���
(effect of density)i� (effect of season)j�
(interaction between density and season)ij�
�ijk (9.14)

In models 9.13 and 9.14 we have the following:

yijk is the number of egg masses per limpet
from the kth replicate enclosure from the
combination of the ith density and jth season,
i.e. cell ij.

� is the overall (constant) population mean
number of egg masses per limpet from all
possible enclosures in the eight density–season
combinations.

�i is the main effect of ith density on the
number of egg masses per limpet, pooling
(independent of ) seasons.

�j is the main effect of jth season on the
number of egg masses per limpet, pooling
(independent of) densities.

(��)ij is the effect on the number of egg
masses per limpet of the interaction of the ith

density and jth season. This interaction
measures whether the effect of density on
number of egg masses per limpet depends on
season and vice versa, also whether the effect of
density is independent of the effect of season.

�ijk is random or unexplained error associated
with the kth replicate enclosure from the
combination of the ith level of density and jth
level of season. This measures the random error
associated with the number of egg masses per
limpet in each enclosure and the existence of this
error is why replicates within each cell produce
different values for the response variable.

Model 2 – both factors random
These designs are relatively uncommon in biolog-
ical research (but see Kause et al. (1999) for a recent
example) so we will not examine them in detail –
see Neter et al. (1996).

Model 3 – one factor fixed and one random
The linear model for a factorial design with one
fixed and one random factor is the same as
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single sample and calculate the standard error as described in Chapter 2. The
former uses a pooled variance estimate for the whole data set whereas the latter
only uses the variance of the observations producing the mean.

The estimates of ai (l i�l) and bj (l j�l) are the differences between the
mean of each A level or each B level and the overall mean, ȳi� ȳ and ȳj� ȳ respec-
tively. Interaction effects measure how much the effect of one factor depends on
the level of the other factor and vice versa. If there was no interaction between the
two factors, we would expect the cell means to be represented by the sum of the
overall mean and the main effects:

lij�l�ai�bj

Therefore, the effect of the interaction between the ith level of A and jth level
of B (ab)i j can be defined as the difference between the ijth cell mean and its value
we would expect if there was no interaction:

abij�lij�li�lj�l

which is estimated by:

ȳij� ȳi� ȳj� ȳ

This represents those effects not due to the overall mean and the main effects.
Note that in practice biologists rarely calculate the estimated factor or interac-

tion effects, instead focusing on contrasts of marginal or cell means. The exception
is when we have random factors in our model and estimating variance components
is often of interest.



outlined in 9.13 although the interpretation of
the terms is different. Using the example from
Minchinton & Ross (1999):

(density of oysters)ijk���
(effect of intertidal zone)i�
(effect of randomly chosen site)j�
(interaction between zone and site)ij��ijk (9.15)

In models 9.13 and 9.15 we find the following.

yijk is the density of oysters from the kth
quadrat from the combination of the ith zone
and jth site.

� is the overall (constant) population mean
density of oysters.

�i is effect of the ith zone on the density of
oysters, pooling all possible sites.

�j is a random variable with a mean of zero
and a variance of 	

�
2, measuring the variance in

mean density of oysters across all possible sites
that could have been used, pooling zones.

(��)ij is a random variable with a mean of
zero and a variance of 	2

��
measuring the

variance of the interaction between zone and
site across all possible sites that could have been
used. Biologically, this interaction term
measures whether the zone effect is consistent
across all possible randomly chosen sites.

�ijk is random or unexplained error associated
with the kth replicate quadrat from the
combination of the ith level of zone and jth level
of site. This measures the random error associated
with the density of oysters in each quadrat.

Predicted values and residuals
If we replace the parameters in our model by their
OLS estimates (Box 9.6), it turns out that the pre-
dicted or fitted values of the response variable
from our linear model (9.13) are:

ŷijk� ȳ� ( ȳi� ȳ)� ( ȳj� ȳ)� ( ȳij� ȳi� ȳj� ȳ)� ȳij (9.16)

So any predicted Y-value is predicted by the
sample mean for the cell that contains the
Y-value. For example, the predicted number of egg
masses per limpet for enclosure one in spring for
the density of eight limpets is the sample cell
mean for spring for the density of eight limpets.

The error terms (�ijk) from the linear model can
be estimated by the residuals, where a residual

(eijk) is simply the difference between each
observed and predicted Y-value:

eijk�yijk� ȳij (9.17)

For example, the residuals from the model relat-
ing number of egg masses per limpet to limpet
density, season and their interaction are the dif-
ferences between the observed number of egg
masses per limpet in each enclosure and the mean
number of egg masses per limpet from the enclo-
sures within each limpet density and season com-
bination that contained that enclosure. Note that
the sum of the residuals within each cell (�n

k�1eijk)
equals zero. As in all linear models, residuals
provide the basis of the OLS estimate of 	

�
2 and

they are valuable diagnostic tools for checking
assumptions and fit of our model (Section 9.2.8).
The OLS estimate of 	

�
2 is the sample variance of

these residuals and is termed the Residual (or
Error) mean square and is calculated as part of the
partitioning of the total variation in the response
variable described in the next section.

9.2.2 Analysis of variance
The ANOVA table for a two factor factorial design
with equal sample sizes per cell is shown in Table
9.8. The SSA measures the sum of squared differ-
ences between each A marginal mean and the
overall mean; the SSB measures the sum of
squared differences between each B marginal
mean and the overall mean; the SSAB measures the
sum of squared differences for a particular con-
trast involving cell means, marginal means and
the overall mean; SSResidual measures the differ-
ence between each replicate observation and the
appropriate cell mean, summed across all cells.
These SS represent an additive partitioning of the
total SS in the response variable:

SSTotal�SSA�SSB�SSAB�SSResidual (9.18)

In unbalanced designs (unequal n), there is no
simple additive partitioning of the SSTotal, which
causes some difficulties in the ANOVA. There are
three different ways of determining the SS that
represent very different philosophies for hand-
ling unequal sample sizes and we will discuss
these in Section 9.2.6.

The degrees of freedom are calculated as usual
(the number of components making up the
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variance minus one), with the dfAB being a
product of the dfA and dfB.

The SS are divided by the df to produce mean
squares (MS or variances) as we have done previ-
ously for single factor and nested ANOVA models.
Statisticians have determined what population
values these sample mean squares estimate, i.e.
what their expected values are, if the assumption
of homogeneity of variance holds (Table 9.9, Table
9.10). For all three models (fixed effects, random

effects and mixed effects), the MSResidual estimates
	
�

2 (the variation in the error terms in each cell,
pooled across all cells). The expected values for
MSA, MSB and MSAB depend critically on whether
the factors are fixed or random. When both factors
A and B are fixed, the mean squares estimate the
residual variance plus a measure of the fixed
factor or interaction effects. When both factors
are random, MSAB estimates the residual variance
plus the added variance due to the interaction
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Table 9.8 ANOVA table for two factor crossed model

Source SS df MS

A nq (ȳi� ȳ)2 p�1

B np (ȳj� ȳ)2 q�1

AB n (ȳij� ȳi� ȳj� ȳ)2 (p�1)(q�1)

Residual (yijk� ȳij)
2 pq(n�1)

Total (yijk� ȳ)2 pqn�1�
n

k�1
�

q

j�1
�

p

i�1

SSResidual

(pq(n�1)�
n

k�1
�

q

j�1
�

p

i�1

SSAB

(p�1)(q�1)�
q

j�1
�

p

i�1

SSB

q�1�
q

j�1

SSA

p�1�
p

i�1

Table 9.9 Expected mean squares for a two factor crossed ANOVA model
with both factors fixed (Model 1) or random (Model 2)

A, B fixed A, B random

MSA r
e
2�nq r

e
2�nr 2

ab
�nqr

a
2

MSB r
e
2�np r

e
2�nr 2

ab
�npr

b
2

MSAB r
e
2�n r

e
2�nr 2

ab

MSResidual r
e
2 r

e
2

�
p

i�1
�

q

j�1
(ab) 2

i j

(p�1)(q�1)

�
q

j�1
b 2

j

q�1

�
p

i�1
a 2

i

p�1



terms, the mean squares for the main effects esti-
mate the residual variance plus the added vari-
ance due to the interaction terms plus the added
variance due to the random main effect of the rel-
evant factor.

Things get even messier when we have a mixed
model (A fixed, B random). The two alternative
approaches for mixed models for factorial
ANOVAs described in Box 9.7 produce different
expected mean squares (Table 9.10), and the
choice between the two versions of the mixed
model has created much discussion in the statisti-
cal literature (Box 9.7). We recommend Model I,
which results in MSAB estimating the residual var-
iance plus the added variance due to the interac-
tion terms, MSB estimating the residual variance
plus the added variance due to the random main
effect of B and MSA estimating the residual vari-
ance plus the added variance due to the interac-
tion terms plus the fixed factor A effects. The
expectation for the mean square of the fixed
factor in a two factor mixed model includes three
components: the residual variance, the interac-
tion variance and fixed factor effects.

As we will see in the next section, the different
approaches to determining expected mean
squares in ANOVA models have critical implica-
tions for the construction of hypothesis tests. The
expected values for mean squares in three factor
random and mixed models are even more compli-
cated but following the Model I approach, the
same general principles apply. Expected mean

squares for fixed factors and their interactions
will include terms for variance due to higher
order random interactions (Table 9.10). Many texts
provide algorithms for calculating expected mean
squares for any number and combination of fixed
and random factors (e.g. Neter et al. 1996,
Underwood 1997, Winer et al. 1991).

9.2.3 Null hypotheses
There are three general H0s we can test in a two
factor factorial ANOVA. The first two are tests of
main effects and the third is the test of the inter-
action. The specific null hypotheses being tested
in a factorial linear model depend on whether the
factors are fixed or random (see Box 9.8 for termi-
nology).

Fixed effects models

factor a
H0(A): �1��2� . . .��i� . . .��p. This H0 states
there is no difference between the marginal
means for factor A pooling over the levels of factor
B (Table 9.7). For example, no difference in the
mean number of egg masses per limpet for each
level of density, pooling over the two seasons
(Quinn 1988). This is equivalent to H0(A): �1��2�

. . .��i�0, i.e. no effect of any level of factor A
pooling over the levels of factor B. For example, no
effect of any of the four densities on the mean
number of egg masses per limpet, pooling the two
seasons.
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Table 9.10 Expected mean squares for a two versions of a two factor
crossed mixed ANOVA model (Model 3: A fixed, B random): restricted version
imposes constraints on interaction terms and unrestricted imposes no such
constraints

Restricted version Unrestricted version

MSA r
e
2�nr 2

ab
�nq r

e
2�nr 2

ab
�nq

MSB r
e
2�npr 2

b
r

e
2�nr 2

ab
�npr 2

b

MSAB r
e
2�nr 2

ab
r

e
2�nr 2

ab

MSResidual r
e
2 r

e
2

�
p

i�1
a 2

i

p�1

�
p

i�1
a 2

i

p�1
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Box 9.7 The mixed factorial model and the mixed models
controversy

Return to model 9.13 for a factorial design with two factors:

yijk�l�ai�bj�(ab)i j�ei jk

When one of the factors, such as B, is random then two modifications occur. First,
bj is a random variable with a mean of zero and, most importantly, a variance of r

b
2

measuring the variance in mean values of the response variable across all the pos-
sible levels of factor B that could have been used. Second, (ab)i j is a random vari-
able with a mean of zero and a variance of r 2

ab
(well, strictly [(p�1)/p]r 2

ab
to simplify

the expected values of the mean squares – see Neter et al. 1996) measuring the
variance across all the possible interaction terms. This interaction term measures
whether the fixed effect of A is consistent across all possible randomly chosen levels
of B.

To estimate the parameters of this model, we impose two sum-to-zero con-
straints. The first implies that the sum of the effects of the fixed factor A, pooling B,
is zero and is the same as we used for the fixed effects model.

ai�0

The second implies that the sum of the interaction effects across the levels of
A is also zero:

(ab)ij�0

This constraint also defines a covariance between pairs of interaction terms
within each level of factor B, i.e. any two interaction terms will not be independent
within each level of B. Using the Minchinton & Ross (1999) example, this model
allows for the limpet densities per quadrat within a site to be positively or nega-
tively correlated. The version of the mixed model that imposes this constraint orig-
inates with Scheffé (1959) and is termed the restricted (or �-restricted) model
(Neter et al. 1996, Searle et al. 1992), also Model I in Ayres & Thomas (1990) and
the constrained parameters (CP) model (Voss 1999), and is the version most com-
monly presented in linear models texts.

An alternative model (Model II) is one that does not impose any restrictions on
the interaction terms and is termed, not surprisingly, the unrestricted model or the
unconstrained parameters model (Voss 1999). This model implies that any two
interaction terms are independent, within each level of A and B, and is recom-
mended by a number of influential authors, including Hocking (1996), Milliken &
Johnson (1984) and Searle et al. (1992). Using the Minchinton & Ross (1999)
example, this model assumes that the covariance of limpet densities per quadrat
within a site is the same for each pair of zones.

The two approaches for mixed models result in different expected mean
squares (Table 9.10). Model I results in MSAB estimating the residual variance plus
the added variance due to the interaction terms, MSB estimating the residual vari-
ance plus the added variance due to the random main effect of B and MSA estimat-
ing the residual variance plus the added variance due to the interaction terms plus

�
p

i�1

�
p

i�1



factor b
H0(B): �1��2� . . .��j� . . .��q. This H0 states
there is no difference between the marginal
means for factor B pooling over the levels of factor
A (Table 9.7). For example, no difference in the
mean number of egg masses per limpet for each
level of season, pooling over the four densities
(Quinn 1988). This is equivalent to H0(B): �1��2�

. . .��j�0, i.e. no effect of any level of factor B
pooling over the levels of factor A. For example,

no effect of either of the two seasons on the mean
number of egg masses per limpet, pooling the
four densities.

interaction between a and b
H0(AB): �ij��i��j���0 for all levels of A and all
levels of B. This is testing that there are no effects
in addition to the overall mean and the main
effects. For example, there are no effects on the
mean number of egg masses per limpet besides
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the fixed factor A effects. The alternative approach (Model II) results in a different
expectation for MSB, which now estimates the residual variance plus the variance
due to the interaction and the variance due to the random main effect of B. Note
that the difference in the two approaches is only in the expectation for the mean
square for the random factor, not the fixed factor or the interaction.

The expected mean squares in Table 9.10 indicate that the test of the random
factor B will be different under the two models because the expectation of MSB

changes. Under the unrestricted Model II, B should be tested against the MSAB, in
contrast to Model I where it is tested against the MSResidual. Which version of the
mixed model is most appropriate for testing main effects of factor B has been an
issue of considerable debate among statisticians (Hocking 1985, Schwarz 1993,
Searle et al. 1992, Voss 1999) and among biologists (Ayres & Thomas 1990, Fry
1992), although the discussion will be difficult for most biologists to appreciate as it
involves a reasonably high level of statistical detail. Ayres & Thomas (1990) argued
that the covariance assumptions behind Model II (i.e. independent interaction
effects) need to be carefully assessed before it could be applied (but see also Fry
1992). It is difficult to determine, in most cases, whether biological data are likely to
meet the assumption of completely independent interaction terms.

Voss (1999) proposed that the test for factor B based on Model I is correct no
matter which of the two alternative formulations for expected mean squares are
used for the mixed model. He argued that the H0 for no main effects of factor B in
Model II is actually that r

ab
2�r

b
2�0 which results in the same F-ratio test as in

Model I. Voss (1999) claimed that this effectively resolved the controversy over
expected mean squares for random factors in mixed models and their subsequent
hypothesis tests.

In a more radical approach, Nelder & Lane (1995) proposed that usual sum-to-
zero constraints imposed when using overparameterized effects models (Box 9.6)
are unnecessary and pointed out that if we don’t apply such constraints, the
expected mean squares for factors A and B both include the effect of the interac-
tion. Indeed, the expected mean squares, and F-ratios for hypothesis tests, for each
term become basically identical for all combinations of fixed and random factors.
Under this model for expected mean squares, which is not conventional, testing
fixed main effects is relevant even in the presence of interactions because we are
testing for the effect of the fixed factor over and above the interaction. Expected
mean squares and appropriate hypothesis tests in factorial ANOVA models are
obviously still a topic of research and debate among statisticians.



the main effects of density and season (Quinn
1988). This is equivalent to H0(AB): (��)ij�0, i.e. no
interaction between factor A and factor B; the
effect of A is the same at all levels of B and the
effect of B is the same at all levels of A. For
example, the effect of density on the mean
number of egg masses per limpet is the same in
both seasons and the effect of season on the mean
number of egg masses per limpet is the same for
all four densities.

f -ratios
We can test these H0s by seeing which of our mean
squares have the same expected value when the H0

is true (Table 9.9). The F-ratios for testing these H0s
are provided in Table 9.11. It is clear that MSA and

MSResidual have the same expected value when
there is no effect of factor A so these two mean
squares are used in an F-ratio to test the H0(A). MSB

and MSResidual have the same expected value when
there is no effect of factor B so these two mean
squares are used in an F-ratio to test the H0(B).
Finally, MSAB and MSResidual have the same expected
value when there is no effect of the interaction
between A and B so these two mean squares are
used in an F-ratio to test the H0(AB).

The degrees of freedom associated with these
F-ratios are simply the df associated with the two
terms. For example, the df for the F-ratio testing
the interaction H0 are (p�1)(q�1) and pq(n�1).
The F-ratios are compared to an F distribution and
conclusions about whether to reject or not reject
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Box 9.8 Terminology used for identifying fixed and
random effects in expected mean squares

• Dp, Dq, and Dr reflect the terminology presented in Winer et al. (1991) for fixed
and random factors. Dp�1�p/P, where p is the number of levels of factor A,
and P is the possible number of levels. q and r denote the levels of factors B
and C, respectively. If A is a fixed factor, then the p levels represent all possible
levels, so p�P and Dp�0. If A is random, the p levels are assumed to be a
(very small) sample of a population of possible levels, and p/P�0, so Dp�1.

• n represents the number of replicates at each combination of A, B and C.
• Terms associated with factors A, B and C are denoted by Greek letters a, b

and c, respectively.
• r 2

a
refers to an added variance component when factor A is random and to

the variance between fixed A group means (�p
i�1ai

2/(p�1)) when factor A is
fixed. Similar definitions apply for other terms.

Table 9.11 F-ratios used for testing main effects and interactions in a two factor ANOVA model for different
combinations of fixed and random factors

A fixed, B random A fixed, B random

Source A and B fixed A and B random Restricted version Unrestricted version

A

B

AB
MSAB

MSResidual

MSAB

MSResidual

MSAB

MSResidual

MSAB

MSResidual

MSB

MSAB

MSB

MSResidual

MSB

MSAB

MSB

MSResidual

MSA

MSAB

MSA

MSAB

MSA

MSAB

MSA

MSResidual



the H0 are drawn in the usual manner. The worked
example from Quinn (1988) in Box 9.4 illustrates
these tests for a fixed effects model.

Random effects models
With random factors, our focus is on tests of
added variance components, rather than differ-
ences between the means of the chosen groups.

factor a
H0(A): 	

�
2�0, i.e. no added variance due to all pos-

sible levels of factor A that could have been used.
For example, there is no added variance in the
number of meals eaten by sawfly larvae due to all
possible species of sawflies that Kause et al. (1999)
could have used.

factor b
H0(B): 	

�
2�0, i.e. no added variance due to all pos-

sible levels of factor B that could have been used.
For example, there is no added variance in the
number of meals eaten by sawfly larvae due to all
possible trees that Kause et al. (1999) could have
used. 

interaction between a and b
H0(AB): 	

��
2�0, i.e. no added variance due to any

of the interaction effects between all possible
levels of factor A and factor B that could have been
used. For example, there is no added variance in
the number of meals eaten by sawfly larvae due to
any interaction between all possible species of
sawflies and all possible trees that Kause et al.
(1999) could have used in their study.

f -ratios
We can again test these H0s by seeing which of our
mean squares have the same expected value when
the H0 is true (Table 9.9, Table 9.11). The F-ratio for
H0(A) uses MSA and MSAB, because the expected
value for MSA includes the interaction variance.
The F-ratio for H0(B) uses MSB and MSAB, because
the expected value for MSB also includes the inter-
action variance. The F-ratio for H0(AB) uses MSAB

and MSResidual as in the fixed effects model.

Mixed effects models
The null hypotheses for main effects in a mixed
model are basically the same as those in fixed and
random effects models, for fixed and random

factors respectively. Let us assume that factor A is
fixed and factor B is random and that we are using
the traditional Model I values of the expected
mean squares, i.e. imposing constraints on the
interaction terms (Box 9.7).

factor a (fixed)
H0: �1��2� . . .��i� . . .��p. This H0 states there
is no difference between the marginal means for
Factor A pooling over the levels of factor B. For
example, no difference in the mean density of
oysters per quadrat for each zone, pooling over all
possible randomly chosen sites (Minchinton &
Ross 1999). This is equivalent to H0: �1��2� . . .�
�i�0, i.e. no effect of any level of factor A pooling
over the levels of factor B. For example, no effect
of any of the four zones on mean density of oysters
per quadrat, pooling all possible sites.

factor b (random)
H0: 	�

2�0, i.e. no added variance due to all pos-
sible levels of factor B that could have been used.
For example, there is no added variance in the
density of oysters per quadrat due to all possible
sites that Minchinton & Ross (1999) could have
used, pooling the four zones.

interaction between a and b
The null hypothesis for the interaction term,
which is considered a random variable even
though it is an interaction between a fixed effect
and a random variable, is H0: 	

2
��
�0, i.e. no added

variance due to any of the interaction effects
between the fixed levels of factor A and all pos-
sible levels of factor B that could have been used.
When either factor is random, then the interac-
tion is random because it represents a subset
(depending on the levels of the random factor
chosen) of all the possible interactions (Under-
wood 1997). For the Minchinton & Ross (1999)
study, this H0 is that there is no added variance in
the density of oysters per quadrat due to any inter-
action between the fixed zones and all possible
sites that could have been used.

f -ratios
We again test these H0s by seeing which of our
mean squares have the same expected value
when the H0 is true (Table 9.10). The F-ratios for
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testing these H0s are provided in Table 9.11. It is
clear that MSA and MSAB have the same expected
value when there is no effect of factor A so these
two mean squares are used in an F-ratio to test the
H0(A). In contrast, the F-ratio for the H0(B) of no
effect of the random factor B uses MSB and
MSResidual. Finally, the F-ratio for the H0(AB) of no
effect of the interaction between A and B uses
MSAB and MSResidual as in the fixed and random
effects models.

9.2.4 What are main effects and
interactions really measuring?

Fixed effects models
Main effects and interactions can be considered
as a set of orthogonal (independent) contrasts
between marginal means or cell means (Table
9.12(a)). The SSA is simply the sum of the SS for two
independent contrasts among the A marginal
means. With three levels of A, the two contrasts in

any of the three sets in Table 9.12(b) make up the
main effect of A. Similar contrasts can be gener-
ated for factor B. Remember from Chapter 8 that
the number of independent contrasts possible
will be the number of df for that factor. Contrasts
between cell means can be determined for inter-
action effects. For example, if we consider the
interaction as the effect of A at each level of B,
then one set of four independent contrasts would
include the difference between A1 and A2 at B1 and
B2 and at B2 and B3, and the difference between A2

and A3 at B1 and B2 and at B2 and B3, as indicated
in the first column of Table 9.12(c). The sum of the
SS for these contrasts will be SSAB. There are other
sets of independent interaction contrasts, for
both the effect of A at each level of B and the effect
of B at each level of A. The sum of the SS for the
contrasts within any of these sets will be SSAB.
Milliken & Johnson (1984) provide clear examples
and formulae for determining these contrasts.
Understanding these contrasts is important when
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Table 9.12 Main effects and interaction effects as sets of contrasts among marginal and cell means

(a)

B1 B2 B3 A marginal means

A1 l11 l12 l13 lA1

A2 l21 l22 l23 lA2

A3 l31 l32 l33 lA3

B marginal means lB1 lB2 lB3

(b) H0: no effects of A

Set 1 Set 2 Set 3

H0: lA1�lA2�0 H0: lA1�lA2�0 H0: lA1�lA3�0

H0: lA2�lA3�0 H0: lA1�lA3�0 H0: lA2�lA3�0 

(c) H0: no interaction effects

Effect of A same at each level of B Effect of B same at each level of A

Set 1 Set 2 Set 1 Set 2

l11�l21�l12�l22�0 l11�l21�l12�l22�0 l11�l12�l21�l22�0 l11�l12�l21�l22�0
l12�l22�l13�l23�0 l11�l21�l13�l23�0 l21�l22�l31�l32�0 l11�l12�l31�l32�0
l21�l31�l22�l32�0 l11�l31�l12�l32�0 l12�l13�l22�l23�0 l11�l13�l21�l23�0
l22�l32�l23�l33�0 l11�l31�l13�l33�0 l22�l23�l32�l33�0 l11�l13�l31�l33�0



we are dealing with designs with missing cells
(Section 9.2.6). Note that with unbalanced designs
(unequal sample sizes), the sum of the contrasts
won’t add to the SS for the relevant factor or inter-
action (Section 9.2.6).

Let’s look at the meaning of the interaction
term in more detail, by comparing three possible
configurations of cell means in a design with two
levels of two fixed factors (Table 9.13). In the first
example (Table 9.13(a)), there are effects of A and
B (both sets of marginal means differ) but no inter-
action between the two factors. The effect of A is
the same at each level of B (a change by five units)
and the effect of B is the same at each level of A (a

change by 7.5 units). All the (�ij��i��j��) equal
zero, indicating no interaction. No interaction
indicates the effects of factor A and factor B are
additive and independent of each other, i.e. the
response variable can be predicted by just the two
main effects.

In the second example (Table 9.13(b)), there are
also effects of both A and B as both sets of margi-
nal means differ. More importantly, there is an
interaction between the two factors. The effect of
A is different at each level of B (five unit change at
B1 and ten unit change at B2) and the effect of B is
different at each level of A, although the effects are
consistently in the same direction. The differences
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Table 9.13 Illustration of interactions for an artifical two factor design with two levels of each factor.

(a)
B1 B2 Marginal A means b (l2�l1)

A1 5 12.5 8.75 7.5
A2 10 17.5 13.75 7.5

Marginal B means 7.5 15 11.25
a (l2�l1) 5 5

(b)
B1 B2 Marginal A means b (l2�l1) b (logl2� logl1)

A1 5 (0.699) 10 (1.000) 7.5 5 0.301
A2 10 (1.000) 20 (1.301) 15 10 0.301

Marginal B means 7.5 15 11.25
a (l2�l1) 5 10
a (logl2� logl1) 0.301 0.301

(c)
B1 B2 Marginal A means b (l2�l1) b (logl2� logl1)

A1 5 (0.699) 20 (1.301) 12.5 15 0.602
A2 10 (1.000) 10 (1.000) 10 0 0.000

Marginal B means 7.5 15 11.25
a (l2�l1) 5 �10
a (logl2� logl1) 0.301 �0.301

Note:
Middle entries are cell means with log10 values in parentheses. Marginal means are also provided. (a)
No interaction (all (ab)ij�0) where the effect of A is the same at each level of B and vice versa. (b)
Simple interaction (all (ab)ij��1.25) where the effect of A is greater at B2 compared to B1 and the
effect of B is greater at A2 compared to A1. Note interaction effects removed by log transformation (all
(ab)ij�0). (c) More complex interaction (all (ab)ij��3.75) where the effect of A is in the opposite
direction at B2 compared to B1 and there is no effect of B at A2 but a strong effect at A1. Note
interaction not removed by log transformation.



between marginal means do not simply reflect the
effects of each factor. All the (�ij��i��j��) equal
�1.25, indicating an interaction.

In the third example (Table 9.13(c)), there is a
more complex interaction. Note that the marginal
means indicate only a small effect of A (minus 2.5
units from A1 to A2). It is clear from the cell means,
however, that there is actually an opposite effect
of A at each level of B (plus five unit change at B1

and minus ten unit change at B2). A similar result
occurs for B. The marginal means suggest a strong
effect (plus 7.5 units from B1 to B2), whereas the
cell means show only a strong effect of B at A1 and
no effect at A2. Neither set of marginal means rep-
resents a consistent effect for each factor. All the
(�ij��i��j��) equal �3.75, indicating a
stronger interaction than the previous example.
In both Table 9.13(b) and (c), the interaction indi-
cates the effects of factor A and factor B are multi-
plicative, i.e. the response variable cannot be
predicted by just the two main effects.

If there are interactions then interpretation of
main effects becomes more difficult. Remember
that an interaction is telling us that the main
effects are not independent of each other, i.e. the
effect of one factor depends on the levels of the

second factor. The main effect
of a given factor (comparison
of marginal means) pools over
the levels of the other factor,
which is not appropriate if the
effects of the two factors are
not independent. Figure 9.3
shows a range of interactions
between two factors; note that
interactions can be moderate
(B2 greater than B1 for all
levels of A but relative size of
difference varies) or severe (B2
greater than B1 for A1 and A3

but this difference is reversed for A2). Underwood
(1981, 1997) provided clear examples of how large
interactions can result in misleading interpreta-
tion of non-significant main effects in an ecologi-
cal context. He showed how a strong interaction
could result in non-significant main effects when
the main effects were actually strong, they were
just not consistent across the levels of the other
factor.

This suggests that there should be a sequence
of hypothesis tests for fixed effects factorial
ANOVAs. Most textbooks recommend testing the
H0 of no interaction first. If this test is not signifi-
cant, then tests of main effects can proceed. If the
interaction is significant, then tests of main
effects will be difficult to interpret. Neter et al.
(1996) suggested a modification of this strategy.
They argued that interactions can still be signifi-
cant without precluding interpretation of main
effects and recommended seeing if interactions
are “important” before deciding whether main
effects can be examined, although defining
important interactions is subjective. One of the
arguments for still interpreting main effects in
the presence of an interaction is that it is difficult
to envisage a significant interaction producing
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Figure 9.3. Interaction plots of
the cell means of two factors,A
(A1,A2,A3) and B (B1, B2) and
plots of marginal main effects
means for each factor separately:
(a) no interaction, (b) moderate
interaction, and (c) severe
interaction.

B1

B2

B1

B2

B1

B2(a)

(b)

(c)



significant main effects where no real effects
exist. Indeed, the examples in Underwood (1981,
1997) illustrated misleading non-significant main
effects in the presence of an interaction.

We generally agree with the traditional
approach that says that main effects may be diffi-
cult to interpret in the presence of statistically sig-
nificant interactions when all factors are fixed
and we recommend that examining the nature of
the interaction is the most sensible strategy when
it is clearly significant. Significant main effects
may still be of interest despite an interaction but
common sense must be used. Non-significant
main effects in the presence of interactions won’t
have much meaning. In fact, interactions are
often of as much biological interest as the main
effects. For example, in the study of Quinn (1988),
the interaction between density and season was of
most interest because it would reflect changing
effects of intraspecific competition when food
availability changes. Interactions should not just
be treated as a nuisance in factorial ANOVA
models. They presumably are of considerable
interest, which is why a factorial design has been
used, and they nearly always offer important bio-
logical insights. There are numerous techniques
for further exploring the nature of interactions in
the context of factorial ANOVAs (Section 9.2.10).

Random effects models
Because the expected values of the mean squares
for factors A and B both include the variance
among interaction terms, the H0s for the main
effects are actually testing for a non-zero variance
component over and above any random interac-
tion effects. Therefore, the presence of an interac-
tion does not cause problems for interpreting
tests of main effects. Nonetheless, the tests of
main effects will be less powerful in the presence
of an interaction because the denominator of the
F-ratio (MSAB) will increase relatively more than
the numerator (MSA or MSB). So strong interac-
tions between the random factors will make main
effects difficult to detect.

Mixed effects models
Irrespective of which version we use for a mixed
model (Box 9.7, Table 9.10), the expected mean
square for the fixed factor includes the variance

component for the interaction term. Therefore,
the test for the fixed factor actually tests for the
effects of the fixed factor over and above the varia-
tion due to the interaction and the residual. So
when one factor is random, the test of the fixed
main effect is potentially interpretable even in the
presence of an interaction. This is actually the jus-
tification for being able to test main treatment
effects in a simple randomized blocks design even
though there is no test for a block–treatment
interaction, as long as the blocks factor is random
(Chapter 10). Applying the Model I version of the
mixed model, the tests of the random factor and
the random interaction term will both use
MSResidual as the denominator for the F-ratio. If we
use the alternative Model II version of the mixed
model, the test for the random factor changes –
see discussion in Box 9.7.

Sometimes we might have a random factor
with only a few levels, e.g. for practical/logistic
reasons, we can only sample two or three ran-
domly chosen sites. This causes problems because
the interaction term used to test the fixed factor
will not have many degrees of freedom and the
test of the fixed effect may not be very powerful.
This makes sense because our ability to generalize
to a population of levels of a random factor should
depend on how well we have sampled this popula-
tion, i.e. how many levels of the random factor we
use. This also explains why, when one factor is
random, it is the F test of the fixed factor that
changes. Rather than concluding whether there is
an effect of the fixed factor, pooling only over the
specific levels of another fixed factor, we wish to
conclude whether there is a general effect of the
fixed factor, pooling over all the possible levels of
a random factor. We might expect such a test to be
less powerful and to use a different error term.

To illustrate, consider the study by Losos (1995)
who examined the survivorship of seedlings two
species of palms in a coastal tropical forest in
Peru. Along two randomly located transects, she
defined four different successional zones running
from the beach into the forest: early-seral near the
beach, mid-seral and then late-seral further into
the forest, and a zone dominated by a broad-
leaved monocot, Heliconia, that may occur any-
where along the sequence. She transplanted
seedlings into five plots within each zone and
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transect combination. A two factor model was
used to analyze survivorship, with successional
zone as a fixed factor and transect as a random
factor (Table 9.14). The effect of successional zone,
the main effect of interest, is tested against the
interaction with only three and three df. In this
example, the interaction was strongly significant,
indicating spatial variation in the effect of succes-
sional zone on seedling survivorship. She could
not reject the H0 of no effects of successional zone
over and above any variance due to the interac-
tion.

This emphasizes an important design princi-
ple in factorial ANOVAs. When a random factor is
included, it nearly always represents replication
that affects the power of the test for the fixed
factor (Section 9.2.13). If we cannot include many
levels of the random factor, we need to decide
whether we would be better to restrict our study
to a single level of the random factor (e.g. a single
site) but be much more confident of whether
there are fixed factor effects.

9.2.5 Comparing ANOVA models
The methods we have described in Chapter 8 and
Section 9.1.5 for comparing the fit of full and
reduced models to test whether a particular
model parameter equals zero are just as appropri-
ate to factorial models. For example, to test the H0

that (��)ij equals zero, i.e. no interaction in a fixed
effects model, we can compare the fit of the full
model:

yijk����i��j� (��)ij��ijk (9.13)

to the fit of the reduced model that omits the
term specified in the H0:

yijk����i��j��ijk (9.19)

Using the example from Quinn (1988), we
compare the full model:

(no. egg masses per limpet)ijk���
(effect of season)i� (effect of density)j�
(interaction between season and density)ij�
�ijk (9.14)

to the reduced model:

(no. egg masses per limpet)ijk���
(effect of season)i� (effect of density)j��ijk (9.20)

Thus, we compare the fits of additive (no inter-
action) and multiplicative (with interaction)
models (9.13 and 9.19). The difference in fit of
these two models is simply the difference in their
SSResidual. This difference can be converted to a
mean square by dividing by the difference in the
dfResidual. The H0 of no difference in fit of the two
models (i.e. (��)ij equals zero; no interactive effects
between the two factors) can be tested with an F
test using MSResidual of the full model as the
denominator. With equal sample sizes per cell,
this model comparison test will produce the same
result as the traditional ANOVA test. With
unequal sample sizes, this equality does not hold.
In practice, most statistical software uses compar-
ison of general linear models to determine SS and
MS, and test hypotheses, about specific terms in
ANOVA models. This approach, in contrast to the
formulae in Table 9.8, generalizes to unbalanced
designs and designs with more factors, including
crossed and nested, and combinations of categor-
ical and continuous variables. 

9.2.6 Unbalanced designs
Studies involving categorical predictor variables
should usually be designed with equal sample
sizes for two main reasons. First, hypothesis tests
are much more robust to the assumptions of nor-
mality and variance homogeneity (Chapter 8,
Section 9.2.8) when sample sizes are equal.
Second, estimation of variance components for
random effects is more difficult with unequal
sample sizes. However, it is common in biology to
end up with unequal sample sizes, even if the
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Table 9.14 Two factor mixed model ANOVA from
Losos (1995), where successional zone is a fixed
factor and transect is a random factor. The effect of
successional zone is tested against the successional
zone by transect interaction with 3 and 3 df

Source df MS F P

Successional zone 3 0.060 0.31 0.819

Transect 1 0.045 3.10 0.041

Successional zone 3 0.191 13.33 �0.001
� transect

Residual 30 0.014



study was originally designed with equal
numbers of observations per cell. If the inequality
of sample sizes is thought to be causally related to
the factors, then it is probably useful to analyze
the effect of the factors on the final number of rep-
licates in each cell as a contingency table: see
Shaw & Mitchell-Olds 1993 and Chapter 14. In
many cases, unequal sample sizes are caused by
random loss of observations or by practical con-
straints limiting the number of observations in
some cells but not others. Besides the robustness
issue, unequal sample sizes in factorial ANOVAs
means that there is no simple additive partition-
ing of the SSTotal into components due to main
effects and interactions and the formulae in Table
9.8 no longer apply. Also, the determination of
expected values of mean squares can be difficult,
especially when there are random factors. 

Unbalanced multifactor designs are some-
times termed non-orthogonal. There are two
levels of sample size imbalance in factorial
ANOVAs. The first is when there are observations
in every cell but the numbers of observations vary.
The second, and more difficult, situation is when
there are one or more cells with no observations.

Unequal sample sizes
A common situation in biology is where the
sample sizes are unequal but all cells in the design
have at least one observation. Again, we will focus
on a two factor model, with two examples. Hall et
al. (2000) did an experiment that examined the
effects of nutrients (N and P) on the macroinverte-
brate assemblages colonizing small artificial
habitat units submersed in a shallow subtidal
region in SE Australia. These artificial habitat
units were loosely rolled sheets of porous cloth.
The two factors were nutrients (two levels: control
and added nutrients) and time (three levels: two,
four and six months after deployment) and the
response variable was species richness of macro-
invertebrates. Five replicate units were collected
from each treatment after each time period,
except that one unit was lost on collection so one
cell (control after six months) had only four repli-
cates. The response variable is log numbers of
individuals of macroinvertebrates per habitat
unit. The analyses of these data are in Table
9.15(a).

Reich et al. (1999) examined the generality of
traits of leaves from different species across a
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Table 9.15 Types I, II and III SS for unbalanced two factor data

(a)
Source df Type I Type II Type III

Factor A (treatment) 1 347.145 281.077 282.752
Factor B (time) 2 2 884.336 2 884.336 2 869.265
A�B 2 131.912 131.912 131.912
Residual 23 234.400 234.400 234.400

(b)
Source df Type I Type II Type III

Factor A (location) 3 17 781.391 21 804.379 49 201.833
Factor B (functional group) 1 4 442.202 4 442.202 6 919.109
A�B 3 67 782.672 67 782.672 67 782.672
Residual 49 59 088.060 59 088.060 59 088.060

Notes:
(a) From Hall et al. (2000), where there are six cells with sample sizes of five in all cells except one that
has only four observations. (b) From Reich et al. (1999), where there are eight cells with sample sizes
of two, two, three, three, five, six, 15, and 21. In this example, the F-ratio test for functional group was
only significant for Type III SS (P�0.020) but not for Type I or II SS (P�0.061).



range of ecosystems and geographic regions. They
sampled a number of species from different func-
tional groups (three levels: forb, shrub, tree) and
from different study sites and related ecosystems
(six levels: Colorado–alpine tundra, North
Carolina–humid temperate forest, New Mexico–
desert grassland/woodland and pinyon–juniper
woodland, South Carolina–warm temperate/sub-
tropical forest, Venezuela–tropical rain forest,
Wisconsin–cold temperate forest and prairie and
alkaline fen/bog). To avoid completely missing
cells, we will use a subset of their data, omitting
Colorado and North Carolina and only using
shrubs and trees. The response variable was spe-
cific leaf surface area, there were eight cells (four
sites and two functional groups) and sample sizes
(number of species) ranged from two to 21 per cell.
The analyses of these data are in Table 9.15(b).

There are three different ways of calculating
the SS for the main effects and the interaction
when cell sizes vary, termed Types I, II and III SS.
They all provide the same values of SS for the
residual and interaction terms. The former is
simply the sum of squared deviations between
each observation and the overall mean, obtained
from the SSResidual when the full model (with both
main effects and an interaction) is fitted. The
latter is based on the comparison of the fit of a full
model with the fit of a reduced model without the
interaction term.

The real difference between the methods for
calculating SS with unbalanced designs is for the
main effects and relates to the way that marginal
means are calculated. The most common method
is to use Type III SS that are based on unweighted
marginal means and therefore are not influenced
by the sample size in each cell (Table 9.15). In a
model comparison framework, Type III SS for each
main effect are calculated from the comparison of
fitting the full model to the model without the
main effect of interest. For example, to determine
the SSA, we compare the fit of the full model:

yijk����i��j� (��)ij��ijk (9.13)

(no. species)ijk��� (nutrient)i� (time)j�
(nutrient�time)ij��ijk (9.21)

to the fit of the reduced model:

yijk����j� (��)ij��ijk (9.22)

(no. species)ijk��� (time)j�
(nutrient�time)ij��ijk (9.23)

Many authorities on linear models recommended
Type III SS for unbalanced multifactor ANOVAs
(e.g. Maxwell & Delaney 1990, Milliken & Johnson
1984, Searle 1993, Yandell 1997), a recommenda-
tion for ecologists supported by Shaw & Mitchell-
Olds (1993). This recommendation is because tests
of main effect hypotheses using Type III SS are
based on unweighted means, rather than means
that depend on the sample size within specific
cells. Searle (1993) pointed out that Type III SS
were the equivalent of his preferred SS developed
using the cell means model, although we argue
that the effects model is conceptually easier for
biologists to understand because the traditional
main effects and interaction terms are explicit.

Type I SS are determined from the improve-
ment in fit gained by adding each term to the
model in a hierarchical sequence. For example, SSA

is determined by comparing the fit of the models:

yijk����i��ijk (9.24)

(no. species)ijk��� (nutrient)i��ijk (9.25)

to the models:

yijk����ijk (9.26)

(no. species)ijk����ijk (9.27)

The additional SS explained by models 9.24 and
9.25 is the Type I SSA. SSB are determined by com-
paring the fit of the next two models in the
sequence:

yijk����i��j��ijk (9.28)

(no. species)ijk��� (nutrient)i�
(time)j��ijk (9.29)

versus

yijk����i��ijk (9.24)

(no. species)ijk��� (nutrient)i��ijk (9.25)

It is clear from Table 9.15 that SSA are quite differ-
ent for Type I and Type III methods, not surprising
given the different pairs of models being com-
pared. Unfortunately, there are two downsides of
Type I SS. First is that the order of terms is impor-
tant. The SS due to factor B will be different if it
enters the model after factor A compared with
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before factor A. Second, Type I SS use marginal
means weighted by sample sizes and hence test
hypotheses weighted by sample sizes. Most biolo-
gists would probably prefer their hypotheses to be
independent of the cell sample sizes.

Type II SS are also developed from sequential
model fitting. Now, however, the contribution of
each term is assessed by comparing a model with
that term to a model without it, but including all
other terms at the same or lower level. To deter-
mine the SSA, we compare the fit of:

yijk����i��j��ijk (9.28)

(no. species)ijk��� (treatment)i� (time)j
��ijk (9.29)

to

yijk����j��ijk (9.30)

(no. species)ijk��� (time)j��ijk (9.31)

The additional SS explained by models 9.28 and
9.29 is the Type II SSA. Type II SS are not dependent
on the order of terms in the model but still test
hypotheses of marginal means weighted by cell
sample sizes. The main difference between Type II
and Type III SS is that the Type III model compari-
son for main effects includes the interaction terms
whereas the Type II model comparison doesn’t.

In the example from Hall et al. (2000), the
imbalance in the design does not affect conclu-
sions from the F tests – both main effects and the
interaction are significant for all three types of SS
and model comparisons. However, the degree of
imbalance is minor in this case. The different SS
used to analyze the data from Reich et al. (1999)
resulted in different conclusions for the hypothe-
sis test of the main effect of location, where the P
value based on Type III SS was 0.020 compared to
0.061 for Type I and II SS.

We prefer Type III SS for unbalanced (but not
missing cells) designs, but this is still an issue of
considerable debate in the statistical and ecologi-
cal literature. For example, Nelder & Lane (1995)
argued strongly in favor of Type I SS and recom-
mended that hypothesis testing in linear models
be based on a hierarchical series of models. They
saw no role for Type III SS at all. Stewart-Oaten
(1995) proposed that Type III SS are only useful for
testing interactions. He argued that if interactions
are absent, then test main effects with Type II SS

and if interactions are present, then main effects
would not be tested anyway. However, Maxwell &
Delaney (1990) pointed out that this approach
depends on the power of our initial test for an
interaction and suggested that Type III SS are
more broadly applicable.

It is very important to remember that this
whole debate becomes irrelevant when factorial
designs are balanced because Type I, II and III SS
are identical. Therefore, we agree strongly with
Underwood (1997) that unequal sample sizes
should be avoided, at least by design. As
Underwood (1997) pointed out, there is unlikely to
be a logical reason for estimating different cell
means or marginal means with different levels of
precision and unequal sample sizes make vari-
ance component estimation very difficult. How-
ever, as discussed in Chapters 4 and 8, we don’t
recommend deleting observations to make cell
sizes equal. This will reduce power, which is rarely
adequate in biological experiments anyway, and
the model comparison approach can easily deal
with unequal sample sizes as long as we are aware
of which hypotheses the different approaches are
testing and we are careful about checking the
assumptions of the analysis.

Missing cells
The extreme form of unequal sample sizes is
where there are no observations for one or more
of the cells in a multifactor ANOVA. Such data are
very difficult to analyze because not all marginal
and cell means can be estimated and therefore
not all main effects and interactions can be tested.
Type III SS based on the effects models and
unweighted marginal means for main effects are
inappropriate in this situation. There is no single
correct analysis for missing cells designs and dif-
ferent approaches test different hypotheses, all of
which might be of interest. The basic approach is
to consider tests of main effects and interactions
as sets of contrasts between marginal means and
cell means respectively (Section 9.2.2). We will use
two examples to illustrate analyses of factorial
designs with missing cells. The first is a modifica-
tion of the data from Hall et al. (2000) we used
above, where instead of having a single habitat
unit missing from the control treatment after six
months, we have lost all of the observations from
that cell (Table 9.16(a)). The second example is
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from Reynolds et al. (1997), who studied competi-
tion between three species of grassland plants.
They identified patches dominated by each of the
species, cleared a plot in each patch and seeded it
with either the original species or one of the other
species. Not all species–patch combinations were
possible (Table 9.17(a)), so this was a design with

three missing cells out of the nine possible combi-
nations. The response variables were percentages
of soil water, shoot �13C and nitrate accumulated
on ion-exchange resin bags.

The best strategy is to fit a cell means model
(Box 9.6), basically a single factor model for all the
cells, and then test relevant contrasts based on
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Table 9.16 Analyses of two factor ANOVA design modified from Hall et al. (2000) with a single missing cell. (a)
Design structure, (b) cell means model with tests for main effects and interactions, with contrasts for the effect of
time, (c) Type III SS test of interaction of treatment by time, and (d) subset analyses, omitting 6 months and
omitting controls

(a)
2 months 4 months 6 months

Control lC2 lC4
Added nutrients lN2 lN4 lN6

(b)
Source SS df MS F P

Cells 32.013 4 8.003 93.17 �0.001

Treatment:
Control vs nutrient added for (2 and 4) months 1.063 1 1.063 12.38 0.002
(lC2�lC4�lN2�lN4) 

Time: 34.991 3 11.664 135.62 �0.001
2 vs 4 marginal means (lC2�lN2�lC4�lN4) 13.441 1 13.441 156.47 �0.001
2 vs 6 for nutrient added (lN2�lN6) 19.720 1 19.720 229.57 �0.001
4 vs 6 for nutrient added (lN4�lN6) 1.830 1 1.830 21.30 �0.001

Treatment� time:
Control vs nutrient added at 2 months vs 4 months 0.491 1 0.491 5.72 0.027
(lC2�lN2�lC4�lN4)

Residual 1.718 20 0.086

(c)
SSFull dfFull SSReduced dfReduced Difference F1,20 P

Model 32.013 4 31.522 3 0.491 5.71 0.027
Residual 1.718 20 2.209 21

(d)
Omitting 6 months Omitting controls

df MS F P df MS F P

Treatment 1 1.063 12.53 0.003
Time 1 13.441 158.34 �0.001 2 10.362 118.39 �0.001
Treatment� time 1 0.491 5.79 0.029
Residual 16 0.085 12 0.088 



cell means. The residual from that means model
is used for all subsequent tests when the factors
are fixed. To test the interaction effects, we need
to determine which interaction contrasts are
estimable, where an estimable contrast is one that
doesn’t rely on the missing cells. For the modified
artificial habitat data from Hall et al. (2000), there
is only one interaction contrast that is estimable
(�C2��N2��C4��N4), the effect of nutrients at
two and four months, which was significant
(Table 9.16(b)). There was also only one estimable
interaction contrast in the plant competition data
(Table 9.17(b)). If there are more than two levels of
both factors, and depending on the pattern of
missing cells, there may be more than one estim-
able interaction contrast and sums of non-
estimable contrasts might also be estimable
(Searle 1993). We could also use Type III SS to
compare the fit of the full effects model to the fit
of the reduced model; from Hall et al. (2000), this

is the comparison of models 9.13 and 9.21 versus
models 9.28 and 9.29. This F-ratio is testing the H0

that all the estimable interaction contrasts are
zero, and since there is only one estimable inter-
action contrast, this test is the same as obtained
from the contrast as part of the cell means model.
The point is that the F test based on Type III SSAB

does not test that all interactions between A and
B are zero but only some subset that depends on
the pattern of missing cells.

What about main effects? The recommended
approach is to determine a set of contrasts of mar-
ginal means (for the part of the data set without
missing cells) or cell means that test sensible
hypotheses based on the available data. This is
where the cell means model is very important. For
the time factor in Hall et al.’s (2000) artificial
habitat example, we can contrast two and four
months using marginal means (H0: �2��4)
because all cells have observations. We can con-
trast two and six months and four and six months,
but only using cell means for nutrient added
treatments (Table 9.16(c)). For the plant competi-
tion example (Table 9.17(b)), Reynolds et al. (1997)
contrasted the cell means for Plantago and
Calycadenia for Calycadenia patches only (one df)
and also measured the main effect of species from
the analysis of the Plantago and Lasthenia combina-
tions as a subset (one df). The combination of
these two effects produced the final SSSpecies with
two df. The SSPatch was determined with a compar-
able set of contrasts. In all these cases, the resid-
ual from the cell means model was used as the
denominator for all F tests.

Note that these analyses do not represent
orthogonal partitioning of the SSTotal, because
these designs are extreme examples of imbalance
and we have already pointed out that there is no
simple partitioning of the SS in unbalanced
designs. We should also mention Type IV SS that
are produced by the SAS statistical software
package. When there are no missing cells, Type IV
SS are the same as Type III SS. When there are
missing cells, Type IV SS are calculated for all the
estimable contrasts as described above, although
SAS selects a subset of these (see Milliken &
Johnson 1984 for details). Searle (1993) and
Yandell (1997) have argued strongly that the
default Type IV SS may not be useful for many
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Table 9.17 Missing cells design and analysis from
Reynolds et al. (1997). Seeds of each of the three
species were planted into patches already
dominated by one of the species. Only six of the
nine species–patch combinations were possible. (a)
Design structure, (b) ANOVA with tests of possible
contrasts

(a) Patch

1: 2: 3:
Species Plantago Lasthenia Calycadenia

1: Plantago l11 l12 l13
2: Lasthenia l21 l22
3: Calycadenia l33

(b)
Source df

Species 2
l13�l33 1
l11�l12�l21�l22 1

Patch 2
l11�l13 1
l12�l22�l11�l21 1

Species�patch 1
l11�l12�l21�l22 1



missing cells designs. It is clearly a more sensible
strategy to carefully think about what subset of
hypotheses are of most interest from all those that
can be tested when there are missing cells.

Another approach to missing cells designs is to
analyze subsets of the data set with observations
in all cells (Table 9.16(c)). In the artificial habitat
example, we could delete all data from six months
and fit a two factor model to the remaining data
for two levels of time (two and four months) and
two treatments (control and nutrients added). The
SSAB for this subset analysis is the same as the Type
III SS from the full data set because the only estim-
able interaction contrast is the one from this
subset (Table 9.16(c)). The first contrast of the time
effect in the cell means analysis is also the main
effect of time from an analysis of the subset of the
data omitting six months. The other subset with
observations in all cells is using added nutrient
data only for all three times, although that
becomes a single factor analysis. When both
factors have more than two levels, and there is at
least one missing cell, there may be more than
one subset suitable for a factorial model. On the
other hand, if there is a complex pattern of
missing cells (disconnected data, sensu Searle
1993, Yandell 1997), then the subsets might be
quite small compared to full data set, i.e. most of
the rows and columns may need be to deleted to
form an analyzable subset of the data. 

In summary, the analysis of missing cells fac-
torial designs will involve a combination of ana-
lyzing balanced subsets of the data, especially for
interactions, and sensible contrasts of cell means
for examining components of main effects. We
have only discussed fixed factor models here. The
tests of relevant contrasts in mixed models with
missing cells are really messy because of the diffi-
culty of calculating an appropriate error term.

9.2.7 Factor effects
When the factors are fixed (i.e. Model 1), we might
wish to estimate the variance between the group
means in the specific populations from which we
have sampled. For factor A, this is �p

i�1�i
2/(p�1),

where �i is the difference between each group
mean and the overall mean (�i��). Following
Brown & Mosteller (1991), we can equate the mean
squares to their expected values (the ANOVA

approach) to obtain an estimate of this variance
of the population group means (Table 9.18).
Analogous calculations work for the other fixed
effects (B and the interaction A�B) and we simply
determine the proportion that each contributes
to the total variance (the sum of the variance com-
ponents plus the residual). An alternative for fixed
factor effects is to calculate �2 (Hays 1994) as a
measure of strength of association between the
response variable and the fixed factor (see Chapter
8). This is similar to the EMS measure above except
we are estimating �p

i�1�i
2/p instead of

�p
i�1�i

2/(p�1), so the two measures are related by
the ratio (p�1)/p. The formula for �2 given in
many texts (Hays 1994, Kirk 1995) automatically
determines the percentage of the total variance
explained (a PEV measure, sensu Petraitis 1998; see
Chapter 8). For fixed factor A in a two factor
ANOVA:

�A
2� (9.32)

The difference between the estimate of �2 and the
estimate based on equating the mean squares to
their expected values decreases as the number of
levels of the fixed factor increases because the dif-
ference between p�1 and p decreases.

For a random effects model (Model 2), we wish
to estimate the added variance component (the
variance between the means for all possible
groups) for A (	

�
2), B (	

�
2) and the interaction

(	
��

2). Again, we can use the ANOVA approach to
estimate these variance components (Brown &
Mosteller 1991, Searle et al. 1992) and calculate
each as a proportion of the total (sum of the com-
ponents plus the residual). These are equivalent
calculations to those described above for fixed
factors.

We emphasized in Chapter 8 that the “vari-
ance” components for fixed and random factors
are interpreted differently. For a fixed factor, we
are estimating the variance between group means
from the specific populations we have used and
the difference between the true population mean
and our estimate is sampling error at the level of
the replicate observations (i.e. we have used all
possible groups but have sampled observations
from those groups). For a random factor, we are
estimating the variance between all possible

SSA� (p�1)MSResidual

MSResidual�SSTotal
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Table 9.18 ANOVA estimates of variance components for balanced two
factor ANOVA model with different combinations of fixed and random
factors

A, B fixed:
Source Expected mean square Estimated variance component

A r
e
2�nq *

B r
e
2�np *

AB r
e
2�n *

Residual r
e
2 MSResidual

A, B random:
Source Expected mean square Estimated variance component

A r
e
2�nr 2

ab
�nqr

a
2

B r
e
2�nr 2

ab
�npr

b
2

AB r
e
2�nr 2

ab

Residual r
e
2 MSResidual

A fixed, B random:
Source Expected mean square Estimated variance component

A r
e
2�nr 2

ab
�nq *

B r
e
2�npr

b
2

AB r
e
2�nr 2

ab

Residual r
e
2 MSResidual

Note:
Note that the “variance component” for fixed effects (*) represents
the variance between the fixed group population means.

MSAB�MSResidual

n

MSB�MSResidual

np

MSA�MSAB

nq

�
p

i�1
a 2

i

p�1

MSAB�MSResidual

n

MSB�MSAB

np

MSA�MSAB

nq

MSAB�MSResidual

n

�
p

i�1
�

q

j�1
(ab) 2

i j

(p�1)(q�1)

MSB�MSResidual

np

�
q

j�1
b 2

j

q�1

MSA�MSResidual

nq

�
p

i�1
a 2

i

p�1



group means and the difference between the true
population variance and our estimate is sampling
error at the level of groups (i.e. we have used only
a sample of all the possible groups).

For mixed models, there are two approaches.
The most correct method is to calculate true var-
iance components only for the random effects in
the model and determine the proportion each
contributes to the total (including the residual)
of the random variation in the response variable.
This approach formally recognizes that the “var-
iance” between the fixed group means is not
really comparable to the added variance due to
random effects. The second method (Brown &
Mosteller 1991) takes a more pragmatic line and
doesn’t distinguish between fixed and random
effects in that the equivalent of variance compo-
nents are calculated for both. The argument
here is that the calculations are identical for
both types of effects (using the expected mean
square (ANOVA) approach) and we are simply
trying to apportion the total variation in the
response variable amongst all the model terms
in a comparable way. The different interpreta-
tions of estimates of variance between fixed
group means and true added variance compo-
nents still must be recognized. Any measure of
proportion of explained variance for multifactor
models must be treated cautiously. These meas-
ures are obviously dependent on other terms in
the model (Underwood & Petraitis 1993,
Underwood 1997) and are difficult to compare
between analyses.

The ANOVA approach to true variance compo-
nent estimation relies on equal sample sizes.
When sample sizes are different, there is no
straightforward solution to estimating variance
components of random factors. Searle et al. (1992)
discussed a number of modifications of the EMS
(ANOVA) method, including Hendersons’s
Methods I, II, and III, and using cell means, but
could not make definitive recommendations
about which is best. They preferred maximum
likelihood (ML) and restricted maximum likeli-
hood (REML) methods of estimation for unbal-
anced data and these were discussed in Chapter 8.
They did point out that the major limitation of
these methods of estimation is their complexity
and the shortage of available software.

9.2.8 Assumptions
Fortunately, the assumptions of factorial ANOVA
models are basically the same as we have already
discussed for single factor and multifactor nested
models. The assumptions of normality and homo-
geneity of within-cell variances for the error
terms from the model and the observations apply
to hypothesis tests in factorial ANOVA models. We
can check these assumptions for the observations
within each cell using the same techniques (box-
plots, mean vs variance plots and residuals vs cell
mean plots) already described in Chapters 4 and 8.

Formal tests of homogeneity of within-cell var-
iances, as described in Chapter 8, can be applied
to factorial designs. Levene’s test is probably the
best and also works well when based on random-
ized residuals (Manly 1997). Nonetheless, our res-
ervations outlined in Chapter 8 about using these
tests in isolation from more informative diagnos-
tic checks still hold. When the research hypothe-
ses of interest actually concern main effects and
interaction effects on variances, rather than
means, modifications of the tests based on
pseudo-observations (e.g. absolute residuals)
described in Chapter 8 can be used (Ozaydin et al.
1999).

The assumption of independence is also rele-
vant for factorial ANOVA models and the observa-
tions within each cell should be independent of
each other. Problems arise if we repeatedly
measure experimental or sampling units through
time (see Chapters 10 and 11) or we design our
experiment so that the response of some units
affects the responses of others (Chapter 7).

Transformations of the response variable
deserve special mention for factorial ANOVA
models. Transformations of variables with skewed
distributions can greatly improve normality and
homogeneity of within-cell variances (Chapters 4
and 8) and should be considered when these
assumptions are not met. Transformations can
also affect the interpretation of interaction terms,
although the effect depends on the nature of the
interaction (Sokal & Rohlf 1995).

In Table 9.13(a), the effects are additive and
there is no interaction between factors A and B.
The difference between the two levels of A is the
same at each level of B and vice versa. In Table
9.13(b), the effects of factors A and B are clearly

FACTORIAL DESIGNS 249



multiplicative and, on the raw scale, there is
clearly an interaction. The difference between the
two levels of A is not the same at each level of B
and vice versa. However, if we log transform the
cell means, this interaction effect disappears and
an additive model without an interaction term
would now be appropriate. After transformation,
the percentage change from A1 to A2 is the same
for both levels of B. In Table 9.13(c), the interaction
is more complex, where the effects of the two
levels of A are reversed for each level of B. A log
transformation does not change the nature of the
interaction term very much.

So a log transformation (other power transfor-
mations can also alter interaction strengths) will
make effects that are multiplicative on the raw
scale additive on the transformed scale (Emerson
1991, Kirk 1995, Neter et al. 1996, Sokal & Rohlf
1995). The decision whether to transform data
before fitting multifactor ANOVA models then
also depends on whether the biological interac-
tion you are measuring is best represented on the
transformed scale. An additive model after trans-
formation is simpler but may miss multiplicative
effects that represent important biological inter-
actions. If, on the other hand, multiplicative
effects are not considered biologically important
interactions (i.e. only different relative percentage
changes in one factor at each level of the other
factor are relevant), then a log transformation to
produce an additive model might be appropriate.

9.2.9 Robust factorial ANOVAs
There are few accepted robust factorial ANOVA
techniques. One common approach is to use a
rank transform (RT) method, whereby the data are
converted to ranks and the usual ANOVA is applied
to the ranks. Although this method may be useful
for tests of main effects, it is inappropriate for
testing interactions (McKean & Vidmar 1994,
Seaman et al. 1994, Thompson 1991a,b) because of
the nonlinear nature of rank-transformed data.
The recently proposed aligned rank procedure of
Salter & Fawcett (1993) may be more useful. As dis-
cussed in Chapters 3 and 8, the RT approach may
not provide protection against unequal variances
but can help in dealing with outliers.

The Wilcox Z test (Chapter 8) is robust to
unequal variances and could be applied to

factorial designs by analyzing all the cells as a one
factor design, with appropriate contrasts (like a
cell means model). Of course, generalized linear
models (GLMs; see Chapter 13) would also be appli-
cable when the underlying distribution of the
response variable is not normal but is known to be
one from the exponential family.

Randomization tests for factorial ANOVAs have
been described by Edgington (1995) and Manly
(1997). With both main effects and interactions
involved, there are a number of different ways to
randomize observations (or residuals). Observa-
tions can be randomized across all cells and either
F-ratios or mean squares for main effects and
interactions used as test statistics. Randomizing
residuals across all cells and using F-ratios can
also be used. Edgington (1995) has suggested that
true randomization tests for interactions are not
possible and recommended restricted randomiza-
tion for testing main effects, whereby observa-
tions are randomized between groups for one
factor, controlling for the other factor. Manly
(1997) summarizes these and other approaches
and concludes from simulations (see also
Gonzalez & Manly 1998) that when based on F-
ratios, all methods gave similar results for testing
main effects and interactions, and these were
similar to the classical ANOVA tests.

9.2.10 Specific comparisons on main
effects

If there are no strong interactions, interpreting
main effects is relatively straightforward and
involves tests of marginal means, e.g. the means of
factor A pooling over the levels of B and vice versa.
The tests of null hypotheses of no effect of A or no
effect of B can include planned contrasts and/or
trend analyses or be followed by unplanned multi-
ple comparisons, as described in Chapter 8. For
example, Poulson & Platt (1996) analyzed the dif-
ference in growth between sugar maple and beech
saplings (the difference was the response variable)
with a two factor ANOVA model. The factors were
light microenvironment (three levels: beneath
canopy, single treefall gap, multiple treefall gap)
and height class (three levels: small, medium,
large) and they incorporated two planned con-
trasts for each of the main effects, although for one
response variable, the interaction was significant.
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The only tricky part of contrasts or pairwise com-
parisons on main effect means is to ensure that the
correct error term is used if the model contains
random factors. In such situations, the error term
for fixed factors, and therefore any contrasts on the
means of those factors, is usually an interaction
term rather than the MSResidual.

9.2.11 Interpreting interactions
The presence of an interaction between two
factors is often of considerable biological interest
and nearly always deserves further analysis.

Exploring interactions
Plotting cell means with the response variable on
the vertical axis, the levels of one factor on the
horizontal axis and lines joining the means
within levels of the other factor (see Figure 9.3) is
sometimes called an interaction plot. An interac-
tion is indicated by deviation of the lines from
parallel. We illustrate the effects of interactions
on interpretation of main effects in Figure 9.3 (see

also Table 9.13; Underwood
1997 provided a similar
example and detailed explana-
tion). In Figure 9.3(a), there is
no interaction between the
two factors (lines parallel) and
the main effects (marginal

mean plots) are straightforward to interpret.
When there is a moderate interaction (Figure
9.3(b)), the marginal mean plots (and therefore
tests of main effects) can become misleading. The
marginal mean plot for A suggests A2 and A3 are
similar whereas they are clearly different at each
level of B. With complex interactions (Figure
9.3(c)), comparisons of marginal means can be
completely uninterpretable. For example, the
marginal mean plot for A suggests no effect when
there are obvious effects at each level of B, they
are just opposite.

The interaction plot for the data on the effects
of adult density and season on egg production of
Siphonaria limpets from Quinn (1988) shows no
evidence of an interaction for high shore limpets
but some interaction for low shore limpets (the
difference between seasons is greater at density
six than 12 or 24) – see Figure 9.4 and Figure 9.5.
Such interaction graphs are helpful ways of
understanding interactions but are necessarily
subjective.
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Figure 9.4. Residual plots from
two factor ANOVA models for data
on effects of density and season on
egg mass production by Siphonaria
limpets (Quinn 1988). (a) High shore
limpets, (b) low shore limpets.

Figure 9.5. Plots of cell means and
standard errors for data on effects
of density and season on egg mass
production by Siphonaria limpets
(Quinn 1988). (a) High shore
limpets, (b) low shore limpets.



Another descriptive approach is to decompose
the ANOVA into a table representing the main
effects and interaction effects. The general tech-
nique of splitting up the data into effects and
residuals is termed sweeping (Schmid 1991) and is
described for a two factor ANOVA, using the data
on the effects of adult density and season on egg
production of low shore Siphonaria limpets from
Quinn (1988) as an example, in Table 9.19. The
border row and column show the main effects and
the central entries show the interaction effects for
each cell. The season effects were stronger than
the density and interaction effects, the relatively
small interaction effects matching the conclu-
sions from the ANOVA and interaction plot for
these data (Box 9.4) that there is a statistically sig-
nificant interaction but it does not swamp main
effects.

Unplanned multiple comparison
An unplanned multiple comparison test (e.g.
Tukey test) on all cell means involved in the

interaction can be done (Underwood 1997).
Unfortunately, there will often be many means
involved and multiple comparison tests can
produce ambiguous results when there are lots of
groups (Chapter 8). We do not recommend this
approach unless the ANOVA is exploratory and no
sensible contrasts can be determined.

Simple main effects
Simple main effects test the H0 of no effect of
factor A at each level of B separately and/or no
effect of factor B at each level of A separately. As an
example, Stehman & Meredith (1995) described an
experiment based on Radwan et al. (1992) who
examined the effects of nitrogen (two levels:
present and absent) and phosphorus (four levels:
0, 100, 300, 500 kg ha–1) on growth and foliar nutri-
ent concentrations of Douglas fir trees. This
experiment would be analyzed as a two factor fac-
torial ANOVA. Testing simple main effects might
involve comparing the four P levels separately for
N present and N absent or comparing N present
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Table 9.19 (a) Final output from data sweeping of a two factor ANOVA design. Top left value is overall mean,
factor A and factor B effects are in row and column borders and interaction effects are in remaining cells. (b)
Example of data sweeping from Quinn (1988) showing effects of season, density and interaction on number of egg
masses produced per limpet. Note that the season effects are the strongest and the interaction effects are similar
to, or less than, the density effects

(a)
B1 B2 etc.

ȳ ȳj� ȳ ( j�1) ȳj� ȳ ( j�2)

A1 ȳi� ȳ (i�1) ȳij� ȳi� ȳj� ȳ (i�1, j�1) ȳij� ȳi� ȳj� ȳ (i�1, j�2)

A2 ȳi� ȳ (i�2) ȳij� ȳi� ȳj� ȳ (i�2, j�1) ȳij� ȳi� ȳj� ȳ (i�2, j�2)

etc.

(b)
Density 6 Density 12 Density 24

1.948 0.551 0.051 �0.601

Spring �0.967 �0.413 0.087 0.324

Summer 0.976 0.413 �0.087 �0.324



and absent for each P level separately. The experi-
ment examining the effect of density and season
on egg mass production by limpets (Quinn 1988)
showed a significant density by season interaction
for low shore limpets (Box 9.4). A sensible test of
simple main effects would test the density effects
for each season separately.

Simple main effects don’t really examine the
interaction, just separate effects of one factor for
each level of the other factor. In many cases, we
might only wish to examine simple main effects
for one of the factors. This might be particularly
true if one factor is random. A significant interac-
tion between the fixed and random factor sug-
gests the effect of the fixed factor varies spatially
or temporally and we would usually examine the
simple main effects for the fixed factor at each
level of the random factor separately. To illustrate
from Minchinton & Ross (1999), we would test the
simple main effects of intertidal zone on the
density of oysters on mangrove trees for each ran-
domly chosen site separately. When both factors
are fixed, then we might want to test simple main
effects for both factors. If there are many levels of
one or both factors, then testing all simple main
effects involves a lot of non-independent single
factor ANOVAs. These are exploratory analyses
looking for significant results among a collection
of tests, so some correction (e.g. Bonferroni-type)
to significance levels to adjust for multiple testing
probably should be used (see Chapter 3). 

Simple main effects tests are basically single
factor ANOVAs at each level of the other factor but
they are best considered as a set of particular con-
trasts and part of the original two factor ANOVA.
The simple main effects for factor A at each level
of B partition the SS and df for A and AB; simple

main effects for B at each level of A partition the
SS and df for B and AB. When both factors are
fixed, tests of simple main effects should use the
original MSResidual as the denominator of their F
tests, because we have already decided that is our
best estimate of the residual variance in our data.
Simply splitting the original data and testing
across the levels of A for any specific level of B with
a single factor ANOVA will result in an F test with
a different denominator term with different df
and different power characteristics than the tests
in the original two factor ANOVA. This seems inap-
propriate so make sure the MSResidual from the orig-
inal factorial ANOVA is used as the error term for
simple main effect tests in Model 1 ANOVAs.
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Figure 9.6. Plots of cell variances
against cell means for (a)
untransformed numbers of limpets
per oyster and (b) square root
transformed numbers of limpets per
100 oysters from Minchinton &
Ross (1999). Note the weaker
relationship between mean and
variance after transformation.

Figure 9.7. Bar graph of mean (�standard error) square
root transformed numbers of limpets per 100 oysters for
different zones and sites from Minchinton & Ross (1999).



When one factor (say, B) is random (Model 3),
then the main effect of A was tested against the
AB interaction and the interaction was tested
against the residual so there is no single denomi-
nator for tests of simple main effects of A from a
partition of (SSA�SSAB). Under these circum-
stances, one approach might be to calculate a new
pooled error term:

(9.33)

This is based on the strategy recommended by
Kirk (1995) and Maxwell & Delaney (1990) for
partly nested models where we have both fixed
and random factors (Chapter 11). We can use this
pooled error term as the denominator for simple
main effect tests for factor A, although tests will
only be approximate.

Keep in mind also that planned contrasts and
trend analyses and unplanned comparisons can
be incorporated into tests of simple main effects
of fixed factors. Underwood (1997) recommended
simple main effects tests to interpret interactions,
although he did not use this term. He also focused
on multiple comparisons, recommending SNK (or
Ryan’s) tests to compare the A means at each level
of B separately, rather than considering the F tests
for the simple main effects.

Treatment–contrast and contrast–contrast
interactions

Treatment–contrast interactions partition the
interaction term by testing contrasts (e.g. group 1
versus group 2) and trends (e.g. linear, quadratic)
in one factor against the levels of the second
factor. We test whether a particular contrast of
groups of one factor interacts with the second
factor. In the study by Stehman & Meredith (1995)
examining the effects of nitrogen and phospho-
rus on growth and foliar nutrient concentrations
of Douglas fir trees, a number of treatment–
contrast interactions make sense. First, is the dif-
ference between no P (control) and the average of
P100, P300, P500 consistent for treatments with N
present and N absent? Second, are the linear or
quadratic trends across P the same for N present
and N absent? In the example for low shore
limpets from Quinn (1988), we could test whether
the contrast of natural density (six limpets) with
increased density (12 and 24 limpets) interacts

SSA�SSAB

( p�1)� ( p�1) (q�1)

with season, i.e. whether this contrast was consis-
tent between season (Box 9.4). Alternatively, we
can test whether the linear trend in density inter-
acts with season (Box 9.4).

Contrast–contrast interactions are a particular
case of treatment–contrast interactions and test
the interaction between contrasts or trends in one
factor and contrast or trends in the second factor.
For example, Corti et al. (1997) set up a factorial
experiment to test the effects of hydroperiod and
predation on macroinvertebrate communities in
ponds on the Mississippi River floodplain. The two
factors were pond (four levels: two permanently
wet ponds, two temporary ponds which dried
occasionally) and predator access (three levels: all
access, small-fish access, no access). The design
was actually slightly more complicated as there
were also repeated measurements on dates (see
Chapter 12) but we can just consider it a two factor
analysis for the moment. They used a number of
contrast–contrast interaction tests to interpret
significant pond by predator interactions. For
example, did the contrast between pond one and
pond two (comparing the two temporary ponds)
interact with the contrast of all access versus com-
bined no access and small-fish access treatments?
Did the temporary versus permanent pond con-
trast (ponds one and two vs three and four) inter-
act with the contrast of all access versus combined
no access and small-fish access treatments?

Both types of contrast were used by Mills &
Bever (1998), who examined the effects of plant
species (four levels: four species of perennial
plants) and strain of pathogenic oomycete of the
genus Pythium (six levels: control and five strains)
on plant mass. Their design also included a block
effect (see Chapter 10) but we can just consider the
factorial component (plant species crossed with
Pythium strain) here (Table 9.20). They included a
treatment–contrast interaction test (does the
effect of plant species interact with the contrast
between the control and the average of the five
Pythium strains?) and numerous contrast–contrast
interaction tests (e.g. does the contrast between
any two of the plant species interact with the con-
trast between the control and the average of the
five Pythium strains?).

Kirk (1995) has provided computational formu-
lae for developing such tests but they can usually
be obtained from linear models routines in
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statistical software that allows flexible coding of
contrasts.

9.2.12 More complex designs
The two factor ANOVA model can be extended to
handle more complex designs in three ways (i)
three or more factor factorial designs, (ii) frac-
tional factorial designs, and (iii) combinations of
crossed and nested factors.

Complex factorial designs
Extending linear models to three or more factors
is relatively straightforward, except for interpret-
ing complex interactions. As an example, Ayres &
Scriber (1994) studied climatic adaptation in

caterpillars and tested the effects of sex (male,
female), population (Michigan, Alaskan) and
laboratory temperature (12o, 18o, 24o, 30oC) on
mass of pupae produced. The three factor ANOVA
model included a three factor interaction (is the
interaction between temperature and population
consistent for males and females?), three two
factor interactions (e.g. is the difference between
temperatures the same for both sexes, pooling
populations?) and three main effects (e.g. is there
a difference between sexes, pooling population
and temperature?). Note that the three factor
interaction is symmetrical – “is the interaction
between temperature and population consistent
for males and females?”, “is the interaction
between sex and population consistent across the
four temperatures?”, etc.

We can estimate factor effects, as either fixed
factor “variances” or variance components for
random factors, using modifications of the
approaches described in Section 9.2.7. We can
compare the relative contribution of the different
main effects and interactions by equating the
mean squares to their expected values as
described in Section 9.2.7. Keep in mind the fun-
damentally different interpretation of variance
components for random factors and the “vari-
ance” among fixed treatment effects. Note that
when two or more random factors are included,
calculation of variance components is difficult
(see below).

The strategies for exploring complex interac-
tions follow those outlined in Section 9.2.11. The
equivalent of simple main effects are simple inter-
action effects, where the A�B interaction is
examined at each level of C or the A�C inter-
action is examined at each level of B, etc. These
simple interaction tests could then be followed by
simple main effects. One difficulty is that the
number of significance tests can quickly become
very large when exploring complex interactions
like this and some sort of Bonferroni correction to
the significance levels of the tests to control the
Type I error rate might be needed (Chapter 3).

If fixed and random factors are combined in
these complex factorial designs, then the
expected mean squares must be determined
beforehand (Table 9.21) because including one or
more random factors can mean that some tests
will use interaction terms rather than the
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Table 9.20 Part of ANOVA table from Mills &
Bever (1998) for experiment testing effects of four
plant species (An�Anthoxanthum, Da�Danthonia,
Pa�Panicum, Pl�Plantago) and six pathogenic
oomycete treatments (control and five strains of
Pythium) on plant mass and root:shoot ratios

Source df

Block 1
Plant spp. 3
Treatment 5

Contol vs average Pythium 1
Among Pythium 4

Plant spp.�Treatment 15
Plant spp.�Contol vs average Pythium 3
An-Da�Contol vs average Pythium 1
An-Pa�Contol vs average Pythium 1
An-Pl�Contol vs average Pythium 1
Da-Pa�Contol vs average Pythium 1
Da-Pl�Contol vs average Pythium 1
Pa-Pl�Contol vs average Pythium 1

Residual 167

Note:
Specific comparisons for treatment main effect
were control treatment versus average of the
five Pythium strains and among the Pythium
strains. Interaction contrasts were plant
species by control treatment versus average of
the five Pythium strains (“treatment–contrast
interaction”) and the difference between all
pairs of plant species by control treatment
versus average of the five Pythium strains
(“contrast–contrast interaction”).



MSResidual as the denominator for their F-ratio. This
can result in reduced df and less power than antic-
ipated for some tests. For example, as part of their
study of limpets on oyster shells in mangrove
forests, Minchinton & Ross (1999) used two ran-
domly chosen sites, three zones (seaward zone
with mangrove trees, middle zone with trees, and
a landward zone at the upper levels) and two
orientations of mangrove trunk (upper facing
canopy and lower facing forest floor). There were
five quadrats in each of the twelve cells and the
response variable was densities of limpets per
oyster surface. Although there were 48 df for the
residual, the test of the interaction between the
fixed factors (Zone by Orientation) used the three
factor interaction with only two df as the denom-
inator. The tests of the fixed main effects (Zone,
Orientation) used the respective two factor inter-
actions with the random factor (Zone by Site,
Orientation by Site) as denominators with only
two and one df respectively. To increase the power
of these tests, the number of levels of the random
factor (in this example, sites) needs to be
increased, rather than the number of replicate
observations in each cell (quadrats).

If two or three of the three factors are random
(e.g. A, B and C random; see Table 9.22), then there
will be no appropriate F-ratio tests for some terms

in the model, i.e. under the H0, there will be no
other mean square with the same expected value
as the term being tested. For example, in a three
factor fully crossed design where all three factors
are random, there are no appropriate F-ratios for
testing for any of the main effects. There are two
solutions to this problem.

1. Quasi F-ratios must be calculated by com-
bining mean squares until a suitable numerator
and denominator combination is found that
tests the hypothesis of interest (Blackwell et al.
1991). For factor A in a three factor random
effects model, there are two possible quasi 
F-ratios:

F�MSA / (MSAB�MSAC�MSABC) (9.34)

F� (MSA�MSABC) / (MSAB�MSAC) (9.35)

The second of these is more useful, as the
first method can lead to negative F-ratios, which
should not, by definition, occur. The degrees of
freedom are also complex, and formulae are pro-
vided by Winer et al. (1991).

2. Alternatively, if we are primarily interested
in the random factors, we can calculate
confidence intervals for the variance compo-
nents and see if those confidence intervals
include zero (Burdick 1994).
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Table 9.21 Expected mean squares for three factor ANOVA model (after
Winer et al. 1991). Factor A has p levels, B has q levels and C has r levels with
n replicates in each cell

Source General expected mean square

A r
e
2�nDqDrr

2
abc
�nqDrr

2
ac
�nrDqr

2
ab
�nqrr

a
2

B r
e
2�nDpDrr

2
abc
�npDrr

2
bc
�nrDpr

2
ab
�nprr

b
2

C r
e
2�nDpDqr

2
abc
�npDqr

2
bc
�nqDpr

2
ac
�npqr

c
2

AB r
e
2�nDrr

2
abc
�nrr 2

ab

AC r
e
2�nDqr

2
abc
�nqr 2

ac

BC r
e
2�nDpr

2
abc
�npr 2

bc

ABC r
e
2�nr 2

abc

Residual r
e
2

Note:
Coding used for expected mean squares outlined in Box 9.8.



Unfortunately, quasi F-ratios do not follow an F
distribution under the H0 and quasi-F tests are
approximate at best (Burdick 1994). The problem
becomes almost intractable if multiple random
factors are combined with an unbalanced design.
Our experience is that multifactor designs with
more than one random factor are not common in
biology, so we don’t come across this situation
often.

Fractional factorial designs
Sometimes we might wish to explore the effects
of a number of factors but the number of combi-
nations of factor levels is so large that the experi-
ment is logistically impossible because it would

require too many replicate units. Fractional facto-
rial designs are often used in these situations,
especially when we have a large number of
factors, each with two levels. The terminology in
the literature identifies this as a 2p design where
p is the number of two level factors. If we had four
factors (p equals four), then the number of model
terms for a fully factorial design would be 16 and
the total number of experimental units required
would be 16 times the number of replicates per
cell. When much fewer experimental units are
available and the main purpose of the experi-
ment is to screen for important effects, a frac-
tional factorial design might be used. There are
two ways in which the required number of units
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Table 9.22 Expected mean squares (EMS) and denominator for F-ratio test of H0 that effect of each term equals
zero for three factor crossed ANOVA model. Factor A has p levels, B has q levels, C has r levels with n replicates per
cell. (a) Model 1 (all factors fixed) and Model 2 (all factors random). (b) One possible Model 3 (factors A and B fixed,
factor C random) illustrated with example from Minchinton & Ross (1999) – see Section 9.2.12 for details

(a)
A, B, C fixed A, B, C random

Source EMS Denominator EMS Denominator

A r
e
2�nqrr

a
2 MSResidual r

e
2�nr 2

abc
�nqr 2

ac
�nrr 2

ab
�nqrr

a
2 Quasi (?)

B r
e
2�nprr

b
2 MSResidual r

e
2�nr 2

abc
�npr 2

bc
�nrr 2

ab
�nprr

b
2 Quasi (?)

C r
e
2�npqr

c
2 MSResidual r

e
2�nr 2

abc
�npr 2

bc
�nqr 2

ac
�npqr

c
2 Quasi (?)

AB r
e
2�nrr 2

ab
MSResidual r

e
2�nr 2

abc
�nrr 2

ab
MSABC

AC r
e
2�nqr 2

ac
MSResidual r

e
2�nr 2

abc
�nqr 2

ac
MSABC

BC r
e
2�npr 2

bc
MSResidual r

e
2�nr 2

abc
�npr 2

bc
MSABC

ABC r
e
2�nr 2

abc
MSResidual r

e
2�nr 2

abc
MSResidual

Residual r
e
2 r

e
2

(b)
Source Minchinton & Ross (1999) EMS Denominator

A Zone r
e
2�nqr 2

ac
�nqrr

a
2 MSAC

B Orientation r
e
2�npr 2

bc
�nprr

b
2 MSBC

C Site r
e
2�npqr

c
2 MSResidual

AB Zone�orientation r
e
2�nr 2

abc
�nrr 2

ab
MSABC

AC Zone�site r
e
2�nqr 2

ac
MSResidual

BC Orientation�site r
e
2�npr 2

bc
MSResidual

ABC Zone�orientation�site r
e
2�nr 2

abc
MSResidual

Residual r
e
2



can be reduced. First, the design is nearly always
unreplicated, so there is only one replicate unit
within each of the cells used. By definition, this
means that there is no estimate of the 	

�
2 so some

higher order interaction terms must be used as
the residual for hypothesis tests. Second, the
logical basis of these designs is the assumption
that most of the important effects will be main
effects or simple (e.g. two factor) interactions, and
complex interactions will be relatively unimpor-
tant. The experiment is conducted using a subset
of cells that allows estimation of main effects and
simple interactions but confounds these with
higher order interactions that are assumed to be
trivial.

The combination of factor levels to be used is
tricky to determine but, fortunately, most statisti-
cal software now includes experimental design
modules that generate fractional factorial design
structures. This software often includes methods
such as Plackett–Burman and Taguchi designs,
which set up fractional factorial designs in ways
that try to minimize confounding of main effects
and simple interactions.

A recent biological example of such a design
comes from Dufour & Berland (1999), who studied
the effects of a variety of different nutrients and
other compounds on primary productivity in sea-
water collected from near atolls and from ocean
sites. Part of their experiment involved eight
factors (nutrients N, P, and Si; trace metals Fe, Mo
and Mn; combination of B12, biotin and thiamine
vitamins; ethylene diamine tetra-acetic acid
EDTA) each with two levels. This is a 28 factorial
experiment. They only had 16 experimental units
(test tubes on board ship) so they used a fractional
factorial design that allowed tests of main effects,
five of the six two factor interactions and two of
the four three factor interactions.

It is difficult to recommend these designs for
routine use in biological research. We know that
interactions between factors are of considerable
biological importance and it is difficult to decide
a priori in most situations which interactions are
less likely than others. Possibly such designs have
a role in tightly controlled laboratory experi-
ments where previous experience suggests that
higher order interactions are not important.
However, the main application of these designs

will continue to be in industrial settings where
additivity between factor combinations is a realis-
tic expectation. Good references include Cochran
& Cox (1957), Kirk (1995) and Neter et al. (1996).

Mixed factorial and nested designs
Designs that combine both nested and factorial
factors are common in biology. One design is
where one or more factors, usually random, are
nested within two or more crossed factors. For
example, Twombly (1996) used a clever experi-
ment to examine the effects of food concentration
for different sibships (eggs from the same female
at a given time) on the development of the fresh-
water copepod Mesocyclops edax. There were four
food treatments, a fixed factor: constant high food
during development, switch from high food to
low food at naupliar stage three, the same switch
at stage four, and also at stage five. There were 15
sibships, which represented a random sample of
possible sibships. For each combination of food
treatment and sibship, four replicate Petri dishes
were used and there were two individual nauplii
in each dish. Two response variables were
recorded: age at metamorphosis and size at meta-
morphosis. The analyses are presented in Table
9.23 and had treatment and sibship as main
effects. Because sibship was random, the food
treatment effect was tested against the food treat-
ment by sibship interaction. Dishes were nested
within the combinations of treatment and sibship
and this factor was the denominator for tests of
sibship and the food treatment by sibship interac-
tion. For age at metamorphosis, individual
nauplii provided the residual term and the linear
model was:

(age at metamorphosis)ijkl���

(food treatment)i� (sibship)j�
(food treatment�sibship)ij�
(dish within food treatment and sibship)k(ij)�

�ijkl (9.36)

For size at metamorphosis, replicate measure-
ments were taken on each individual nauplius so
the effect of individuals nested within dishes
nested within each treatment and sibship combi-
nation could also be tested against the residual
term, the variation between replicate measure-
ments. This linear model was:
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(size at metamorphosis)ijklm���

(food treatment)i� (sibship)j�
(food treatment�sibship)ij�
(dish within food treatment and sibship)k(ij)�

(individual within dish within food
treatment and sibship)l(k(ij))��ijklm (9.37)

Note that both models could be simplified to a
two factor ANOVA model by simply using means
for each dish as replicates within each treatment
and sibship combination. We would end up with
the same SS and F tests as in the factorial part of
the complete analyses. Note also that individuals
within each dish (and replicate measurements on
each individual) simply contribute to the dish
means but make no real contribution to the df for
tests of main effects or their interaction. Power for
the tests of sibship and the treatment by sibship
interaction could only be improved by increasing
the number of dishes and for the test of treatment
by increasing the number of sibships.

Some designs require models with more
complex mixtures of nested and crossed factors.
For example, factor B might be nested within factor

A but crossed with factor C. These partly nested
linear models will be examined in Chapter 12.

9.2.13 Power and design in factorial
ANOVA

For factorial designs, power calculations are sim-
plest for designs in which all factors are fixed.
Power for tests of main effects can be done using
the principles described in the previous chapter,
effectively treating each main effect as a one
factor design. Power tests for interaction terms are
more difficult, mainly because it is harder to
specify an appopriate form of the effect size. Just
as different patterns of means lead to different
non-centrality parameters in one factor designs,
combining two or more factors generates a large
number of treatment combinations, and a great
diversity of non-centrality parameters. Calcula-
ting the non-centrality parameter (and hence,
power) is not difficult, but specifying exactly
which pattern of means would be expected under
some alternative hypothesis is far more difficult.
Despite the difficulty specifying effects, the fixed
effect factorial models have the advantage that
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Table 9.23 ANOVA table for experiment from Twombly (1996) examining the effects of treatment (fixed factor)
and sibship (random factor) on age at metamorphosis and size at metamorphosis of copepods, with randomly
chosen dishes for each combination of treatment and sibship for age and randomly chosen individual copepods
from each randomly chosen dish for size

Age at metamorphosis

Source Denominator df

Treatment Treatment�Sibship 3, 42
Sibship Dish (Treatment�Sibship) 14, 153
Treatment�Sibship Dish (Treatment�Sibship) 42, 153
Dish (Treatment�Sibship) Residual 153, 166
Residual

Size at metamorphosis

Source Denominator df

Treatment Treatment�Sibship 3, 42
Sibship Dish (Treatment�Sibship) 14, 10
Treatment�Sibship Dish (Treatment�Sibship) 42, 101
Dish (Treatment�Sibship) Individual (Dish (Treatment�Sibship)) 101, 141
Individual (Dish (Treatment�Sibship)) Residual 141, 698
Residual



power for all effects is increased by increasing the
number of replicates in each treatment combina-
tion, and any such steps that are taken to increase
the power of a test on particular main effects will
also improve power of tests of interactions. As for
nested designs, interaction tests often have more
degrees of freedom than corresponding main
effects, so power may be more of a problem for
tests of main effects.

We have already emphasized the increased
complexity that can arise when random factors are
included in factorial designs (see also Underwood
1997). Fixed factors and their interactions are often
tested against interactions with random factors
and the power of these tests will depend on the
number of levels of the random factor. In the case
of a two factor mixed model design, the power of
tests of the random factor and the interaction will
be improved by increasing the number of repli-
cates within each combination, but the test of the
fixed factor will not be improved much by this
tactic. Extra care needs to be taken when designing
studies that include random factors, and separate
power calculations may need to be done for the
fixed and random factors.

9.3 Pooling in multifactor designs

In multifactor ANOVAs with random factors, some
main effects and interactions are not tested
against the term with the greatest df (the Residual
term). For example, in a two factor design with A
fixed and B random, A is tested against B(A) if B is
nested or against the AB interaction if B is crossed;
in neither case is the Residual used for the test of
A. What if B(A) or AB, which are tested against the
Residual, are not statistically significant? Could
we pool B(A) and the Residual, or AB and the
Residual, to provide a test for A with more df and
therefore more power?

Recommendations about whether to pool one
or more non-significant sources of variation with
the Residual in multifactor ANOVAs have been
varied (Janky 2000). Most textbooks adopt a
“sometime-pool” strategy where pooling under
certain conditions is supported. The risk in
pooling a nonsignificant result is that we may
have made a Type II error, i.e. not rejected the H0

that the source of variation equals zero when, in

fact, it is false. For this reason, Underwood (1997)
supported Winer et al. (1991) in suggesting that
the test for the source of variation to be pooled
with the Residual be done at � equals 0.25 to
protect against a Type II error. Hays (1994) sug-
gested an even more conservative approach with�
equals 0.50, which corresponds to an F-ratio of
about one, although he recommended using �

equals 0.25 in practice. Sokal & Rohlf (1995) also
used conservative �s (0.25, 0.50) in their pooling
guidelines. We also recommend that, before
pooling, any test of the H0 that the pooled term is
not different from the Residual should use a con-
servative � of at least 0.25.

Is there a potential cost to pooling? The main
risk is that pooling terms that really do have dif-
ferent expected means squares will result in
biased F-ratios for other terms that use this pooled
error term. Using the pooled term as the denomi-
nator for subsequent F-ratios means those F-ratios
may not necessarily follow an F distribution if H0

is true. Also, we may have designed our experi-
ment by carefully considering power required to
detect a certain effect size and chosen our sample
size accordingly (Chapter 7); if we then change our
error term by pooling, our original design strategy
and sample size may no longer be relevant. There
is also some concern in the literature that a pre-
liminary test to determine whether to pool or not
may affect the power of any subsequent test (Hines
1996, Janky 2000, Kirk 1995).

Hines (1996) and Janky (2000) have recently
reviewed strategies for pooling terms in ANOVA
designs. Hines (1996) argued that pooling is only
beneficial if another term in the ANOVA is signifi-
cant after pooling but not before. We do not agree
that pooling can only be beneficial if it changes
the result of another test in the ANOVA. A partic-
ular term may still be non-significant after
pooling, but because of greater df for the test, the
probability of a Type II error is less for a given
effect size than without pooling. Janky (2000)
studied the effects of pooling various error terms
in a partly nested model (see Chapter 12) and
showed that the supposed power advantages of
pooling were not always realized. Our view is that
for designs with random factors, the power of
tests of fixed factors can be improved by pooling
nominal denominator terms of F-ratios with lower
terms in the model. This is particularly true in
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field biology where the units of the random factor
(either nested or crossed) are often expensive to
obtain and our designs are restricted to only a few
levels. However, we recommend a “sometime-
pool” strategy based on a conservative test of the
term to be pooled.

9.4 Relationship between factorial
and nested designs

The sources of variation used in the partitioning of
the total variability in the response variable depend
on the experimental design. The partitioning of the
nested designs we have just discussed can be related
to the partitioning for a fully factorial design. For
example, consider the comparison of a two factor
nested (A, B within A) and a two factor factorial
design. SSA and SSResidual are the same in both analy-
ses, whereas SSB(A) from the nested model equals SSB

plus SSAB from the factorial model.
Similar equalities exist for more complex

ANOVA models. For a three factor design, SSA and
SSResidual are again the same in both analyses, SSB(A)

equals SSB plus SSAB, and SSC(B(A)) equals SSC plus
SSAC plus SSBC plus SSABC. Nested and factorial
ANOVAs are just different ways of partitioning the
variability. These equalities allow nested ANOVAs
to be done with software that only analyses facto-
rial designs (Kirk 1995) but such equalities only
hold for fully balanced designs.

9.5 General issues and hints for
analysis

9.5.1 General issues
• Nested designs usually include levels of

random subsampling nested within higher
levels. Tests at each level are the equivalent of
single factor ANOVAs using the group means
from the level below as observations. 

• We recommend Type III SS for unbalanced
factorial designs because they are based on
unweighted marginal means.

• If you have missing cells, you need to use cell
means models and test a restricted set of
hypotheses about main effects and interac-
tions. These analyses are difficult and should
be done in consultation with an experienced

linear models statistician.
• Interactions are nearly always biologically

important and can be further analyzed in a
number of ways, including tests of simple
main effects, treatment–contrast and con-
trast–contrast interaction tests, and less for-
mally by cell mean plots and data sweeping.

• Rank-based tests for factorial designs should be
avoided because they do not reliably detect
interaction effects.

• Avoid fractional factorial designs as they must
assume that certain complex interactions are
negligible.

• Nested factors can be included as subsampling
in factorial designs and the analyses are
straightforward, although the random nested
term will become the denominator for F tests
of main effects and interactions.

• Pooling two terms in a multifactor design can
increase the power of some tests. However, test
the equality of the two terms to be pooled with
a conservative significance level, e.g. 0.25.

9.5.2 Hints for analysis
• Make sure that when testing the H0 for factor A

in a nested design that you use the B(A) term
for the denominator of the F test if B is
random. Your favorite software may default to
testing all terms against the residual.

• To increase power of the test for factor A in a
two or more factor nested design, you need to
increase the number of levels of B within each
level of A. Increasing the number of levels of
lower factors won’t help much.

• When including random factors in factorial
designs, ensure that you have worked out the
expected mean squares and you know which
terms are used as denominators for F tests of
fixed factors and interactions. You may not
have as many df as you think and might need
to increase the number of levels of the random
factor, which basically forms part of the
replication in these designs.

• When testing simple main effects and
treatment–contrast or contrast–contrast
interaction tests, make sure you use the
appropriate term as the denominator of the F
test. When all factors are fixed, this will be the
MSResidual from fitting the orginal factorial
ANOVA model.
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In Chapter 9, we described the analyses of com-
pletely randomized (CR) designs where the factors
were either crossed with, or nested in, others.
There are several other experimental designs that
have special analytical requirements, and are
used very commonly in the biological sciences.
These include unreplicated factorial designs and
designs that combine crossed (factorial) and
nested arrangements. We deal with these two
groups of designs in the next two chapters. In
most cases, the main aim of these designs is to
reduce the unexplained variation (MSResidual) com-
pared to a CR design. Such designs can be more
efficient than CR designs, i.e., they offer more
precise estimates of parameters and more power-
ful tests of the null hypotheses of interest, with no
increase in the overall resources needed for the
experiment. In contrast to CR designs, however,
they involve restricted randomization of factor
levels to experimental units and usually have
additional assumptions. We will consider the sim-
plest of these designs in this chapter.

We also recommend that biologists distin-
guish between the physical design (or structure)
of an experiment and the linear model used to
analyze it. The same model can be applied to a
number of different experimental designs and we
find some of the literature on these analyses con-
fusing because the label used for the design is
often interchanged with the label used for the
analysis.

10.1 Unreplicated two factor
experimental designs

A class of experimental designs commonly used in
biology is based on a two factor crossed (factorial)
design with a single observation in each cell. A
completely randomized version of this design,
where one experimental unit is allocated ran-
domly to each combination of the two factors, and
both factors are of equal interest, is rarely used in
biology. This is because interactions between the
two factors are likely to be of some interest in such
settings and interactions cannot easily be
detected without replication in each cell. Such
experimental designs might only be useful in
exploratory experiments where interactions are
unlikely, such as industrial settings (Milliken &
Johnson 1984). The linear model for a two factor
crossed ANOVA with one observation per cell can,
however, be used to analyze two types of experi-
mental design that are very common in biological
research – randomized complete blocks (RCB) and
simple repeated measures (RM) designs. Although
the physical structure of these types of experi-
ments is different, Kirk (1995), Mead (1988) and
others have emphasized, as we do in this chapter,
that the appropriate null hypotheses and linear
models are identical.

10.1.1 Randomized complete block (RCB)
designs

These are experimental or sampling designs where
one factor is a “blocking” variable and the other
factor is the main treatment factor of interest. The

Chapter 10

Randomized blocks and simple repeated
measures: unreplicated two factor designs



basic principle of blocking in experimental design
is to group experimental units together into blocks
(which are usually units of space or time) and then
each level of the treatment factor(s) is applied to
one experimental unit in each block (Figure 10.1).
Such designs are used when we suspect that the
background environment is patchy enough to
increase the variation in the response variable sub-
stantially. If experimental units are placed ran-
domly through space (or time), we may get such
high levels of background variation as to obscure
any effects of the factor of interest. If we group the
experimental units into “blocks” that have similar
background conditions (e.g. because they are
closer together in space or time), we might be able
to explain some of the total variation in the
response variable by differences between blocks
and thus reduce the residual (unexplained) varia-
tion. This will permit more precise estimates of
parameters and more powerful tests of treatments.
Although blocks are commonly spatial groupings,
blocks may also represent experimental units
matched by physical or biological characteristics
that do not have to be grouped in space or time, e.g.
using organisms of similar size or age, plots of
ground with similar soil characteristics.

Randomized block designs are common in the
biological literature.

• Robles et al. (1995) examined the effect of
increased mussel (Mytilus spp.) recruitment on
seastar numbers on a rocky shore. There were
two treatments: 30�40 l of Mytilus (0.5–3.5 cm
long) added, no Mytilus added. Four matched

pairs of mussel beds were
chosen, each pair
representing a block.
Treatments were assigned
randomly to mussel beds
(experimental units) within a
pair (block).

• Faeth (1992) applied one of four leaf damage
treatments to four branches within eight
randomly chosen trees of an evergreen oak.
Trees were blocks and leaf damage was the
treatment. Each damage treatment was
represented once (on a single branch, the
experimental unit) in each block.

• Evans & England (1996) applied one of three
artificial honeydew treatments (honeydew
followed by water ten days later, water
followed by honeydew, water followed by water
as control) to three plots in each of ten rows
(30 plots in total) in a cultivated alfalfa field.
The treatment was type of honeydew
application and each row of three plots was a
block, with ten blocks in total; a plot was the
experimental unit. This experiment also
included two repeated measurements,
although we can ignore these for the purposes
of this chapter and imagine analyzing either of
them two times, or the difference between
them, as the response variable in a RCB design.

It is apparent from these examples that blocks
can be established in two ways (see also Newman
et al. 1997). First, experimental units may be
grouped into blocks at a spatial scale chosen by
the investigator as part of the experimental
design. The success of RCB designs then depends
on establishing blocks at a scale that explains
some of the variation in the response variable.
Evans & England (1996) used plots (experimental
units) in rows (blocks) and the spatial scale of plots
within rows and between rows was determined by
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Figure 10.1. Spatial layout of an
experiment with three treatments
(three levels of treatment factor)
and three experimental units for
each treatment, contrasting a
completely randomized design and a
randomized blocks design.



the investigators. Second, experimental units may
be fixed in time or space and blocks are naturally
occurring groups of such units and their scale is
not under control of the investigator. Faeth (1992)
used branches (experimental units) on trees
(blocks) and the spatial scale of neither was under
the investigator’s control.

In RCB designs, factor levels are randomly
applied to separate experimental units within
each block. This design was originally developed
for agricultural experiments where blocks are
often paddocks (or fields) that are subdivided for
the application of factor levels. RCB designs also
extend logically to split-plot experiments
(Chapter 11), where another set of factor levels is
applied to the whole blocks in addition to the
treatments within blocks. Note that the RCB
design can also be compared to an equivalent-
sized single factor design (factor equals treat-
ments) in which the residual is split into variation
due to blocks, representing an attempt to control
“nuisance” variables related to the scale of block-

ing, and the remainder. RCB designs involve a
restriction on randomization, in contrast to a CR
two factor design (Hicks & Turner 1999).
Randomization for the RCB design is restricted to
experimental units within each block whereas for
a CR two factor crossed design with one observa-
tion per cell, randomized allocation of experi-
mental units is to all combinations of the two
factors, i.e. randomization across both factors.

Mites and domatia on leaves
Walter & O’Dowd (1992) were interested in testing
the hypothesis that leaves of the shrub Viburnum
tinus with domatia (small shelters at the juncture
of veins on leaves) have more mites than leaves
without domatia. Fourteen paired leaves (blocks)
on a shrub of V. tinus were randomly chosen and
one leaf in each pair had its domatia shaved while
the other remained as a control; the number of
mites was recorded on each leaf (experimental
unit) after two weeks. The analyses of this experi-
ment are in Box 10.1.
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Box 10.1 Worked example of randomized complete
block analysis: mites on leaves

Walter & O’Dowd (1992) examined the role of domatia (small shelters at the junc-
ture of veins on leaves) in determining the numbers of mites on leaves of plant
species with domatia. They did an experiment using 14 pairs of leaves (randomly
chosen) with one leaf in each pair with shaved domatia and the other as a control
(normal domatia). The response variable was total number of mites per leaf, which
Walter & O’Dowd (1992) transformed to loge(0.5�(mite�10)), ostensibly to
improve normality and homogeneity of variances between treatments, the 0.5
added because of zeros although multiplication by ten seemed unnecessary. The
data were analyzed using model 10.1, the factors being block and treatment and the
response variable being loge(0.5�(mite�10)).

The main H0 of interest was that there was no effect of shaving domatia on the
mean loge(0.5�(mite�10)) per leaf, pooling across all possible blocks.

Source SS df MS F P

Treatment 31.341 1 31.341 11.315 0.005

Block (leaf pair) 23.058 13 1.774 0.640 0.784

Residual 36.007 13 2.770

The ANOVA showed that the H0 of no effect of domatia shaving, averaging over
leaf pairs, should be rejected with significantly fewer mites on leaves without
domatia (Figure 10.4(a)). There were no effects of blocks although given the



10.1.2 Repeated measures (RM) designs
This is another experimental design based on an
unreplicated two factor crossed ANOVA design
where factor levels are applied to whole experi-
mental units, called subjects, or where experi-
mental units are recorded repeatedly through
time. For example, Blake et al. (1994) made twice-
yearly bird counts of 500 m segments from ten
transects in forested areas in each of Michigan
and Wisconsin. The segments in each transect
were separated from each other by 50 m and were
treated as the experimental units in the study –
some segments were omitted (because they were
logged or because they were recorded at the end
of an observation period when bird numbers had
declined) leaving 53 segments in Wisconsin and
51 in Michigan. Separate analyses were done for

each state; segments were the subjects and time
was the repeated measures factor.

In repeated measures designs, treatments are
applied sequentially to the whole subject, which
is the equivalent of the block in RCB designs. The
RM design was originally developed for psycholog-
ical and/or behavioral experiments where the
block or subject was usually a person. Two differ-
ent terms are sometimes used for these simple RM
designs (Kirk 1995).

1. Subjects�treatments designs, in which the
order of factor levels is randomized for each
subject. The repeated measures factor is a set of
treatments that can be ordered independently of
time, e.g. a set of drugs applied to experimental
animals.
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random blocks (leaf pairs), this test is only possible if we assume no treatment by
block interaction (hence the shading in the ANOVA table).We could have achieved
the same test for treatment by running a “repeated measures” analysis, with block
(pair) as subject and treatment as the repeated measures factor. There would be
no adjusted univariate or multivariate output because there are only two treatment
levels.

We also checked for the possibility of an interaction by plotting the log-trans-
formed number of mites for each leaf against block, separating the two treatments
(an “interaction” plot: Figure 10.4(a)). The number of mites on leaves without
domatia was consistently less than the number on leaves with domatia for all blocks
except leaf pair 3. Tukey’s test for additivity did not reveal any evidence of a strong
interaction:

MSnon�add�0.0136, MSRemainder�2.917, F1,18�0.012, P�0.914.

Interestingly, for untransformed data, Fnon�add(1,18)�41.98, P � 0.001, suggesting a
strong block by treatment interaction. Clearly, a log transformation improved addi-
tivity, as it often does, although the difference in strength of the interaction between
transformed and untransformed data is not obvious from the interaction plots
(Figure 10.4(a,b)).

The plot of residuals against comparison values from a median polish clearly
shows outlying values from leaf pair number 3 at the bottom left and top right of
the plot (Figure 10.5(a)). This is the leaf pair that shows the opposite pattern of
treatments compared with the other leaf pairs. Note that there appear fewer points
than the total number of observations (28) because some observations have iden-
tical values for both axes. The plot of residuals against predicted values from the fit
of the model based on means (the standard ANOVA; Figure 10.5(b)) also shows
the observations from leaf pair 3 as unusual (those with residuals near 3 and �3),
although not as clearly as the median-based plot. Neither plot shows any consis-
tent pattern indicating there is no strong interaction between block (leaf pair) and
treatment.



2. Subjects�trials designs, in which the
order of factor levels cannot be randomized. The
repeated measures factor is actually time, as in
the example from Blake et al. (1994).

There are specific difficulties associated with
repeated measures experiments (Neter et al. 1996),
especially when the factor involves experimental
treatments applied by the investigator (e.g. drugs
given to experimental animals). The first is the
problem of carryover effects, where the effect of
one treatment may be affected by the preceding
treatment in the sequence. This can only be solved
by ensuring that the time interval between treat-
ments is long enough to allow recovery of the
“subjects”. The second problem is the order or
sequence effect, where measurements early in a
sequence may be different from those later in a
sequence, irrespective of treatment. This problem
can be alleviated by randomizing the order in
which a subject receives each treatment (e.g. ran-
domizing the order in which each animal receives
each drug). In many biological experiments, espe-
cially in ecology, the factor of interest is com-
monly time and carryover effects are not so
relevant and order or sequence effects are implicit
in the hypothesis being tested, e.g. differences
between weeks, seasons or years. Note the absence
of carryover effects does not imply absence of cor-
relations between successive treatments in a
repeated measures sequence. Repeated observa-
tions on the same subject will always be correlated

to some extent and the nature of these correla-
tions is the main determinant of the analysis strat-
egy for these designs (see Section 10.2).

The distinction between the structure of RCB
and RM designs is important. The former allocates
levels of the factor of interest (treatments) ran-
domly to different experimental units within
blocks; the latter applies the treatments succes-
sively to whole blocks, commonly termed sub-
jects, although the order of treatments can be
randomized.

Burning and frog numbers in catchments
Driscoll & Roberts (1997) examined the effects of
fuel-reduction burning on the abundance of a
species of frog in Western Australia. They used six
drainages within a catchment, which represent
the subjects. In each drainage, they had a matched
burnt site and control (unburnt) site and the
response variable for the experiment was the dif-
ference in the number of calling male frogs
between the burnt and control site in each drain-
age. Note that the analysis of this study could have
included the burnt and control sites as an addi-
tional factor, although we will analyze the data in
the way Driscoll & Roberts (1997) did, using the
burnt–control difference within each drainage at
each time as the response variable. This variable
was recorded three times (repeated measures
factor): pre-burn (1992) and two post-burn times
(1993, 1994). The analyses of these data are in Box
10.2.
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Box 10.2 Worked example of simple repeated measures
analysis: frogs in burnt/unburnt catchments 

Driscoll & Roberts (1997) examined the effects of fuel-reduction burning on the
abundance of a species of frog in Western Australia. They used six drainages within
a catchment, which represent the subjects or blocks. In each drainage, they had a
matched burnt site and control (unburnt) site and the response variable for the
experiment was the difference in the number of calling male frogs between the
burnt and control site in each drainage. This variable was recorded three times
(repeated measurements) – pre-burn (1992) and two times post-burn (1993,
1994). This is a classical repeated measures (subjects by trials) design.

The main H0 of interest was that there was no difference between years in the
mean difference in the number of calling male frogs between burnt and unburnt
catchments.
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The results from the ANOVA are as follows.

Source df GG–df HF–df MS F P GG–P HF–P

Years 2 1.42 1.83 184.722 9.660 0.005 0.0130 0.006
Residual 10 7.12 9.15 19.122

The following are as published in Driscoll & Roberts (1997).

Source SS df MS F P

Year 369.44 2 184.72 9.66 0.005

Block (drainage) 955.61 5 191.12 9.99 0.001

Residual 191.22 10 19.12

Greenhouse–Geisser epsilon�0.712, Huynh–Feldt epsilon�0.915. Note that
the Greenhouse–Geisser epsilon estimate is more conservative than the
Huynh–Feldt estimate and the former results in a more severe correction of the df
and a more conservative test. Although both epsilon estimates are less than one,
the conclusions from the univariate ANOVA are unchanged irrespective of whether
adjusted or unadjusted df and P values are used. We agree with the conclusion of
Driscoll & Roberts (1997), that the H0 of no difference between years should be
rejected. The test of block (drainage) is only valid if we assume no year by block
interaction. This test indicates significant variation between drainages.

We also included a planned contrast of the pre-burn year versus the two post-
burn years, using a separate error term just for this contrast:

F1,5�29.72, P�0.003, indicating that the post-burn years are significantly different
from the pre-burn year in the burnt–control differences in the number of calling
frogs.

MANOVA results:

Pillai Trace�0.873 with 2, 4 df, F�13.69, P�0.016.

Mauchly sphericity test, W�0.5959, chi-square approx.�2.0709 (2 df),
P�0.355; Mauchly’s test does not reject the H0 of sphericity but is sensitive to non-
normality.

We used some graphical checks and Tukey’s test for non-additivity to see if an
interaction was present. First, an “interaction” plot where blocks are along the hor-
izontal axis and different lines/symbols represent the different years (Figure 10.6(a)).
Note there is a change in the rankings of years 2 and 3 for blocks 5 and 6 but no
evidence of any strong interaction. We also plotted residuals against predicted
values and residuals against comparison values for the fitted additive model based
on means, i.e. the standard ANOVA (Figure 10.6(b)). There is no curvilinear pattern
in the first plot and no pattern at all in the second plot, suggesting that there is no
strong interaction between years and blocks. The results of Tukey’s test for non-
additivity (see Box 10.5) were Fnon�add�0.026/21.244�0.001 with 1 and 9 df,
P�0.974, again no evidence of an interaction.

We also tested the H0 that there was no linear trend in burnt–unburnt differ-
ences in frog numbers through the years.



10.2 Analyzing RCB and RM
designs

10.2.1 Linear models for RCB and RM
analyses

Linear effects model
Consider the RCB design from Walter & O’Dowd
(1992) with factor A (domatia treatment) having
i�1 to p being groups (p�2, shaved and unshaved
domatia) and factor B (leaf pairs) having j�1 to q
blocks (q�14 leaf pairs) – see Table 10.1 and Figure
10.2. The linear model we fit to these data is an
additive effects model, in which the response var-
iable in each cell represents an additive combina-
tion of factor A (treatments) and block effects and

we assume no interaction between treatments
and blocks:

yij����i��j��ij (10.1)

Details of this linear model, including estimation
of its parameters and means, are provided in Box
10.3. 

Using the example from Walter & O’Dowd
(1992):

(mite number)ij���
(domatia treatment)i� (leaf pair)j��ij (10.2)

From Driscoll & Roberts (1997):

(burnt vs unburnt difference in
frog numbers)ij��� (year)i�
(catchment)j��ij (10.3)
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Source df MS F P

Year 1 352.083 15.122 0.012
Residual 5 23.283

Note that the error term used is different from the MSResidual in the original ANOVA;
this is because we used a separate error term in case sphericity was not met. There
is a significant linear trend from 1992 to 1994, with the difference between the
burnt and control sites changing from negative to increasing positive. A quadratic
trend test is also possible (years has two df) but is difficult to justify fitting a quad-
ratic trend through three means.

Table 10.1 Data layout for a RCB design with p levels of factor A (treatments i�1 to p) and q levels of factor B
(blocks j�1 to q) and n equals one in each cell

A 1 A 2 A 3 A i Block marginal means

Block 1 y11 y21 y31 yi1 ȳj�1

Block 2 y12 y22 y32 yi2 ȳj�2

Block 3 y13 y23 y33 yi3 ȳj�3

Block j y1j y2j y3j yij ȳj

A marginal means ȳi�1 ȳi�2 ȳi�3 ȳi Overall mean ȳ

Note:
From Walter & O’Dowd (1992), treatments (factor A) are leaves with domatia and shaved domatia,
blocks are leaf pairs, individual leaves are the experimental units and the response variable is number of
mites per leaf. For the simple RM design from Driscoll & Roberts (1997), treatments (factor A) are
year (1992, 1993, 1994), blocks (i.e. subjects) are drainages, which are also the experimental units, and
the response variable is difference in number of frogs between burnt and unburnt sites.



In models 10.1 and 10.2:

yij is the number of mites per leaf from the ith
domatia treatment and the jth leaf pair (block).

� is the overall (constant) mean number of
mites per leaf for all combinations of domatia
treatment and leaf pair (block).

If factor A is fixed, �i is the main effect of the
ith domatia treatment (removing domatia or
leaving domatia) on the number of mites per
leaf, pooling leaf pairs (blocks). If factor A is
random, then �i is a random variable with a
variance (	

�
2) measuring the variance in the

number of mites per leaf among all possible
groups that could have been used.
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Figure 10.2. General data layout for randomized complete
block ANOVA where factor A has p (i�1 to p) groups and
there are q ( j�1 to q) blocks and a single observation within
each cell.

Box 10.3 The randomized complete block (or simple
repeated measures) linear model and its
parameters

Consider a RCB design with factor A (i�1 to p) being treatments and factor B
( j�1 to q) being blocks. Each observation is yij (the value in each cell), the margi-
nal treatment means pooling blocks are ȳi and the marginal block means pooling
treatments are ȳj (Table 10.1). Such data structures, where we have two factors and
a single observation in each cell, are sometimes referred to as two-way tables
(Emerson & Hoaglin 1983). Contingency tables of frequencies (Chapter 14) are
another example of a two-way table.

The linear model we usually fit to these data is an additive effects model, in
which the response variable in each cell represents an additive combination of
factor A (treatments) and block effects and we assume no interaction between
treatments and blocks:

yij�l�ai�bj�eij

In model 10.1 we find the following.

yij is the value of the response variable from the ith level of factor A and the jth
block.

l is the (constant) overall population mean of the response variable.
If factor A is fixed, ai is effect of ith level of factor A (li�l) pooling over blocks.

If factor A is random, ai represents a random variable with a mean of zero
and a variance of r

a
2, measuring the variance in mean values of the response

variable across all the possible levels of factor A that could have been used.
If blocks are fixed, bj is the effect of the jth block (lj�l) pooling over levels of

factor A. If blocks are random, which is more common, bj represents a
random variable with a mean of zero and a variance of r

b
2, measuring the

variance in mean values of the response variable across all the possible
blocks that could have been used.

eij is random or unexplained error associated with the observation at each
combination of the ith level of factor A and jth level of factor B and is
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measured as yij�li�lj�l. This is the error in the value of the response
variable within each treatment–block combination that is not due to the
treatment or block. These error terms are assumed to be normally
distributed at each combination of factor A level and block, with a mean of
zero [E(eij)�0] and a variance of r

e
2.

This model is overparameterized (see Box 8.1) so to estimate model parameters,
we impose the usual restrictions that �p

i�1ai�0 if factor A is fixed and �q
i�1 bj�0 if

blocks are fixed. Alternatively, we can fit a cell means model:

yij�lij�eij

where lij is the population mean for each cell and eij is the error term associated
with the observation in each cell, which we assume are normally distributed with a
mean of zero and a variance of r

e
2. The cell means model is particularly useful when

dealing with missing observations (Section 10.9).
In practice, we fit the additive effects model when analyzing RCB or simple RM

designs. However, this model does not allow for an interaction between factor A
(treatments) and blocks. In biological experiments, especially field experiments
where blocks are spatial units, interactions between treatments and blocks are likely
and we can conceptualize an alternative non-additive model that allows for an inter-
action between treatments and blocks:

yij�l�ai�bj� [(ab)ij]�eij

where l, ai, bj, and eij are defined as previously and (ab)ij is the interaction between
treatments and blocks. Note that the interaction term is in parentheses, because
although we include it in this model, we can never estimate this term separately
from the residual because we only have n equals one in each treatment–block com-
bination. The RCB or simple RM experimental design does not permit us to separ-
ately estimate the interaction term and the error term associated with individual
observations with each treatment–block combination. As Gates (1995) has pointed
out, the residual or error term in a RCB design actually estimates three components:
(i) block by treatment interaction, (ii) within block variability between experimen-
tal units, and potentially (iii) within experimental unit sampling variation. The impor-
tant issue is that these different components cannot be distinguished because we
only have one experimental unit for each treatment in each block.Although a formal
test of the H0 of no interaction is not possible, we can check for interactions in a
less formal manner using graphical methods and use Tukey’s test for non-additivity
to detect some types of interactions (Section 10.3.2).

Conceptualizing the model in the non-additive form does have a practical use.
We can include the interaction term when determining the expected mean squares
for our analysis of variance and therefore assess what effect the presence of an inter-
action will have on the choice of F-ratios for testing both treatment and block
effects.

Estimating the parameters of the factorial linear model 10.1 follows the proce-
dures outlined for a single factor model in Chapter 8, and for nested and factorial
models in Chapter 9. Consider a RCB or simple RM design, with the usual config-
uration of Factor A fixed and blocks/subjects random. The estimate of each cell
mean lij is simply the single observation within each cell. Estimates of the marginal



If factor B is fixed, �j is the main effect of the
specific leaf pairs (blocks) on the number of
mites per leaf, pooling domatia treatments. If
factor B is random, then �j is a random variable
with a variance (	

�
2) measuring the variance in

the number of mites per leaf among all possible
leaf pairs (blocks) that could have been used.

�ij is random or unexplained error associated
with the number of mites per leaf at each
combination of the ith domatia treatment and
jth leaf pair (block). This error has at least two
components (Box 10.3). First, the true error due
to random variability between replicate
observations in the populations within each
combination of treatment and block. Second, the
error due to any interaction between treatment
and block. With only a single observation in each
block for each treatment, we cannot separately
estimate these two sources of error.

Predicted values and residuals
If we replace the parameters in model 10.1 by
their OLS estimates (Box 10.3), it turns out that the
predicted or fitted values of the response variable
from our linear model are:

ŷij� ȳ� ( ȳi� ȳ)� ( ȳj� ȳ)� ȳi� ȳj� ȳ (10.4)

So any predicted Y-value is predicted by the margi-
nal domatia treatment mean, the marginal leaf
pair (block) mean and the overall mean. For
example, the predicted number of mites per leaf
for the domatia shaved treatment in leaf pair one
is the marginal mean for the domatia shaved treat-
ment (pooling leaf pairs) plus the marginal mean
for leaf pair one (pooling domatia treatments)
minus the overall mean number of mites per leaf.

The error terms (�ijk) from the linear model can
be estimated by the residuals, where a residual
(eijk) is simply the difference between each
observed and predicted Y-value:

eij�yij� ŷij�yij� ȳi� ȳj� ȳ (10.5)

For example, the residuals from the model relat-
ing number of mites per leaf to domatia treat-
ment and leaf pair are the differences between
the observed number of mites per leaf and the
marginal mean for the domatia treatment
(pooling leaf pairs) minus the marginal mean for
leaf pair (pooling domatia treatments) plus the
overall mean number of mites per leaf. These
residuals actually estimate the effect of the inter-
action between blocks and treatments for each
cell although this cannot be distinguished from
the variation associated with each observation
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means li and lj are also straightforward. The marginal means for factor A are esti-
mated from the observations for that level of factor A averaged across the blocks
and vice versa for the marginal means for blocks. The estimate of l is the average
of all the observations, or the average of the A marginal means or the average of
the B marginal means. Standard errors for these means are based on the estimate
of the variance of the error terms r

e
2, the MSResidual (see Box 9.6).

The estimate of ai is the difference between the mean of each A level and the
overall mean. Interaction effects measure how much the effect of one factor
depends on the level of the other factor and vice versa. If there is no interaction
between the two factors, we would expect the cell means to be represented by
the sum of the overall mean and the main effects:

lij�li�lj�l

Therefore, the effect of the interaction between the ith level of A and jth block (ab)ij

can be defined as the difference between the ijth cell mean and its value we would
expect if there was no interaction. This represents those effects not due to the
overall mean and the main effects.

Note that in practice we don’t calculate the estimated factor or interaction
effects, usually focusing on contrasts of marginal or cell means (Section 10.6).



within each cell (because n equals one for each
treatment–block combination). As in all linear
models, residuals provide the basis of the OLS esti-
mate of 	

�
2 and they are valuable diagnostic tools

for checking assumptions and fit of our model
(Section 10.4).

10.2.2 Analysis of variance
The classical partitioning of variation from a least
squares fit of the additive effects model for a RCB
or simple RM design is shown in Table 10.2. The SS
are based on marginal means (Table 10.1) as for
any factorial ANOVA model (see Chapter 9). SSA

measures the sum of squared differences between
each treatment marginal mean and the overall
mean; the SSB measures the sum of squared differ-
ences between each block marginal mean and the
overall mean; the SSResidual measures the sum of
squared differences for a particular contrast

involving cell means, marginal means and the
overall mean, i.e. the interaction between treat-
ments and blocks. The mean squares (MS) are
determined by dividing the SS by their df.

The comparison between the ANOVAs for a
RCB design, where experimental units are
grouped into blocks, and the equivalent sized
single factor CR design, where the allocation of
treatments to experimental units is randomized,
is shown in Table 10.3. Note that the RCB design
has fewer df for the residual than the single factor
CR design. The residual term in the CR design has
been simply split into blocks and “residual” com-
ponents. We are making a trade-off in that we are
accepting fewer df in the residual term of the RCB,
in expectation that the SS and MS will be lower,
and more than compensate for the loss of df in
terms of the power of the test of treatments
(Section 10.7). 
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Table 10.2 ANOVA table for RCB design

Source SS df MS

A (treatments) q (ȳi� ȳ)2 p�1

B (blocks) p (ȳj� ȳ)2 q�1

Residual (ȳij� ȳi� ȳj� ȳ)2 (p�1)(q�1)

Total (yij� ȳ)2 pq�1�
q

j�1
�

p

i�1

SSResidual

(p�1)(q�1)�
q

j�1
�

p

i�1

SSB

q�1�
q

j�1

SSA

p�1�
p

i�1

Table 10.3 The comparison of completely randomized and randomized block ANOVAs for the general case with
p treatments and q experimental units per treatment and the example from Walter & O’Dowd (1992) with two
treatments and either 14 replicates per treatment (completely randomized) or 14 blocks (block design)

Randomized block Completely randomized

Source general df specific df general df specific df

Treatments p�1 1 p�1 1
Blocks q�1 13
Residual (p�1)(q�1) 13 p(q�1) 26
Total pq�1 27 pq�1 27



For the analysis of a classical RM design, the
ANOVA table is sometimes presented slightly dif-
ferently compared with the analysis of a classical
RCB design, to distinguish sources variation
between subjects (i.e. blocks) and sources of varia-
tion within subjects – see Table 10.4. This ANOVA
table is actually the same as for the usual RCB
design except that within and between subjects
(or blocks) sources of variation have been made
explicit. The same linear model is used to analyze
RCB and simple RM designs, an additive two factor
ANOVA model.

The expected mean squares (EMS) for different
combinations of fixed and random factors are
given in Table 10.5. Note that we can derive these
EMS is two ways. First, assuming there is no A by
blocks interaction and fitting the standard addi-
tive model 10.1. Second, by including the possibil-
ity of an A by blocks interaction with a
non-additive model (Box 10.3). In practice, we
cannot really fit a non-additive model because we
cannot estimate the interaction term separately
from the true error. The non-additive form of the
EMS, however, does allow us to evaluate the effect
of an interaction on the relevant F-ratios for
testing the null hypotheses.

The EMS for the non-additive model where

factor A is fixed and blocks are random is based on
the classical approach for mixed models (one
factor fixed and one random) as outlined in
Chapter 9. The interaction is considered a random
effect and the interaction effects sum to zero
across the levels of the fixed factor (McLean et al.
1991). The alternative formulation of EMS only
changes the expected value of the mean square for
the random block effect anyway, although the
interpretation of the blocks term in these ANOVAs
still creates considerable debate among statisti-
cians (Samuels et al. 1991 and subsequent com-
ments in same issue). Note that the EMS for the
non-additive model are identical to those derived
for the two factor crossed model described in
Chapter 9.

10.2.3 Null hypotheses
There are two null hypotheses of interest in RCB
(or simple RM) designs. The most important is the
test for treatment effects, but the test of block
effects might also be of some interest. The statisti-
cal tests of these null hypotheses depend on the
expected mean squares (EMS) which in turn
depend on whether we consider an interaction
likely and whether the factors (treatments and
blocks) are considered fixed or random. The most
common situation in biological experiments is
where block or subject is a random factor (the
blocks used in the experiment are a random
sample from a larger population of blocks and we
wish to generalize our results to this population
of blocks) and factor A (“treatment”) is fixed,
although other combinations are possible.

Factor A (fixed)
H0(A): �1��2� . . .��i� . . .��p. This H0 states that
there is no difference between the factor A margi-
nal means, pooling blocks. Using the experiment
from Walter & O’Dowd (1992), the H0 is no differ-
ence between the mean number of mites per leaf
for the two domatia treatments, pooling leaf pairs
(blocks).

This is equivalent to:

H0: �1��2� . . .��i�0, i.e. no effect of any level
of factor A and therefore all treatment effects
equal zero. For this example, there is no effect of
domatia treatment on the mean number of
mites per leaf (Walter & O’Dowd 1992).
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Table 10.4 Structure of ANOVA table for
“classical” repeated measures design. Note that this
ANOVA is identical to a randomized blocks ANOVA,
where subjects are blocks

Source General df Specific df

Between q�1 5
“subjects”
(drainages)

Within “subjects” q(p�1) 12
(drainages)

Treatments p�1 2
(years)
Residual (q�1)(p�1) 10

Total pq�1 17 

Note:
The specific example is from Driscoll &
Roberts (1997) with three treatments (years)
and six subjects.



Blocks (random)
H0(B): 	

�
2�0, i.e. no added variance due to all pos-

sible blocks that could have been used. From
Walter & O’Dowd (1992), the H0 is that there is no
added variance due to all possible leaf pairs that
could have been used.

F-ratios
We can test these null hypotheses by seeing which
of our mean squares have the same expected value
when the H0 is true. The F-ratio from these mean
squares will follow an F distribution if certain
assumptions (see Section 10.4) hold. It is clear
from Table 10.5 that MSA and MSResidual have the
same expected value when there is no effect of
factor A so these two mean squares are used in an
F-ratio to test the H0. Note that when there are only
two levels of factor A (treatments), the F test for
treatments in a RCB or RM design is equivalent to
a paired t test (Chapter 3) of the H0 that the mean
of the paired treatment differences equals zero.

There is no test for block effects if we allow for
an interaction between treatments and blocks
when blocks are random because there is no MS
that has the same expected value as MSBlocks when
H0 is true (the MSResidual has two components,
rather than just 	

�
2). As we pointed out in the pre-

vious section, the hypotheses being tested about
block effects depend on which version of the EMS
we use for mixed models (Chapter 9) and is an issue
of debate among statisticians (Samuels et al. 1991).

For other combinations of fixed and random
factors/blocks, tests of null hypotheses depend on
whether we are willing to assume an underlying
additive (no treatment by block interaction)
model or not. For example, if both factor A (treat-
ments) and blocks are fixed, there is no test for
either unless we assume an underlying additive
model. If factor A is random (H0: 	�

2�0) but blocks
are fixed (an unusual combination in practice),
there is also no test for A unless we assume an
additive model.

The complete ANOVAs and interpretation of
the studies from Walter & O’Dowd (1992) and
Driscoll & Roberts (1997) are presented in Box 10.1
and Box 10.2 respectively. These are both mixed
models with blocks (or subjects) random, so the
tests for blocks are only valid if there is no A by
blocks interaction.

10.2.4 Comparing ANOVA models
The SS, df and MS for each term in the classical
ANOVA (Table 10.2) can also be derived from com-
paring the fit of a full and a reduced linear model,
where the reduced model simply omits the param-
eter specified to be zero in the H0 – see Box 10.4. The
approach of comparing linear models also offers
strategies for handling missing values (Section
10.9) whereas the formulae in Table 10.2 are only
applicable when there are no missing values. We
use SS (and MS) to measure the fit of the different
models, although likelihoods could also be used
with the likelihood ratio replacing the F-ratio for
testing whether the reduced model fits signifi-
cantly worse than the full model (Chapter 13).

10.3 Interactions in RCB and RM
models

10.3.1 Importance of treatment by block
interactions

If we do assume an underlying additive model, with
its associated expected mean squares, then the H0

for factor A is that there is no effect of treatments in
any block (Newman et al. 1997). The additive model
also allows a test of the block effects, although these
are usually not of much interest in practice except
for determining the efficiency of blocking com-
pared to a CR design – see Section 10.7. Also, assum-
ing an additive model allows a test of factor A and
blocks if both are fixed; neither is testable in the
presence of an interaction using the non-additive
model. How realistic is the additive (no interaction)
model for biological experiments?

Newman et al. (1997) argued that if blocks are
spatial units defined by the investigator, then we
might consider them simply large, randomly
chosen, experimental units, and hence treatment
by block interactions are unlikely. In contrast,
others (e.g. Mead 1988, Underwood 1997) have
argued that factor A by block interactions are
quite likely in biological experiments, particu-
larly for field experiments where experience sug-
gests that treatment effects may vary spatially.
Newman et al. (1997) suggested that interactions
are more likely when blocks are naturally occur-
ring units (e.g. organisms, genotypes) than when
the scale of blocks is chosen by the investigator.
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Fortunately, the test for treatments
(MSA/MSResidual) is statistically valid for a mixed
model (A fixed, blocks random), whether we
assume an additive model or not. If we allow for
an interaction between A and block by using the
expected mean squares from the non-additive
model (Table 10.5), both MSA and MSResidual include
	
�

2�	2
��

in their expectations, the variance due to
random differences between observations within
each cell and the variance due to the interaction
between treatments and blocks. With only n
equals one per cell, we cannot separately estimate
these two variances. These expected mean squares
suggest that the test for factor A is really for the
presence of an effect of treatments over and above
the interaction between A and blocks (which still
might exist, even if we cannot measure it in our
unreplicated RCB or RM experiment) and true
error variation. Bergerud (1996) suggested that
treatment effects over and above interaction

effects would occur when the treatment rankings
are consistent for each block, even if the actual
differences between treatments change from
block to block (a treatment by block interaction).
The treatment by block interaction is only statisti-
cally critical when blocks are fixed, in which case
there is no test of treatments unless we assume
the A by block interaction is zero (Kirk 1995, Neter
et al. 1996).

Even if we allow for an underlying non-addi-
tive model when determining our EMS and con-
structing our F-ratios for the mixed model case,
the presence of A by block interactions can result
in two other difficulties when interpreting the
treatment effects. First, if there is an interaction,
then the MSResidual, whose expected value contains
	
�

2�	2
��

, will increase proportionally more than
MSA, whose expected value also includes treat-
ment effects. The F-ratio for A will therefore
have relatively less power in the presence of an
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Box 10.4 Fitting general linear models to test factor A in
RCB design from Walter & O’Dowd (1992)

Full model fitted:

(Log mite number)ij�l�(treatment)i�(block)j�eij

SS df MS

Explained 54.399 14 3.886
Unexplained 36.007 13 2.770
r2�0.602

Reduced model fitted:

(Log mite number)ij�l�(block)j�eij

SS df MS

Explained 23.058 13 1.774
Unexplained 67.348 14 4.811
r2�0.255

Difference in fit of two models:
Full SSExplained (54.399)�Reduced SSExplained (23.058)�31.341 with 1 df
MSA�31.341, which is MSA from randomized block ANOVA (see Box 10.1).

Test of A:
F�MSA / Full MSResidual�31.341 / 2.770 with 1,13 df�11.32, P�0.005.



interaction. Second, if the interaction is very
strong, then there can be a logical difficulty with
the interpretation of main effects, as discussed in
Chapter 9 and by Underwood (1997). Complex
interactions, where the effects of treatments are
strong but in different directions between blocks,
can result in a non-significant main effect of A
averaging over blocks. Meaningful interpretation
of such a non-significant main effect is difficult.
However, interpretation of significant main
effects can still be valid in the presence of an
interaction (see Chapter 9). A significant main
effect indicates that, averaging over blocks, there
is a treatment effect even if the magnitude of
that effect varies from block to block.

We recommend that you should check for A by
block interactions in analyses of RCB and RM
designs. Interpretation of main effects in the non-
additive model may need to be constrained if
strong interactions are present; the additive
model, which may be necessary if blocks are fixed,
relies on the absence of interactions.

10.3.2 Checks for interaction in
unreplicated designs

With only one replicate experimental unit in
every treatment–block combination, there is no
formal test for an interaction. However, there are
three ways in which an interaction between A and
blocks might be detected. The first two are graph-
ical and the third is a test for a particular type of
interaction. We illustrate all three methods for
the two worked examples in Box 10.1 and Box
10.2.

Cell “mean” plots
We discussed plots of cell means to interpret inter-
actions for factorial designs in Chapter 9. These
are simply plots (usually line graphs) of cell
means, where the levels of one factor are used to
define groups along the horizontal axis, the verti-
cal axis is the value of the response variable and
the different levels of the second factor are repre-
sented by different symbols (joined by lines). We
can use the same plots for RCB or RM designs,
except that the horizontal axis represents blocks
or subjects and we plot the single values within
each treatment–block combination (Figure
10.3(a)). Note that we still refer to population
means for each cell (treatment–block combina-
tion) although we only estimate those means with
n equals one in each cell in a RCB (RM) design. As
with CR factorial designs, the lines should be
roughly parallel if there is no interaction.

Residual plots
Another way to detect interactions is to examine
the residuals. An interaction would be suggested
if the pattern of the residuals changed markedly
from block to block (Neter et al. 1996). Two graph-
ical diagnostic techniques using residuals have
been described in the statistical literature for
showing interactions in RCB (RM) designs:

1. A plot of residuals against predicted values,
the typical residual plot we have used extensively
for assessing the adequacy of linear models in
earlier chapters, is important in checking
homogeneity of variance and the presence of

INTERACTIONS IN RCB AND RM MODELS 277

Figure 10.3. Illustration of
detection of treatment by block
interaction with (a) interaction plot
and (b) residual plot – artificial data.
Note that the difference between
treatments is much greater for
blocks 2 and 3 compared to block 1
but there is change in direction of
treatment effects – no crossing over
in interaction plot.There is clear
evidence of a curvilinear relationship
in the residual plot where the
residuals change from positive to
negative and back to positive as the
predicted values increase.

Y



outliers and can also detect some types of
interaction. A curvilinear relationship in this
plot, where the residuals change from positive to
negative and back to positive again as the
predicted values increase, indicates a particular
sort of block by treatment interaction (Neter et
al. 1996), where the relative magnitudes of the
treatment effects differ between blocks but not
the direction of the effects (i.e. no crossing over
in interaction plot) – see Figure 10.3(b). This is
the sort of interaction that can often be removed
by transformation (Box et al. 1978). In contrast,
complex interactions where the direction of
treatment effects changes between blocks are
not easily detected with residual plots.

2. A plot of residuals against estimated
comparison values (Emerson & Hoaglin 1983),
where each comparison value is (�i�j)/� for each
cell ij from the fit of the additive model 10.1. The
estimates of �,�i and �j are described in Box 10.3.
Any consistent pattern suggests the presence of
an interaction. Emerson & Hoaglin (1983) argued
that this plot is particularly useful for
determining the strength of an interaction
already suggested by the first residual plot or a
cell means plot and helps choose a
transformation that might restore additivity. If
the slope of the best-fit line on this plot is k, then
a power transformation using a power of 1�k
will be effective. Emerson & Hoaglin (1983) also
recommended using robust estimates of effects
for calculating comparison values, such as those

from a median polish (see Section 10.5), to
distinguish systematic non-additivity from the
effects of just one or two unusual values.

Tukey’s test for (non-)additivity
Tukey (1949) developed a test to detect one partic-
ular type of interaction in unreplicated factorial
designs. Tukey’s test for additivity can be viewed
as a test of the curvilinear relationship between
the residuals and the predicted values from the
original linear model (Box et al. 1978), the relation-
ship we were trying to detect with the residual
plot described above. It is also a specific con-
trast–contrast test on the interaction (Hays 1994,
Kirk 1995) where the contrast coefficients are
( ȳi� ȳ) and ( ȳj� ȳ). Kirk (1995) pointed out that
Tukey’s test for additivity is best at detecting rela-
tively simple interactions which involve different
magnitudes of treatment effects for each block
but not different directions of the treatment
effects (i.e. lines in interaction plot are not parallel
but do not cross). He also suggested that a liberal
significance level should be used (��0.10 or 0.25)
to reduce the risk of a Type II error (not detecting
a real interaction), a recommendation we support.

The computational details are provided in Box
10.5 and illustrated using the data from Driscoll &
Roberts (1997). Basically the SSResidual is split into
that due to the specific type of non-additivity
described above and that remaining. This
SSnon�add is a single df component from the origi-
nal SSResidual and the remaining (q�1)(p�1)�1 df
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Box 10.5 Tukey’s test for (non-)additivity, illustrated for
data from Driscoll & Roberts (1997)

Recall the non-additive linear model from Box 10.3 for the RCB/RM design:

yij�l�ai�bj� [(ab)ij]�eij

We can redefine (ab)ij as Daibi where D is a second-order polynomial function of
ai and bi and represents the multiplicative relationship between factor A and blocks
(Neter et al. 1996, Sokal & Rohlf 1995). The value of D is, using the terminology of
Neter et al. (1996):

D�
�
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where ai and bj are the effects of factor A and blocks respectively, as defined in Box
10.3. We replace these parameters by their sample estimates to obtain the esti-
mated value of D:

D̂�

The SS for this specific form of non-additivity is D2ai
2bj

2 and this is estimated
by:

D̂2(ȳi� ȳ)2(ȳj� ȳ)2

which equals:

To illustrate from Driscoll & Roberts (1997), here are the raw data and marginal
means.

Block 1992 1993 1994 Block means

logging 4 17 18 13.00
angove �10 �1 8 �1.00
newpipe �15 �10 1 �8.00
oldquinE �14 �11 �2 �9.00
newquinW �4 6 0 0.67
newquinE 0 5 1 2.00

Year means �6.50 1.00 4.33 �0.389

Using the equation above:

[��(ȳi� ȳ)(ȳj� ȳ)yij]
2� [(13�(�0.389))(�6.50�(�0.389))(4)�

(�1�(�0.389))(�6.5�(�0.389))(�10)� . . .�
(2�(�0.389))(4.33�(�0.389))(1)]2�510.34

�(ȳi� ȳ)2�(ȳj� ȳ)2�(61.54)(318.53)�19 602.34

SSnon�add�510.34/19602.34�0.026 with 1 df

MSnon�add�0.026

SSRemainder�SSTotal�SSA�SSB�SSnon�add�

1516.278�369.444�955.611�0.026�191.197 with 9 df,

MSRemainder�191.197/9�21.244

Fnon�add�0.026 / 21.244�0.001 with 1 and 9 df, P�0.974.

No evidence of strong interaction between blocks and years, even using a liberal a
of 0.25.
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component represents other sorts of interaction
and the variation between experimental units
(SSRemainder). These SS are converted to MS and an F-
ratio constructed which is MSnon�add / MSRemainder;
this F-ratio follows an F distribution and the H0 of
no interaction can be tested in the usual manner.

Additivity and transformations
If evidence of an interaction is detected, there is
an argument that we should try and reduce the
effect of such an interaction, as this will increase
the power and interpretability of the test for treat-
ments. Presumably, a factor A by block interaction
is not important to us biologically or else we
would have replicated each treatment–block com-
bination as a generalized RCB design (see Section
10.12). If the non-additivity is due to the scale on
which the response variable is measured and
therefore a multiplicative relationship between
the response variable and treatments and blocks,
then a transformation to a different scale of meas-
urement (e.g. logs) may remove the interaction
and make the relationship additive (Chapter 9).
This is the type of non-additivity Tukey’s test and
residual plots are likely to detect, so a significant
result from Tukey’s test would suggest a transfor-
mation will reduce the extent of the interaction.

10.4 Assumptions

10.4.1 Normality, independence of errors
We have already discussed the “assumption” of no
factor A by block interaction, pointing out that
the presence of an interaction does not invalidate
the test for treatments if block is a random factor.
In addition, the usual assumption that experi-
mental units are randomly sampled from a popu-
lation of experimental units is still important. We
also assume, as usual, that the residuals are nor-
mally distributed and have constant variance
within treatments across blocks (homogeneity of
variance assumption). Plots of residuals, both
within treatments and against predicted values,
are interpreted in the same way as described in
Chapters 8 and 9; watch out for wedge-shaped pat-
terns suggesting an underlying skewed distribu-
tion. If the RCB or RM design is a mixed model
with random blocks, the common scenario in
biology, then the homogeneity of variance

assumption can be incorporated into a more
general assumption about variances and covari-
ances (Section 10.4.2). Outliers from the fitted
model are as important to detect for RCB (RM)
designs as for CR designs. Observations with large
residuals can be identified from residual plots and
most statistical software will warn of outliers
when the model is fitted.

Even in RCB designs and RM designs, we
assume that the residuals are independent of each
other, even though the observations within a block
or subject are not (Kirk 1995). This is because we
assume that block effects are independent of resid-
ual effects, an assumption which is justified by the
random allocation of levels of factor A to experi-
mental units within a block (Brownie et al. 1993) or
the random order of treatment application within
a subject. Spatial heterogeneity between experi-
mental units within blocks can be modeled as part
of the analysis (Brownie et al. 1993), which may
increase the precision of treatment means and the
power of tests of treatment effects. Note that even
though we acknowledge that observations from
experimental units within a block are possibly cor-
related, sensible interpretation of biological
experiments usually relies on the experimental
units within blocks being far enough apart so that
the effect of one treatment doesn’t affect any other
experimental unit, e.g. animals crawling off one
experimental unit in response to a treatment and
onto another. Similarly, in repeated measures
designs, carryover effects must be explicitly
avoided (by randomizing order of treatments
and/or leaving a long enough gap between treat-
ments) or be explicitly incorporated into the
design and the hypotheses (see Kirk 1995).

10.4.2 Variances and covariances –
sphericity

We have already indicated that in two factor linear
models where one factor is random, the observa-
tions from the same level of the random factor are
correlated with each other (Chapter 9). This corre-
lation is exacerbated in RCB designs, because the
experimental units in a block are often located
close together, and in RM designs, because we have
repeated observations on the same subject. This
implies that the observations within a block, i.e.
the observations from different treatments
within a block (or within a subject in the repeated
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measures context) are not independent of each
other (Kirk 1995). Therefore, we not only have to be
concerned about variances in these analyses but
also about covariances (correlations). These vari-
ances and covariances can be expressed in the
form of a variance–covariance matrix (see Chapter
15) whose diagonal matrix contains the variances
between observations within each treatment and
the other entries are the covariances between
treatments (i.e. the covariances between observa-
tions from different treatments).

There are two conditions that must be met for
the F-ratio for factor A to follow an F distribution
when we fit a two factor mixed ANOVA model to
data from a RCB or simple RM design. Not only do
the variances have to be the same across treat-
ments (the usual homogeneity of variance

assumption) but the covariances (i.e. the correla-
tions between treatments within each block or
subject) also have to be the same. If the variances
are all equal and the covariances are all equal, i.e.
the correlations between all pairs of treatments
are equal, then the variance–covariance matrix
shows compound symmetry. This is a sufficient con-
dition for the F-ratio to follow an F distribution but
it is too restrictive an assumption, i.e. it is not a nec-
essary condition. The F-ratio for factor A in the
analyses of mixed model RCB and RM designs will
follow an F distribution if the variance–covariance
matrix shows a pattern known as sphericity. Put
simply, the sphericity condition is that the vari-
ances of the differences between values of the
response variable are the same for all pairs of treat-
ments (see Box 10.6). The sphericity assumption is
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Box 10.6 Illustration of compound symmetry and
sphericity assumptions using data from Driscoll
& Roberts (1997)

Compound symmetry assumption:
r 2

11�r 2
22�r 2

33 andr21�r31�r32, i.e. treatments variances are equal and treat-
ment covariances are equal.

General covariance matrix Specific covariance matrix

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Year 1 r 2
11 59.90

Year 2 r 2
21 r 2

22 79.40 113.20
Year 3 r31 r32 r 2

33 34.80 57.80 56.27

Estimates from data suggest difference between variances and between covari-
ances.

Sphericity assumption:
r 2

1�2�r 2
1�3�r 2

2�3, i.e. variances of differences between treatments are equal.

Year 1 Year 2 Year 3 Year 1–2 Year 1–3 Year 2–3

Block 1 4 17 18 �13 �14 �1
Block 2 �10 �1 8 �9 �18 �9
Block 3 �15 �10 1 �5 �16 �11
Block 4 �14 �11 �2 �3 �12 �9
Block 5 �4 6 0 �10 �4 6
Block 6 0 5 1 �5 �1 4
s2 14.30 46.57 53.87

The estimates of the variances of the treatment differences vary, with the variance
of the year 1 minus year 2 difference considerably smaller than the other two dif-
ferences, a strong indication that sphericity is not met.



much less restrictive than compound symmetry
because it does not require equality of variances
and equality of covariances. Note that compound
symmetry is simply one form of sphericity; a vari-
ance–covariance matrix which shows compound
symmetry also shows sphericity by definition. If
the sphericity assumption is not met, then the F
test for treatments in RCB and RM designs can be
liberal, i.e. the actual Type I error rate can exceed
the nominal rate we set with our a priori signifi-
cance level (Boik 1979, Box 1954). The F test is not
very robust to this assumption.

There is no reason to expect the variances of
the differences between pairs of treatments to be
very different in classical RCB designs because the
treatments are randomly allocated to different
experimental units within each block. Think of
this in terms of treatment correlations – the cor-
relation between treatments one and two should
not be very different from the correlation
between treatments two and three if the experi-
mental units are randomly arranged in each block
and each experimental unit is randomly allocated
to a treatment. In contrast, the sphericity assump-
tion is less likely to hold for RM designs because
observations for repeated measurements closer
together in time will probably be more correlated
than for repeated measurements further apart in
time. If the order in which the treatments are
applied to each experimental unit (subject) is ran-
domized (treatments�subjects designs), then
correlations between treatments might still be
similar. However, in subjects by trials designs
where the treatments are times (or time inter-
vals), we would expect quite different correlations
between times closer together compared to those
further apart.

Note that the assumption of compound sym-
metry, or the more realistic assumption of sphe-
ricity, of the variance–covariance matrix only
applies to mixed model RCB and RM analyses. If
both factor A and blocks (or subjects) are fixed,
then the linear model implies that observations
are uncorrelated within treatments and within
blocks (or subjects). This is probably why few text-
books (but see Kirk 1995, Neter et al. 1996) discuss
any requirement for specific patterns of variances
and covariances for RCB designs – such designs
are usually presented with fixed blocks (e.g.

Hocking 1996). In contrast, RM designs are nearly
always presented with subjects as random and
hence the pattern of variances and covariances
receives considerable attention. Note also that if
there are only two treatments, then sphericity is
not relevant because the variance–covariance
matrix is actually a vector (only two variances and
a single covariance).

There are two broad approaches for dealing
with violations of the assumption of sphericity,
adjusting univariate F tests to make them more
conservative or using a multivariate test that does
not assume sphericity.

Adjusting univariate F tests
The degree to which the variance–covariance
matrix departs from compound symmetry and
sphericity is measured by the epsilon (�) parame-
ter (Winer et al. 1991, Keselman & Keselman 1993,
Kirk 1995). When sphericity is met, � equals one;
the further � is from one, the more the sphericity
assumption is violated. An estimate of � can be
determined from the sample variance–covariance
matrix and is termed the Greenhouse–Geisser
epsilon (�̂); it is complex to calculate, requiring
some matrix gymnastics. The df for the F test for
factor A can then be adjusted downwards based
on the value of �̂:

dfadj� (p�1)�̂ and(p�1)(q�1)�̂ (10.6)

and the F test based on these adjusted df approxi-
mately follows an F distribution even when sphe-
ricity is not met. Unfortunately, the Greenhouse–
Geisser estimate of � can be conservatively biased
when � is close to 0.75 (Collier et al. 1967; see also
Keselman & Keselman 1993, Winer et al. 1991), i.e.
the adjustment to the df is too severe, making the
test too conservative. An alternative estimate of �
is the Huynh–Feldt epsilon, although this can
exceed one and therefore might be too liberal.
Both estimates of � and adjustments to df are stan-
dard output from most statistical software and we
recommend the Greenhouse–Geisser adjustment
because the true value of � is never known so it is
difficult to decide when to use the Huynh–Feldt
version.

Note that a simpler version of the Greenhouse–
Geisser adjustment is to set �̂ to its smallest value,
which depends on the number of treatment
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groups (p) and equals 1/(p�1) – see Kirk (1995).
This saves having to calculate �̂ but will obviously
be conservative (it sets �̂ to the minimum value
irrespective of the actual value of �) and is unnec-
essary since most statistical software will calcu-
late �̂.

In the Driscoll & Roberts (1997) example,
the Greenhouse–Geisser epsilon was 0.71 and the
Huynh–Feldt epsilon was 0.92, supporting the
argument that the former is a more conservative
estimate of �. The adjusted df produced more

conservative P values but did
not change our conclusions
about the effect of years (Box
10.2). There were only two
treatments in the Walter &
O’Dowd (1992) study, and

therefore only one covariance, so the sphericity
assumption was not relevant.

Multivariate tests
Another approach to dealing with the sphericity
assumption is to use a procedure that does not
require this assumption. We could use the differ-
ences between pairs of treatments (e.g. between
pairs of times) as multiple response variables in a
multivariate ANOVA (MANOVA; see Chapter 16). If
there are p treatments (e.g. times), then only p�1
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Figure 10.4. “Interaction” plots,
with mite numbers plotted against
block for the two treatments, for
untransformed (a) and transformed
(b) Walter & O’Dowd (1992) data.

 

 

Figure 10.6. (a) “Interaction” plot,
with burnt–control differences
plotted against block (catchment)
for each year. (b) Plot of residuals
versus predicted values, for the
Driscoll & Roberts (1997) data.

Figure 10.5. (a) Plot of residuals
against comparison values from a
median polish from Walter &
O’Dowd (1992) data. (b) Plot of
residuals against predicted values
(mean-based) from Walter &
O’Dowd (1992) data.



differences need to be used. The H0 is that the pop-
ulation mean of the differences for all pairs of
treatments equals zero. Because we are testing
two or more population means simultaneously
(e.g. with p equals three, there are two differ-
ences), we are really testing whether the p�1 dif-
ferences have a population mean vector equal to
zero (Keselman & Keselman 1993). Any of the test
statistics used in MANOVA are applicable here but
as discussed in Chapter 16, we recommend the
Pillai trace statistic.

The MANOVA approach does not assume sphe-
ricity of the variance–covariance matrix but does
assume multivariate normality, which is always
difficult to check. It also requires more subjects or
blocks than treatments, otherwise the MANOVA
will encounter computational difficulties. In the
Driscoll & Roberts (1997) example, the P value
from the MANOVA testing whether the popula-
tion mean differences between all pairings of the
three years equals zero was 0.016, leading us to the
same conclusion as for the adjusted univariate
analysis (Box 10.2).

10.4.3 Recommended strategy
Formal tests of sphericity include Mauchley’s test,
which is very sensitive to deviations from multi-
variate normality and is not recommended
(Keselman & Keselman 1993), and the “locally best
invariant test”, which is tedious to calculate (Kirk
1995). We suggest, like others (Keselman &
Keselman 1993, Winer et al. 1991), that it is prob-
ably safer to assume that this assumption is not
met and use adjusted univariate F-ratios or the
multivariate approach (see Looney & Stanley 1989,
Manly 1992, Potvin et al. 1990, von Ende 1993).
Which is the best approach? As usual in applied
statistics, that depends on the nature of the data.
Looney & Stanley (1989) suggested using both
approaches (most statistical packages automati-
cally provide both analyses); if either the adjusted
univariate or the multivariate indicates a signifi-
cant result, reject the H0. If neither indicate a sig-
nificant result, do not reject H0. Most statistical
software routinely outputs all three approaches
(unadjusted univariate, adjusted univariate,
multivariate).

10.5 Robust RCB and RM analyses

The only commonly used robust alternatives to
the analyses we have described in this chapter are
to transform the observations to ranks and then
do the usual parametric analysis on the ranked
data. The ranking can be done in two ways.

• Rank the data separately within each block (or
subject) and then use the usual F test for factor
A described earlier in this chapter. Note that
this test is equivalent to the Friedman test
(Hollander & Wolfe 1999), which also ranks the
observations within each group but compares
its test statistic to a chi-square distribution.
The Friedman test is an extension of the
Kruskal–Wallis test described in Chapter 8 for
single factor ANOVA models.

• Alternatively, the data could be ranked over
the entire data set as described for rank-
transform (RT) procedures in CR designs
(Chapters 8 and 9) and the usual F test for
treatments applied to the ranked data (see
Maxwell & Delaney 1990).

All of our previous comments about rank-
based analyses (see Chapters 3 and 8) apply here,
particularly that these tests do not assume nor-
mality but do not necessarily solve problems
about variances and covariances (Maxwell &
Delaney 1990) and can be inefficient when there
are many ties (Neter et al. 1996). Rank-based tests
do not deal with interactions very well (Chapter 9)
so it is difficult to predict what effect block by
treatment interactions will have on the analysis.

An alternative approach is to estimate the
effects of the linear model in a robust manner, i.e.
obtain estimates of the factor A and block (or
subject) effects that are not sensitive (i.e. are
resistant) to outliers. Emerson & Hoaglin (1983)
and Emerson & Wong (1985) proposed a technique
called a median polish, which uses the medians to
fit an additive model of the form:

yij�m��i��j��ij (10.7)

where m is the overall median and �i, �j and �ij are
factor A effects, block effects and residuals esti-
mated using marginal medians instead of margi-
nal means. Median polish determines these
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effects in an iterative fashion, calculating the row
effects, then the column effects, then recalculat-
ing the row effects, etc. The computations are a
little tedious (see Emerson & Hoaglin 1983;
MINITAB™ also provides median polish) but the
results are useful for detecting some forms of
non-additivity, by using comparison values calcu-
lated from the median polish (Section 10.3.2), and
also for providing more robust detection of outli-
ers.

Randomization tests are also possible by gen-
erating the distribution of an appropriate test sta-
tistic by randomly reallocating observations to
treatment–block combinations, as we described
for factorial designs in Chapter 9 (Manly 1997).

Finally, if the response variable being analyzed
has a known distribution that fits an exponential
form, then generalized linear modeling proce-
dures can be used (Chapter 13). GLMs measure the
fit of models with maximum likelihood tech-
niques, allow a variety of underlying distribu-
tions, such as Poisson, binomial, lognormal, etc.,
and tests of hypotheses about model parameters
use likelihood ratios.

10.6 Specific comparisons

Planned contrasts and unplanned multiple com-
parisons between factor A levels in RCB (or RM)
designs depend on whether the sphericity
assumption is met, because these tests usually
rely on a single error term, the MSResidual. We
argued in Section 10.4.2 that for classical RCB
designs, where treatments are randomly allocated
to independent experimental units within blocks,
the sphericity assumption is less likely to be vio-
lated. The usual contrasts and pairwise compari-
son procedures described in Chapters 8 and 9 can
be used; MSResidual would be used as the error term
for calculating the standard errors of these com-
parisons. For RM designs, the variances and covar-
iances are less likely to conform to sphericity (and
adjusted df cannot easily be calculated for specific
comparisons) so we agree with Kirk (1995) that
separate denominators should be used for each
pairwise (or more complex) comparison.
Keselman & Keselman (1993) proposed pairwise t
tests with separate error terms based on the two

levels being compared. For example, to compare
groups 1 and 2 for factor A:

t� (10.8)

where s1
2 and s2

2 are the sample variances for
groups 1 and 2, s12 is the sample covariance
between groups 1 and 2 and q is the number of
subjects or blocks. Note that this is simply a paired
t test (see Chapter 3) comparing the means of the
two groups. The SSA can also be partitioned into SS
for each comparison, as described in Chapter 8
and the two groups compared with an F test. Not
all statistical software provides separate denomi-
nators for these F-ratio tests of each contrast, so we
illustrate the calculations of separate error terms
for the Driscoll & Roberts (1997) data in Box 10.7.
The calculated F-ratio statistic will be the same as
the t statistic. For unplanned pairwise compari-
sons where control over the familywise Type I
error rate is required, a Bonferroni-type correc-
tion (see Chapter 3) can be applied.

Trends (linear, quadratic, etc.) across levels of
factor A can also be tested using the methods out-
lined in Chapter 8; these tests are often default
output from some statistical software if the data
are coded as repeated measures. The only differ-
ence in testing for trends between a RCB (or RM)
design and a CR design is which denominator to
use for the F-ratio (Kirk 1995). As for other con-
trasts described above, separate error terms for
each trend test should be used if sphericity might
not hold. Note that Winer et al. (1991) also sug-
gested using a separate denominator for each
trend (linear, quadratic, etc.), although their tests
for each trend component are only slightly more
conservative than those based on the MSResidual

and we prefer the approach of Kirk (1995).

10.7 Efficiency of blocking (to
block or not to block?)

The decision to include a blocking factor in an
experimental design depends on two questions.

• Are experimental units in blocks more similar
to each other than to other experimental units

ȳ1� ȳ2

�s 2
1 � s 2

2 �2s12

q
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in different blocks? If so, then the blocking
factor will explain some of the residual
variation, resulting in a smaller MSResidual and a
more powerful test of factor A.

• Does the reduction in MSResidual compensate for
the loss of df in the ANOVA?

In most cases, the answer to the second question
is unknown unless good pilot data are available,
so a decision to block is made primarily on the
likely extent of between-block variation.

After an RCB experiment, we might also wish
to know whether using blocks was a better experi-
mental design than a CR experiment without any
blocking, in terms of precision of estimates of
treatment effect and power of the tests for factor
A. Lentner et al. (1989) argued that a measure of
relative efficiency (RE) should be used to compare
an RCB design to a CR design, where RE is defined
as the ratio of the variance of the treatment com-
parison of the CR experiment to the variance of
the treatment comparison in the RCB experiment.
Larger REs indicate that the RCB design produced
a more precise (lower variance) estimate of treat-
ment effects compared with the CR design. Based
on the work of Yates and Kempthorne, they

defined an estimate of this relative efficiency
(ERE) for a RCB design compared with a CR design:

ERE� (10.9)

Lentner et al. (1989) also noted that ERE is mono-
tonically related to the ratio of MSBlocks/MSResidual,
even though that F-ratio is inappropriate for
testing blocks in the non-additive model, so either
ERE or the F-ratio could be used. If either is greater
than one then an RCB design is more efficient
than a CR design where the number of replicates
per treatment is equal to the number of blocks. In
the Walter & O’Dowd (1992) example, the F-ratio
for blocks is less than one so the RCB design prob-
ably did not offer more efficiency than a CR design
in this case. The F-ratio for subjects (blocks) was
much greater than one in the Driscoll & Roberts
(1997) example, although it is difficult to envisage
how such an RM design could have been set up as
a CR design, so the efficiency of blocking is not so
relevant.

(q�1)MSBlock� q( p�1)MSResidual

(pq�1)MSResidual
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Box 10.7 Calculation of separate error term for contrasts
in RCB/RM analyses (see Kirk 1995), using the
data of Driscoll & Roberts (1997)

First, calculate the relevant contrast (trend or otherwise) for each block/subject, e.g.
the linear trend for block 1:

w�(�1)4�(0)17�(1)18�14, where �1, 0 and 1 are the contrast coefficients
(ci) for a linear trend through three equally spaced levels (see Table 8.8).

Second:

(i) sum the trend values across blocks/subjects (�w)�65
(ii) sum the squared trend values across blocks/subjects (�w 2)�937
(iii) sum the squared contrast coefficients (�ci

2)�2

SSResidual(linear)� � [(937)�(65)2/6]/2�116.42 with q�1�5 df.

MSResidual(linear)�SSResidual(linear)/q�1�116.42/5�23.28
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10.8 Time as a blocking factor

In all the examples we have so far used in this
chapter, the blocks have been spatial units, loca-
tions in space. There are occasions where you only
have a small number of experimental units and
can only afford to have a single replicate of each
treatment in an experiment (experimental units
might be very large or very expensive). One option
in these situations might be to repeat the unrepli-
cated experiment a number of times. The experi-
ment can then be analyzed as an RCB design with
time as a blocking factor. One problem with using
time as blocks is deciding whether time is a
random factor. If we run the experiment over
three successive weeks, for example, it’s difficult
to imagine from what population of times these
three are a random sample. Under these circum-
stances, time might be treated as a fixed factor,
which restricts us to using the additive model and
therefore assuming no factor A by block inter-
actions. Alternatively, we could argue that we
have a random sample of at least a month or two,
so time is random, and we are no worse off in our
generalization – doing the experiment as a com-
pletely randomized one factor design would take
only one week, and we couldn’t generalize that
result to any other time, anyway.

One particular design that uses time as a
blocking factor is a crossover design, described in
Section 10.11.4.

10.9 Analysis of unbalanced RCB
designs

Missing observations are potentially a big
problem for RCB and RM designs because a single
missing observation is, in effect, a missing cell.
The equations in Table 10.2 are not appropriate
when there are missing observations. The sim-
plest approach to missing observations in RCB
(RM) designs is to omit the whole block or subject
that has the missing value(s). This is the default
approach for most statistical software if data are
arranged, and the analysis done, as a classical
“repeated measures” ANOVA (Section 10.13). Of
course, this removes non-missing observations

from the block/subject with the missing observa-
tion, which is wasteful of data and reduces the
power of the test for factor A.

It turns out that we can analyze unreplicated
two factor designs with missing observations as
long as (i) there are not too many missing values
and (ii) there are no treatment by block interac-
tions. Note that we are assuming that the observa-
tions are missing randomly. Cells may also be
missing by design, because the number of avail-
able experimental units is less than the number
of treatment–block combinations and hence an
incomplete block design should be considered
(see Section 10.11.2). There are two broad analyti-
cal approaches (Box 10.8 and Chapter 4): substi-
tute a replacement observation or compare the fit
of full and reduced linear models.

If we assume additivity, then we can predict a
value for any cell using Equation 10.4. Snedecor &
Cochran (1989) and Sokal & Rohlf (1995) proposed
a more complex method for estimating a missing
value based on treatment and block totals. Both
methods use the available information from the
same treatment and block in estimating the
missing value and produce very similar esti-
mated values. One df should be subtracted from
the residual for each substituted value. Snedecor
& Cochran (1989) indicated that the SSA (and
SSBlocks; see Sokal & Rohlf 1995) is slightly biased
upwards and recommended a correction,
although it does not make much difference in
practice. Note that any procedure for estimating
a missing value in an unreplicated factorial
design must assume that there are no treatment
by block interactions.

Alternatively, we can use the comparison of
linear models approach where SSA and SSBlocks are
determined by comparing the fit of a full model
versus the relevant reduced model (Section 10.2.4;
Box 10.4). This is the default approach for most sta-
tistical software when the data are arranged, and
the analysis done, as a classical RCB design and is
termed the “regression” approach by Neter et al.
1996. Note that the SS are no longer orthogonal,
i.e. the SS for A, blocks and residual do not add to
the total SS. Generally, substituting a new value as
described above and comparing full and reduced
additive models will result in very similar tests for
the effects of treatments (Box 10.8).
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Since we are fitting a full model with no inter-
action term, the results from this linear models
analysis will be similar to fitting the cell means
model (Box 10.3) and using specific contrasts to
test the subset of hypotheses for A and blocks

using only those cells with data. The model we use
is a restricted means model because it assumes
that all treatment by block interactions are zero.
Kirk (1995) illustrates using cell means models to
analyze RCB designs with missing values.
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Box 10.8 Analyzing RCB designs with a missing
observation

Based on Driscoll & Roberts (1997) with one observation (newpipe in 1993)
missing.

Raw data and marginal means:

Block 1992 1993 1994 Block means

logging 4 17 18 13.00
angove �10 �1 8 �1.00
newpipe �15 1 �7.00
oldquinE �14 �11 �2 �9.00
newquinW �4 6 0 0.67
newquinE 0 5 1 2.00

Year means �6.50 3.20 4.33 0.18 

To estimate the missing observation, we use Equation 10.4 to estimate the pre-
dicted value for any cell, in this case the cell with the missing observation:

ŷij� ȳi� ȳj� ȳ

3.20�(�7.00)�0.18��3.98

This is very similar to the new value (�3.90) from the method of Snedecor &
Cochran (1989) and Sokal & Rohlf (1995).We can then substitute this value for the
missing observation and fit the ANOVA model as usual for this design, subtracting
one df from the residual. Note that the actual value was �10, suggesting that simply
predicting the missing observation assuming additivity is not ideal in this case, even
though there was not strong evidence for an interaction between blocks and years.

The results of the three different approaches for dealing with this missing obser-
vation are presented below. Note the MSResidual is the same when we substitute a
new value and when we compare full and reduced models and the tests of factor
A (year) are very similar (see Neter et al. 1996).

Model
Omit block 3 Substitute new value comparison approach

Source df MS F P df MS F P df MS F P

Year 2 136.067 7.044 0.017 2 195.097 10.295 0.005 2 192.058 10.135 0.005

Block
(drainage) 4 186.767 5 174.808 5 166.217

Residual 8 19.317 9 18.950 9 18.950



This approach of comparing full and reduced
effects models can only be used because the full
model is an additive one with no interaction
terms. In replicated factorial designs with missing
cells, interactions are presumably potentially
important and we cannot use a comparison of full
and reduced models that include interaction
terms in these circumstances (Chapter 9). Instead,
the cell means approach and a subset of testable
hypotheses about interactions and main effects
must be used.

What is the best way of dealing with missing
values in RCB or simple RM designs? The conser-
vative approach is omitting the incomplete block
or subject; it is simple, doesn’t assume additivity,
and is probably reasonable if the number of
remaining blocks/subjects is not too small.
However, the strength of inference about the
effects of treatments across blocks will be
reduced because we are using fewer blocks. In
many cases, each block/subject may represent
such an effort so that you are unwilling to discard
the data from other treatments in the problem
block/subject; alternatively, the number of
blocks/subjects may be small and omitting one
block could reduce the size of the experiment by
an appreciable amount. In this case, there is no
simple recommendation for which of the two
alternatives (substitution, effects model compari-
sons) is best, although they will usually produce
similar results. Both approaches assume no treat-
ment by block interaction. Therefore, if you must
analyze a design with missing observations, it is
particularly important that checks for factor A by
block interactions using the available data are
done (Section 10.3.2). There is a downside to the
model comparison approach, especially if the
experiment really is a RM design where meeting
the assumption of sphericity is likely to be a
problem. Most software will not provide adjusted
univariate or multivariate tests when general
linear models are fitted (Section 10.13). This is
actually a serious problem because, like other
ANOVAs, the unbalanced RCB or RM ANOVAs are
more sensitive to assumptions (especially spheric-
ity) than a balanced design (Berk 1987). We can
only suggest checking sphericity after omitting
the block or subject with the missing value (using
repeated measures coding in your statistical

software) before fitting the additive linear model
to the whole data set.

We illustrate the analysis of RCB or simple RM
designs with a missing observation by analyzing
the Driscoll & Roberts (1997) data with the obser-
vation from the second year and the third block
missing (Box 10.8). In this example, there are few
blocks (only six) and omitting an entire block
changes the ANOVA markedly compared to the
substituting a new value determined from the
available data for block 3 and year 2 or simply
comparing the fit of appropriate full and reduced
additive linear models to the unbalanced data.

10.10 Power of RCB or simple RM
designs

The power of RCB or simple RM designs is deter-
mined similarly to a CR single factor design (see
Chapter 8) except that the sample size is the
number of blocks or subjects and the residual
variation will probably be smaller than for a CR
design. The non-centrality parameter is defined
as:

�� (10.10)

which can also be expressed as:

�� (10.11)

Whether Equation 10.10 or Equation 10.11 is used
depends on whether we are using power tables or
curves (see Neter et al. 1996) or power analysis soft-
ware. Ideally, we would use a pilot study to
provide an estimate of 	

�
2 (the residual variance)

and then determine the number of blocks (q)
required to detect a treatment effect of a given
size, i.e. use power analysis for determining
sample size required in the design phase of the
experiment, although post hoc calculations of
power can be carried out in the same manner as
described for a CR design. Note that using power
calculations to determine the number of blocks
or subjects required in a RCB or RM experiment
probably only makes sense when blocks are
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considered random; if blocks are fixed, then their
number is also fixed.

10.11 More complex block designs

10.11.1 Factorial randomized block
designs

Block designs can also be extended to include fac-
torial experiments, where all combinations of two
or more factors are included in each block (Kirk
1995). For example, Brunkow & Collins (1996) did
a field enclosure experiment that examined the
effects of two factors (density and variance in
initial size) on various response variables (growth,
dry mass, stage of metamorphosis) for larval sala-
manders. This was a factorial design arranged in
three spatial blocks with one replicate of each
combination of density and initial variation in
size in each block. A second example is from
Wagner & Wise (1996), who set up a factorial
experiment examining the effects of density
(three levels: zero, low and high) and predator
reduction (two levels: control and predator reduc-
tion) on growth rates of wolf spiderlings. One rep-
licate of each combination of density and
predator reduction was located in each of four
spatial blocks.

The non-additive linear model, which includes
block by factor interaction terms, for the factorial
RCB design with two factors (A and C) replicated at
a number of blocks (B) is:

yijk����i��k���ik��j���ij�

��kj����ikj��ijk (10.12)

where �i is the effect of factor A, �j is the effect of
factor C, ��ij is the interaction between factors A
and C, �k is the effect of blocks, ��ik, ��jk, and
���ijk are the interactions between A, C, AC and
blocks and �ijk is the residual term independent of
blocks. This is Model 1 of Newman et al. (1997). As
with all unreplicated RCB designs, we cannot esti-
mate the residual separately from at least one
interaction term, in this case the ���ijk interac-
tion.

The ANOVA table based on this non-additive
model with expected mean squares is shown in
Table 10.6. If blocks (B) are considered random and
the other factors (A and C) are fixed (the common

situation with biological experiments), then each
term of interest in the model (A, C, AC) is tested
against its interaction with blocks and there are no
tests for blocks or its interactions. If blocks and
either A or C are random, then some terms will
have no appropriate F test, e.g. if blocks and C are
random, there will be no other MS in the model
with same expected value as MSA if the H0 of no
effect of A is true. If blocks and both A and C are
random, then there are no tests for either A or C. In
these circumstances, we must rely on quasi F-ratios
as outlined in Chapter 9 or else assume an additive
model. If blocks are fixed, then there are no tests
for the other factors in the non-additive model so
we must assume no interactions with blocks and
fit an additive model as described below.

The linear model 10.12 is the equivalent of a
two factor repeated measures design where both
factors are “within subjects” (Keppel 1991). We
argue that terms such as “factorial randomized
block” and “factorial within subjects repeated
measures”, while useful for describing the physi-
cal structure of the experiment, actually obscure
the fundamental underlying linear model, which
in this case is simply an unreplicated three factor,
crossed, ANOVA model (Chapter 9). The EMS pro-
vided by Kirk (1995) for a factorial RCB with blocks
random are identical to those provided by Winer
et al. (1991) for a three factor ANOVA with one
factor (blocks) random. 

An alternative approach is to fit an additive
model:

yijk����i��k���ik��j��ijk (10.13)

which is Model 2 of Newman et al. (1997) and the
one which users of factorial RCB designs often fit
(e.g. Brunkow & Collins 1996, Wagner & Wise
1996). This model combines the block by A, C and
A�C interactions (i.e., the three residual terms in
Table 10.6) into a single residual term (Table 10.7).
Although the use of this pooled error term
increases the degrees of freedom in the denomi-
nators used to construct the F-ratios, and there-
fore increases the power of individual tests of A, C
and A�C, there are costs. First, as the additive
model implies, we have to assume that there are
no interactions with blocks; this assumption is
very difficult to test and, for biological experi-
ments, might not be true in some situations
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(Section 10.3.1). Second, the pooled residual term
requires a restrictive omnibus sphericity condi-
tion (Kirk 1995), which also cannot easily be
checked. We recommend that the non-additive
model and separate error terms should be used. 

Our earlier comments about using time as a
blocking factor also apply to factorial randomized
blocks. Factorial experiments are more costly
than single factor experiments because of the
larger number of combinations of the factors and
it may not be possible to have enough experimen-
tal units to replicate such an experiment.
Repeating the experiment through time and
using time as a blocking variable is a useful
option.

10.11.12 Incomplete block designs
Very occasionally, we may have an experimental
design where we would like to block the treat-
ments but the number of experimental units in
each block is less than the number of treatments
so we cannot have every treatment represented in
each block. Under these circumstances, the trick
is to allocate treatments to blocks so that relevant
hypotheses can be tested although some interac-
tions have to be assumed to be zero. The simplest
arrangement is a balanced design where every
pair of treatments occurs once (and only once) in

one of the blocks. These designs can be arranged
using randomized blocks or Latin squares and can
also be unbalanced so that not every pair of treat-
ments occurs in any block. The definitive refer-
ence is Cochran & Cox (1957) but Kirk (1995) and
Mead (1988) also describe these designs. 

Of course, some (including us) might argue
that if there is such a mismatch between the avail-
able experimental units and number of treatment
combinations, then reducing the number of treat-
ments in the experiment is a more realistic solu-
tion. This is especially so in biology where
treatment by block interactions are quite possible.
The one exception might be where the design can
be set up as a square arrangement with two block-
ing factors, as we will describe next.

10.11.13 Latin square designs
Sometimes we want to include two blocking
factors in our design to further reduce the unex-
plained variation in our response variable. If the
allocation of treatment levels to all combinations
of blocking factors can be randomized, we could
simply treat the combinations of the two blocking
factors as levels of a single, combined, blocking
factor and use the usual model for an RCB design.
However, if we are willing to restrict the number
of levels of each of the two blocking factors to be

292 RANDOMIZED BLOCKS AND SIMPLE REPEATED MEASURES

Table 10.7 ANOVA for factorial randomized complete block design from Table 10.6 assuming that all block by
factor interactions (A�block, C�block, A�C�block) are zero and are pooled into residual

Source Wagner & Wise (1996) df Expected mean square Test (A, C fixed)

B�Block Block q�1 r
e
2�prr

b
2

A Density p�1 r
e
2�qDrr

2
ac
�qrr

a
2

C Predators r�1 r
e
2�qDpr

2
ac
�qpr

c
2

A�C Density�Predators (p�1)(r�1) r
e
2�qr 2

ac

Residual Residual (q�1)(pr�1) r
e
2

Note:
Components for fixed and random factors in expected mean squares are represented as “variances” –
see Box 9.8.

MSAC

MSResidual

MSC

MSResidual

MSA

MSResidual

MSBlock

MSResidual



the same as the number of treatment levels, we
can also use a Latin square design. As the name
suggests, Latin squares consider the experimental
design as a square with equal numbers of rows
and columns. One blocking factor is allocated to
rows and the other to columns and there is a
single experimental unit for each combination of
row and column, i.e. cell. Latin square designs can
be 2�2, 3�3, 4�4, etc. Treatments are allocated
randomly to cells, with the restriction that each
treatment is represented once in each row and in
each column. By definition, the number of levels
of factor A must be the same as the number of
rows and the number of columns. Latin square
designs are basically an extreme example of an
incomplete block design, where the number of
treatments represented in each block (row–
column combination) is one!

There are many possible random arrange-
ments of allocating treatments to cells in Latin
square designs (Figure 10.7). For example, there
are 12 possible arrangements for a 3�3 square
and 576 arrangements for a 4�4 square. For a par-
ticular experiment, we simply select at random
one of the possible arrangements of the appropri-
ate size. Statistical software often include
modules for the design of experiments that gener-
ate Latin square arrangements.

Traditionally, Latin square designs were used
when the rows and columns represented a physi-
cal spatial arrangement of experimental units in
the field. For example, Golden & Crist (1999) exam-
ined the effects of habitat fragmentation on old-
field canopy insects using a 120�150 m field

(comprising goldenrod and wild carrot as domi-
nant flora) in Ohio. They had four treatments
(levels of factor A) set up by mowing: unfrag-
mented, slightly fragmented (3 m2 subplots separ-
ated by 2 m mown strips), moderately fragmented
(2 m2 subplots separated by 3.5 m mown strips)
and heavily fragmented (1 m2 subplots separated
by 5 m mown strips). They created 16 plots (each
13�13 m) in four rows and four columns and allo-
cated treatments in a four by four Latin square
design, i.e. each treatment was represented once
in each row and each column (Figure 10.8).
Basically, this design is blocking treatments (frag-
mentation) against two blocking factors, rows and
columns.

Latin square designs can also be used when the
blocking factors do not really represent physical
rows and columns. For example, Cochran & Cox
(1957) describe an experiment where rows are five
weeks, columns are the five days of the week, and
each of five treatments was allocated to each com-
bination of week and day in the usual manner.

Consider a Latin square design with factor A
(i�1 to p) being treatments, factor B ( j�1 to p)
being rows and factor C (k�1 to p) being columns.
Each observation is yijk (the value in each cell), the
marginal treatment means pooling rows and
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Figure 10.7. Three possible random arrangements for 3�3
(three treatments:A, B, C) and 4�4 (four treatments:A, B, C,
D) Latin squares.

Figure 10.8. Layout of 4�4 Latin square experimental
design from Golden & Crist (1999), showing four levels of
fragmentation arranged in four rows and four columns.



columns are ȳi, the marginal row means pooling
treatments and columns are ȳj and the marginal
column means pooling treatments and rows are
ȳk.

The linear model used for a Latin square
design is:

yijk����i��j��k��ijk (10.14)

From Golden & Crist (1999):

(species richness of insects)ijk���
(fragmentation)i� (rows)j� (columns)k
��ijk (10.15)

In models 10.14 and 10.15 we find the follow-
ing.

� is the overall (constant) population mean,
e.g. the overall mean number of insect species
per leaf for all combinations of fragmentation
treatment, row and column (i.e. all cells).

If factor A is fixed, �i is effect of ith level of
factor A (�i��) pooling over rows and columns,
e.g. the effect of fragmentation on the number
of species of insects, pooling rows and columns.
If factor A is random, �i represents a random
variable with a mean of zero and a variance of
	
�

2, measuring the variance in mean values of
the response variable across all the possible
levels of factor A that could have been used.

If rows are fixed, �j is the effect of the jth
row (�j��) pooling over levels of factor A and
columns, e.g. the effect of the different rows on
the number of species of insects, pooling
fragmentation treatments and columns. If rows
are random, �j represents a random variable
with a mean of zero and a variance of 	

�
2,

measuring the variance in mean values of the
response variable across all the possible rows
that could have been used.

If columns are fixed, �k is the effect of the
kth column (�k��) pooling over levels of factor
A and rows, e.g. the effect of the different
columns on the number of species of insects,
pooling fragmentation treatments and rows. If
columns are random, �k represents a random
variable with a mean of zero and a variance of
	
�

2, measuring the variance in mean values of
the response variable across all the possible
columns that could have been used.

�ijk is random or unexplained error associ-
ated with the observation at each combination
of the ith level of factor A and jth row and kth
column. For example, this measures the random
error associated with the number of species of
insects in each combination of fragmentation
treatment, row and column. These error terms
are assumed to be normally distributed in each
cell, with a mean of zero (E(�ijk)�0) and a vari-
ance of 	

�
2.

Note that model 10.14 is an additive model
with no interaction terms. The total number of
experimental units is simply the total number of
row and column combinations (p2) with a single
level of factor A allocated to each combination.
With a Latin square design, it is not possible to
estimate any interaction terms and therefore we
cannot fit a non-additive model.

The ANOVA from fitting model 10.14 is pre-
sented in Table 10.8. The SS for factor A, rows and
columns are calculated from the respective margi-
nal means as usual. The SSResidual is simply the dif-
ference between these SS and SSTotal. With only
one observation per cell in Latin square designs,
we have no real estimate of 	

�
2 unless we assume

that all interactions between A, rows and columns
are zero. Sometimes, the SSResidual is termed
SSRemainder (Neter et al. 1996). The test for factor A
simply uses the MSResidual as the denominator. 

Factor A would usually be fixed in most biolog-
ical applications. If we have a true physical Latin
square where the rows and columns are spatial
arrangements within that square, then they may
be considered fixed because it is difficult to
imagine from what populations of rows and
columns they could be a random sample. If rows
and columns are not spatial arrangements within
a real square, then either might be considered
random. The F test of factor A is the same no
matter what combination of fixed and random
factors we have in a Latin square design, although
the H0 and its interpretation will be different.

Latin square designs are quite restrictive in
their application. They require that the number of
levels of factor A equal the number of levels of the
two blocking factors, rows and columns, although
Mead (1988) describes alternative rectangular
designs where only the number of rows or
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columns matches the number of treatments.
Additionally, the number of df for the residual is
often small. For example, a 3�3 design will have
only two df for the residual and 4�4 design will
have only six df. In these circumstances, we might
wish to also replicate at the level of squares so we
have multiple Latin squares (Mead 1988). Probably
the most serious restriction on the application of
Latin square designs in biology is that there
should be no interactions between treatments,
rows or columns. While we can use Tukey’s test for
non-additivity (Section 10.3.2; Box 10.5) to check
for some forms of interaction (Kirk 1995), it is dif-
ficult to imagine that, in field experiments, treat-
ments would not interact with spatial rows or
columns. If there are interactions, then the test of
factor A is biased in a messy way (Kirk 1995).
Finally, like all ANOVAs based on unreplicated fac-
torial models, missing values cause real difficul-
ties for Latin square analyses and our comments
in Section 10.8 apply.

Latin square designs can become more
complex than the standard design described here.
For example, Graeco-Latin square designs allow
for three blocking factors by superimposing two
standard Latin squares (Cochran & Cox 1957, Kirk
1995, Mead 1988). The restrictions discussed above
for standard Latin squares apply even more so for
these complex extensions.

10.11.4 Crossover designs
An experimental design that combines attributes
of Latin squares and repeated measures designs is
the crossover design, often used in experiments
that apply multiple treatments to individual
organisms. In its simplest form, the crossover
design can be considered as a Latin square where
subjects are one blocking factor (e.g. rows) and
time periods are a second blocking factor (e.g.
columns) and treatments are applied to each com-
bination of subject and period using one of the
Latin square randomizations. Consider the study
of Feinsinger et al. (1991) who examined competi-
tion between three species of forest understory
plants in Central America. They set up an experi-
ment to examine the effects of four treatments
(relative densities of one species, either Besleria or
Palicourea, and a second species Cephaelia: 10:10,
90:10, 10:90, 50:50) on response variables such as

rate of hummingbird probes per flower or number
of pollen tubes per style or number of seeds
matured per flower. They had four time periods
(either four or six days depending on the species)
and used four focal plants (of either Besleria or
Palicourea), which were the subjects, with a Latin
square design as illustrated in Table 10.9. Actually,
their experiment was more complicated because
they replicated each square at three separate
spatial blocks, but their basic unit was a single
block (or square).

One of the characteristics of crossover designs
is that different subjects receive the treatments in
a different sequence, hence the value of the Latin
square approach where each subject receives each
treatment once but in a different order. So the
effect of subjects (e.g. focal plants) in crossover
designs is also an effect of sequence of treatments.
Under some patterns of sequences across subjects,
we may be able to separate out the effects of
sequence from what are termed carryover effects.
These are interaction effects between period and
treatment and represent the effects of a preceding
treatment independent of sequence. The pattern
of treatment allocations must be a Latin square
where every treatment follows or precedes every
other treatment the same number of times
because we can then measure carryover effects for
all pairs of treatments without confounding with
sequence. Not all randomization patterns for allo-
cation of treatments to squares do this, but the
pattern used by Feinsinger et al. (1991) did. For
other patterns, sequence and carryover effects are
confounded and cannot be separated. Note that
when there are only two treatments (and two
periods), the sequence and carryover effects are by
definition the same. Really only simple carryover
effects from the preceding treatment can be
detected, rather than carryover effects from the
preceding two or more treatments, unless we have
a very large design.

Some details of the analysis of crossover
designs can be found in experimental design texts
like Cochran & Cox (1957), Crowder & Hand (1990),
Mead (1988), Neter et al. (1996) and Yandell (1997),
with a standard reference being Ratkowsky et al.
(1993). We don’t provide details on calculating the
SS but the basic analysis from Feinsinger et al.
(1991) is presented in Table 10.9. Basically the
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SSTotal is partitioned into SSTreatments, SSPeriod and
SSSequence based on marginal means, with the
remainder forming the residual. This is the equiv-
alent analysis from a Latin square design (Table
10.8). Feinsinger et al. (1991) could also measure
carryover effects as a separate source of variation
from the residual because their pattern of alloca-
tion of treatments to period and subject combina-
tions had every treatment followed by every other
treatment once. The number of carryover effects
is the same as the number of treatments, as they
are measuring the effect of each treatment on the
one in the following period. If the rest period

between treatments within a subject is long
enough, there should be no carryover effects and
Feinsinger et al. (1991) did not find any significant
carryover effects in their study. Note that the cor-
relations between repeated measures on the same
subject, that require special consideration in the
analyses of RM designs (Section 10.4.2), are
assumed to be incorporated into the carryover
effect (Yandell 1997).

Feinsinger etal. (1991)alsoreplicatedtheirbasic
Latin square in three spatial blocks, so their full
design was a replicated Latin square (Yandell 1997)
and the analysis included the block effect and
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Table 10.9 (a) Design of the crossover experiment from Feinsinger et al. (1991). Relative density treatments are
indicated as A, B, C and D. Each square was replicated in three spatial blocks. (b) Analysis of crossover experiment
from Feinsinger et al. (1991)

(a)

Focal plant

Time period I II III IV

1 A B C D
2 B D A C
3 C A D B
4 D C B A

(b)

Single block Replicated blocks
Source (i.e. square) df (i.e. squares) df

Blocks (q�1)�2

Focal plants, i.e. sequence (within blocks) (p�1)�3 (q (p�1))�9

Periods (p�1)�3 (p�1)�3

Periods�Blocks (p�1)(q�1)�6

Treatments, i.e. relative density (p�1)�3 (p�1)�3

Treatments�Blocks (p�1)(q�1)�6

Carryover (p�1)�3 (p�1)�3

Residual rest�3 rest�15

Total (p2�1)�15 (qp2�1)�47

Note:
First df column is from analysis of single block (square), second df is full analysis from three replicate
blocks. There are p�4 focal plants, p�4 periods and p�4 treatments in each block (square) and
q�3 blocks.



interactions between blocks and treatments,
periods and sequences. Because the squares are
replicated spatially (blocks), then periods are
crossed with squares. If the squares are replicated
through time, then the periods would be different
foreachsquareandperiodswouldbenestedwithin
square (or block). In these analyses, all terms are
tested against residual unless there are replicate
subjects for each sequence, e.g. replicate focal
plants for each sequence of treatments. Then there
would also be a subjects within-sequence term that
would be used for testing the sequence effect. In
the example from Feinsinger et al. (1991), there was
only one subject (focal plant) per sequence so there
was no subject within-sequence term.

The limitations of these designs are the same
as Latin square designs, primarily the assumed
lack of interactions between treatments, periods
and subjects and the few df for the residual, espe-
cially when carryover effects are separated out as
a source of variation. Also, there are the usual dif-
ficulties of handling missing observations and the
requirement that the number of treatments
needs to match the number of subjects or periods.
These designs are most commonly used in
research on the responses of animals to different
treatments where the number of animals is very
restricted and both repeated measures on animals
and through multiple time periods are needed.

10.12 Generalized randomized
block designs

As we have emphasized, RCB designs are simply
analyzed as unreplicated factorial ANOVAs. If rep-
licates are possible within each combination of
block and treatment, then we have a generalized
randomized block design (GRB) whose advantages
over the usual randomized block design include:

1. no need for any assumption of additivity,
2. separation of interaction effects from resid-

ual which may result in smaller MSResidual and more
powerful test of treatments (Potvin 1993), and

3. better handling of missing values.

A GRB design that includes replicate experi-
mental units for each treatment within each
block is analyzed with a standard two factor linear

model as described in Chapter 9 with a test for the
factor A by block interaction. Note that random-
ization (random allocation of experimental units
to treatments) is still restricted to n experimental
units within each block, compared with a CR fac-
torial design in which experimental units would
be randomly allocated to each combination of the
two factors. It is important that the “replicates”
for a GRB design be at the appropriate scale, oth-
erwise the usual factorial linear model is not
applicable (Bergerud 1996). We must replicate the
experimental units to which the levels of factor A
are applied within each block, e.g. we must repli-
cate leaves with and without domatia in each
block in the example from Walter & O’Dowd
(1992). If we simply subsample from each unrepli-
cated treatment–block combination, e.g. we
measure the size of individual mites in each com-
bination of block (leaf pair) and treatment (with
or without domatia), we can not use a two factor
ANOVA model. We actually have a subsampled
randomized block ANOVA where the analysis is as
described in Table 10.10 for our fictitious modifi-
cation of the Walter & O’Dowd (1992) experiment.
Here, the non-existent true replicates for the two
factor ANOVA model (replicate leaves for each
treatment–block combination) are included in
the ANOVA table to illustrate that the subsampled
mites are not the appropriate replicates for
testing any of the higher terms in the model
(Bergerud 1996) – this is just a more complicated
example of “pseudoreplication” (Hurlbert 1984;
see also Chapter 7). Like Bergerud (1996), we
suspect that many biologists mistake subsam-
pling for true replication and would incorrectly
analyze this design in Table 10.10 as a completely
randomized two factor ANOVA.

10.13 RCB and RM designs and
statistical software

Most statistical software distinguishes between
RCB and RM designs in the way the data need to
be coded. For an RCB design, each row in the data
file represents an individual experimental unit,
i.e. a treatment–block combination, and the data
for the response variable are in a single column.
The columns in the data file will be as follows.
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Factor A Block or subject Response variable

Shaved 1 9
Unshaved 1 1
etc.

The analysis then uses a linear model statement
that includes a constant (grand mean), factor A
and blocks (but no interaction). Output is stan-
dard ANOVA but usually with no adjusted univar-
iate or multivariate tests.

For an RM design, each row represents a block
or subject and the response variables for each
treatment (e.g. time) are in separate columns. The
columns in the data file will be as follows.

Block or subject A1 (Shaved) A2 (Control)

1 9 1
etc.

The analysis uses software-specific repeated meas-
ures commands or menu options. Output is
usually standard repeated measures ANOVA with
unadjusted and adjusted univariate tests and
multivariate tests, and also trend contrasts across
treatment means.

Why the difference? It is probably due to most
textbooks distinguishing the two types of designs,
particularly the influence of statistical texts

focusing on psychological and educational
research, such as Winer et al. (1991). The point is
that it doesn’t matter which way you set the data
file up, the analyses will be identical. It depends
on whether you want an estimate of epsilon,
measuring whether the variances and covari-
ances meet the sphericity assumption and the
extended output of adjusted univariate tests or
multivariate tests – if so, use the repeated meas-
ures set-up.

10.14 General issues and hints for
analysis

10.14.1 General issues

• Randomized complete block (RCB) and simple
repeated measures (RM) designs are both
analyzed using a linear model for a two factor
ANOVA with n equals one in each cell.

• The test for factor A is MSA / MSResidual whether
there is an interaction between treatments and
blocks/subjects or not.

• If treatment by block or subject interactions
exist, then the power of the test for factor A is
reduced and, if the interaction is strong, non-
significant treatment effects are difficult to
interpret.
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Table 10.10 ANOVA table for a subsampled randomized block design, modifying Walter & O’Dowd (1992) so
that 10 mites were sampled from each treatment–block combination, i.e. each single leaf for each treatment
within each block

Source df Expected mean square

Treatment A p�1�1 r
e
2�r 2

c(ab)�r 2
ab
�r

a
2

Block B q�1�13 r
e
2�r 2

c(ab)�r
b
2

Treatment�block (A�B) (p�1)(q�1)�13 r
e
2�r 2

c(ab)�r 2
ab

Leaves (treatment and block) C(AB) pq(r�1)�0 r
e
2�r 2

c(ab)

Mites (leaves (treatment and block)) D(C(AB)) pqr(n�1)�252 r
e
2

Note:
For simplicity, expected mean squares are provided without multipliers and components for both fixed
and random terms are indicated as variances – see Box 9.8. Note that the leaves nested within each
treatment–block combination are included in the ANOVA table although their df equal zero because
there is still only one replicate leaf for each treatment in each block.



• Blocks should normally be a random factor,
otherwise there is no test for treatments
unless we assume no treatment by block inter-
action.

• Violation of the sphericity assumption can seri-
ously affect the univariate F tests and either
adjusted univariate or multivariate tests of
treatment effects should be used, especially in
repeated measures situations.

• Factorial RCB designs are analyzed equiva-
lently to factorial “within subjects” designs in
repeated measures terminology, using the
linear model for a three factor unreplicated
factorial ANOVA. Each fixed main effect and
interaction term should be tested against their
interaction with block if blocks are random.

10.14.2 Hints for analysis
• For most statistical software, you should con-

sider creating two data files, one coded for an
unreplicated two factor crossed linear model
analysis and one coded for classical repeated
measures design. The basic ANOVA output will
be the same, but other aspects of the output
will differ and both contain useful informa-
tion. 

• Even though treatment by block interactions
does not preclude assessment of treatment

effects, it is worth running checks for interac-
tions. If interactions are present, significant
main effects interpretation is an effect of treat-
ment over and above the interaction between
treatment and blocks. It would also suggest
that a generalized (i.e. replicated) RCB design
should be considered if the experiment is
repeated.

• Transforming lognormal data to logs or count
data to a power (e.g. square or fourth root) can
greatly improve additivity and should be used
if the absence of treatment by block interac-
tions is important for the analysis or interpre-
tation.

• Cell mean plots are the simplest way of detect-
ing treatment by block/subject interactions,
although various residual plots can be also be
helpful; a formal test for simple interactions is
Tukey’s single df test for additivity.

• Use separate denominators for F tests of con-
trasts between, or trends through, treatments.

• With missing values, either omit the
block/subject with missing value if the
number of blocks is large, or else estimate the
missing value from marginal and overall
means or use the model comparison approach
as part of fitting the relevant linear models.
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In Chapter 9, we described multifactor ANOVA
models that can involve crossed or nested factors,
or a combination of both, and in Chapter 10, we
introduced designs that incorporate either blocks
or repeated measures. One particular class of
experimental designs with both crossed and
nested factors, and either blocks or repeated
measures, includes split-plot designs (from an
agricultural origin), and repeated measures
designs (from psychology). These designs can be
complex but are particularly common in biologi-
cal research, so we have devoted a chapter to their
analysis. We will use the term partly nested or
partly hierarchical for the linear model we fit with
these designs, and the least ambiguous name
for these designs might also be partly nested. One
of the important messages from this chapter is
that these repeated measures and split-plot
designs are basically analyzed with the same
linear model, something that is often unappre-
ciated by biologists, although some textbooks do
emphasize the equivalence in models (e.g. Kirk
1995, Mead 1988). In its simplest form, this design
has three factors: A and C are crossed, and B is
nested within A but crossed with C, although the
possible extensions of this design are almost lim-
itless. 

11.1 Partly nested designs

11.1.1 Split-plot designs
Split-plot designs were originally used in agricul-
tural experiments and represent a randomized
complete block (RCB) design, with one or more

factors applied to experimental units within each
block. A second factor (or set of factors) is then
applied to whole blocks, with replicate blocks for
each level of this factor. Note that the terms blocks
and plots are interchangeable in the context of
these designs.

There are many examples of classical split-plot
designs in the biological literature. First we will
consider a fictitious extension of the RCB experi-
ment we described in Chapter 10 from Walter &
O’Dowd (1992), examining the role of domatia
(small cavities on the leaf surface where mites can
live) in determining the number of mites on
leaves from species with domatia. They set up
pairs of leaves (blocks) on a tree where one leaf in
each pair was a control and the other leaf had its
domatia removed. The treatment factor was
applied to experimental units (leaves) within each
block (leaf pair). If we now include additional
plant species (those that have domatia), we now
have a second factor applied at the scale of whole
blocks, i.e. a block will be one or other of the
species. This new experiment has blocks as the
scale of replication for comparisons of species and
leaves within blocks as the scale of replication for
comparisons of treatments.

As another example, consider the experiment
from Wissinger et al. (1996) who studied the effects
of competition and water regime (hydroperiod) on
the ecology of two species of larval caddisflies
(Asynarchus nigriculus and Limnephilus externus) in
ponds (Figure 11.1). The experiment was set up as
a RCB design, with a block (i.e. plot) being a single
pond, chosen for having some consistency in envi-
ronmental conditions. Within each pond, they set
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up six wood frame cages in the littoral zone and
applied one of six competition treatments (low
density Asynarchus, low density Limnephilus,
high density Asynarchus, high density Limnephilus,
high density both species, control with no caddis-
flies) to each cage within each pond. The role of
hydroperiod (permanent or autumnal) was inves-
tigated by having four ponds in each category. The
response variables were body mass and survival of
each species analyzed separately, so there were
only three density treatments (those containing
the same species). So there are two factors: hydro-
period was “applied” (non-experimentally) to
whole ponds (plots) and is termed the between
plots factor and density treatment was applied to
cages within plots and is termed the within plots
factor. Split-plot designs are characterized by
having factors applied to experimental units at
different, usually spatial, scales.

There are a number of practical design issues
for this experiment.

• The experimental design that would be sim-
plest to analyze would be to have whole ponds
that are subjected to levels of both factors,
hydroperiod and density treatment, forming a
completely randomized (CR) factorial arrange-
ment of two hydroperiods by six density treat-
ments with n ponds per cell. Ponds are large
units and we would expect considerable vari-
ability between them, resulting in large resid-
ual variance.

• It is often difficult to install cages, especially
large ones. For example, covering whole ponds
with cages to maintain experimental densities

would be very expensive to set up and probably
require an immense amount of labour. We
may find that we cannot physically deal with
the required size of cages in the time available
to set the experiment up, because the research
grant has dried up, or we’ve exhausted the
supply of eager volunteers in earlier experi-
ments. We would also need a lot more ponds.
The current design uses eight ponds, whereas a
completely randomized design with even only
two ponds per density and hydroperiod combi-
nation would need 24. That many ponds may
simply not exist.

• The split-plot design chosen allows us to group
our density treatments within ponds, minimiz-
ing spatial variation in environmental charac-
teristics, and giving us a clearer test of the
effects of density. It also reduces the size of
cages. We have, however, linked together
groups of cages, and changed our statistical
model dramatically compared to the CR
design. If anything happens to a pond (e.g. it
dries up at the wrong time, or gets an algal
bloom), we would be forced to discard all cages
in that pond. If we’d used a CR design, we
would lose just a single replicate in a cell.

As another example, Leonard et al. (1999) tested
the prediction that flow had strong effects on the
abundances of mussels and barnacles in an
estuary but that these effects might vary with
tidal height. They had a number of general design
options for testing this prediction.

• They could have sampled a range of sites in the
estuary. In the simplest case, they could
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Figure 11.1. Diagrammatic
representation of the split-plot
experiment from Wissinger et al.
(1996).There are four ponds (only
two shown here) in each of two
hydroperiods (permanent and
autumnal, represented by different
shading), the between plots factor.
Within each pond, there were six
cages, each containing one level of
the within plots factor, competition
treatment.



sample replicate sites within combinations of
flow regime and tidal height (i.e. a completely
randomized factorial design, with two factors,
flow regime and tidal height). This approach
would require a large number of sites, and it
may be difficult to find enough in the estuary.

• It is likely that sites of a given flow regime vary
widely, and the researchers would require
many replicate sites to get adequate power.
They might get less variability if they sampled
a given site at different tidal heights, because
they could get more similar physical habitats,
and make a better test of the effect of height
(although the variation between sites will still
be a problem for assessing the effects of flow).

Leonard et al. (1999) used a split-plot design: plots
were sites and they “applied” six tidal heights
(from 0.0 to 3.6 m above mean low water) within
each site, and each site falls into one of two flow
regimes, high and low flow. In analyzing this
design, we need to keep the six height observa-
tions for each site together, so that we can
compare their differences.

Split-plot designs can also be used when the
plots or blocks do not obviously represent spatial
units of replication. For example, Westly (1993) set
up a split-plot experiment to examine the effects
of inflorescence bud removal on asexual invest-
ment in the Jerusalem artichoke (Helianthus tube-
rosus). There were four populations of H. tuberosus,
five genotypes (genotypes were actually tubers
from single individuals) nested within each popu-
lation and two treatments (normal flowering and

inflorescence removed) applied to different tubers
from each genotype. Genotypes were plots, popu-
lation was the between plots factor and treatment
was the within plots factor.

We will illustrate the analysis of split-plot
designs in this chapter with a recent example
from our own work on disturbances on rocky
shores.

Effects of trampling on intertidal algae
populations

These data come from a long-term experiment
examining the impact of humans on the fauna
and flora of rocky shores in southern Australia
(Keough & Quinn 1998), and the full analysis is in
Box 11.1. In this experiment, we were interested in
disturbances caused by pedestrians, and whether
a pattern of summer disturbance and autumn–
winter–spring recovery results in a series of small
disturbance–recovery cycles, or whether repeated
disturbances eventually cause a major impact. We
manipulated disturbance by trampling on
marked intertidal areas each summer, using four
different disturbance levels, which were the
number of pedestrian passages. To determine the
variability in results, we did the experiment on
three different rock platforms, separated by hun-
dreds to thousands of meters. On a smaller scale,
at each site, we had two experimental plots, separ-
ated by tens of meters, and each plot contained
eight experimental strips. This arrangement cor-
responds to a nested design, with sites (i.e. plat-
forms), plots within sites, and strips within each
plot.
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Box 11.1 Worked example of split-plot design: effects of
trampling on intertidal limpet populations

Keough & Quinn (1998) examined the effect of pedestrian traffic (trampling) on
the abundance of macroalgae and gastropods on rocky intertidal shores. They used
three sites, representing different rock platforms separated by hundreds to thou-
sands of meters. Within each site, there were two experimental plots separated by
tens of meters and four levels of trampling intensity (0, 5, 10, 25 pedestrian passages
per low tide on 6–8 days each summer) were allocated to each of two strips within
each plot in each site. The response variable is the number of limpets per 0.25 m2

quadrat per strip. With only two replicates of each plot–trampling combination, it
is not worth producing boxplots, and the number of limpets did not vary widely,
with numbers generally less than ten, and no extreme values.We did not transform
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the response variable, a decision that seems reasonable, as the model fitted the data
very well (Keough & Quinn 1998, their Table 3). Model 11.2 was fitted, and includes
a term for plots within sites� trampling, because we had replicate strips for each
trampling treatment in every plot.

In this design, sites and plots are random factors, so you need to be sure that
you use correct F-ratios (Table 11.3).You might need to recalculate the sites, tram-
pling, and sites� trampling F-ratios from the default statistical output if your statis-
tical software does not allow you to specify fixed and random factors.

The specific null hypotheses of interest were as follows.

No difference between sites in the mean number of limpets per strip, pooling
trampling treatments.

No difference between trampling treatments in the mean number of limpets
per strip, pooling sites.

No interaction between site and trampling treatment on the mean number of
limpets per strip, i.e. the effect of trampling on the mean number of limpets
per strip was the same at the three sites.

Because we had replicate strips for each trampling treatment within each plot
at each site, we could also test two additional null hypotheses.

No added variance in mean number of limpets per strip due to all possible
plots within each site.

No interaction between trampling treatment and all possible plots within each
site on the mean number of limpets per strip, i.e. the effect of trampling on
the mean the number of limpets per strip was the same on all possible plots
within each site.

The final ANOVA table is shown below.

Source SS df MS F P Denominator

Sites 8.719 2 4.359 0.521 0.639 Plots(sites)
Plots(sites) 25.094 3 8.365 5.214 0.006 Residual
Trampling 18.354 3 6.118 5.071 0.044 Site� trampling
Site� trampling 7.240 6 1.207 0.485 0.805 Plots(sites)� trampling
Plots(sites)� trampling 22.406 9 2.490 1.552 0.187 Residual
Residual 38.500 24 1.604 

We would conclude that there is a significant main effect of trampling, and that
the effect of trampling on the number of limpets does not vary between sites or
plots. There is also significant spatial variation at the scale of plots. The number of
limpets rose with the intensity of trampling and Figure 11.3(a) shows similar
increases at all three platforms (with data averaged across plots). Trampling appears
to benefit limpets! This effect occurred because the species most affected by tram-
pling is a brown alga, Hormosira banksii, which forms dense mats on these rock plat-
forms. Dense mats provide a poor habitat for the herbivorous limpets, with little
food, so the destruction of these mats generates new, usable habitat for limpets. At
the level of plots, we found wide variation in overall abundance of limpets (aver-
aged across trampling levels) (Figure 11.3(b)). The plots with higher numbers were
on different platforms (sites), as were those with low numbers, accounting for sig-
nificant variation among plots, but not sites.



Within each plot, the eight strips were allo-
cated randomly to one of the four trampling
levels, with two replicates of each trampling level.
With the same disturbance levels applied to all
plots and sites, the factor trampling is orthogonal
to sites and plots. The data used in this example
are from a census of the number of limpets in
each strip after three years of trampling.

11.1.2 Repeated measures designs
A simple repeated measures design, where the
responses of a number of experimental units (or
subjects) are recorded for a number of trials (or
times), was discussed in detail in Chapter 10 and
was also termed a subject by trials design. A mod-
ification of this design is a groups by trials design
where the basic repeated measures design is mod-
ified to include a treatment structure between
subjects, i.e. the subjects are randomly allocated
to treatment groups in addition to their responses
being recorded on a number of trials or times. Just
as the linear model used for a subjects by trials
repeated measures designs was the same as that
used for a RCB design (an unreplicated two factor
ANOVA model), groups by trials repeated meas-
ures designs can be analyzed in the same way as
classical split-plot designs (with a partly nested
ANOVA model). The term “plot” is replaced by
“subject”, and we simply have “between subjects”
and “within subjects” effects in the same way as
we had between and within plot effects. In biology
and ecology, the “subjects” are experimental or
sampling units (animals, plants, quadrats, etc.)
and the trials are usually sequential times (von
Ende 1993).

The term “repeated measures” has actually
been used in a confusing manner in the literature.
It really refers to repeated observations made on
individual units (e.g. subjects, plots), either
sequentially through time or under some treat-
ment structure that is applied sequentially
throughout time. Repeated measurements on
experimental units can occur in any type of
design. For example, a randomized block or split-
plot design can have repeated measurements on
each experimental unit within each block or plot
(Gumpertz & Brownie 1993). The linear models
used for repeated measures and split-plot designs
are identical. The only complications are in the

way the data are coded for computer analysis and
which assumptions are applicable.

As an example of a group by trials repeated
measures design, Schwartz et al. (1995) studied the
effects of four temperatures (10o, 20o, 30o, 40oC) on
the dark respiration rate of five species of tree
(four species of Torrea and one species of Taxus).
Assume that it was desirable to have around five
replicates to compare the five tree species, there
are not large numbers of plants available, and
individual plants were also likely to have different
temperature profiles (leading to possibly reduced
power). What are the design options for this
experiment?

• Five replicate plants per cell, by four tempera-
tures by five species means the experiment
would require 100 plants. We would analyze
this experiment with a CR two-factor design
(factors: species and temperature).

• One temperature profile per plant, so each
plant would be used four times for the four
temperatures, and only 20 plants are required
(five for each species).

The second is a sensible option, to reduce the
number of plants used and cut costs (and, if an
experiment required sacrificing animals, reduc-
ing the number of animals killed). If we choose
this option, we don’t have a set of independent
measurements for each temperature, but a group
of five at one temperature, then another group of
five for the same set of plants at the next temper-
ature, and so on. Our analysis therefore needs to
maintain the relationships between the measure-
ments. Schwartz et al. (1995) used this repeated
measures design with five or six plants of each
species and each plant was subjected to the four
temperatures. Individual plants were subjects,
species was the between subjects factor and tem-
perature was the within subjects factor. You can
see the similarity to the diagrammatic representa-
tion of the pond experiment (Wissinger et al.
1996): the “plots” are individual plants (in
repeated measures designs, these are termed
“subjects”), the hydroperiod treatment corre-
sponds to species, and the density treatments cor-
respond to the temperatures. This experiment has
one “between subjects” factor (species) and one
“within subjects” factor (temperature).
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In this example, the within subjects factor is
a series of treatments (temperatures) applied
sequentially through time. Repeated measures
designs are often used when the within subjects
factor does not represent different treatments
but just a time sequence of interest. For
example, Gange (1995) measured aphid abun-
dance on twenty individual trees of two species
of alder on twenty consecutive dates between
May and September. The response variable was
aphid abundance, the between subjects factor
was tree species and the within subjects factor
was date.

We will illustrate the analysis of groups by
trials repeated measures designs with an example

from a postgraduate project on physiology of
amphibians.

Responses of cane toads to hypoxia
Mullens (1993) investigated the ways that cane
toads (Bufo marinus) respond to conditions of
hypoxia. Toads, the subjects, show two different
kinds of breathing patterns, lung or buccal, and
this breathing pattern was the between subjects
factor. The second factor was O2 concentration,
which had eight levels (0, 5, 10, 15, 20, 30, 40, 50%),
and was applied within subjects (toads). Various
aspects of breathing rate were measured in each
trial. The full analysis of this example is in Box
11.2.
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Box 11.2 Worked example of groups by trials repeated
measures design: responses of cane toads to
hypoxia

Mullens (1993) investigated how the breathing rates of cane toads (Bufo marinus)
respond to conditions of hypoxia. Toads, the subjects, show two different kinds of
breathing patterns, lung or buccal, and this breathing pattern was the between sub-
jects factor. The second factor was O2 concentration, which had eight levels (0, 5,
10, 15, 20, 30, 40, 50%), and was applied within subjects (toads). The response var-
iable was the frequency of buccal breathing and was transformed to square roots
to reduce positive skewness (based on boxplots of the data for each O2 concen-
tration) and improve variance homogeneity (based on residual plots).

The specific null hypotheses of interest were as follows.

No difference between breathing types in the mean square root rate of
breathing, pooling O2 levels.

No difference between O2 levels in the mean square root rate of breathing,
pooling breathing types.

No interaction between breathing type and O2 level on the mean square root
rate of breathing, i.e. the effect of O2 level on the mean square root rate of
breathing was the same for both breathing types.

With no replicates within each combination of breathing type, toad and O2

level, we could not test hypotheses about the random factor toads within breath-
ing type or O2 levels by toads within breathing type.

The data were initially coded in classical split-plot form,where toads were plots,
and the model in Equation 11.3 was fitted. Because there is only one replicate obser-
vation for each toad for each O2 concentration, this model is fully saturated, i.e. it
fits the data perfectly because all sources of variation have been accounted for. The
output from your statistical software usually won’t include F tests or P values. You
might just need to specify each effect in the model and its appropriate denomina-
tor to get these. In this example, breathing type and oxygen are clearly fixed factors,
but toad is random, so breathing type is tested against toad within breathing type
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and the interaction between breathing type and O2 level is tested against the toad
within breathing type by O2 level interaction.We could also achieve these latter tests
by fitting a model without the toad within breathing type by O2 level interaction,
which would then become the residual term. Note that many statistical programs
assume all factors are fixed and default to using this as the denominator for all tests,
which is incorrect if B(A) is random.

Source SS df MS F P

Breathing type 39.921 1 39.921 5.762 0.027
Toad(breathing type) 131.634 19 6.928
O2 level 25.748 7 3.678 4.884 �0.001
Breathing type�O2 level 56.372 7 8.053 10.693 �0.001
Toad(Breathing type)�O2 level 100.166 133 0.753

We would conclude that there is a significant difference between toads with
the different breathing types, but this depends on O2 level (significant breathing type
�O2 level interaction).

We then re-analyzed the data after recoding them as a “repeated measures”
design. For most software, we get even more extensive output.

BETWEEN SUBJECTS
Source SS df MS F P

Breathing type 39.921 1 39.921 5.762 0.027
Residual 131.634 19 6.928

Note:
This residual is actually toads nested within breathing type.

WITHIN SUBJECTS
Source SS df MS F P GG P HF P

O2 level 25.748 7 3.678 4.884 �0.001 0.004 0.002
Breathing type�O2 level 56.372 7 8.053 10.693 �0.001 �0.001 �0.001
Residual 100.166 133 0.753

Note:
This residual is actually toads within breathing type by O2 level.

Greenhouse–Geisser epsilon: 0.428
Huynh–Feldt epsilon: 0.544

The “between subjects” and “within-subjects” parts of the ANOVA are distin-
guished and B(A), in this example toads within breathing type, is assumed to be
random and all other factors fixed. The ANOVA output is, however, identical to the
partly nested ANOVA above. Estimates of e are also provided – the
Greenhouse–Geisser is more conservative than the Huynh–Feldt estimate and
neither is close to one, suggesting that the sphericity assumption is not met. Because
both estimates of epsilon are less than 0.75, the Greenhouse–Geisser adjustment
is preferred. Our conclusions would not be affected by these more conservative
tests; there is a significant interaction between O2 and breathing type. Both main
effects are also significant, although it is more sensible to base further interpreta-
tion on the interaction. It is clear from Figure 11.4 that breathing rate decreases
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with increasing O2 level for buccal breathing toads but increases with O2 level for
lung breathing toads.

Because of the interaction, simple main effects tests for O2 level at each breath-
ing type separately might be of interest. We adjust the df for these tests based on
the Greenhouse–Geisser estimate of epsilon.

BUCCAL:
Source SS df MS F P GG df GG P

O2 level 75.433 7 10.776 14.311 �0.001 2.997 �0.001
Residual 100.166 133 0.753 56.951

LUNG:
Source SS df MS F P GG df GG P

O2 level 19.907 7 2.844 3.777 0.001 2.997 0.015
Residual 100.166 133 0.753 56.951

There is a significant effect of O2 level for both breathing types, although the
effect seems stronger for buccal breathing toads than lung breathing toads.

For most statistical software, “repeated measures” output will include polyno-
mial trend analyses. With eight O2 levels, up to seventh order polynomials could be
examined, although we will just look at the first three. The interaction test of these
polynomials is testing whether the trend (linear, quadratic, etc.) through O2 level
differs between breathing types; the main effect test is examining whether there is
a trend through O2 level pooling breathing types.

Polynomial Test of Order 1 (Linear)
Source SS df MS F P

O2 level 17.010 1 17.010 8.255 0.010
Breathing type�O2 level 40.065 1 40.065 19.444 �0.001
Residual 39.149 19 2.060

Polynomial Test of Order 2 (Quadratic)
Source SS df MS F P

O2 level 5.007 1 5.007 6.967 0.016
Breathing type�O2 level 12.326 1 12.326 17.150 0.001
Residual 13.655 19 0.719

Polynomial Test of Order 3 (Cubic)
Source SS df MS F P

O2 level 1.747 1 1.747 3.263 0.087
Breathing type�O2 level 1.784 1 1.784 3.331 0.084
Residual 10.174 19 0.535

Both linear and quadratic trends are different between the two breathing types;
there is no evidence of a cubic trend. It is clear from Figure 11.4 that the linear
trends are in different directions for the two breathing types. Note that separate



11.1.3 Reasons for using these designs
The examples above demonstrate the two major
reasons for using split-plot or repeated measures
designs. First, if our experimental or sampling
units (organisms, ponds, sites) are expensive or
otherwise difficult to obtain, we might consider
applying a number of treatments to each (or to
subunits within each) or recording each through
time. Second, if we expect lots of variation
between these units, and are worried that this
variation might obscure effects of our treatments,
we can attempt to remove this variation by taking
a biological “unit” and applying different treat-
ments to it – sampling different parts of the same
pond, applying a range of oxygen concentrations,
etc. The basic difference between a split-plot and
a group by trials repeated measures design is that
the former allocates the within plots treatments
to subunits within each plot whereas the latter
allocates the within subjects treatments sequen-
tially to each subject.

11.2 Analyzing partly nested
designs

We will first describe the analyses for a standard
partly nested design that has three factors. One

(the plots or subjects) is nested within the second,
but both of these factors are crossed (orthogonal,
factorial) with the third (Figure 11.2). In the split-
plot example from Wissinger et al. (1996), we have
hydroperiod (A), ponds within hydroperiods
((B(A)), and density treatment (C). In the repeated
measures example from Schwartz et al. (1995), we
have species (A), plants within each species ((B(A)),
and temperature (C). In both examples, we have
every combination of A and C (hydroperiod and
density or species and temperature), so A and C
form a factorial design. B and C are also factorial
because every pond gets all density treatments
and every plant gets all temperature treatments.

We could also have replicate observations from
each combination of B and C (run each plant twice
at each temperature, have replicate cages for each
density treatment within each pond, etc.). As we
will see below, in most cases, it makes little differ-
ence to how we test the effects of A and C.

We will describe the linear model and the
various forms of analysis using split-plot termi-
nology; keep in mind, however, that the plots are
simply replaced by subjects in repeated measures
designs. Components for fixed and random factors
in expected mean squares are represented as “var-
iances”; remember the different interpretations
of variation between means of fixed treatment
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error terms are used for each trend test, a requirement if there is a chance that
sphericity of variances and covariances does not hold.

Finally, we get the multivariate tests of the within-subjects hypotheses.

O2 level Hypoth. df Error df F P

Wilks’ Lambda 0.115 7 13 14.277 �0.001
Pillai Trace 0.885 7 13 14.277 �0.001
Hotelling–Lawley Trace 7.688 7 13 14.277 �0.001

Breathing type
�O2 level Hypoth. df Error df F P

Wilks’ Lambda 0.325 7 13 3.853 0.017
Pillai Trace 0.675 7 13 3.853 0.017
Hotelling–Lawley Trace 2.075 7 13 3.853 0.017

The conclusions from the Pillai statistic agree with the univariate analysis – a
significant interaction between O2 level and breathing type.



groups versus variance across all possible groups
from which we have selected a subset at random –
see Box 9.8.

11.2.1 Linear models for partly nested
analyses

Linear effects model
Consider a design with p levels of factor A (i�1 to
p), q levels of factor B (plots or subjects) nested
within each level of A ( j�1 to q) and r levels of
factor C (k�1 to r), crossed with both A and B
(Table 11.1). From Keough & Quinn (1998), p equals
three (the number of sites), q equals two (the
number of plots) and r equals four (trampling
treatments). From Mullens (1993), p equals two
(the different breathing types), q equals eight or 13
(the number of toads of each breathing type) and
r equals eight (O2 levels). For completeness, we will
describe the model with replicate observations
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Figure 11.2. Part of data set for
partly nested design, with p levels of
factor A (i�1 to p), q levels of
factor B ( j�1 to q) nested within
each level of A, r levels of factor C (k
�1 to r) crossed with factors A and
B(A), and n replicate observations (l
�1 to n) within each combination
(cell) of A, B(A) and C.

Figure 11.3. Variation in numbers
of limpets under different trampling
regimes and at different places, from
Keough & Quinn (1998). Panel (a)
shows number of limpets vs
intensity of trampling for three rock
platforms, and panel (b) shows
variation among plots within
platforms in overall abundance of
limpets.

Figure 11.4. Mean square root transformed rate of buccal
breathing for lung and buccal breathing toads for eight levels
of O2 concentration from Mullens (1993).



(l�1 to n) within each combination of A, B and C,
e.g. Keough & Quinn (1998) had replicate observa-
tions (strips) within each site, plot and treatment
combination. Usually, however, there is only a
single observation (e.g. a single toad) of each level
of C in each plot/subject.

The formal linear model for a split-plot design
is:

yijkl����i��j(i)��k���ik���j(i)k��ijkl (11.1)

Details of this linear model, including estimation
of its parameters, are provided in Box 11.3. 

From Keough & Quinn (1998):

(number of limpets)ijkl��� (site)i�
(plot within site)j(i)� (trampling)k�
(interaction between site and trampling)ik�

(interaction between plot within site and
trampling)j(i)k��ijkl (11.2)

From Mullens (1993):

(breathing rate)ijkl��� (breathing type)i�
(toad within breathing type)j(i)� (O2 level)k�
(interaction between breathing type and O2

level)ik� (interaction between toad within
breathing type and O2 level)j(i)k��ijkl (11.3)

In models 11.1 and 11.2 we have the following.

yijkl is the number of limpets in the lth strip
in the kth level of trampling treatment for the
jth plot at the ith site. Commonly in these
designs, n equals one, although Keough & Quinn
(1998) had n equals two.

� is the overall (constant) population mean
number of limpets per strip for all levels of
trampling in all plots across all sites.

Factor A is fixed, so �i is the effect of ith site
on the number of limpets per strip, pooling over
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Table 11.1 Marginal means for a partly nested design with i levels of factor A, j levels of factor B within each
level of factor A and k levels of factor C crossed with both A and B

C1 C2 Ck B marginal means A marginal means

A1 B1(1) y111 y112 y11k ȳj�1(1)

B2(1) y121 y122 y12k ȳj�2(1) ȳi�1

Bj(1) y1j1 y1j2 y1jk ȳj(1)

A2 Bj(2) y2j1 y2j2 y2jk ȳj(2) ȳi�2

Ai Bj(i) yij1 yij2 yijk ȳj(i) ȳi

C marginal means ȳk�1 ȳk�2 ȳk

Box 11.3 The partly nested linear model and its
parameters

Consider a design with p levels of factor A (i�1 to p), q levels of factor B (plots or
subjects) nested within each level of A ( j�1 to q) and r levels of factor C (k�1 to
r), crossed with both A and B (Table 11.1) and replicate observations (l�1 to n)
within each combination of A, B and C.

The formal linear model for a split-plot design is:

yijkl�l�ai�bj(i)�ck�acik�bcj(i)k�eijkl

In this model we have the following.

yijkl is the value of the response variable for the lth observation in the kth level
of factor C for the jth plot/subject in the ith level of factor A. Commonly in
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these designs, l�1, but our two worked examples in this chapter include
one in which l�2 (Box 11.1) and one with l�1 (Box 11.2).

l is the overall (constant) population mean of the response variable.
If factor A is fixed, ai is the effect of ith level of factor A (li�l), pooling over

factor C. If factor A is random, ai is a random variable with a mean of zero
and a variance of r

a
2, measuring the variance in mean values of the response

variable across all possible levels of factor A that could have been used.
Plots or subjects are nearly always random so bj(i) is a random variable with a

mean of zero and a variance of r
b
2, measuring the variance in mean values of

the response variable across all possible plots or subjects that could have
been used within any level of A.

If factor C is fixed, ck is the effect of the kth level of factor C (lk�l), pooling
over factor A. If factor C is random, ck is a random variable with a mean of
zero and a variance of r

c
2, measuring the variance in mean values of the

response variable across all possible levels of factor C that could have been
used.

If factors A and C are both fixed, acik is the effect of the interaction between
the ith level of A and kth level of C. If either factor is random, then acik is a
random variable with a mean of zero and a variance of r 2

ac
, measuring the

variance across all the possible interaction terms between the fixed levels (if
A is fixed) or all possible levels (if A is random) of factor A and the fixed
levels (if C is fixed) or all possible levels (if C is random) of factor C.

Because plots/subjects are nearly always random, the interaction between
factor C and plots/subjects bcj(i) k is a random variable with a mean of zero
and a variance of r 2

bc
, measuring the variance across all the possible

interaction terms between all the possible plots/subjects within any level of A
and the fixed levels (if C is fixed) or all possible levels (if C is random) of
factor C.

ei jk l is random or unexplained error associated with the lth observation in the
kth level of factor C for the jth plot/subject in the ith level of factor A. These
error terms are assumed to be normally distributed in each combination of
A, B and C with a mean of zero and a variance of r

e
2. Note that classical

split-plot and repeated measures designs usually do not have replication for
each combination of plot and factor C (n�1) so ei jk l usually cannot be
separately estimated.

This effects model is overparameterized (Box 8.3) so the usual sum-to-zero
constraints are imposed on the fixed effects. We can also use a cell means model
(Kirk 1995) which may be useful when there are missing observations (Section
11.6).

Estimating the parameters of the partly nested model follows the procedures
outlined in the previous three chapters for single factor, multifactor and randomized
block models. The cell means (li jk) are estimated by means of the observations in
each cell, although there is often only a single observation for each A, B and C com-
bination. The marginal means are shown in Table 11.1 and represent averages across
the appropriate cell means (or single observations). Standard errors for these
means must be based on the appropriate variance estimate (mean square), the one
that is used as the denominator of the F-ratio for testing the H0 that the means are
equal (see Boxes 9.2 and 9.6).



plots and trampling treatment. If factor A was
random, e.g. sites were chosen at random along
the shore, then �i is a random variable with a
mean of zero and a variance of 	

�
2, measuring

the variance in mean number of limpets across
all possible sites that could have been used.

Plots are random so �j(i) is a random variable
with a mean of zero and a variance of 	

�
2,

measuring the variance in mean number of
limpets across all possible plots that could have
been used within any site, pooling trampling
treatments.

Factor C is fixed, so �k is the effect of the kth
level of trampling treatment, pooling over plots
and sites. If factor C was random, e.g. trampling
levels were chosen at random from the possible
trampling levels that could have been used, then
�k is a random variable with a mean of zero and
a variance of 	

�
2, measuring the variance in

mean number of limpets across possible levels of
trampling that could have been used.

Factors A and C are both fixed, so ��ik is the
effect of the interaction between the ith site and
kth trampling treatment. This interaction
measures whether the effect of trampling is
consistent at all sites used. If one factor is
random, e.g. random sites, then ��ik is a random
variable with a mean of zero and a variance of
	2
��

, measuring the variance of all the possible
interaction terms between all possible sites and
the fixed trampling levels. This interaction would
measure whether the effect of trampling was
consistent across all possible sites.

Because plots are random, the interaction
between trampling treatment and plots [��j(i)k] is
a random variable with a mean of zero and a
variance of 	2

��
, measuring the variance of all the

possible interaction terms between all the
possible plots within any site and the fixed
trampling treatments. This measures the
variation in effects of trampling at the spatial
scale of plots.

�ijkl is random or unexplained error
associated with the lth strip in the kth trampling
treatment for the jth plot at the ith site. This is
the error associated with each strip that is not
due to trampling treatment, plot or site. Note
that classical split-plot and repeated measures
designs usually do not have replication for each

combination of plot and factor C (n equals one)
so �ijkl usually cannot be separately estimated
from 	2

��
.

Predicted values and residuals
If we replace the parameters in our model by their
OLS estimates (Box 11.3), it turns out that the pre-
dicted or fitted values of the response variable
from our linear model 11.1 are:

ŷijkl� ȳijk (11.4)

The error terms from model 11.1 can be estimated
by the residuals, the difference between each
observed and predicted value. In most applica-
tions of split-plot and groups by trials repeated
measures designs, there is only a single observa-
tion per cell and these residuals all equal zero. In
these circumstances, we cannot directly estimate
	
�

2, the variance of the error terms, unless we
assume that 	2

��
, the variance due to the B(A)�C

interaction, equals zero. Not being able to esti-
mate 	

�
2 does not, however, compromise our tests

of the main hypotheses of interest, those of A, C
and A�C, the argument being similar to that
used for analyses of RCB and simple repeated
measures designs in Chapter 10 (see Section
11.2.3).

11.2.2 Analysis of variance
The partitioning of variance from the OLS fit of the
linear model 11.1 is shown in Table 11.2. We do not
provide computational details for sums-of-squares
(SS) for each term in this ANOVA – see Winer et al.
(1991) and Kirk (1995) for the classical formulae. In
practice, however, we assume that you have access
to statistical software with a general linear model-
ing routine when dealing with these complex
designs. The SS for each source of variation are cal-
culated by comparing the fit of the full model with
the fit of an appropriate reduced model (the model
including all terms except the one we wish to test
in our H0), as we described in Chapters 8, 9 and 10
for simpler ANOVA models. The general expected
values of the mean squares are also provided in
Table 11.2(a), as well as those for the usual case of
factors A and C being fixed and factor B (plots or
subjects) being random.

This ANOVA is more complicated than those
from previous chapters but not really that difficult
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– let’s look at the different components. The
between plots/subjects section is just a single
factor ANOVA on the mean values for each
plot/subject (i.e. averaging over the levels of factor
C) and the plots/subjects within A (i.e. factor B)
term is the equivalent of the residual term in this
single factor ANOVA. The within plots/subjects
section is just a number of RCB (or simple repeated
measures) designs, one for each level of A. The
effects of factor C and the A�C interaction are
interpreted in the same way as for a two factor
crossed ANOVA (Chapter 9). The C�plots within A
[i.e. C�B(A)] term represents the pooled error
terms from the p randomized block designs which
comprise the within plots/subjects component of
the analysis, i.e. for each level of A, we have a C by
plots RCB design (Kirk 1995).

These ANOVA tables are illustrated in Table
11.2(b) for some of the examples we described in
Section 11.1. The first is the split-plot design from
Wissinger et al. (1996) where the between plots
factor was hydroperiod, the within plots factor
was density treatment and the plots were ponds
nested within each hydroperiod. The second was
the groups by trials repeated measures design
from Gange (1995) where the between-subjects
factor was tree type, the within-subjects factor
was date, the subjects were individual trees and
the response variable was aphid abundance. The
ANOVA tables for our two worked examples are
also provided in Box 11.1 and Box 11.2.

11.2.3 Null hypotheses
There are three null hypotheses of primary inter-
est when we fit the partly nested model 11.1. 

Factor A (fixed)
H0: �1��2� . . .��i. This H0 states that there is no
difference between the factor A marginal means,
pooling levels of factor C. For example, no differ-
ence in the mean number of limpets per strip
between sites, pooling the trampling treatments.

This is equivalent to:
H0: �1��2� . . .��i�0, i.e. no effect of any level
of factor A. For example, no effect of site on the
mean number of limpets per strip, pooling the
trampling treatments.

Factor C (fixed)
H0: �1��2� . . .��k. This H0 states that there is no
difference between the factor C marginal means,
pooling levels of factor A. For example, no differ-
ence in the mean number of limpets per strip
between trampling treatments, pooling sites.

This is equivalent to:

H0: �1��2� . . .��k�0, i.e. no effect of any level
of factor C. For example, no effect of trampling
treatment on the mean number of limpets per
strip, pooling sites.

A�C interaction (fixed)
H0: �ijk��i��k���0, which is the same as (��)ik
�0. This H0 states that there are no interactions
between A and C, e.g. the effect of site on the mean
number of limpets per strip is the same for all
trampling treatments and the effect of trampling
treatment on the mean number of limpets per
strip is the same for all sites.

The modifications of these H0s for random
factors are straightforward as described in
Chapters 9 and 10.

Two other null hypotheses might also be
tested in some circumstances.

Factor B(A) (random)
H0: 	�

2�0, i.e. the variance in mean values of the
response variable across all possible plots or sub-
jects that could have been used within any level of
A equals zero. For example, no variance in the
mean number of limpets per strip between plots
in either site, pooling trampling treatments.

B(A)�C interaction (random)
H0: 	��

2�0, i.e. the variance across all the possible
interaction terms between all the possible
plots/subjects within any level of A and the fixed
levels (if C is fixed) or all possible levels (if C is
random) of factor C equals zero. For example, no
variance in the mean number of limpets per strip
across all the possible interaction terms between
plots within each site and trampling treatment.

F-ratios
The F-ratios for testing these null hypotheses are
based on the expected values of the relevant mean
squares (Table 11.2(a)). When factors A and C are
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both fixed, the F test for factor A uses a different
denominator [MSB(A)] than those for factor C and
A�C [MSCB(A)]. This is typical for designs with both
fixed and random factors and is apparent in all
these partly nested designs because the plots/sub-
jects term is nearly always random. In the classi-
cal split-plot or repeated measures design with n
equals one observation for each cell, the B(A) and
C�B(A) terms cannot be tested. The implications
of not being able to test the C�B(A) are analogous
to the implications of having no test for a block by
treatment interaction in a RCB design (Chapter
10). This makes sense given that the C�B(A) inter-
action comprises the pooled residual terms from
the p RCB designs and each of these residual terms
includes the plot/subject by treatment interac-
tion. The first implication is that if B is random,
then a strong C�B(A) interaction will reduce the
power of the tests of C and A�C, although these
tests are still valid because the expected mean
squares of both C and A�C include the variance
component due to C�B(A). This is not the case if
B is fixed, where C�B(A) is an inappropriate error
term for testing C and A�C (see below). The
second implication is that the use of C�B(A) as an
error term for C and A�C can be invalid if the
observations within each plot/subject are corre-
lated, which is almost certainly the case for
repeated measures designs. For the C�B(A) to be
used as an error term, we must make certain
assumptions about the covariances of the observa-
tions (Section 11.3).

With replicate observations in each cell, the
B(A) and C�B(A) terms can be tested against the
residual. Note, however, that using many replicate
observations within each cell, e.g. multiple meas-
urements on toads or multiple strips within plots,
may not be providing a much better test of the
terms that you really care about. The B(A) term is
rarely of much interest, and you probably don’t
care much if factor C has a different effect across
levels of B, i.e. a C�B(A) interaction. The effort
expended in sampling at this lowest level may not
be producing a more powerful statistical test of
any of the biologically interesting effects, only
increasing the cost of the design in terms of time
and/or money. When there is no replication
within plots, Underwood (1997) argued that tests
of the main effects of C and the A�C interaction

can only be done if we assume there is no C�B(A)
interaction, i.e. the effects of C do not vary from
plot to plot. However, it is clear from Table 11.2(a)
that the expected mean squares for C and the A�
C interaction include the variance due to C�B(A)
interaction, so the F test for C and A�C is testing
for these effects over and above the variation due
to the C�B(A) interaction and any residual varia-
tion. Therefore, we can interpret a significant
effect of C or the A�C interaction even if the
effects of C do vary for different levels B(A), which
is similar to the argument we made in Chapter 10
for RCB designs when the blocks factor was
random. A non-significant C or A�C interaction is
more difficult to interpret in the presence of
a C�B(A) interaction, but interpreting non-
significant tests is always problematical.

As you can see from Table 11.2(a), the effects of
A, C and the A�C interaction are all tested against
other terms in the analysis, all featuring effects of
B within A. Because you cannot control the
number of levels of A or C when they are fixed
factors, the only way to increase the power of
these tests is to increase the degrees of freedom.
This can only be achieved by using more levels of
B (more plots or subjects, e.g. more toads, more
plots, etc.), i.e. increasing q.

The expected mean squares and appropriate F
tests for other combinations of fixed and random
factors are presented in Table 11.3. When A, C and
plots/subjects (i.e. B) are all fixed (Table 11.3), you
can see that all terms are tested using the MSResidual

as the denominator. Note that you must have rep-
licate observations in each cell if plots (B) are fixed
because MSCB(A) is not an appropriate denominator
here unless you are very sure that the C�B(A)
interaction is negligible. In almost every case that
we deal with, factor B will be random so this
design is unlikely for biological experiments. If
factors A and plots/subjects are random, but C is
fixed, the tests are straightforward (Table 11.3),
but note that again, they use different combina-
tions of denominators for F tests for the various
hypotheses. Problems occur when plots/subjects
and factor C are random (Table 11.3). It does not
matter whether A is fixed or random in this case.
The difficulty is that the main effect of factor A
(which will almost always be of central interest)
cannot be tested directly, because there is no
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appropriate denominator. The only option is to
use quasi F-ratios, which are combinations of
mean squares that produce an approximate test of
your hypothesis (see Chapter 9). Winer et al. (1991)
discussed this option in detail, but you should be
aware that the resulting F tests are only approxi-
mate and not necessarily robust, and you probably
should avoid this situation if possible.

11.2.4 Comparing ANOVA models
The SS, df and MS for each term in the partly
nested model 11.1 can be derived from comparing
the fit of a full and a reduced model, where the
reduced model omits the parameter specified to
be zero in the H0. This is the same principle we
have described in Chapters 9 and 10 for other
multifactor models.

11.3 Assumptions

Irrespective of whether it is for a split-plot design
or a groups by trials repeated measures design,
the partly nested ANOVA model 11.1 has a number
of assumptions that need to be assessed.
Additionally, we should always check for outliers
from our fitted model. A useful first step is to
examine the residuals from the fit of the model. If
we only have n equals one within each combina-
tion of A, B and C, then we should omit the
B(A)�C term, otherwise the model is saturated (a
perfect fit) and all the residuals are zero. These
residuals will indicate any obvious outliers and
also indicate any strong skewness in the data.
Generally, however, the assumptions, and their
assessment, in these analyses are considered sep-
arately for the between plots/subjects and within
plots/subjects components.

11.3.1 Between plots/subjects
The test of factor A assumes normality and homo-
geneity of variance and the comments about
these assumptions in Chapters 8 and 9 apply here.
Note that, for the usual case of B random and A
and C fixed, these assumptions apply to the levels
of A (pooled across C) with the mean of Y in each
level of B(A) as a replicate observation. It is often
useful to create a new variable that is the average
across the levels of C and then use that variable in

boxplots for each level of A or to examine residu-
als from the fit of a single factor ANOVA model
with p groups to that variable.

11.3.2 Within plots/subjects and
multisample sphericity

The tests for any terms including within-plots/sub-
jects factors(s), i.e. tests of C and A�C, have the
assumption of sphericity of variances and covari-
ance, as did RCB and simple repeated measures
designs (Chapter 9). Unless this assumption holds,
then the B(A)�C term is an inappropriate denom-
inator for the test of C and A�C. Remember that
these partly nested designs can be envisaged as a
series of RCB (factor C by blocks, plots or subjects)
experiments, one for each level of factor A, so the
assumption is now multisample sphericity. Not
only must the variance–covariance matrices be
the same for each level of factor A, they must each
show sphericity, which means that the variances
of the differences between the levels of the
repeated factor must be the same.

In classical repeated measures designs, the
levels of the within-subjects factor (C) can usually
be applied in random order to each subject (Winer
et al. 1991). Similarly, in classical split-plot
designs, the levels of the within-plot factor (C)
should be randomly allocated to experimental
units (subplots) within each plot. Under these ran-
domization conditions, there is no reason for the
sphericity assumption not to hold; in fact, the
sphericity assumption is often not discussed
when general statistics texts describe split-plot
designs. In contrast, the sphericity assumption is
unlikely to hold in repeated measures designs
when subjects are recorded through time because
the differences between times closer together are
likely to be less variable (i.e. more similar) than
times further apart. If sphericity is not met, the
F-ratio statistics for within subjects effects (C and
A�C) will be inflated, increasing the risk of a Type
I error above the nominal level (e.g. 0.05) – see
Keselman & Keselman (1993), Keselman et al.
(1995) and Rasmussen (1989). There is no easy test
for the null hypothesis that the variance–covari-
ance matrices conform to multisample sphericity.
Kirk (1995) recommended the W test and provided
critical values, although we suggest it is safer to
assume that multisample sphericity is not met in
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repeated measures type designs and use one or
more of the following analytical strategies.

Adjusted univariate F-ratio tests
As described in Chapter 10 for RCB and simple
repeated measures designs, we can make the F
tests more conservative using adjusted df. An
index of sphericity is the population parameter �,
which can be estimated by the epsilon statistic (�̂).
Two methods of estimating � were described in
Chapter 10, the Greenhouse–Geisser (G–G) esti-
mate or the Huynh–Feldt (H–F) estimate (Winer et
al. 1991, Yandell 1997). These sample �̂s can be
used to adjust the df for within plots/subjects tests
downwards to make the tests more conservative,
since non-sphericity increases the risk of Type I
error. The adjustment is simple, being the original
df multiplied by �̂, although the new df will not be
integers (Table 11.4). If � is greater than 0.75, the
correction based on the Huynh–Feldt �̂ is better,
when � is less than 0.75, the correction based on
the Greenhouse–Geisser �̂ is better (Keselman &
Kesleman 1993). These adjusted tests are standard
output from most statistical software.

Multivariate tests
An alternative solution to the sphericity assump-
tion is to treat the levels of the within-subjects or
within-plots factor (i.e. the repeated measures
factor) as multiple response variables in a multi-
variate analysis of variance (MANOVA in Chapter
16; see also Keselman & Keselman 1993, Looney &
Stanley 1989, Kirk 1995, Tabachnick & Fidell 1996).
The MANOVA actually uses the difference between

successive repeated measurements (i.e. times) for
each subject or plot as response variables and tests
the null hypothesis that the difference scores
have a population centroid (multivariate mean)
equal to zero. The MANOVA approach can be
useful for these designs because it doesn’t assume
sphericity of variances and covariances, although
it does have all the usual MANOVA assumptions
(Chapter 16; Johnson & Field 1993) and has fewer
degrees of freedom. Also, if the n is less than the
number of differences between successive
repeated measurements (i.e. less than the number
of levels of the within-plots or -subjects factor
minus one), then the MANOVA approach cannot
be used. As discussed in Chapter 16, the Pillai trace
statistic is recommended for these multivariate
tests.

Profile analysis
Another approach is to summarize the responses
for each plot/subject as a single value and then use
these values in a single factor ANOVA model com-
paring the levels of A. The between plots/subjects
part of the partly nested univariate ANOVA does
this by summarizing the responses of each
plot/subject as an average across the levels of C. If
factor C is quantitative, e.g. time, we can also sum-
marize the responses of each plot/subject as a
trend or response curve, such as a linear, quad-
ratic, etc., and analyze the coefficients of these
trends in separate one factor ANOVAs (Meredith &
Stehman 1991). This provides a test of whether
such trends (linear, quadratic, etc.) vary across
factor A, i.e. a test of a treatment–contrast interac-
tion (Chapter 9). Such tests are usually default
output from statistical software and will be dis-
cussed in Section 11.5.2.

Which strategy is the best?
As we pointed out in Chapter 10 for RCB and simple
repeated measures designs, neither the epsilon-
adjusted univariate nor the multivariate approach
is always more powerful, unless sphericity is met,
when the traditional partly nested univariate
analysis is clearly preferred. Looney & Stanley
(1989) recommended using both approaches and
rejecting the within-subjects null hypotheses if
either the adjusted univariate or multivariate
tests are significant. Kirk (1995) recommended a
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Table 11.4 Degrees of freedom for within-plots
or -subjects components of partly nested ANOVA

Source df Adjusted df

Within plots/subjects
C (r�1) (r�1)ê
A�C (p�1)(r�1) (p�1)(r�1)ê
B(A)�C p(q�1)(r�1) p(q�1)(r�1)ê

Note:
Adjustment based on estimate of e indicating
how far variance–covariance matrix is from
sphericity.



preliminary test for multisample sphericity and
using the adjusted univariate tests if the spheric-
ity test is significant; however, his preliminary test
is not straightforward and not available in statisti-
cal software. We suggest that preliminary tests for
sphericity are of limited value and support the
Looney & Stanley (1989) approach and the use of
profile analyses if factor C is quantitative.

11.4 Robust partly nested analyses

As for other linear model analyses, the RT (rank
transform) procedure has been proposed as a
general method for overcoming problems of non-
normality and possibly other assumptions of the
partly nested analyses of variance (see discussion
in Thompson 1991b). We reiterate our comments
from Chapters 9 and 10. The rank transformation
is nonlinear in nature (Akritas 1991) and therefore
cannot effectively deal with interactions; indeed,
a significant main effect may be indicated when it
is simply due to an undetected interaction
(Thompson 1991b). As the A�C interaction is
often of considerable interest in the designs dis-
cussed in this chapter, the RT procedure seems
inappropriate. RT procedures are also inappropri-
ate for nested factors (Thompson 1991b), which
are important in the models used to analyze split-
plot and groups by trials repeated measures
designs. Also, as discussed in Chapter 10 for ana-
lyses of RCB designs, a rank transformation can
also change the nature of variances and covari-
ances, making the assumption of sphericity less
tenable (Akritas 1991). Although Thompson
(1991b) has developed a general rank-based multi-
variate test statistic that is applicable to repeated
measures designs, its usefulness is restricted to
situations where there are no interactions.

We could also fit the models in this chapter
using generalized linear models (GLMs), that
allow a range of different error distributions of
which normal is just one (Chapter 13). Maximum
likelihood techniques are used for fitting the
models and estimating the parameters and likeli-
hood ratios are used for hypothesis tests of these
parameters. Care must be taken in the choice of
full and reduced models for such complex analy-
ses because some models won’t make much

biological or statistical sense, e.g. a model that
includes B(A) but not A. Note that GLM analyses
are still sensitive to the specification of the error
distribution so model diagnostics are very impor-
tant, just as they are for linear models. Chapter 13
includes a more detailed discussion of GLMs.

11.5 Specific comparisons

11.5.1 Main effects
Planned contrasts for the between-plots/subjects
main effect are done in the same way as described
in Chapter 8 and simply average across the within-
plots/subjects factor levels for each experimental
unit. Planned contrasts for the within-plots/sub-
jects main effect assume multisample sphericity
if the usual B(A)�C term is to be used as the
denominator. The two alternatives are to adjust
the df for these contrasts using the G–G or H–F
estimates of � (Section 11.3.2) or use separate error
terms, e.g. Ccontrast�B(A), for each contrast (Kirk
1995). These error terms are calculated similarly
to those for analyses RCB (or simple repeated
measures) designs described in Chapter 10, except
that the contrasts are calculated across the levels
of factor A; Kirk (1995) provides computational
details but good statistical software will calculate
these separate error terms. They basically repre-
sent a separate F-ratio testing for differences in
the levels of C within each level of A. Keselman &
Keselman (1993) suggested an approximate paired
t test with separate error terms based on the two
groups being compared, called the KKS test,
similar to that described in Chapter 10, although
Satterthwaite’s adjusted df are used.

Unplanned comparisons for between-
plots/subjects factors are done in the same way as
described in Chapter 8, and simply average across
the within-plots/subjects factor levels for each
experimental unit or subject. The usual
unplanned multiple comparison procedures may
not be reliable for within-plot/subjects factors
because the means are probably correlated to
some extent, particularly for repeated measures
designs. Keselman & Keselman (1993) described
some new stepwise multiple comparison proce-
dures for within-subjects/plots factors. The sim-
plest approach might be to contrast the specific
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levels of C applying a Bonferroni-type adjustment
of significance levels for multiple testing if
required (Chapter 3). Note that these contrasts
between levels of C will use the B(A)�C term as
the denominator and therefore assume multisam-
ple sphericity; adjusted df should be used based
on G–G or H–F estimates of �.

11.5.2 Interactions
In partly nested ANOVA models, the main interac-
tion of interest is between A and C and represents
an interaction between a between-plots/subjects
factor and a within-plots/subjects factor. This
interaction can be explored with “interaction”
plots of means, where we might have the levels of
factor C along the horizontal axis, the response
variable along the vertical axis and each point rep-
resents the mean of factor A levels across plots/sub-
jects within each A level. Deviations from parallel
lines indicate some interaction between A and C.

Tests of simple main effects can also be done as
described in Chapter 9, the only difficulty for the
designs in this chapter is choosing the appropri-
ate denominator for the F tests (Kirk 1995,
Maxwell & Delaney 1990). In Chapter 9, we
pointed out that for a two factor crossed (A, B, A�
B) linear model, the SS for simple main effect tests
for factor A represent partitioning of the SSA and
SSAB, whereas the simple main effects tests for B
represent partitioning of the SSB and SSAB. In con-
trast to the two factor completely randomized
design, however, the test of the A term in a partly
nested model with A and C fixed and B (plots/sub-
jects) random uses a different denominator than
the tests of the C and A�C interaction terms. So
what denominators do we use for the simple main
effects tests in a partly nested model?

The simple effects tests for C at each level of A
separately, e.g. the effect of O2 level for each breath-
ing type separately in the Mullens (1993) example,
are relatively straightforward because both C (O2

level) and A�C (breathing type�O2 level) use the
same denominator – C�B(A). Note that if multi-
sample sphericity does not hold, then these tests
should be based on adjusted degrees of freedom
using the G–G or H–F estimates of� (Section 11.3.2).
Alternatively, separate denominators should be
used for each simple effect, the equivalent to cal-
culating a simple repeated measures ANOVA

testing C within each level of A separately (Chapter
10).

For the simple effects tests for A at each level
of C separately, e.g. the effect of breathing type for
each O2 level separately, Kirk (1995) and Maxwell
& Delaney (1990) recommended using a denomi-
nator that represents the average of the B(A) and
B(A)�C terms. This is sometimes called the
within-cells error term:

(11.5)

Tests using the error term in expression 11.5
might be biased, especially if the two terms con-
tributing to the pooled term are very different.

11.5.3 Profile (i.e. trend) analysis
A useful approach, which can be used in conjunc-
tion with any experimental design where at least
one factor is quantitative, is to look for trends
across levels of the quantitative factor (Chapter 8).
For designs in this chapter, the common approach
is to test for trends across the levels of factor C (the
within plots/subjects factor) if C is quantitative
(e.g. time, O2 level). The simplest trends to
examine are those of a polynomial form, such as
linear, quadratic, cubic, etc. (see Chapter 8).
Tabachnick & Fidell (1996) provide an excellent
description of these methods for repeated meas-
ures designs, and therefore for partly nested
models in general.

The number of polynomial contrasts that can
be calculated is one less than the number of levels
of the relevant factor. For example, if there were
six levels of factor C, you could test for linear (X),
quadratic (X2), cubic (X3), quartic (X4) and quintic
(X5) polynomials, although it is often difficult to
attach biological meaning to trends more
complex than cubic. It is important to remember
that these trend tests depend on the metric
(spacing) of levels of the quantitative factor(s), as
discussed in Chapter 8, and that most statistical
software assumes equal spacing by default. The
tests of these polynomials are statistically ortho-
gonal (independent) of each other because each is
tested using a separate component of dfC and MSC

(or A�C if trends are tested as part of the interac-
tion), with separate components of the dfCB(A) and
MSCB(A) for the denominators of each trend F test.

SSB(A)�SSB(A)�C

p(q�1)�p(q�1) (r�1)
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Testing for trends as part of analyses of classi-
cal repeated measures designs is often termed
profile analysis (Tabachnick & Fidell 1996). As
with tests of trends in completely randomized fac-
torial designs discussed in Chapter 9, there are
two types of tests of interest in profile analysis:

• Main effect trends, usually across the within-
plots/subjects factor C pooling the levels of
factor A. For example, is there a linear trend in
breathing rate of toads across oxygen
concentrations, pooling the two breathing
types? Is there a quadratic trend? A cubic
trend? Trends could also be examined across
factor A as part of the between-plots/subjects
part of the analysis.

• Treatment–contrast interactions for
examining the A�C interaction term. Here we
compare trends of the same form (e.g. linear)
across C between different levels of factor A.
For example, is the linear trend in breathing
rate of toads across oxygen concentrations the
same for the two breathing types? Is the
quadratic trend the same? These tests are often
described as tests of parallelism (Tabachnick &
Fidell 1996), since testing whether the linear
trends are the same across level of A is clearly a
test of whether the trends are parallel.

We do not provide computational details for cal-
culating these trend tests because there is
nothing additional to the information we
included in Chapter 9 and these trend tests are
usually default output from statistical software if
the data are coded, and analysis run, as a classical
repeated measures design. Note that some soft-
ware will automatically test each trend MS
against a separate error term so that multisample
sphericity is not assumed. Alternatively, the B(A)
�C term could be used, with adjustments to the
df based on the G–G or H–F estimates of �̂. Growth
curve analysis can also be useful for ecophysiolog-
ical studies and involves comparisons of nonlin-
ear regressions of a more complicated form than
simple polynomials (Potvin et al. 1990). 

An example of these trend analyses was pro-
vided by Sharpe & Keough (1998), who examined
temporal trends in chlorophyll-a and in the
density of herbivorous snails following the
removal of dominant grazers from the intertidal

zone of a rocky shore. The removal treatments
were the between-subjects/plots factor, and time
was the repeated factor. Individual boulders were
the plots/subjects, so different boulders received
different removal treatments. They recorded
chlorophyll-a from randomly selected areas on
each boulder, and censused a range of herbivores
once a month. They contrasted the linear tempo-
ral trend in abundance of each species (as a
measure of recolonization rate) between particu-
lar combinations of treatments. We also illustrate
these trend analyses in the worked examples in
Box 11.2 and Box 11.4.

11.6 Analysis of unbalanced partly
nested designs

Unequal sample sizes can arise in partly nested
(split-plot or repeated measures) designs in two
ways. First, the number of plots or subjects in each
level of the between plots factor might vary. Since
the between-plots tests average over the within-
plots factors, this type of unequal sample size is no
different to unequal sample sizes in the usual fac-
torial ANOVAs described in Chapter 9, and our rec-
ommendations are the same. Remember that
checking assumptions becomes much more
important when sample sizes are unequal and
that even tests of within-plots/subjects factors can
be more sensitive to assumptions (e.g. sphericity)
when the between-plots/subjects part of the
design is unbalanced (Keselman & Keselman
1993). Second, when we have no replication within
each cell (the classical split-plot or repeated meas-
ures design), then missing observations equate to
missing cells. If you have a reasonable number of
plots/subjects, then a simple approach is to delete
the plot(s) or subject(s) with the missing observa-
tions; this causes problems if sample sizes
(number of plots or subjects) are small because the
between-subjects/plots part of the analysis may
become severely unbalanced. Basically, most sta-
tistical software will use this approach by default
if the data are set up for a classical repeated meas-
ures analysis. If you don’t have many plots/sub-
jects but lots of levels of the within-subjects/plots
factor(s), then it might be better to omit the level
of factor C (or the combination of levels if you have
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more than one within-subjects/plots factor) with
the missing observations. This approach changes
the null hypotheses being tested, of course, but if
the hypotheses are general ones about trends
through time and you have a long time sequence,
then omitting one or two times may not have
much effect.

An alternative solution is to simply fit the
partly nested linear model (Berk 1987) and
compare this full model with appropriate reduced
models for specific hypotheses, as described in
Chapter 10 for RCB designs. Unfortunately, the F
tests are more sensitive to the sphericity assump-
tion when observations are missing and most
statistical software doesn’t provide epsilon esti-
mates, nor adjusted univariate tests, when the
analysis is run this way, so be careful. As we rec-
ommended in Chapter 10 for RCB and simple
repeated measures designs, a practical strategy
may be to delete the subject(s)/plot(s) with the
missing observation(s), running the analysis as a
classical repeated measures design to check sphe-
ricity and then only fit a partly nested linear
model to the data with all subjects/plots if that
assumption is tenable. This is messy but there are
not many practical options when dealing with
missing observations in these designs.

More complicated solutions are provided by
Berk (1987), who suggested ML and REML estima-
tion procedures that weight the observations, by
Kirk (1995), who described using the cell means
model and testing a subset of hypotheses using
contrasts, and by Rovine & Delaney (1990). All
these methods will be difficult for practicing biol-
ogists, at least until they are standard compo-
nents of statistical software.

11.7 Power for partly nested
designs

As expected, power calculations become more
complicated with these complex designs, with the
possibility of separate power calculations for a
series of main effects, and interactions. We can
divide these tests into those involving only
between-plot/subject terms, only within-plot/
subject terms, and interactions between the two
groups. For between-subjects factors, power calcu-

lations are similar to those described for Chapters
8 and 9. They are routine when main effects are
of interest, and they can be made easier by recod-
ing the data file as means, averaging across
the repeated or within-plots factor levels. For the
more complex within-subjects/plots effects, the
power calculations can be done, with two impor-
tant steps. First, specifying an effect size can be
very difficult, as for all complex interactions.
Second, in computing power for a particular
effect, we must identify the denominator used to
test that effect, and use that MS to generate the
variance estimate needed to calculate power.

One special case in which the power calcula-
tion is relatively simple is the family of BACI
(Before-After-Control-Impact) designs used in
environmental monitoring. The test for an envi-
ronmental impact is an interaction between
Before-After and Control-Impact, tested using, for
example, changes Before-After at replicate loca-
tions within Control and Impact categories. In the
original formulation of this design, with two loca-
tions (C and I), two periods (B and A), and multiple
sampling times within each period, we could use
a partly nested analysis, with periods, times
within periods, and samples at C and I at each
time. An impact would be revealed as a change in
the difference between C and I, from the Before to
the After period. Stewart-Oaten et al. (1986)
pointed out that this design can be analyzed as a
t test, simply by calculating the difference, C-I, and
comparing that difference between periods. As a
consequence, rather than formulating an effect
size based on the interaction, we can specify an
effect size as the divergence or convergence of
these C-I differences. More complex formulations
of this design (e.g. Downes et al. 2002, Keough &
Mapstone 1997) can also be simplified in this way,
because the interaction of interest is between the
main between- and within-plots factors, and each
of them has only two levels.

11.8 More complex designs

So far we have considered partly nested designs
involving one between-subjects/plots factor (A),
one within-subjects/plots factor (C) and one
factor representing subjects/plots (B). These
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experimental designs can be extended to include
more than one between-subjects/plots factor
and/or more than one within-subjects/plots
factor.

11.8.1 Additional between-plots/subjects
factors

There is nothing difficult about additional
between-subjects/plots factors, because this part
of the analysis is just an ANOVA on the average of
the response variable for each plot/subject. For
example, a four factor design might have two
between-subjects/plots factors (A and C), one
within-subjects/plots factor (D), and factor B rep-
resenting plots nested within A and C. For
example, McGoldrick & Mac Nally (1998) studied
the impact of eucalypt flowering on the dynamics

of bird communities in forests of southeastern
Australia. They had eight sites (i.e. plots) arranged
in a two factor crossed design with factor A being
habitat (two levels: dominated by ironbark euca-
lypts vs dominated by stringybark eucalypts) and
factor B being region (two levels: north of Great
Dividing Range and south of Great Dividing
Range) with two sites within each combination.
Each site was censused monthly for twelve
months, so month was the within-plots/subjects
factor. The response variables included flowering
index, density of nectarivorous birds, species rich-
ness of nectarivorous birds etc. The analysis for
this example is in Box 11.4, where we analyze the
density of nectarivorous birds, transformed to
logs after adding one to each observation to
account for zero values.
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Box 11.4 Impact of flowering on forest bird communities

As described in Section 11.8.1, McGoldrick & Mac Nally (1998) studied the impact
of eucalypt flowering on the dynamics of bird communities in forests of S.E.
Australia. They used a partly nested design with two between-plots/subject factors
(habitat and region) with two sites within each combination. Each site was censused
monthly for twelve months, so time was the within-plots/subjects factor. The
response variable we will analyze is natural log transformed (density of nectarivor-
ous birds�1).

The specific null hypotheses of interest were as follows.

No difference between habitats in the mean loge (density of nectarivorous
birds�1), pooling regions and months.

No difference between regions in the mean loge (density of nectarivorous birds
�1), pooling habitat and months.

No interaction between habitat and region on the mean loge (density of
nectarivorous birds�1), pooling months. Rephrased, the effect of habitat on
the mean loge (density of nectarivorous birds�1) was the same for both
regions and vice versa, pooling months.

No difference between months in the mean loge (density of nectarivorous
birds�1), pooling habitats and regions.

No interactions between habitat and month, region and month, or habitat and
region and month on the mean loge (density of nectarivorous birds�1).
Re-phrased, the effect of habitat, pooling regions, was the same in all months,
the effect of region, pooling habitats, was the same in all months, and the
interaction between habitat and region was the same in all months.

With no replicates within each combination of habitat, region, site and month, we
could not test hypotheses about the random factor sites within habitat and region
or months by sites within habitat and region.
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Between plots/subjects
Source SS df MS F P

Habitat 88.313 1 88.313 48.975 0.002
Region 0.106 1 0.106 0.059 0.821
Habitat�region 1.334 1 1.334 0.740 0.438
Site(habitat, region) 7.213 4 1.803

Within plots/subjects
Source SS df MS F P GG

Month 48.676 11 4.425 5.941 �0.001 0.019
Habitat�month 75.152 11 6.559 8.806 �0.001 �0.006
Region�month 11.436 11 1.040 1.396 0.209 0.299
Habitat�region�month 3.858 11 0.351 0.471 0.911 0.665
Site(habitat, region)�month 32.774 44 0.745

Greenhouse–Geisser epsilon: 0.2104
Huynh–Feldt epsilon: 0.8907

Our analysis agrees with that published by McGoldrick & Mac Nally (1998), although
they did not present adjusted tests for within-plots/subjects tests. The adjusted df
did not change our conclusions. The month effect varied between habitats and
there were neither effects of region nor any interactions between habitat and region
or region and month. Note that the epsilon estimates differ greatly and for the three
factor interaction, the adjusted test is more liberal than the unadjusted tests.

Linear trends:
Source SS df MS F P

Time 16.056 1 16.056 12.231 0.025
Habitat�month 24.532 1 24.532 18.689 0.012
Region�month 3.028 1 3.028 2.307 0.203
Habitat�region�month 0.717 1 0.717 0.546 0.501
Site(habitat, region)�month 5.251 4 1.313

Quadratic trends:
Source SS df MS F P

Time 13.099 1 13.099 8.897 0.041
Habitat�month 17.935 1 17.935 12.182 0.025
Region�month 1.574 1 1.574 1.069 0.360
Habitat�region�month 0.822 1 0.822 0.558 0.496
Site(habitat, region)�month 5.889 4 1.472

Cubic trends:
Source SS df MS F P

Time 1.696 1 1.696 2.943 0.161
Habitat�month 22.695 1 22.695 39.375 0.003
Region�month 1.401 1 1.401 2.432 0.194
Habitat�region�month 0.167 1 0.167 0.290 0.619
Site(habitat, region)�month 2.306 4 0.576

The trend analyses indicate that any linear, quadratic or cubic trends through
time differ between the two habitats. It is clear from Figure 11.5 that there is little
change through time in stringybark habitats but marked declines from the austral
autumn and winter through to spring and summer for ironbark habitat.



The appropriate linear model for a split-plot or
repeated measures design with two crossed
between-plots/subjects factors is:

yijklm����i��k���ik��j(ik)��l���il�

��kl����ikl���j(ik)l��ijklm (11.6)

From McGoldrick & Mac Nally (1998):

(log density of nectarivorous birds plus
one)ijklm��� (habitat)i� (region)k�
(interaction between habitat and region)ik�
(site within habitat and region)j(ik)� (month)l�
(interaction between habitat and month)il�
(interaction between region and month)kl�

(interaction between habitat, region and
month)ikl� (interaction between site within
habitat and region and month)j(ik)l��ijklm (11.7)

In models 11.6 and 11.7 we find the following.

� is the overall (constant) population mean
log density of nectarivorous birds plus one.

�i is the effect of the ith level of the first
between plots factor A (effect of habitat), pooling
regions and months.

�k is the effect of the kth level of the second

between plots factor C (effect of region), pooling
habitats and months.

��ik is the effect of the interaction between
the ith level of A and kth level of C (interaction
between habitat and region), pooling months.

�j(ik) is the effect of the jth plot (factor B, site)
within the ikth combination A and C.

�l is the effect of the lth level of the within-
plots factor D (effect of month).

��il is the effect of the two way interaction
between the ith level of A and the lth level of D
(interaction between habitat and month).

��kl is the effect of the two way interaction
between the kth level of C and the lth level of D
(interaction between region and month).

���ikl is the effect of the three way
interaction between the ith level of A, the kth
level of C and the lth level of D (interaction
between habitat and region and month).

��j(ik)l is the effect of the interaction between
the jth plot (factor B) within the ikth
combination A and C and the lth level of D
(interaction between site (within habitat and
region) and month).

�ijklm is the error term. Note that �ijklm cannot
be estimated separately from ��j(ik)l in this model
unless there is replication within each cell,
which is unusual. By recording the same sites
once at each time, McGoldrick & Mac Nally
(1998) did not have replicates within each
combination of habitat, region and month and
so could not estimate �ijklm.

The general expected mean squares are in
Table 11.5, as well as those for the common case
whereby A, C and D are fixed and B (plots or sub-
jects) is random. The between-plots/subjects terms
are tested against MSB(AC) and the within-plots/sub-
jects terms are tested against MSDB(AC). Error terms
for other combinations can be determined from
the expected mean squares and are provided in
Table 11.5 following the rules in Box 9.8 – see also
Kirk (1995) and Winer et al. (1991).

To further illustrate this design, consider the
study of Morris (1996) who examined factors
affecting the density of rodents in the Rocky
Mountains of the USA. He had nine locations, with
two habitats (xeric and mesic) at each location (i.e.
a 9�2 factorial design), with two replicate grids
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Figure 11.5. Mean loge transformed density of birds (�1)
for two habitats (ironbark and stringybark forests) and two
regions (north and south) for twelve months from
McGoldrick & Mac Nally (1998).
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for each combination of location and habitat.
Grids were thus the plots or subjects and location
and habitat were the between plots/subjects
factors. He sampled each grid at three times (early,
mid, late summer), so sampling time was the
within plots/subjects factor. The ANOVA for this
study is in Table 11.6, illustrating the appropriate
error terms for each effect in the model, based on
all factors except grids (i.e. plots) being fixed.

A more complicated version of this design was
used by Letourneau & Dyer (1998), who examined
the effects of top predators (beetle larvae present
or absent), soil type (nutrient rich or poor) and
light level (high or low) on colony size of an ant
species on seedlings planted in three replicate
pots (i.e. plots) in a three factor crossed design.
Each pot was recorded on five occasions over 18
months, with time as the within-plots/subjects
factor. The ANOVA for this study is in Table 11.7
with error terms based on all factors except plots
being fixed.

A further modification of the between-
plots/subjects part of the design is where A (the
between plots factor) and plots are arranged as a
RCB design (Table 11.8). The appropriate linear
model for this design is:

yijkl����i��j���ij��k���ik���jk�

���ijk��ijkl (11.8)

In model 11.8:

� is the overall (constant) population mean,
�i is the effect of factor A,
�k is the effect of factor C,
��ik is the interaction between factors A and

C,
�j is the effect of plots/subjects (i.e. blocks),
��ij, ��jk, and ���ijk are the interactions

between A, C, A�C and plots/subjects, and
�ijkl is the error effect. Note that �ijkl cannot

be estimated separately from ���ijk in this model
unless there is replication within each cell,
which is unusual.

This is basically a three factor unreplicated
ANOVA, identical to a factorial RCB design
(Chapter 10). If A and C are fixed and B (plots/sub-
jects or blocks) is random, then A is tested against
A�B (plot), as in all RCB designs, C is tested
against C�B and A�C is tested against A�B�C
(Table 11.8). There are no tests for plot/subject (i.e.
block) or its interactions with A and C, unless
quasi F-ratios are used.

Aguiar & Sala (1997) used such an analysis in
their investigation of seed movement in the
Patagonia steppe. They had three sites recorded
on three dates and they measured seed availabil-
ity in four microsites (bare ground, grass, shrub,
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Table 11.6 ANOVA table for partly nested design from Morris (1996) with two crossed between-plots factors
(habitat and location, both fixed), one within-plots factor (time, fixed) and grids as random plots. There is only
one observation within each combination of A, B, C and D

Source Source df F-ratio denominator

Between plots/subjects Between grids
A Habitat 1 Grid (habitat, location)
C Location 8 Grid (habitat, location)
A�C Habitat� location 8 Grid (habitat, location)
B(AC) Grid (habitat, location) 18

Within plots/subjects Within grids
D Time 2 Grid (habitat, location)� time
A�D Habitat� time 2 Grid (habitat, location)� time
C�D Location� time 16 Grid (habitat, location)� time
A�C�D Habitat� location� time 16 Grid (habitat, location)� time
B(AC)�D Grid (habitat, location)� time 36



litter) in each site on each date. Site and date were
between plots factors (although there was only
one “plot” for each combination of site and date)
and microsite was a within plot factor (Table 11.9).
Although not stated in their paper, they treated
site as a random block effect and assumed there
was no site by date interaction since they tested
the random site effect against this interaction
term. A second example comes from Evans &
England (1996) who looked at the effect of artifi-
cial honeydew on the numbers of adult weevil par-
asitoids on alfalfa plants. They had three
treatments (early application of artificial honey-
dew followed by water, early application of water
followed by artificial honeydew, two applications
of water only), each allocated to one of three “sub-
plots” in each of ten rows (plots or blocks). The
numbers of parasitoids were recorded from each
subplot on two separate dates about ten days
apart. The ANOVA for this design is also in Table
11.9 and Evans & England (1996) fitted an additive
model with no treatment�row interactions,
allowing tests for row (i.e. plots) and row�date.

11.8.2 Additional within-plots/subjects
factors

Extra within-plots/subjects factors can also be
included in these designs, although this compli-
cates the analysis because multiple denominators
now must be used for the F tests for the within-
subjects/plots terms. With one between-plots
factor (A), two within-plots factors (C and D) and
plots (factor B) nested within A, the appropriate
linear model is:

yijklm����i��j(i)��k���ik���j(i)k��l�

��il���j(i)l���kl����ikl����j(i)kl��ijklm (11.9)

In model 11.9:

� is the overall (constant) population 
mean,

�i is the effect of ith level of factor A (the
between-plots factor),

�j(i) is the effect of the jth plot (factor B)
within the ith level of factor A,

�k is the effect of the kth level of factor C (the
first within-plots factor),
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Table 11.7 ANOVA table for partly nested design from Letourneau & Dyer (1998) with three crossed between-
plots factors (predators, light level, soil; all fixed), one within-plots factor (time, fixed) and plots as random plots

Source Source df F-ratio denominator

Between plots/subjects Between plots
A Predators 1 Plot (predators, soil, light)
C Soil 1 Plot (predators, soil, light)
D Light 1 Plot (predators, soil, light)
A�C Predators�soil 1 Plot (predators, soil, light)
A�D Predators� light 1 Plot (predators, soil, light)
C�D Soil� light 1 Plot (predators, soil, light)
A�C�D Predators�soil� light 1 Plot (predators, soil, light)
B(ACD) Plot (predators, soil, light) 16

Within plots/subjects Within plots
E Time 4 Plot (predators, soil, light)� time
A�E Predators� time 4 Plot (predators, soil, light)� time
C�E Soil� time 4 Plot (predators, soil, light)� time
D�E Light� time 4 Plot (predators, soil, light)� time
A�C�E Predators�soil� time 4 Plot (predators, soil, light)� time
A�D�E Predators� light� time 4 Plot (predators, soil, light)� time
C�D�E Soil� light� time 4 Plot (predators, soil, light)� time
A�C�D�E Predators�soil� light� time 4 Plot (predators, soil, light)� time
B(ACD)�E Plot (predators, soil, light)� time 64
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��ik is the effect of the two way interaction
between the ith level of A and kth level of C (i.e.
A�C interaction),

��j(i)k is the interaction between the kth level
of C and the jth plot (B) within the ith level of A
(B within A�C interaction),

�l is the effect of the lth level of factor D (the
second within-plots factor),

��il is the effect of the two way interaction
between the ith level of A and the lth level of D
(A�D interaction),

��j(i)l is the interaction between the lth level
of D and the jth plot (B) within the ith level of A
(B within A�D interaction),

��kl is the effect of the two way interaction
between the kth level of C and the lth level of D
(C�D interaction),

���ikl is the effect of the three way interaction
between the ith level of A, the kth level of C and
the lth level of D (A�C�D interaction),

���j(i)kl is the effect of the interaction
between the kth level of C and the lth level of D
and jth plot (B) within the ith level of A (B within
A�C�D interaction), and

�ijklm is the error effect. Note that �ijklm cannot
be estimated separately from ���j(i)kl in this
model unless there is replication within each
cell, which is unusual.

The general expected mean squares, and those
when factors A, C and D are fixed and plots/sub-
jects random, are provided in Table 11.10. Note
that when A, C and D are fixed, C and A�C are
tested against C�plots within A, D and A�D
against D�plots within A and C�D and A�C�D
against C�D�plots within A.

These designs are sometimes termed split-
split-plot designs because we can have a main
between-plots factor and two within-plots factors,
one applied to sub-plots within each plot and one
applied to sub-sub-plots within each sub-plot.
More commonly, however, these experimental
designs include a single within-plots factor with
repeated measurements through time or two
within-subjects time factors. For example, we
mention the following.

• Vasquez (1996) looked at the effect of
illumination (two fixed levels: bright and dark)
and seed distribution (two fixed levels:

dispersed and clumped) on seed consumption
in experimental arenas for three species of
rodents. Species was the between-subjects
factor and there were approximately 17
individuals/subjects for each species. Each
individual was tested under each illumination
level and each seed distribution in a crossed
arrangement (four combinations), so
illumination and seed distribution were
separate within subjects factors (Table 11.11).

• Green (1997) studied the effects of land crabs
on recruitment of rainforest seedlings on
Christmas Island. He used two habitats
(understory and gap) in the rainforest as the
between-plots factor with seven paired plots in
understory habitat and three paired plots in
gap habitat. These pairs were the “plots” or
“subjects”. One plot (i.e. “sub-plot”) in each
pair allowed access to crabs and one (sub)plot
excluded crabs, so exclusion was one within-
plots factor. Additionally, each plot and
(sub)plot was recorded monthly for 23 months
(although only 22 months were analyzed) so
time was a second within-plots factor. This
example includes a factor whose levels are
allocated to (sub)plots within plots (pairs) plus
a factor representing the whole plots recorded
through time (Table 11.11).

Other designs can be termed doubly repeated
measures designs because the within-plots factors
both represent repeated measurements through
time. Meserve et al. (1996) set up an experiment to
examine the effect of predation on the survivor-
ship of degus, a species of rodent. One factor was
predation (two fixed levels: predators excluded
using fencing and netting and control), with four
plots within each level. The number of rodents
alive was recorded on each plot at six monthly
censuses over four years – year (four fixed levels)
and month (six fixed levels) were within-plots
factors and were crossed (Table 11.11). In all these
examples, there were four different denominators
used for testing hypotheses in the ANOVA.

11.8.3 Additional between-plots/subjects
and within-plots/subjects factors

These partly nested analyses of variance can be
applied to a variety of complex split-plot (repeated

332 SPLIT-PLOT AND REPEATED MEASURES DESIGNS
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measures) experimental designs that include
multiple between-plots/subjects factors and
multiple within-subjects/plots factors. We will use
the study of Gough & Grace (1998) on the effects
of herbivores and productivity levels on plant
species densities to illustrate such a complex
design. They chose two freshwater marshes on a
river near the Louisiana/Mississippi border in
eastern USA. In each marsh, they established eight
fenced areas (plots), to exclude herbivores like
rabbit, muskrat, etc., and eight unfenced areas. So
the between plots component of the design had
two fixed factors (marsh and fence) in a crossed
arrangement with replicate areas (i.e. plots). There
were three sub-plots within each fenced or
unfenced area and each sub-plot received one of
three nutrient enrichment treatments (no addi-
tion, nutrient addition, and natural soil addition).
So enrichment was the first within-plots factor.
Additionally, each sub-plot was also censused
seven times over two years, so time was a second
within-plots factor. All factors were considered
fixed except for area (i.e. plot). The resulting
ANOVA model (Table 11.12) had 19 terms and four
different denominators for testing hypotheses.

11.8.4 General comments about complex
designs

Gumpertz & Brownie (1993) discussed split-plot
designs that include repeated measures (usually
multiple times) in some detail. They recom-
mended using trend analyses to examine patterns
in the repeated factor and its interactions with
the other factors in the design (Section 11.5.3).
They also recommended against analyzing such
designs as univariate split-split-plot designs, i.e.
using the partly nested models we have described,
because of the assumption of sphericity of vari-
ance–covariance matrices across times, and pre-
ferred a multivariate approach. We agree that the
sphericity assumption may be important but
instead recommend epsilon-adjusted univariate
tests in addition to the multivariate tests. Winer et
al. (1991) and Kirk (1995) provide details of these
complex designs and approaches to analyses; they
also provide general formula for determining EMS
for any combination of fixed and random factors.
Kirk’s (1995) unique terminology adapts well to
these designs.

11.9 Partly nested designs and
statistical software

Data files for these partly nested analyses can be
set up in two ways. First, we could create a file
for a classical “split-plot analysis” with each
factor in a separate column (Table 11.13). A
partly nested linear model is then fitted and
most software requires that all terms are spec-
ified in the model and each term specifically
tested against the appropriate denominator.
Only unadjusted univariate tests are usually pro-
vided but this approach provides great flexibility
in structuring the model and choosing denomi-
nators for F tests. Second, the data can be coded
for a “repeated measures analysis”, with
between-subjects factors coded as usual but the
different levels of the within-subjects factors are
in individual columns (Table 11.13). If you have
replicate observations within each cell, it can be
difficult to code the data file for “repeated meas-
ures” analysis and you must either just use cell
means or switch to the “split-plot” set up.
Software using the “repeated measures”
approach nearly always assumes B(A) is random
and all other factors are fixed but provides addi-
tional output, including estimates of � (for
multisample sphericity), adjusted and unad-
justed univariate tests, multivariate tests, and
polynomial trend analyses; it also explicitly dis-
tinguishes “between-subjects” and “within-sub-
jects” components of the ANOVA. Note that the
unadjusted univariate tests will be identical to
those provided by the first analysis. The impor-
tant point is that although the two univariate
analyses are functionally identical, the alterna-
tive analyses (adjusted univariate, MANOVA) and
automatic extras (profile analyses) will often
only be provided when the data are coded for a
classical repeated measures design, not for a
split-plot. The profile analyses can usually also
be obtained by including contrasts as part of a
split-plot analysis.
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11.10 General issues and hints for
analysis

11.10.1 General issues

• Partly nested designs are very commonly used
in biology, as ways to use resources more eco-
nomically – save money, kill fewer organisms,
etc. There is a cost to this rationalization, as
the statistical models have more assumptions
than completely randomized factorial designs.

• Although they are treated differently in many
textbooks, unreplicated partly nested, split-
plot and repeated measures (“groups�trials”)
designs are analyzed with an identical linear
model. For repeated measures designs, this
model is usually described with a larger set of
assumptions, which imposes more restrictions
on the analysis. We recommend that, because
the two designs (split-plot and repeated mea-
sures) require identical models, you should
examine the larger set of assumptions for all
partly nested designs.

• Unreplicated partly nested designs, i.e. those
with only a single observation of each level of

C for each plot/subject within each level of A,
prevent you from testing one higher-order
interaction or require that you assume that
interaction to be zero, depending on the exact
design. In the usual situation of all factors
being fixed except B (i.e. plots or subjects), this
does not preclude tests of the fixed factors or
their interactions.

• These designs can include additional factors,
both between-plots/subject and within-
plots/subjects. Once the model is decided, the
analysis is straightforward except that care
must be taken to determine the correct F-ratios
depending on which factors are fixed and
which are random.

11.10.2 Hints for individual analyses
• These designs are complex, and generally have

mixtures of fixed and random factors. As a first
step, before doing the experiment, write out
the linear model, the ANOVA table, and
include details of the F-ratios.

• The different designs will change the df, and
hence the power, of many of your tests of
hypotheses. Before doing the experiment, look
at all of the relevant degrees of freedom, and
decide whether this arrangement of your
experimental units and resources will give
you the best compromise between power and
cost.

• The assumption of normality is less a problem
for the between-plots/subjects factors, as those
analyses effectively use means of other data,
allowing the Central Limit Theorem to be
invoked.

• Tests of the between-plots/subjects factors
assume homogeneity of between-group vari-
ances.

• The assumption of sphericity is important for
the tests of within-plots/subjects factors and
incorporates the homogeneity of variance
assumption for this component of the analysis.
Examine the various measures of the validity
of this assumption (particularly the
Greenhouse–Geiser and Huynh–Feldt estimates
of �), and, if �̂ values are low, use the conserva-
tive corrections to the F tests or the MANOVA
approach. There is no agreed-upon test for the
assumption of multisample sphericity.
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Table 11.13 Data coding for unreplicated “split-
plot” analysis and for unreplicated “repeated
measures” analysis

Data file for “split-plot” analysis

Factor A Plots/subjects (B) Factor C Y

1 1 1 y111
1 1 2 y112
1 2 1 y121
1 2 2 y122
2 3 1 y231
i j k yijk

Data file for “repeated measures” analysis

Factor A Plots/subjects (B) C1 Ck

1 1 y111 y11k
1 2 y121 y12k
1 3 y231 y23k
i j yij1 yijk



• If the design is unreplicated, consider coding
the data file up as repeated measures, allowing
you to routinely get the �̂ values, corrected
univariate F-ratios, and the multivariate

equivalents. We follow Looney & Stanley
(1989), and suggest you look for a significant
result in either the univariate or multivariate
analyses.
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In Chapter 10, we described a technique for reduc-
ing the residual or unexplained variation in an
experiment by grouping experimental units into
spatial or temporal blocks. Another approach to
reducing the residual variation is to measure one
or more concomitant continuous variables for
each experimental unit along with the response
variable. These concomitant variables, or covari-
ates, are usually considered as continuous predic-
tor variables, with the one or more factors being
categorical predictors. A linear models analysis of
this design is sometimes called an analysis of
covariance (ANCOVA), where the effect of the
covariate on the response variable is removed
from the unexplained variability by regression
analysis. The final ANCOVA tests the difference
between factor level means, adjusted for the effect
of the covariate.

Another use of ANCOVA is to compare the
slopes and/or intercepts of two or more regression
lines, although this use is less common. We will
cover basic methods for ANCOVA in this chapter,
but also pay particular attention to complex
designs and situations with regression slopes that
are heterogeneous between the factor levels (see
also Figure 12.1).

12.1 Single factor analysis of
covariance (ANCOVA)

The simplest ANCOVA design is one analogous to
a single factor ANOVA where we have a single cat-
egorical predictor variable (factor). In addition to
a single continuous response variable, we also

record the value of a continuous covariate from
each experimental or sampling unit. Some exam-
ples from the biological literature include the fol-
lowing.

• Tollrian (1995) studied the effect of a chemical
cue (kairomone) released by predators (midge
larva Chaoborus) on morphology of the aquatic
cladoceran Daphnia. The response variable was
body mass of Daphnia, the factor was
kairomone treatment (two levels: presence,
resulting in neckteeth-induced morphs, and
absent, resulting in typical morphs) and the
covariate was body length. If body length
explains some of the variation in body mass, a
more powerful test of kairomone treatment
will be obtained.

Chapter 12

Analyses of covariance

Figure 12.1. Diagrammatic representation of adjusted
means in ANCOVA.The adjusted Y means are based on the
overall X mean, not the X means for each group. Note that
the difference between the adjusted Y means is smaller than
the difference between the unadjusted Y means, although this
does not always occur in ANCOVA adjustment.



• Mothershead & Marquis (2000) looked at the
effects of increased leaf damage (two levels:
natural herbivore damage, artificially
increased damage mimicking increased
herbivory) on floral traits of flowers of the
perennial herb Oenothera macrocarpa in
Missouri, USA. The response variables were
corolla diameter and floral tube length,
changes in which would result in changes in
pollinator preference and efficiency. They used
flower order (successive seasonal flowering) as
a covariate to help explain some of the
variation in floral traits and provide a more
powerful test of damage effects.

We illustrate ANCOVA with two examples from
the biological literature.

Sex and fruitfly longevity
Partridge & Farquhar (1981) examined the effect
of number and type of mating partners on longev-
ity (response variable) of fruitflies. There was a
single factor (partner type) with five treatments:

one virgin female per day, eight virgin females per
day, a control group with one newly inseminated
female per day, a control group with eight newly
inseminated females per day, a control group with
no females. Also, the thorax length of each indi-
vidual fly was recorded as a covariate. If thorax
length explains some of the variation in longevity,
then the test of the effect of partner type on lon-
gevity adjusted for thorax length will be more
powerful. The analysis of these data is presented
in Box 12.1.

Shrinking in sea urchins
Constable (1993) studied the role of sutures (joins
between plates in the test) in the shrinking of the
test of the sea urchin Heliocidaris erythrogramma.
He compared widths of inter-radial sutures (mm),
the response variable, between urchins kept
under high and low food regimes and an initial
sample, the factor with three groups, with body
volume (ml, cube root transformed) as the covari-
ate. The analysis of these data is presented in Box
12.2.
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Box 12.1 Worked example of ANCOVA: sex and fruitfly
longevity

Partridge & Farquhar (1981) studied the effect of number of mating partners on
longevity of fruitflies. There were five treatments: one virgin female per day, eight
virgin females per day, a control group with one newly inseminated female per day,
a control group with eight newly inseminated females per day, a control group with
no females. Also, the thorax length of each individual fly was recorded as a covari-
ate. If thorax length explains some of the variation in longevity, then the test of the
effect of treatments on longevity adjusted for thorax length will be more powerful.
The raw data were extracted by reading from Figure 2 in the original paper (see
also description and discussion in Hanley & Shapiro 1994). Our general H0 was that
there was no effect of partner treatment on longevity of male fruitflies, adjusting for
thorax length.

An ANCOVA model relating longevity to treatment group with thorax length
as a covariate (model 12.2) was fitted and the model residuals examined. The plot
of residuals against predicted longevity showed evidence of heterogeneous vari-
ances (Figure 12.2(a)). The model was refitted with log10 transformation of longev-
ity. The residual plot was much improved with consistent variances for different
levels of the covariate (Figure 12.2(b)). There was no indication that the treatments
affected thorax length (ANOVA on thorax length: F4,120�1.26, P�0.289).

The specific H0 was that there was no effect of partner treatment on log10 lon-
gevity of male fruitflies, adjusting for thorax length.
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The ANCOVA from the fit of the model based on log10 longevity against treat-
ment group with thorax length as a covariate is as follows.

Source df MS F P

Treatment 4 0.196 27.97 �0.001
Thorax 1 1.017 145.44 �0.001
Residual 119 0.007

There was a significant difference between adjusted treatment means. The pooled
within-groups regression coefficient was 1.194. The MSResidual for an ANOVA on
log10 longevity (without thorax as covariate) was 0.015 with 120 df, so including a
covariate has reduced the unexplained variation by around 50%.

Adjusted and unadjusted OLS treatment means were as follows.

Treatment Adjusted mean Unadjusted mean

1 1.808 1.789
2 1.771 1.789
3 1.794 1.799
4 1.717 1.737
5 1.589 1.564

The standard errors were 0.017 for adjusted means and 0.025 for unadjusted
means. Note that the covariance adjustment reduced the mean log10 longevity of
treatment one relative to treatments two and three.

The test for homogeneity of within-groups regression slopes was done by fitting
a model that related log10 longevity to treatment group, thorax length and the inter-
action between treatment group and thorax length, the latter term testing the H0

of equal slopes.

Source df MS F P

Treatment� thorax length 4 0.011 1.56 0.189
Residual 115 0.007

The null hypothesis of equal within-group regression slopes was not rejected
and it is clear from Figure 12.3 that there was little evidence for non-parallel slopes.

Figure 12.2. Plots of residuals
versus predicted values of the
response variable from ANCOVA
models fitted to data from Partridge
& Farquar (1981). (a) Untransformed
longevity and (b) log10-transformed
longevity.
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12.1.1 Linear models for analysis of
covariance

Linear effects model
So far, we have focused on linear models where all
the predictors are continuous (classical regres-
sion analyses in Chapters 5 and 6) or categorical
(classical analyses of variance in Chapters 8–11).
In Chapter 6, we explained how a linear model

could include both categorical (factors) and con-
tinuous (covariates) predictors. Now consider a
data set where factor A is a fixed categorical pre-
dictor variable with p groups (i�1 to p), X is a con-
tinuous predictor variable and we have a
continuous response variable Y, with both Y and
X recorded for each experimental or sampling
unit within each group. In the example from
Partridge & Farquhar (1981), factor A is partner
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Figure 12.3. Scatterplots with
linear regression lines of log10

longevity (days) against thorax
length (mm) for male fruitflies under
each of the five partner treatment
groups.The number and type of
female partners for each treatment
group are indicated in the legend.

Box 12.2 Worked example of ANCOVA: shrinking in sea
urchins

Constable (1993) studied the role of sutures in the shrinking of the test of the sea
urchin Heliocidaris erythrogramma. He compared widths of inter-radial sutures (mm)
between urchins kept under high and low food regimes and an initial sample (one
factor with three groups) with body volume (ml, cube root transformed) as the
covariate and n�24 urchins in each group. There was a significant interaction
between the factor and the covariate (F2,66�4.701, P�0.012), indicating heteroge-
neous slopes (Figure 12.4). Constable (1993) used the Wilcox modification of the
Johnson–Neyman procedure (Box 12.4) to determine over which values of body
volume the groups were significantly different.

Initial�Low food for cube root volume �2.95
High food� Initial for cube root volume �1.81
High food�Low food for cube root volume �2.07

So initial suture width was greater than low food suture width for body volumes
greater than 2.95, high food suture width was greater than initial for volumes greater
than 1.81 and high food suture width was greater than low food suture width for
volumes greater than 2.07.



type (p�5), X is thorax length, the response vari-
able Y is longevity and each experimental unit is
a fruitfly. In Constable’s (1993) study, factor A is
food regime (p�3), X is body volume, Y is suture
width with individual urchins as the experimen-
tal units.

The ANCOVA model is a linear model with one
continuous predictor (covariate) and one categor-
ical predictor (factor) but where we focus on the
effects of the factor levels, adjusted for the covari-
ate. The ANCOVA model is best considered as an
“ANOVA” model with a covariate included, rather
than a “regression” model with a categorical pre-
dictor.

The usual form of the ANCOVA model is:

yij����i��(xij� x̄)��ij (12.1)

The details of the linear ANCOVA model, includ-
ing estimation of its parameters and means, are
provided in Box 12.3. Note that if there is no rela-
tionship between the response variable and the
covariate, i.e. ��0, then model 12.1 simply
becomes the single factor ANOVA model described
in Chapter 8. If there are no effects of the treat-
ments, i.e. all �i�0, then model 12.1 becomes a
simple linear regression model described in
Chapter 5. These reduced models will be discussed
further in Section 12.1.4.
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Figure 12.4. Scatterplots with
linear regression lines of suture
width against cube root transformed
body volume for sea urchins under
each of the three food level groups.
Treatment groups: low food, high
food and initial sample.
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Box 12.3 The linear ANCOVA model and its parameters

Consider a data set with n observations ( j�1 to n) where factor A is a categori-
cal predictor variable with p groups (i�1 to p), X is a continuous predictor variable
and we have a continuous response variable Y, with both Y and X recorded for each
experimental or sampling unit within each group. Based on the Constable (1993)
example, we could code factor A as two dummy variables (Chapter 6), so that X1

equals 1 for high food and 0 for otherwise and X2 equals 1 for low food and 0 for
otherwise, and call the covariate X3. The (multiple) linear (regression) model we
could fit to these data, explicitly ignoring the group structure is:

yj�b0�b1xj1�b2xj2�b3xj3�ej

From Constable (1993):

(suture width)j�b0�b1(high food vs initial)j�b2(low food vs initial)j�b3(body
volume)j�ej
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In these two models we have the following.

yj is the jth replicate observation of the response variable, e.g. the suture width
for the jth urchin.

b0 is the intercept of the linear model, the mean of Y when X1, X2, and X3�0,
e.g. the suture width for an urchin with zero body volume in the initial
sample.

b1 is the partial regression slope for X1, e.g. the regression slope relating suture
width to the difference between high food and initial sample groups, holding
the difference between low food and initial sample groups, and body volume,
constant.

b2 is the partial regression slope for X2, e.g. the regression slope relating suture
width to the difference between low food and initial sample groups, holding
the difference between high food and initial sample groups, and body
volume, constant.

b3 is the partial regression slope for X3, e.g. the regression slope relating suture
width to body volume, holding the difference between high food and initial
sample groups, and low food and initial sample groups, constant.

ej is random or unexplained error associated with the jth replicate observation.

The interpretations here are those of a standard multiple regression with one
continuous and one categorical predictor (Chapter 6). No specific adjustment is
made to the values of the response variable or the means of the response variable
for each group, although the interpretation of each regression coefficient is based
on holding the other predictors constant.

The usual form of the ANCOVA model is:

yij�l�ai�b(xij� x̄)�eij

In this model we have the following.

yij is the value of the response variable for jth observation in the ith level of
factor A.

l is the overall (constant) mean value of the response variable.
ai is effect of ith level factor A, defined as the difference between each A mean

and the overall mean (li�l).
b is a combined regression coefficient representing the pooling of the

regression slopes of Y on X within each group. A basic assumption is that the
regression slopes within each group are the same, otherwise pooling them
to produce b can result in interpretation of factor effects that are misleading.

xij is the covariate value for the jth replicate observation from the ith level of
factor A.

x̄ is the mean value of the covariate.
ei j is random or unexplained error associated with the jth replicate observation

from the ith level of factor A, representing the component of the response
variable not explained by the effects of the factor or the relationship with
the covariate. These error terms are assumed to be normally distributed at
each level of factor A, with a mean of zero [E(ei j)�0] and a variance of r

e
2.

This model is overparameterized so, when factor A is fixed, then the usual con-
straint �p

i�1ai�0 applies, so that parameters in the effects model can be estimated.



From Partridge & Farquhar (1981):

(longevity)ij�overall mean�
(partner treatment)i��[(thorax length)ij�
(mean thorax length)]��ij (12.2)

From Constable (1993):

(suture width)ij�overall mean�
(food treatment)i��[(body volume)ij�
(mean body volume)]��ij (12.3)

In models 12.1 and 12.3 we have the following:

yij is the value of suture width for the jth
urchin in the ith food treatment.

� is the overall (constant) mean value of
suture width.

�i is effect of ith food treatment on suture
width. This effect is defined as the difference
between each food treatment mean and the
overall mean (�i��).

SINGLE FACTOR ANALYSIS OF COVARIANCE (ANCOVA) 345

Note that we have centered the X-values, by subtracting the mean. If we don’t,
the model is:

yij�l�ai�bxij�ei j

and l is now a population intercept (for X�0) rather than an overall population
mean of Y. It doesn’t matter for the partitioning of variance and testing hypotheses
which version we use, although the first is most common in the literature.

The focus in the usual ANOVA models is on estimating group or cell means. In
ANCOVA models, we wish to estimate group means adjusted for the effects of the
covariate, i.e. adjusted means. These are the means of the adjusted values of the
response variable defined in expression 12.7. For group i, the adjusted mean rep-
resents the mean value of the response variable if the mean value of the covariate
for that group equals the overall mean value for the covariate:

li(adjusted)�l1�b(x̄i� x̄)

This is estimated by:

li(adj)� ȳi�b(x̄i� x̄)

The standard error of the adjusted mean is:

sȳ i(adjusted)
�

where MSResidual is from the ANCOVA partitioning of variation (Table 12.1) and
SSResidual(X) is from an ANOVA on the covariate.

We may also wish to estimate b, the pooled within-groups regression coeffi-
cient relating Y to X. Unfortunately in terms of computation, this is neither the esti-
mate of the regression slope of Y on X pooling all observations, as pointed out
above, nor is it a simple average of the within-group regression slope estimates.
Fortunately, the general linear model routine in most statistical software will provide
this estimate (b) and its standard error (sb), although the former can be calculated
from:

b�

where the numerator is the sum, across groups, of the covariance between Y and
X within each group.

�
p

i�1
�

n

j�1
(xij� x̄i)(yij� ȳi)

SSResidual(X)

�MSResidual�1
ni
�

(x̄i� x̄)2

SSResidual(X)
	



� is a combined regression coefficient
representing the pooling of the regression slopes
relating suture width to body volume within
each food treatment group. A basic assumption
is that the regression slopes within each group
are the same, otherwise pooling them to
produce � can result in interpretations of factor
effects that are misleading.

xij is the value of body volume for the jth
urchin from the ith food level group.

�ij is random or unexplained error associated
with the jth urchin in the ith food level group
not explained by the food treatment or the body
volume.

Although our model includes both effects of a
categorical predictor (�i) on the response variable
and the slope (�) of a regression line relating a
continuous predictor to the response variable, the
interpretation of the parameters is familiar. We
measure the effects of treatments (factor A)
adjusting for the covariate, i.e. holding it con-
stant. The ANCOVA can therefore be considered as
an ANOVA on data adjusted by the regression
slope of Y on the covariate X. Each adjusted obser-
vation (the value of an observation “corrected” for
the effects of the covariate) can be expressed as:

yij(adj)�yij��(xij� x̄)����i��ij (12.4)

These adjusted observations are also the resid-
uals from the fit of a regression model of Y on X
(Winer et al. 1991). In model 12.4, �i is effect of ith
level factor A, adjusted for the effects of the covar-
iate (�i(adj)��(adj)). Substituting the OLS estimate of
the pooled within-groups regression slope, we
obtain:

yij(adj)�yij�b(xij� x̄) (12.5)

Each adjusted value is the value of Y for an
observation in any group adjusted (centered) to
the mean value of the covariate. For example, the
suture width of an urchin is adjusted for the
effects of the covariate X by subtracting a term
that represents a shift, using the regression of
suture width on body volume, of the body volume
for that urchin to the mean body volume of all
urchins in the experiment:

(suture width)ij(adj)� (suture width)ij�
b[(body volume)ij� (mean body volume)] (12.6)

The focus in the usual ANOVA models is on esti-
mating group or cell means. In ANCOVA models,
we wish to estimate group means adjusted for the
effects of the covariate, i.e. adjusted group means.
These are the means of the adjusted values of the
response variable defined in Equation 12.4 and,
for group i, represent the mean value of the
response variable if the mean value of the covari-
ate for that group equals the overall mean value
for the covariate:

�i(adjusted)��i��(x̄i� x̄) (12.7)

This is estimated by:

ȳi(adj)� ȳi�b(x̄i� x̄) (12.8)

From Constable (1993):

(mean suture width)i(adj)�

(mean suture width)i�b[(mean body volume)i�
(overall mean body volume)] (12.9)

Details on estimating adjusted means and their
standard errors are provided in Box 12.3.
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Table 12.1 ANOVA table for single factor ANCOVA based on factor A being fixed and response variable adjusted
for the effects of the covariate

Source of variation df Mean square Expected mean square F-ratio

Factor A (adjusted) (p�1) r
e
2�

Residual (adjusted) p(n�1)�1 r
e
2

Total (adjusted) pn�2

SSResidual(adjusted)

p(n�1)�1

MSA(adjusted)

MSResidual(adjusted)

n�
n

i�1
a 2

i

p�1
SSA(adjusted)

(p�1)



Predicted values and residuals
In practice, the ANCOVA model fitted is that in
Equation 12.4 where a single factor ANOVA model
is fitted to observations adjusted for the effects of
the covariate. The predicted values from this
model are based on the regression adjustment
and the treatment group:

ŷij� ȳi�b(x̄i� x̄ij) (12.10)

These predicted values are different for each
observation within each group, in contrast to the
ANOVA model where the predicted values within
each group were the same, i.e. the group mean.
The residuals from the fitted ANCOVA model are
the differences between each observed Y-value
and the predicted Y-value:

eij�yij� ŷij�yij� ȳi�b(x̄i�xij) (12.11)

These residuals in Equation 12.11 incorporate the
effects of both the continuous covariate and the
categorical factor. As for all linear models, residu-
als provide the basis of the OLS estimate of 	

�
2 and

they are valuable diagnostic tools for checking
assumptions and fit of our model.

12.1.2 Analysis of (co)variance
The SSTotal(adj) from the ANCOVA is simply the
SSTotal from an ANOVA on Y less the SSRegression

from a linear regression of Y on X, the latter rep-
resenting the adjustment to the Y-values based
on the relationship between Y and X. This
SSTotal(adj) can be partitioned into that due to the
difference between adjusted A group means
(SSA(adj)) and that not explained by factor A
(SSResidual(adj)). The dfA(adj) is the number of groups
minus one and the dfResidual(adj) is the total

number of observations minus the number of
groups minus one for the regression of Y on the
covariate. These sum to the dfTotal(adj), the total
number of observations minus two (one for the
regression of Y on the covariate). The mean
squares are the SS divided by the df as usual and
the expected values of these mean squares are
identical to those from a single factor ANOVA
(Chapter 8), except that the analysis is based on Y-
values adjusted for the covariate.

The relationship between the analyses of vari-
ance from fitting a single factor ANOVA model to
unadjusted Y-values, a simple regression model
fitted to unadjusted Y-values against the covariate,
and the ANCOVA model fitted to adjusted Y-values
is illustrated for the data from Partridge &
Farquhar (1981) in Table 12.2. The SSTotal(adj) repre-
sents the total variation in unadjusted Y (SSTotal

from the ANOVA on Y ) less that explained by the
regression of unadjusted Y on X across the whole
data set (SSRegression from regression analysis on
complete data set). The unexplained variation in
unadjusted Y (SSResidual from ANOVA on Y ) is split
into the variation due to the pooled within-groups
regression of Y on X (SS for the covariate from
ANCOVA) and the variation in adjusted Y not
explained by the treatment groups (SSResidual(adj)

from ANCOVA). Note that the SSRegression from the
whole data set is not the same as the SS for the
covariate from the ANCOVA because the latter is
the variation explained by the pooled within-
groups regression.

12.1.3 Null hypotheses
The H0 for a single factor ANCOVA with a single
covariate is based on adjusted means and adjusted
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Table 12.2 Analyses of variance from Partridge & Farquhar (1981) for log10 longevity of fruitflies for different
partner treatments, showing ANOVA on Y (log10 longevity), regression of Y (log10 longevity) on covariate X (thorax
length) and ANCOVA on Y (log10 longevity) adjusting for covariate X (thorax length). The SSTotal and dfTotal for
ANCOVA sum SSTreatment and SSResidual for data adjusted for effects of covariate

ANOVAY RegressionY on X ANCOVAY

Source SS df SS df SS df

Treatment 0.977 4 0.783 4
Regression on thorax length 1.212 1 1.017 1
Residual 1.850 120 1.615 123 0.833 119
Total 2.827 124 2.827 124 1.615 123



treatment effects, i.e. means and effects of A
adjusted for the covariate:

H0: �1(adj)��2(adj)� . . .��i(adj)� . . .��(adj)

H0: �1(adj)��2(adj)� . . .��i(adj)� . . .�0

The adjusted means are simply group (treatment)
means of the adjusted observations. They are also
the mean values of Y in each group when the
covariate is adjusted to equal x̄, using the estimate
of pooled within-groups regression slope of Y on X
(�). Because of the assumption that the slopes of
the individual within-group regression lines are
the same (see Section 12.3), the differences
between adjusted means are the same as the dif-
ferences between adjusted Y-values for any value
of X. When X�0, we are dealing with Y intercepts
for regression models with the common pooled
within-groups regression slope fitted to the popu-
lation of observations in each group. Any test of
equality of adjusted population group means is
also a test of equality of population group inter-
cepts.

The expected values of the mean squares for
the ANCOVA in Table 12.1 indicate that the test of
the H0 of no difference between adjusted group
means uses an F-ratio of MSA(adjusted) to
MSResidual(adjusted). This F-ratio is compared to an F
distribution with (p�1) and p(n�1)�1 df in the
usual manner.

12.1.4 Comparing ANCOVA models
We can also test the H0 of no effects of factor A
using full and reduced models. The full model
12.1 is:

yij����i��(xij� x̄)��ij (12.11)

The reduced model is a simple linear regression
model based on no group effects (H0: all �is equal
zero):

yij����(xij� x̄)�ij (12.12)

Here, � is the regression slope of Y on X for all
groups combined. The SSTotal from the ANCOVA
(i.e. SSTotal(adjusted)) is simply the SSResidual from the
full model and SSResidual(adjusted) is simply the
SSResidual from the reduced model, analogous to
the model fitting procedure described in previous
chapters.

We could also compare the full model 12.1

with a reduced ANOVA model ignoring the covar-
iate:

yij����i��ij (12.13)

This tests the null hypothesis that pooled within-
groups regression slope between Y and X equals
zero. If this H0 is true, then we would expect the
covariate not to contribute to explaining the vari-
ation in Y and SSResidual from the ANOVA model
would be the same as that from the ANCOVA
model. Note that model 12.13 is fitted to unad-
justed observations so is not the same as model
12.4.

12.2 Assumptions of ANCOVA

The assumptions for ANCOVA include those for
regression models (Chapter 5) and ANOVA models
(Chapter 8). The error terms from our fitted
ANCOVA model should be normally distributed,
they should have similar variances between
groups and they should be independent. Note that
these error terms are the errors from the linear
regression of Y on X (model 12.1) and from the
ANOVA model fitted to the adjusted observations
(model 12.4). We use the residuals in 12.11 to
check these assumptions. Because our ANCOVA
model has a regression component, these residu-
als will be different for observations within each
group as well as between groups. Plots of residu-
als against adjusted group means are the best
check of the assumption of homogeneous vari-
ances. Transformations of Y will often help if the
heterogeneous variances are due to skewed distri-
butions of Y within each group and generalized
linear models (Chapter 13) are also applicable.

Because the ANCOVA is a linear model with
both categorical and continuous predictors, some
other assumptions are discussed below. A funda-
mental assumption underlying the application of
the ANCOVA model and calculation of adjusted
group means, that the within-group regression
slopes relating Y to X are equal, will be examined
in Section 12.3.

12.2.1 Linearity
The relationship between Y and X in each group
should be linear. As always, scatterplots are a good
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way of checking this assumption and transforma-
tions should be used where appropriate. Specific
forms of nonlinearity between Y and the covariate
may be dealt with by including a polynomial term
as an extra covariate (Maxwell et al. 1993; see also
Section 12.7.1). These analyses will not be straight-
forward because there will probably be collinear-
ity between the covariate and its polynomial term
(see Chapter 6). Also, the test of homogeneity of
within-groups regression slopes is more complex
because there are at least two slopes for each
group, one for X and one for each polynomial
term.

12.2.2 Covariate values similar across
groups

ANCOVA also assumes that the covariate has the
same distribution, especially the range of covari-
ate values, for all groups. This assumption is
basically one of no collinearity between the con-
tinuous and categorical predictors in the model.
We are assuming that the covariate is indepen-
dent of the treatment groups, i.e. the covariate
values do not depend on the groups. This
assumption means in practice that you should
avoid situations in which there is a range of
covariate values that is present in one group, but
absent from others. The problem is that the
adjustment procedure would involve extrapola-
tion of the regression between Y and X beyond
the range of X values in some groups. Note that a
correlation between the covariate and the factor
is not the same as an interaction between the
covariate and the factor on the response variable.
The latter is about homogeneity of within-group
regression slopes and will be considered in
Section 12.3.

There is no hard and fast rule about what con-
stitutes too little overlap of covariate values
between groups, but if the covariate means are
not significantly different between groups (from a
single factor ANOVA on the covariate), then the
ANCOVA is probably reliable. If you have problems
with this assumption, the only solution is to omit
observations within groups that have unusually
high or low covariate values.

The other important implication of this
assumption is that ANCOVA models should not be
used as a correction for different values of the

covariate in each group of an experiment. For
example, if the initial body sizes of animals are
different between treatments at the start of a
growth experiment, then using initial size as a
covariate to “adjust” for this difference is inappro-
priate.

12.2.3 Fixed covariate (X )
The covariate X is assumed to be a fixed variable
with no error associated with it. This is the stan-
dard fixed X assumption of linear regression
(Chapter 5). This assumption is almost never valid
for ANCOVA in biological settings because the
covariate is usually a random variable, just like
the response variable. As we pointed out in
Chapter 5, X being a random variable in regres-
sion analysis usually results in underestimation
of the true regression slope. If the assumptions
about homogeneity of variance, range of covari-
ate values and parallel slopes hold, there is no
reason to suspect that the underestimation of
the true pooled within-groups regression coeffi-
cient between Y and X will vary between treat-
ments. Therefore, tests of significance should still
be reliable. We know of no extension of the
Model II regression approach (Chapter 5) to
ANCOVA.

12.3 Homogeneous slopes

The comparison of adjusted means relies on the
slopes of the regressions of Y on X being the same
between groups, i.e. homogeneity (equality) of
slopes. The adjustment of the Y-values to produce
adjusted group means and effects is based on a
pooled within-groups regression coefficient. This
pooled slope must be a reasonable representation
of the individual slopes, which will only be true if
the individual slopes are similar, i.e. the individ-
ual regression lines are parallel.

12.3.1 Testing for homogeneous within-
group regression slopes

The H0 of equal within group regression slopes
(�1��2��i��) is tested by examining whether
the interaction between the categorical predictor
(factor A) and the continuous predictor (covariate)
equals zero, i.e. no interaction. We have already
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examined interactions between continuous
predictors (Chapter 6) and between categorical
predictors (Chapters 9 to 11). An interaction
between a categorical and a continuous predictor
is interpreted as a change in the slope of the
regression line of Y on X for different levels of the
factor (i.e. different groups). No interaction indi-
cates that the regression coefficients (slopes) are
the same in the different groups. This assumption
is tested by comparing the fit of a full model with
a factor by covariate interaction term to a reduced
model with no interaction term. The formal
model terminology for interactions between
covariate and factors is tedious so we will illus-
trate the models for the data from Constable
(1993). The full model is:

(suture width)ij�overall mean�
(food level)i� (body volume)ij�
(food level�body volume)ij��ij (12.14)

The reduced model, assuming homogeneous
regression slopes between groups, is:

(suture width)ij�overall mean�
(food level)i� (body volume)ij��ij (12.15)

In practical terms, heterogeneous slopes cause
problems for interpreting our data. If the regres-
sion lines in the different groups are not parallel,
and you are trying to decide if their adjusted
means or intercepts differ, your answer depends
on where along the range of X-values you do the
comparison. For some X-values, the adjusted
means or intercepts will be closer together than
for others.

Maxwell et al. (1993) suggested that homogene-
ity of slopes should not be thought of as merely an
assumption. While main effects are difficult to
interpret in the presence of interactions, interac-
tions between factors and covariates usually rep-
resent effects of considerable biological interest.
Differences between the slopes of the regression
lines indicate that the treatments affect the rela-
tionship between Y and the covariate and explain-
ing this might be as important as interpreting
differences between adjusted means.

There is one important problem that often
occurs, especially with data like morphometrics.
If your factor has many levels, or you have large
numbers of observations in each group, or the
linear regression model of Y on X fits the data in

each group very well (i.e. r2 is very high), you may
have a very sensitive test of the H0 of no interac-
tion. You may find yourself rejecting H0, even
though a scatterplot suggests the regression lines
are almost parallel. This is always a difficulty
when using formal significance tests for checking
assumptions before a linear model analysis. We
suggest plotting the lines to see how different
they look and to examine the individual regres-
sion slopes. If they seem parallel, consider doing
the ANCOVA anyway or else simply use the Wilcox
procedure described below for heterogeneous
slopes.

12.3.2 Dealing with heterogeneous
within-group regression slopes

When slopes are clearly heterogeneous, there are
a number of possible approaches, which depend
on the questions of interest. First, if the slopes
themselves are of primary interest, you can con-
trast slopes across treatment combinations. This
is like using treatment–contrast interactions to
examine the Y by covariate interaction (Chapter
9). Second, if the treatment (group) effects are the
main interest, Huitema (1980) recommended a
test called the Wilcox procedure (Wilcox 1987b),
which is a modification of the original Johnson–
Neyman technique (Box 12.4; see also Maxwell et
al. 1993). This test compares groups in a pairwise
fashion, and identifies ranges of the covariate for
which the group means are significantly differ-
ent, and ranges for which there are no differences.
It is analogous to a test for simple main effects in
a factorial ANOVA (Maxwell et al. 1993; Chapter 9),
asking for what values of the covariate are the
treatments significantly different. It is essentially
an unplanned comparison technique, which, with
the Wilcox modification, adjusts probability
levels to take account of the number of tests. We
recommend comparing only a few pairs of treat-
ments, treating them as essentially planned con-
trasts where possible. Constable (1993) described
the application of the Wilcox procedure to
compare treatments in sea urchins (see Box 12.2).

A related approach is to choose certain values
of covariate and compare groups at those specific
values, e.g. using the mean of X or the value of X
for which the distance between regression lines
has the most precision (Maxwell et al. 1993, Rogosa
1980).
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Box 12.4 Computations for the Wilcox modification of
the Johnson–Neyman procedure for testing
over which ranges of the covariate are the
group means different

Significantly different slopes in an analysis of covariance indicates that the relation-
ship between the response variable and the covariate differs between treatments.
The differences between the regressions may be examined by plotting the 95% con-
fidence bands around each line, and seeing whether these bands overlap. However,
the interpretation of these differences is difficult, because the relative effects of the
treatments become obscure when the distributions of values about each line begin
to overlap. Generally, it is interesting to know the range of the covariate over which
the treatments differ. This is analogous to tests of simple main effects (i.e. means)
in a multi-factorial analysis of variance when there is a significant interaction, e.g.
identifiying the levels of factor B for which there is an effect of treatment A (see
Huitema 1980 for a discussion).

One procedure for making such a comparison determines the lower and upper
limits of the covariate (Xlower and Xupper) between which we are 95% certain that
two treatments under consideration are not significantly different, i.e. region over
which the lines cross. Johnson & Neyman (1936; J–N) originally designed a proce-
dure for comparing two treatments at single values of the covariate. Huitema (1980)
and Wilcox (1987b) have suggested ways of controlling experiment-wise Type I
error rates for simultaneous comparisons of two treatments at more than one
region of the covariate (i.e. defining regions of significant differences), as well as for
controlling error rates for simultaneous comparisons of more than two treatments.
Huitema’s (1980) method simply exchanges the F-ratio in the original J–N formulae
with a modified Bonferroni F-ratio, which acccounts for the total number of com-
parisons to be made between treatments (see Huitema 1980,pp. 292–293).Wilcox
(1987b) developed formulae similar to the J–N technique, but based on the
Tukey–Kramer simultaneous multiple comparisons procedure and Studentized
range distribution, rather than on the F distribution. In these formulae, he accounts
for unequal variances, allows simultaneous determination of the lower and upper
limits of the regions of non-significance between all pairs of treatments and the sub-
sequent generalizations, as well as controlling the potential effects of differences
between the range of the covariate in the treatments. Wilcox (1987b) also devel-
oped a statistic, ‘h’ (table included in his paper) to help control the error rates due
to repeated comparisons of both intercepts and slopes of all treatment regressions.
For comparisons of treatments with very large sample sizes or large differences in
sample sizes, h should be substituted by �(2SMM), where SMM, the Studentized
Maximum Modulus, is read from the table in Rohlf & Sokal (1969).

The Wilcox ( J–N) procedure is computationally tedious but there is a computer
program (WILCOX.EXE), written by Andrew Constable from the Antarctic
Division (Australia), to do the analysis and it is available from our website. It requires
some of the standard ANCOVA output from statistical software.

The procedure adopted here comprises the comparisons for unequal variances
of Wilcox (1987b, p. 91), which we have called the “Wilcox comparisons”. To
compare two groups, j and k:

Xupper��B��(B2�4AC)/ 2A

Xlower��B��(B2�4AC) / 2A



12.3.3 Comparing regression lines
We mentioned at the start of this chapter that
ANCOVA can also be used as a way of comparing
regression lines between groups. The comparison
of regression slopes across groups, a test for par-
allelism, uses the methods described in the previ-
ous section, testing the factor group by covariate
interaction term. If the within-group regression
slopes are different, then there is usually no inter-
est in comparing intercepts because the differ-
ence between intercepts is not maintained for
other values of X. If the regression lines are found
to be not significantly different from parallel,
then a pooled within-group regression slope is
used to “force” the lines to be parallel and the dif-
ferences between intercepts represent differences
for any value of X. So the test comparing inter-
cepts is simply the test comparing adjusted means

(Section 12.1.3) once a pooled within-groups
regression slope has been fitted.

12.4 Robust ANCOVA

There has been a surprising amount of theoretical
work on robust alternatives to ANCOVA, just about
all based on ranks (see review in Maxwell et al.
1993). Such robust methods may be required if
there is non-normality in the response variable (Y )
or nonlinearity in the relationship between Y and
the covariate. Puri & Sen’s (1969) test, one of the
first, ranks Y and X separately then calculates a
special test statistic. Alternatively, a simple rank
transform (RT) approach could be used whereby
the usual ANCOVA is done on rank transformed
data (both Y and X). Olejnik & Algina (1987)
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where

A�(b1j�b1k)
2�

B�2(b1j�b1k)(b0j�b0k)�h2

C�(b0j�b0k)
2�E�

and

E�

with

b0 j, b0k the intercepts of the regressions for groups j and k
b1j, b1k the slopes of the regressions for groups j and k
MSResidual( j ), MSResidual(k) the residual mean squares from the regression within
each group
x̄j, x̄k the mean values of the covariate in each group
SS x̄ j, SSx̄ k the sums of squares for the means of each covariate in each group
nj, nk sample sizes in each group
h, h

a , J,df read from Table 1 in Wilcox (1987b)
and
a significance level (usually 0.05)
J number of groups for factor A
df degrees of freedom for the comparison between j and k based on the
Satterthwaite and Welch adjustment (Chapter 3).
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indicated that the different rank transform tests
in ANCOVA generally perform similarly but their
results showed that only when the parametric
assumptions were seriously compromised did the
parametric ANCOVA do badly. The rank transform
approaches are probably most useful when inex-
plicable outliers are present or when the relation-
ship between Y and X is nonlinear, effectively
requiring a non-parametric regression. Given the
concerns expressed in Chapter 9 about the ability
of rank transform tests to detect interactions in
ANOVA designs, their ability to pick up heteroge-
neity of slopes in ANCOVA designs must also be in
doubt.

Randomization tests could also be used if we
consider the ANCOVA model as a multiple regres-
sion and do multiple randomizations of experi-
mental or sampling units to groups (as in a single
factor ANOVA design – see Chapter 8), keeping the
pairing between Y and the covariate (Manly 1997).

12.5 Unequal sample sizes
(unbalanced designs)

There are no specific difficulties associated with
ANCOVAs with unequal sample sizes between
groups beyond what we have already discussed in
Chapter 8 for single factor ANOVAs. We have to be
more careful about checking assumptions with
unequal sample sizes and if our design has two or
more factors as well as a covariate, we recommend
using Type III SS (see Chapter 9).

12.6 Specific comparisons of
adjusted means

12.6.1 Planned contrasts
Contrasts among adjusted means can be done
with a t test:

t�

(12.16)

This daunting equation is simply the usual t test
for a contrast in a standard ANOVA except it takes

c1 ȳ1(adjusted)� c2 ȳ2(adjusted)�…

�MSResidual�c 2
1 /n1� c 2

2 /n2�…�
(c1x̄1� c2x̄2�…)2

SSResidual(X)
�

into account the covariate means and the covari-
ate residual variation. The cis are the contrast coef-
ficients, MSResidual is from the ANCOVA and
SSResidual(X) is from an ANOVA on the covariate.
There will be an equivalent F test (F� t2) that can
be partitioned from the SSA(adjusted). Note that most
statistical software will provide adjusted means as
output from fitting an ANCOVA model and also
allow contrasts on adjusted means as part of the
general linear models routines.

12.6.2 Unplanned comparisons
To do unplanned multiple comparisons of
adjusted means, use either the Bryant–Paulson–
Tukey (B–P–T) test or the Conditional Tukey–
Kramer test (Day & Quinn 1989, p. 461). The latter
test is simpler, because it uses the usual q distribu-
tion. The B–P–T test uses special tables (Kirk 1995).
Both can be used as stepwise Ryan’s tests. As a
general rule, however, we recommend that you
avoid unplanned multiple comparisons and try
and plan a small number of sensible contrasts
wherever possible. Most statistical software won’t
do either multiple comparison test, so an alterna-
tive is to do all pairwise contrasts based on the t
tests in Equation 12.16 with a Bonferroni-style
adjustment of significance levels to correct for
multiple testing (Chapter 3).

12.7 More complex designs

Single factor ANCOVA models are relatively
straightforward, but things get more complicated
with multiple factors and/or multiple covariates.
The adjustment procedure is just an extension of
the single factor design, but the test of homogene-
ity of slopes is much trickier. Each broad type of
design will be considered separately in this
section.

12.7.1 Designs with two or more
covariates

In designs with multiple covariates, the regres-
sion component of the ANCOVA becomes a multi-
ple regression. The adjustment for a design with
one factor and two covariates (X and Z) is:

ȳi(adjusted)�yij�bYX(xij� x̄)�bYZ(zij� z̄) (12.17)
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where bYX is the estimate of the pooled within-
groups regression slope relating Y to X (�YX) and bYZ

is the estimate of the pooled within-groups regres-
sion slope relating Y to Z (�YZ). The analysis is then
done on these adjusted values in a similar manner
to when there is a single covariate. We must be
very careful about collinearity problems, particu-
larly correlations between the two covariates. Two
highly correlated covariates provide redundant
information so won’t help in reducing the resid-
ual variation much anyway. Additionally, if either
of the covariates are different between the groups,
the adjustment requires extrapolation of either
the Y on X or Y on Z regression lines.

For most statistical software, we simply
include the multiple covariates when we fit our
linear ANCOVA model. Checking homogeneity of
within-group regression slopes is more difficult.
Essentially the assumption is about parallelism of
a series of planes (or higher-dimensional spaces!),
rather than simple lines. We suggest that you
check the homogeneity of slopes for each covari-
ate separately, by testing the interactions between
the factor and each covariate.

12.7.2 Factorial designs
Factorial designs that include one or more covari-
ates measured on each experimental or sampling
unit are common. For example, Morse & Bazzaz
(1994) did an experiment to test the effects of
three temperature regimes and two levels of CO2

on the number of nodes (an estimate of develop-
mental age) of individuals of two species of
annual plants (Abutilon theophrasti, a C3 plant, and
Amaranthus retroflexus, a C4 plant). Each species was

analyzed separately with a factorial linear model
with replicate plants in each cell. Because the
number of nodes might be affected by size inde-
pendently of age, the aboveground biomass (i.e.
size) was also used as a covariate for these analy-
ses.

The ANCOVA model for this design is based on
adjusting the Y-values using a within-cells regres-
sion slope pooled across all the combinations of
factors A and B (the pq cells):

yijk(adj)�yijk�b(xijk� x̄) (12.18)

This adjustment is based on the estimate (b) of the
pooled within-cells regression slope (�). The ana-
lysis then uses these adjusted values in a two
factor crossed ANOVA (Table 12.3). For most soft-
ware, the model fitted is the usual two factor
crossed ANOVA model including a covariate term.

Maxwell et al. (1993) point out that the effects
of the two factors in crossed ANCOVAs are not
orthogonal, i.e. we have the same difficulty parti-
tioning the SSTotal(adj) as we do trying to partition
the SSTotal in a crossed ANOVA design with unequal
sample sizes (Chapter 9). Our recommendation for
Type III SS in unbalanced factorial models also
applies to factorial ANCOVAs, even when the
sample sizes are equal. When random factors are
included in these models, the denominators of
the F tests for the fixed factors will change, as
described in Chapter 9.

Since the adjustment in Equation 12.18 is
based on the pooled within-cells regression slope,
the test for homogeneity of slopes in these facto-
rial designs should compare the regression slopes
across all pq cells. For a two factor (A and B) with
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Table 12.3 Factorial ANCOVA with factor A (p levels), factor B (q levels) and covariate

Source Morse & Bazzaz (1994) df Morse & Bazzaz (1994)

A Temperature (p�1) 2
B CO2 (q�1) 1
A�B Temperature�CO2 (p�1) (q�1) 2
Covariate Biomass 1 1
Residual Residual pq(n�1)�1 231

Note:
Example is from Morse & Bazzaz (1994), who had unequal numbers of plants within each cell. The
covariate term does not contribute to the SSTotal(adjusted).



one covariate (X) design, the following model
would be fitted:

yijk����i��j� (��)ij�X��iX��jX�
(��)ijX��ijk (12.19)

Note that �j here refers to the effect of factor B, not
the regression slope for the covariate. The regres-
sion slopes are implied by the covariate term X
and its interactions in the model. Model 12.19 will
result in three heterogeneity of slopes terms:
A�X, B�X and A�B�X. Huitema (1980) recom-
mended that these terms be combined and tested
against the MSResidual from this model. This tests
for any variation between slopes across all cells.
This is the same test that we would get if we fitted
a model that considered the factor combinations
as levels of a single factor (a cell means model) and
tested the factor by covariate interaction term.

Tests of main effects in factorial designs pool
across the levels of the other factor(s), so it might
be more appropriate to do separate tests for homo-
geneity of slopes for each effect based on adjusted
means. So we would test homogeneity of slopes for
the A�B interaction (test A�B�X against the
Residual), test for homogeneity of slopes for the A
main effect (test A�X against Residual) and again
for the B main effect (test B�X against Residual).
We have not seen this approach discussed in the
literature, although we suggest a version of it for
nested designs in Section 12.7.3.

If the H0 of equal slopes is rejected, you can
then test simple main effects with separate
ANCOVAs or examine the interaction between the
factors and the covariates in more detail. Either

way, the Wilcox ( J–N) procedure will again play an
important role. As before, we recommend doing
only a small number of possible comparisons, as
planned contrasts. If the homogeneity of slopes
test is not significant, then those interaction
terms involving the covariate can be omitted and
the model refitted – this then is a standard
ANCOVA model.

12.7.3 Nested designs with one covariate
Nested designs can also include covariates. For
example, Leonard et al. (1999) examined attach-
ment strength of intertidal mussels at sites with
either high levels of crab predation or low levels of
crab predation. The prediction was that attach-
ment strength would be greater at sites where pre-
dation was important. This was a nested design,
with factor A being high vs low predation, there
were three sites (factor B) nested within each pre-
dation level and attachment strength (Y ) was
measured on randomly chosen mussels. Because
attachment strength might also be related to
mussel size (larger mussels have stronger attach-
ments), shell length was recorded for each mussel
as a covariate (X).

The ANCOVA model for this design is based on
adjusting the Y-values using a pooled within-cells
regression slope. This adjustment is the same as
used for a factorial design, based on the estimate
(b) of the pooled within-cells regression slope (�) –
see Equation 12.18 in previous section.

The nested ANCOVA then uses these adjusted
values (Table 12.4). The model fitted is the usual
nested ANOVA model including the covariate term.
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Table 12.4 Nested ANCOVA with fixed factor A (p levels), random factor B (q levels) nested within A and
covariate

Source Leonard et al. (1999) df Leonard et al. (1999) Denominator

A Predation p�1 1 B(A)
B(A) Site(Predation) p(q�1) 4 Residual
Covariate Length 1 1 Residual
Residual Residual pq(n�1)�1 204

Note:
Example is from Leonard et al. (1999) who had unequal numbers of mussels within each site within
each predation level. Denominator for F test of H0 for each term provided. The covariate term does
not contribute to the SSTotal(adjusted).



Testing for homogeneity of regression slopes
tests can be done in two ways. First, we can test for
any differences in slopes of the regression models
for Y on X across all cells. This test is done by
fitting the following model:

yijk����i��j(i)�X��iX��j(i)X��ijk (12.20)

This model includes the A�X and the B(A)�X
interactions and we would combine these into a
single test of homogeneity of within-cells regres-
sion slopes.

The second approach acknowledges that
factor B is usually random in these designs and A
is then tested against B(A). This suggests that we
might do a separate test of homogeneity of slopes
among the levels of A, using the B(A)�X inter-
action terms as the error (A�X against B(A)�X).
The question that we are now asking is, “Is there
significant variation in slopes between levels of A,
relative to variation in slopes between the levels of
B within levels of A?” This seems to be the
approach taken by Leonard et al. (1999), who tested
the Predation�Length interaction against either
the Site(Predation) or the Site(Predation)�Length
term. We suggest the latter denominator is more
appropriate, especially when the question focuses
on adjusted A level means. There will be some
cases where you explicitly want to compare slopes
across all cells in a nested design, and then the
pooled test of homogeneity of regression slopes is
applicable.

12.7.4 Partly nested models with one
covariate

In split-plot and groups by trials repeated meas-
ures designs (Chapter 11), there are two ways a
covariate can be included. First, separate meas-
ures for the covariate are taken for each sub-plot
within each plot or for each subject at each time
or within-subjects group. In the example from
Mullens (1993) described in Chapter 11, blood
pressure might be measured as a covariate for
each toad each time breathing rate is recorded.
Second, a single covariate measure is associated
with each plot or with each subject, irrespective
of sub-plot or level of within subjects factor. Again
from Mullens (1993), body size or basal breathing
rate might be used as a covariate and there would
be only a single value for each toad, as this would

not vary with O2 level. Krupnick & Weis (1999)
used this second type of partly nested ANCOVA to
analyze their experiments on the effect of flori-
vory on plant success. They had a repeated meas-
ures design with individual plants of the
perennial shrub Isomeris arborea as the subjects.
The between-subjects factor was three insecticide
treatments (protected from herbivory by insecti-
cide spraying, exposed to herbivory but sprayed
with water control, exposed to herbivory without
spray). The within-subjects factor was date as each
plant was recorded on numerous occassions in
each of three years – separate analyses were done
for each year (Table 12.5). The response variable
was fruit production but because this might also
be affected by plant size, the number of branches
on each plant was recorded as a covariate. This
covariate did not vary for each plant during the
experiment.

In the more general first scenario, there are
regressions of Y on X at two levels – between plots
or subjects, and within plots or subjects. The
second situation is just a special case of the first
where the covariate measure is the same for every
observation on each subject or plot. In this situa-
tion, there is only a between-subject or plot regres-
sion, so only the between-subjects means are
adjusted in practice. In the first case, the adjust-
ment is done for between-subjects effects (A) and
within-subjects effects (C and A�C).

The ANCOVA adjustment for the first case is
(Kirk 1995):

yijk(adj)�yijk�bBetween(x̄i� x̄)�bWithin(xijk� x̄i) (12.21)

where bBetween is the estimate of the pooled within
A groups (i.e. between plots/subjects) regression
slope (�Between) and bWithin is the estimate of the
pooled within C groups (i.e. within plots/subjects)
regression slope (�Within). When the covariate has a
single value for each plot or subject, then the
second component of the adjustment in 12.21
simply becomes zero. The analysis then uses these
adjusted values in a partly nested ANOVA (Table
12.5). The model fitted is the usual partly nested
model including the covariate term. 

Testing homogeneity of slopes in these designs
is tricky and rarely discussed in textbooks. Even a
recent review of ANCOVAs for split-plot designs
(Federer & Meredith 1992) did not describe testing
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for homogeneity of slopes, although their paper
emphasized estimation, not hypothesis testing.
For the general case with separate covariate meas-
ures for each sub-plot or each subject at each level
of the within-subjects factor, a model that
includes all factor by covariate interactions is
fitted:

yijkl����i��j(i)��k� (��)ik���j(i)k�X�
�iX��j(i)X��kX� (��)ikX��ijkl (12.22)

Note that l usually equals one in these designs
so each observation is actually yijk. In such a
design, we cannot separately estimate ��j(i)k and
�ijkl nor can we separately estimate the covariate by
factor interaction terms �j(i) by X and (��)ik by X.
We suggest testing homogeneity of slopes for A, C
and A�C separately using the appropriate error
terms, i.e. A�X against B(A), C�X and A�C�X
against B(A)�C. For the case where we have only
single covariate measure for each plot or subject,
homogeneity of slopes is only relevant across
levels of A, so only the interaction of A�X would
be included in the model and tested against the
B(A) term. This approach was used by Krupnick &
Weis (1999) who tested for an interaction between
insecticide treatment (the between-subjects
factor) and number of branches (covariate).

Note that if the covariate measures are differ-
ent for each sub-plot or level of the within-

subjects factor, your data file will need to be coded
for a classical split-plot analysis (Chapter 11), even
if you have a repeated measures design. Note also
that the number of terms in these models, includ-
ing all the interactions with the covariate, can get
large and this can cause computational problems
when the number of observations (especially
plots/subjects within A) is relatively small.

12.8 General issues and hints for
analysis

12.8.1 General issues
• Including one or more covariates can reduce

the unexplained variation in ANOVA designs
and increase precision of estimates of group
means and power of tests.

• The basic ANCOVA tests null hypotheses about
adjusted means and factor effects, where the
linear relationship between the covariate and
the response variable (Y ) is taken into account.
These means are adjusted to the overall mean
value for the covariate by the relationship
between Y and the covariate.

• Since a pooled within-groups regression slope
is used for the adjustment, the assumption of
homogeneous slopes across groups is very
important for interpreting ANCOVA models

GENERAL ISSUES AND HINTS FOR ANALYSIS 357

Table 12.5 Partly nested ANCOVA with factor A (p levels) and factor B (plots/subjects with q levels) nested within
A, factor C (r levels) as within-plots/subjects factor and a covariate measured on each plot/subject

Source Krupnick & Weis (1999) df Krupnick & Weis (1999)

Between plots/subjects
A Treatment (p�1) 2
Covariate (X) No. branches 1 1
B(A) Plants within treatment p(q�1)�1 26

Within plots/subjects
C Date (r�1) 25
A�C Treatment�date (p�1)(r�1) 50
C�X Date�no. branches (r�1) 25
B(A)�C Plants within treatment�date p(q�1)(r�1)�1 650

Note:
Example is for 1992 fruit production in Isomeris arborea from Krupnick & Weis (1999) – their Table 2.
Factor A was insecticide treatment, plots/subjects were plants, factor C was date and the covariate was
number of branches on each plant.



and should always be checked. The Johnson–
Neyman ( J–N) procedure is applicable for
simple designs if this assumption is not met.

• Contrasts and unplanned multiple
comparisons between adjusted means require
different methods than for unadjusted means,
taking into account the linear relationship
with the covariate.

• Covariates can be included in more complex
ANOVA models (nested, factorial, and partly
nested), the major difficulty being deriving
tests for homogeneity of slopes.

12.8.2 Hints for analysis
• Most common statistical software offers

ANCOVA as a menu option, but in most of
them, you will be fitting an ANCOVA model
that assumes homogeneity of slopes. To fit a
model testing for heterogeneous slopes, you
will generally need to specify the model
fully through the general linear models
option.

• Homogeneity of within-group regression

slopes is tested by including factor by covariate
interaction terms in a preliminary model. In
complex models, homogeneity of slopes can be
checked by combining all factor by covariate
terms into a single interaction term that is
tested or by treating the design as a single
factor means model and testing the single
factor by covariate term. Alternatively,
homogeneity of slopes may be better tested
separately for each component of the analysis,
e.g. homogeneity of slopes for main effects
separately.

• If slopes are heterogeneous, the comparison of
adjusted means using the Johnson–Neyman
(J–N) procedure is not available as part of most
statistical software, and must be computed
manually (Box 12.4) or with the program
WILCOX.

• Assumptions such as normality, homogeneity
of variances and linearity are best examined
with graphical techniques such as residual
plots and scatterplots.

358 ANALYSES OF COVARIANCE



So far, most of the analyses we have described have
been based around linear models that assume
normally distributed populations of the response
variable and of the error terms from the fitted
models. Most linear models are robust to this
assumption, although the extent of this robust-
ness is hard to gauge, and transformations can be
used to overcome problems with non-normal
error terms. There are situations where transfor-
mations are not effective in making errors normal
(e.g. when the response variable is categorical)
and, in any case, it might be better to model the
actual data rather than data that are transformed
to meet assumptions. What we need is a technique
for modeling that allows other types of distribu-
tions besides normal. Such a technique was intro-
duced by Nelder & Wedderburn (1972) and further
developed by McCullough & Nelder (1989) and is
called generalized linear modeling (GLM). In this
chapter, we will examine two common applica-
tions of GLMs: logistic regression, used when the
response variable is binary, and Poisson regres-
sion, when the response variable represents
counts. In the next chapter, we will describe log-
linear models when both response and predictor
variables are categorical and usually arranged in
the form of a contingency table.

13.1 Generalized linear 
models

Generalized linear models (GLMs) have a number
of characteristics that make them more generally
applicable than the general linear models we have

considered so far. One of the most important is
that least squares estimation no longer applies
and maximum likelihood methods must be used
(Chapter 2).

A GLM consists of three components. First is
the random component, which is the response
variable and its probability distribution (Chapter
1). The probability distribution must be from the
exponential family of distributions, which
includes normal, binomial, Poisson, gamma and
negative binomial. If Y is a continuous variable, its
probability distribution might be normal; if Y is
binary (e.g. alive or dead), the probability distribu-
tion might be binomial; if Y represents counts,
then the probability distribution might be
Poisson. Probability distributions from the expo-
nential family can be defined by the natural
parameter, a function of the mean, and the dis-
persion parameter, a function of the variance that
is required to produce standard errors for esti-
mates of the mean (Hilbe 1993). For distributions
like binomial and Poisson, the variance is related
to the mean and the dispersion parameter is set to
one. For distributions like normal and gamma,
the dispersion parameter is estimated separately
from the mean and is sometimes called a nui-
sance parameter.

Second is the systematic component, which
represents the predictors (X variables) in the
model. These predictors might be continuous
and/or categorical and interactions between pre-
dictors, and polynomial functions of predictors,
can also be included.

Third is the link function, which links the
random and the systematic component. It

Chapter 13

Generalized linear models and logistic
regression



actually links the expected value of Y to the pre-
dictors by the function:

g(�)��0��1X1��2X2�
. . . (13.1)

where g(�) is the link function and �0, �1, etc., are
parameters to be estimated. Three common link
functions include the following.

1. Identity link, which is g(�)��, and models
the mean or expected value of Y. This is used in
standard linear models.

2. Log link, which is g(�)� log(�), and models
the log of the mean. This is used for count data
(that cannot be negative) in log-linear models
(Chapter 14).

3. Logit link, which is g(�)� log[�/(1��)], and
is used for binary data and logistic regression
(Section 13.2).

GLMs are considered parametric models because a
probability distribution is specified for the
response variable and therefore for the error
terms from the model. A more flexible alternative
is to use quasi-likelihood models that estimate the
dispersion parameter from the data rather than
constraining it to the value implied by a specific
probability distribution, such as one for a bino-
mial and Poisson. Quasi-likelihood models are
particularly useful when our response variable
has a binomial or Poisson distribution but is over
or under dispersed, i.e. the probability distribu-
tion has a dispersion parameter different from
one and therefore a variance greater or less than
expected from the mean.

GLMs are linear models because the response
variable is described by a linear combination of
predictors (Box 5.1). Fitting GLMs and maximum
likelihood estimation of their parameters is based
on an iterative reweighted least squares algorithm
called the Newton–Raphson algorithm. Linear
regression models (Chapters 5 and 6) can be
viewed as a GLM, where the random component is
a normal distribution of the response variable
and the link function is the identity link so that
the expected value (the mean of Y) is modeled. The
OLS estimates of model parameters from the
usual linear regression will be very similar to the
ML estimates from the GLM fit.

Readable introductions to GLMs can be found
in, among others, Agresti (1996), Christensen

(1997), Dobson (1990), and Myers & Montgomery
(1997).

13.2 Logistic regression

One very important application of GLMs in
biology is to model response variables that are
binary (e.g. presence/absence, alive/dead). The pre-
dictors can be either continuous and/or categori-
cal. For example, Beck (1995) related two response
variables, the probability of survival (survived or
didn’t survive) and the probability of burrowing
(burrowed or didn’t burrow), to carapace width
for stone crabs (Menippe spp.). Matlack (1994)
examined the relationship between the pres-
ence/absence of individual species of forest shrubs
(response variables) against a number of continu-
ous predictors, such as stand area, stand age, dis-
tance to nearest woodland, etc. In both examples,
logistic regression was required because of the
binary nature of the response variable.

13.2.1 Simple logistic regression
We will first consider the case of a single continu-
ous predictor, analogous to the usual linear regres-
sion model (Chapter 5). When the response variable
is binary (i.e. categorical with two levels, zero or
one), we actually model 
(x), the probability that Y
equals one for a given value of X. The usual model
we fit to such data is the logistic regression model,
a nonlinear model with a sigmoidal shape (Figure
13.1). The change in the probability that Y equals
one for a given change in X is greatest for values of
X near the middle of its range, rather than for
values at the extremes. The error terms from the
logistic model are not normally distributed;
because the response variable is binary, the error
terms have a binomial distribution. This suggests
that ordinary least squares (OLS) estimation is not
appropriate and maximum likelihood (ML) estima-
tion of model parameters is necessary. In this
section, we will examine a situation with one
binary response variable (Y ), which can take values
of zero or one, and one continuous predictor (X).

Lizards on islands 
Polis et al. (1998) studied the factors that control
spider populations on islands in the Gulf of
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California. Potential predators included lizards of
the genus Uta and scorpions (Centruroides exili-
cauda). We will use their data to model the pres-
ence/absence of lizards against the ratio of
perimeter to area for each island. The analysis of
these data is presented in Box 13.1.

Logistic model and parameters
The logistic model is:


(x)� (13.2)

where �0 and �1 are parameters to be estimated.
For the Polis et al. (1998) example, 
(x) is the prob-
ability that yi�1 (i.e. Uta is present) for a given xi

(P/A ratio). As we will see shortly, �0 is the con-
stant (intercept) and �1 is the regression coeffi-
cient (slope), which measures the rate of change
in 
(x) for a given change in X. This model can be
fitted with nonlinear modeling techniques
(Chapter 6) to estimate �0 and �1 but the model-
ing process is tedious and the output from soft-
ware unhelpful.

An alternative approach is to transform 
(x)
so that the logistic model closely resembles a

e�0��1x

1� e�0��1x

familiar linear model. First, we calculate odds
that an event occurs (e.g. yi�1 or Uta is present),
which is the probability that an event occurs rel-
ative to its converse, i.e. the probability that yi�

1 relative to the probability that yi�0:

(13.3)

If the odds are �1, then the probability that yi�1
is greater than the probability that yi�0; if the
odds are �1, then the converse is true. Then we
take the natural log of the odds that yi�1:

ln (13.4)

This is the logit transformation or link function,
that we will term g(x), and which can be modeled
against our predictor much more easily as:

g(x)��0��1xi (13.5)

For the example from Polis et al. (1998):

g(x)��0��1(P/A ratio)i (13.6)

In model 13.6, g(x) is the natural log (i.e. logit) of
the odds that Uta is present on an island relative

� 
(x)
1�
(x)�


(x)
1�
(x)
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Figure 13.1. (a) Scatterplot of the
presence and absence of Uta in
relation to perimeter to area ratio
on 19 islands in the Gulf of
California (Polis et al. 1998). (b)
Scatterplot of the predicted
probabilities from logistic regression
model of the presence of Uta in
relation to perimeter to area ratio.

U
ta

Box 13.1 Worked example of logistic regression:
presence/absence of lizards on islands

Polis et al. (1998) studied the factors that control spider populations on islands in
the Gulf of California.We will use part of their data to model the presence/absence
of lizards (Uta) against the ratio of perimeter to area (P/A, as a measure of input of
marine detritus) for 19 islands in the Gulf of California. We modeled the presence
of Uta (binary) against P/A as:
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g(x)�b0�b1(P/A ratio)i

where g(x) is the natural log of the odds of Uta occurring on an island. Uta occurred
on ten of the 19 islands and the data are plotted in Figure 13.1(a). The H0 of main
interest was that there was no relationship between the presence of Uta (i.e. the
odds that Uta occurred relative to not occurred) and the P/A ratio of an island. This
is the H0 that b1�0.

The maximum likelihood estimates of the model parameters were as follows.

Parameter Estimate ASE Wald statistic P

b0 3.606 1.695 2.127 0.033
b1 �0.2196 0.101 �2.184 0.029

Note that the Wald statistic is significant so we would reject the H0 that b1 �0. The
odds ratio for P/A was estimated as 0.803 with 95%CI from 0.978 to 0.659. For a
one unit increase in P/A, an island has a 0.803 chance of having Uta compared to
not have Uta, a decrease in the odds of having Uta of approximately 20%. The plot
of predicted probabilities from this model is shown in Figure 13.1(b), clearly showing
the logistic relationship.

The other way to test the fit of the model, and therefore test the H0 that b1� 0,
is to compare the fit of the full model (g(x)�b0�b1xi) to the reduced model (g(x)
�b0).

Full model log-likelihood��7.110
Reduced model (constant only) log-likelihood��13.143
G2��2(difference in log-likelihoods)�12.066, df�1, P�0.001. This is also
the difference in deviance of the full and reduced models. This test also results
in us rejecting the H0 that b1�0. Note that the Wald test seems more
conservative (larger P value).

Goodness of fit statistics were calculated to assess the fit of the model. The
Hosmer–Lemeshow statistic was more conservative than either Pearson v 2 or G2

and was not significant. Along with the low values for Pearson v 2 or G2, there was
no evidence for lack of fit of the model. The logistic analogue of r2 indicated that
about 46% of the uncertainty in the presence of Uta on islands could be explained
by P/A ratio.

Statistic Value df P

Hosmer–Lemeshow (Ĉ ) 2.257 5 0.813
Pearson v 2 15.333 17 0.572
Deviance (G2) 14.221 17 0.651
rL

2 0.459

Analysis of diagnostics showed that two islands, Cerraja and Mitlan, were more
influential than the rest on the outcome of the model fitting. They had the largest
Pearson and deviance residuals and also unusually large values for the logistic regres-
sion equivalent of Cook’s measure of influence, Hosmer & Lemeshow’s (1989) ∆b.
However, our conclusion for the test of whether b1�0 based on the G2 statistic
(deviance) was not changed if either of these two observations were omitted.



to being absent. We now have a familiar linear
model, although the interpretation of the coeffi-
cients is a little different (see below). The logit
transformation does two important things. First,
g(x) now ranges between �� and �� whereas 
(x)
is constrained to between zero and one. Linear
models are much more appropriate when the
response variable can take any real value. Second,
the binomial distribution of errors is now
modeled.

The logistic regression model is a GLM. The
random component is Y with a binomial probabil-
ity distribution; the systematic component is the
continuous predictor X; and the link function
that links the expected value of Y to the predic-
tor(s) is a logit link.

Now we use maximum likelihood (ML) tech-
niques to estimate the parameters �0 and �1 from
logistic model 13.5 by maximizing the likelihood
function L:

L� 
(xi)
yi[1� 
(xi)]

1�yi (13.7)

It is mathematically much easier to maximize the
log-likelihood function ln(L) (Chapter 2). ML esti-
mation is an iterative process requiring appropri-
ate statistical software that will also provide
standard errors of the ML estimates of �0 and �1.
These standard errors are asymptotic because
they are based on a normal distribution of the
parameter estimates that is only true for large
sample sizes. Confidence intervals for the param-
eters can also be calculated from the product of
the asymptotic standard error and the standard
normal z distribution. Both the standard errors
and confidence intervals should be considered
approximate.

We earlier defined the odds of an event occur-
ring, which is the probability an event occurs rel-
ative to its converse, i.e. the probability that yi�1
relative to the probability that yi�0 or the prob-
ability that Uta occurs on an island relative to it
not occurring. Our logistic regression model is
that the natural log of the odds equals the con-
stant (�0) plus the product of the regression coef-
ficient (�1) and xi:

ln ��0��1xi (13.8)� 
(x)
1�
(x)�

�
n

i�1

We can compare the value of the log of the odds

ln

for X�xi and X�xi�1, i.e. for the predicted
Y-values in a logistic regression model for X-values
one unit apart. For the Polis et al. (1998) data, this
is comparing the log of the odds of Uta occurring
on an island for P/A ratios that differ by one unit.
The ratio of these two odds is called the odds ratio
and it is a measure of how the odds of Uta occur-
ring change with a change in P/A ratio. Some
simple arithmetic produces:

odds ratio�e�1 (13.9)

This is telling us that �1 represents the change in
the odds of an outcome for an increase in one unit
of X. For the Polis et al. (1998) data, the estimated
logistic regression coefficient (b1) is an estimate of
how much the odds of Uta occurring on an island
(compared to not occurring) would change for an
increase in P/A ratio of one unit. A positive value
of b1 indicates that the odds would increase and a
negative value indicates the odds would decrease.

The constant, �0, is the value of g(x) when xi�0
and represents the intercept of the logistic regres-
sion model; its interpretation is similar to the
intercept of the linear regression model (Chapter
5) and it is usually of less biological interest.

Null hypotheses and model fitting
The H0 of main interest when fitting a simple
logistic regression model is that �1�0, i.e. there is
no relationship between the binary response vari-
able and the predictor variable. In the Polis et al.
(1998) study, the H0 is that there is no relationship
between the presence/absence of Uta and the P/A
ratio of an island. Equivalently, the H0 is that the
log of the odds of Uta occurring on an island rela-
tive to not occurring is independent of the P/A
ratio of the island.

There are two common ways of testing this H0.
The first is to calculate the Wald statistic, a ML
version of a t test, which is the parameter estimate
divided by the standard error of the parameter
estimate:

(13.10)
b1

sb1

� 
(x)
1�
(x)�
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Note that the standard error (sb1
) is asymptotic

(often written as ASE), which means the distribu-
tion of b1 approaches normality for large sample
sizes, so the standard error should be considered
approximate for small sample sizes. The Wald sta-
tistic is sometimes called the Wald t (or t ratio) sta-
tistic because of its similarity to a t statistic
(Chapter 3). The Wald statistic is traditionally com-
pared to the standard normal z distribution
(Agresti 1996, Neter et al. 1996).

The Wald statistic is most reliable when
sample sizes are large so an alternative hypothesis
testing strategy that is more robust to small
sample sizes and provides a link to measuring the
fit of GLMs would be attractive. The approach is
similar to that described for OLS regression
models in Chapters 5 and 6 where we compare full
and reduced models, except that we use log-likeli-
hood as a measure of fit rather than least squares.
To test the H0 that �1�0 for a simple logistic
regression model with a single predictor, we
compare the fit (the log-likelihood) of the full
model:

g(x)��0��1xi (13.5)

to the fit of the reduced model:

g(x)��0 (13.11)

To compare likelihoods, we use a likelihood ratio
statistic (�), which is the ratio of the log-likeli-
hood of reduced model to the log-likelihood of full
model. Remember from Chapter 2 that larger log-
likelihoods mean a better fit, so if � is near one,
then �1 contributes little to the fit of the full
model whereas if � is less than one, then �1 does
contribute to the fit of the full model. To test the
H0, we need the sampling distribution of � when
H0 is true. The sampling distribution of � is messy
so instead we calculate a G2 statistic:

G2��2ln(�) (13.12)

This is also called the likelihood ratio �2 statistic.
Sokal & Rohlf (1995) called it the G statistic. It can
be simplified to:

G2��2(log-likelihood reduced�
log-likelihood full) (13.13)

If H0 (�1�0) is true and certain assumptions hold
(Section 13.2.4), the sampling distribution of G2 is

very close to a �2 distribution with one df.
Therefore, we can test H0 that �1�0 with

either the Wald test or with G2 test comparing the
fit of reduced and full models. In contrast to least
squares model fitting (Chapter 5), where the t test
and the F test for testing �1�0 are identical for a
simple linear regression, the Wald and G2 tests are
not the same in logistic regression. The Wald test
tends to be less reliable and lacks power for
smaller sample sizes and the likelihood ratio sta-
tistic is recommended (Agresti 1996, Hosmer &
Lemeshow 1989).

The G2 statistic is also termed the deviance
when the likelihood ratio is the likelihood of a
specific model divided by the likelihood of the sat-
urated model. The deviance therefore is:

�2(log-likelihood specific model�
log-likelihood saturated model) (13.14)

The saturated model is a model that explains all
the variation in the data. In regression models,
the saturated model is one with as many parame-
ters as there are observations, like a linear regres-
sion through two points (Hosmer & Lemeshow
1989). Note that the full model [g(x)��0��1xi] is
not a saturated model, as it does not fit the data
perfectly. In a simple logistic regression with two
parameters (�0 and �1), we can compare the devi-
ance of the full and reduced models, i.e. the G2 sta-
tistics for each model compared to a saturated
model. The difference between the deviances tells
us whether or not the two models fit the data dif-
ferently. We do not actually fit a saturated model
in practice because the log-likelihood of the satu-
rated model is always zero (the maximum value of
a log-likelihood because the model is a perfect fit),
so the deviance for a given model is simply the log-
likelihood of that model. Therefore, the differ-
ence in deviances equals:

�2(log-likelihood reduced�
log-likelihood full) (13.15)

This is simply the G2 statistic we calculated earlier.
The likelihood ratio �2 statistic (G2) therefore equals
the difference in deviance of the two models. This
concept becomes much more important when we
have models with numerous parameters (i.e. multi-
ple predictors) and therefore we have lots of pos-
sible reduced models (Section 13.2.2).
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The other reason the deviance is a useful quan-
tity is because it is the GLM analogue of SSResidual,
i.e. it measures the unexplained variation for
a given model and therefore is a measure of
goodness-of-fit (Section 13.2.5). In the same way
that we could create analysis of variance tables for
linear models by partitioning the variability, we
can create an analysis of deviance table for GLMs.
Such a partitioning of deviance is very useful for
GLMs with numerous parameters, especially
complex contingency tables (Chapter 14).

13.2.2 Multiple logistic regression
Logistic regression can be easily extended to situa-
tions with multiple predictor variables. The model
fitting procedure is just an extension of the log-
likelihood approach described in the previous
section. For example, Wiser et al. (1998) studied the
invasion of mountain beech forests in New
Zealand by the exotic perennial herb Hieracium
lepidulum. They modeled the probability of the
exotic occurring on approximately 250 plots in
relation to a number of predictor variables meas-
ured for each plot, including richness of plant
species, the percentage of total species in the tall
herb guild, the distance to the nearest non-alpine
open land, other physical variables such as annual

potential solar radiation, elevation, etc., and
chemical characteristics of the soil (Ca, K, Mg, P,
pH, N and C:N). Hansson et al. (2000) modeled the
probability of predation by avian predators on arti-
ficial eggs in nests of the Great Reed Warbler in
Sweden. Their predictor variables included experi-
mental period (early and late in year) and attrac-
tiveness of the territory in which nest occurred, as
well as the interaction between these two vari-
ables. Our worked example will be taken from a
study of the ecology of fragmentation in urban
landscapes.

Fragmentation and native rodents
Bolger et al. (1997) recorded the number of species
of native rodents (except Microtus californicus) on 25
canyon fragments in southern California. These
fragments have been isolated by urbanization. We
will use their data to model the presence/absence
of any species of native rodent in a fragment
against three predictor variables: distance
(meters) of fragment to nearest source canyon, age
(years) since the fragment was isolated by urban-
ization, and percentage of fragment area covered
in shrubs. The analysis of these data is presented
in Box 13.2.
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Box 13.2 Worked example of logistic regression:
presence/absence of rodents in habitat
fragments

Using the data from Bolger et al. (1997), we will model the presence/absence of
any species of native rodent (except Microtus californicus) against three predictor
variables: distance (meters) to nearest source canyon (X1), age (years) since frag-
ment was isolated by urbanization (X2), and percentage of fragment area covered
in shrubs (X3):

g(x)�b0�b1(distance)i�b2(age)i�b3(% shrub)i

where g(x) is the natural log of the odds of a species of native rodent occurring in
a fragment. The scatterplots of the presence of rodents against each predictor are
shown in Figure 13.2. The H0s of main interest were that there was no relationship
between the presence of native rodents (i.e. the odds that native rodents occurred
relative to not occurred) and each of the predictor variables, holding the others
constant. These H0s are that b1�0, b2�0 and b3�0.

The maximum likelihood estimates and tests of the parameters were as 
follows.
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Parameter Estimate ASE Wald statistic P

b0 �5.910 3.113 �1.899 0.058
b1 0.000 0.001 0.399 0.690
b2 0.025 0.038 0.664 0.570
b3 0.096 0.041 2.361 0.018

The odds ratios were as follows.

Predictor Distance Age Percentage shrub cover

Odds ratio 1.000 1.025 1.101
95% CI 0.999–1.002 0.952–1.104 1.016–1.192

Model comparisons include the following.
Log-likelihood of full model:�9.679.

Reduced model H0 Log-likelihood G2 P

b0�b2(age)i�b3(% shrub)i b1(distance)�0 �9.757 0.156 0.693

b0�b1(distance)i�b3(% shrub)i b2(age)�0 �9.901 0.444 0.505

b0�b1(distance)i�b2(age)i b3(% shrub)�0 �14.458 9.558 0.002

The conclusions from the Wald test and from the G2 tests from the model fitting
procedure agree. Only the effect of percentage shrub cover on the probability of
rodents being present, holding age and distance from nearest source canyon con-
stant, is significant. The odds ratio for percentage shrub cover was estimated as
1.101 and the 95% CI do not include one; for a 1% increase in shrub cover, a frag-
ment has a 1.101 more chance of having a rodent than not, so even though the
effect is significant, the effect size is small. The odds ratios for the other two predic-
tors clearly include one, indicating that increases in those predictors do not increase
the probability of a rodent being present in a fragment.

Goodness of fit statistics were calculated to assess the fit of the model. The
Hosmer–Lemeshow statistic was not significant indicating no evidence for lack of
fit of the model.

Statistic Value df P

Hosmer–Lemeshow (Ĉ) 6.972 6 0.323
Pearson v 2 20.823 21 0.470
Deviance (G2) 19.358 21 0.562
rL

2 0.441

The model diagnostics suggested that the only fragment that might be influential on
the results of the model fitting was Spruce, with a dfbeta (∆b) and Pearson and
deviance residuals much greater than the other observations. Unfortunately, we
could not get the algorithm to converge on ML estimates when this observation
was deleted, so we could not specifically examine its influence on the estimated
regression coefficients.



Logistic model and parameters
The general multiple logistic regression model for
p predictors is:

g(x)��0��1xi1��2xi2� . . .��pxip (13.16)

For the Bolger et al. (1997) data:

g(x)��0��1(distance)i��2(age)i�
�3(% shrub)i (13.17)

In models 13.16 and 13.17 we find the follow-
ing.

g(x) is the natural log of the odds ratio of
yi�1 versus yi�0, i.e. the log of the odds of a
species of native rodent occurring relative to not
occurring in a fragment.

�0 is the intercept or constant, i.e. the log of
the odds of a species of native rodent occurring
relative to not occurring in a fragment when all
predictors equal zero.

�1 is the partial regression coefficient for X1,
holding the remaining predictors constant, i.e.
the change in the log of the odds of a species of
native rodent occurring relative to not occurring
in a fragment for a single unit increase in
distance to nearest source canyon, holding
canyon age and percentage shrub cover constant.

�2 is the partial regression coefficient for X2,
holding the remaining predictors constant, i.e.
the change in the log of the odds of a species of
native rodent occurring relative to not occurring
in a fragment for a single unit increase in
canyon age, holding distance to nearest source
canyon and percentage shrub cover constant.

�3 is the partial regression coefficient for X3,
holding the remaining predictors constant, i.e.
the change in the log of the odds of a species of
native rodent occurring relative to not occurring
in a fragment for a single unit increase in

percentage shrub cover, holding distance to
nearest source canyon and canyon age constant.

Just like in multiple linear regression models,
we can firstly test the significance of the overall
regression model by comparing the log-likelihood
of the full model (13.16 and 13.17) to the log-likeli-
hood of the reduced model (constant, or �0, only).
We calculate a G2 statistic [�2(log-likelihood
reduced� log-likelihood full)] to test the H0 that at
least one of the regression coefficients equals
zero.

To test individual coefficients, we can calcu-
late Wald statistics, each one being the estimated
regression coefficient divided by standard error of
estimated coefficient. These Wald statistics are
the equivalent of t tests for partial regression coef-
ficients in multiple linear regression (Chapter 6)
and can be compared to the standard normal (z)
distribution. Our reservations about Wald tests
(lack of power with small sample sizes) described
in Section 13.2.1 apply equally here.

A better approach is to fit a series of reduced
models and compare their fit to the full model. To
test H0 that �1 (distance)� 0, we compare the fit of
the full model:

g(x)��0��1(distance)i��2(age)i�
�3(% shrub)i (13.17)

to the fit of a reduced model based on H0 being
true:

g(x)��0��2(age)i��3(% shrub)i (13.18)

with the G2 statistic:

�2(log-likelihood reduced�
log-likelihood full) (13.15)

If the G2 test is significant, we know that the inclu-
sion of distance as a predictor makes the full
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Figure 13.2. Scatterplots of the
presence and absence of native
rodents in relation (a) to distance to
nearest source canyon, (b) age since
fragment was isolated by
urbanization, and (c) % of fragment
area covered in shrubs. Data from
Bolger et al. (1997).



model a better fit to our data than the reduced
model and therefore H0 is rejected. We can do a
similar model comparison test for the other pre-
dictors.

The difference between the full and reduced
models is also the difference in the deviances of
the two models. Remember that the deviance is a
measure of the unexplained variability after
fitting a model so comparing deviances is just like
comparing SSResiduals for linear models. Neter et al.
(1996) called this the partial deviance and we can
present the results of a multiple logistic regres-
sion as an analysis of deviance table.

Other aspects of multiple linear regression
described in Chapter 6 also apply to multiple
logistic regression. In particular, including inter-
actions between predictors and polynomial terms
might have great biological relevance and these
terms can be tested by comparing the fit of full
model to the appropriate reduced models.

13.2.3 Categorical predictors
Categorical predictor variables can be incorpo-
rated in the logistic modeling process by convert-
ing them to dummy variables (Chapter 5). Logistic
regression routines in most statistical software
will do this automatically. We described two sorts
of coding for turning categorical predictors into
continuous dummy variables for OLS regression
in Chapter 5. It is important that you know which
method your statistical software is using, as the
interpretation of the coefficients and odds ratios
is not the same for the two methods. Most pro-
grams use reference cell coding where one group
of a categorical predictor is used as a reference
and the effects of the other groups are relative to
that reference group. Alternatively, effects coding
could be used, where each group logit is com-
pared to the overall logit (Hosmer & Lemeshow
1989).

A model with a binary response variable and
one or more categorical predictors is usually
termed a logit model (Agresti 1990, 1996), to dis-
tinguish it from classical logistic regression. If all
the predictors are categorical, then log-linear
modeling (Chapter 14) is a more sensible proce-
dure because the data are in the form of a contin-
gency table. However, log-linear modeling does
not automatically distinguish one of the variables

as a response variable. For different log-linear
models, there are equivalent logit models that
identify a response variable (see Agresti 1996,
p. 165; Chapter 14).

13.2.4 Assumptions of logistic regression
Like all GLMs, logistic regression assumes that the
probability distribution for the response variable,
and hence for the error terms from the fitted
model, is adequately described by the random
component chosen. For logistic regression, we
assume that the binomial distribution is appro-
priate, which is likely for binary data. The reliabil-
ity of the model estimation also depends on the
logistic model being appropriate and checking
the adequacy of the model is important (Section
13.2.5).

When there are two or more predictors in the
model, then absence of strong collinearity (strong
correlations between the predictors) is as impor-
tant for logistic regression models as it was for
OLS regression models (Chapter 6). While not nec-
essarily reducing the predictive value of the
model, collinearity will inflate the standard errors
of the estimates of the model coefficients and can
produce unreliable results (Hosmer & Lemeshow
1989, Menard 1995, Tabachnick & Fidell 1996).
Most logistic regression routines in statistical soft-
ware do not always provide automatic collinearity
diagnostics, but examining a correlation matrix
between the continuous predictors or a contin-
gency table analysis for categorical predictors will
indicate if there are correlations/associations
between predictors. Tolerance, the r2 of a regres-
sion model of a particular variable as the response
variable against the remaining variables as predic-
tors, can also be calculated for each predictor by
simply fitting the model as a usual OLS linear
regression model. Because tolerance only involves
the predictor variables, its calculation is not
affected by the binary nature of the response var-
iable.

13.2.5 Goodness-of-fit and residuals
Checking the adequacy of the regression model is
just as important for logistic models as for general
linear models. One simple and important diagnos-
tic tool for checking whether our model is ade-
quate is to examine the goodness-of-fit. As with
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linear models fitted by least squares, the fit of a
logistic model is determined by how similar the
observed Y-values are to the expected or predicted
Y-values. The predicted probabilities that yi�1 for
given xi are:


̂ (x)� (13.19)

In model 13.19, b0 and b1 are the estimated coeffi-
cients of the logistic regression model. A measure
of fit of a particular model is the difference
between the observed and fitted values, i.e. the
residuals. Residuals in GLMs are similar to those
for linear models, the difference between the
observed probability that yi�1 and the predicted
(from the logistic regression model) probability
that yi�1. 

There are two well-known statistics for assess-
ing the goodness-of-fit of a logistic regression
model. These statistics can be used to test that the
observed data came from a population in which
the fitted logistic regression model is true. The
first is the Pearson �2 statistic based on observed
(o) and expected, fitted or predicted (e) observa-
tions (Chapter 14):

(13.20)

In Equation 13.20, yi is the observed value of Y, 
̂i is
the predicted or fitted value of Y for a given value
of xi and n is the number of observations. The use
of the �2 statistic for logistic regression models is
best visualized by treating the data as a two
(binary response, Y ) by n (different values of X) con-
tingency table. The �2 statistic for goodness-of-fit is
the usual �2 for contingency tables (Chapter 14).

The other is the G2 statistic, which is:

�2 (o.log(o/e))��2 yi ln(yi/n
̂i)�

(n�yi)ln[(n�yi)/n(1�
̂i) (13.21)

The terms in Equation 13.21 are as defined as in
Equation 13.20. The G2 statistic is also the devi-
ance for a given model, defined in Section 13.2.1.

In both cases, low values indicate that the
model is a better fit to the data, i.e. the observed
and fitted values are similar. The Pearson �2 statis-
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tic and the deviance G2 statistic approximately
follow a �2 distribution under certain assump-
tions. The most important assumption is that the
minimum predicted frequency of either of the
binary outcomes is not too small (see Chapter 14).
When the predictors are continuous, however,
there will usually be one or few observations of Y
for each combination of values of the predictor
variables (ni�1) so this assumption is not met
and the Pearson �2 statistic and the deviance G2

statistic will not have approximate �2 distribu-
tions. The statistics themselves are still valid
measures of goodness-of-fit; it is just their P-
values that are unreliable (Hosmer et al. 1997).
Note also that when we have multiple observa-
tions for each combination of X-values, such as
when the predictors are categorical, we will have
a contingency table in which the expected fre-
quencies are more likely to be reasonable (see
Section 13.2.3 and Chapter 14) and the P-values
associated with these statistics will be much
more reliable. Note also that the calculation of
deviance for categorical predictors depends on
whether the saturated model is determined
based on individual observations or groupings of
observations (Siminoff 1998).

So, we cannot use the usual �2 or G2 statistics
to test null hypotheses about overall goodness-of-
fit of a model when the predictors are continuous,
although they are still useful as comparative
measures of goodness-of-fit. Hosmer & Lemeshow
(1989) developed a solution to the problem of
testing goodness-of-fit for continuous predictors
in logistic regression by grouping observations so
that the minimum expected frequency of either
of the binary outcomes is not too small. The
Hosmer–Lemeshow statistic, also termed the
deciles of risk (DC) statistic, is derived from aggre-
gating the data into ten groups. The grouping is
based on either each group having one tenth of
the ordered predicted probabilities so the groups
have equal numbers of observations, or the
groups being separated by fixed cutpoints (e.g.
first group having all probabilities 
0.10, etc.).
Both grouping methods produce a statistic (Ĉ )
which approximately follows a �2 distribution
with df as the number of groups minus two.

Hosmer et al. (1997) reviewed many goodness-
of-fit tests, including the Pearson �2 statistic and
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Ĉ , for assessing logistic regression models. They
found that the �2 statistic performed well if based
on the conditional mean and variance estimate
and compared to a scaled �2 distribution; unfortu-
nately, the computations required to modify the
usual �2 statistic are not straightforward. They
also recommended Ĉ , as it is available in most sta-
tistical software and is powerful and we support
their recommendation.

There has also been work on analogues of r2

used as a measure of explained variance in OLS
regression. Menard (2000) discussed a range of
measures like r2 for logistic regression and tenta-
tively recommended:

rL
2� �1� (13.22)

In Equation 13.22, L0 is the likelihood for the
model with only the intercept and LM is the likeli-
hood for the model with all predictors (one in the
case of simple logistic regression).

13.2.6 Model diagnostics
As well as assessing the overall fit of the model,
it is also important to evaluate the contribution
of each observation, or group of observations, to
the fit and deviations from the fit. In OLS linear
models, we have emphasized the importance of
residuals, the difference between each observed
and fitted or predicted value. There are two types
of residuals from logistic regression models. The
first is the Pearson residual for an observation,
which is the contribution of the difference
between the observed and predicted value for
an observation to the Pearson �2 statistic, and
is usually expressed as a standardized residual
(ei):

ei� (13.23)

where yi is the observed value of Y, 
̂i is the pre-
dicted or fitted value of Y for a given value of xi and
n is the number of observations. The second is
the deviance residual for an observation, which is
the contribution of the difference between the
observed and predicted value for an observation
to the total deviance.

The Pearson and deviance residuals approxi-
mately follow a normal distribution for larger

yi� n
̂i

�[n
̂i(1� 
̂i)]

ln(LM)
ln(L0)

[ln(L0)� ln(LM)]
ln(L0)

sample sizes when the model is correct and resid-
uals greater than about two indicate lack of fit
(Agresti 1996, Hosmer & Lemeshow 1989, Menard
1995). When predictor variables are continuous
and there is only a single value of Y for each com-
bination of values of the predictor variables, then
the large sample size condition will not hold and
single residuals will be difficult to interpret.
When the predictor variables are categorical and
we have reasonable sample sizes for each combi-
nation of predictor variables, then residuals are
easier to interpret and we will examine such resid-
uals in the context of contingency tables in
Chapter 14.

Diagnostics for influence of an observation, i.e.
how much the estimates of the parameters
change if the observation is deleted, are also avail-
able and are similar to those for OLS models
(Chapter 5; see also Hosmer & Lemeshow 1989,
Menard 1995). These include (i) leverage, which is
measured in the same way as for OLS regression,
and (ii) an analogue of Cook’s statistic standard-
ized by its standard error called Dfbeta (Agresti
1996) or  � (Hosmer & Lemeshow 1989), which
measures the standardized change in the esti-
mated logistic regression coefficient b1 when an
observation is deleted. The change in �2 or devi-
ance when an observation is deleted can also be
calculated. These diagnostics are standard output
from many logistic regression routines in statisti-
cal software. Influential observations should
always be checked and our recommendations
from Chapters 4 and 5 apply here.

13.2.7 Model selection
As with OLS multiple linear regression, we often
wish to know which of the two or more predictor
variables in the logistic regression model contrib-
utes most to the pattern in the binary response
variable. A related aim is to find the “best” model,
one that provides the maximum fit for the fewest
predictors. The criteria for assessing different
models include the Pearson �2 or deviance (G2) sta-
tistics, rL

2 and information criteria like Akaike’s
(see Chapter 6). The Akaike Information Criterion
(AIC) adjusts (“penalizes”) the G2 (deviance) for a
given model for the number of predictor variables:

AIC�G2�n�2p (13.24)
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where n is the number of observations and p is the
number of predictors. For categorical predictors:

AIC�G2�D�2p (13.25)

where D is the number of different combinations
of the categorical predictors (Larntz 1993). Models
with low AICs are the best fit and if many models
have similarly low AICs, you should choose the
one with the fewest model terms. For both contin-
uous and categorical predictors, we prefer com-
paring full and reduced models to test individual
terms rather than comparing the fit of all possible
models to try and select the “best” one.

We will not discuss stepwise modeling for
multiple logistic regression or more general logit
models. Our reservations about stepwise proce-
dures (see also James & McCulloch 1990) have been
stated elsewhere (Chapter 6).

13.2.8 Software for logistic regression
Logistic regression models can be fitted using sta-
tistical software in two main ways. Most programs
provide logistic regression modules, often as part
of a general regression module. It is assumed that
the response variable is binary and that a GLM is
fitted with a binomial distribution for the error
terms and a logit link function. Some software
offers GLM routines and the error distribution
and link function might need to be specified. The
range of diagnostics is usually extensive but it is
always worth running a known data set from a
text like Christensen (1997) or Hosmer &
Lemeshow (1989). Tabachnick & Fidell (1996) have
provided an annotated comparison of output
from four common programs.

13.3 Poisson regression

Biologists often deal with data that are in the
form of counts (e.g. number of organisms in a
sampling unit, numbers of cells in a tissue
section) and we commonly wish to model a
response that is a count variable. Counts usually
have a Poisson distribution, where the mean
equals the variance and therefore linear models
based on normal distributions may not be appro-
priate. One solution is to simply transform the
response variable with a power transformation

(e.g. �), which tends to remove any relationship
between the mean and variance. An alternative is
to use a GLM with a Poisson error term and a log
link function that is called a log-linear model. Log-
linear models are commonly used to analyze con-
tingency tables (Chapter 14) but can also be used
effectively when the predictors are continuous
and the response variable is a count to produce a
Poisson regression model:

log(�)��0��1xi (13.26)

In model 13.26, � is the mean of the Poisson dis-
tributed response variable, �0 is the intercept
(constant), �1 is the regression coefficient and xi is
the value of a single predictor variable for obser-
vation i. The model predicts that a single unit
increase in X results in Y increasing by a factor of
e�1 (Agresti 1996). A positive or negative value of �1

represents Y increasing or decreasing respectively
as X increases. Such models can be easily extended
to include multiple predictors. For example,
Speight et al. (1998) described the infestation of a
scale insect Pulvinaria regalis in an urban area in
England. They modeled egg code, the level of
adult/egg infestation measured on a scale of one
to ten, against seven predictor variables: tree
species, tree diameter, distance to nearest infested
tree, distance to nearest road, percentage
impermeability of ground, tree vigor and distance
from nearest building.

Nearly all the discussion in previous sections
related to logistic regression, including estima-
tion, model fitting and goodness-of-fit, and diag-
nostics, applies similarly to Poisson regression
models. One additional problem that can occur
when modeling count data is that we are assum-
ing that the response has a Poisson distribution
where the mean equals the variance. Often,
however, the variance is greater than the mean,
which is termed overdispersion (Agresti 1996). In
GLMs, the dispersion parameter is now less than
or greater than one (see Section 13.1). Standard
errors of estimated regression coefficients will be
smaller than they should and tests of hypotheses
will have inflated probabilities of Type I error.
Overdispersion is usually caused by other factors,
which we have not measured, influencing our
response variable in heterogeneous ways. For
example, we might model number of plant
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species per plot against soil pH in a forest; if
unmeasured nutrient levels also vary greatly
between plots, then variance in the number of
species may be greater than the mean. There are
at least three possible ways of dealing with over-
dispersion.

• We can correct the standard errors of the para-
meters by multiplying by �(�2/df ), as sug-
gested by Agresti (1996). Gardner et al. (1995)
provide a complex adjustment based on an
estimate of the dispersion parameter.

• We could use a more appropriate probability
distribution, such as the negative binomial
(Chapter 2, Gardner et al. 1995).

• We could use quasi-likelihood models where
the dispersion parameter is estimated from the
data rather than restricted to the value defined
by a Poisson distribution.

Criteria for assessing the fit of GLMs, such as the
likelihood ratio statistic and AIC, are also sensitive
to overdispersion. Fitzmaurice (1997) suggested
that such criteria could be simply scaled by a
REML (restricted maximum likelihood) estimate
of the degree of overdispersion.

13.4 Generalized additive models

Generalized additive models (GAMs) are non-para-
metric modifications of GLMs where each predic-
tor is included in the model as a non-parametric
smoothing function (Hastie & Tibshirani 1990). In
general terms, with a response variable and j�1
to p predictor variables, a GLM can be written as:

g(�)��0� �jXj (13.27)

Note that we have summarized the systematic
component representing the predictor variables
as a sum of products between regression coeffi-
cients and predictors.

A GAM fits a more flexible model:

g(�)��0� fjXj (13.28)

g(�)��0� f1xi1� f2xi2�
. . . � fpxip (13.29)

In models 13.28 and 13.29, the fj are non-
parametric functions estimated using a smooth-

�
p

j�1

�
p

j�1

ing technique (Chapter 5). These smoothing func-
tions, which are commonly Loess or cubic splines
for GAMs, are usually estimated from exploratory
scatterplots of the data (Yee & Mitchell 1991).

For example, recall the data from Loyn (1987)
described in Chapter 6. These data were the abun-
dances of birds from 56 forest patches in south-
eastern Australia. Six predictor variables were
recorded for each patch: area, distance to nearest
patch, distance to nearest largest patch, grazing
intensity, altitude and years since isolation. A
GAM with all predictors (area and the two dis-
tances transformed to logs), using a normal prob-
ability distribution and identity link function and
based on Loess smoothing functions for each pre-
dictor, would be:

g(mean bird abundance)i��0�

f1(log patch area)i� f2(years isolated)i�
f3(log nearest patch distance)i�
f4(log nearest large patch distance)i�
f5(stock grazing)i� f6(altitude)i (13.30)

where fj is a Loess smoothing function. Note that
there is no requirement for the same criteria to be
used for each smoothing function, e.g. Loess
smoothers for X1 and X2 may use different smooth-
ing parameters, or even for the same type of
smoothing function to be used for each predictor,
e.g. a Loess could be used for X1 and a cubic spline
for X2. The smoothing function for each predictor
is derived from the data separately from the
smoothing function for any other predictor. We
will illustrate the fit of a GAM to a subset of these
data from Loyn (1987), incorporating only three
predictors (log patch area, log nearest patch dis-
tance, years isolated), in Box 13.3.

The main difference between GLMs and GAMs
is that the former fits models that are constrained
to a parametric (linear) form whereas the latter
can fit a broader range of non-parametric models
determined from the observed data. A combina-
tion of the two types of models is termed semi-
parametric. This is a linear model with
non-parametric terms included for at least one
but not all of the predictors. GAMs are termed
additive because the response variable is modeled
as the sum of the functions of each predictor with
no interactions.

Like GLMs, GAMs need a link function defined
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Box 13.3 Worked example of generalized additive
models: bird abundances in habitat fragments

We will use the data from Loyn (1987), first introduced in Chapter 6, to illustrate a
simple application of GAMs. We will model the abundance of birds in 56 forest
patches against three predictors: log10 patch area, log10 distance to nearest patch
and years since patch isolation. The boxplot of bird abundance is symmetrical so
we will use a normal (Gaussian) probability distribution and an identity link function.
We will also use a Loess smoothing function for each of the predictors and keep
the smoothing parameter the same for all three functions. We fitted the models
using S-Plus 2000 for Windows software.

Full model:

g(mean bird abundance)i��0� f1(log10 patch area)i� f2(years isolated)i�

f3(log10 nearest patch distance)i

Deviance for null model: 6337.929 with 55 degrees of freedom
Residual deviance from fitted model: 1454.314 with 40.529 degrees of

freedom

Degrees of freedom and F-ratios for non-parametric effects for each predictor
are tabulated below.

Parametric Non-parametric Non-parametric
Term df df F-ratio P

Intercept 1
Log10 patch area 1 4.2 1.817 0.142
Years isolated 1 3.3 0.618 0.620
Log10 nearest patch distance 1 4.1 2.576 0.051

None of the terms had significant non-parametric components, suggesting that the
linear model we fitted in Chapter 6 was appropriate, at least for these three pre-
dictors. This is clear from the Loess fits to scatterplots of bird abundance against
each predictor (Figure 13.3) with only log10 distance suggesting some nonlinearity.

Test of log10 patch area is as follows.

Model dfResidual DevianceResidual

Log10 patch area�years isolated� log10 nearest patch distance 40.529 1454.314
Years isolated� log10 nearest patch distance 45.683 3542.574 

Difference in deviance��2088.26, df��5.154, approximate F-ratio�11.291,
P�0.001.

Clearly, a model that includes log10 patch area was a significantly better fit than
a reduced model that doesn’t. Equivalent model comparisons could be done for
the remaining two predictors.



and a probability distribution for the response
variable that implies a probability distribution for
the error terms from the model. The difficulty in
specifying a probability distribution for the
response variable and error terms is often over-
come in GAMs by using quasi-likelihood models
where only a relationship between mean and var-
iance is specified and the dispersion parameter
(i.e. the variance) is derived from the data (Section
13.1). The fit of a GAM is based on something
called the local scoring algorithm, an extension of
the Newton–Raphson algorithm used for fitting
GLMs. Details of both can be found in Hastie &
Tibshirani (1990) but basically local scoring uses a
backfitting algorithm that iteratively fits a
smoothing function, determines the partial resid-
uals, and smooths these residuals. The details are
complex and understanding them is not neces-
sary to appreciate GAMs.

The important point is that we can measure
the fit of a particular GAM, using measures like
deviance and AIC, and also compare the fit of
models with and without particular terms or
combinations of terms. This allows us to assess the
contribution of each predictor, modeled with its
specific smoothing function, to the pattern in the
response variable based on the usual analysis of
deviance as used for GLMs. The difference in devi-
ance between two hierarchical models (one with
and one without the term being tested in the H0)
can be compared asymptotically to a �2 distribu-
tion. Hastie & Tibshirani (1990) also suggested
that deviance statistics can be converted to
approximate F-ratio statistics when the dispersion
parameter is unknown and F tests are common
output from software that fits GAMs. In summary,
GAMs can be analyzed using the same framework
as linear and generalized linear models.

There are some complexities when using

GAMs for inference that we do not find in linear
and generalized linear models. The use of smooth-
ing functions means that the degrees of freedom
will usually not be an integer (Yee & Mitchell
1991). Additionally, the degrees of freedom for a
smoothing term can be split into two compo-
nents, that due to the parametric linear fit and
that due to the non-parametric fit once the linear
component has been removed. Some software also
provides tests of the non-parametric component
for individual terms in our model. This is very
useful if GAMs are used as an exploratory tool
because non-significant non-parametric fits
suggest that linear models are appropriate for the
data.

An example of the use of GAMs in biology
comes from Berteaux & Boutin (2000) who
modeled the breeding behavior of female red
squirrels against 13 possible predictor variables,
including minimum age of females, food abun-
dance in same year as female behavior observed,
food abundance in previous year, minimum
number of middens owned by female, number of
juveniles at weaning, and year of study. Their
response variable was categorical, values being
one, two or three: one was females keeping their
territory and excluding juveniles after breeding,
two was females sharing their territories with
juveniles and three was females bequeathing
their territories to juveniles. Berteaux & Boutin
(2000) fitted GAMs with different combinations of
predictors and with cubic splines as the smooth-
ing functions. They used a quasi-likelihood model
to estimate the variance in their response variable
because a Poisson distribution was not quite
appropriate. They also used the Akaike Infor-
mation Criterion (AIC) to select the best model,
which turned out to be the one with the predic-
tors listed above but not including the remaining
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Figure 13.3. Scatterplots of bird
abundance against each of three
predictors (log10 area, log10 distance,
years since isolation), with Loess
smoothers, for the data from Loyn
(1987).



seven predictors. They also used logistic regres-
sion to model a binary response (females disperse
or not disperse after breeding) against these previ-
ously described predictor variables; pretty much
the same set of variables as for the GAM had the
best fit in the logistic model.

Bjorndal et al. (2000) also used GAMs to model
the growth rates (from mark–recapture data) of
immature green turtles in the Bahamas against
five predictor variables (sex, site, year, mean size
and recapture interval). They used a similar mod-
eling procedure to Bertaux & Boutin (2000), with
quasi-likelihood models and cubic spline smooth-
ing functions. However, they sensibly did not try
to select a single best model, but rather estimated
the fit and parameters for a model with all predic-
tors, including specific contrasts between sexes
(male vs female and male versus unknown) and
between the three sites. They also tested for non-
linear effects for some of the predictors (see also
Yee & Mitchell 1991).

Although GAMs are very flexible models that
can be fitted for a wide range of distributions of
the response variable, especially exponential dis-
tributions, their application is not straightfor-
ward. First, we must choose a smoothing function
for each predictor and also a smoothing parame-
ter for each smoothing function. Second, we must
make the same decisions as for GLMs: which prob-
ability distribution and link function combina-
tion is appropriate or use quasi-likelihood models.
Third, we must have appropriate software and
routines for fitting GAMs are not available in most
commercial programs, although S-Plus is a note-
able exception. With these limitations in mind,
GAMs can be very useful, both as an exploratory
tool that extends the idea of smoothing functions,
and as a more formal model fitting procedure that
lets the data determine many aspects of the final
model structure.

13.5 Models for correlated data

One of the most challenging data analysis tasks for
biologists is dealing with correlated data. For
example, repeated observations on the same sam-
pling or experimental units, either under sequen-
tial treatment applications or simply through

time, cause difficulties for analysis. All the linear
and additive models we have described so far
assume independence of observations. If observa-
tions are correlated, then the variances and stan-
dard errors of estimated model parameters will be
inappropriate. For example, positive correlations
between observations will result in standard errors
of parameter estimates being too low and
increased Type I error probabilities for hypothesis
tests and negative correlations will result in the
converse effect (Dunlop 1994; see also Chapters 5
and 8 for discussion of effects of non-independence
in linear regression and ANOVA models).

We have already described methods for
dealing with correlated observations that are
based on adjusting estimates and hypothesis tests
depending on the degree of correlation. For
example, the ANOVA models we used for repeated
measures designs in Chapters 10 and 11 are basi-
cally standard partly nested models where we
adjust the tests of significance in a conservative
fashion to correct for inflated Type I errors result-
ing from the correlated observations. While allow-
ing reliable significance tests for repeated
measures designs, we would really like a method
that fits predictive models that incorporate a
mixture of continuous and categorical predictors
in a general modeling framework. We will briefly
describe two relatively recently developed model-
ing techniques that specifically address correlated
data. Details of the methods are beyond the scope
of this book, and our expertise. Their main appli-
cation seems to have been in the medical litera-
ture, especially various types of clinical trials, and
in education, although they clearly have potential
application in biology given the prevalence of
repeated measures designs in the literature. Our
aim is simply to make biologists aware that there
are methods based on linear and generalized
linear models for dealing with correlated data,
and to provide references to the literature that
will help biologists wishing to investigate these
methods further.

These two modeling approaches are just some
of the many methods for dealing with correlated
data, especially longitudinal data where we have
repeated observations of sampling or experimen-
tal units. As well as the adjusted ANOVA models
described in Chapters 10 and 11, there are growth
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models, structural equation models, Markov
models, transition models and more formal non-
linear time series analyses (see Chapter 5). These
techniques, and the two described below, are
reviewed by Bijleveld & van der Kamp (1998) and
Diggle et al. (1994).

13.5.1 Multi-level (random effects) models
We often deal with observations from sampling or
experimental units that are arranged hierarchi-
cally. In Chapter 9, we described nested ANOVA
models for situations where we had categorical
predictors (factors) that were nested within other
factors. In those analyses, we used a single model
that incorporated the top level factor plus a
second level factor nested within the top level
factor and so on. One assumption was that obser-
vations at the lowest level (“replicates”) were inde-
pendent of each other. Longitudinal, repeated
measures, data can also be viewed as hierarchical
with the repeated measurements being nested
within an individual sampling or experimental
unit and those units being nested within some
other (between unit) factors. The difference from
the classical nested design described in Chapter 9
is that the measurements nested within each unit
are not independent of each other. Laird & Ware
(1982) proposed using multi-level linear models
with random effects for analyzing longitudinal
data, including repeated measures designs. In
fact, these models include both fixed and random
effects and are therefore best described as multi-
level mixed models (Bijleveld & van der Kamp
1998, Ware & Liang 1996).

Consider a fictitious study on growth rates of
animals where we use a repeated measures design
with a single between-subjects factor (sex) and
time as the within-subjects factor. The subjects or
units might be individual animals and the
response variable might be body size. The basic
idea is that we fit a model in two stages; we will
mainly follow the terminology of Bijleveld & van
der Kamp (1998). In the first stage, we model the
response variable for the observations within each
unit, against whichever predictor variables are
represented by the different times. For example,
the predictors may be simply time (in days,
months or years) and/or some polynomial of time,
or may represent successively applied treatments.

With usual linear or generalized linear modeling
techniques, we estimate the fixed model parame-
ters for the time effects within each unit and the
random error terms:

yi��iT�ei (13.31)

In model 13.31, yi is the vector of response variable
values for each time for unit i, T is a matrix repre-
senting the different times, �i is the vector of
regression coefficients (intercept and slopes,
usually only one slope if T contains only a single
time variable) and ei is the vector of random error
terms. In the second stage, we treat the regression
coefficients as random effects allowing the coeffi-
cients (slopes and/or intercepts) of the regressions
against time to vary from unit to unit. We are
assuming the observed regression coefficients for
each unit are a sample from some probability dis-
tribution of coefficients. We now model these
random coefficients against the predictor vari-
ables measured at the between-unit (or subject)
level, which will be the between-subjects factor(s):

�i��xi�ui (13.32)

In this stage two model, �i is the vector of regres-
sion coefficients from stage one, xi is the matrix of
between-unit predictor variables, such as the
between-subjects design structure, � is the vector
of coefficients relating the original regression
coefficients to the between-subjects factor and ui

is the vector of random error terms.
These two stages can be combined into a single

mixed model:

yi��Txi�Tui�ei (13.33)

There are two sets of random effects, the error
term from the first level model (within units) and
those from the second level model (between
units). Different formulations of this model for
situations where we allow the slopes or the inter-
cepts or both to vary between units are provided
by Burton et al. (1998), Cnaan et al. (1997) and Omar
et al. (1999). These models can also be extended to
three and more levels.

These multi-level models are usually fit using
iterative least squares that result in REML esti-
mates of parameters. The random effects are often
estimated as variance components. Tests of partic-
ular terms in the model are based on comparing
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models with and without the term of interest
with likelihood ratio (deviance) tests. For the fixed
parameters, these deviances can be compared to a
�2 distribution; for random parameters, using the
�2 distribution will result in overly conservative
tests (Burton et al. 1998). 

Routines for fitting multi-level mixed models
are becoming available, both as stand-alone pro-
grams (Burton et al. 1998) and in more general use
statistical software (e.g. S-Plus). These multi-level
mixed models are complex, the literature replete
with slightly different formulations of what is
basically the same set of model for a given number
of levels. They are particularly useful if the rela-
tionship between the response variable and time
for each sampling or experimental unit is of inter-
est because this pattern can be modeled, allowing
for different slopes and/or intercepts for each
unit, against between-unit (between-subject) pre-
dictors (factors).

13.5.2 Generalized estimating equations
Generalized estimating equations (GEEs) were
introduced by Liang & Zeger (1986) as an exten-
sion of GLMs to model correlated data. To under-
stand the basics of GEEs, we need to examine how
we fit GLMs in a little more detail. GLMs are fitted,
and therefore parameters of the model are esti-
mated, by solving complex likelihood equations
using the iterative Newton–Raphson algorithm. If
the response variable has a probability distribu-
tion from the exponential family, then the likeli-
hood equations can be viewed as estimating
equations (Agresti 1990), equations that are solved
to produce ML estimates of model parameters. The
normal equations that are solved to produce OLS
estimates of linear regression models (Chapter 5)
can also be considered as estimating equations.
The estimating equations for GLMs are character-
ized by a covariance (or correlation) matrix that
comprises zeros except along the diagonal, i.e. cor-
relations between observations are zero (Dunlop
1994). Liang & Zeger (1986) generalized these esti-
mating equations to allow for covariance matrices
where correlations between observations on the
same sampling or experimental unit (“subject”)
are not zero. Solving the GEEs results in estimates
of model parameters with variances (and standard
errors) that are robust to correlations between

observations (Burton et al. 1998). GEEs are not
restricted to situations where the response vari-
able has a probability distribution from the expo-
nential family. In fact, quasi-likelihood methods
are used where we only need to specify a relation-
ship between the mean and variance for Y and we
estimate the variance from the data (Section 13.1).

GEEs fit marginal models, where the relation-
ship between the response variable and predictor
variables is modeled separately from the correla-
tion between observations within each experi-
mental or sampling unit (Diggle et al. 1994). For
example, imagine a data set where we have n sam-
pling units (e.g. permanently marked plots in a
forest) and we record a response variable (e.g.
growth rate of plants) and a predictor variable (e.g.
soil phosphorus concentration) at a number of
times. Our main interest is probably the relation-
ship between plant growth and soil P, but we want
to estimate the parameters of a regression model
between these variables accounting for the corre-
lation between observations through time for the
same plot. The GEE method will estimate the
regression separately from the within-unit corre-
lation. In a repeated measures design, we might
have experimental units within a number of treat-
ment groups but these units are observed repeat-
edly through time. A GEE approach to the analysis
would estimate the correlation structure within
units separately and use this when fitting a linear
model of the response variable against the treat-
ment variable. The correlation structure is treated
as a nuisance parameter used to adjust the vari-
ance and standard errors of the parameter esti-
mates (Omar et al. 1999).

Burton et al. (1998) summarized the steps in
fitting a GEE. First, a GLM is fitted to all observa-
tions and the residuals calculated. These residuals
are used to estimate the correlation between
observations within each unit. The GLM is refitted
but now incorporating the correlation matrix just
estimated into the estimating equations. The
residuals from this new fit are used to re-estimate
the correlation structure and the steps repeated
until the estimates stabilize. Hypothesis tests for
individual parameters of the model are usually
done with Wald tests (Section 13.2.1), where the
estimate of the parameter is divided by its robust
standard error estimated from the GEE model.
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Besides finding software that will fit GEEs, the
main difficulty is that the structure of correla-
tions between observations (i.e. the covariance
matrix) needs to be specified a priori. Burton et al.
(1998) and Horton & Lipsitz (1999) suggested a
range of working correlation structures.

• Independence, where there are no correlations
between observations. Clearly, this is not a sen-
sible choice when we have repeated observa-
tions.

• Exchangeable, where the correlations between
different observations are identical, no matter
how close they are in a time sequence. This is
the equivalent of compound symmetry,
described for analyses of repeated measures
designs with ANOVA models in Chapters 10
and 11.

• Unstructured, where the correlations between
pairs of observations can vary and are esti-
mated from the data.

• Fixed, where we fix the correlations rather
than estimating them from the data.

• Autoregressive, where correlations between
observations closer together in a time
sequence are more correlated than observa-
tions further apart. This is the situation we
anticipate in repeated measures designs and
why we usually need to adjust significance
tests when fitting partly nested ANOVA models
to repeated measures data (Chapters 10 and
11). This choice of correlation structure is used
when the residuals from a linear model fit are
used to estimate the correlations between
observations.

All choices except an unstructured correlation
matrix will constrain the pattern of estimated cor-
relations between observations within the same
unit. Horton & Lipsitz (1999) recommended an
unstructured correlation matrix if the data set is
balanced (no missing values) and the number of
observations within a unit is small. It turns out
that one of the strengths of GEEs is that, although
correct specification of the correlation structure
makes estimation more efficient, parameter esti-
mates are usually consistent even if the wrong cor-
relation structure is used, i.e. the estimates of
model parameters are not very sensitive to the
choice of correlation structure. Omar et al. (1999)

showed this for real data, where estimates and
standard errors of between-subject treatment dif-
ferences from a repeated measures design with
repeated observations within subjects were
similar for unstructured, exchangeable and auto-
regressive correlation structures.

While GEEs may not work as well for small
sample sizes (Ware & Liang 1996), all model fitting
methods have difficulties in this situation. GEEs
can handle missing data effectively as long as the
observations are missing completely at random
(Chapters 4 and 15), and therefore provide a real
alternative to classical ANOVA type models for
repeated measures designs that do not handle
missing observations very effectively (Chapters 10
and 11). GEEs can be used for any combination of
categorical and continuous response variables and
predictors and can make use of the GLM frame-
work of specifying a link function, so that the GEEs
can resemble logistic and log-linear models.

In a comparison of different methods for ana-
lyzing repeated measurement data, Omar et al.
(1999) argued that GEEs are most applicable when
the pattern of observations through time for sam-
pling or experimental units is not the main
research question. For example, in a repeated meas-
ures design, GEEs might be suitable when the main
factor of interest was between subjects and the
within-subjects component represents repeated
observations through time. If the within-subjects
component is a factor of specific interest, GEEs are
less useful. GEEs are really best for estimating
regression models where we have a mixture of
repeated and independent observations or when
the focus is on comparisons of groups where the
units are independent between groups, even if
there are also repeated observation within units.

13.6 General issues and hints for
analysis

13.6.1 General issues

• Generalized linear models (GLMs) provide a
broad framework for testing linear models
when the distribution of model error terms, and
the response variable, is from the exponential
family (e.g. normal, binomial, Poisson, etc.).
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• Logistic regression is a GLM for modeling
binary response variables against categorical
or continuous predictors.

• GLMs such as logistic regression are paramet-
ric analyses. Choosing the correct probability
distribution, and therefore mean and variance
relationship, is important. Quasi-likelihood
models are more flexible if you are not sure
about the probability distribution or you have
data that are underdispersed or overdispersed.

• Poisson regression is a GLM for modeling
Poisson response variables (e.g. counts) against
categorical or continuous predictors. 

• Generalized additive models (GAMs) increase
the flexibility of GLMs by permitting a range of
non-parametric smoothing functions, rather
than just linear relationships.

• For modeling correlated data, generalized esti-
mating equations (GEEs) can provide estimates
of parameters and robust standard errors that
account for the correlations but are most
suited to situations where the pattern through
time is not of much interest.

• Multi-level mixed models fit linear models
through time for each sampling and experi-
mental unit (stage one) and then model the

coefficients from those stage one models
against between-unit predictor variables (stage
two).

13.6.2 Hints for analysis

• Goodness-of-fit tests for logistic models with
continuous predictors are difficult to interpret.
The Hosmer–Lemeshow Ĉ statistic is recom-
mended; do not rely on P values from standard
�2 or G2 statistics.

• Always compare GLMs with multiple predic-
tors in a hierarchical fashion. If an interaction
term is included, also include all lower-order
terms. Check for collinearity if you have two or
more predictor variables.

• Overdispersion in binomial or Poisson distribu-
tions (where the variance is greater than
would be expected based on the chosen proba-
bility distribution) can affect parameter esti-
mates and significance tests. Adjustments can
be made or use quasi-likelihood models.

• When both the response variable and predictor
variable(s) are categorical, log-linear models
are easier to interpret if distinguishing a
response variable is not essential.
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Chapter 14

Analyzing frequencies

The previous chapter introduced logistic regres-
sion, a generalized linear model based on a bino-
mial distribution and logit link function for
modeling binary response variables. If the
response has more than two categories, then it is
likely to come from a multinomial distribution, of
which the binomial is a special case. We can also
model the count or frequency in each category as
coming from a Poisson distribution when the
total count (n) across all categories is not fixed.
This chapter focuses on the analysis of one or
more categorical variables, particularly when we
have counts of observations in each combination
of the variables. When there are two or more var-
iables, each with two or more categories, the
counts form a contingency table where the obser-
vations are cross-classified by the categorical vari-
ables. Contingency tables do not specifically
distinguish response and predictor variables,
although such a distinction can be important in
model building and interpretation.

A fundamental statistic for the analysis of cat-
egorical data is the chi-square (�2) statistic, also
called the Pearson �2 statistic, which is commonly
used to compare observed and theoretical (i.e.
expected) frequencies in categories:

(14.1)

where o and e denote the observed and expected
(or theoretical) frequencies respectively in each
category or combination of categories and the
summation is over all the categories. The degrees
of freedom are a function of the number of cate-
gories minus one. Note that �2 basically measures

�
n

i�1

(o� e)2

e

the differences between the observed and
expected values. It has a value of zero when the
observed and expected values are the same. Null
hypotheses in categorical analyses often imply
that a sample of observations came from a popu-
lation where the observed frequencies match
some expected frequencies. The �2 statistic
approximately follows a �2 distribution if the fol-
lowing assumptions hold.

1. Observations are classified into categories
independently. This means that the category
combination into which any observation is
classified is independent of the category
combination into which other observation is
classified.

2. No more than 20% of the categories have
expected frequencies less than about five (Agresti
1990, 1996). With smaller sample sizes,
comparisons of the �2 statistic to a �2

distribution can produce misleading
probabilities.

This chapter is an introduction to categorical
data analyses; more detailed treatments can be
found in Agresti (1990, 1996), Christensen (1997)
and Tabachnick & Fidell (1996) among others. We
will first illustrate some simple analyses based on
the �2 statistic, although generalized linear
models, especially log-linear models, are much
more flexible for categorical data analysis. We will
consider these later in the chapter.



14.1 Single variable goodness-of-fit
tests

A simple goodness-of-fit test is where we test
whether our observations come from a popula-
tion with a particular distribution of frequencies
in categories of a single variable. The general data
layout for these tests is usually a single categorical
variable with counts or frequencies for each cate-
gory (Box 14.1). The expected values (if H0 is true)
are calculated from some theoretical or predicted
frequency. The H0 is that the observed data came
from a population that has the theoretical or
expected frequencies. We test this H0 by calculat-
ing a �2 statistic with the equation described
above. We then compare the calculated �2 to the
�2 distribution with the degrees of freedom being
the number of categories minus one. If the prob-
ability of obtaining the calculated �2, or one
larger, when H0 is true, is less than our chosen sig-
nificance level, then H0 should be rejected. This is
the standard logic of testing a statistical null
hypothesis (Chapter 3).

An alternative goodness-of-fit test for a single
variable is the Kolmogorov–Smirnov (K–S) test,
which compares observed and expected cumula-
tive frequencies (Hays 1994). The test statistic (D) is
just the largest difference between the observed

and expected cumulative frequencies across all
possible values of the categorical variable. This
test is preferred to the �2 when there are a large
number of categories and the categories can be
ordered in some way. In particular, the K–S test is
suited for comparing two frequency distributions,
where one distribution acts as the observed and
the other the expected. As with most biostatistical
analyses, the K–S test is clearly described, with for-
mulae, in Sokal & Rohlf (1995) and is available in
most statistical software.

14.2 Contingency tables

The most common form of categorical data analy-
sis in the biological sciences is the analysis of
contingency tables. These tables involve the cross-
classification of sampling or experimental units
by two or more variables (Table 14.1), with counts
or frequencies of units in each combination of the
variables, termed a cell, analogous to factorial
ANOVA designs.

14.2.1 Two way tables
Tables where sampling or experimental units are
cross-classified by two variables are termed two
way tables. Generally, contingency tables are ana-
lyzed so that neither variable is considered as a

CONTINGENCY TABLES 381

Box 14.1 Worked example: goodness-of-fit tests for a
single variable

For one of the few times in this book, we will use fictitious data. Ninety shrubs of
a dioecious plant were sampled in a forest and each plant was classified as male or
female. The observed counts and the predicted (expected) counts based on a
theoretical 50:50 sex ratio were as follows.

Female Male Total

Observed 40 50 90
Expected 45 45

The H0 is that this sample of plants came from a population with a sex ratio of 50:50.
The expected values were derived from n and the H0.

v 2�1.11, df�1, P�0.292.

There is no evidence that the observed sex ratio in the population is different
from 50:50.



predictor or a response variable. For example,
French & Westoby (1996) cross-classified plant
species following fire by two variables: whether
they regenerated by seed only or vegetatively and
whether they were ant or vertebrate dispersed.
These two variables could not be distinguished as
response or predictor since regeneration mecha-
nisms could just as easily “affect” dispersal mode
as vice versa. This was a two by two table (Table
14.2(a)) and its analysis is in Box 14.2.

In other situations, one variable can be envis-
aged as a response variable and the other as a pre-
dictor. For example, Roberts (1993) sampled
quadrats on a floodplain and classified them by
two variables: presence/absence of dead coolibah
trees (Eucalyptus coolibah) and position along tran-
sect (top�dunes, bottom� lakeshore, middle�
intermediate). In this example, position along the
transect might be considered a predictor variable
and with or without dead coolibah trees as a
response variable. We might expect coolibah tree
mortality to be affected by position but the con-
verse is biologically unlikely. This was a two by
three table (Table 14.2(b)) and its analysis is in Box
14.3. Another example is from Clinton & Le Boeuf
(1994), who looked at the association between sur-
vivorship of male northern elephant seals

(Mirounga gustirostris) and mating success (the
number of females inseminated). This was a two
by two contingency table with died/survived as
the response variable, zero or greater than zero
females inseminated as the predictor variable and
the number of male seals were the frequencies in
each category.

In practice, the analysis of contingency tables
is not really changed by whether we can distin-
guish response and predictor variables. If the
response variable is binary, then we can use logis-
tic (i.e. logit) models with categorical predictors as
described in Chapter 13. However, the distinction
between response and predictor variables can be
important for the interpretation of log-linear
models for analyzing complex contingency tables
(Section 14.2.2).

Table structure
The general data layout for a two way table (cross-
classification of two variables) is illustrated in
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Table 14.1 General data layout for a two by two
contingency table

Marginal 
Variable 2→ totals 
Variable 1↓ 1 2 variable 1

1 n11 n12 n1j
p11 p12 p1j

2 n21 n22 n2j
p21 p22 p2j

Marginal totals ni1 ni2 Grand total n
variable 2 pi1 pi2

Note:
Variable 1 has two levels (I�2), variable 2 has
two levels ( J�2) with observed counts or
frequencies (nij) for each combination (cell) of
the two variables. The probability that an
observation falls in any cell is pij; marginal
probabilities are pi� and p

�j.

Table 14.2 Observed frequencies for two way
contingency tables from (a) French & Westoby’s
(1996) study where plant species were cross-
classified by dispersal mode and regeneration
mechanism and (b) Roberts’s (1993) cross-
classification of quadrats on a floodplain by
presence/absence of dead coolibah trees and
position along transect

(a)
Dispersal

mechanism

Regeneration Ant Vertebrate Total

Seed only 25 6 31
Vegetative 36 21 57
Total 61 27 88

(b)
Dead coolibah

trees

Position along transect With Without Total

Bottom 15 13 28
Middle 4 8 12
Top 0 17 17
Total 19 38 57



Table 14.1. We will follow Agresti (1996) and use X
(i�1 to I categories) and Y ( j�1 to J categories) as
labels for the two variables. For a two by two table,
both I and J equal two. When one of the variables
is clearly a response variable, it will be designated
Y; otherwise, no particular significance should be
ascribed to which variable is X and which is Y. The
observed frequency in each cell is nij and the

probability that an observation occurs in any cell
is 
ij. We also have marginal totals (e.g. the total in
row one is n1j) and marginal probabilities (e.g. the
probability that an observation occurs in row one
is 
1j�
11�
12); these marginal probabilities are
the probabilities that an observation occurs in a
particular row or column.

Sokal & Rohlf (1995) described three different
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Box 14.2 Worked example of analysis of independence in
two way table: regeneration and seed dispersal
mechanisms of plants

French & Westoby (1996) cross-classified plant species following fire by two vari-
ables: whether they regenerated by seed only or vegetatively and whether they
were ant or vertebrate dispersed. The H0 is that the dispersal mechanism is inde-
pendent of mode of regeneration. The v 2 statistic for testing this H0 is 2.89 with
one df and P�0.089. We have no evidence to reject the H0 of independence. The
standardized residuals showed no strong patterns, although fewer species that
regenerated only from seed were dispersed by vertebrates than expected by
chance and the converse was true for seeds that regenerated vegetatively.

Standardized residuals are tabulated below.

Dispersal mechanism

Regeneration Ant Vertebrate

Seed only 0.757 �1.139
Vegetative �0.559 0.840

The odds of being ant dispersed compared to being vertebrate dispersed for plants
that regenerate by seed are 4.17. For plants that regenerate vegetatively, the odds
are 1.71.

The sample odds ratio (ĥ) is:

�2.43

So the odds of being dispersed by ants is 2.43 times greater for plant species that
regenerate by seed compared to those that regenerate vegetatively. We can
convert ĥ to logs, use Equation 14.10 to calculate the standard error of the log (ĥ),
Equation 14.11 to calculate the 95% confidence interval for the log (h) and back-
transform this for a confidence interval for the h.

Log ASE log 95% CI log 95% CI
Odds ratio (odds ratio) (odds ratio) (odds ratio) (odds ratio)

2.43 0.89 0.53 �1.04 0.86 to 6.89

The wide confidence interval includes one, indicating that odds of being dis-
persed by ants for plant species that regenerate by seed are not statistically differ-
ent than for plant species that regenerate vegetatively.

n11n22

n12n21
�

25�21
36�6



384 ANALYZING FREQUENCIES

Box 14.3 Worked example of analysis of independence in
two way table: coolibah trees on a floodplain

Roberts (1993) sampled quadrats on a floodplain and classified them by two vari-
ables: presence/absence of dead coolibah trees (Eucalyptus coolibah) and position
along transect (top�dunes, bottom� lakeshore, middle� intermediate). The H0 is
that the presence/absence of dead coolibah trees is independent of position on the
floodplain. The v 2 statistic for the test of this H0 is 13.66 with two df and P�0.001.
Therefore, we reject the H0 of independence.

Standardized residuals are tabulated below.

Dead coolibah trees

Floodplain position With Without

Bottom 1.855 �1.312
Middle 0.000 0.000
Top �2.380 1.683

It is clear from the residuals that there were more quadrats with dead trees at the
bottom of the dunes than expected and fewer quadrats with dead trees at the top
of the dunes than expected.

Odds of having dead trees versus not are as follows.

Position Odds

Bottom of floodplain 1.15
Middle of floodplain 0.50
Top of floodplain 0.00

The odds of having dead coolibah trees were greater than not having them for
quadrats at the bottom of the floodplain, but the odds of having dead coolibah trees
were less than not having them for quadrats at the middle of the floodplain. Because
there were no quadrats with dead coolibah trees at the top of the floodplain, odds
cannot be calculated for this position.

Odds ratios were calculated using the modified formula that adds 0.5 to each
cell to correct for zero observed frequencies.

Odds ratio Log (odds ratio) ASE 95% CI (odds ratio)

Bottom versus middle 2.17 0.77 0.69 0.59 to 8.18
Bottom versus top 40.19 3.69 1.48 2.20 to 728.36
Middle versus top 18.53 2.92 1.55 0.89 to 386.84

The 95% CI for the odds ratios of having dead coolibah trees included one the
comparison of the bottom of the floodplain versus the middle and the middle
versus the top. The strongest pattern is that the odds of having dead coolibah trees
were greater at the bottom of the floodplain compared with the top.



models for contingency tables, based on whether
the investigator predetermines the marginal
totals (i.e. row and column totals).

• Model I is when none of the marginal totals
are fixed, the most common situation when a
number of sampling or experimental units are
sampled from a population of units and each
unit is classified by one or more categorical
variables. An underlying Poisson distribution
for the counts in each cell is assumed. The
three examples described above are Model I.

• Model II is when one set of marginal totals is
fixed. For example, imagine an experiment
where ten rats are allocated to three different
drug treatments and the survivorship of each
rat in recorded at the end of the experiment.
Each rat is cross-classified by treatment (fixed
marginal totals of ten) and lived/died (marginal
totals not fixed). In Model II tables, the variable
without fixed marginal totals is usually
considered a response variable (Agresti 1996).

• Model III is when both sets of marginal totals
are fixed, a very uncommon situation in
biology. Fisher (1935) described such a model
for an experiment to test whether someone
could actually tell by tasting whether or not
milk had been added first to a cup of tea (see
also Agresti 1990, 1996).

Null hypothesis
The H0 is one of independence, that the sampling
or experimental units come from a population of
units in which the two variables (rows and
columns) are independent of each other in terms
of the cell frequencies. This is often expressed as
no association, or interaction, between the two
variables. For example, French & Westoby (1996)
tested whether the mechanism of seed regenera-
tion (seed or vegetative) was independent of dis-
persal mechanism (ant or vertebrate) for a
number of plant species (Box 14.2, Table 14.2).
Usually, the H0 is expressed in terms of a popula-
tion from which the sampling or experimental
units were obtained, a population that is difficult
to envisage for the French & Westoby (1996)
example. Roberts (1993) wished to test whether
her quadrats came from a population of quadrats
on the floodplain where presence/absence of dead
coolibahs was independent of position along

transect (Box 14.3, Table 14.2). Clinton & Le Boeuf
(1994) tested whether survivorship of male ele-
phant seals (died or survived) was independent of
whether the males had inseminated zero or more
than zero females. 

The H0 can also be expressed as:


ij�
i��

�j (14.2)

i.e. the probability of an observation occurring in
a cell equals the probability of it occurring in that
row and that column.

We can test this H0 using a �2 test by calculat-
ing the expected frequencies in each cell based on
the H0 being true and there being no association
between the two variables. An expected cell fre-
quency is simply the product of the probability of
an observation occurring in that cell and the total
sample size:

fij�n
ij (14.3)

We can elaborate on this as follows. If rows and
columns are independent (i.e. H0 is true), then the
probability of an observation occurring in a spe-
cific cell (
ij) is simply the probability of an obser-
vation occurring in the specific row (
i�, estimated
by row total divided by grand total) multiplied by
the probability of it occurring in the specific
column (


�j, estimated by column total divided by
grand total). Therefore, a general formula for cal-
culating the expected frequency in each cell
assuming independence of the two variables (i.e.
under H0) is:

[(row total)(column total) / grand total] (14.4)

We then calculate �2 based on Equation 14.1
where nij are observed frequencies and fij are the
expected frequencies under the H0:

�2� (14.5)

We compare the �2 in 14.5 to a �2 distribution
with (I�1)( J�1) df. If the probability of obtaining
the calculated �2 or one larger when H0 is true is
less than our chosen significance level, then H0

should be rejected. For the French & Westoby
(1996) example, we have no evidence to reject the
H0 that dispersal mode and regeneration mode
are independent of each other (Box 14.2). For the
Roberts (1993) example, we would reject the H0

�
I

i�1
�

J

j�1

(nij� fij)2

fij
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that presence/absence of dead coolibah trees is
independent of position on floodplain (Box 14.3).

Odds and odds ratios
Odds and odds ratios are important summary
measures of association or lack of independence
in contingency tables, just as they are for logistic
regression models (Chapter 13). They can only be
calculated for two by two tables but can also be
used in larger tables by subdividing these tables
into sets of two by two tables. We calculate the
odds of one of the two possible categories (out-
comes) of one variable for each level ( j) of the
other variable:

(14.6)

where 
j is the probability of one of the two out-
comes and one minus 
j is the probability of the
other outcome.

For the French & Westoby (1996) example, the
odds of being ant dispersed compared to being
vertebrate dispersed for plants that regenerate by
seed are 4.17 and for plants that regenerate vege-
tatively, the odds are 1.71 (Box 14.2). In the Roberts
(1993) example, presence/absence of dead cool-
ibah trees is the response variable and position on
the floodplain is the predictor variable. The


j

1�
j

estimated odds of having versus not having a dead
coolibah for the bottom of the floodplain is 1.15;
this indicates that having dead coolibah trees is
more likely than not having them (Box 14.3 and
Box 14.4). We can calculate odds of a quadrat
having dead coolibah trees for the other two flood-
plain positions as well. For the middle of the flood-
plain, the odds are 0.50 and for the top of the
floodplain, the odds are zero.

The odds ratio (�) is simply the ratio of the odds
of one outcome for one level of the second vari-
able to the odds of the same outcome for another
level of the second variable. The odds ratio is a
population parameter (Agresti 1996):

�� (14.7)

The ML estimate of this odds ratio is the sample
odds ratio:

�̂� (14.8)

In Equation 14.8, each nij is the observed frequency
in the cell based on the ith row and jth column,
e.g. n12 is the observed frequency in the cell being
the first row and first column.

Note that the odds ratio equals zero if any of
the observed counts in the two by two subset table

n11n22

n12n21


1 / (1�
1)

2 / (1�
2)
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Box 14.4 Worked example of log-linear models for two
way table: coolibah trees on a floodplain

We will re-analyze the contingency table from Roberts (1993) using log-linear
models to test the H0 that quadrats came from a population of quadrats where
presence/absence of dead coolibahs was independent of position along transect.

Reduced model:

Log fij�constant�kposition�kpresence/absence

Log-likelihood for reduced model:�19.735, df�2.
Full (and saturated) model:

Log fij�constant�kposition�kpresence/absence�kposition� presence/absence

Log-likelihood for full (and saturated) model:�10.429, df�3.

G2��2(log-likelihood model� log-likelihood saturated model)
��2�(�19.735�(�10.429))
�18.61, df�1, P�0.001.

Therefore we reject H0.



also equal zero. Agresti (1996) suggested a simple
correction by adding 0.5 to each cell:

�̂� (14.9)

You can see that odds ratios are much easier to
interpret for two by two tables because there is
only one odds ratio. For larger tables, there will be
different odds ratios for different two by two
subsets. These odds ratios are not independent
(Agresti 1990) and, because of this redundancy,
only (I�1)( J�1) odds ratios are needed to sum-
marize the lack of independence in an I by J table.

Odds ratios are important for interpreting lack
of independence in contingency tables (Agresti
1996). If the probability of one outcome (e.g.
having dead coolibah trees) is the same for two
floodplain positions, i.e. the presence of dead cool-
ibah trees is independent of position, then the
odds ratio will be one. If the odds ratio is greater
than one, as for the bottom vs middle floodplain
positions, then the odds of having dead coolibah
trees is greater for one level of the other variable
(bottom) than the other (middle). The converse is
true if the odds ratio is less than one.

The sampling distribution of odds ratios is
usually very skewed, especially for small sample
sizes (Agresti 1990, 1996). To calculate a standard
error and confidence interval for an odds ratio, we
need to transform it to logs, which results in its
sampling distribution being approximately
normal. Note that an odds ratio of one (H0 true) is
a log odds ratio of zero. The asymptotic standard
error for the odds ratio is:

ASE(log �̂)� (14.10)

Confidence intervals for the odds ratio are best
calculated on the log odds ratio and then back-
transformed. The 95% CI is:

�z0.95 ASE(log odds ratio) (14.11)

where z is the critical value from a standard
normal distribution. The antilog of these confi-
dence limits will provide the CI for the odds ratio.

In the French & Westoby (1997) example, there
is only one odds ratio because it is a two by two
table. The estimated ratio is 2.43, so the odds of
being dispersed by ants are 2.43 times greater for

� 1

n11
�

1

n12
�

1

n21
�

1

n22

(n11�0.5)(n22�0.5)
(n12�0.5)(n21�0.5)

plant species that regenerate by seed than for
those that regenerate vegetatively. However, the
confidence interval for the odds ratio is wide (Box
14.2), which is not surprising since the test of inde-
pendence was not significant. Note that the 95%
CI includes one, indicating no evidence (at
��0.05) against the H0 of independence.

For the Roberts (1993) two by three table, there
can be three odds ratios for the presence of dead
coolibah trees (bottom vs mid, bottom vs top, mid
vs top). The odds of having dead coolibah trees
were greater than one for all three comparisons
(bottom versus middle, bottom versus top, middle
versus top) but only for bottom versus top did the
95% CI for the odds ratio not include one (Box
14.3). So the major contribution to the lack of
independence in Robert’s (1993) data was the con-
trast between the bottom of the floodplain and
the top of the floodplain.

Residuals
Another way of interpreting lack of independence
in contingency tables is examining the pattern of
the residuals, the difference between the
observed and expected values (nij� fij). There will
be a residual for each cell of the table and this is
the same definition of a residual we used for
linear models (e.g. Chapter 5). Absolute residuals
are difficult to compare when the frequencies
vary. For example, a (nij� fij) difference of five is
more “important” when the frequencies are
around ten than when the frequencies are around
100. Therefore, we usually standardize each resid-
ual by dividing by �( fij):

(14.12)

These are also called Pearson residuals (Agresti
1996) and are directly comparable irrespective of
the absolute frequencies.

From the Roberts (1993) data, the standardized
residuals showed that there were more quadrats
with dead trees at the bottom of the dunes than
expected and fewer quadrats with dead trees at
the top of the dunes than expected (Box 14.3).

We can also calculate adjusted residuals as:

(14.13)
(nij� fij)

�fij(1� pi� ) (1� p� j)

(nij� fij)
�fij
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where pi� is the proportion of the total row obser-
vations in that cell and p

�j is the proportion of the
total column observations in that cell. Large resid-
uals indicate large deviations from independence
and the sign (� or �) indicates more or less
observed than expected under the H0.

Small sample sizes
The �2 statistic, and the log-linear G2 statistic
described in Section 14.3, are based on frequen-
cies in categories and can only be compared
validly to the continuous �2 distribution if the
sample size is big enough. We mentioned at the
start of this chapter that we assume that no more
than 20% of the categories have expected frequen-
cies less than about five. What if sample sizes are
smaller, i.e. we have a sparse contingency table,
one with many low or zero frequencies?

Yate’s correction for continuity was developed
to improve the accuracy of the �2 test for two by
two tables with small frequencies but is of debat-
able value and is now not regarded as necessary
(Agresti 1990, Manly 1992) because of the avail-
ability of “exact” tests.

Fisher’s Exact test was designed for two by two
tables with fixed marginal totals. It does not use
the �2 distribution to test the H0 of independence
but instead answers the question “Given our fixed
marginal totals, what is the probability of obtain-
ing the observed cell frequencies and all cell fre-
quencies that are further away from the
expected?”. The calculations are tedious for any-
thing but the smallest sample sizes, but it is avail-
able in most statistical software. Although
Fisher’s Exact test strictly should be used in situa-
tions where we have fixed marginal totals, it is
commonly used more generally as a solution for
small sample sizes even when both marginal
totals are not fixed (e.g. Clinton & Le Beouf 1994).
There are other exact tests for contingency tables
more complex than two by two. These tests use
resampling procedures (randomization tests – see
Chapter 3) to generate an exact distribution for
the �2 statistic rather than assuming it follows a
�2 distribution but they require special software.

Another solution to small observed frequen-
cies is to collapse or combine some categories. For
example, when the categories are evenly spaced
size classes, there might be few individuals in

some of the larger classes. They can be combined
into a single category that will have adequate fre-
quencies for analysis.

14.2.2 Three way tables
An obvious extension of two way contingency
tables is the addition of a third variable in the
cross-classification. Again following Agresti’s
(1996) terminology, the three variables are labeled
X (i equals 1 to I categories), Y ( j equals 1 to J cate-
gories), and Z (k equals 1 to K categories) and we
will use Y in cases where there is clearly one
response variable. Remember that analyses of con-
tingency tables do not usually distinguish
response and predictor variables, unless the anal-
ysis uses a logit (logistic) model. However, the
interpretation of the generalized linear models
(log-linear models) we commonly use for complex
contingency tables can depend on whether we
clearly distinguish a response variable.

Two examples from the recent literature will
illustrate three way contingency tables in a biolog-
ical context. Sinclair & Arcese (1995) cross-
classified wildebeest carcasses from the Serengeti
by three variables: sex (X with I equals two: male,
female), cause of death (Y with J equals two: preda-
tion, non-predation) and bone marrow type (Z
with K equals three: solid white fatty, opaque
gelatinous, translucent gelatinous, with the first
indicating a healthy animal that is not under-
nourished) – Table 14.3(a). In this example, it is not
clear that any of the variables could be classified
as a “response” variable. We have a random
sample of carcasses cross-classified by three vari-
ables, all of which can be considered responses.
The analysis of these data is presented in Box 14.5.

Taulman et al. (1998) examined the demogra-
phy of southern flying squirrels in response to
experimental logging in southern Arkansas. They
had a response variable: age of squirrel (Y with J
equals two: adult, young). The other two variables
were treatment from which squirrels were caught
(X with I equals two: control, logged) and year (Z
with K equals three: 1994, 1995, 1996) – see Table
14.3(b). They had pre-treatment data from 1993
but we will only consider the post-treatment data.
A logit model (Section 13.2) could have been fitted
to these data, with age as the response variable
and treatment and year as the two categorical
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predictors. Note that there may be correlations
between successive years in this study, although
we will ignore these for the purposes of analysis.
The analysis of these data is presented in Box 14.6.

In contrast to two way tables, there is more
than one sort of (in)dependence between variables
in three way tables. We can examine complete
independence between all three variables (no
interactions), various forms of conditional and
marginal independence that we will describe in
the next section, and also complete dependence
where there is a three way interaction. While we
can calculate expected cell frequencies and �2 sta-
tistics to test null hypotheses about these various
forms of independence, it is more efficient to do
so with log-linear models (Section 14.3.2).

Conditional independence and odds ratios
A three way table can be best interpreted by con-
sidering it as a set of partial tables, each of which

is a two way table for each level of the third vari-
able. For the wildebeest example, we can con-
struct a partial table between sex and cause of
death for each level of marrow type, i.e. partial
table between X and Y for each level Z (Box 14.5).
We could, of course, construct partial tables
between Y and Z for each level of X and between X
and Z for each level of Y. Conditional indepen-
dence is where two variables are independent of
each other given the level of (controlling for) the
third variable, i.e. the two variables in each partial
table are independent. For example, the propor-
tions of wildebeest carcasses that suffered preda-
tion (or didn’t) are independent of sex, for all
marrow types. When two variables are not condi-
tionally independent, we say they have a partial
association, i.e. they are not independent for all
levels of the third variable.

Odds ratios are important in the interpreta-
tion of conditional independence in three way
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Table 14.3 Observed frequencies for three way contingency tables from
(a) Sinclair & Arcese’s (1995) study on wildebeest carcasses cross-classified by
cause of death, sex and marrow type and (b) Taulman et al.’s (1998) study on
squirrels in logged and control stands over three years

(a)
Marrow type

Cause of death Sex SWF OG TG Totals

Predation Female 26 32 8 66
Predation Male 14 43 10 67
Non-predation Female 6 26 16 48
Non-predation Male 7 12 26 45
Totals 53 113 60 226

(b)
Age

Treatment Year Adult Juvenile Totals

Control 1994 46 10 56
Harvest 1994 30 8 38
Control 1995 44 31 75
Harvest 1995 53 54 107
Control 1996 8 0 8
Harvest 1996 79 14 93
Totals 260 117 377
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Box 14.5 Worked example of log-linear model for three
way table: death in wildebeest (sex, predation
and bone marrow type)

Sinclair & Arcese (1995) cross-classified 226 wildebeest carcasses from the
Serengeti by three variables: sex (male, female), cause of death (predation, non-
predation) and bone marrow type (solid white fatty, opaque gelatinous, translucent
gelatinous, with the first indicating a healthy animal which is not undernourished).

We have fitted log-linear models with different combinations of terms. The fit
of each model shown below is based on comparing observed and fitted cell fre-
quencies and, equivalently, comparing the fit of each model to that of the saturated
model with zero degrees of freedom. For hypothesis testing, we would fit these
models hierarchically, starting with the most complex.

Model G 2 df P AIC

1 death�sex�marrow 42.76 7 �0.001 28.76
2 death�sex 42.68 6 �0.001 30.68
3 death�marrow 13.24 5 0.021 3.34
4 sex�marrow 37.98 5 �0.001 27.98
5 death�sex�death�marrow 13.16 4 0.011 5.16
6 death�sex�sex�marrow 37.89 4 �0.001 29.89
7 death�marrow�sex�marrow 8.46 3 0.037 2.46
8 death�sex�death�marrow�sex�marrow 7.19 2 0.027 3.19
9 Saturated (full) model 0 0

The AIC chose model 7 as best fit, whereas G 2 chose model 8. The compari-
son of the fit of model 8 and the saturated model 9 is a test of the H0 that there is
no three way interaction. The G 2 deviance statistic results in rejection of this H0.
Standardized residuals under no three way interaction showed that more male
wildebeest with SWF marrow and fewer with OG marrow were not killed by pred-
ators than expected.

Marrow type

Cause of death Sex SWF OG TG

Predation Female 0.541 �0.730 0.719
Predation Male �0.641 0.709 �0.522
Non-predation Female �0.891 0.948 �0.425
Non-predation Male 1.248 �1.088 0.364

We will also illustrate the tests for conditional independence and complete
independence, although the presence of a three way interaction would usually pre-
clude tests of two way interactions and the presence of both complete and condi-
tional dependence would preclude testing complete independence. The relevant
hierarchical comparisons of models are shown below.



tables but are more difficult to calculate because
we have three variables and odds ratios can only
be calculated for two by two tables. Odds ratios
can be derived for larger tables by breaking the
table into two by two subsets so when the table
dimensions are two by two by K, we can calculate
conditional odds ratios for each set of partial
tables (see Table 14.4). 

One conditional odds ratio in the wildebeest
study is the ratio of the odds that a male wilde-
beest carcass suffered predation to the odds that a
female wildebeest carcass suffered predation, for
one marrow type, i.e. if a carcass had marrow type
SWG, are the odds of being eaten the same for
males and females? Other odds ratios are the

ratios of the odds that a male wildebeest carcass
suffered predation to the odds that a female wil-
debeest carcass suffered predation for the other
two marrow types. Conditional independence
between Y and Z means that all the odds ratios
between Y and Z equal one. 

If conditional independence between two var-
iables does not hold, then two possible patterns
may occur. First, the odds ratios for two variables
may all be different from one but still may be
equal for all levels of the other variable, i.e. condi-
tional dependence (association) exists between
two variables but is the same for all levels of the
third variable. For example, the ratio of the odds
that a male wildebeest carcass suffered predation
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Term Models compared G 2 df P

Three way interaction
death�sex�marrow 8 vs 9 7.19 2 0.027

Conditional independence
death�sex 7 vs 8 1.28 1 0.259
death�marrow 6 vs 8 30.71 2 �0.001
sex�marrow 5 vs 8 5.97 2 0.051

Complete independence 1 vs 8 35.57 5 �0.001

This demonstrates that we would reject the H0 of conditional independence of
cause of death and marrow type.

The odds ratios for wildebeest killed by predation for each pair of marrow types
separately for males and females are shown below.

Odds ratio 95% CI

Male
OG versus TG 0.107 0.041�0.283
SWF versus TG 0.192 0.060�0.616
SWF versus OG 0.558 0.184�1.693

Female
OG versus TG 0.406 0.150�1.097
SWF versus TG 0.115 0.034�0.395
SWF versus OG 3.521 1.261�9.836

The conditional dependence is clearly shown by the complex pattern of odds ratios
that is different for males and females. The odds of being killed by predation were
less for male wildebeest with either OG or SWF marrow than TG marrow. The
odds of males being killed by predators were the same for those with SWF marrow
versus OG marrow. For females, the odds of being killed by predators were greater
for those with SWF marrow than OG marrow but less for those with SWF marrow
than TG. The odds of females being killed by predators were the same for those
with OG marrow and TG marrow.



to the odds that a female wildebeest carcass suf-
fered predation may be the same for each marrow
type, even if the odds are greater for males than
females consistently. This pattern is termed a
homogeneous association between two variables.
A homogeneous association implies no three vari-
able interaction. Conditional independence is a
special case of a homogeneous association.

Second, the pattern of dependence (associa-
tion) between two variables may differ between
levels of the third variable and, therefore, the
odds ratios for two variables vary between the
levels of the other variable. For example, the ratio
of the odds that a male wildebeest carcass suf-
fered predation to the odds that a female wilde-
beest carcass suffered predation are different for
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Box 14.6 Worked example of log-linear model for three
way table – demography of squirrels in response
to disturbance: effects of logging and year on
age

Taulman et al. (1998) examined the age of squirrels in relation to the treatment
stand from which squirrels were caught (control, logged) and year (1994, 1995,
1996) – see Table 14.3(b). We considered age of squirrel as a response variable
(treatment and year might affect the relative numbers of adult and young squirrels
but not vice versa) so not all models were fitted. The interaction between treat-
ment and year was never omitted because the investigator set these variables, so
their conditional independence makes little sense.

Model G2 df P AIC

1 treatment�year�age�year 4.13 3 0.248 0.00
2 treatment�age� treatment�year 46.27 4 �0.001 38.27
3 treatment�age� treatment�year�age�year 1.88 2 0.390 0.00
4 Saturated (full) model 0.00 0

Either models 1 or 3 could have been chosen as best fit, with the G 2 suggesting
model 3. Note that exclusion of both the three way interaction and the two way
interaction between age and year results in a very poor fit. Since we have already
shown that the three way interaction is not significant (model 3), this suggests that
there is conditional dependence between age and year.

The relevant hierarchical comparisons of models for the tests for the three way
interaction and the tests for conditional independence, with the interaction
between treatment and caged years always in the models, are shown below.

Term Models compared G 2 df P

Three way interaction
treatment�age�year 3 vs 4 1.88 2 0.390

Conditional independence
age�year 2 vs 3 44.39 2 �0.001
treatment�age 1 vs 3 2.24 1 0.134

There was no evidence to reject the hypothesis of conditional independence
between age and treatment, i.e. squirrel age and treatment were independent for
each year. In contrast, squirrel age and year were not independent, for control or
logged treatments.



the different marrow types. This pattern indicates
an interaction between all three variables and
that the two variable associations will not have a
simple interpretation.

The odds ratio for an I equals two by J equals
two by K table, for a given level k of K, can be esti-
mated as:

�̂XY(k)� (14.14)

The odds ratios for cause of death in relation to
marrow type for male and female wildebeest are
presented in Box 14.5. The only odds ratio that is
clearly greater than one is for female wildebeest,
where the odds of a SWF marrow type animal
being killed by a predator are three and half
times the odds of an OG marrow type animal
being killed by a predator. This indicates condi-
tional dependence between cause of death and
marrow type, where the dependence is condi-
tional on sex.

A test for conditional independence in two by
two by K tables is the Cochran–Mantel–Haenszel
(C–M–H) test (Sokal & Rohlf 1995), which basically
tests the null hypothesis that the conditional
odds ratios between X and Y equal one for all levels
of Z. It is particularly appropriate when there is no
three variable (XYZ) interaction (Agresti 1996). The
C–M–H statistic is converted to a �2 and compared
to a �2 distribution; it is available in most statisti-
cal software. It can also be generalized for I by J by
K tables where I and J are greater than two but the
formulae are complex (Agresti 1990). For the squir-
rel example, C–M–H statistic equals 1.18 with P
equals 0.530, so the ratio of the odds of a squirrel
being an adult on control stands and the odds of
a squirrel being an adult on logged stands were
not different from one for all three years. The
C–M–H test also allows a form of meta-analysis to

n11kn22k

n12kn21k

combine the results from a number of indepen-
dent two by two tables.

Marginal independence and odds ratios
Marginal tables are two way tables completely
ignoring the third variable, e.g. the frequencies
for X by Y pooling levels of Z. Marginal indepen-
dence is independence between the two variables
in the marginal table, pooling the levels of the
third variable. For the squirrel example, one mar-
ginal table would be age crossed with treatment,
pooling year (Box 14.6). From this marginal table,
we would assess marginal independence as the
independence of age and treatment combining
years. We can also calculate marginal odds ratios
from the marginal table. The odds of a squirrel
being an adult are almost identical (�̂�0.996) for
control versus treatment stands, ignoring year.

Complete independence
The effects of the individual variables represent
complete independence and no two or three way
associations. For our two worked examples, the
proportions of adult squirrels are independent of
treatment and year and cause of death, sex and
marrow type are completely independent of each
other.

14.3 Log-linear models

The best method for analyzing contingency tables
is with log-linear models. Log-linear models treat
the cell frequencies as counts distributed as a
Poisson random variable. Log-linear models are
examples of generalized linear models (GLMs; see
Chapter 13); the expected cell frequencies are
modeled against the variables using the log link
and a Poisson error term (Agresti 1996). As with
other GLMs, we fit log-linear models and estimate
their parameters using maximum likelihood tech-
niques. ML fits for most complex log-linear models
do not have simple solutions so iterative methods
like the Newton–Raphson algorithm (Chapter 13)
are required. The fit of the models is measured by
the log-likelihood.

Log-linear models do not distinguish response
and predictor variables; all the variables are con-
sidered equally as response variables. However,
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Table 14.4 Partial table for I�2 by J�2 by K
contingency table for K�1 with observed
frequencies

I J�1 J�2

K�1 1 n11K n21K
K�1 2 n12K n22K



there is a relationship between log-linear models
and logit models (including logistic regression)
discussed in Chapter 13. Logit models distinguish
a response variable (with two categories in a logis-
tic regression) and model it against predictors
that can be continuous or categorical. A logit
model with categorical predictors can also be ana-
lyzed as a log-linear model (Agresti 1996).

14.3.1 Two way tables
Two way tables were described in Section 14.2.1
and will be illustrated here with the example
from Roberts (1993).

Full and reduced models
For a two way table (I by J), we can fit two log-linear
models. The first is a saturated (full) model:

log fij�constant��i
X��j

Y��ij
XY (14.15)

For the data from Roberts (1993), the saturated
(full) model is:

log fij�constant��i
coolibah��j

position��ij
coolibah*position

(14.16)

In models 14.15 and 14.16:

fij is the expected frequency in cell ij, i.e. the
expected number of quadrats in each
combination of coolibah trees (alive, dead) and
floodplain position (top, mid, low),

constant is the mean of the logs of all the
expected frequencies,

�i
X is the effect of category i of variable X, i.e.

the effect of coolibah trees being either alive or
dead on the log expected frequency of quadrats
in each cell,

�j
Y is the effect of category j of variable Y, i.e.

the effect of floodplain position being top, mid
or bottom on the log expected frequency of
quadrats in each cell,

�ij
XY is the effect of any interaction between X

and Y, i.e. an interactive effect of coolibah tree
category and floodplain position on the log
expected frequency of quadrats in each cell. The
interaction measures deviations from
independence of the two variables.

Models 14.15 and 14.16 fit the observed fre-
quencies perfectly, hence the term saturated. Note
that “effect” does not imply any causality, just the

influence of a variable or interaction between var-
iables on the log of the expected number of obser-
vations in a cell.

The second log-linear model represents inde-
pendence of the two variables (X and Y ) and is a
reduced model:

log fij�constant��i
X��j

Y (14.17)

Again from Roberts (1993):

log fij�constant��i
coolibah��j

position (14.18)

The interpretation of models 14.17 and 14.18 is
that the log of the expected frequency in any cell
is a function of the mean of the log of all the
expected frequencies plus the effect of floodplain
position and the effect of the presence/absence of
dead coolibah trees. Note that log-linear models
do not distinguish one of the variables as a
response variable, they just model the log of the
expected frequencies. This is an additive linear
model with no interaction between the two vari-
ables.

The parameters of log-linear models are the
effects of a particular category of each variable on
the expected frequencies; a larger � means that
the expected frequencies will be larger for that
variable, i.e. that row or that column (Agresti
1996). These parameters are also deviations from
the mean of all the log expected frequencies, just
like parameters in ANOVA linear models are devi-
ations from the overall mean. When � is greater
than zero, then the mean log expected frequency
for that variable (row or column) is greater than
the mean of all the log expected frequencies
(Agresti 1990).

Null hypothesis of independence
The H0 of independence in a two way table
(Section 14.2.1) is also a test of the H0 that �ij

XY

equals zero, i.e. there is no interaction between
the two variables. We can test this H0 by compar-
ing the fit of the model without this term (14.17)
to the saturated model that includes this term
(14.15). We determine the fit of each model by cal-
culating the expected frequencies under each
model, comparing the observed and expected fre-
quencies and calculating the log-likelihood of
each model. We then compare the fit of the two
models with the likelihood ratio statistic (�), that
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is the ratio of the two log-likelihoods. However,
sampling distribution of � is not well known
(Sokal & Rohlf 1995), so instead we calculate the G2

statistic (Chapter 13):

G2��2log� (14.19)

G2 follows a �2 distribution for reasonable sample
sizes and can be generalized to:

G2��2(log-likelihood reduced model�
log-likelihood full model) (14.20)

This is also termed the deviance and measures
the difference in fit of the two models. If the H0 of
independence is true, then the reduced (no inter-
action) model should fit as well as the full model
and the deviance (G2) will be close to zero. If the H0

is false, then there should be a difference in the fit
of the two models and the deviance (G2) will be
greater than zero. The calculated G2 is compared
to a �2 distribution with (I�1)( J�1) df, just like
the �2 test of independence described in Section
14.2.1. The df [(I�1)( J�1)] is the difference
between the df for the full model [(IJ�1)] and the
df for the reduced model [(I�1)� ( J�1)].

Note that, for two way tables, the saturated
model acts as the full model for model compari-
sons. This is not the case for more complex tables
where many different full and reduced models
can be fitted. For two way contingency tables with
large sample sizes, the �2 test and the G2 test will
give similar results. Note that G2 is slightly more
sensitive to small sample sizes than the �2 statis-
tic. In most statistical software, fitting the
reduced model for a two way table will automati-
cally provide the difference in fit between the two
models.

Interpretation of lack of independence in log-
linear models can be done using odds ratios and
residuals, just as described in Section 14.2.1.
Various types of residuals are standard output
from log-linear modeling routines in most statis-
tical software.

14.3.2 Log-linear models for three way
tables

We will provide an introduction to log-linear
models for three way tables. Sokal & Rohlf (1995)
is also a good introduction and they provide a
detailed worked example for a three way table.

Agresti (1990) is a more statistically complete ref-
erence for log-linear modeling, although Agresti
(1996) is a more readable version of that text for
the mathematically disinclined.

Full and reduced models
For three way tables (X with I categories, Y with J
categories, Z with K categories), there is a large
number of full and reduced models for testing the
different interactions and main effects. Like three
factor ANOVA models, log-linear models for con-
tingency tables with three variables include three
main effects (X, Y, Z), three two variable interac-
tions (XY, XZ, YZ) and one three variable interac-
tion (XYZ). For a three way table (I by J by K), the
saturated model is:

log fijk�constant��i
X��j

Y��k
Z�

�ij
XY��ik

XZ��jk
YZ��ijk

XYZ (14.21)

For the wildebeest example (Sinclair & Arcese
1995), this saturated model is:

log fijk�constant��death��sex��marrow�

�death� sex��death�marrow�

�sex�marrow��death� sex�marrow (14.22)

In models 14.21 and 14.22:

fijk is the expected frequency in cell ijk, i.e.
the expected number of carcasses in each
combination of death (predation, non-
predation), sex (male, female) and bone marrow
type (solid white fatty, opaque gelatinous,
translucent gelatinous),

constant is the mean of the logs of all the
expected frequencies,

�i
X is the effect of category i of variable X, i.e.

the effect of type of death on the log expected
frequency of carcasses in each cell,

�j
Y is the effect of category j of variable Y, i.e.

the effect of being male or female on the log
expected frequency of carcasses in each cell,

�k
Z is the effect of category k of variable Z, i.e.

the effect of bone marrow type on the log
expected frequency of carcasses in each cell,

�ij
XY is the effect of any interaction between X

and Y, i.e. an interactive effect of type of death
and sex on the log expected frequency of
carcasses in each cell,

�ik
XZ is the effect of any interaction between
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X and Z, i.e. an interactive effect of type of death
and bone marrow type on the log expected
frequency of carcasses in each cell,

�jk
YZ is the effect of any interaction between

Y and Z, i.e. an interactive effect of sex and bone
marrow type on the log expected frequency of
carcasses in each cell,

�ijk
XYZ is the effect of any interaction between

X, Y, and Z, i.e. an interactive effect of type of
death, sex and bone marrow type on the log
expected frequency of carcasses in each cell.

Models 14.21 and 14.22 include all main
effects, all two way interactions and the three way
interaction and fit the observed frequencies per-
fectly.

Because the G2 goodness-of-fit statistic for the
saturated model 14.21 is zero, then the G2 statistic
for any model represents the difference in fit of that
model to the fit of the saturated model 14.21, i.e. the
deviance. We can also use criteria of fit that “penal-
ize” the model for the number of parameters, such
as the Akaike Information Criterion, which for a
particular model equals (Christensen 1997):

AIC�G2� (dfSaturated model�2df Particular model)
�G2�2dfTest of model (14.23)

The choice of “best” model is that which mini-
mizes either the G2 or the AIC.

Log-linear models are usually fitted in a hier-

archical fashion, i.e. the inclusion of a higher
order term automatically includes all lower order
terms with those variables. The model with the
three variable interaction automatically includes
all two way interactions and main effects.
Similarly, a model which omits one or more two
way interactions also must omit the three way
interaction. The range of models that can be fitted
for a three way table are listed in Table 14.5.

The saturated model allows for complete
dependence of the three variables by including
the three way interaction term. The remaining
models each omit the three way interaction and
one or more two way interactions. Three models
omit both the three way interaction and one of
the two way interactions. For example, consider
the model:

log fijk�constant��i
X��j

Y��k
Z��ij

XY��jk
YZ

(14.24)

Model 14.24 implies that X and Z are conditionally
independent, i.e. the odds ratios for the associa-
tion between X and Z are equal to one for all levels
of Y. The goodness-of-fit statistics for these models
omitting a two variable interaction compare their
fit to that of the saturated model and measure
how much the absence of both the three way
interaction and the particular two way interac-
tion affects the fit of the model. If the three way
interaction has been shown to be small, then the
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Table 14.5 Some typical log-linear models fitted to a three way (X by Y by
Z) table with their df: comparisons of models are tested with the difference
between the relevant df

Log-linear model df

X�Y�Z IJK� I� J�K�2
X�Y�Z�XY (K�1)(IJ�1)
X�Y�Z�XZ ( J�1)(IK�1)
X�Y�Z�YZ (I�1)( JK�1)
X�Y�Z�XZ�YZ K(I�1)( J�1)
X�Y�Z�XY�YZ J(I�1)(K�1)
X�Y�Z�XY�XZ I( J�1)(K�1)
X�Y�Z�XY�XZ�YZ (I�1)( J�1)(K�1)

Saturated model:
X�Y�Z�XY�XZ�YZ�XYZ 0



fit of these models really measures the effect of
omitting the particular two way interaction, i.e.
testing whether those two variables are condition-
ally independent.

In the wildebeest example from Sinclair &
Arcese (1995), the model which includes death,
sex, marrow, death�sex and sex�marrow is:

log fijk�constant��death��sex��marrow�

�death� sex��sex�marrow (14.25)

Model 14.25 implies that there is no partial associ-
ation between cause of death and marrow type for
any sex. For either males or females, whether a
wildebeest is taken by a predator or not is inde-
pendent of which marrow type they have.

In the study on the effects of logging on squir-
rel demography from Taulman et al. (1998), the
variable squirrel age (adult, young) can be viewed
as a response variable and therefore all models
should include the interaction between the other
two variables (treatment and year). These two var-
iables are set by the investigators and it makes no
sense for the interaction between them to be zero;
their conditional independence (independence of
treatment and year for adult or young squirrels)
has no biological meaning (see also Agresti 1996,
Sokal & Rohlf 1995). Therefore, the number of
models to be fitted is less than for the wildebeest
example (Box 14.6).

Therefore, we test the fit of models with the
relevant two way interaction terms (treatment�
age and year�age) omitted. These models imply
that there is conditional independence between
treatment and age for each year and conditional
independence between age and year for each
treatment.

Note that the comparison of models that omit
one of the two way interactions to the saturated
model are not the best for testing the absence of
two way interactions (conditional independence).
This is because the reduced model has omitted
both a two way interaction and the three way inter-
action so any difference between this model and
the saturated model could be due to either the two
way or the three way interaction or both. In
general, the comparison of models omitting inter-
action terms to the saturated model should be con-
sidered an initial exploratory or screening
approach to analyzing a contingency table. The

exception is the valid test of the three way interac-
tion.

Three other models omit the three way inter-
action and two of the two way interactions. For
example, the model:

log fijk�constant��i
X��j

Y��k
Z��ij

XY (14.26)

implies that X and Z are conditionally indepen-
dent for each level of Y and that Y and Z are condi-
tionally independent for each level of X. Only X
and Y can be conditionally dependent. So the
model that includes death, sex, marrow and
death�marrow:

log fijk�constant��death��sex��marrow�

�death� sex (14.27)

implies that cause of death and sex are condition-
ally independent for each level of marrow type and
sex and marrow type are conditionally indepen-
dent for each cause of death; only cause of death
and marrow type are conditionally dependent.

The simplest possible model is one that
assumes complete independence and excludes all
interaction terms:

log fijk�constant��i
X��j

Y��k
Z (14.28)

Model 14.28 implies that each variable is com-
pletely independent of the other two, e.g. the
cause of death is independent of sex and marrow
type.

The fit of the different possible models is a
useful exploratory step in analyzing complex con-
tingency tables and we can determine the model
that provides the best fit for the fewest parame-
ters. For the wildebeest carcasses example (Box
14.5), the two criteria (G2 and AIC) chose different
models, although the difference in fit between
models 3, 5, 7 and 8 was minor. Based on the AIC,
we would choose the model 7:

log fijk�constant��death��sex��marrow�

�death�marrow��sex�marrow (14.29)

whereas based on the G2, we would choose model
8:

log fijk�constant��death��sex��marrow�

�death� sex��death�marrow��sex�marrow

(14.30)
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The AIC chose a model with fewer parameters.
In practice, however, we are usually more

interested in tests of individual terms in the
models. Comparisons of reduced models to
the saturated model only do this in the case of the
three way interaction. For the remaining models,
more than one term is being omitted. Testing indi-
vidual terms relates to the different forms of inde-
pendence (complete, conditional, marginal)
discussed in Section 14.2.2 and these tests are
done by comparing the fit of full (not saturated)
and reduced models.

Tests for three way interaction: complete
dependence

The test of the three way interaction is a test of
complete dependence. If the H0 of no three way
interaction is true, we have either conditional
independence between all pairs of variables or the
pattern of conditional dependence between all
pairs of variables is the same for all levels of the
third variable. This is similar to the interpretation
of a three way interaction in an ANOVA model
(Chapter 9) where the interaction between two
factors depends on the level of the third factor. We
test the three way interaction by comparing the fit
of the saturated model, which is also the full
model for the test of this term:

log fijk�constant��i
X��j

Y��k
Z��ij

XY�

�ik
XZ��jk

YZ��ijk
XYZ (14.21)

to a reduced model that omits this term:

log fijk�constant��i
X��j

Y��k
Z��ij

XY�

�ik
XZ��jk

YZ (14.31)

This tests the H0 that the three way interaction
term is zero. If this H0 is true, then we have homo-
geneous association where each pair of variables
can be conditionally dependent but this depen-
dence is the same at each level of the third vari-
able. If H0 is true, we would expect models 14.21
and 14.31 to fit similarly; if the H0 is false, we
would expect the reduced model to fit signifi-
cantly worse than the saturated model. We use
the difference in G2 for the reduced model and the
saturated (full) model, i.e. the deviance, to test
whether there is a significant three way interac-
tion between the variables.

For the wildebeest example (Box 14.5),

omitting the three way interaction term (sex�
death�marrow) results in significantly worse fit
so we would reject the null hypothesis of no three
way interaction. The conditional dependence of
cause of death and sex depends on the type of
marrow. Equivalently, the conditional depen-
dence of cause of death and marrow type depends
on sex and the conditional dependence of sex and
marrow type depends on cause of death. As in fac-
torial ANOVAs (Chapter 9), interactions in log-
linear models are symmetric.

For the squirrel example (Box 14.6), it is clear
that omitting the three way interaction term
(treatment�age�year) makes little difference to
the fit of the model, so we wouldn’t reject the H0

that the three way interaction term is zero. Any
conditional dependence between age of captured
squirrels and treatment does not depend on year
and any conditional dependence between age of
captured squirrels and year does not depend on
treatment.

Testing and interpreting two way interactions
Whether we test other terms depends on whether
we reject the H0 of no three way interaction
between the variables. In the wildebeest carcass
example, the three way interaction was signifi-
cant so we could proceed in two ways. First, by
examining the residuals from the model without
the three way interaction term to see which cells
were causing the lack of independence among the
three variables (Box 14.5). The largest residuals
indicate that there are more male carcasses that
were not killed by predation with SWF marrow
and fewer with OG marrow. None of the residuals
is near two so we would not consider any observa-
tions particularly unusual. We could also
examine odds ratios by breaking the table into a
series of two way tables, e.g. tables of marrow type
by sex for each cause of death separately. Second,
we could examine dependence of pairs of vari-
ables for each level of the third variable separ-
ately, analogous to simple interaction tests in
three factor ANOVA models (Chapter 9).

Although the three way interaction was sig-
nificant in the wildebeest example, we will test for
conditional dependence of each pair of variables
to illustrate the process. Conditional indepen-
dence is tested by comparing the full model
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with each of the following reduced models

Test H0: �ij
XY�0 log fijk�constant��i

X��j
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YZ (14.32)

Test H0: �ik
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For the wildebeest example, we would only reject
the H0 of conditional independence for cause of
death and marrow type for each sex separately
(Box 14.5). This means that cause of death and
marrow type are not independent for male wilde-
beest and female wildebeest carcasses and the
odds ratios for the association between cause of
death and marrow type are different for each sex.
In contrast, the odds ratios for the cause of death
and sex association equal one for all marrow types
and the odds ratios for the sex and marrow type
association equal one for all causes of death.

In the squirrel example, the absence of a three
way interaction is not rejected so there is good jus-
tification for proceeding to examine simpler
models (Box 14.6). Because the treatment and year
variables are set by the investigators, the indepen-
dence between these two variables is not tested.
There was no evidence to reject the hypothesis of
conditional independence between age and treat-
ment, i.e. squirrel age and treatment were inde-
pendent for each year. This indicates that logging
does not alter the relative numbers of adult and
young squirrels compared to control stands in any
year. In contrast, squirrel age and year were not
independent in both control and logged treat-
ments and the odds ratios for the association
between age and year are different for each treat-
ment.

We can also test for marginal independence of
two variables by creating a two way table ignoring
the third variable. For example, the test for margi-
nal independence of cause of death and marrow
type, ignoring sex, is done with a test of indepen-
dence of the two way cause of death and marrow
type table pooling the two sexes:

G2�29.52, df�2, P�0.001

In this example, cause of death and marrow type
are not marginally independent, as they are not
conditionally independent, although agreement
between marginal and conditional independence
does not always hold (see Agresti 1996).

Test for complete independence
If none of the two way interactions are significant,
we could fit the model of complete independence
(no interactions) among the three variables:

log fijk�constant��i
X��j

Y��k
Z (14.28)

Assuming there is no three way interaction, we
can test the H0 that all two way interactions equal
zero (i.e. that the three variables are completely
independent) by comparing model 14.28 to:

log fijk�constant��i
X��j

Y��k
Z��ij

XY�

�ik
XZ��jk

YZ (14.31)

This comparison tests that all three variables are
completely independent of each other, both con-
ditionally and marginally. In the wildebeest
example, marrow type is completely independent
of cause of death and sex, sex is completely inde-
pendent of cause of death and marrow type, and
cause of death is completely independent of sex
and marrow type (Box 14.5). There are no condi-
tional dependencies.

We would not do this test for the wildebeest
example because there is a three way interaction,
nor for the squirrel example because the interac-
tion between treatment and year should always be
included because these variables are set by the
investigator and independence between them
makes little sense.

Analysis of deviance tables
We can create a modified analysis of deviance
table, which gives the difference in G2 between
hierarchical models, showing tests for the null
hypotheses that specific terms equal zero (Chapter
13). It is always better to compare the fit of full and
reduced models when testing specific terms in
log-linear models. Simple goodness-of-fit statistics
for a given model can overestimate the impor-
tance of specific terms and should be used as an
exploratory tool (except for the three way interac-
tion). Comparing full and reduced models in a
hierarchical manner is the most common method
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of analyzing and presenting the results of log-
linear modeling.

14.3.3 More complex tables
Log-linear models for four way and higher tables
follow the logic described above, although inter-
pretation of four way interactions is as difficult as
the interpretation of four way interactions in
complex ANOVA models (Chapter 9). Agresti (1990)
has provided a worked example for a four way
table using log-linear models.

14.4 General issues and hints for
analysis

14.4.1 General issues

• Contingency tables represent a cross-
classification of sampling or experimental
units by two or more variables so each cell in
the table contains a number of units (fre-
quency).

• Log-linear models are GLMs that relate the log
of the expected frequencies to a linear combi-
nation of the variables and their interactions. 

• For two way tables, the basic �2 test is for inde-
pendence between the two variables.

• To test H0 that a specific term equals zero,

compare the fit of the full model with that
term included to the reduced model with that
term omitted, using the deviance.

• Conditional independence means that two
variables are independent for all levels of the
third variable. Odds ratios and standardized
residuals are very important tools for interpret-
ing lack of independence in contingency
tables.

• Standard significance tests can be unreliable
when expected frequencies are small (less than
five). Use exact tests for two way contingency
tables with small sample sizes.

14.4.2 Hints for analysis
• Remember that log-linear models do not dis-

tinguish a response variable. However, when
one variable is clearly a response, then some
log-linear models won’t make much sense. If
modeling a response variable is important,
consider logit models.

• As an initial analysis, it is useful to test the
goodness-of-fit of a range of possible models
using the deviance and AIC.

• For a complex table, breaking it into two by
two by K sub-tables will allow odds ratios for
conditional dependence to be calculated.
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15.1 Multivariate data

A multivariate data set includes more than one
variable recorded from a number of replicate sam-
pling or experimental units, sometimes referred
to as objects. If these objects are organisms, the
variables might be morphological or physiologi-
cal measurements; if the objects are ecological
sampling units, the variables might be physico-
chemical measurements or species abundances.
We have already considered multivariate data in
linear models with two or more predictor vari-
ables, e.g. multiple regression (Chapter 6) and
multifactor analysis of variance (Chapters 9–11).
For these analyses, we have multiple predictor
(independent) variables. The multivariate analy-
ses we will discuss in the remaining chapters
either deal with multiple response variables (e.g.
MANOVA – Chapter 16) or multiple variables that
could be response variables, predictor variables or
a combination of both. This chapter will intro-
duce some aspects of multivariate data and analy-
sis that apply generally to many of the methods
we will describe in the subsequent three chapters.
We will illustrate these aspects with four data sets
from the recent biological literature. For each
data set, there are i�1 to n objects with j�1 to p
variables measured for each object.

Chemistry of forested watersheds
In Chapter 2, we first described the study of Lovett
et al. (2000) who examined the chemistry of
forested watersheds in the Catskill Mountains in
New York. They chose 39 first and second order

streams (objects) and measured the concentra-
tions of ten chemical variables (NO3

�, total
organic N, total N, NH4

�, dissolved organic C,
SO2

2�, Cl�, Ca2�, Mg2�, H�), averaged over three
years, and four watershed variables (maximum
elevation, sample elevation, length of stream,
watershed area).

Plant functional groups and leaf characters
In Chapter 9, we described the study of Reich et al.
(1999) who examined the generality of leaf traits
from different species across a range of ecosys-
tems and geographic regions. We will use a subset
of their data, Wisconsin forbs, with ten species as
the objects. There were five variables measured for
each species: specific leaf area, leaf nitrogen con-
centration, mass-based net photosynthetic capac-
ity, area-based net photosynthetic capacity and
leaf diffusive conductance at photosynthetic
capacity.

Wildlife underpasses in Canada
Clevenger & Waltho (2000) reported on the effec-
tiveness of road underpasses for wildlife in Banff
National Park in Alberta, Canada. For part of their
study, they quantified the human activity at the
underpasses as numbers of people on bikes, on
horses and on foot. The objects were the eleven
underpasses and the variables were the three
human activities and the data were counts.

Bats and African woodlands
Fenton et al. (1998) studied the effects of woodland
disturbance on species richness and abundance of
bats in northern Zimbabwe. They had four groups

Chapter 15
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of sites: nine intact and nine impacted sites in
Mana, six intact sites in Kanyati and six impacted
sites in Matusadona. The sites within each area
and disturbance category are not true replicates
for assessing effects of disturbance so, like Fenton
et al. (1998), we will combine the sites within each
group. There were four objects (area and distur-
bance combinations) and 15 variables, species of
bats. The data were numbers of each species of bat
and there were numerous zero values, i.e. species
absent.

15.2 Distributions and associations

In a univariate context, we can describe the distri-
bution of each variable and many of the paramet-
ric univariate analyses for estimating linear
models and testing hypotheses about their param-
eters assume that the distribution of the response
variable being analyzed is of a particular form
(Chapters 5, 6, 8–14). For example, classical linear
models assume normality (although the analyses
are robust to this assumption under many circum-
stances), while generalized linear models allow

other distributions from the exponential family
(e.g. binomial, Poisson, etc.). Although the multi-
variate analyses we will introduce in the next
three chapters are mainly descriptive, interval
estimation and hypothesis tests of parameters can
also be relevant and usually require the assump-
tion of multivariate normality, where all variables
and linear combinations of variables are normally
distributed (Tabachnick & Fidell 1996). The sim-
plest multivariate normal distribution is the
bivariate normal distribution described in
Chapter 5. Other multivariate distributions are
obviously possible, although less commonly used
in multivariate analyses.

One measure of the center of a multivariate
distribution is the centroid. In multivariate space
where each dimension is a variable, the centroid is
the point represented by the univariate means of
the distributions of each of the variables (Figure
15.1). The centroid is not usually estimated by a
single value but is used as a description of the
center of a multivariate normal distribution and
for detecting multivariate outliers (Section 15.9.1).

We can summarize variation in single vari-
ables by sums-of-squares (SS) and variances
(Chapter 2). When we have more than one vari-
able, we not only have variances for each variable
but also covariances between variables. To repre-
sent variation in multivariate data sets, we must
use some simple matrix algebra. A data matrix (Y)
for n objects by p variables is represented in Table
15.1, and illustrated using the data from Reich et
al. (1999) for Wisconsin shrubs.

With more than one variable, we calculate
both sums-of-squares for each variable and sums-
of-cross-products between variables to get a p by p
sums-of-squares-and-cross-products (SSCP or S)
matrix (Table 15.2). The rows and columns of this
matrix represent the variables ( j�1 to p). The
main diagonal of this matrix contains the sums-
of-squares for each variable. The other entries are
the sums-of-cross-products, the sum of the
product of the deviations of the value for each var-
iable from its sample mean. Note that this matrix
is symmetrical, i.e. the sum-of-cross-products
between Y1 and Y2 is the same as the sum-of-cross-
products between Y2 and Y1. 

We can convert this matrix to a p by p matrix
of variances and covariances (C) by dividing the

402 INTRODUCTION TO MULTIVARIATE ANALYSES

Figure 15.1. Scatterplot of dissolved oxygen against total
nitrogen for 39 streams from Lovett et al. (2000).The
centroid, the point represented by the mean of dissolved
oxygen and total nitrogen, is filled. In this example, one object
(grey fill) is an outlier for dissolved oxygen and also a
multivariate outlier.



sums-of-squares and sums-of-cross-products by
their degrees of freedom (n�1), where the main
diagonal contains the variances for each variable
and the other entries are the covariances between
pairs ofvariables(Table15.3).Thecovariancematrix
can also be obtained directly from the raw data
matrix Y, if each variable is centered (to a mean of
zero), by Y�Y/(n�1), where Y1 is the transpose ofthe
centered raw data matrix.

There are two ways we can summarize the var-
iability of a multivariate data set based on the var-
iance–covariance matrix (Jackson 1991).

• The determinant of a square matrix is a single
number summary of the matrix. The
determinant of the variance–covariance
matrix (|C|) represents the generalized
variance of the matrix.

• The trace of the variance–covariance matrix
(Tr(C)) is the sum of the diagonal values, i.e.

the sum of the variances of the centered
individual variables.

Finally, we can also standardize these covari-
ances by dividing by the standard deviations of
the two variables involved to produce correlations
and thus a correlation matrix (R), where r12 is the
correlation coefficient between variables 1 and 2,
etc. (Table 15.4). Note the main diagonal consists
of ones because the correlation between each var-
iable and itself is one. Covariances and correla-
tions are measures of association between
variables. Other measures of association include
the �2 statistic, discussed in Chapter 14 as a
measure of association for contingency tables.

If our objects occur in groups (e.g. experimen-
tal treatments), then we can calculate these matri-
ces for between and within groups, analogous to
analyses of variance in Chapters 8–11. Analyses
based on multiple variance–covariance matrices
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Table 15.1 Raw data matrix of p variables ( j�1 to p) for n objects (i�1 to n), illustrated with data from Reich et
al. (1999) for eleven species of Wisconsin forbs (objects) and five variables

y11 y12 . . . y1p

y21 y22 . . . y2p

. . . . . . yij . . .�
yn1 yn2 . . . ynp 

�
SLA Leaf N Amass Aarea Gs
(cm2 g�1) (mg g�1) (nmol g�1 s�1) (µmol m�2 s�1) (mmol m�2 s�1)

Caulophyllum thalictroides 425.0 58.2 254.0 5.9 134
Dentaria laciniate 297.0 53.0 432.0 14.2 227
Erythronium americanum 222.0 42.0 263.0 11.9 359
Silphium terebinthinaceum 133.0 14.4 175.0 13.4 615
Podophyllum peltatum 309.0 44.7 244.0 7.9 164
Baptisia leucophaea 106.3 35.9 159.0 15.0 481
Trillium grandiflora 357.0 51.6 209.0 5.8 499
Echinacea purpurea 128.5 15.0 122.9 9.8 480
Silphium integrifolium 116.3 16.6 116.0 10.0 478
Sanguinaria canadensis 321.0 53.6 255.0 7.9 208
Sarrachenia purpurea 78.1 11.4 22.8 2.9 144

Note:
SLA is specific leaf area, leaf N is leaf nitrogen concentration, Amass is mass-based net photosynthetic
capacity,Aarea is area-based net photosynthetic capacity and Gs is leaf diffusive conductance at
photosynthetic capacity.
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Table 15.2 Sums-of-squares-and-cross-products matrix between p variables ( j�1 to p) for n objects (i�1 to n),
illustrated with data from Reich et al. (1999)

(yi1� ȳ1)
2 (yi2� ȳ2)(yi1� ȳ1) . . . (yip� ȳp)(yi1� ȳ1)

(yi1� ȳ1)(yi2� ȳ2) (yi2� ȳ2)
2 . . . (yip� ȳp)(yi2� ȳ2)

. . . . . . (yij� ȳj)
2 . . .

(yi1� ȳ1)(yip� ȳp) (yi2� ȳ2)(yip� ȳp) . . . (yip� ȳp)
2]

SLA Leaf N Amass Aarea Gs

SLA 144 120.13
Leaf N 19 873.03 3335.73
Amass 87 160.14 15 162.00 112 204.77
Aarea �1290.94 �23.86 1635.93 148.98
Gs �97 696.97 �14 505.68 �50 261.55 3412.31 301 594.73

Note:
Main diagonal entries are sums-of-squares, off diagonal entries are sums-of-cross-products. Variables
defined in Table 15.1.
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Table 15.3 Variance–covariance matrix between p variables ( j�1 to p), illustrated with data from Reich et al.
(1999)

s1
2 s12

2 . . . sp1
2

s12
2 s2

2 . . . sp2
2

. . . . . . sj
2 . . .�

s1p
2 s2p

2 . . . sp
2
�

SLA Leaf N Amass Aarea Gs

SLA 14 412.01
Leaf N 1987.30 333.57
Amass 8716.01 1516.20 11 220.48
Aarea �129.09 �2.39 163.59 14.89
Gs �9769.69 �1450.57 �5026.16 341.23 30 159.47

Note:
Main diagonal entries are variances, off diagonal entries are covariances. Variables defined in Table 15.1.



nearly always have the assumption that the
within-groups matrices have equal variances and
covariances.

15.3 Linear combinations,
eigenvectors and eigenvalues

15.3.1 Linear combinations of variables
One of the fundamental techniques in multivari-
ate analyses is to derive linear combinations of the
variables that summarize the variation in the
original data set. Basically, we are “consolidating”
(sensu Tabachnick & Fidell 1996) the variance from
a data matrix into a new set of derived variables,
each of which is a linear combination of the orig-
inal variables. For i�1 to n objects and j�1 to p
original variables:

zik�c1yi1�c2yi2�
. . . cjyij�

. . .�cpyip (15.1)

In Equation 15.1, zik is the value of the new variable
k for object i, yi1 to yip are the values of the original
variables for object i and c1 to cp are weights or coef-
ficients that indicate how much each original var-
iable contributes to the linear combination.
Depending on the analysis, these new vari-
ables are termed, variously, discriminant func-
tions, canonical functions or variates, principal

components or factors. This linear combination is
analogous to a regression equation. For some anal-
yses, the linear combination may include a con-
stant (an intercept in regression terminology):

zik�constant�c1yi1�c2yi2�
. . . cjyij�

. . .�cpyip (15.2)

The form in Equation 15.2 is common when
the variables are not standardized to zero mean
and unit variance; if they are, then the constant
becomes zero and Equation 15.1 is appropriate.

The derived variables are extracted so the first
explains most of the variance in the original vari-
ables, the second explains most of the remaining
variance after the first has been extracted but is
uncorrelated with the first, the third explains
most of the remaining variance after the first and
second have been extracted but is uncorrelated
with either the first or second, etc. The new
derived variables are independent of, uncorre-
lated with, each other. The number of new derived
variables is the same as the number of original
variables (p), although the variance is usually con-
solidated in the first few derived variables.

15.3.2 Eigenvalues
Eigenvalues, also termed characteristic or latent
roots (�1, �2, �3, . . .�k . . .�p), represent the amount of
the original variance explained by each of the
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Table 15.4 Correlation matrix between p variables ( j�1 to p), illustrated
with data from Reich et al. (1999)

1 r21 . . . rp1

r12 1 . . . rp2

. . . . . . 1 . . .�
r1p r2p . . . 1

�
SLA Leaf N Amass Aarea Gs

SLA 1.00
Leaf N 0.91 1.00
Amass 0.69 0.78 1.00
Aarea �0.28 �0.03 0.40 1.00
Gs �0.47 �0.46 �0.27 0.51 1.00

Note:
All entries are Pearson correlations. Variables defined in Table 15.1.



k�1 to p new derived variables. These eigenvalues
are population parameters and we estimate them
using maximum likelihood (ML) to produce (l1, l2,
l3, . . . lk . . . lp) and can also determine their approxi-
mate standard errors. Note from Box 15.1 that if
we use a covariance matrix and centered vari-
ables, then the sum of the eigenvalues is equal to
the trace of the original covariance matrix, i.e. the
sum of the variances of the original centered var-
iables. If we use a correlation matrix and centered
and standardized variables, the sum of the eigen-
values would equal the trace of the correlation
matrix, i.e. the sum of the variances of the origi-
nal standardized variables. We have simply rear-
ranged the variance in the association matrix so

that the first few derived variables explain most of
the variation that was present (between objects)
in the original variables. The eigenvalues can also
be expressed as proportions or percentages of the
original variance explained by each new derived
variable (component).

15.3.3 Eigenvectors
Eigenvectors (characteristic vectors) are lists of the
coefficients or weights showing how much each
original variable contributes to each new derived
variable. In general terms, the eigenvectors
contain the cj in Equation 15.1 but these coeffi-
cients can be scaled in different ways so are often
represented as uj, vj or wj in matrix descriptions of
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Box 15.1 Deriving components (modified from Jackson
1991)

There are two different strategies for extracting eigenvectors (components) and
their eigenvalues from multivariate data set of n objects by p variables. First, we can
use a spectral decomposition of a p by p association matrix between variables.
Second, we can use a singular value decomposition (SVD) of a n by p data matrix,
with variables standardized as necessary. The SVD is more generally applicable (see
Chapter 17) although most biologists are more familiar with obtaining eigenvectors
and eigenvalues from a covariance or correlation matrix.

Consider the matrix (Y) of raw data from Clevenger & Waltho (2000) who
recorded the numbers of people on bicycles, horses and on foot for eleven under-
passes also used by wildlife in Alberta, Canada.

Raw Centered

Underpass Bicycle Horse Foot Bicycle Horse Foot

1 0 6 7 �118.727 �37.273 �55.364
2 5 3 45 �113.727 �40.273 �17.364
3 6 6 14 �112.727 �37.273 �48.364
4 21 5 20 �97.727 �38.273 �42.364
5 189 42 34 70.273 �1.273 �28.364
6 8 138 77 �110.727 94.727 14.636
7 462 186 129 343.273 142.727 66.636
8 19 12 80 �99.727 �31.273 17.636
9 595 58 241 476.273 14.727 178.636

10 1 10 10 �117.727 �33.273 �52.364
11 0 10 29 �118.727 �33.273 �33.364

Spectral decomposition
We will illustrate spectral decomposition of a matrix of associations between vari-
ables (Y�Y). This might be a matrix of variances and covariances, C, among p var-
iables based on n objects (Table 15.3).
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Bicycle Horse Foot

Bicycle 44 906.018
Horse 7336.382 3862.018
Foot 13 084.709 2205.191 4903.655

Note that we could also use a correlation matrix. Basically, we then derive two
matrices, L and U, so that:

L�U�CU

U is a n by p matrix whose columns contain the eigenvectors (characteristic vectors),
the coefficients of the linear combinations of the original variables. The elements of
each eigenvector k are ujk, the coefficient for the jth variable in the kth eigenvector.
Note that we clearly need to have to some constraints imposed on the coefficients
within each eigenvector, otherwise simply increasing the absolute sizes of the coef-
ficients could increase the variance explained by each new variable. The simplest and
most commonly used constraint is to restrict the sum of squared coefficients to zero,
i.e. �p

j�1ujk
2�1. Eigenvectors that are independent and scaled to unity are termed

orthonormal. Additional scaling options for the eigenvectors are available to make
the variances of the eigenvectors similar (Jackson 1991), e.g. vjk��lkujk so the eigen-
vectors are in a V matrix and wjk�ujk/�lk so the eigenvectors are in a W matrix.

L is a p by p matrix whose diagonal contains the eigenvalues l1, l2, . . . lk . . . lp (esti-
mates of k1, k2, . . .kk . . .kp, the latent or characteristic roots) of C. The eigenvalues
measure the variance explained by each of the eigenvectors. The number of eigen-
values is the same as the number of rows and columns in the covariance matrix and
therefore the same as the number of original variables (p).

The matrix L for our example data set with the eigenvalues on the diagonal is:

50 075.681 0 0
0 2592.350 0
0 0 1003.660

The trace of this matrix, the sum of its diagonal elements, is the sum of the vari-
ances of the original centered variables. The sum of the eigenvalues from an eigen-
analysis of a sums-of-squares-and-cross-products matrix or a correlation matrix
would equal the sum of the variances of the original variables or the centered and
standardized variables respectively. The matrix L represents, therefore, a reorgan-
ization of the variances of the variables from the original data matrix. Each eigen-
value is associated with each eigenvector and it is clear that the eigenvectors are
extracted in order of decreasing proportions of the total variance. We often
convert these eigenvalues to percentages.

Eigenvector 1 2 3

Eigenvalue 50 075.681 2592.350 1003.660
Percentage of total variance 93.300 4.830 1.870

More formally, determination of the eigenvalues involves solving the character-
istic equation:

|C� lI|�0
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where I is an identity matrix of equivalent dimensions to C. The resulting polyno-
mial (pth degree) in l is used to obtain l1, l2 . . . lp.

Based on the three human activity variables (bicycle, horse, foot) for eleven
underpasses in Alberta from Clevenger & Waltbo (2000), the matrix U is:

1 2 3

Bicycle 0.945 0.160 0.284
Horse 0.164 �0.986 0.011
Foot 0.282 0.036 �0.959

Each column is an eigenvector (uk where k�1 to p), the values in the eigenvector
representing the coefficients or weights for that linear combination of the original
variables. For example, the linear combination comprising eigenvector 1 is:

(0.945)Bicycle�(0.164)Horse�(0.282)Foot

where the values of each variable are centered because we used the covariance
matrix to extract the eigenvectors. These linear equations are often termed
components or factors (Chapter 17) and represent new variables derived from the
original variables. Note that each variable contributes differently to each compo-
nent (different coefficients or weights) and that these coefficients will depend on
the units of each variable and whether standardizations are used. These linear equa-
tions can be solved to produce a component score (zik) for each object or obser-
vation for each component. For example, the score for component 1 for underpass
1:

(0.945)(�118.727)�(0.164)(�37.273)�(0.282)(�55.364)��133.946

Singular value decomposition (SVD)
The SVD of an n by p data matrix is based on the product of the characteristic
vectors of a matrix of associations between variables, the characteristic vectors of
a matrix of associations between objects and their characteristic roots (eigenvalues,
which are the same for both association matrices). If Y is a matrix of centered data
(as used for the covariance matrix above), then Y�Y is the covariance matrix
between variables (matrix C above) and YY� is the covariance matrix between
objects (note these would be SSCP matrices for raw data and correlation matrices
for centered and standardized data). The characteristic roots (eigenvalues) of these
two matrices are the same.

The SVD of Y is:

Y�ZL1/2U�

where L contains the eigenvalues, U is a p by p containing the eigenvectors of Y�Y
as defined above and Z is an n by p matrix of eigenvectors of YY� and are also the
principal component scores for objects scaled by the square root of the eigenval-
ues. Note that we now have the square root of the eigenvalues because we are
dealing with the original variables rather than covariances or correlations (Jackson
1991). If Y contains raw data, then L and U will be the equivalent to that from the
spectral decomposition of the SSCP matrix. If Y contains centered data, then L and
U will be the equivalent to that from the spectral decomposition of the covariance
matrix. If Y contains centered and standardized data, then L and U will be the



multivariate analyses – see Box 15.1. The eigenvec-
tors are commonly scaled so the sum of squared
coefficients equals one; other forms of scaling are
possible. We estimate the coefficients with
maximum likelihood and can determine approxi-
mate standard errors. These linear combinations
can be solved to provide a score (zik) for each object
for each new derived variable. Note that there is
the same number of derived variables as there are
original variables (p). The new derived variables,
each with an eigenvector of coefficients and an
eigenvalue, are extracted sequentially so that they
are uncorrelated with each other.

15.3.4 Derivation of components
We can derive the new variables (components)
with matrix algebra in two ways. We can use a
spectral decomposition of a p by p square matrix
of associations among variables (e.g. SSCP, C or R
matrices) or we can use a singular value decompo-
sition of the n by p original data matrix. The two
approaches produce equivalent results if there is
a match between the association matrix used
and the standardization of variables in the data
matrix. One of the biggest problems facing biolo-
gists trying to become familiar with multivariate
statistical techniques is the bewildering range of
terminology, with different textbooks using dif-
ferent terms for the same property and also differ-
ent labels for the relevant matrices. We have tried
to summarize these two approaches for extracting
components from a multivariate data set in Box
15.1, following the terminology of Jackson (1991)
where possible.

The usual derivation of components is from an

association matrix of covariances or correlations
between variables (Box 15.1). This is sometimes
termed an R-mode analysis and we can calculate
scores for the derived variables (components) for
each object (Jackson 1991, Ludwig & Reynolds
1988). We could also derive components from
matrices representing covariances or correlations
between objects and the derived variables (compo-
nents) are linear combinations of the objects. We
can calculate component scores for each variable
and this is termed a Q-mode analysis. These two
sets of component scores are related via matrix
algebra and we can obtain component scores for
objects from the eigenvectors of the variables and
vice versa ( Jackson 1991). In practice, Q-mode anal-
yses comparing objects are more commonly based
on dissimilarity measures (Box 15.2; Figure 15.2;
Section 15.4).

The calculation of eigenvectors and their
eigenvalues for new derived variables (compo-
nents) from a multivariate data set is fundamen-
tal to canonical correlation analysis, principal
components analysis and correspondence analy-
sis (Chapter 17). If our data set contains groups, we
can extract the components in a way that max-
imizes the between-group differences and this is
the basis of multivariate analysis of variance and
discriminant function analysis (Chapter 16).

15.4 Multivariate distance and
dissimilarity measures

The methods described in the previous section
deal with multivariate data sets by rearranging
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equivalent to that from the spectral decomposition of the correlation matrix. Note
that we can determine the original variables (centered and standardized if appro-
priate) from the matrix of component scores and vice versa when all components
are extracted.

The advantage of using SVD is that extraction of eigenvectors and their eigen-
values is a one step process and SVD can also be applied to association matrices
that are not square, e.g. chi-square matrices from contingency tables as used in cor-
respondence analysis (Chapter 17). The advantage of spectral decomposition is that
the choice of matrix (e.g. covariance vs correlation) will automatically center or
standardize the data. As most multivariate analyses require statistical software, we
rarely have to make this choice in practice.
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Box 15.2 Measures of dissimilarity between objects for
continuous variables

Consider two objects (i�1 and 2), e.g. two sampling units, and a number of vari-
ables ( j�1 to p) recorded from each object, e.g. abundances of p species from
each sampling unit. The same variables are recorded from each object (even if some
variables have zero values for an object). First, we need a few definitions:

• y1j and y2j are the values of variable j in object 1 and object 2,
• min(y1j, y2j) is the lesser value of each variable when it is greater than zero in

both objects,
• p is the number of variables, and
• q is the number of variables that are zero for objects 1 and 2.

For example, y1j and y2j might be the abundances of species j in sampling units 1 and
2, �min(y1j, y2 j) is the sum of the lesser abundance of species j when it is present in
both sampling units, p is the number of species and q is the number of species that
are missing (zero values) from both samples. The formulae presented below are
from Faith et al. (1987), except we present a more common version of the
Canberra measure (see Digby & Kempton 1987) and correct their typographical
error for chi-square.

Dissimilarity Equation
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To illustrate these dissimilarity measures, we have calculated the dissimilarity
between three species of Wisconsin forbs based on five leaf character variables
from Reich et al. (1999).We have used the original variables and also variables cen-
tered and standardized to zero mean and unit variance.

Dissimilarity
between Euclidean City block Canberra Bray–Curtis Kulczynski

C. thalictroides vs D. laciniata:
Raw data 238.355 82.500 0.231 0.217 0.212
Standardized data 2.992 1.143 NA NA NA

C. thalictroides vs P. peltatum:
Raw data 121.005 34.300 0.111 0.104 0.100
Standardized data 1.337 0.498 NA NA NA

D. laciniata vs P. peltatum:
Raw data 198.911 55.520 0.166 0.155 0.138
Standardized data 2.482 0.865 NA NA NA

Note that all measures show the same basic pattern, with the dissimilarity between
C. thalictroides and D. laciniata the greatest and that between C. thalictroides and P.
peltatum the least. Standardizing the variables to zero mean and unit variance
doesn’t change the relative dissimilarities although such a standardization cannot be
applied to Canberra, Bray–Curtis and Kulczynski because they already include stan-
dardization as part of the calculation.

We also compared intact and impacted forest locations, based on the abun-
dance of 15 species of bats, from Fenton et al. (1998). This data set allows us to
include the chi-square measure, which requires integer values.

Dissimilarity between Euclidean City block Canberra Bray–Curtis Kulczynski Chi-square

Mana intact vs Mana impacted:
Raw data 35.875 77.000 0.754 0.336 0.252 0.036
Standardized data 5.679 17.323 NA NA NA NA
Range
standardized data 2.720 8.255 0.835 0.770 0.435 0.428

Kanyati intact vs Matusadona impacted:
Raw data 21.119 48.000 0.715 0.444 0.416 0.087
Standardized data 4.831 13.706 NA NA NA NA
Range
standardized data 2.390 6.663 0.792 0.719 0.703 0.491

Here the different dissimilarities produce different patterns. The intact vs impacted
difference is greater for Mana than for Kanyati/Matusadona when measured with
Euclidean, City block and Canberra but the reverse is true for Bray–Curtis,
Kulczynski and chi-square. None of the standardizations changed the relative sizes
for any of the measures except for Bray–Curtis.



the variance based on the asso-
ciation (covariances or correla-
tions) between the variables
(R-mode analyses). Another
approach to multivariate data
analyses (Q-mode analyses) is
based on a measure of simi-
larity or dissimilarity, some-
times termed a resemblance
measure (Ludwig & Reynolds
1988), between objects.

Similarity indices measure how alike objects
are, e.g. how similar sampling units are in terms
of species composition or how alike specimens are
in morphology. Dissimilarity indices measure
how different objects are and should represent
multivariate distance – if each variable is repre-
sented by an axis (or dimension) then multivari-
ate distance is how far apart the objects are in
multidimensional space. These dissimilarity
indices are also called distances and are calcu-
lated for every possible pair of objects. There are
numerous dissimilarity indices and the preferred
ones are those that most closely represent biolog-
ically meaningful differences between objects.
Particular difficulties arise when variables are
measured on very different scales or when some
of the variables include zero values, e.g. the vari-
ables are abundances of species of organisms and
many objects have zero abundance for one or
more species.

We usually represent the dissimilarities
between objects as a dissimilarity matrix, convert-
ing an n rows by p columns data matrix to an n
rows by n columns dissimilarity matrix. Like the
covariance and correlation matrices described in
Section 15.2, dissimilarity matrices are identical
above and below the diagonal, which will be zeros
indicating zero dissimilarity between an object
and itself.

15.4.1 Dissimilarity measures for
continuous variables

There is a broad range of measures of dissimilar-
ity between objects based on continuous variables
(see Digby & Kempton 1987, Faith et al. 1987,
Legendre & Legendre 1998, Ludwig & Reynolds
1988). Their proliferation is partly due to the
requirement by ecologists for measures of dis-
similarity between sampling units in species
composition that best represent underlying envi-
ronmental gradients. We illustrate some of the
commonly used measures in Box 15.2 and
describe them briefly below. Legendre & Legendre
(1998) provide a very thorough coverage.

Euclidean
This is based on simple geometry as a measure of
the distance between two objects in multidimen-
sional space. It is the square root of the sum, over
all the variables, of the square of the difference
between the values of each variable for the two
objects. It is only bounded by zero for two objects
with exactly the same values for all variables and
has no upper limit, even when two objects have no
variables in common with positive values.

City block or Manhattan
This is the sum (across variables) of the absolute
differences in the value of each variable between
two objects. It has properties similar to Euclidean
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Figure 15.2. Distinction in initial
steps between R- and Q-mode
analyses.A data matrix of n rows by
p columns is converted to a p by p
matrix of associations between
variables (e.g. correlations) or a n by
n matrix of dissimilarities between
objects.



distance and will be dominated by variables with
large values.

Minkowski
Euclidean and City block are both versions of the
more general Minkowski metric. Some software
will, by default, “normalize” both measures by
dividing by the sample size, i.e. the number of var-
iables that contribute to the distance measure.
This is only relevant if you wish to compare dis-
similarities between data sets with different
numbers of variables.

Canberra
This is the City block measure above, except that
the difference between objects for each variable is
divided by the sum of the variable values in the
two objects before summing across variables. To
ensure it has an upper limit of one, we standard-
ize it by the number of variables that are greater
than zero in both objects, e.g. the number of
species present in at least one of the objects. This
standardization is not always provided in texts
(e.g. see Digby & Kempton 1988). The Canberra
measure is less influenced by variables with very
large values (Krebs 1989) than the City block
measure.

Bray–Curtis
Developed by botanists in Wisconsin, this is also a
modification of the Manhattan measure where
the sum of differences between objects across var-
iables is standardized by the sum of the variable
values across objects, also summed across vari-
ables. Equivalently, it can be calculated as one
minus twice the sum of the lesser value of each
variable when it is greater than zero in both
objects, standardized by the sum of the values of
all variables in both objects. It ranges between
zero (same variables and values in both objects –
completely similar) and one (no variables in
common with positive values – completely dissim-
ilar) and is sometimes called percent dissimilarity
(when expressed as a percentage; Ludwig &
Reynolds 1988) or Czekanowski’s coefficient. It is
well suited to species abundance data because it
ignores variables that have zeros for both objects
( joint absences). Its value is determined mainly by
variables with high values (e.g. species with high

abundances; see Krebs 1989) because these vari-
ables are likely to be more different between the
objects.

Kulczynski
This complicated measure, also termed the quan-
titative symmetric measure, was introduced to
biologists by Faith et al. (1987). Like Bray–Curtis, it
ranges between zero and one and has similar
properties.

Chi-square
This dissimilarity measure, implicit in some
multivariate analyses (e.g. correspondence analy-
sis – Chapter 17), is only applicable when the vari-
ables are counts, such as species abundances. It is
based on differences between objects in the pro-
portional representation of each species, also
adjusted for species totals.

15.4.2 Dissimilarity measures for
dichotomous (binary) variables

Another group of dissimilarity coefficients has
been developed for variables measured on a
binary scale (e.g. presence and absence). Let a be
the number of variables with non-zero values in
both objects, b is the number of variables with
non-zero values in object 1 and c is the number of
variables with non-zero values in object 2. A
simple measure of dissimilarity between two
objects is Jaccard’s coefficient:

1� (15.3)

A slight modification is Sorensen’s coefficient,
which replaces a by 2a. Sorensen’s coefficient is
identical to the Bray–Curtis measure for dichoto-
mous variables.

15.4.3 General dissimilarity measures for
mixed variables

Gower (1971) introduced a general dissimilarity
measure that is useful for situations that include
a mixture of continuous and categorical vari-
ables:

(15.4)
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In Equation 15.4, s12j is the similarity between
objects 1 and 2 based on variable j and w12j equals
one if the two objects can be compared for vari-
able j and zero if they can’t. So Gower’s coefficient
is “an average over all possible similarities” (Cox &
Cox 1994) for objects 1 and 2. Gower’s coefficient
handles a mixture of variable types by calculating
similarity for each variable separately (using
appropriate coefficients for binary and continu-
ous variables), then averaging those similarities.
With all continuous variables, Gower’s coefficient
becomes (Cox & Cox 1994, Faith et al. 1987):

(15.5)

15.4.4 Comparison of dissimilarity
measures

One characteristic of dissimilarities is whether
they meet the criterion of being metric. A dissim-
ilarity coefficient is metric if the dissimilarity
between objects 1 and 2 is less than the sum of the
dissimilarities between objects 1 and 3 and 2 and
3. This means that it is possible to construct a tri-
angle whose sides match the three dissimilarities
between three objects. Dissimilarity measures
that meet the condition of being metric are com-
monly termed dissimilarity metrics. Not all dis-
similarity measures are metric, e.g. Minkowski
and chi-square are, but Bray–Curtis is not. If the
dissimilarity is to be used in linear models (see
Chapter 18), then being metric is important but
otherwise the choice of dissimilarity measure for
the analyses we describe in Chapter 18 is not
usually based on whether it is metric or not.

Which of the many dissimilarity measures to
use depends on the purpose of the analysis, the
nature of the data and is closely linked to stan-
dardizations discussed in Section 15.6. When var-
iables are measured on similar scales and have no
zero values, Euclidean, City block or Canberra are
good measures of dissimilarity between objects. If
the scales of measurement are not consistent for
different variables (e.g. the leaf characteristics
from Reich et al. 1999), then the data need to be
standardized before calculating these dissimilar-
ities. Where the variables are species abundances
(i.e. counts), an ideal dissimilarity coefficient
should reach a constant maximum value when

�
p

j�1

|y1j� y2j|

(maxj�minj)

two sampling units have no species in common
(i.e. it doesn’t classify sampling units as similar
because they have no species in common).
Bray–Curtis, Kulczynski and Canberra meet this
criterion, whereas Euclidean and chi-square do
not. For this and other reasons, Faith et al. (1987)
recommended the Bray–Curtis or Kulczynski coef-
ficients for comparing objects when the variables
are abundances of different species, as simula-
tions showed these measures best matched eco-
logical gradients. The suitability of some
multivariate analyses for certain types of data is
closely linked to the chosen or implicit dissimilar-
ity measure that is used; we will discuss this
further in the next two chapters. 

For binary data, Kent & Coker (1992) argued
that Sorenson’s coefficient is preferred because it
weights species (variables) in common higher
than species absences (see also Krebs 1989).
Remember that Sorenson’s coefficient is the same
as the Bray–Curtis measure with binary variables.

The general Gower dissimilarity measure is
particularly useful when the data are a mixture of
binary and continuous variables or when there
are missing observations (but see Section 15.9.2),
although Faith et al. (1997) showed that the
version for continuous variables did not represent
underlying ecological distances very well.

15.5 Comparing distance and/or
dissimilarity matrices

Biologists often wish to test whether two or more
matrices, or at least their corresponding ele-
ments, are correlated with each other. Such ques-
tions are particularly relevant when we are
dealing with distance and/or dissimilarity matri-
ces. For example, Sokal & Rohlf (1995) compared
the matrix of genetic distances between ten vil-
lages of the Yanomama Amerindians in South
America to the matrix of geographic distances
between the villages. Fortin & Gurevitch (1993)
emphasized the importance of examining spatial
structure in field experiments, where one matrix
might be differences in response of experimental
units and the other might be the actual physical
distances between the units.

Mantel’s test is used for testing null hypothe-
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ses about correlations between matrices. It uses a
randomization procedure (Chapter 3) to test
whether the relationship between two matrices is
more different than we would expect by chance
(Manly 1997, Sokal & Rohlf 1996). We simply calcu-
late the correlation coefficient between the corre-
sponding elements of the two matrices, using
only the lower (or upper) half of each matrix
because they are symmetrical. However, the dis-
similarities or distances within each matrix are
not independent of each other (the dissimilarity
between object 1 and 2 uses some of the same
information as the dissimilarity between object 1
and 3, etc.). This is why we use a randomization
test (Chapter 3) for the H0 that the correlation
between the two matrices is no different than we
would expect by chance. Other statistics equiva-
lent to the correlation coefficient for testing the
H0 in Mantel’s test include Z (the sum of the prod-
ucts of the corresponding elements in the two
matrices) and the regression coefficient (slope) for
elements in one matrix regressed against ele-
ments in the other matrix. If the distances in the
two matrices are standardized to zero mean and
unit variance (Chapter 4), the values of the corre-
lation coefficient, the regression slope and Z/m,
where m is the number of elements in each
matrix, will be the same (Manly 1997).

McCue et al. (1996) described genetic structure
of a rare annual plant (Clarkia springvillensis) in
California. They identified eight subpopulations
and calculated Cavalli–Svorza genetic distances
between subpopulations from isozyme analysis of
tissue samples. They had two distance matrices –
one for genetic distances between subpopulations
and one for geographic distance (in meters)
between subpopulations. The correlation coeffi-
cient between the two matrices was 0.632 with a
randomization P-value of 0.032 and we would con-
clude that there is a statistically significant posi-
tive relationship between genetic and geographic
distance for populations of C. springvillensis. Note
that, in this example, the subpopulations were
either really close (�500 m) or around 8000 m
apart so our interpretation of the relationship
between genetic and geographic distance is con-
strained by the absence of data for separations
between 500 and 8000 m.

The correlations can be extended to more than

two matrices, using an analogue of the coefficient
of multiple correlation (r2) and partial correla-
tions, called partial Mantel’s test (Manly 1997). For
example, Sklenar & Jorgensen (1999) measured
floristic similarity between six mountains in
Ecuador using Sorenson’s index for presence–
absence data. They used Mantel’s test to show that
there was a significant correlation between floris-
tic similarity and differences in sampling inten-
sity and they used a partial Mantel’s test to test for
a correlation between floristics and distance,
holding sampling intensity constant.

15.6 Data standardization

Transformations, which change the scale of meas-
urement of the data, were discussed in Chapter 4
in relation to meeting the normality assumption
of parametric analyses and the homogeneity of
variance assumption of most of these analyses.
Transformations are particularly important for
multivariate procedures based on eigenanalysis
(e.g. principal components analysis – see Chapter
17) because covariances and correlations measure
linear relationships between variables. Transfor-
mations that improve linearity will increase the
efficiency with which the eigenanalysis extracts
the eigenvectors.

Transformations such as log or square root
will normalize positively skewed data and also
reduce the influence of variables with high values
(e.g. very abundant species) in multivariate proce-
dures based on dissimilarity indices (Digby &
Kempton 1987). Clarke & Warwick (1994) argued
that fourth-root transformations should always
be used for species abundance data before calcu-
lating dissimilarities to reduce the influence of
very abundant species. One difficulty with this
approach is that the effect of the transformation
will depend on the underlying distributions of
the variables (e.g. species) and therefore the
degree of reduction of influence of very abundant
species will be inconsistent. Cao et al. (1999) also
had concerns about log transformation of water
quality variables, pointing out that this transfor-
mation “indiscriminately increases the impor-
tance of a low range across all variables”.

Standardizations work slightly differently
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from transformations by adjusting the data so
that means and/or variances or totals for each var-
iable are the same. The following are examples
(see also Table 15.5).

• Centering the data subtracts the variable mean
from each observation for each variable, result-
ing in all variables having a mean of zero.
Spectral decomposition of a covariance matrix
extracts components from centered data.

• Standardizing the data divides the centered
observations by the standard deviation for
each variable, resulting in all variables having
a mean of zero and a standard deviation (and
variance) of one. Spectral decomposition of a
correlation matrix extracts components from
standardized data.

• Data can also be standardized so that each
observation is expressed relative to the
maximum value of that variable across all
objects. This standardization results in obser-
vations being expressed as a proportion of the
largest value for a variable, and is basically
standardization based on the range within a
variable.

• Cao et al. (1999) proposed a novel standardiza-
tion for water quality data, whereby each vari-
able is standardized in relation to the water

quality standard of that variable and its range.
Although acknowledging problems with their
new standardization, they argued that it does
allow natural variability in each variable to
contribute to the results of a multivariate
analysis.

These standardizations of variables are impor-
tant if variables are measured in very different
units or scales, because otherwise those variables
with larger values or larger variances will often be
more influential on the results of an analysis than
variables with smaller values or smaller vari-
ances. Standardization of variables is essential if
the variables are measured in very different units.
For species abundances, such standardizations
make all species have similar “importance” and
thus “avoids a strong weighting by a few highly
abundant species” (Ludwig & Reynolds 1988, p.
215). Without this standardization, rare species
are often making little contribution to dissimilar-
ities – of course, this may be the most biologically
sensible interpretation.

In the same way that variables could be stan-
dardized, objects (e.g. sampling units) can also be
standardized so the value for any variable for each
object is expressed relative to the maximum value
for that object in the whole data matrix. For
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Table 15.5 Comparison of unstandardized, centered (zero mean) and standardized (zero mean and unit
variance) observations for leaf N concentration for the eleven species of Wisconsin forbs from the study by Reich
et al. (1999)

Unstandardized Centered Standardized

Caulophyllum thalictroides 58.20 22.16 1.21
Dentaria laciniate 53.00 16.96 0.93
Erythronium americanum 42.00 5.96 0.33
Silphium terebinthinaceum 14.40 �21.64 �1.18
Podophyllum peltatum 44.70 8.66 0.47
Baptisia leucophaea 35.90 �0.14 �0.01
Trillium grandiflora 51.60 15.56 0.85
Echinacea purpurea 15.00 �21.04 �1.15
Silphium integrifolium 16.60 �19.44 �1.06
Sanguinaria canadensis 53.60 17.56 0.96
Sarrachenia purpurea 11.40 �24.64 �1.35

Mean 36.04 0.00 0.00
Standard deviation 18.26 18.26 1.00



species abundance data, this standardization is
very important if the size of the sampling unit,
and hence the total number of individuals, varies
because it removes any effect of different total
abundances in different sampling units, i.e. all
sampling units are considered to have the same
total abundance across all species.

Finally, converting abundance data to pres-
ence and absence might be considered an extreme
combination of transformation and standardiza-
tion. There are specific dissimilarity measures for
such binary data (see Section 15.4.2).

It is often useful to analyze the same data with
different standardizations, particularly in ecolog-
ical research. For example, comparing the results
of an analysis using raw data with one using
sample-standardized data will indicate what influ-
ence different total abundances in samples have.
Raw data versus species-standardized data will
illustrate what influence the most abundant
species have (simply leaving out different com-
binations of rarer species will provide similar
information). Finally, to remove all effects of
abundance, we can analyze just presence–absence
data.

15.7 Standardization, association
and dissimilarity

Measures of association between variables
described in Section 15.2 have implicit standard-
izations (see also Chapter 5). Covariances measure
the linear relationships between centered vari-
ables whereas correlations measure the linear
relationships between standardized (zero mean
and unit variance) variables. The choice of associ-
ation matrix on which to base subsequent multi-
variate analyses (Chapter 17) depends on whether
differences in variances between variables repre-
sent important biological information that you
don’t wish to lose. Standardizations are also
important for dissimilarity measures. Some dis-
similarity measures are implicitly standardized
and are unaffected by data standardizations (Faith
et al. 1987). Some become identical after data stan-
dardization, e.g. Bray–Curtis, Kulczynski and City
block are identical for count data if objects are
standardized to the same total abundance.

Others, e.g. Bray–Curtis and Kulczynski, produce
nonsensical values when standardization is to
zero mean (centering) or zero mean and unit var-
iance (because of negative values). Standardizing
by the range is a better option for these measures
if you wish to reduce the influence of very abun-
dant variables (e.g. species).

15.8 Multivariate graphics

Many of the exploratory data analysis techniques
described in Chapter 4 are very applicable to
multivariate data sets. In particular, describing
distributions and checking for outliers for each
variable separately with boxplots and examining
bivariate relationships between variables with
scatterplot matrices (SPLOMS) are always useful.

We may also wish to represent each observa-
tion or object in symbolic form, so that each
symbol describes the relative value of all of the
variables. A number of approaches have been
developed to represent the different variables in a
single “icon”. The best known method is using
Chernoff faces, where different features of the
face represent different variables (Chernoff 1973;
see also Everitt & Dunn 1991, Flury & Riedwyl
1988). These plots have been criticized, primarily
because of the difficulty of rationally assigning
variables to face features (Cox 1978), but they also
have their supporters (Everitt & Dunn 1991, Flury
& Riedwyl 1988). We illustrate these face plots
with the Wisconsin forb data from Reich et al.
(1999) in Figure 15.3, for both raw and standard-
ized data. The differences between species are
more noticeable for standardized variables, espe-
cially nose features representing mass-based and
area-based photosynthetic capacity. Nonetheless,
practice on known data sets is required to become
familiar with recognizing similar and dissimilar
faces.

An alternative, less “cartoonish”, icon plot is to
represent each object with a star, where each var-
iable is represented by a point on the star, and the
value of the variable is indicated by how far
the point is from the center. There are no limits to
the number of points, and therefore variables, for
each star although the stars become difficult to
interpret when there are too many variables. The
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difference between raw and standardized vari-
ables is often very obvious on star plots. In Figure
15.4, we again illustrate the Wisconsin forb data
from Reich et al. (1999). It is clear that S. purpurea
is very different from the remaining species and S.
terebinthinaceum, P. peltatum, B. leucophaea and T.
grandiflora have larger values for leaf diffusive con-
ductance at photosynthetic capacity, indicated by
the extension of their stars to the left.

Finally, a very common method of graphing
relationships between objects is to use a scatter-
plot where the axes represent the new derived var-
iables from an eigenanalysis. These plots are
common in the analyses described in Chapters 16
and 17, especially discriminant function analysis,
principal components analysis and correspon-
dence analysis. Alternatively, we can graphically
represent a dissimilarity matrix between objects
in a scatterplot, the basis of multidimensional
scaling described in Chapter 18. Both types of
plots are used especially by ecologists to represent

the relationships between sampling or experi-
mental units based on species composition, where
they are termed “ordination” plots, the term ordi-
nation being derived from attempts to order units
along some environmental gradient (Digby &
Kempton 1987). Ordination is not a term familiar
to most statisticians, or even non-ecological biolo-
gists, so we will call such plots of objects “scaling
plots”.

15.9 Screening multivariate data
sets

In Chapter 4, we emphasized the importance of
exploratory data analyses before proceeding with
univariate statistical procedures, especially those
with distributional assumptions. We also pointed
out that unusual values (outliers) can have very
influential effects on the conclusions from a sta-
tistical analysis, both in terms of estimation and
hypothesis testing, and checking for outliers is an
important precursor to any formal analysis. The
need for exploratory screening of data is even
more important for multivariate data sets
because their complexity means that visual
inspection of the raw data is likely to miss
unusual patterns or observations. Additionally,
the issue of missing observations is much more
critical for the analyses we will describe in the
next three chapters.

All of the univariate procedures we described
in Chapter 4, especially graphical explorations
(see previous section), can and should be used for
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Figure 15.3. Chernoff face representation of the eleven
species of Wisconsin forbs for five leaf characteristics based
on raw data (a) and standardized data (b) from Reich et al.
(1999).The features of the Chernoff faces are curvature of
mouth for specific leaf area, angle of brow for leaf nitrogen
concentration, width of nose for mass-based net
photosynthetic capacity, length of nose for area-based net
photosynthetic capacity, and length of mouth for leaf diffusive
conductance at photosynthetic capacity.The species are, from
left to right and row by row: Caulophyllum thalictroides,
Dentaria laciniate, Erythronium americanum, Silphium
terebinthinaceum, Podophyllum peltatum, Baptisia leucophaea,
Trillium grandiflora, Echinacea purpurea, Silphium integrifolium,
Sanguinaria canadensis, and Sarrachenia purpurea.



multivariate data sets. In this section, we will
focus on two particular issues: detecting multivar-
iate outliers and dealing with missing observa-
tions.

15.9.1 Multivariate outliers
We discussed in Chapter 4 how unusually extreme
values can influence the outcome of a statistical
analysis. Multivariate outliers are more difficult
to detect because they may not be univariate out-
liers for any of the individual variables ( Jobson
1992). Additionally, outliers are often defined as
large departures from a fitted statistical, usually
linear, model to our data. For example, an obser-
vation may be an outlier from a fitted regression
model (Chapters 5 and 6) and may have undue
influence on the estimates of model parameters
and tests of hypotheses about these parameters. In
contrast, many of the multivariate techniques we
will introduce in the next three chapters are more

descriptive in nature, although new summary var-
iables are often derived and can be used as
response or predictor variables in subsequent
linear models.

A multivariate outlier is an object with an
unusual pattern of values for the variables
(Tabachnick & Fidell 1996) and can be detected by
measuring its distance, in multivariate space,
from the centroid (Figure 15.1). The square of this
distance (di

2 for object i) is called Mahalanobis dis-
tance (see Flury & Riedwyl 1988, Jackson 1991,
Jobson 1992 for computational details) and is pro-
vided by most software in one or more of the
multivariate analysis routines. If multivariate nor-
mality holds, the di

2 follow a �2 distribution with
p (the number of variables) df (Manly 1994) so we
can test for outliers, possibly using a strict signifi-
cance level like 0.001 (Tabachnick & Fidell 1996).

Dealing with univariate outliers has been
described in Chapter 4. The options for multivari-
ate outliers are similar. If we decide that an object
has such an unusual pattern of values for one or
more variables that it is unlikely to be part of the
population of objects we wish to describe or make
inferences about, then we might delete that
object from the analysis. Transformations of the
variable(s) can also reduce the influence of outli-
ers if they are extreme values in a positively
skewed distribution.

15.9.2 Missing observations
Occasionally, we will have missing observations in
our data set, i.e. no value was recorded for one or
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Figure 15.4. Star plot representation of the eleven species
of Wisconsin forbs for five leaf characteristics based on raw
data (a) and standardized data (b) from Reich et al. (1999).
The features of the stars are, clockwise from the top, specific
leaf area, leaf nitrogen concentration, mass-based net
photosynthetic capacity, area-based net photosynthetic
capacity, leaf diffusive conductance at photosynthetic capacity.
The species are, from left to right and row by row:
Caulophyllum thalictroides, Dentaria laciniate, Erythronium
americanum, Silphium terebinthinaceum, Podophyllum peltatum,
Baptisia leucophaea, Trillium grandiflora, Echinacea purpurea,
Silphium integrifolium, Sanguinaria canadensis, and Sarrachenia
purpurea.



more variables for one or more objects. The
approaches for dealing with missing observations
depend on the missing data mechanism, as intro-
duced in Chapter 4 (see also Heitjan 1997, Little &
Rubin 1987, Roth 1994). If the probability that an
observation is missing is independent of the
observed and missing values, the missing observa-
tions are termed missing completely at random
(MCAR). This implies that the missing observa-
tions are a random subset of the data. The prob-
ability that an observation is missing might not
depend on the unobserved missing value but be
dependent on the values of the other variables for
that object. For example, the pattern of missing
data may depend on the group in which the object
occurs, where another variable classifies objects
into groups. This is termed missing at random
(MAR). Finally, the missing values might be non-
ignorable because whether an observation is
missing depends on its value.

Consider the data set from Lovett et al. (2000)
and imagine that one stream was missing a value
for concentration of H�. If the value is missing
because of a random malfunction of a meter or a
mistake by a researcher who forgot to write the
value down then this observation might be MCAR.
Our experience is MCAR is a common missing
data mechanism in ecological sampling pro-
grams. If the value is missing because the stream
was at a high altitude and weather conditions pre-
cluded access, then the observation might be
MAR because the value of another variable (eleva-
tion), but not the unobserved H� value, deter-
mines the probability of it being missing. Finally,
if the value is missing because the original H�

reading was so high (e.g. Winnisook Creek) that
the researcher assumed that the reading was a
mistake and ignored it, the missing value is
clearly non-ignorable. This situation is more
common in situations when the observations
depend on responses from subjects, such as in
marketing surveys or clinical trials, although
studies on animal behavior may suffer from this
type of non-response. MCAR and MAR are much
easier to deal with.

Basically, there are three approaches to
dealing with missing observations (Little & Rubin
1987, Roth 1994). Our objective in this section is
simply to make biologists aware that there are

alternatives to simply “omitting whole rows of
data”, although some of the methods are sophisti-
cated and usually require advice from statisticians
experienced with their use. It is important to
remember that avoiding missing data is the best
solution because all of the alternatives are imper-
fect. We illustrate the results from some of the
methods for dealing with missing observations in
using a subset of the data from Reich et al. (1999).
Our emphasis is not on the calculations, as these
require appropriate software, but on the interpre-
tation of the different methods.

Deletion
The simplest approach is to delete the entire
object that has the missing value. This may be an
appropriate strategy when the proportion of
objects with missing values is low and the pattern
is MCAR. It does result in loss of information
because the non-missing values of variables for
the object with the missing value are also
excluded from the analysis. This is sometimes
termed listwise deletion and is often the default
for multivariate analyses in statistical software. If
the analysis is based on pairwise associations
between variables (e.g. correlations), an alterna-
tive is to use pairwise deletion. Here an object is
only excluded for the calculation of the associa-
tion between the two variables for which one
value is missing but not excluded for the calcula-
tion of associations between other variables. This
is the preferred deletion strategy when pairwise
associations are the basis for the analysis.

Imputation
Imputation involves replacing (substituting) the
missing values with some estimate of what the
values might have been. There have been three
common methods for imputing missing observa-
tions. The first is to replace the observation with
the mean value of the variable calculated from
the non-missing observations. Unfortunately, this
tends to result in an underestimate of the true
variance for that variable because these means
do not contribute to the sum of squared devia-
tions (Roth 1994). The second is to use a regres-
sion model to predict the imputed observation
from other variables in the data. For example, we
could determine which variable has the highest
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correlation with the variable with missing values
from the complete objects and develop a regres-
sion model where the variable with missing
values is the response variable and the other var-
iable is the predictor. For the object with the
missing value, the observed value of the predic-
tor could then be used to predict the missing
value from this regression model. Alternatively,
we could use two or more predictors in a multi-
ple regression model. Generalized linear models
could be used if the assumption of normal error
terms for the regressions was untenable or even
generalized additive models if the shape of the
relationship between the variables is not linear,
although we have not seen either of these used in
practice. Finally, hot-deck imputation simply
replaces the missing value with the actual value
from an object with similar characteristics (Roth
1994).

There are two main difficulties with these
imputation methods. The first is that the imputed
values are not independent of the observed data
for a given variable and the precision (variances
and standard errors) of the estimates of parame-
ters based on these imputed values is generally
underestimated. The second problem is that
imputing a single value provides no indication of
the effect that different imputed values have on
the estimation of the relevant parameter (e.g. cor-
relation), i.e. no measure of imputation uncer-
tainty (Little 1999). Rubin (1987) developed a
method termed multiple imputation as a solu-
tion to the second problem (see also Schafer
1999). Multiple imputation basically imputes a
range of values for each missing observation,
these values being simulated from a specific dis-
tribution for the missing values. The complete
data sets (observed and imputed values) are then
analyzed in the usual manner. The estimate of
any parameter is simply the mean of estimates
from the analyses of the imputed data sets. The
standard error of this average estimate includes
both the variance between imputations and the
variance within each data set. Multiple imputa-
tion is clearly a sensible approach and a consider-
able improvement over single imputation, giving
us some indication of how different imputed
values affect the outcome of our analysis. The
really tricky bit is developing the distribution of

values from which the multiple imputations are
derived. Rubin (1987) recommended a Bayesian
strategy whereby the posterior distribution of
missing values is conditional on the prior distri-
bution of observed values, although the computa-
tions are complex (Schafer 1999). Multiple
imputation routines are not readily available in
commonly used statistical software but specialist
products do exist and macros for some programs
are available (see Rubin 1996 and references
therein).

Maximum likelihood and EM
A different approach is to use maximum likeli-
hood (ML) techniques to estimate the parameters
of interest (e.g. means, correlation coefficients)
from the observed, incomplete data (Little &
Rubin 1987). Basically we use the distribution of
the observed data and the conditional distribu-
tion of the pattern of missing data given the
observed data. The likelihood function for any
parameter can be complex with missing data so
Little & Rubin (1987) also proposed methods based
on factoring the likelihoods. The likelihood for a
given parameter is decomposed into the sum of
the likelihoods of distinct parameters given com-
plete subsets of the data. These ML methods can
estimate the missing observations once the
parameters are estimated but do not use imputed
values to estimate the parameters.

A combination of imputation and ML estima-
tion is the Expectation–Maximization (EM) algo-
rithm. This is an iterative procedure whereby the
missing values are imputed, the parameters are
estimated by ML, the missing values are re-
estimated and imputed, the parameters re-
estimated by ML, etc., until convergence of the
likelihood of the parameter given the observed
data is achieved. Technically, the missing values
are not directly imputed using the EM method,
but some function of the missing data like a pre-
dictive distribution is incorporated into the likeli-
hood function (Little & Rubin 1987, Schafer 1999).
The EM algorithm is now available in some com-
monly used statistical software. Multiple imputa-
tion may be more robust than EM methods for
small data sets (Schafer 1999). Both straight ML
and the EM method require the missing data to be
at least MAR. See also Box 15.3.
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Box 15.3 Dealing with missing data

The data set on physiological variables for a range of plant species from different
locations and functional groups from Reich et al. (1999) will be used to illustrate
some of the methods for handling missing observations. We will use a subset of
their data, trees from Venezuela,where there were 22 species (objects). There were
five variables: specific leaf area (SLA), leaf nitrogen concentration (Leaf N), mass-
based net photosynthetic capacity (Amass), area-based net photosynthetic capacity
(Aarea) and leaf diffusive conductance at photosynthetic capacity (Gs). Five of the pos-
sible 110 observations were missing: SLA and Aarea for Eperua purpurea and Amass,
Aarea and Gs for Micropholis maguirei. We will assume these values are at least MAR
and use listwise and pairwise deletion, regression imputation (using all other vari-
ables with complete data as predictor variables) and the EM algorithm to estimate
means, standard deviations and pairwise correlations between variables. The EM
algorithm converged in four iterations with –2(log-likelhood) of 650.85.

Means (standard deviations)

SLA Leaf N Amass Aarea Gs

(cm2 g�1) (mg g�1) (nmol g�1 s�1) (µmol m�2 s�1) (mmol m�2 s�1)

Listwise 89.85 (24.04) 14.29 (4.71) 78.96 (55.23) 8.28 (3.68) 622.60 (535.76)
All values 88.20 (24.62) 14.04 (4.68) 77.82 (54.09) 8.28 (3.68) 602.90 (529.94)
EM 88.15 (24.18) 14.04 (4.68) 74.49 (55.39) 8.01 (3.67) 580.68 (535.92)
Regression 89.85 (24.04) 14.29 (4.71) 78.96 (55.23) 8.28 (3.68) 622.60 (535.76)

Correlations based on deletions

SLA Leaf N Amass Aarea Gs

List Pair List Pair List Pair List Pair List Pair

SLA 1.000 1.000
Leaf N 0.569 0.607 1.000 1.000
Amass 0.789 0.789 0.708 0.699 1.000 1.000
Aarea 0.550 0.550 0.684 0.684 0.931 0.931 1.000 1.000
Gs 0.498 0.498 0.546 0.530 0.851 0.851 0.894 0.894 1.000 1.000

Note that only the correlation between SLA and Leaf N differs much between
the two methods of deletion.

Correlations based on regression imputation and EM

SLA Leaf N Amass Aarea Gs

Regress EM Regress EM Regress EM Regress EM Regress EM

SLA 1.000 1.000
Leaf N 0.601 0.602 1.000 1.000
Amass 0.789 0.795 0.714 0.719 1.000 1.000
Aarea 0.555 0.563 0.681 0.685 0.931 0.932 1.000 1.000
Gs 0.503 0.511 0.541 0.546 0.853 0.854 0.893 0.895 1.000 1.000



15.10 General issues and hints for
analysis

15.10.1 General issues

• Variation within, and linear relationships
between, two or more variables can be summa-
rized with a sums-of-squares-and-cross-
products matrix (raw data), covariance matrix
(centered data) or a correlation matrix (stan-
dardized data).

• Spectral decomposition of one of these matri-
ces produces new derived variables (compo-
nents), extracted so the first explains most of
the original variation, the second most of what
is left, etc., and so that the new variables are
uncorrelated with each other. Equivalent
results are obtained from a singular value
decomposition of the original data matrix,
appropriately standardized.

• These new variables are linear combinations of
the original variables and the coefficients
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There are differences between the estimated correlations based on the two
methods but, for these data, the differences are small.

Observed data with regression and EM imputed values (in
bold)

SLA Leaf N Amass Aarea Gs

144.60 24.70 252.20 17.70 2272.00
114.30 17.90 159.30 13.80 889.00
126.40 16.50 115.50 9.10 597.00
105.40 16.40 140.40 12.80 975.00
78.10 16.90 111.50 14.00 1707.00

129.90 15.10 99.00 7.80 300.00
103.10 18.40 65.00 6.40 479.00
90.30 15.90 91.80 10.30 1009.00
82.80 6.80 46.50 5.60 490.00
75.20 7.80 47.20 6.20 693.00
86.60 8.60 34.70 4.00 321.00
82.60 10.70 52.20 6.50 411.00
82.00 17.70 67.20 8.20 381.00
67.80 9.30 38.80 5.70 241.00
76.80 15.00 44.90 5.90 329.00
67.30 13.00 53.80 8.00 378.00

86.20 (Regress) 15.20 55.10 6.40 (Regress) 209.00
87.10 (EM) 6.32 (EM)
95.10 12.50 35.10 3.70 173.00
72.10 21.40 47.70 6.70 235.00
58.40 10.80 43.30 7.40 298.00
55.30 8.00 4.76 (Regress) 4.26 (Regress) 114.03 (Regress)

20.94 (EM) 5.01 (EM) 247.29 (EM)
58.10 10.30 33.00 5.70 274.00

Note that the regression and EM imputed values are similar for Eperua purpurea
(row 17) but very different for Amass and Gs for Micropholis maguirei (row 21). The
latter differences probably reflect the fact that only two predictor variables are avail-
able for this species for predicting the missing observations using a regression and
the observed values for both of those variables are at the low end of the range for
those variables. The EM imputed values are probably more reliable for this species.



(summarized as an eigenvector) indicate the
contribution of each original variable to the
new variable.

• Differences between pairs of objects are mea-
sured with dissimilarities that are based on
the sum of the differences for each variable
between objects, often standardized so they
range between zero and one.

• For measurement variables, either Euclidean
or one of its modifications (City block or
Canberra) are reliable dissimilarity measures,
usually based on standardized data. For species
abundances (counts with possible zero
values), Bray–Curtis or Kulczynski are recom-
mended.

• Graphical representations of multivariate data
are available. SPLOMs display pairwise bivari-
ate relationships and icon plots (Chernoff faces
or stars) visually represent objects in terms of
the relative values for the variables.

• The default for handling missing data with
most software is to omit whole objects. Other
approaches are generally preferred unless the
sample size is large and the observations are
missing completely at random.

15.10.2 Hints for analysis
• Before extracting components or determina-

tion of dissimilarities between objects when
variables are measured in different scales or
units, some type of standardization (based on
standard deviation or range) is recommended.

• For species abundance, i.e. count, variables,
different standardizations can provide useful
comparative information. Standardizing
objects to equal totals corrects for different
sized sampling units, standardizing species to
equal totals means that the most abundant
species do not dominate the dissimilarity
measure.

• Some standardizations can result in
Bray–Curtis and Kulczynski dissimilarities not
being bounded by one; standardize by range
rather than by standard deviations when using
these measures.

• We prefer standardizations to transformations
for reducing the influence of variables with
large values, although transforming variables
may be relevant to improve linearity or if uni-
variate analyses on the same variables also
require transformation.
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In this chapter, we will examine the relationship
between two or more response variables and one
or more categorical predictor variables. We are
primarily interested in two research questions.
First, are there differences between groups based
on all the response variables taken together and,
second, can we successfully classify observations,
particularly new observations, into the correct
group.

16.1 Multivariate analysis of
variance (MANOVA)

There are many situations where we record more
than one response variable from each sampling or
experimental unit and where these units are allo-
cated to or occur in treatment groups. Ecologists
often record the abundances of many species
from each sampling or experimental unit and
physiologists commonly measure more than one
variable (e.g. blood pressure, heart rate, etc.) on
experimental animals. For example, Peckarsky et
al. (1993) examined the sub-lethal responses of
mayfly larvae in streams to three different preda-
tor treatments (no predator and normal food, no
predator and reduced food, one predatory mayfly
(Megarcys) and normal food). There were five
response variables recorded for each mayfly: body
mass, egg mass, percentage of eggs, total mass,
and maturation time. Botanists and zoologists
also often measure many morphological variables
when describing organisms from different loca-
tions or to compare organisms that may or may
not be taxonomically different. 

If each response variable is of inherent biolog-
ical interest, our research questions might be
whether there are group or treatment effects on
each variable separately. Then the appropriate
strategy is to analyze each variable using a separ-
ate univariate ANOVA to test for differences
between groups. Some statisticians have argued
that there is an inherent disadvantage to this
approach. Because the response variables are
measured from the same experimental or sam-
pling units and may be highly correlated, the
multiple ANOVA tests are not independent of each
other and this can make interpretation difficult.
Also, the number of univariate tests can get large
if we have many variables so the family-wise Type
I error rate may be very high for the collection of
tests (Harris 1993; see also Chapter 3). A common
recommendation is to adjust the significance
level of each ANOVA test by using a Bonferroni-
type correction so the family-wise Type I error rate
stays at or below 0.05 (or whatever a priori signifi-
cance level you choose). Unfortunately, with many
response variables, this can result in unacceptably
low power for each univariate test.

With multiple response variables, we might be
more interested in whether there are group differ-
ences on all the response variables considered
simultaneously. This is the aim of multivariate
analysis of variance (MANOVA), the analogue of
univariate ANOVA when we have multiple
response variables for each experimental or sam-
pling unit. Basically our hypothesis is now about
group effects on a combination of the response
variables and instead of comparing group means
on a single variable, we now compare group

Chapter 16

Multivariate analysis of variance and
discriminant analysis



centroids for two or more variables. In the
Peckarsky et al. (1993) example, we would test
whether there is an effect of predator treatment
on a combination of body mass, egg mass, per-
centage of eggs, total mass, and maturation time
of individual mayflies.

We will illustrate MANOVA with two examples
from the biological literature.

Trace metals in marine sediments
Haynes et al. (1995) carried out a pilot study to test
for differences between sites in trace metal con-
centrations in marine sediments off the Victorian
coast in southern Australia. They had three sites:
Delray Beach, site of a proposed wastewater
outfall, and two possible control sites, Seaspray
and Woodside. At each site, they had four ran-
domly chosen stations and at each station, two ran-
domly chosen cores of sediment. They recorded
the concentrations of copper, chromium,
cadmium, lead, iron, nickel, manganese and
mercury. We will test for the effects of site on a
subset of these response variables taken together.
Although this is strictly a nested design, site would
be tested against the random station effect so we
will average the replicate cores for each station and
use a single factor MANOVA for comparing sites.
The analysis of these data is presented in Box 16.1.

Plant functional groups and leaf characters
In Chapters 9 and 15, we described the study of
Reich et al. (1999) who examined the generality of
leaf traits from different species across a range
of ecosystems and geographic regions. We will
analyze a subset of their data (to avoid missing
cells), with two locations (Colorado and
Wisconsin) and two functional groups (forbs and
shrubs) in a crossed design. There were between
three and eleven species in each cell and five
response variables were measured: specific leaf
area (log10 transformed), leaf nitrogen concentra-
tion, mass-based net photosynthetic capacity,
area-based net photosynthetic capacity and leaf
diffusive conductance at photosynthetic capacity.
We will test for the effects of location and func-
tional group, and their interaction, on these five
response variables taken together. The analysis of
these data is presented in Box 16.2.

16.1.1 Single factor MANOVA

Linear combination
The simplest design where a MANOVA is appropri-
ate is when we have n replicate experimental or
sampling units (“objects” from Chapter 15) allo-
cated to two or more levels of a factor (groups) and
we record p (where p is greater than two) response
variables from each unit. The MANOVA is based on
a linear combination (z) of the p response vari-
ables as defined in Chapter 15 (see Equations 15.1
and 15.2). In the example from Haynes et al. (1995),
there were n equals four replicate stations in each
of three groups (sites) with p equals four response
variables (trace metals). The MANOVA uses the
linear combination (z) of response variables, out
of the infinite number of possible linear combina-
tions, which maximizes the ratio of between-
group and within-group variances of z. This linear
combination is also called the discriminant func-
tion for the difference between groups and is used
in discriminant function analysis (see Section
16.2):

zik�constant�c1yi1�c2yi2� . . . cjyij� . . .�cpyip (16.1)

For example, from Haynes et al. (1995):

zik�constant�c1(log10 Cu)i�c2(log10 Pb)i�
c3(log10 Ni)i�c4(log10 Mn)i (16.2)

From Reich et al. (1999):

zik�constant�c1(log10 specific leaf area)i�
c2(leaf N)i�c3(mass-based photosynthetic
capacity)i�c4(area-based photosynthetic
capacity)i�c5(leaf diffusive capacity)i (16.3)

In Equations 16.1, 16.2 and 16.3, zik are the
values for object i for linear combination k, the
combination that maximizes the ratio of
between-group and within-group variances of zik.
From Haynes et al. (1995), this is the value for
station i from solving Equation 16.2 for linear
combination k. The coefficients (cj) are the weights
measuring the relative contribution of each vari-
able to the linear combination. As described in
Box 15.1, these coefficients will be scaled in some
form and will be represented in matrix descrip-
tions of MANOVA as elements of a matrix of eigen-
vectors (Box 15.1). Note that if the variables are
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Box 16.1 Worked example of MANOVA: heavy metals in
marine sediments

Haynes et al. (1995) carried out a pilot study to test for differences between sites
in trace metal concentrations in marine sediments off the Victorian coast in south-
ern Australia. They had three sites: Delray Beach, site of a proposed wastewater
outfall, and two possible control sites, Seaspray and Woodside. At each site, they
recorded the concentrations of copper, chromium, cadmium, lead, iron, nickel, man-
ganese and mercury (means of two sediment cores) at four randomly chosen sta-
tions. We used only the 1991 data in our analyses. There were strong correlations
among some of the metals (e.g. Cu and Cr, Fe and Ni) so only four variables (Cu,
Ni, Pb, Mn) were included in the analysis. There was strong indication of skewness
for the four variables, so all were log10-transformed. There were a few cases with
significant (P�0.001) Mahalanobis distances (Dij

2�16.3) but these were not
extreme and remained in the analysis. All variables except Cu (Levene’s test, P�
0.023) had similar variances between groups.

The multivariate test statistics all result in rejection of the H0 that there is no
difference in site group centroids.

Statistic df F P

Wilk’s k 0.058 8, 12 4.728 0.008
Pillai trace 1.272 8, 14 3.058 0.033
Hotelling–Lawley trace 10.549 8, 10 6.593 0.004

Pairwise contrasts among the sites, with a sequential Bonferroni (Holm’s
method) adjustment of P values, indicated that only the difference between Delray
Beach and Woodside was significant.

Contrast Pillai trace df F P Adj P

Delray vs Seaspray 0.713 4, 6 3.719 0.074 0.078
Delray vs Woodside 0.909 4, 6 14.924 0.003 0.009
Seaspray vs Woodside 0.772 4, 6 5.092 0.039 0.078

The univariate F tests indicate significant differences between sites for all four
metals.

Source df MS F P

Log Cu
Site 2 0.098 5.208 0.031
Residual 9 0.019

Log Pb
Site 2 0.136 4.834 0.038
Residual 9 0.028

Log Ni
Site 2 0.083 8.655 0.008
Residual 9 0.009

Log Mn
Site 2 0.244 23.608 �0.001
Residual 9 0.010 
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The raw and standardized coefficients for the discriminant function obviously differ
but because the variables were log10-transformed, the difference in scales between
the variables is not great and the basic pattern is the same. The standardized coef-
ficients suggest that lead contributes least to the difference between sites and man-
ganese the most. The loadings simply reflect the univariate F-ratio statistics from
above, and the pattern is the same as for the coefficients. Mn and Ni are most
important, and Pb least important, at separating the sites.

Variable Raw coefficient Standardized coefficient Loading

Constant �29.013
Log Cu 1.253 0.172 0.334
Log Pb �0.494 �0.083 0.258
Log Ni 6.690 0.653 0.428
Log Mn 9.308 0.945 0.724

We had no theoretical basis for ordering our variables so we entered them in
a step-down analysis in order of their univariate F-ratios. Log Mn entered first, then
we tested log Ni with log Mn as a covariate, then log Cu with log Mn and log Ni as
covariates and finally log Pb with log Mn, log Ni and log Cu as covariates. We were
not interested in testing hypotheses about the covariates and adjusted the signifi-
cance levels for the site effects with a Holm correction (Chapter 3).

Source df MS F P(Adj P)

Log Mn
Site 2 0.244 23.608 �0.001 (0.004)
Residual 9 0.010

Log Ni
Site 2 0.034 3.407 0.085 (0.255)
Log Mn 1 0.007
Residual 8 0.010

Log Cu
Site 2 0.011 0.512 0.620 (0.910)
Log Mn 1 �0.001
Log Ni 1 0.023
Residual 7 0.021

Log Pb
Site 2 0.033 0.901 0.455 (0.910)
Log Mn 1 0.021
Log Ni 1 0.022
Log Cu 1 0.002
Residual 6 0.037

The step-down analysis suggests that none of the variables contributes signifi-
cantly to the difference between groups when entered after log Mn, i.e. none of the
site effects for any variable is significant once log Mn is included as a covariate.
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Box 16.2 Worked example of MANOVA: plant functional
groups and leaf characters

Reich et al. (1999) examined the generality of leaf traits from different species
across a range of ecosystems and geographic regions.We will use two of their loca-
tions (Colorado and Wisconsin) and two of their functional groups (forbs and
shrubs) in a crossed design. There were between three and eleven species in
each cell and five response variables were measured: specific leaf area (log10-
transformed), leaf nitrogen concentration, mass-based net photosynthetic capacity,
area-based net photosynthetic capacity and leaf diffusive conductance at photosyn-
thetic capacity.

There is some concern about the assumption of homogeneity of variances and
covariances, especially as Levene’s test for homogeneity of variances was statistically
significant for three (log specific leaf area, leaf N and Gs) out of the five variables.

There were no significant multivariate test statistics for either main effect or the
interaction. Note that since there were only two levels of each factor, the df, the
approximate F-ratios and the P values were identical for each term for all three
multivariate statistics.

Hotelling–Lawley
Wilk’s k Pillai trace trace df F P

Location 0.573 0.427 0.745 5, 16 2.384 0.085
Functional group 0.549 0.450 0.819 5, 16 2.622 0.065
Interaction 0.836 0.164 0.196 5, 16 0.626 0.682

The univariate F tests indicate that the only significant effect was that of func-
tional group for nitrogen concentration in leaves, although the effect of functional
group for mass-based net photosynethetic capacity and of location for leaf diffusive
conductance were marginal.

Source df F P

Location 1, 19
Log specific leaf area 0.880 0.359
Leaf N 0.005 0.947
Amass 1.025 0.323
Aarea 0.042 0.841
Gs 3.756 0.069

Functional group 1, 20
Log specific leaf area 2.299 0.145
Leaf N 5.305 0.032
Amass 3.254 0.086
Aarea 1.148 0.297
Gs 2.645 0.119

Interaction 1, 20
Log specific leaf area 1.979 0.175
Leaf N 0.774 0.389
Amass 1.624 0.217
Aarea 0.065 0.802
Gs 1.112 0.304



standardized to zero mean and unit variance, the
constant equals zero.

The determination of the linear combination
that maximizes the ratio of between-group and
within-group variances is best done using simple
matrix algebra, some of which we have already
described in Chapter 15. The steps for a single
factor MANOVA are as follows.

1. The between-groups, within-groups and
total SS used in an ANOVA are replaced by sums-
of-squares-and-cross-products matrices (SSCP or
S; see Chapter 15), one matrix for between
groups (the hypothesis or effect matrix, H), one
for within groups (the error or residual matrix,
E) and one for total (the total matrix, T). The
values in the main diagonal of these matrices
are the univariate sums-of-squares for each
variable, either between group means (H) or
pooled across replicates within groups (E). The
other elements are the sums-of-cross-products
between any two of the variables. For example,
the cross product for the between-groups
matrix for two variables is the sum of (i) the
product of the differences between each
group mean and the overall mean for one
variable and (ii) the differences between each
value and the mean for the other variable – see
Table 16.1.

2. We multiply H by the inverse of E (i.e.
HE�1). Matrix inversion is the multivariate
analogue of division so what we are really doing
here is “dividing” H by E, the between-groups
SSCP matrix “divided by” the within-groups SSCP
matrix.

3. We then decompose the resulting matrix
product (Box 15.1) to calculate characteristic
roots or eigenvalues of each linear combination
(eigenvector). The eigenvalues measure how
much of the total between-group variance in the
variables (the sum of the between-group
variances of each of the variables) is explained by
each linear combination or eigenvector. The
eigenvectors contain the coefficients for each
linear combination.

4. The linear combination producing the
largest eigenvalue is the linear combination that
maximizes the ratio of between-group and
within-group variance (i.e. maximizes the
explained variance between groups) and the
eigenvector is a vector of coefficients or weights
for that linear combination.

Null hypothesis
The H0 for a single factor MANOVA is that the pop-
ulation effect of the groups or treatments is zero
with respect to all linear combinations of the
response variables. This is equivalent to no differ-
ence between population centroids (multivariate
means). This H0 can be tested by using statistics
based on one of the measures of variance of a
matrix, such as the determinant or the trace
(Chapter 15; see also Harris 1985, Johnson & Field
1993, Stevens 1992, Tabachnick & Fidell 1996).

• Wilk’s lambda (�), which is the ratio of the
determinants of the within-groups SSCP and
the total SSCP: |E|/|T|. Remember that the
determinant of a matrix is a measure of
generalized variance for that matrix (Chapter

430 MULTIVARIATE ANALYSIS

The standardized discriminant function coefficients for each main effect and
interaction would not normally be of much interest given that there were no signif-
icant effects from the MANOVA. We present them simply to illustrate that there is
a separate discriminant function for each effect in the model and we can interpret
these coefficients just as we would for single factor MANOVAs.

Variable Location Functional group Interaction

Log specific leaf area �2.002 �1.721 1.309
Leaf N 1.798 1.499 �1.294
Amass 0.612 1.409 0.479
Aarea �1.489 �1.615 0.338
Gs 1.436 1.472 �0.709



15), so Wilk’s � is a measure of how much of
the total variance is due to the residual, with
smaller values indicating larger group
differences.

• Hotelling–Lawley trace, which is the ratio of
the determinants of the between-groups SSCP
and the within-groups SSCP: |H|/|E|. This is
also the sum of the eigenvalues (trace) of the
matrix product HE�1. Larger values indicate
greater differences between group centroids.

• Pillai trace, which is the sum of the
eigenvalues (trace) of HT�1, i.e. the variance
between groups.

• Roy’s largest root, which is the largest
eigenvalue of HE�1, i.e. the eigenvalue of the
linear combination that explains most of the
variance and covariance between groups. This
statistic is less commonly provided by
statistical software.

The sampling distributions of these statistics
are not well understood and they are usually
converted to approximate F-ratio statistics
(Tabachnick & Fidell 1996). Wilk’s, Hotelling’s and
Pillai’s statistics produce identical F tests when
there are only two groups and become Hotelling’s
T2 statistic – see example based on plant func-
tional group data in Box 16.2. This is the multivar-
iate extension of the t test for comparing two
groups (Harris 1985, Tabachnick & Fidell 1996).
They will generally produce similar results with
more than two groups, although Pillai’s trace
seems to be the most robust of the tests (Johnson
& Field 1993), especially when the assumption of
similar variance–covariance matrices might be
violated (Section 16.1.4). In our two worked exam-
ples (Box 16.1 and Box 16.2), the conclusions from
Wilk’s, Hotelling’s and Pillai’s statistics were the
same. Most statistical software will provide H, E,
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Table 16.1 Groups (a) and residual (b) and total (c) sums-of-squares-and-
cross-products matrices for data from Haynes et al. (1995)

(a)
Log10 Cu Log10 Pb Log10 Ni Log10 Mn

Log10 Cu 0.196
Log10 Pb 0.152 0.273
Log10 Ni 0.164 0.192 0.165
Log10 Mn 0.306 0.275 0.273 0.487

(b)
Log10 Cu Log10 Pb Log10 Ni Log10 Mn

Log10 Cu �0.169
Log10 Pb �0.001 0.254
Log10 Ni �0.045 0.031 �0.086
Log10 Mn �0.011 0.033 �0.026 0.093

(c)
Log10 Cu Log10 Pb Log10 Ni Log10 Mn

Log10 Cu 0.369
Log10 Pb 0.153 0.523
Log10 Ni 0.209 0.223 0.251
Log10 Mn 0.295 0.308 0.247 0.579

Note:
The main diagonals are sums-of-squares between groups, within
groups and total and the other elements are cross-products.



maximum � and all the multivariate test statistics
with their approximate F tests.

16.1.2 Specific comparisons
Most statistical software allow contrasts among
the factor levels in MANOVA, analogous to planned
contrasts in the univariate ANOVA (Chapter 8).
Unplanned multiple comparisons are a more diffi-
cult problem, although use of Bonferroni-adjusted
(see Chapter 3) pairwise MANOVAs is one conserva-
tive solution. Harris (1993) and Johnson & Field
(1993) have reviewed other approaches for compar-
ing specific groups after a MANOVA.

16.1.3 Relative importance of each
response variable

If the null hypothesis of no difference between
group centroids is rejected, we usually are inter-
ested in which of the response variables contrib-
utes most to the group differences. There are
several methods of assessing the relative contribu-
tion of each response variable to the difference
between groups in a MANOVA.

Univariate ANOVAs
We can examine the univariate ANOVAs on each
response variable separately. Indeed, univariate
hypotheses about group differences for each
response variable will often be relevant. These
univariate results do not necessarily indicate the
relative contribution of each variable to the
MANOVA result because they ignore correlations
between variables. Correlations between variables
can have marked effects on the power of MANOVA
tests (Cole et al. 1994). Some authors (e.g. Harris
1985, 1993) also emphasize the problem of
increasing family-wise Type I error rates when
doing multiple univariate ANOVAs, a problem
inherent in any multiple testing situation (see
Chapter 3).

Step-down analysis
Step-down analysis is an analogue of forward
selection stepwise multiple regression (Chapter 6)
but taking into account the group structure
(Tabachnick & Fidell 1996). This procedure relies
on ordering the response variables based on theo-
retical expectations of their importance or using
univariate analyses to choose the variable that

shows the greatest difference between groups.
First, the response variable with the highest prior-
ity is decided; for example, this might be the vari-
able with the largest F-ratio from univariate
ANOVAs on all the response variables. Each
response variable is then tested sequentially, in
the order determined a priori, in an ANCOVA
model (Chapter 12), with groups as the categorical
predictor and the higher priority response vari-
ables as covariates. We are interested in how much
each additional variable adds to the variance
explained by the variables already included.

Automated step-down analysis is available in
some statistical software; otherwise, it must done
with a series of ANCOVAs. Step-down analysis
suffers from the problems we described in Chapter
6 for stepwise multiple regression, although we
are not trying to find the “best” model in this situ-
ation, just assess the relative importance of each
of the response variables. Step-down analysis also
results in numerous unplanned significance tests
so you need to be aware of the high family-wise
Type I error rate. Huberty (1994) describes similar
approaches, such as deleting variables one at a
time and running a MANOVA on each set of the p
�1 remaining variables. The variables can be
ordered based on the size of the change in
MANOVA test statistic for each set.

Coefficients of linear combination
A more subjective approach is based on examining
the discriminant function, i.e. the linear combina-
tion of the response variables that maximizes the
ratio of between-group to within-group variance.
There is a coefficient for each variable in the dis-
criminant function, plus one for the grand mean
(i.e. intercept or constant). If the different vari-
ables are measured on comparable scales (or we
have values of a single variable recorded repeat-
edly through time in a repeated measures design),
then the relative size of these coefficients (also
termed “weights”) provides a comparable measure
of the contribution of each variable to the vari-
ance explained by the discriminant function and
thus the difference between groups. If the vari-
ables are measured on very different scales, then
we need to standardize them so that the coeffi-
cients can be compared. The simplest method is to
standardize the discriminant function by the
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within-group variances, although whether this
produces coefficients that are directly comparable
is debatable (see Harris 1985 and Huberty 1994 for
differing opinions). Standard errors can be esti-
mated for each discriminant function coefficient
(Flury & Riedwyl 1988), although they are rarely
provided by statistical software.

Loadings
Loadings are the correlations between each vari-
able and the discriminant function (see Chapters
15 and 17). These simply represent the correla-
tions between the value of a variable and the score
for the discriminant function with the units as
replicates. The loadings of each variable on each
discriminant function can be found by multiply-
ing the within-group correlation matrix between
variables (pooled across groups) by the matrix of
standardized discriminant function coefficients
(Tabachnick & Fidell 1996). Correlations automat-
ically standardize the variables and examining
loadings is popular because correlation coeffi-
cients are familiar and easily interpretable.
However, these loadings are directly proportional
to the univariate F-ratio statistics for each variable
tested between groups so they ignore any relation-
ships between the variables (Harris 1985). Note
that one of the effects of highly correlated
response variables can be a contradictory pattern
when coefficients are compared with loadings.

Comments
Most statistical software will provide all of these
coefficients and the loadings, either in MANOVA
output or as part of a discriminant function anal-
ysis. The terminology used in the output does,
however, vary considerably between programs
and Tabachnick & Fidell (1996) provide a detailed
comparison of the major software. Our experi-
ence is that unless there are many variables with
some high correlations, the different approaches
will produce a similar pattern. In our worked
example of trace metals in sediments (Haynes et
al. 1995; Box 16.1), the variables were log-
transformed but not standardized. The univariate
F-ratios, loadings and function coefficients
showed the same pattern, with the order of impor-
tance being log Mn, followed by log Ni, log Cu and
log Pb. The step-down analysis showed that none

of the variables contributed significantly to site
differences besides log Mn. 

16.1.4 Assumptions of MANOVA
It is important to check normality, homogeneity
of variance, and outliers for each response vari-
able using univariate exploratory data analysis
procedures (boxplots, residual plots, pplots, etc.;
see Chapter 4). Given that the multivariate tests
(especially Pillai’s trace) are relatively robust to
deviations from multivariate normality, particu-
larly if each response variable has approximate
univariate normality and sample sizes are equal,
two multivariate assumptions are of major
concern (Johnson & Field 1993, Tabachnick &
Fidell 1996).

First, MANOVA tests are sensitive to multivari-
ate outliers, which are cases with an unusual
pattern of values for all the response variables
considered simultaneously. Mahalanobis dis-
tance, the distance of each observation from the
centroid or multivariate mean, can be used to
detect multivariate outliers and is provided by
most statistical software (Chapter 15).

Second, homogeneity of variances and covari-
ances (i.e. equality of the variance–covariance
matrices for each group) is an important assump-
tion – this is the multivariate extension of univar-
iate homogeneity of within-group variances. If
this assumption is not met, then the pooled
within-group matrix (E) will be misleading. Box’s
M test can test the H0 of equal variance–covariance
matrices but it is very sensitive to deviations from
multivariate normality and is not recommended.
There is no easy check for this assumption (but see
discussion in Johnson & Field 1993), although it is
more likely to be met when univariate homogene-
ity holds for each response variable. Like univari-
ate ANOVA tests, MANOVA tests are more reliable
when sample sizes are equal. Reducing the dimen-
sionality (reducing the number of variables) of the
analysis improves the robustness of all the
MANOVA tests statistics (Johnson & Field 1993).

Johnson & Field (1993) provided strong evi-
dence from simulation studies that Pillai’s trace
statistic is the most robust to deviations from the
assumption of homogeneity of the variance–
covariance matrices across groups. Suitable
transformations of individual variables should
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also be used where appropriate and including
quadratic terms in the discriminant function can
also help (Section 16.2.3).

Collinearity between variables is also a
problem in the same way as for multiple regres-
sion (Chapter 6). The discriminant function coeffi-
cients, just like multiple regression coefficients,
will be sensitive to which variables are included or
excluded when variables are highly correlated.
Most statistical software provides collinearity
diagnostics, such as tolerance or variance inflation
factors, and examinations of pairwise correlations
between variables will be informative. Not includ-
ing highly correlated (redundant) variables will
help lessen the impact of collinearity and, since it
reduces the dimensionality of the data matrix,
will also make the MANOVA more robust to hetero-
geneous variance–covariance matrices (see above).

16.1.5 Robust MANOVA
Approaches to MANOVA that are robust to the
underlying assumptions of multivariate normal-
ity and homogeneity of the variance–covariance
matrices have been based on randomization pro-
cedures (Johnson & Field 1993). Edgington (1995)
and Manly (1997) describe numerous possible test
statistics for randomization MANOVA tests. These
include a test based on Wilk’s lambda, one using
the sum of the logs of the univariate t or F statis-
tics for each variable and one that compares the
sum of squared Euclidean distances between
objects and their sample centroids between
groups and within groups. Manly (1997) pointed
out that with large data sets (many variables
and/or observations), only a subsample of all pos-
sible randomizations of observations on all vari-
ables to groups will be possible.

Another type of test is to determine distances
or dissimilarities between all pairs of objects and
compare the between-groups and within-groups
dissimilarities. These tests will be described in
Chapter 18 when we consider in detail multivari-
ate analyses based on dissimilarities.

16.1.6 More complex designs
MANOVAs can also be used to test null hypothe-
ses about combinations of variables in more
complex designs. The matrix calculations
described in Section 16.1.1 are done for each
effect and error term that would have been used
if univariate ANOVA models were fitted (Harris
1985). Separate linear combinations of variables
are thus constructed for each main effect and
interaction (Box 16.2) and the contribution of
each variable needs to be assessed separately for
each effect and its appropriate discriminant func-
tion. An ecological example is from Juenger &
Bergelson (2000), who studied interactions
between herbivory and pollination on various
aspects of reproduction in the perennial wild-
flower Ipomopsis aggregata ssp. candida (the
scarlet gilia) in Colorado, USA. Their experimen-
tal design had two factors: artificial grazing or
clipping (two levels: control vs experimentally
clipped) and male function (two levels: control vs
emasculation, i.e. anther removal). There were 20
replicate plants in each combination (cell) of the
two factor crossed design and a number of
response variables were measured for each plant:
total number of flowers, fruits and undamaged
seeds and total seed mass. They used Wilk’s
lambda to test the two main effects and the inter-
action effect on the combination of the four
response variables (Table 16.2).
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Table 16.2 MANOVA results from Juenger & Bergelson (2000) who tested
the effects of clipping, emasculation and their interaction on four response
variables (flower, fruit, and seed production, total seed mass) of the
perennial wildflower, the scarlet gilia

Source df Wilk’s k F P

Clipping (C) 4, 56 0.467 23.950 �0.001
Emasculation (E) 4, 45 0.936 3.251 0.439
C�E 4, 56 0.826 2.768 0.029



A more complex factorial MANOVA was used
by Pennings & Callaway (1996), who studied the
effects of a parasitic plant (Cuscuta salina) on a salt-
marsh community. They set up an experiment
with three factors: Cuscuta infection, zone within
saltmarsh and size of patch. They recorded the
biomass of three non-parasitic plant species and
analyzed these three response variables with a
three factor (infection, marsh zone, patch size)
crossed MANOVA and tested the hypotheses for
each main effect and interaction using Pillai’s
trace statistic (Table 16.3).

Note that one of the commonest applications
of MANOVA in biology is in the analysis of
repeated measures designs (Chapters 10 and 11),
where the differences between pairs of repeated
measurements are analyzed as multiple response
variables using MANOVA statistics.

16.2 Discriminant function analysis

Discriminant function analysis (DFA) is a “classifi-
cation” technique, introduced by Fisher (1936)
and recently reviewed by Huberty (1994). DFA is
used when we have observations from pre-deter-
mined groups with two or more response vari-
ables recorded for each observation. DFA
generates a linear combination of variables that
maximizes the probability of correctly assigning
observations to their pre-determined groups and
can also be used to classify new observations into

one of the groups. We might also wish to have
some measure of the likelihood of success of our
classification. Examples of DFA are common in
the biological literature. For example, Skelly
(1995) used DFA to test how well three variables
(survivorship, size and larval period) could be
used to classify individuals of two species of frogs
(chorus frogs and spring peepers). Petit & Petit
(1996) used DFA to separate four habitats based on
ten variables (canopy cover, canopy height,
density of various stem sizes) measured around
nest boxes occupied by warblers along the
Tennessee River.

We will illustrate DFA with the same two data
sets we used for MANOVA.

Trace metals in marine sediments
We will analyze the data from Haynes et al. (1995),
previously used in Box 16.1 for a MANOVA, with a
discriminant function analysis. Our aim is to clas-
sify stations to each of the three sites (Delray
Beach, Seaspray, Woodside) based on trace metal
concentrations in marine sediments off the
Victorian coast in southern Australia. The DFA of
these data is in Box 16.3.

Plant functional groups and leaf characters
We will also analyze the data from Reich et al.
(1999), used in Box 16.2 for a MANOVA, with a dis-
criminant function analysis to classify species into
one of four location and plant functional group
combinations (Colorado–forb, Colorado–shrub,
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Table 16.3 MANOVA results from Pennings & Calloway (1996) who set up
an experiment in a saltmarsh with three factors: Cuscuta infection by the
parasitic plant Cuscuta salina, zone within saltmarsh and size of patch. They
recorded the biomass of three non-parasitic plant species and analyzed
these three response variables with a three factor (infection, marsh zone,
patch size) crossed MANOVA

Source df Pillai’s trace F P

Infected or not 3, 54 0.58 24.43 �0.001
Marsh zone 3, 54 0.38 11.00 �0.001
Patch size 3, 54 0.51 18.56 �0.001
Infection�zone 3, 54 0.19 4.12 0.010
Infection�size 3, 54 0.41 12.60 �0.001
Zone�size 3, 54 0.13 2.60 0.062
Infection�zone�size 3, 54 0.09 1.84 0.150
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Box 16.3 Worked example of discriminant function
analysis: trace metals in marine sediments

We will illustrate a discriminant function analysis using the data from Haynes et al.
(1995) – see Box 16.1. The aim here is to try and predict site membership of sta-
tions based on the four variables recorded for each station. The variance explained
by each discriminant function was as follows.

Eigenvalue Percentage of variance

Function 1 9.979 94.6
Function 2 0.570 5.4

The first discriminant function explains most of the between-group (between-
site) variance. The MANOVA test showed a significant difference between sites in
the first discriminant function (Pillai trace�1.272, df�8, 14, F-ratio�3.058,
P�0.033; see Box 16.1).

The relative contributions of each of the four trace metals to each discriminant
function were as follows.

Standardized
Raw coefficient coefficient Loading

1 2 1 2 1 2

Constant �29.013 �0.822 0 0
Log Cu 1.253 3.030 0.172 0.415 0.334 �0.271
Log Pb �0.494 �5.042 �0.083 �0.847 0.258 0.845
Log Ni 6.690 �3.126 0.653 �0.305 0.428 0.409
Log Mn 9.308 2.864 0.945 0.291 0.724 �0.159

The general pattern is the same for raw and standardized coefficients and load-
ings. Manganese and nickel contribute the most to the first function (Box 16.1),
whereas lead contributes most to the second function. Note that within a discrim-
inant function, the direction of the sign for each variable is arbitrary, i.e. the positives
and negatives could be reversed with no change in interpretation.

The classification functions for each site are tabulated below.

Delray Seaspray Woodside

Constant �339.675 �421.174 �534.398
Log Cu 14.723 14.191 22.851
Log Pb �24.237 �18.519 �27.090
Log Ni 171.225 195.893 216.269
Log Mn 258.338 282.345 320.356

These classification functions were solved for each station and each station clas-
sified to the site with the highest value.

Delray Seaspray Woodside Percentage correct

Delray 4 0 0 100
Seaspray 0 4 0 100
Woodside 0 0 4 100

Total 4 4 4 100



Wisconsin–forb, Wisconsin–shrub) based on five
response variables: specific leaf area (log10-trans-
formed), leaf nitrogen concentration, mass-based
net photosynthetic capacity, area-based net photo-
synthetic capacity and leaf diffusive conductance
at photosynthetic capacity. The DFA of these data
is in Box 16.4.

16.2.1 Description and hypothesis testing
Discriminant function analysis (DFA) is mathe-
matically identical to a single factor MANOVA,

although the former emphasizes classification
and prediction rather than tests of hypotheses
about group differences. However, the first step in
any DFA is to derive discriminant functions (also
called canonical discriminant functions) that are
linear combinations of the original variables. The
first discriminant function is the linear combina-
tion of variables that maximizes the ratio of
between-groups to within-groups variance (i.e.
maximizes the differences between groups) and is
the linear combination used for the MANOVA test
of no differences between group centroids derived
in Section 16.1.1. The second discriminant func-
tion is independent of (uncorrelated with) the
first and best separates groups using the variation
remaining (the residual variation) after the first
discriminant function has been determined, and
so on for the third, fourth, etc., discriminant func-
tions.

The number of discriminant functions that
can be extracted depends on the number of
groups and the number of variables – it is the
lesser of the degrees of freedom for groups
(number of groups minus one) and the number of
variables (Tabachnick & Fidell 1996). In the
example from Haynes et al. (1995), with three
groups (sites) and four variables, there can be only
two discriminant functions. Even in situations
when there are more functions, the first one or
two usually have the most discriminating power.
Most statistical software also provides eigenvalues
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Note that percentage successful prediction is perfect. The classification matrix pro-
duced using a jackknife technique was as follows.

Delray Seaspray Woodside Percentage correct

Delray 3 1 0 74
Seaspray 1 3 0 75
Woodside 1 1 2 50

Total 5 5 2 67

Note that the jackknifed model results in lower percentage successful predic-
tion but these percentages may be a more reliable indicator of classification success
because we have excluded each observation when calculating the classification
coefficients.

A discriminant function plot using group mean scores showed that the three
sites discriminate clearly along function 1 but there is little separation along func-
tion 2, not surprisingly since function 1 explained nearly all of the variation between
sites (Figure 16.1).

Figure 16.1. Plot of discriminant function scores for each
replicate station for the first two functions from discriminant
function analysis of data from Haynes et al. (1995).The four
variables were concentrations of the metals Cu, Pb, Ni and
Mn in the sediment, all log10-transformed.
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Box 16.4 Worked example of discriminant function
analysis: plant functional groups and leaf
characters

We examined our ability to discriminate between the four location and functional
group combinations for species of plants on which Reich et al. (1999) measured five
variables – see Box 16.2. Like the two factor MANOVA earlier, the multivariate tests
indicated no significant differences between the four groups (e.g. Pillai Trace�
0.902, df�15, 54, F-ratio�1.548, P�0.121) for the first discriminant function.

The following classification functions were solved for each species (object).

Colorado Colorado Wisconsin Wisconsin
forb shrub forb shrub

Constant �535.136 �570.858 �576.439 �593.038
Log specific leaf area 557.743 580.616 582.442 592.914
Leaf N �2.688 �2.981 �3.010 �3.129
Amass �1.126 �1.154 �1.134 �1.173
Aarea 24.450 25.467 25.356 26.184
Gs �0.227 �0.249 �0.248 �0.262 

Each species was classified to the location and functional group combination
with the highest value for the classification function. The classification matrices
showed that we could more correctly classify species to some combinations than
others.

Colorado Colorado Wisconsin Wisconsin Percentage
forb shrub forb shrub correct

Colorado forb 3 0 0 0 100
Colorado shrub 0 3 0 1 75
Wisconsin forb 1 3 6 1 55
Wisconsin shrub 0 1 0 5 83

Total 4 7 6 7 71

The jackknifed classification matrix was as follows.

Colorado Colorado Wisconsin Wisconsin Percentage
forb shrub forb shrub correct

Colorado forb 3 0 0 0 100
Colorado shrub 2 0 0 2 0
Wisconsin forb 2 2 5 2 45
Wisconsin shrub 0 2 0 4 67

Total 7 4 5 8 50

We were most successful at classifying species from the Colorado–forb com-
bination and least from the Colorado–shrub combination.

The plot of the scores for the first two discriminant functions shows that there
is considerable overlap between the different groups for both functions (Figure
16.2). Colorado forbs were the tightest group and we were most successful at clas-
sifying these species.



(how much of the between-group variance is
explained by each function) and the proportion of
total variance explained.

Determining which variables contribute most
to discriminant functions, and therefore to group
separation, is done in the same way as for
MANOVA (Section 16.1.3). The relative sizes of the
standardized coefficients for each discriminant
function indicate which variables are more impor-
tant to each discriminant function. Also useful
are loadings, which measure the correlation
between each variable and each discriminant
function, although they ignore any correlation
between variables. With a large number of vari-
ables, stepwise discriminant function analysis
can be used, similar to stepwise multiple regres-
sion. The stepwise approach enters and removes
variables in a model-building process to try and
produce a discriminant function with only the
“important” variables. Our criticisms of stepwise
procedures (see Chapter 6) are just as applicable
here and we do not recommend stepwise discrim-
inant analysis.

The test of the H0 of no difference between
group centroids (MANOVA) is usually the first step
in a discriminant function analysis because if it is
not significant, the discriminant functions will
not be very useful for separating groups and
therefore classifying observations. Successive dis-
criminant functions can be tested for significance

(the second one is tested after the first has been
extracted) using the MANOVA tests described in
Section 16.1.1.

We can calculate discriminant function scores
(zik) for each observation on each function (k) by
simply solving each discriminant function as in
Equation 16.1. These scores can be used in a linear
discriminant function (LDF) plot (Huberty 1994),
with the first discriminant function scores on one
axis and the second discriminant function scores
on the other axis. Either individual observations
or centroids can be plotted. These plots indicate
subjectively how similar or different groups are in
terms of the discriminant functions. For example,
there was a clear separation between sites from
Haynes et al. (1995) when the first two discrimi-
nant functions were plotted (Figure 16.1),
although most of the difference was for function
one.

LDFs can also be presented as biplots where
the loadings (correlations) of each variable on
each function are plotted as vectors, scaled so that
the vectors are commensurate with the scale of
functions scores. The direction of the vectors indi-
cates an increase in the values of the variable
towards those objects in that direction on the
plot, and the length of the vector indicates the
rate of increase. Biplots will be explored in more
detail in Chapter 17.

16.2.2 Classification and prediction
The second purpose of a DFA is to classify each
observation into one of the groups and assess the
success of the classification. A classification equa-
tion is derived for each group and is a linear com-
bination of variables like a discriminant function,
including a constant (Equation 16.1).

For example, for Delray using the variables
from Haynes et al. (1995):

CDelray�constant�c1(log10 Cu)�c2(log10 Pb)�
c3(log10 Ni)�c4(log10 Mn) (16.4)

There are four steps in determining and using
the classification function for any group.

• The coefficients (c) of the classification
equation are termed classification coefficients
(Tabachnick & Fidell 1996) and are found by
multiplying the within-group covariance
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Figure 16.2. Plot of discriminant function scores for each
replicate species for the first two functions from discriminant
function analysis of data from Reich et al. (1999).The five
variables were leaf characters: log specific leaf area, leaf N,
Amass, Aarea, and Gs.



matrix (pooled across all groups) by the matrix
of means for each variable for that group.

• The constant for a group is determined by
multiplying the matrix of classification
coefficients for that group (i.e. the coefficients
for each variable) again by the matrix of means
for each variable for that group.

• A classification score for each observation for
each group is then calculated by using the
actual values for each variable to solve the
classification equation for that group.

• Each observation is formally classified into the
group for which it has the highest score. This
may or may not be the actual group from
which the observation came.

Tabachnick & Fidell (1996) have provided a
fully worked example of the calculations and
Huberty (1994) has a more detailed theoretical
background.

Discriminant analysis routines in most statis-
tical software provide classification matrices that
indicate to which group each observation was
classified and whether that classification was
correct. The success of classifications of observa-
tions will be greater if the groups were clearly dis-
tinguishable on the first discriminant function.
For example, the stations from Haynes et al. (1995)
were clearly separable into groups (highly signifi-
cant MANOVA) and the classification success was
also high (Box 16.3). In contrast, there was no sig-
nificant separation of groups in the Reich et al.
(1999) data and the classification success was
lower (e.g. only six out eleven species correctly
classified as being from forbs from Wisconsin –
Box 16.4).

One difficulty with the classification metho-
dology we just described is that the classification
functions are calculated using all observations
and these functions are then used to classify the
same observations, i.e. we classify each observa-
tion with an equation that already used that
observation. One way of avoiding the resulting
inherent bias is to use a jackknife procedure
(Chapter 2). The classification of each observation
is based on group classification functions that are
determined when the observation is omitted and
only the remaining observations are used to calcu-
late coefficients and constants. In our examples,

the jackknife classifications were less successful,
but probably more robust, than the usual classifi-
cations using all observations (Box 16.3 and Box
16.4). The biggest difference between the usual
and jackknifed classifications will often be for
groups with the smallest sample size, again illus-
trated for the classification of the Reich et al.
(1999) data where our classification success for
Colorado shrubs went from 75% to 0% when the
jackknife approach was used (Box 16.4). 

Most uses of DFA we have found in the biolog-
ical literature have focused on description and
hypothesis testing, rather than classification. For
example, Petit & Petit (1996) derived three dis-
criminant functions to separate four habitats
based on ten variables (canopy cover, canopy
height, density of various stem sizes) measured
around nest boxes occupied by warblers along the
Tennessee River. They found that the first func-
tion explained 96.7% of the variance and canopy
cover was the variable most highly correlated
(loading�0.84) with this first discriminant func-
tion. Skelly (1995) used a number of discriminant
function analyses in his study of tadpole behavi-
our and performance. In one, he tested how well
three variables (survivorship, size, and larval
period) classified individuals into one of two
species of frogs (chorus frogs and spring peepers).
He presented a single discriminant function,
which significantly separated the two species
(MANOVA). Larval period had the highest coeffi-
cient (1.015) and loading (0.76) for this function,
i.e. larval period separated the species more than
size and survivorship (Table 16.4).
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Table 16.4 Discriminant function analysis from
Skelly (1995). The grouping variable was frog
species (Pseudoacris triseriata and P. crucifer) and
standardized coefficients and loadings for the three
variables on the first discriminant function are
provided. Larval period contributed most to the
separation between species

Standardized Loading
Variable coefficient (correlation)

Survivorship 0.208 0.015
Size 0.634 0.593
Larval period 1.015 0.757



16.2.3 Assumptions of discriminant
function analysis

DFA has the same assumptions as MANOVA
(Section 16.1.4). The most important of these
assumptions is homogeneity of the within-group
variance–covariance matrices, especially for the
classification part of discriminant analysis
because this is quite sensitive to heterogeneous
variance–covariance matrices between groups.
This assumption is very difficult to test formally
and Tabachnick & Fidell (1996) suggested plotting
the scores for each observation for the first two
discriminant functions (e.g. Figure 16.1) and
checking if the spread of points is similar among
the groups. Transformations of variables will
often help.

If there is clear heterogeneity across the
within-group variance–covariance matrices, you
can try fitting quadratic functions instead of the
usual linear ones. Quadratic functions include
coefficients for squares of the variables and do not
assume equal within-group covariances; statisti-
cal software usually offers quadratic functions as
an option. Quadratic terms are usually highly cor-
related with the linear term for the same variable.
This can result in collinearity problems (Section
16.1.4) and centered variables may need to be used
(Chapter 6).

16.2.4 More complex designs
Because DFA is identical to a MANOVA, DFA can be
extended to more complex designs, such as facto-
rial designs, as described in Section 16.1.6.
However, when focusing on classification, we
usually treat each combination of factor levels
(cell) as a separate group and use methods devel-
oped for single factor designs.

16.3 MANOVA vs discriminant
function analysis

MANOVA and DFA are mathematically identical
(Tabachnik & Fidell 1996), although the terminol-
ogy used in the two procedures often differs. In
MANOVA, we test whether population centroids,
based on a number of response variables, are
different between groups. In DFA, we use the
response variables to try and predict group

membership and also to classify new observations
to one or other of the groups with some measure
of success of that classification. The linear combi-
nation of variables that maximizes the ratio of
between-group to within-group variation in
MANOVA is the first discriminant function.
Discriminant function analysis goes further than
MANOVA, however, by calculating additional dis-
criminant functions and using the functions to
classify observations to groups.

16.4 General issues and hints for
analysis

16.4.1 General issues

• MANOVA can be used to analyze any design
where there is more than one response vari-
able and one or more categorical predictor
variables and the question of interest concerns
the response variables considered simultane-
ously.

• MANOVA is also used when analyzing partly
nested models for “repeated measures” designs
where the differences between levels of the
within-subjects factor are treated as multiple
response variables.

• Although checking the assumptions is more
difficult for multivariate analyses compared
with univariate analyses, the former are also
more sensitive to departures from the assump-
tions.

• MANOVA and DFA are functionally
equivalent, the former emphasizing between-
group differences on a single discriminant
function, the latter using more than one dis-
criminant function and focusing on
classification.

16.4.2 Hints for analysis
• Homogeneity of between-group variances and

covariances is important. Keep sample sizes
similar and at least ensure homogeneity of
variances for each variable separately. Check
for outliers with Mahalanobis distance, tested
against a �2 distribution with p df and a strict
significance level (0.001).
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• Pillai’s trace is the most robust of the test sta-
tistics for MANOVA and is recommended.

• The contribution of each variable to a discrimi-
nant function is best measured by the stan-
dardized coefficients.

• Loadings for each variable on each discrimi-
nant function ignore correlations between
variables and will have the same pattern

between groups as the univariate F tests for
each variable

• Jackknifed classifications of each observation
to each group are probably more reliable
than standard classifications because the
former do not include the observation being
classified when calculating the classification
score.
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This chapter and the next deal with analyses of
multiple variables recorded from multiple objects
where there are two primary aims. The first is to
reduce many variables to a smaller number of
new derived variables that adequately summarize
the original information and can be used for
further analysis, i.e. variable reduction. Multi-
variate analysis of variance and discriminant
function analysis described in the previous
chapter also have this aim. The discriminant func-
tions represented the new derived variables that
are extracted while explicitly accounting for
group structure in the data set. Comparison of
groups in the methods covered in this chapter and
the next require subsequent analyses because the
extraction of the summary variables does not con-
sider group structure.

The second aim is to reveal patterns in the
data, especially among objects, that could not be
found by analyzing each variable separately. One
way of detecting these patterns is to plot the
objects in multidimensional space, the dimen-
sions being the new derived variables. This is
termed scaling, or multidimensional scaling, and
the objects are ordered along each axis and the dis-
tance between objects in multidimensional space
represents their biological dissimilarity (Chapter
15). Ecologists often use the term “ordination”
instead of scaling, particularly for analyses that
arrange sampling or experimental units in terms
of species composition or environmental charac-
teristics. Ordination is sometimes considered as a
subset of gradient analysis (Kent & Coker 1992).
Direct gradient analysis displays sampling units
directly in relation to one or more underlying

environmental characteristics. Indirect gradient
analysis displays sampling units in relation to a
reduced set of variables, usually based on species
composition, and then relates the pattern in sam-
pling units to the underlying environmental char-
acteristics.

There are many different approaches to achiev-
ing the aims of variable reduction and scaling
(ordination). In this chapter, we will describe
methods based on extracting eigenvectors and
eigenvalues from matrices of associations
between variables or objects (Chapter 15). Methods
based on measures of dissimilarity between
objects will be the subject of Chapter 18.

17.1 Principal components 
analysis

Principal components analysis (PCA) is one of the
most commonly used multivariate statistical tech-
niques and it is also the basis for some others. For
i�1 to n objects, PCA transforms j�1 to p vari-
ables (Y1, Y2, Y3,. . .,Yp) into k�1 to p new uncorre-
lated variables (Z1, Z2, Z3,. . ., Zp) called principal
components or factors (Chapter 15). The scores for
each object on each component are called z-scores
( Jackson 1991). For example, Naiman et al. (1994)
examined the influence of beavers on aquatic bio-
geochemistry. Four habitats were sampled for soil
and pore water constituents. Variables were N,
nitrate-N, ammonium-N, P, K, Ca, Mg, Fe, sulfate,
pH, Eh, percentage of organic matter, bulk density,
N fixation, moisture, redox. Three components
explained 75% of the variation, with component 1

Chapter 17

Principal components and correspondence
analysis



representing N and P, component 2 representing
moisture and organic matter, and component 3
representing ammonium-N and redox.

We will use two data sets from previous chap-
ters, plus a new one, to illustrate principal compo-
nents analysis.

Chemistry of forested watersheds
In Chapters 2 and 15, we described the work of
Lovett et al. (2000) who studied the chemistry of
forested watersheds in the Catskill Mountains in

New York. They chose 39 first and second order
streams (objects) and measured the concentra-
tions of ten chemical variables (NO3

�, total organic
N, total N, NH4

�, dissolved organic C, SO2
2�, Cl�,

Ca2�, Mg2�, and H�), averaged over three years, and
four watershed variables (maximum elevation,
sample elevation, length of stream, and watershed
area). We will use PCA to reduce these variables to
a smaller number of components and use these
components to examine the relationships
between the 39 streams (Box 17.1).
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Box 17.1 Worked example of principal components
analysis (PCA): chemistry of forested
watersheds

The variables in the study of 39 stream sites in New York state by Lovett et al. (2000)
fell into two groups measured at different spatial scales – watershed variables (ele-
vation, stream length and area) and chemical variables for a site averaged across
sampling dates. We only used the chemical variables for the PCA, as a PCA using
all variables together was very difficult to interpret. Preliminary checks of the data
showed that one stream, Winnisook Brook, was severely acidified with a concen-
tration of H far in excess of the other streams so this site was omitted from further
analysis. Additionally, three variables (dissolved organic C, Cl and H) were very
strongly skewed and were transformed to log10. Summary statistics for each vari-
able were as follows.

Variable Mean Standard deviation

NO3 22.85 8.61
Total organic N 4.97 1.28
Total N 27.89 8.10
NH4 1.65 0.73
Log10 dissolved organic C 1.83 0.15
SO4 62.08 5.22
Log10 Cl 1.33 0.16
Ca 65.13 13.96
Mg 22.86 5.12
Log10 H �0.67 0.29 

First, the PCA was done on all ten chemical variables and 38 streams. We used
a correlation matrix because the variables had very different variances, with the var-
iance in Ca concentration much greater than for all other variables, and we did not
wish these variances to influence the analysis. Three components had eigenvalues
greater than one and explained over 70% of the total variance.

Component Eigenvalue Percentage variance

1 3.424 34.239
2 2.473 24.729
3 1.171 11.711
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Analysis of the residuals from retaining three components indicated that there were
no Q values very different from the rest and all P values were �0.100.

The coefficients of the first three eigenvectors, with their standard errors, are
shown below. Note that many of the standard errors are relatively large, some
exceeding the value of the coefficient. Considering these standard errors, it appears
that SO4, log10 Cl, Mg (all �ve) and log10 H (�ve) contribute consistently to eigen-
vector 1. NO3, total N, and Ca contribute consistently (�ve) to eigenvector 2.
Finally, eigenvector 3 contrasts log10 dissolved organic C (�ve) with NH4 (�ve),
although the latter has low precision (large standard error).

Variable Eigenvector 1 Eigenvector 2 Eigenvector 3

NO3 �0.261�0.260 �0.519�0.138 0.049�0.212
Total organic N 0.147�0.181 0.299�0.164 0.515�0.404
Total N �0.228�0.258 �0.510�0.133 0.154�0.274
NH4 0.228�0.116 0.075�0.192 �0.487�0.478
Log10 dissolved organic C �0.288�0.123 0.147�0.201 0.562�0.198
SO4 0.368�0.133 �0.225�0.207 0.242�0.221
Log10 Cl 0.358�0.110 0.158�0.204 �0.018�0.269
Ca 0.281�0.227 �0.446�0.156 0.081�0.225
Mg 0.472�0.058 �0.015�0.247 0.301�0.145
Log10 H �0.397�0.150 0.281�0.210 0.006�0.218 

The loadings (correlations) of each variable on each component reveal a similar
pattern to the coefficients of the eigenvectors, although measures of sampling error
are not available. Mg (�ve), log10 H (�ve), SO4 (�ve) and log10 Cl (�ve) correlate
highest with component 1, NO3 (�ve), total N (�ve), and Ca (�ve) correlate with
component 2 and log10 dissolved organic C (�ve) correlates with component 3, as
do total organic N (�ve) and NH4 (�ve) slightly less. Note that there are many
variables that have moderate correlations (0.4 to 0.6) with the three components.

Variable Component 1 Component 2 Component 3

NO3 �0.483 �0.816 0.053
Total organic N 0.272 0.471 0.557
Total N �0.423 �0.802 0.166
NH4 0.422 0.118 �0.527
Log10 dissolved organic C �0.533 0.231 0.608
SO4 0.682 �0.354 0.262
Log10 Cl 0.662 0.248 �0.019
Ca 0.520 �0.701 0.087
Mg 0.873 �0.024 0.326
Log10 H �0.735 0.443 0.006 

To see if we could get better simple structure for the components, we also applied
a varimax (orthogonal) rotation to these eigenvectors. The total variance explained
by the first three eigenvectors is the same as before.

Component Eigenvalue Percentage variance

1 2.908 29.081
2 2.719 27.185
3 1.441 14.413
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The loadings (correlations) of each variable on each rotated component reveal
an improved simple structure. SO4 (�ve), Mg (�ve), log10 H (�ve) and Ca (�ve)
correlate strongly with rotated component 1, NO3 (�ve) and total N (�ve) stand
out for component 2, and log10 dissolved organic C (�ve) and NH4 (�ve) for com-
ponent 3. The number of variables that have moderate correlations (0.4–0.6) with
components has decreased from nine in the unrotated solution to four in the
rotated solution.

Variable Component 1 Component 2 Component 3

NO3 0.046 �0.943 0.104
Total organic N 0.175 0.578 0.491
Total N 0.126 �0.893 0.192
NH4 0.090 0.284 �0.617
Log10 dissolved organic C �0.324 �0.038 0.775
SO4 0.808 0.064 �0.028
Log10 Cl 0.393 0.551 �0.206
Ca 0.794 �0.327 �0.182
Mg 0.817 0.448 0.011
Log10 H �0.801 0.002 0.307

We also calculated component scores for each stream for each component
based on the rotated solution and correlated the first three components with the
watershed variables, adjusting the P-values with Holm’s sequential Bonferroni
method (Chapter 3). Elevation was negatively correlated with component 2. NO3

and total N load negatively on component 2, indicating that streams with lower ele-
vations also have lower concentrations of nitrogen.

Max. Sample Stream Watershed
elevation elevation length area

r P r P r P r P

Component 1 �0.330 0.387 �0.414 0.100 �0.165 1.000 �0.170 1.000
Component 2 �0.528 0.012 �0.496 0.022 �0.066 1.000 �0.048 1.000
Component 3 �0.084 1.000 �0.064 1.000 �0.229 1.000 �0.284 0.664

We also extracted the components based on a covariance matrix, to illustrate
the influence that differences in variances have when using a covariance matrix com-
pared with a correlation matrix for a PCA. A much higher proportion of the total
variance is explained by the first three components. The eigenvalues are consider-
ably larger than for the correlation matrix because the variables are not standard-
ized to unit variance.

Component Eigenvalue Percentage variance

1 223.510 57.262
2 128.595 32.945
3 29.681 7.604 

The loadings are now covariances rather than correlations and their pattern
among variables is quite different from that based on a correlation matrix. Note
that Ca dominates component 1 and this is the variable with the largest variance,
with contributions from NO3 and total N, both with next largest variances. These



Habitat fragmentation and rodents
In Chapter 13, we introduced the study of Bolger
et al. (1997) who surveyed the abundance of seven
native and two exotic species of rodents in 25
urban habitat fragments and three mainland
control sites in coastal southern California.
Besides the variables representing the species,
other variables recorded for each fragment and
mainland site included area (ha), percentage
shrub cover, age (years), distance to nearest large
source canyon and distance to nearest fragment of
equal or greater size. We will use PCA to reduce
the species variables to a smaller number of com-
ponents and use these components to examine
the relationships between the habitat fragments
and mainland sites (Box 17.2).

Geographic variation and forest bird
assemblages

Mac Nally (1989) described the patterns of bird
diversity and abundance across 37 sites in south-
eastern Australia. We will analyze the maximum
abundance for each species for each site from the
four seasons surveyed. There were 102 species of
birds and we will use a PCA to try and reduce
those 102 variables to a smaller number of compo-
nents and use these components to examine the
relationship between the 37 sites (Box 17.3).

17.1.1 Deriving components

Axis rotation
The simplest way to understand PCA is in terms
of axis rotation (see Kent & Coker 1992, Legendre
& Legendre 1998). Consider the study of Green
(1997), who studied the ecology of red land crabs
on Christmas Island (see Chapter 5). Part of that
study measured two variables (total biomass of
crabs and number of burrows) in ten quadrats in
a forested site on the island. A scatterplot of
these data is in Figure 17.1, with biomass on the
vertical axis and burrow number on the horizon-
tal axis. PCA can be viewed as a rotation of these
principal axes, after centering to the mean of
biomass and the mean of burrow number, so that
the first “new” axis explains most of the varia-
tion and the second axis is orthogonal (right
angles) to the first (see Figure 17.1). The first new
axis is called principal component 1 and the
second is called principal component 2. The first
component is actually a “line-of-best-fit” that is
halfway between the least squares estimate of
the linear regression model of biomass on
burrow number and the regression model of
burrow number on biomass. This is the estimate
of the Model II regression (Chapter 5) and is the
line represented by the correlation between
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two variables also structure component 2, as with the correlation-based PCA, and
SO4 and Mg make up component 3, whereas log10 dissolved organic C did so for
the correlation-based PCA.

Note that our preference with these data would be to use a correlation matrix
because we did not want the large differences in variances to contribute to our
interpretation of components.

Variable Component 1 Component 2 Component 3

NO3 4.386 �7.373 0.499
Total organic N �0.286 0.371 0.342
Total N 4.275 �6.729 1.215
NH4 0.001 0.164 0.045
Log10 dissolved organic C �0.033 �0.040 �0.026
SO4 2.514 2.022 3.741
Log10 Cl 0.006 0.084 0.025
Ca 13.212 3.853 �1.638
Mg 1.532 3.135 3.340
Log10 H �0.207 �0.143 0.009
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Box 17.2 Worked example of principal components
analysis (PCA): habitat fragmentation and
rodents

Bolger et al. (1997) surveyed the abundance of seven native and two exotic species
of rodents in 25 urban habitat fragments and three mainland control sites in coastal
southern California. Our aim is to reduce the nine species variables to fewer prin-
cipal components and examine the relationships between the sites in terms of these
components. All species variables were strongly skewed and the variances were
very different between variables with many zeros. A fourth root transformation
improved normality but did not consistently improve the strength of the linear cor-
relations between variables, so we analyzed raw data. We did separate analyses
using covariance and correlation matrices, the latter to remove the effects of the
very different variances. With the correlation matrix, the first three components
explained over 79% of the variation. With a covariance matrix, more of the vari-
ance was contained within component 1 and the first three components explained
more than 90% of the variation.

Correlation Covariance

Component Eigenvalue Percentage variance Eigenvalue Percentage variance

1 4.387 48.746 697.522 78.101
2 1.565 17.393 136.580 15.293
3 1.173 13.029 31.149 3.488

Varimax rotation resulted in different structures, especially for components 1
and 2, but these were not necessarily easier to interpret so we will discuss the unro-
tated solutions. The loadings (correlations) from a PCA based on a correlation
matrix showed that component 1 represented a contrast between the two exotic
species and the seven native species and component 3 was a contrast between the
two exotics. Component 2 was a little harder to interpret, mainly involving P. erem-
icus and N. lepida (�ve) and N. fuscipes and P. fallax (�ve). Not surprisingly, the load-
ings (covariances) from a PCA based on a covariance matrix emphasized the
species with large variances in their abundances. Component 1 was mainly the two
Peromyscus species and component 2 was dominated by P. eremicus. None of the
covariances for component 3 were very strong.

Correlation Covariance

Variable 1 2 3 1 2 3

R. rattus �0.350 0.293 0.664 �0.252 0.017 �0.249
M. musculus �0.307 �0.146 �0.800 �1.355 0.013 0.009
P. californicus 0.836 �0.101 0.144 23.697 �3.753 �1.534
P. eremicus 0.750 0.575 �0.139 9.096 10.704 0.499
R. megalotis 0.852 0.051 0.025 3.471 0.283 0.245
N. fuscipes 0.825 �0.509 0.091 5.924 �1.752 4.520
N. lepida 0.685 0.626 �0.163 1.377 1.811 �0.047
P. fallax 0.573 �0.678 0.096 1.427 �1.174 2.799
M. californicus 0.840 0.057 �0.082 0.532 0.333 0.396



burrow number and biomass (either raw or cen-
tered) and is also called the major axis. If the var-
iables are standardized (to zero mean and unit
standard deviation), then the first principal com-
ponent represents the reduced major axis
(Chapter 5). The second component is completely
independent of, or uncorrelated with, the first
component.

Decomposing an association matrix
When there are more than two variables, it is
difficult (or impossible) to represent the rotation
procedure graphically. In practice, the compo-
nents are extracted either by a spectral decompo-
sition of a sums-of-squares-and-cross-products
matrix, a covariance matrix or a correlation
matrix among variables or by a singular value
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The scaling (ordination) scatterplots of component scores for each site from a
PCA based on the correlation matrix show that three sites, Sandmark,Alta La Jolla,
and Balboa Terrace, stood out from the rest, particularly along components 1 and
2 (Figure 17.3). A biplot of components 1 and 2 including loading vectors for six of
the species (Figure 17.3(a)) showed that Sandmark and Alta La Jolla were in the
opposite direction of the vector for M. musculus and Balboa Terrace was in the
opposite direction of the vector for R. rattus. So these were sites with high abun-
dance native species and few of the two exotics. Sandmark and Alta La Jolla were
at the opposite extreme from Balboa Terrace for component 2, indicating very dif-
ferent numbers of P. eremicus, N. lepida, N. fuscipes and P. fallax. Sites with similar pat-
terns for the two exotic species group together on component 3. For all three
components, the control mainland sites were not obviously different from the
spread of the urban fragments.

Box 17.3 Worked example of principal components
analysis (PCA): geographic variation and forest
bird assemblages

The data set from Mac Nally (1989) contains the maximum seasonal abundance of
102 species of birds across 37 sites in southeastern Australia. Our main interest is
whether we can summarize the relationships between sites based on a small
number of components representing the 102 species. This example illustrates prob-
lems often faced by ecologists trying to explore multivariate data sets – a large
number of variables relative to objects and most of the variables having numerous
zero values.We don’t present detailed output from the analysis but the PCA based
on a matrix of correlations between species showed that 25 components had
eigenvalues greater than one and the first five components only explained about
48% of the variation in the original 102 variables. The components themselves were
difficult to interpret because of the number of variables,many of them loading mod-
erately on many components (although rotation did help).

A plot of the standardized component scores for the first two components also
illustrates the problem of a horseshoe or arch in the pattern of sites along compo-
nent 1, whereby sites at the extremes are compressed in their relationship to other
sites (Figure 17.4). The extremes of this axis represented sites in central Victoria at
one end and sites in the Dandenong Ranges close to Melbourne at the other. We
will discuss this arch effect further in Chapter 18. Clearly, PCA is not a particularly
efficient or interpretable method for examining patterns among sites for these data.



decomposition of the raw data matrix with vari-
ables standardized as necessary (see Chapter 15
and Box 15.1). Which matrix to use will be dis-
cussed in Section 17.1.2. There will be k�1 to p
principal components, each of which is a linear
combination of the original variables:

zik�c1yi1�c2yi2� . . .cjyij� . . .�cpyip (17.1)

From Lovett et al. (2000):

zik�c1(NO3)i�c2(total organic N)i�c3(total N)i�
c4(NH4)i�c5(log10 dissolved organic C)i�
c6(SO4)i�c7(log10 Cl)i�c8(Ca)i�c9(Mg)i�
c10(log10 H)i (17.2)

In Equations 17.1 and 17.2, zik is the value or score
for component k for object i, yi1 to yip are the values
of the original variables for object i and c1 to cp are
weights or coefficients that indicate how much
each original variable contributes to the linear
combination forming this component. Although
the number of components that can be derived is
equal to the number of original variables, p, we
hope that the first few components summarize
most of the variation in the original variables.

The matrix approach to deriving components
produces two important pieces of information –
see Box 15.1. The eigenvectors contain the esti-
mates of the coefficients for each principal com-
ponent (the cjs in equation 17.1). Eigenvector 1

contains the coefficients for principal component
1, eigenvector 2 for principal component 2, etc. As
described in Box 15.1, the eigenvectors are usually
scaled so that the sum of squared coefficients for
each eigenvector equals one, although additional
scaling is also sometimes used.

Estimates of the eigenvalues (or latent roots,
�k) provide relative measures of how much of the
variation between the objects, summed over the
variables in the data set, is explained by each prin-
cipal component. The components are extracted
so that the first explains the maximum amount of
variation, the second explains the maximum
amount of that unexplained by the first, etc. If
there are some associations between the vari-
ables, the first two or three components will
usually explain most of the variation present in
the original variables, so we can summarize the
patterns in the original data based on a smaller
number of components (variable reduction). In
the analysis of the data from Lovett et al. (2000),
the first three components comprised over 70% of
the original variation (Box 17.1). If the original var-
iables are uncorrelated, then PCA will not extract
components that explain more of the variation
than the same number of original variables – see
analysis of data from Mac Nally (1989) in Box 17.3.
Note that the sum of all the eigenvalues equals
the total variation in the original data set, the
sum of the variances of the original variables. PCA
rearranges the variance in the original variables
so it is concentrated in the first few new compo-
nents.

17.1.2 Which association matrix to use?
The choice of association matrix between vari-
ables is an important one. The choice basically
comes down to choosing between the covariance
and the correlation matrix, because using the
sums-of-squares-and-cross-products matrix makes
the resulting PCA sensitive to differences in mean
values of the variables, even when they are meas-
ured in the same units and on the same scale. The
covariance matrix is based on mean-centered var-
iables and is appropriate when the variables are
measured in comparable units and differences in
variance between variables make an important
contribution to interpretation. The correlation
matrix is based on variables standardized to zero
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Figure 17.1. Geometric rotation of axes in PCA based on
the correlation between crab numbers and burrow numbers
of red land crabs on Christmas Island from Green (1997).

1
2



mean and unit variance and is necessary when
the variables are measured in very different units
and we wish to ignore differences between vari-
ances.

Most statistical software uses a correlation
matrix by default in their PCA routines, although
all should offer the covariance matrix as an alter-
native. Our experience is that most biologists use
the correlation matrix but rarely consider the
implications of analyzing variables standardized
to zero mean and unit variance. For example, a
PCA using the chemical data from Lovett et al.
(2000) might be best based on a correlation
matrix. Although the units of the variables are the
same (�mol l�1), the absolute values and variances
are very different and we cannot attach an
obvious biological interpretation to these very dif-
ferent variances (Box 17.1). In contrast, we might
compare the results from using a covariance
matrix with those from using a correlation
matrix on the species abundance data from
Bolger et al. (1998) to see if the different patterns
of variance in abundance of species across frag-
ments is important (Box 17.2). We argued in
Chapter 15 that analyzing data with different
forms of standardization can assist in interpreta-
tion. The message for using PCA is that using
covariances will not produce the same compo-
nents as using correlations ( Jackson 1991, James &
McCulloch 1990), and the choice depends on how
much we want different variances among vari-
ables to influence our results.

17.1.3 Interpreting the components
The value of the components, and any subsequent
use of them in further analyses, depends on their
interpretation in terms of the original variables.
The eigenvectors provide the coefficients (cjs) for
each variable in the linear combination for each
component. The further each coefficient is from
zero, the greater the contribution that variable
makes to that component. Approximate standard
errors can be calculated for the coefficients (Flury
& Riedwyl 1988, Jackson 1991), although the cal-
culations are tedious for more than a few vari-
ables. Fortunately, these standard errors are
default output from good statistical software and
should be used when comparing the relative sizes
of these coefficients. These standard errors are

asymptotic only (i.e. approximate) and assume
multivariate normality (Flury & Riedwyl 1988).
The size of the standard errors can be relatively
large compared to the size of the coefficients (Box
17.1).

Component loadings are simple correlations
(using Pearson’s r) between the components (i.e.
component scores for each object) and the origi-
nal variables. If we use centered and standardized
data (i.e. a correlation matrix), the loadings are
provided directly by scaled eigenvectors in the V
matrix (see Box 15.1). If we use just centered data
(i.e. a covariance matrix), the V matrix will
contain covariances rather than correlations,
although true correlations can be determined
(Jackson 1991). High loadings indicate that a vari-
able is strongly correlated with (strongly loads on)
a particular component. The loadings and the
coefficients will show a similar pattern (although
their absolute values will obviously differ) and
either can be used to examine which of the origi-
nal variables contribute strongly to each compo-
nent. Tabachnick & Fidell (1996) warn against
placing much emphasis on components that are
determined by only one or two variables.

Ideally what we would like is a situation where
each variable loads strongly on only one compo-
nent and the loadings (correlations) are close to
plus/minus one (strong correlation) or zero (no
correlation). It is also easier to interpret the com-
ponents if all the strongly correlated variables
have the same sign (�ve or �ve) on each compo-
nent (which ones are �ve compared to �ve is actu-
ally arbitrary). What we usually get is much
messier than this, with some variables loading
strongly on a couple of components and many var-
iables with loadings of about 0.5.

17.1.4 Rotation of components
The common situation where numerous variables
load moderately on each component can some-
times be alleviated by a second rotation of the
components after the initial PCA. The aim of this
additional rotation is to obtain simple structure,
where the coefficients within a component are as
close to one or zero as possible (Jackson 1991).
Rotation can be of two types. Orthogonal rotation
keeps the rotated components orthogonal to, or
uncorrelated with, each other after rotation. This
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includes varimax, quartimax, equimax methods,
the first being the most commonly used. Oblique
rotation produces new components that are no
longer orthogonal to each other. Orthogonal rota-
tion is simplest and maintains the independence
of the components, although some (e.g. Richman
1986) have recommended oblique methods based
on the results of simulation studies. Tabachnick &
Fidell (1996) also argue that oblique rotation
methods may be more realistic since the underly-
ing processes represented by the components are
unlikely to be independent.

The PCA on the chemical data for streams
from Lovett et al. (2000) illustrates the advantages
of secondary rotation, with more variables
strongly correlated with just one of the retained
components than with the unrotated solution
(Box 17.1). This will not always be the case, but in
our experience with biological variables, rotation
often improves the interpretability of the compo-
nents extracted by a PCA. 

If the aim of the PCA is to produce components
that will be used as predictor or response variables
in subsequent analyses, and those analyses require
that the variables are independent of each other
(e.g. predictor variables in multiple linear regres-
sion models; Chapter 6), then oblique rotation
methods should be avoided. Harris (1985), Jackson
(1991) and Richman (1986) provide the equations
and statistical detail underlying rotations.

17.1.5 How many components to retain?
Although there are a number of approaches to
determining how many components to keep
(Jackson 1991, Jackson 1993), there is no single
best method. It is important to examine the inter-
pretability of the components and make sure that
those providing a biologically interpretable result
are retained. For example, there is little point
retaining components with which no variables
are strongly correlated, because these compo-
nents will be difficult to interpret.

Eigenvalue equals one rule
We can use the eigenvalue equals one rule, which
simply says to keep any component that has an
eigenvalue greater than one when the PCA is
based on a correlation matrix (Norman & Streiner
1994). The logic here is that the total amount of

variance to be explained equals the number of var-
iables (because using a correlation matrix stan-
dardizes the variables to a mean of zero and
standard deviation of one), so by chance each com-
ponent would have an eigenvalue of one. In the
analysis of the water chemistry data from Lovett et
al. (2000), three out of the ten possible compo-
nents had eigenvalues greater than one (Box 17.1).
In contrast, the analysis of the bird abundance
data from Mac Nally (1989) resulted in 25 out of
the 102 possible components with eigenvalues
greater than one (Box 17.3).

Scree diagram
We can also examine the scree diagram, which
simply plots the eigenvalues for each component
against the component number. We are looking
for an obvious break (or elbow) where the first
couple of components explain most of the varia-
tion and the remaining group of components
don’t explain much more of the variation (Figure
17.2). The rule of thumb is to keep all components
up to and including the first in that remaining
group. Our experience is that scree diagrams
don’t offer more in interpretability than just
simply examining the successive numerical eigen-
values for each component.

Tests of eigenvalue equality
There are tests for equality of a set of successive
eigenvalues derived from a covariance matrix,
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Figure 17.2. An example of a scree plot from the unrotated
solution based on a correlation matrix for the data from
Lovett et al. (2000) – see Box 17.1.



such as Bartlett’s and Lawley’s tests ( Jackson 1991,
Jobson 1992), and we might use one of these to
test the null hypothesis that the eigenvalues of
the components not retained are equal. Bartlett’s
test is most common (and available in most statis-
tical software as part of correlation or PCA rou-
tines) and the test statistic is compared to a �2

distribution. We usually test in a sequential
manner, first testing that the eigenvalues of all
components are equal (Bartlett’s test is then a test
of sphericity of a covariance matrix – see Chapters
10 and 11). If this is rejected, we then test equality
of eigenvalues of all components except the first,
and so on. Once we do not reject the null hypoth-
esis, we retain all components above those being
tested. This is a multiple testing situation so some
adjustment of significance levels may be war-
ranted (Chapter 3). Bartlett’s and Lawley’s tests
are not applicable when using a correlation
matrix because the test statistics do not follow a
�2 distribution; approximate methods when
using correlations are suggested by Jackson
(1991).

Analysis of residuals
Residual analysis is also useful for PCA, just like for
linear models. Remember that we can extract p
components from the original (appropriately stan-
dardized) data and we can also reconstruct the
original data from the p components. If we extract
less than p components, then we can only estimate
the original data and there will be some of the
information in the original data not explained by
the components – this is the residual. When we
retain fewer than all p components, we are fitting
a model analogous to a linear model ( Jackson
1991) with the original data (with variables usually
standardized to unit variance) represented as a
multivariate mean (centroid) plus a contribution
due to the retained components plus a residual.
This residual measures the difference between the
observed value of a variable for an object and the
value of a variable for that object predicted by our
model with less than p components. Alternatively,
we can measure the difference between the
observed correlations or covariances and the pre-
dicted (reconstructed) correlations or covariances
based on the less than p components – this is
termed the residual correlation or covariance

matrix (Tabachnick & Fidell 1996; see also Chapter
16).

We have a residual term for each variable for
each object and the sum (across variables) of
squares of the residuals, often termed Q ( Jackson
1991), can be derived for each object. If the vari-
ances differ between the variables and some
objects have much larger values for some vari-
ables, then the residuals, and Q-values, for those
objects will probably be larger for a PCA based on
a covariance matrix than one based on a correla-
tion matrix.

Whichever matrix is used, unusually large
values of Q for any observation are an indication
that the less than p components we have retained
do not adequately represent the original data set
for that object. Q-values can be compared to an
approximate sampling distribution for Q to deter-
mine P-values (the probability that a particular Q-
value or one more extreme came from the
sampling distribution of Q ). When we retained
three components from a PCA on the correlation
matrix of the water chemistry data from Lovett et
al. (2000), none of the residual values were statis-
tically significant (Box 17.1).

However, formal statistical testing seems not
very useful when exploring a multivariate data
set for unusual values – just check unusual values
relative to the rest. This is the same process for
checking for outliers using residuals from linear
models. Objects with large Q-values may be partic-
ularly influential in the interpretation of the PCA
and a number of such objects would suggest that
too few components have been retained to ade-
quately describe the original data. These objects
can be further examined to see which variable(s)
contribute most to the large Q-value, i.e. which
variables have the large difference between
observed and predicted values.

17.1.6 Assumptions
Because it uses covariances or correlations as a
measure of variable association, PCA is more
effective as a variable reduction procedure when
there are linear relationships between variables.
Nonlinear relationships are common between
biological variables and under these circum-
stances, PCA will be less efficient at extracting
components. Transformations can often improve
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the linearity of relationships between variables
(see Chapter 4, Tabachnick & Fidell 1989). 

There are no distributional assumptions asso-
ciated with the ML estimation of eigenvalues and
eigenvectors and the determination of compo-
nent scores (the descriptive use of PCA). However,
calculation of confidence intervals and tests of
hypotheses about these parameters, such as a test
that some of the eigenvalues are equal (see
Section 17.1.5; also Jackson 1991, Jobson 1992), do
assume multivariate normality. Outliers can also
influence the descriptive results from a PCA, espe-
cially when based on a covariance matrix where
the variances of variables contribute to the com-
ponent structure. Multivariate outliers can be
identified using Mahalanobis distances (Chapter
15).

When normality is questionable, because we
have skewed univariate distributions of variables
for example, then bootstrap standard errors and
confidence intervals might be used. Alternatively,
transformations of variables to achieve univariate
normality might also improve multivariate nor-
mality, reduce the influence of outliers and also
improve the linearity of the associations between
variables.

Like all multivariate analyses, missing data are
a real problem. The default setting for PCA rou-
tines in most statistical software is to omit whole
objects that contain one or more missing observa-
tions. Unless the sample size (number of objects)
is large and the objects with missing values are a
random sample from the complete data set, then
pairwise deletion, multiple imputation or estima-
tion based on the EM algorithm are more appro-
priate for dealing with missing observations (see
Chapter 15).

17.1.7 Robust PCA
Robust PCA techniques allow us to derive compo-
nents that are less sensitive to outliers. Two
approaches have been suggested in the literature.
The first is to use robust estimates of covariances
or correlations ( Jackson 1991). For example, we
could use correlations based on ranked variable
values, such as Spearman’s rank correlation, for
the PCA ( Jobson 1992). Alternatively, we could cal-
culate each correlation (or covariance) indepen-
dently of the others, using trimmed observations

or M-estimators, such as Huber’s, that down-
weight extreme observations (Chapter 2). Calcula-
ting each pairwise covariance or correlation
independently of the others, using all the avail-
able data for each pair of variables, is also an effec-
tive means of handling missing data (Chapter 15).
The second approach is to use robust methods to
derive components directly from the original data
(Jackson 1991), although these are more complex
to compute and there are no obvious criteria for
choosing between the methods.

17.1.8 Graphical representations

Scaling (ordination)
The eigenvectors can be used to calculate a new
score (z-score) on each component for each object.
This is achieved by solving the linear combination
for each object for each component (Equation
17.1), using mean centered or standardized vari-
ables if the eigenvectors came from covariance or
correlation matrices respectively (see Box 15.1).
These scores can also be further standardized by
dividing by the square root of the eigenvalue for
the relevant component so that the variance of
the scores for each component is one:

zik
*� (17.3)

Some software may produce these standardized
scores, rather than the original z-scores.

The objects can then be positioned on a scat-
terplot based on their scores with the first two or
three principal components as axes (Figure 17.3). It
doesn’t matter whether z- or z*-scores are used for
the basic plot of objects, although some authors
recommend that standardized scores should be
used if the PCA is based on a correlation matrix
(Jobson 1992). The interpretation of these plots is
straightforward but subjective. Objects close
together on the plot are more similar in terms of
their variable values based on the components
being a summary of the original variables; con-
versely for objects further apart. For a PCA on the
data from Bolger et al. (1997), the sites Sandmark
and Alta La Jolla are similar to each other but dif-
ferent from other sites in terms of native rodent
species composition (Figure 17.3).

This type of graphical representation of objects

zik

�lk
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from a multivariate analysis is termed scaling.
When the objects are sampling units and the var-
iables are species abundances, then ecologists
describe analyses that produce such plots as ordi-
nations and the plot an ordination plot.

Clearly, we could plot each object using the
original variables as axes, but such a plot is
impractical beyond three variables. The plot of the
component scores allows us to show the relation-
ship between the objects based on the new derived
components, given that the first two or three com-
ponents can usually be interpreted in terms of the
original variables and explain most of the original
variance.

It is well known by ecologists that when we are
dealing with data for species abundances for dif-
ferent sampling units (e.g. plots, sites, etc.), then
the scaling plot of the sampling units (objects) for
the first two components of a PCA often shows an
arching pattern (the “arch” and “horseshoe”
effects). This arching is most apparent when the
sampling units cover a long ecological gradient
and those at each end of the gradient have few
species in common (Minchin 1987, Wartenberg et
al. 1987). For example, the scaling of the bird
abundance data from Mac Nally (1989) shows a
strong arch when sites are plotted for the first two
principal component axes (Box 17.3; Figure 17.4).
Although this arching may indicate the true eco-
logical dissimilarities between the extreme sam-
pling units, there is evidence that it distorts the
true underlying pattern. One explanation for the
arching is that the implicit measure of dissimilar-
ity between objects that PCA uses, Euclidean dis-
tance, does not reach a constant maximum value
when two sampling units have no species in
common and thus can imply that two objects are
similar due to joint absences. Sampling units with
few or no species in common are most likely to
occur at the extremes of an environmental or
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Figure 17.3. PCA scaling (ordination) plots of the 28 sites
from Bolger et al. (1997) based on a correlation matrix of
association between rodent species abundances. Solid circles
are mainland control sites, open circles are urban fragments,
all axes range from �4 to �4.The left-hand plot is a biplot
and vectors of loadings for six of the species have been
included, scaled by three. Rr is Rattus rattus, Mm is Mus
musculus, Pc is Peromyscus californicus, Pe is Peromyscus eremicus,
Rm is Reithrodontomys megalotis and Nf is Neotoma fuscipes.

Figure 17.4. PCA scaling (ordination) plot of the 37 sites
from Mac Nally (1988) based on a correlation matrix of
association between bird species abundances.Axes range
from �3 to �3. Note the arch (“horseshoe”) pattern in the
plot.



geographical gradient so the underlying relation-
ship between dissimilarity and the environmen-
tal gradient is nonlinear. The inability to
represent nonlinear relationships between dis-
similarity and some gradient without distortion
is not unique to PCA; correspondence analysis
(Section 17.3) also has this problem. We will
compare different approaches to scaling/ordina-
tion in Chapter 18.

We have described an R-mode analysis, where
associations between variables are used to extract
components. The PCA could be done as a Q-mode
analysis where a matrix of associations between
the objects is calculated (Legendre & Legendre
1998). Components can be extracted from either
matrix and object scores derived from variable
eigenvectors and eigenvalues and vice versa. Any
differences relate to how variables or objects are
standardized, since an R-mode PCA based on a cor-
relation matrix standardizes variables to zero
mean and unit variance. More commonly, Q-mode
analyses are based on measured dissimilarities
between objects (Chapter 18). It turns out that
using the techniques in Chapter 18 to examine the
relationship between objects based on a matrix of
dissimilarities will produce almost identical
scaling (ordination) plots to those produced by an
R-mode PCA if we use Euclidean distance as the
dissimilarity measure.

Biplots
One particular form of a scaling/ordination plot is
called a biplot (Gower & Hand 1996), where both
objects and variables (hence the “bi”) are included
on a single scaling plot. Biplots can use more than
two axes although they are commonly plotted in
two dimensions. The usual form of a biplot is a
point–vector plot where the objects are points and
the variables are represented by vectors (lines)
drawn from the origin of the scaling plot. Biplots
are possible because the singular value decompo-
sition of a data matrix allows us to relate eigen-
vectors from a matrix of associations between
variables to the eigenvectors from a matrix of asso-
ciations between objects through the eigenvalues
for the components (Box 15.1). The most common
form of the biplot will use the component scores
for objects as points and the variables are repre-
sented by the eigenvectors relating each variable

to each component. If the PCA is based on a corre-
lation matrix (i.e. centered and standardized vari-
ables), then the biplot will often use z*-scores for
the objects and component loadings to represent
the variables on the biplot. In any case, some
scaling of the eigenvectors or loadings for vari-
ables will usually be required so that the vectors
are commensurate with the range of object scores.

Biplots are commonly used by ecologists in sit-
uations where the objects represent sampling
units or sites and the variables are species abun-
dances (e.g. Digby & Kempton 1987, Legendre &
Legendre 1998). We have illustrated a PCA biplot
for the 28 sites from the study of the effects of
habitat fragmentation on rodents by Bolger et al.
1997 (left-hand plot in Figure 17.3; see also Box
17.2). We have included loading vectors for six of
the species (vectors for all species resulted in a
plot that was very crowded and difficult to read).
The ends of the vectors represent the correlations
of each species with each component, although
the correlations have been scaled by three so they
are roughly commensurate with site scores. For
these point–vector biplots, it is not how close the
head of the variable vector is to the object points
on a biplot that is relevant because we usually
have to scale the vectors in some way. It is the
direction and relative length of these vectors that
are important. The direction indicates that the
values of the variable increase in that direction
and the length indicates the rate of increase –
long vectors are more gradual increases, short
vectors are faster increases. So, the vector for R.
rattus in Figure 17.3 indicates that this species
increases rapidly in abundance in the opposite
direction from Balboa Terrace. The vector for P.
eremicus indicates that this species increases more
gradually in abundance in the direction of
Sandmark and Alta La Jolla.

17.1.9 Other uses of components
One problem we face with many statistical analy-
ses, particularly linear models, is dealing with
numerous correlated response or predictor vari-
ables. We usually analyze each response variable
separately with univariate regression or ANOVA
techniques, which causes Type I error rate prob-
lems due to multiple testing, and we have difficul-
ties using correlated predictor variables in these
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models because of the effects of collinearity on
our parameter estimates and hypothesis tests.
PCA may help in both situations because we can
often reduce a large number of correlated vari-
ables down to a smaller number of components
without losing much information and our linear
model analyses can use these components as
response or predictor variables.

Relationship to MANOVA
When we have multiple response variables in a
design that we would usually analyze with an
ANOVA model to estimate and test for differences
between groups, there are two approaches we can
use. The first is multivariate analysis of variance
(MANOVA) that we described in Chapter 16.
Basically, we analyze a component (discriminant
function) that is extracted so it maximizes the
explained variance between groups and the
hypothesis being tested is about group differences
on a linear combination of variables or differ-
ences between group centroids. The second
approach is initially to ignore group differences
and do a PCA on the whole data set, i.e. all objects,
and then use as many of the derived components
as deemed interpretable as response variables in
univariate ANOVA models to test for group differ-
ences. The components are obviously indepen-
dent of each other, although the F tests from
univariate ANOVAs on these components techni-
cally are not ( Jackson 1991).

The two approaches (MANOVA and ANOVA on
components) will produce different results,
although the broad patterns of group differences
are likely to be similar. Analyzing components
using ANOVA has some advantages. MANOVA is
commonly described in terms of the first discrim-
inant function and deriving output from software
for other functions, especially for complex
designs, is difficult. In contrast, ANOVA on compo-
nents can analyze the second, third, etc., compo-
nents if they offer useful interpretations of the
original variables. Also, post hoc comparisons of
groups are more straightforward under a univari-
ate ANOVA framework.

Principal components regression
In Chapter 6, we discussed the problems caused by
collinearity among predictor variables when

fitting multiple regression models, especially the
inflated standard errors of regression coefficients
and the sensitivity of estimates of regression coef-
ficients to which predictors are included in the
model. One strategy sometimes suggested as a
solution to this problem is principal components
regression (Chaterjee & Price 1991, Lafi & Kaneene
1992, Rawlings et al. 1998). If there are serious cor-
relations among the predictor variables, we can
do a PCA on the predictors, usually centered (and
maybe standardized), to extract the p compo-
nents. We could then fit a regression model that
uses all the components as the predictors, but
such a model will predict the response variable
with the same precision as a model based on the
original variables. Usually, we fit a simpler model
based on fewer than p components, although the
choice of which components to retain is proble-
matical (see below). If the components are easily
interpretable, then principal components regres-
sion might be better than the original multiple
regression because the components are orthogo-
nal so there is no collinearity and no instability in
the estimates of the regression coefficients. 

We can also recalculate regression coefficients
in terms of the original variables based on the
relationship ( Jackson 1991, Lafi & Kaneene 1992):

b� Ubz (17.4)

In Equation 17.4, b is a matrix of regression coeffi-
cients on the original standardized variables, bz is
a matrix of regression coefficients on the princi-
pal components (derived using a correlation
matrix) and U is the matrix of eigenvectors from
the PCA on the predictor variables (see Box 15.1).
When the PCA is based on a matrix of correlations
between the predictors, then regression coeffi-
cients in b are standardized coefficients and
relate to standardized predictor variables.
Covariances could be used with just centered pre-
dictor variables.

Equation 17.4 simply states that we can obtain
regression coefficients in terms of the original
variables from the product of the regression coef-
ficients for the principal components and the
eigenvectors from the PCA. Using eigenvectors
from the U matrix scales the coefficients so that
the sum of squared coefficients equals one (Box
15.1).
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The standard error of the regression coeffi-
cient for the kth principal component is
(Chaterjee & Price 1991, Jackson 1991):

sbk
� (17.5)

In Equation 17.5, MSResidual is from the linear
regression on the p principal components. So the
standard errors are inversely proportional to the
eigenvalues and the first principal components
will have smaller standard errors than later com-
ponents.

If all p components are used, then the regres-
sion coefficients in b will be the same as those
from the regression on the original (standardized)
variables. If less than p components are used, then
the regression coefficients in b will be different
from the regression coefficients on the original
(standardized) variables. These new coefficients
will be biased, the bias increasing the fewer com-
ponents we retain. In both cases (p or less than p
components retained), the standard errors of the
recalculated regression coefficients will also be
smaller than those from the original multiple
regression ( Jackson 1991).

Chaterjee & Price (1991) provide a clear
example of the calculations involved in principal
components regression. Despite its attractiveness
as a way of overcoming collinearity in multiple
linear regression models, there are limitations to
principal components regression. Hadi & Ling
(1998) pointed out that the components that
explain most of the variance in the predictor var-
iables, i.e. the first few components derived using
PCA, might not be the most important in explain-
ing the variance in the response variable in a
multiple regression model. The choice of which
components to use in principal components
regression should be based on their contributions
to the SSRegression, not just their eigenvalues from
the original PCA.

17.2 Factor analysis

In Section 17.1.5, we pointed out that we can
reconstruct the original data from the principal
components but if we retain less than p compo-
nents, we can only approximate the original data.

�MSResidual

lk

The residual represents information in the origi-
nal data not included within the less than p
retained components. Factor analysis (FA) for-
malizes this into a structured model and we now
use the term factors instead of components. FA is
based on a correlation matrix, or less commonly a
covariance matrix. The correlation matrix for the
original variables is separated into two parts
( Jackson 1991, Jobson 1992). The first is that gener-
ated by the common factors, those factors that
explain all the correlations among the original
variables. The second is that due to the unique
factors, those factors representing information in
the correlation matrix that is not explained by the
common factors. So we have a model that basi-
cally includes explained and unexplained (resid-
ual) variability, although FA is “explaining” the
correlation structure in the data rather than just
the variance. The term communality is used for
the variance of a variable explained by the
common factors.

The mechanics of FA are pretty much the same
as for PCA, although the procedure is more
complex because we need to estimate both
common factors and the residual variability asso-
ciated with the unique factors. Jackson (1991)
describes different approaches to estimation, the
most commonly used called principal factor anal-
ysis where the matrix of correlations between the
variables is modified so that the diagonal contains
estimates of the communalities. A spectral
decomposition is then applied to this new matrix
to extract eigenvectors and eigenvalues.

The common factors are estimates of latent
variables, the true variables causing the correla-
tion structure in the data. Structural equation
modeling (also termed latent variable analysis or
causal modeling) combines FA with multiple
regression so that the response and predictor var-
iables may be measured variables or common
factors (Tabachnick & Fidell 1996). When only
measured variables are used, we have multiple
regression modeling and the possible causal rela-
tionships between response and predictor vari-
ables can be displayed as a path diagram (Chapter
6). When we have factors on either side of our
regression model, we have structural equation
modeling and the path diagrams are more sophis-
ticated. We strongly recommend Tabachnick &
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Fidell (1996) for a readable introduction to struc-
tural equation modeling.

Jackson (1991) summarized the differences
between PCA and FA. The most fundamental is
that PCA is trying to extract components that
explain the variability in the original variables
whereas FA is trying to explain correlations
among the original variables. FA is not commonly
used in biological research, probably because biol-
ogists are trying to extract a small number of new
variables that explain most of the variability in
the original variables and use these new variables
in scaling or ordination plots. PCA is clearly more
appropriate than FA for these purposes. Jackson
(1991) and Manly (1994) include good introduc-
tions to FA and Tabachnick & Fidell (1996)
compare some of the common statistical software
routines for FA and PCA. 

17.3 Correspondence analysis

Correspondence analysis (CA) was developed as a
method for decomposing contingency tables of
counts (see Chapter 14) into a small number of
summary variables and representing the lack
of independence between rows and columns of
the contingency table as a low dimensional plot.
CA is based on a raw data matrix of counts, clas-
sified by n rows (objects) and p columns (variables).
In Chapter 14, we described tests for indepen-
dence of rows and columns in a two way contin-
gency table of counts. A simple test was based on
the �2 statistic calculated as:

�2
(n�1)( p�1)� (17.6)

where oij are the observed cell counts and eij are
the expected cell counts under independence.
Large values of this statistic indicate lack of inde-
pendence between rows and columns, i.e. the pro-
portion of counts in different columns depends
on the row and vice versa. The main purpose of CA
is to summarize the lack of independence
between rows (objects) and columns (variables) of
a contingency table as a small number of derived
variables, sometimes called principal axes. The
maximum number of derived variables is the
minimum of (n�1) and (p�1), although usually

(oij� eij)2

eij
�

n

i�1
�

p

j�1

only two axes are derived. The scores for each
object and each variable on these axes are used in
the scaling (ordination) plot, often with objects
and variables plotted jointly.

We will illustrate the use of CA to scale jointly
the 28 sites and nine species of rodents from the
habitat fragmentation study of Bolger et al. (1997).
This CA is presented in Box 17.4.

17.3.1 Mechanics
CA proceeds by a double transformation of the
observed minus expected counts, dividing by the
product of the square roots of the row totals (ri)
and column totals (cj). This is equivalent to using
standardized residuals from the model of inde-
pendence for a two way contingency table,
adjusted by the total frequency:

(17.7)

We could just use the observed counts in the
numerator of Equation 17.7 (Jackson 1991, Ludwig
& Reynolds 1988) and the basic results of the CA
are the same except that the first principal axis
becomes trivial and is ignored in interpretation.
The matrix approach to CA can be of two forms,
like PCA. First, we can use a SVD on the matrix of
transformed counts (H):

H�U*L1/2U� (17.8)

In Equation 17.8, U* represents the eigenvectors
for each component with coefficients for vari-
ables, U represents the eigenvectors for each com-
ponent with coefficients for objects and L
represents a diagonal matrix containing the
eigenvalues for each component (Box 15.1).
Therefore, we have two sets of eigenvectors, one
for objects and one for variables. Second, we can
convert H into two association matrices, one
between variables (H�H) and the other between
objects (HH�) and use spectral decomposition of
both these association matrices to extract the
same eigenvectors and eigenvalues.

Because the eigenvectors for objects and vari-
ables are extracted jointly, after a double transfor-
mation of counts to contributions to the �2

statistic for lack of independence, the eigen-
values associated with the principal axes for rows
and columns are the same. The sum of these

1

�N
 
(oij� eij)

�eij
�

(oij� eij)
�ri �cj

CORRESPONDENCE ANALYSIS 459



eigenvalues is equal to the overall �2 statistic
divided by the total frequency and is called total
inertia, a measure of lack of independence. The
eigenvalues are interpreted similarly to those
from a PCA, with the percentage of the total
inertia explained by the successive axes usually

presented. The first axis should explain a high pro-
portion of the lack of independence between
objects and variables. The axes are extracted in CA
so that the correlation between variable and
object scores is as high as possible. The axes are
also orthogonal (independent) of each other.
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Box 17.4 Worked example of correspondence analysis
(CA): habitat fragmentation and rodents

In this example, we will treat the abundances of each species in each fragment/site
from Bolger et al. (1997) as a two way contingency table. Although the fragment
and mainland sites were very different size, there was little difference in the pattern
in the final joint plot of sites and species using raw abundances compared with that
based on standardized (“relativized”) abundances so that the total abundance at
each site was one. Remember that CA partitions the total v 2 after standardizing by
row and column totals so its not surprising that data standardizations do not have
much effect. We will just present the analyses of the unstandardized data.

The v 2 statistic for independence of species and sites is 1722.777 (216 df,
P�0.001) and total inertia is 1722.777 / 1002�1.719. We used the program
PC-ORD to run a CA on these data. The total inertia was 1.702, slightly different
from above and reflecting the different precision used by different software and pos-
sibly the difference between reciprocal averaging and the matrix approach to CA.
Don’t be surprised by minor variations in output for CA from different programs.

The CA extracted a total of eight eigenvectors (number of species minus one)
and the first two explained over 70% of the total inertia.

Axis (component) Eigenvalue Percentage intertia

1 0.746 43.41
2 0.459 26.70
3 0.288 16.73
4 to 8 0.227 13.17
Total inertia 1.719 100.00

The joint CA plot of sites and species is in Figure 17.5. We have not included
scales on the axes because different software will scale the scores differently – the
basic patterns should be similar, however. In contrast to the PCA scaling, where the
native species were most influential, the CA scaling emphasizes the two introduced
species because there tended to be more of these than expected at a number of
sites. It is clear that El Mac and Acuna sites were most different from the remaining
sites, with 54th Street also separating out. These sites are associated with the abun-
dance of R. rattus, this species having higher than expected abundance at these sites.
A number of sites (including 32nd Street Sth, 60th Street, Canon, Florida, Juan, Laurel,
Titus and Washington) had similar scores and also had higher than expected abun-
dance of M. musculus. Few sites showed marked differences between observed and
expected numbers for native species. The mainland sites could not be distinguished
from numerous fragments that were associated with the seven native species. It
appears that the ecological gradient across these 28 sites is not long and there is
no evidence of an arching effect in the scaling plot.



17.3.2 Scaling and joint plots
The eigenvectors are used to determine a score for
each principal axis for each object and for each
variable. These scores are used for the scaling
(ordination) plots. Commonly, objects and vari-
ables are plotted together as a joint plot (a
“point–point” plot). The biggest difficulty in inter-
preting these joint plots from a CA is the numer-
ous options for scaling (or standardizing) the
object and variable eigenvectors and subsequent
scores. As with PCA, the scores are scaled by a
measure based on �l, where l is the estimated
eigenvalue for that axis. An alternative scaling
(Hill’s method) uses �(l(1� l)). The different
scaling options result in “minor, but irritating,
variants in presenting CA results” (Gower 1996, p.
162), a problem exacerbated by the different ter-
minology used by statisticians and biologists,
especially ecologists. These different forms of

scaling don’t change the order of objects or
species along the axes but do change their relative
positions because the underlying dissimilarity
measure differs. Not all the types of scaling allow
sensible joint plots (see below).

Jackson (1991) described scaling options for
objects and variables that result in the implicit
dissimilarity between points being Euclidean dis-
tance (Chapter 15; see also Legendre & Legendre
1998). More commonly, especially for biological
applications, we scale objects and/or variables so
that the implicit dissimilarity between points is
the chi-square metric (Chapter 15), and this is the
usual output from CA routines in software. The
distances between objects and/or variables in the
scaling plot are proportional to their chi-square
distances. Three common scalings available in
specialist software used for ecological applica-
tions (sampling units by species abundances)
produce scores that can be used in biplots (see
Legendre & Legendre 1998).

• Scores for sampling units are scaled so that
they are positioned at the centroids of the
species scores. The distances between sampling
units are proportional to their chi-square
distances and this scaling is appropriate when
the main focus is on relative positions of
sampling units (objects).

• Scores for species are scaled so they are
positioned at the centroids of the sampling
unit scores. The distances between species are
proportional to their chi-square distances and
this scaling is appropriate when the main
focus is on relative positions of species
(variables).

• Compromise scaling tries to scale sampling
unit and species scores comparatively with a
method “half-way” between the first two.

It often doesn’t matter which scaling is chosen
because the pattern of objects and variables in the
joint plots will be similar – just the absolute
scores are different and the values of the axis
scores are not of much practical use. Note that
some software plots either objects or variables as
points and the other as vectors, as in a biplot,
although CA actually produces a point–point plot
of objects and variables jointly, not a true biplot.
You also occasionally see the point–point joint
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Figure 17.5. CA joint plot of the 28 sites from Bolger et al.
(1997). Circles are sites (open are fragments, filled are
mainland) and shaded squares are species. Labels for species
are as in Figure 17.3. Note that some sites have the same
scores on both axes and appear as a single point. Some sites
also have the identical axis scores to some species. Axis
scales have been omitted since different software scales
scores differently.
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plots called biplots. Finally, some programs do not
scale scores in a manner that allows sensible joint
plots, especially CA routines in general statistical
software (Legendre & Legendre 1998).

The interpretation of the joint plot of object
and variable scores is different from a biplot. In
CA, objects and variables that occur together on
the plot indicate that the variables have values
greater than predicted under independence for
those objects, or conversely, objects have greater
values than predicted for those variables.
Examining the joint plot in conjunction with a
matrix of residuals from the independence model
for the contingency table will be helpful since we
can see which cells have large deviations from
expected values. We would expect combinations
of objects and variables with large positive devia-
tions to be near each other on the plot, whereas
combinations with large negative deviations to be
in opposite quadrants of the plot. With the scaling
options described above, those variables (e.g.
species) contributing most to the position of the
objects (e.g. sampling units) will be the ones
closest to the particular object on the plot.

The scores produced by a CA can be used, like
principal components scores, as response vari-
ables in subsequent analyses. For example, we
could correlate the sampling unit scores from a
CA with other environmental variables recorded
for each unit or use the sampling unit scores to
examine difference between groups of units.

17.3.3 Reciprocal averaging
Scaling the eigenvectors so that dissimilarities
between points are chi-square distances also
relates to an alternative approach to CA, termed
reciprocal averaging (Hill 1973, 1974; see descrip-
tions in Digby & Kempton 1987, Ludwig &
Reynolds 1988). This is an iterative procedure that
calculates object scores for the first axis as a
weighted average of variable scores and vice versa.
At each step, the object and variable scores are
rescaled so they are comparable. Final scores are
obtained when there is little change in scores
between iterations and convergence is usually
quick. The process is then repeated for the second
axis. The reciprocal averaging procedure is tedious
and produces the similar scores (given rounding
error) as the much more efficient matrix approach

to CA when the two methods are used with the
equivalent scaling. However, the default settings
will often be different between programs that use
the reciprocal averaging algorithm and programs
that use the matrix approach – don’t be surprised
by variations in output from competing software.
The reciprocal averaging algorithm is particularly
useful when we wish to constrain the axis scores
by additional variables, as in canonical correspon-
dence analysis (Section 17.6).

17.3.4 Use of CA with ecological data
The most common users of CA in biology are com-
munity ecologists, who often deal with data sets
consisting of n objects (sampling units, sites, etc.)
and p variables (species abundances) – see Section
17.1. By treating these data sets as two-way contin-
gency tables, CA can be used to scale objects and
variables simultaneously by plotting the scores
for sampling units and species. These data sets are
often based on sampling units along ecological
gradients so that units at each end of the gradient
(i.e. units furthest apart spatially or temporally or
most different along some underlying environ-
mental gradient) have few or no species in
common. Ecologists describe this as high beta
diversity, i.e. large changes in species diversity
along environmental gradients (Ludwig &
Reynolds 1988). We have already pointed out that
under these conditions, PCA can produce a dis-
torted scaling/ordination plot of sampling units
(objects) so that units at the ends of the gradient
are closer together than they should be (“arch”
effect) and may even curve back in (“horseshoe”
effect) – see Legendre & Legendre (1998) for an
excellent summary. This effect is partly because
the PCA scaling plot is trying to display a poten-
tially complex and nonlinear relationship
between dissimilarity and true ecological dis-
tance in a simple form (two or three dimensions),
using a dissimilarity measure (Euclidean) that
does not represent these distances very well.

CA also suffers from this problem (Legendre &
Legendre 1998), because the implied dissimilar-
ity measure is chi-square distance and, like
Euclidean, this does not reach a constant
maximum value when two sampling units have
no species in common (Chapter 15). Also, because
chi-square distance is measuring differences in
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proportional representation of species between
sampling units, it tends to weight rarer species
higher in the calculation of dissimilarity than
their overall abundance warrants (Minchin 1987).
Therefore, sampling units with few or no species
in common may appear more similar relative to
other sampling units in the CA plot than we
would expect from their species composition and
abundance (Wartenberg et al. 1987). If we are using
the CA scaling plot to look for underlying ecolog-
ical gradients, then this distortion can make inter-
pretation difficult, especially for the second axis,
because patterns of sampling units related to a
second gradient (assuming the first is displayed
along the first axis) may be obscured. The second
axis is a quadratic distortion of the first axis,
rather than reflecting a second ecological gradi-
ent (Kent & Coker 1992). Van Groenewald (1992)
simulated ecological data with clear gradients
and showed that CA does not recover underlying
gradients beyond the primary one very well if they
are nearly as strong as the primary gradient.
Therefore, we cannot recommend CA as an appro-
priate method for scaling sampling units across
long ecological gradients.

17.3.5 Detrending
Hill & Gauch (1980) proposed detrended corre-
spondence analysis (DCA) as a solution to the
arching problem. Detrending breaks the first axis
up into a number of segments, the number deter-
mined by the user, and rescales the second axis
so its average is the same for all segments.
Detrending is applied to the reciprocal averaging
algorithm, with rescaling occurring at each itera-
tion. While this method is effective at removing
the arch effect, different numbers of segments

used in the detrending process can affect the
results (Jackson & Somers 1991). Also, the method
assumes that the arch effect is an artifact of the
CA, and not a real pattern in the data (Minchin
1987). Simulations by Minchin (1987) showed that
DCA performed poorly relative to other methods
(e.g. non-metric multidimensional scaling; see
Chapter 18) in trying to recover known ecological
gradients, although this was due to both the
instability of the results to detrending and the
implicit chi-square dissimilarity measure. There-
fore, we cannot recommend DCA as a
scaling/ordination technique because of the arbi-
trary nature of detrending, its sensitivity to the
number of segments chosen and even problems
with order of data entry for some versions of the
algorithm (Okansen & Minchin 1997).

17.4 Canonical correlation analysis

Biologists may have a data set where they wish to
examine the correlation between one set of vari-
ables and another set of variables for the same
objects. For example, consider the data from
Lovett et al. (2000) described in Section 17.1. The
variables recorded from each of the 39 stream
sites were of two types: ten chemical variables
(NO3

�, total organic N, total N, NH4
�, dissolved

organic C, SO2
2�, Cl�, Ca2�, Mg2�, H�), averaged

over three years, and four watershed variables
(maximum elevation, sample elevation, length of
stream, watershed area) – see Box 17.5. We might
wish to examine the correlation between the set
of chemical variables and the set of watershed var-
iables. We could do this by examining all the pair-
wise correlations between the variables (30
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Box 17.5 Worked example of canonical correlation
analysis: chemistry of forested watersheds

We were interested in testing for correlations between the set of ten chemical var-
iables (Box 17.1) and the set of four watershed variables (maximum elevation, site
elevation, stream length and watershed area) for the 39 stream sites in New York
state studied by Lovett et al. (2000). We omitted the acidified Winnisook site with
its extreme concentration of H. We also tried to minimize collinearities by not
including highly correlated variables within either set. For the chemical variables,
we omitted total N as it was highly correlated with NO3 and for the watershed
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variable, we omitted stream length as it was highly correlated with catchment area.
Three of the chemical variables (dissolved organic C, Cl�, H) and catchment area
were transformed to log10 to correct skewness.

Only summaries of the extensive output from statistical software will be pre-
sented. Three canonical variate pairs were extracted (only three watershed vari-
ables). The correlations for the pairs of canonical variates were as follows.

Canonical variate pair 1 2 3

Canonical correlation 0.874 0.733 0.524

Bartlett’s tests of these correlations were as follows.

All three canonical correlations: v 2 statistic�77.387, df�27, P�0.001.
The two sets of variables are not independent so at least the first canonical

variate pair is significantly correlated.
Canonical correlations 2 and 3: v 2 statistic�33.258, df�16, P�0.007.
Once the most correlated canonical variate pair (number one) is removed, at

least the second canonical variate pair is also correlated, but more weakly.
Canonical correlation 3: v 2 statistic�9.775, df�7, P�0.202.
After removing the first two pairs, the third canonical variate pair is not corre-

lated. In summary, only the first two canonical variate pairs are significantly
correlated.

The canonical loadings for the chemical variables (correlations between the
canonical variates and the ten chemical variables) were as follows.

Variable Variate 1 Variate 2

NO3 �0.740 �0.007
Total organic N �0.098 �0.563
NH4 �0.058 �0.287
Log10 dissolved organic C �0.262 �0.311
SO4 0.540 �0.339
Log10 Cl 0.616 �0.358
Ca 0.192 0.110
Mg 0.641 �0.551
Log10 H 0.331 0.016

The canonical loadings for the watershed variables (correlations between the
canonical variates and the four watershed variables) were as follows.

Variable Variate 1 Variate 2

Max. elevation �0.862 0.073
Site elevation �0.699 0.477
Log10 area 0.139 0.393

The strong canonical correlation for the first canonical variate pair represents a cor-
relation between a variate contrasting NO3 with SO4, log10 Cl and Mg and a variate
combining maximum and sample elevation. Sites with higher elevations have greater
concentrations of NO3 and lower concentrations of SO4, Cl and Mg.



pairwise correlations). Alternatively, we could use
canonical correlation analysis where we extract
linear combinations of variables (components)
from the two sets of variables so that first compo-
nent for one set has the maximum correlation
with the first component from the second set. The
components are termed canonical variates and
the first component from each set forms one pair
of canonical variates, the second component from
each set forms a second pair, etc. The number of
canonical variates, and therefore pairs, is the
number of variables in the smallest set.

The basic equation for canonical correlation
analysis is:

R�R11
�1R12R22

�1R21 (17.9)

In Equation 17.9, R is the matrix of canonical cor-
relations, R12 and R21 are the correlation matrices
between sets 1 and 2 and between sets 2 and 1
respectively, and R11 and R22 are the correlation
matrices within sets 1 and 2 respectively.
Basically, this is an eigenvalue–eigenvector
problem similar to that outlined for PCA (Box
15.1), with the constraint that the canonical vari-
ates are paired so they have the maximum corre-
lation among all possible pairs of canonical
variates. The matrix calculations are tedious but
described in detail by Jackson (1991), Jobson
(1992), Manly (1994) and Tabachnick & Fidell
(1996). In some software, canonical correlation
analysis can be set up as a regression problem
with one set of variables being the response set
and the other set being the predictor set.

The output from running a canonical correla-
tion analysis in most software will be familiar
once you are used to eigenvalues, eigenvectors
and component scores from PCA (Box 17.5). The
descriptive output usually includes matrices of
correlations within and between the two sets and
regression statistics for each response variable
regressed against each predictor variable (these
are based on standardized variables because we
are using correlations).

Output related specifically to the canonical
correlation analysis includes eigenvectors and
loadings for the canonical variates from each set,
interpreted in the same way as eigenvectors and
loadings from PCA. Remember that we are using
correlation matrices here so the comparable PCA

interpretation is for centered and standardized
variables. The relative signs associated with eigen-
vector coefficients and loadings are arbitrary
within a variate but the interpretation of the
canonical correlations between variates depends
on the signs associated with the variables within
each variate. For example, the analysis of the cor-
relation between the set of chemical variables and
the set watershed variables from Lovett et al.
(2000) showed negative loadings for NO3 and neg-
ative loadings for maximum and site elevation for
canonical variate 1. The interpretation here is that
large values of NO3 are associated with large
values of maximum and site elevation. Positive
loadings for variables in one set and negative load-
ings for variables in the other for a canonical
variate indicate that large values of the variables
in one set are associated with small values of the
variables in the other. Always check your interpre-
tation by examining the univariate correlations
to make sure your interpretation of the direction
of the multivariate relationship makes sense.

We also get a test of the H0 that there is no cor-
relation between any of the pairs of the canonical
variates, usually provided as Bartlett’s �2 statistic.
If this H0 is rejected, then we know that at least
the first pair of canonical variates is significantly
correlated. Most software then provides tests for
the subsequent pairs, usually sequentially by
testing the remaining pairs after the first has been
removed, then those still remaining after the first
two have been removed, etc.

Like PCA (Section 17.1.3), the interpretation of
canonical correlation analysis really depends on
how easily the canonical variates can be inter-
preted in terms of the original variables. Also like
PCA (Section 17.1.4), rotation of the canonical var-
iates is possible and may improve the simple struc-
ture for each pair of variates.

The nature of the matrix calculations in
canonical correlation analysis means that it is
very sensitive to collinearity among the variables
in either set, especially when one or both sets have
many variables (see Tabachnick & Fidell 1996). In
these circumstances, omitting one or two vari-
ables can cause marked differences (instability) in
the magnitude and signs of the variable loadings
on the canonical variates. This is a similar
problem that affects multiple regression (Chapter
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6) and multivariate analysis of variance (Chapter
16) and other procedures that require matrix
inversion. Removing redundant variables (those
highly correlated with others) is about the only
option. A method for assessing correlations
between two sets of variables that is sensitive to
correlations between pairs of variables within or
between the sets must have limited applicability
to real world data.

We have not found many examples of canoni-
cal correlation analyses in the biological litera-
ture, nor have we had much cause to consider
using it ourselves. This may be because biologists
are most interested in hypotheses about correla-
tions between specific pairs of variables, rather
than sets of variables or exploratory descriptions
of relationships between objects based on some
form of scaling (ordination).

17.5 Redundancy analysis

An obvious extension of canonical correlation
analysis would be to distinguish response and pre-
dictor variables and develop a predictive model
whereby we predict a linear combination of
response variables from a linear combination of
predictor variables. The proportion of the total
variance in the response variables that can be
explained by (predicted from or extracted by) a
linear combination of the predictor variables is
termed redundancy (Tabachnick & Fidell 1996).
The statistical procedure for estimating this vari-
ance and developing the predictive model is
termed redundancy analysis (RDA: van den
Wollenberg 1977). Legendre & Legendre (1998) and
Legendre & Anderson (1999a) provide excellent
descriptions of RDA. A multiple linear regression
model relating each response variable to the set of
predictor variables is estimated and a matrix of
predicted Y-values for the response variables
determined. This matrix is just like the raw data
matrix comprising n objects by p variables, except
that the values for each variable are those pre-
dicted by the regression model. This matrix of pre-
dicted Y-values is then subjected to a PCA via
spectral decomposition of the covariance matrix
of the predicted values (see Box 15.1) to extract
eigenvectors and their “canonical” eigenvalues.

The redundancy, the variance in the response var-
iables explained by the predictor variables, is the
sum of these eigenvalues. The eigenvectors can be
used to calculate scores for each object and can be
used as axes for scaling/ordination of the objects.

The contrast with PCA is important (Legendre
& Legendre 1998). In a PCA, a covariance (or corre-
lation) matrix of the response variables would be
decomposed into eigenvectors and their eigenval-
ues, principal component scores determined for
each object based on these eigenvectors and a
scaling/ordination plot derived from these scores.
In RDA, the response variables are first con-
strained to be a linear combination of some set of
predictor variables, using multiple regression,
and then the eigenvectors and their eigenvalues
are extracted, object scores calculated and a
scaling/ordination plot derived. The RDA eigen-
vectors are constrained to be a linear combination
of the predictor variables, whereas the PCA eigen-
vectors are not related to predictor variables in
any way (Jongman et al. 1995, Legendre &
Anderson 1999a).

RDA can therefore be viewed as an extension of
canonical correlation analysis that explicitly
models multiple response variables against multi-
ple predictor variables. However, ecologists com-
monly use RDA as a modification of PCA to
produce eigenvectors and component scores for
sampling units that are constrained to a linear
combination of environmental variables recorded
for each sampling unit (Legendre & Legendre
1998). For example, Verschuren et al. (2000) exam-
ined the composition of the fossil invertebrate
community in different levels of a core taken from
a lake bed in Kenya and used RDA to incorporate
three environmental variables: salinity, lake level
and papyrus-swamp development. The signifi-
cance of the overall model relating the species
abundance data set and the predictor variables,
and also of individual predictor variables, can be
tested using randomization procedures (Legendre
& Anderson 1999a; Manly 1997). The predictor var-
iables do not have to be continuous and an impor-
tant application of RDA is when the predictors are
dummy variables representing categories of cate-
gorical factors and their interactions (Legendre &
Anderson 1999a; Chapter 18).

In the context of scaling/ordination, the logic
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of RDA can be illustrated with the data from
Bolger et al. (1997). The response variables would
be the abundance of the different rodent species
for 28 fragments (objects) and the predictor vari-
ables would be the other fragment characteristics,
such as area, percentage of shrubs, age, etc. The
scaling of the fragments in terms of species abun-
dances would be constrained so that the compo-
nents were linear combinations of the predictor
variables. An alternative way of constraining axes
of a scaling/ordination plot is within the context
of correspondence analysis and will be described
in the next section.

17.6 Canonical correspondence
analysis

As indicated in the previous section, ecologists
who work with data sets of species abundances for
a number of sampling units sometimes also have
additional variables (covariates) recorded for each
sampling unit. For example, in the study of
rodents in habitat fragments, Bolger et al. (1997)
also recorded the area of the fragment, the per-
centage of the area covered with shrubs, the age
of the fragment, the distance to the nearest large
“source” canyon and the distance to the nearest
canyon fragment of equal or greater size. We
might be interested not only in scaling the sam-
pling unit and species, such as with CA, but also
in examining how the relative positions of sam-
pling unit and species are related to the values of
the additional covariates for each sampling unit.
Canonical correspondence analysis (CCA) is a
modification of CA where the principal axes are
extracted not only so they explain most of the
total inertia (lack of independence between
objects and variables) but also so that their corre-
lation with additional variables is maximized
(Jongman et al. 1995, Kent & Coker 1992, Legendre
& Legendre 1998, ter Braak & Verdonschot 1995).

CCA uses the reciprocal averaging algorithm
for CA. At each step when sampling unit scores are
determined, they are constrained to be a linear
combination of environmental variables (usually
standardized) using OLS multiple regression tech-
niques (Chapter 6). The predicted values of the
sampling unit scores from this multiple regres-

sion are then used to calculate species scores and
the iterative process continues ( Jongman et al.
1995). Incorporating the environmental variables
in this way also ensures that the extracted axes
maximize the dispersion of the species scores
based on the linear combination of environmen-
tal variables. The axes in CA also maximize the dis-
persion of species scores but independently of any
environmental variables.

The main decisions for users of software for CCA
are about standardizations or transformations of
species and/or environmental variables and stan-
dardization and scaling of sampling unit and
species scores. Linear relationships between envi-
ronmental variables and scores may be improved by
transforming environmental variables so they have
closer to a symmetrical distribution. The options
for scaling the scores for CCA are similar to those
for CA (Section 17.3.2) and the choice of scaling
needs to be made carefully if the objects and vari-
ables are to be included in a joint plot.

The CCA algorithm produces axes that repre-
sent maximum correlations with linear combina-
tions of the environmental variables, with the
second axis being uncorrelated with the first. CCA
produces two sets of sampling unit scores. The
first are those produced without being con-
strained by the environmental variables,
although for some reason these are different
when produced by CCA than when the same data
are analyzed by CA. The second are those pro-
duced by the multiple regression of the above
scores on the linear combination of environmen-
tal variables. Palmer (1993) termed these WA and
LC scores respectively, and described them as the
observed sampling unit scores, as weighted aver-
ages of species scores, and those sampling unit
scores predicted from the multiple regression on
the environmental variables. He recommended
plotting the LC scores, arguing that the meaning
of the WA scores is unclear and they differ from
the scores from a straight CA anyway. The relative
positions of sampling unit based on the three
types of scores (CCA WA scores, CCA LC scores, CA
scores) is usually different, although broad pat-
terns are comparable.

Output from CCA algorithms includes axis
scores for sampling unit and species and
vectors representing the correlations between the
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environmental variables and principal axes can
also be included on these plots, creating a biplot.
Canonical weights for the final multiple regres-
sion model are provided as well as correlations
between the environmental variables and species
and sampling unit scores. CCA can be run with
the detrending option although, as discussed in
Section 17.3.5, detrending is difficult to justify.
The big advantage of CCA is the simultaneous
scaling of sampling unit and species (like CA)
while at the same time maximizing the correla-
tions between the principal axes and linear com-
binations of environmental variables. Its
disadvantages are those of CA described in
Section 17.3.4, especially the chi-squared distance
measure, and the limited availability of software;
CCA is not available in any of the common com-
mercial programs and specialist ecological soft-
ware like CANOCO is required.

Blanche et al. (2001) illustrate the use of CCA in
their experimental study of the effects of fire on
the community of ground-active beetles in tropi-
cal savannahs of Kakadu National Park in north-
ern Australia. There were three fire treatments
(unburnt, early-season burn each dry season, late-
season burn each dry season) and six years of
sampling (pre-burn in 1988–89 and post-burn
from 1990 to 1994). Abundances of ground-dwell-
ing beetles, sorted to family and species, in each
of three replicate 15–20 km2 experimental com-
partments (small catchments) for each treatment
in each year were measured with pitfall traps. The
replicate compartments were combined for the
analysis and two environmental covariates were
also recorded for each year–treatment combina-
tion: fire intensity and rainfall just prior to sam-

pling. The CCA showed that the effects of treat-
ment were contingent on both sampling rainfall
and fire intensity (Figure 17.6). Treatment– year
combinations favored by high rainfall tended to
be pre-burn years and unburnt treatments and
late-burn treatments were correlated with less
rainfall and more intense fires.

We illustrate a worked example of CCA based
on the rodent data from Bolger et al. (1997) in Box
17.6. The 25 habitat fragments were scaled based
on the abundances of nine rodent species, with
three variables used to constrain the ordination:
area of the fragment (ha), the age of the fragment
(years), and the distance to the nearest large
“source” canyon (m). All three variables were
important in determining the associations of
fragments with species (Figure 17.7) and the
biplot was quite different to that produced by a
CA on the same data, ignoring the environmen-
tal variables (compare Figure 17.7 with Figure
17.8).

The logic of CCA is to include the environmen-
tal variables as part of the sampling unit and
species scaling (ordination). An alternative
approach is to scale the sampling unit separately
and then examine which species contribute most
to the pattern and also relationships with envi-
ronmental variables. We will discuss these
approaches in Chapter 18.

17.7 Constrained and partial
“ordination”

Both RDA and CCA are known as constrained
scaling procedures because the relative positioning
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Figure 17.6. CCA biplot for
species abundances of beetles in the
wet season for four combinations of
fire treatment and pre- and post-
burn, redrawn from Blanche et al.
(2001). Pre-burn years were
1988–89 and post-burn years were
1990–94.Vectors for rainfall prior to
sampling and fire intensity are
included.
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Box 17.6 Worked example of canonical correspondence
analysis (CCA): habitat fragmentation and
rodents

We repeated the CA on the rodent data from Bolger et al. (1997), but now con-
strained the axes to be correlated with environmental variables that were also
recorded for each site. There were high correlations between the percentage of
the area covered with shrubs and the age of the fragment and between the dis-
tance to the nearest large source canyon and the distance to the nearest canyon
fragment of equal or greater size. To avoid problems with collinearity, only three var-
iables were included: the area of the fragment (ha), the distance to the nearest large
source canyon (m) and the age of the fragment (years). Only the 25 habitat frag-
ments were used because the three mainland sites did not have values for the dis-
tance measure or age.

The fragments were very different in size so as for the CA presented in Box
17.4, we compared the scaling pattern based on raw abundances and also based on
abundances standardized so that all sites had a total abundance of one. The broad
pattern in the biplot was the same for both forms of the data so we just present
the results for the raw data.

We used the program PC-ORD to do a CCA with the site and species scores
standardized to zero mean and unit variance and scaled using the compromise
approach between species scores positioned at centroid of site scores and vice
versa. The total inertia in the data was 1.702 (as with the CA) and three principal
axes were derived.

Axis 1 Axis 2 Axis 3

Eigenvalue 0.595 0.083 0.039
Percentage inertia (variance) 35.0 4.9 2.3

The CCA biplot (Figure 17.7) shows that the introduced mouse M.musculus is asso-
ciated with older fragments that are further away from source canyons. The other
introduced species, R. rattus, is more common on small fragments, occurring in the
opposite quadrant from the vector for area. Three native taxa (P. eremicus, M. cali-
fornianus, N. lepida) were also more associated with larger fragments. The remain-
ing native taxa occurred more commonly on younger fragments that were closer
to source canyons.

The correlations between each CCA axis and the environmental variables
showed that the first axis mainly represented fragment age and to a lesser extent
distance to nearest source – the vector for age is longer than that for distance in
Figure 17.7. This axis is negatively correlated with area – fragments with high scores
on this axis are smaller. Axis 2 is positively correlated with all three variables, but
more so with area.

Variable Axis 1 Axis 2

Area �0.458 0.887
Distance 0.480 0.439
Age 0.806 0.532



of the objects in the scaling (ordination) plot is con-
strained by a set of covariates. In an ecological
setting, we usually have sampling units being
scaled based on the abundances of multiple
species, with the covariates being environmental
variables recorded for each sampling unit or even
spatial coordinates of each sampling unit. These
constrained methods are very informative because
they allow the relationship between the environ-

mental variables and scaling of sampling units or
species to be explored simultaneously. RDA, like
PCA, is most appropriate when the relationship
between species abundances and underlying envi-
ronmental gradients is linear. This is unlikely in
practice, especially for long environmental gra-
dients, so CCA, like CA, is more suited when the
relationship between species abundances and
underlying environmental gradients is unimodal
(Jongman et al. 1995). Forms of scaling/ordination
that have fewer assumptions about the relationship
between species abundances and underlying gra-
dients, such as non-metric multidimensional
scaling, will be described in Chapter 18.
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A CA on the same 25 fragments revealed a similar pattern as the CA on all 28
sites in Box 17.4.

Axis 1 Axis 2 Axis 3

Eigenvalue 0.743 0.459 0.279
Percentage inertia (variance) 43.6 26.9 16.4

The first axis of the CA explained 44% of the total inertia, more than for the CCA
on the same data with the environmental variables included (35%). The second and
third axes also contributed more than in the CCA. This is usually the case when
comparing CCA and CA results for the same data set (Jongman et al. 1996). The
joint plot (Figure 17.8) was almost identical to that in Figure 17.5, indicating that the
removal of the mainland sites had little effect on the results of the CA. In contrast
to the CCA, Acuna, El Mac and 54th Street stand out as different from the other
fragments. Their association with R. rattus is also stronger than in the constrained
ordination.

Figure 17.7. CCA biplot of 25 fragment sites from Bolger
et al. (1997) using LC scores for sites and final scores for
species. Circles are sites and shaded squares are species.
Labels for species as in Figure 17.3. Axis scales have been
omitted since different software scales scores differently.
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An interesting development that can be
applied to any of the constrained scaling/ordina-
tion methods is partial ordination (Legendre &
Legendre 1998). Imagine a situation where we
have two sets of environmental variables, and we
wish to use one set to constrain a scaling of sam-
pling units based on species abundance after
eliminating the effects of the second set. An
example given by Jongman et al. (1995) is where
there is one or more “impact” variables represent-
ing effects of some human activity and one or
more covariates representing other sources of
variation we are less interested in, such as sea-
sonal factors (ter Braak & Versonschot 1995). A
partial scaling of sampling units would use the
impact variables after removing the effects of the
other covariates. This would be achieved by
fitting multiple regression models with each of
the covariates of prime interest (e.g. impact vari-
ables) as the response variable and the secondary
covariates we are partialing out as the predictor
variables. The residuals from each of these

models represent the variation in each of the
primary covariates that is not explained by the
linear relationship with the secondary covariates.
These residuals are then used instead of the orig-
inal primary covariates in a CCA or RDA.

These partial ordination techniques allow us
to examine the relationships between a scaling
based on species abundances and some environ-
mental variables after partialing out the effects of
other covariates. For example, Verschuren et al.
(2000) examined the fossil invertebrate commu-
nities in a core of sediment from a lake in Kenya.
They used RDA to examine the relationships
between the scaling of sampling units (sections of
the core) and three environmental variables
(salinity, lake level, papyrus-swamp development)
and used partial RDA to look at the effects of each
of these covariates after removing one or both of
the remaining ones. We might also be interested
in how much of the variation between sampling
units in abundances of multiple species can be
attributed to a set of environmental variables, a
set of spatial coordinates, the variation shared by
the environmental and spatial components and
the undetermined (residual) variation. Borcard et
al. (1992) described a method based on either
partial RDA or CCA to determine the variation in
the original sampling units by species data matrix
into these four components. The residuals from
multiple regression models of either environmen-
tal variables on spatial coordinates or vice versa
are used to examine the contribution of the envi-
ronmental variables and spatial coordinates inde-
pendently of each other. Note that for partial RDA,
it is variance being partitioned; for partial CCA, it
is inertia. In both cases, percentage contributions
can be determined.

17.8 General issues and hints for
analysis

17.8.1 General issues

• The implicit dissimilarity measures used in
scaling/ordination techniques, such as
Euclidean for PCA and RDA and chi-square for
CA and CCA, may not be best suited to all types
of data, especially species abundance data.
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Figure 17.8. CA joint plot of the same 25 fragment sites
from Bolger et al. (1997) as in Figure 17.7. Note that some
sites have the same scores on both axes and appear as a single
point. Some sites also have the identical axis scores to some
species.The seven fragments associated with M. musculus
(bottom right quadrant) are Laurel, Canon,Washington, 60th,
Juan,Titus and 32nd Street Nth. Axis scales have been omitted
since different software scales scores differently.
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• The choice between covariance and correlation
for the association matrix in a PCA is impor-
tant. Use covariance if you wish differences in
variance for each variable to contribute to the
analysis. Use correlation if the variables are
measured on different scales and you do not
wish differences in variance for each variable
to have any influence on the analysis.

• Eigenvector coefficients and component load-
ings indicate the contribution of each variable
to each component. They should be interpreted
in conjunction with their standard errors.

• CA jointly scales objects and variables, based
on counts, and emphasizes proportional repre-
sentation of variables (e.g. species) in objects
(e.g. sampling units).

• RDA and CCA constrain the scaling of
objects and variables to a linear combination
of covariates; for ecological data, this
directly incorporates environmental variables
in the scaling/ordination of species abundance
data.

17.8.2 Hints for analysis
• Secondary rotation of components after an

initial PCA will often improve simple structure
and interpretability of components.

• Transformation of variables may improve
linear relationships between variables and
improve the effectiveness of component extrac-
tion in PCA.

• Examination of residuals from a PCA can help
assess whether the number of retained compo-
nents is adequate.

• Biplots can be used to represent scaling of
objects in PCA, RDA, CA and CCA with correla-
tions of original variables to each component
indicated by vectors. It is not the closeness of
the end of the vector to objects in the configura-
tion that is important, but the length and angle
of the vectors relative to the axes.
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In the previous chapter, we were mainly inter-
ested in R-mode analyses that were based on asso-
ciations between variables and scaled objects
indirectly, although correspondence analysis
scaled both objects and variables simultaneously.
In this chapter, the primary focus is Q-mode ana-
lyses that directly scale objects based on similar-
ities or dissimilarities between them. The
techniques based on dissimilarities attempt to
display the dissimilarities between objects graph-
ically, with the distance between objects on the
plot (inter-object distances) representing their rel-
ative dissimilarity. The scores for objects on the
axes of these scaling plots can be used as variables
in subsequent analyses so the techniques in this
chapter are also methods for variable reduction.
Remember that objects represent sampling or
experimental units, such as plots, organisms,
aquaria, sites, etc.

Some of the dissimilarity measures for dichot-
omous and continuous variables were outlined in
Chapter 15 (and see Legendre & Legendre 1998 for
a much more complete treatment) and all of those
dissimilarities can be used with the analyses in
this chapter. However, the choice of dissimilar-
ities is a crucial one and different dissimilarities
can result in very different patterns in, and inter-
pretations of, the analyses we will describe.
Additionally, the form of transformation and/or
standardization of variables and/or objects, com-
bined with the dissimilarity measure, can also be
very influential.

18.1 Multidimensional scaling

Multidimensional scaling (MDS) refers to a broad
class of procedures that scale objects based on a
reduced set of new variables derived from the
original variables (Cox & Cox 1994). As the name
suggests, MDS is specifically designed to graphi-
cally represent relationships between objects in
multidimensional space. The objects are repre-
sented on a plot with the new variables as axes
and the relationship between the objects on the
plot should represent their underlying dissimilar-
ity. The methods we described in Chapter 17
achieve this scaling indirectly, although MDS is
more commonly based on similarities or dissimi-
larities between objects and was termed “similar-
ities MDS” by Jackson (1991).

The basic data structure we will use in this
chapter is similar to that from Chapter 17, a data
matrix of i equals 1 to n objects by j equals 1 to p
variables. Any two objects will be identified as h
and i (sensu Legendre & Legendre 1998). The dis-
similarities between objects calculated from our
data are termed d, so that the dissimilarity
between any two objects is dhi. We will call the dis-
tance between any two objects (inter-object dis-
tances) in the scaling (configuration) plot dhi

� and
it is usually measured as simple Euclidean dis-
tance. Unfortunately, there is some inconsistency
in the symbols used for dissimilarity and inter-
object distance in the literature, with � commonly
used for dissimilarity. This seems inappropriate as
Greek letters are usually reserved for unknown
parameters.

Chapter 18

Multidimensional scaling and cluster analysis



MDS can be based on any of the measures of
dissimilarity described in Chapter 15 but is not
restricted to these. For example, Guiller et al.
(1998) calculated genetic dissimilarities (Nei’s and
Rogers’ indices) between 30 North African popula-
tions of the snail Helix aspersa, based on 17 enzyme
loci. They used MDS to examine the relationships
between the populations.

We will illustrate MDS using some recent data
sets from the biological literature.

Genetic structure of a rare plant
In Chapter 15, we described the work of McCue et
al. (1996), who measured the genetic structure of
a rare annual plant (Clarkia springvillensis) in
California. They identified eight subpopulations
and calculated Cavalli–Sforza genetic distances
between subpopulations from isozyme analysis of
tissue samples. We will use their genetic distances
as dissimilarities and examine the relationships
between the subpopulations using MDS.

Habitat fragmentation and rodents
In Chapter 13, we introduced the study of Bolger
et al. (1997) who surveyed the abundance of seven
native and two exotic species of rodents in 25
urban habitat fragments and three mainland
control sites in coastal southern California.
Besides the variables representing the species,
other variables recorded for each fragment and
mainland site included area (ha), percentage
shrub cover, age (years), distance to nearest large
source canyon and distance to nearest fragment of
equal or greater size (m). We will first calculate dis-
similarities in species composition between the
25 fragments and three mainland sites and use
MDS to represent the relationship between these
objects. We will then examine relationships with
other fragment characteristics such as area for the
25 fragments.

Geographic variation and forest bird
assemblages

Mac Nally’s (1989) study on forest birds was first
used in Chapter 17. The data set consisted of the
maximum abundance (from four seasons) for 102
species of birds for 37 sites in southeastern
Australia. These sites were actually replicates of
five different forest types, four each of Gippsland
manna gum, montane forest, foothills woodland,

box-ironbark and river redgum with the remain-
ing 17 sites not able to be classified into one of the
habitats. An obvious question is whether the five
habitat types are different in the composition of
their bird assemblages.

18.1.1 Classical scaling – principal
coordinates analysis (PCoA)

Principal coordinates analysis (PCoA) is closely
related to PCA (Chapter 17) and is sometimes
called classical scaling. We will only provide a
brief introduction to PCoA here (see Legendre &
Legendre 1998 for complete details), mainly
because it is not used that much as a scaling (ordi-
nation) technique in biology. The steps in PCoA
are as follows.

• Create an n by n matrix of dissimilarities
between objects (dhi), based on any of the
dissimilarity measures described in Chapter
15.

• Transform these dissimilarities to �0.5dhi
2. This

transformation maintains the original
dissimilarities during subsequent calculations
(Legendre & Legendre 1998).

• These transformed dissimilarities are double
centered by subtracting the means for the
relevant row and column and adding the
overall mean from the dissimilarity matrix.
This centering removes the first, and trivial,
eigenvector in the next step. The relative
positions of the objects in the final
configuration won’t be affected by the double
centering.

• This symmetric n by n matrix of transformed
dissimilarities is then subjected to a spectral
decomposition to obtain the eigenvectors and
their eigenvalues, in exactly the same way as
we treated a matrix of associations
(covariances or correlations) between variables
in a R-mode PCA. Most of the information (as
measured by the eigenvalues) in the
dissimilarity matrix will be in the first few
eigenvectors (Box 18.1).

• As with PCA (Chapter 17), the eigenvectors are
scaled, usually by the square roots of the
eigenvalues (Legendre & Legendre 1998).

• The coefficients of these eigenvectors are then
used to position the objects relative to each
other on the scaling plot (Figure 18.1).
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If the original data were centered by variable
means and Euclidean distance was used to create
the matrix of dissimilarities between objects, the
relative positions of objects in the PCoA scaling
will be similar to those for the scaling plot from a
PCA based on a matrix of covariances between var-
iables. If the original data were double trans-
formed by row and column totals so that
chi-square distance was used to create the dissim-
ilarity matrix, the relative positions of objects in
the PCoA scaling will be similar to those for the
scaling plot from a CA. So PCoA can be viewed as
a generalization of PCA that allows a much wider
range of dissimilarity measures to be used.

Another way of viewing PCoA is a translation of
dissimilarities between objects into Euclidean dis-
tances, the actual distances between objects in
multidimensional space (Legendre & Anderson

1999a). If the original dissimilarities were metric
(such as Euclidean or chi-square), and all eigenvec-
tors are retained, then the distances in principal
coordinate space are the same as the original dis-
similarities because all the variance in the origi-
nal dissimilarity matrix is retained in the
principal coordinates. In contrast, biologists often
use non-metric dissimilarities, like Bray–Curtis for
species abundance data, and the principal coordi-
nates represent only part of the variation in the
original dissimilarities. Unfortunately, the
remainder may be represented by negative eigen-
values, which are very difficult to interpret. This
may not be a problem if we are using PCoA as a var-
iable reduction technique because the first few
eigenvalues will be positive. However, if we wish to
use all the principal coordinates derived from
a non-metric dissimilarity matrix, such as in
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Box 18.1 Worked example of PCoA: habitat
fragmentation and rodents

We will use the data on rodent numbers from 25 canyon fragment and three main-
land sites in California from Bolger et al. (1997) to illustrate PCoA. Because the sites
were very different in size, we standardized the total abundance for each site to
range between zero and one and calculated a matrix of Bray–Curtis dissimilarities
between the sites. This matrix was then used for the PCoA. Of the 28 possible
eigenvectors, ten had zero eigenvalues and seven had negative eigenvalues but
nearly 90% of the variance was explained by the first two components so only these
were used for the scaling plot of sites.

Axis 1 Axis 2

Eigenvalues 5.255 1.724
Percentage variation 66.081 21.681
Cumulative percentage variation 66.081 87.762

The PCoA scaling plot of the 28 sites based on the original Bray–Curtis dissimilar-
ities of data range standardized by site is shown in Figure 18.1. When corrected for
total abundance at a site, the three mainland sites were almost identical and were
not distinguishable from most of the canyon fragments. Acuna, El Mac and 54th

Street separated from the other sites, especially along axis 2. These three sites also
stood out from the others in the scaling plot from a CA of these 28 sites (Chapter
17, Figure 17.5). The agreement with CA is because the latter emphasizes propor-
tional abundance of species at each site, as does the PCoA when the dissimilarity is
calculated on abundances standardized to the same maximum value at a site. Note,
however, that the CA did separate the three mainland sites from each other, a
pattern not observed in the PCoA, probably reflecting differences in the sensitivity
of the two dissimilarity measures (chi-square and Bray–Curtis) to changes in pro-
portional abundance.



distance-based redundancy analysis (db-RDA; see
Section 18.1.3), then we usually have to correct for
the negative eigenvalues. These corrections are
somewhat technical (Legendre & Legendre 1998,
Legendre & Anderson 1999a) and may result in
conservative tests of complex hypotheses (McArdle
& Anderson (2001).

When dealing with species abundance data,
Minchin (1987) showed that the scaling plots of
sampling units produced by PCoA could distort
underlying ecological gradients. In particular,
PCoA would force long gradients (i.e. with consid-
erable species turnover from one end to the other)
into curved patterns in the configuration in
second and higher dimensions. This distortion
occurred even when more robust dissimilarity
measures like Bray–Curtis were used and Minchin
(1987) argued that this was because PCoA, like
PCA, is based on a linear relationship between dis-
similarity and ecological distance, whereas the
relationship was nonlinear, particularly for large
dissimilarities. Also, PCoA does not provide a
simple way of interpreting the new coordinates in
terms of the original variables (Legendre &
Legendre 1998). Although these problems do not
rule out PCoA as a scaling technique for other
types of data, biologists don’t use PCoA very much

by itself because modern desktop computers
make enhanced scaling techniques (Section
18.1.2) so accessible. However, PCoA was used by
Rundle & Jackson (1996) who measured the abun-
dance of 15 species of littoral zone fish from five
sites in each of three lakes in Ontario, Canada.
They calculated Bray–Curtis dissimilarities
between the 15 sites and then subjected the dis-
similarity matrix to a PCoA. The first two axes
explained over 69% of the variation in the original
dissimilarity matrix and one lake clearly separ-
ated from the other two along the first axis.

We illustrate the use of PCoA on the data from
Bolger et al. (1997), who recorded the abundance
of nine species of rodents in 25 habitat fragments
and three mainland sites in southern California –
see Box 18.1. We calculated a matrix of Bray–Curtis
dissimilarities between sites. Close to 90% of the
variation was explained by the first two axes.

18.1.2 Enhanced multidimensional scaling

Enhanced algorithm
Methods for MDS more familiar to biologists
involve additional steps, beyond the initial scaling
used by PCoA, to improve the fit between the
observed dissimilarities between objects (dhi) and
the inter-object distances in the configuration
(dhi

�). Jackson (1991) termed these methods
“enhanced multidimensional scaling”. Basically,
these methods iteratively reposition the objects in
the configuration using an algorithm that
improves the fit between the dissimilarities and
the inter-object distances, the latter measured by
a form of Minkowski metric such as Euclidean dis-
tance. The most commonly used algorithm for
enhanced MDS is KYST, developed from methods
first proposed by Kruskal (1964a,b), although
some software offers the alternative ALSCAL
program. The approach is surprisingly simple,
although the computations would be very tedious
without computer software. The steps for an
enhanced MDS are as follows (Figure 18.2).

1. Set up a data matrix and make decisions
about transformations or standardizations of the
data.

2. Calculate a matrix of dissimilarities
between objects (dhi) using any of the dissimilari-
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Figure 18.1. PCoA scaling/ordination plot of the 28 sites
from Bolger et al. (1997) based on a Bray–Curtis matrix of
dissimilarities between sites, standardized so all sites have
maximum abundance of one.The three mainland sites are
filled symbols.
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ties described in Chapter 15. Similarities could
also be used; it makes no difference in the subse-
quent steps.

3. Decide on the number (k) of dimensions
(i.e. axes) for the scaling, which will be a compro-
mise between the need to get the fit between dis-
similarities and inter-object distances as good as
possible and minimizing the number of scaling
dimensions for simple interpretation.

4. Arrange the objects in a starting configura-
tion in the k-dimensional space (i.e. on the plot),
either at random or more commonly using coor-
dinates from a PCoA or even a PCA.

5. Move the location of objects in the k-dimen-
sional space iteratively so that at each step, the
match between the inter-object distances in the
configuration (dhi

�) and the actual dissimilarities
(dhi) improves. The iterative procedure uses the
method of steepest descent (see Kruskal 1964a,b
for details).

6. The final position of the objects and there-
fore the final configuration plot is achieved
when further iterative moving of the objects can
no longer improve the match between the inter-
object distances in the configuration and the
actual dissimilarities.

We can show the relationship between inter-
object distance and dissimilarity for all pairs of
objects in a Shepard diagram, which is simply a
scatterplot with dissimilarity (dhi) on the horizon-

tal axis and inter-object dis-
tance (dhi

�) on the vertical axis
(Figure 18.2(c)). Now consider a
linear or nonlinear regression
model relating inter-object
Euclidean distance (dhi

�) as the
response variable to dissimi-
larity (dhi) as the predictor vari-
able. The differences between
the observed inter-object dis-
tances and those predicted by

the regression model (d̂hi
�, sometimes termed “dis-

parities” in the MDS literature) are the residuals
from the regression model. These residuals can be
used to measure the match between the calculated
dissimilarities and the inter-object distances in
the configuration.

One measure of fit is Kruskal’s stress:

(18.1)

In Equation 18.1, the summation is over all pos-
sible n(n�1)/2 pairwise distances and dissimilar-
ities. If there is a perfect metric match between
inter-object distance and dissimilarity (i.e. they
are directly proportional to each other), then the
residuals and stress will be zero. The lower the
stress value, the better the match. There are other
versions of stress used to measure fit (e.g. see
Jackson 1991) and it is important to know which
your software uses because they are scaled, and
therefore interpreted, differently. The version in
Equation 18.1 is the one usually incorporated in
the KYST algorithm and most commonly used by
biologists. When stress is based on a parametric
linear or nonlinear regression model relating
inter-object distances to dissimilarities, we have
metric MDS.

It is common for the Shepard plot to show a
nonlinear relationship between inter-object dis-
tance and dissimilarity (Figure 18.3(b)). While this

�� (dhi
� � d̂hi

�)2

�dhi
�2
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Figure 18.2. Illustration of the
links between (a) configuration
(scaling/ordination) plot, (b)
dissimilarity matrix and (c) Shepard
plot in enhanced MDS. S1, S2, etc.,
are objects, e.g. sampling units.



might suggest that a nonlinear model relating
inter-object distance and dissimilarity is most
appropriate, a more robust approach is to fit a
monotonic regression. This is a form of nonpara-
metric regression that relates the rank orders of
the two variables (Chapter 5). So stress now meas-
ures the concordance in the rank order of the
observed inter-object distances and those pre-
dicted from the dissimilarities. When stress is
based on rank orders, we have non-metric MDS
(NMDS).

A third type of MDS has been developed by
Faith et al. (1987) and is termed hybrid MDS
(HMDS). They noted that for species abundance
data, sampling units at the ends of long ecological
gradients often have few or no species in common
and this can result in the nonlinear relation-
ship between dissimilarity and inter-object (“eco-
logical”) distance mentioned in the previous
paragraph. Importantly, it seemed that a linear
relationship between dissimilarity and inter-
object distance was appropriate for small dis-
similarities but inappropriate for larger
dissimilarities. Their hybrid approach generates
two dissimilarity matrices. The first deletes dis-
similarities above a threshold value and then uses
a metric (linear) MDS to measure stress. The
second matrix uses all the dissimilarities and uses
a non-metric MDS to measure stress. The final con-
figuration is the one that minimizes the combina-
tion of the two stress values. The choice of
dissimilarity threshold is a difficult one, with
Faith et al. (1987) originally proposing 0.8 (for
Bray–Curtis or Kulczynski dissimilarities) but also

suggesting that some continuous function could
also be used. Our experience is that HMDS does
not offer much advantage over NMDS, even for
ecological data sets, and is only available in spe-
cialized software anyway.

Interpretation of final configuration
We illustrate the use of NMDS with the data set on
genetic differences between subpopulations of a
species of plant from McCue et al. (1996) in Box
18.2, the habitat fragmentation study of Bolger et
al. (1997) in Box 18.3 and the forest bird commu-
nity study from Mac Nally (1995) in Box 18.4. The
final configuration is the scatterplot of objects in
a scaling or ordination diagram (Figure 18.3,
Figure 18.4, Figure 18.5). The interpretation of this
plot depends on how good a representation it is of
the actual dissimilarities, i.e. how low the stress
value is. Clarke (1993) provided some guidelines
for stress values based on ecological (species abun-
dance) data. Stress values greater than 0.3 indicate
the configuration is no better than arbitrary and
we should not try and interpret configurations
unless stress values are less than 0.2, and ideally
less than 0.1. These thresholds are for Kruskal’s
stress formula in Equation 18.1, while some soft-
ware may use different versions that require dif-
ferent guidelines. We can always reduce the stress
value, i.e. improve the fit between dissimilarities
and inter-object distances, by increasing the
number of dimensions in the scaling. However,
the more dimensions we use, the more difficult
the display and interpretation of the final config-
uration, so we are trying to achieve a compromise
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Figure 18.3. (a) NMDS
scaling/ordination plot of the eight
subpopulations of the plant Clarkia
springvillensis based on Cavalli–Sforza
genetic distances between
subpopulations; from McCue et al.
(1996). (b) Shepard plot showing the
relationship between Cavalli–Sforza
genetic distances between
subpopulations and NMDS distances
between subpopulations.

Cavalli-Sforza distance
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Box 18.2 Worked example of enhanced MDS: genetic
structure of a rare plant

McCue et al. (1996) sampled eight subpopulations of the rare annual plant (Clarkia
springvillensis) from three sites along the Tule River in California. Two sites, Bear
Creek (BC) with three subpopulations and the Springville Clarkia Ecological
Reserve (SCER) with three subpopulations, were separated by about 300 m and
the third site, Gauging Station (GS) with two subpopulations, is approximately 8 km
apart. The non-metric MDS algorithm produced identical configurations from all
random starts and the stress of the final configuration was 0.045, indicating that the
scaling/ordination of the subpopulations closely matched the Cavalli–Sforza genetic
distances between the subpopulations. The final scaling plot of the subpopulations
(Figure 18.3) indicates that the two Gauging Station subpopulations are genetically
different from the remaining subpopulations, with subpopulation GS1 being the
most distinct.

Box 18.3 Worked example of enhanced MDS: habitat
fragmentation and rodents

We will use the data on rodent numbers from 25 canyon fragment and three main-
land sites in California from Bolger et al. (1997) to illustrate NMDS. Because the
sites were very different in size, the data were standardized so that each site had a
maximum total abundance of rodents of one. We were interested in comparing
sites based on species composition and abundance but without patterns being con-
founded by very different areas.

A matrix of Bray–Curtis dissimilarities between all 28 sites was calculated and
subjected to non-metric MDS. From 20 random starts in two dimensions, the
minimum stress value of 0.054 was achieved from four starts, although all 20 starts
produced very similar final configurations, one of which is displayed in Figure 18.4,
with a small range of stress values (0.054–0.059). The mainland sites were not
clearly separate from the fragments and the pattern of sites was similar to that in
the PCoA plot. The same fragment sites were close to the mainland sites and Acuna,
El Mac and 54th Street were most different to the mainland sites (Figure 18.4). It is
interesting to compare the pattern from the NMDS to that from the CA on the
same data described in Chapter 17 (Figure 17.5). Although the distances between
the sites are different in the two plots, the broad pattern of Acuna, El Mac and 54th

Street being separate was consistent in both analyses.
Correlations were calculated between the two dimensional configuration

(scores) of sites and each of the six habitat variables (total area, shrub area, percent-
age area of shrubs, distance to nearest large source canyon and distance to nearest
fragment of equal or greater size, age). Randomization testing showed that only per-
centage of shrub was significantly related to the configuration of sites, although the
result for age suggested a pattern worth investigating further.
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Variable n r P

Area 28 0.28 0.380
Shrub 28 0.33 0.250
Percentage shrub 28 0.69 0.010
Distance nearest source 25 0.18 0.740
Distance nearest fragment 25 0.20 0.640
Age 25 0.47 0.050

Box 18.4 Worked example of enhanced MDS: geographic
variation and forest bird assemblages

The data set from Mac Nally (1989) consisted of the maximum abundance (from
four seasons) for 102 species of birds for 37 sites in southeastern Australia. A matrix
of Bray–Curtis dissimilarities between sites was constructed. No standardization
was used because the data were densities of birds, rather than absolute counts. This
means that species with high densities will dominate the dissimilarities between
sites. A non-metric MDS in two dimensions, using 20 random starts, resulted in a
stress value of 0.14. Using three dimensions, a stress value of 0.08 was achieved
from 12 of the 20 random starts, so the three dimensional solution was used. The
scaling/ordination plot of the 37 sites in the first two of the three dimensions (Figure
18.5(a)) showed clear separation of sites dominated by Gippsland Manna Gum and
River Red Gum, and to a lesser extent Box-Ironbark. The remaining habitat types
(Foothills woodland and Montane forest) could not be easily distinguished from the
unclassified sites. If we had no evidence for prior groupings in these data, we might
use a minimum spanning tree to further examine relative closeness of sites (Figure
18.5(b)). The three longest spans would roughly separate the River Red Gum and
Gippsland Manna Gum habitats from the rest, with two of the unclassified sites
intermediate.

Mac Nally (1996) was able to classify the sites a priori into five habitat types so
we were able to test the H0 of no difference between the five habitat types using
a single factor ANOSIM procedure. We used the program PRIMER. The global R
statistic was 0.914 and the probability of obtaining a value this great or greater, based
on a randomization test, was less than 0.001. We concluded there were statistically
significant differences in bird assemblages between habitats. Pairwise ANOSIM tests
were difficult to interpret because there were only four observations in each group
which only allowed 35 possible permutations for each pairwise randomization test
and thus P values were�approximately 0.029. However, only two of the pairwise
comparisons had R values less than one, Montane forest versus Foothills woodland
and Box-Ironbark versus Foothills woodland.

We also used the non-parametric MANOVA procedure of Anderson (2001)
to test the H0 of no difference between the five habitat types.We used the program
NP-MANOVA, kindly supplied by M.J. Anderson from the University of Auckland.
The single factor MANOVA test was based on Bray–Curtis dissimilarities between
sites and we used 10 000 permutations.



between minimizing stress and minimizing the
number of dimensions. Our experience with eco-
logical data is that two or three dimensions will
usually produce adequate configurations.

The final orientation of the configuration is
arbitrary and it is only the relative distances

between objects that are relevant to interpreta-
tion in MDS. It is preferable to rotate the final con-
figuration so that the first axis lies along the
direction of maximum variation. This can be
achieved by a PCA on the MDS axis scores (Clarke
& Warwick 1994) and will often be done automat-
ically by MDS software. Note that actual values of
the object scores are also arbitrary and these can
be scaled in a number of ways; only the relative
distances between the objects is important. Plots
of the final configuration do not need scales on
the axes as long as the axes are scaled identically.

Basically, the interpretation of final scaling
(ordination) plot is subjective. Objects closer
together are more similar (e.g. in species composi-
tion) than those further apart. A useful addition
to the plot is a minimum spanning tree, where
the objects are joined by lines so that the sum of
line lengths is the smallest possible and there are
no closed loops (Figure 18.5(b)). Minimum span-
ning trees can be applied to any scatterplot of
points. For MDS configurations, objects joined by
the shortest spans are closest on the plot and
those separated by longest spans are furthest
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Source SS df MS F P Possible number of permutations

Habitat 28 964.903 4 7241.226 9.619 �0.001 2.55�109

Residual 11 292.165 15 752.811
Total 40 257.068 19

Clearly, we would reject the H0 and conclude that there is a significant differ-
ence across the five habitats in the Bray–Curtis dissimilarities between sites. We
then ran pairwise comparisons, based on t statistics (�F from non-parametric
MANOVA comparing two groups). All comparisons were significant, except
Foothills woodland v Montane forest. indicating that this procedure is more pow-
erful than the ANOSIM tests, although Holm’s adjustment to the P values to control
the family-wise Type I error rate resulted in no significant differences (all P�0.280).

Comparison t P

Box-Ironbark v Foothills woodland 1.702 0.031
Box-Ironbark v Gippsland Manna Gum 3.227 0.028
Box-Ironbark v Montane forest 2.676 0.028
Box-Ironbark v River Red Gum 3.639 0.028
Foothills woodland v Gippsland Manna Gum 2.954 0.031
Foothills woodland v Montane forest 1.520 0.054
Foothills woodland v River Red Gum 3.550 0.028
Gippsland Manna Gum v Montane forest 3.262 0.029
Gippsland Manna Gum v River Red Gum 3.361 0.028
Montane forest v River Red Gum 4.287 0.030

Figure 18.4. NMDS scaling/ordination plot of the 28 sites
from Bolger et al. (1997) based on a Bray–Curtis matrix of
dissimilarities between sites, standardized so all sites have
maximum abundance of one.The three mainland sites are
filled symbols.
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apart; the latter may separate different groups of
objects (see Digby & Kempton 1987). Minimum
spanning trees can be plotted in three dimen-
sions, although they become ugly to interpret.

We may also have formal hypotheses we wish
to test. For example, are dissimilarities between
objects related to other differences, such as geo-
graphic distances? If the data consist of replicate
objects within pre-defined natural (e.g. polluted
area vs non-polluted area) or experimental (e.g.
different nutrient treatments) groups, then we
would probably test whether objects within a
group are closer together than objects from differ-
ent groups. Testing these hypotheses will be con-
sidered in Sections 18.1.3 and 18.1.5.

Convergence problems
The algorithms for enhanced MDS converge to the
final configuration iteratively and the number of
iterations depends on the complexity of the data.
More rapid convergence can be achieved if the
coordinates from an initial PCA or PCoA scaling
are used rather than a random starting configura-
tion and some software for MDS defaults to a pre-
liminary PCoA before iterating. The iterative
nature of the various algorithms for enhanced
MDS means that the iterations can converge to a
“local” solution that is not the configuration that
best matches inter-object distances with dissimi-
larities. The only solution to this problem is to
repeat the MDS a number of times, using a new
random starting configuration each time, and
then compare the different configurations for
stress and axis coordinates. We can only be confi-
dent of the final configuration if it occurs from a

majority of random starts. Comparison of differ-
ent configurations can be achieved through
Procrustes analysis (Digby & Kempton 1987),
where one configuration is rotated and rescaled to
most closely match a second configuration of the
same objects. The fit is measured by the sum of
squared distances between the corresponding
objects in the two configurations.

18.1.3 Dissimilarities and testing
hypotheses about groups of objects

It is common for biologists to have recorded multi-
ple variables from objects in a sampling or experi-
mental design where the objects fall into
pre-defined groups. The design might have a
single factor or be multifactorial with factors
either crossed or nested. We would often be inter-
ested in testing null hypotheses about differences
between groups in these designs, as we would
using linear ANOVA models if we had just a single
response variable. In the multivariate context, the
methods for testing such hypotheses proposed in
the literature are based on the original variables,
the scores for each object in scaling (ordination)
space or the dissimilarities between objects.

Tests based on dissimilarities are not straight-
forward for two reasons. First, the dissimilarities
between objects are not always independent of
each other (the dissimilarities between objects 1
and 2 and 2 and 3 are not independent of the dis-
similarity between objects 1 and 3), so randomiza-
tion (permutation) testing procedures are
required (Chapter 3). Second, if we wish to use the
dissimilarities in linear models, we require sums-
of-squares based on the difference between each
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Figure 18.5. NMDS
scaling/ordination plots of the 37
sites from Mac Nally (1989) based
on a Bray–Curtis matrix of
dissimilarities between sites. In (a),
the different habitats are identified
by different symbols. In (b), a
minimum spanning tree joins all sites
with longest spans indicated by *.



observation and the mean of the observations, or
the centroid in the multivariate context. When
dealing with metric dissimilarities (e.g. Euclidean
distance), the centroid of a group of observations
and the sum of squared deviations from this cen-
troid are straightforward to calculate and inter-
pret. This is not the case when dealing with
non-metric dissimilarities like Bray–Curtis and a
limitation of some approaches is their inability to
deal with non-metric dissimilarities (see Anderson
2001).

MANOVA based on original variables
We could use a multivariate analysis of variance
(MANOVA; see Chapter 16), a multivariate ana-
logue of the univariate ANOVA, to test the null
hypothesis of no difference between groups in
some linear combination of variables. While
MANOVA may be useful in some situations, it has
quite restrictive assumptions about variances and
covariances that are difficult to test (Chapter 16)
and are unlikely to be met when the variables are
species abundances with lots of zeros. A robust
non-parametric form of MANOVA (NPMANOVA)
that uses dissimilarities has recently been
described by Anderson (2001) and will be dis-
cussed below. MANOVA comparing groups of
objects is also restricted to data sets where the
number of variables does not greatly exceed the
number of objects, whereas ecological data sets
often comprise many variables (species) and fewer
objects (sampling untis).

(M)ANOVA based on axis scores
Another approach is to use any of the scaling pro-
cedures from Chapter 17 or this chapter that
provide scores for each object on derived variables
(components or axes). These scores could be used
as response variables in linear models, as
described for PCA in Chapter 17, to test hypotheses
about group differences. There are some problems
with this method. With MDS, we have to decide
which axes to use; maybe scores from multiple
axes (i.e. the first two or three dimensions if stress
is adequate) could be used with a MANOVA? The
axes themselves are also not a linear combination
of variables like the components from a PCA or
axes from a CA so are more difficult to relate to
the original variables. Finally, the MDS axes

simply define the relative positions of the objects
in multidimensional space so as to represent the
observed dissimilarities. Tests of hypotheses
about group differences might be better based on
these actual dissimilarities rather than some
approximation of them.

Mantel test
The Mantel test described in Chapter 15 can be
used to correlate a dissimilarity matrix between
objects with another dissimilarity matrix that
simply separates objects into groups (Manly 1997,
Schnell et al. 1985). This second matrix is termed
the model or design matrix (Legendre & Legendre
1998, Sokal & Rohlf 1995). The main limitation of
using the Mantel test in this way is that it is diffi-
cult to test more complex models such as those
including interaction terms.

Rundle & Jackson (1996) used a Mantel test to
test for differences in the fish communities of the
littoral zones of three lakes in Canada based on
five sites in each lake. They constructed a
Bray–Curtis dissimilarity matrix between the 15
sites. To test whether the variation in fish commu-
nities was primarily between lakes rather than
within lakes, they used Mantel test to assess
whether the Bray–Curtis matrix based on fish was
associated with a matrix containing zeros for
within-lake distances between sites and ones for
between-lake distances between sites.

Multi-response permutation procedures
Mielke et al. (1976, see also Mielke 1985) proposed
multi-response permutation procedures (MRPP)
that test hypotheses about group differences in
Euclidean distances, and Zimmerman et al. (1985)
illustrated their application to biological data
sets, such as n sampling units by p species.
Basically, the MRPP determines the mean of the
Euclidean distances between objects within each
group and calculates an MRPP statistic (delta) that
is a linear combination of these mean within-
group Euclidean distances. The statistic produces
a weighted average (based on sample size) of the
within-group mean Euclidean distances. Small
values of the statistic indicate that objects tend to
be found in groups. The probability distribution
of the MRPP statistic is determined by randomiz-
ing the allocation of all objects to the groups,
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keeping the original sample sizes, with the null
hypothesis being that all random allocations are
equally likely. We compare our observed value of
the MRPP statistic to the probability distribution
generated under randomization to get the prob-
ability of obtaining the observed value of the sta-
tistic or one smaller under the null hypothesis.
The MRPP can be used for a range of hypotheses
including those associated with paired compari-
sons and randomized block designs.

MRPPs have been traditionally based on
Euclidean distance and their use with more
robust non-metric dissimilarities would be tricky
because of the difficulty of defining the centroid
and calculating the mean within-group dissimi-
larity. Nonetheless, McCune & Mefford (1999) have
suggested that MRPPs might work well with other
dissimilarity measures, such as Bray–Curtis. Since
Euclidan distance is not a particularly appropriate
measure of dissimilarity for some types of biolog-
ical data, e.g. species abundances (Chapter 15), we
could use the inter-object distances from classical
(PCoA) or enhanced scaling (NMDS) in a MRPP. This
is not an ideal solution because we know that
these distances are an imperfect representation of
the actual dissimilarities, and correction for neg-
ative eigenvalues would be required for PCoA. This
approach is used, although not for MRPP, in dis-
tance-based redundancy analysis (Legendre &
Anderson 1999a) and discussed below.

Analysis of similarities
ANOSIM (Analysis of Similarities; Clarke 1993,
Clarke & Warwick 1994) is a hypothesis testing
procedure that uses Bray–Curtis dissimilarities,
although it could use any dissimilarity measure.
This procedure uses a test statistic (R) based on the
difference between the average of all the rank dis-
similarities between objects between groups (r̄ B)
and the average of all the rank dissimilarities
between objects within groups (r̄ W):

R� (18.2)

This is analogous to an ANOVA comparing
between-group and within-group variation. The
use of rank dissimilarities rather than actual dis-
similarities is in keeping with the spirit of non-
metric MDS.

r̄B� r̄W

n(n�1)/4

The H0 being tested by ANOSIM is that the
average of the rank dissimilarities between all
possible pairs of objects in different groups is the
same as the average of the rank dissimilarities
between pairs of objects in the same groups. R is
scaled to be within the range �1 to –1.
Differences between groups would be suggested
by R values greater than zero where objects are
more dissimilar between groups than within
groups. R values of zero indicate that the null
hypothesis is true. Negative R values indicate
that dissimilarities within groups are greater
than dissimilarities between groups, an outcome
Clarke & Warwick (1994) considered unlikely.
However, Chapman & Underwood (1999) showed
that negative R values can occur, especially when
groups had high levels of within-group variabil-
ity that were similar between groups and when
outliers were present. They argued that negative
R values could be a useful diagnostic, indicating
an inappropriate completely random sampling
design when stratified sampling would be more
appropriate.

Like the MRPP, ANOSIM uses a randomization
procedure to randomly allocate objects to groups
to generate the distribution of R under the null
hypothesis that all random allocations are equally
likely. Clarke & Warwick (1994) described the use
of ANOSIM procedures for nested designs where
averaging over the subsampling levels produces a
series of single factor tests for each factor. They
also proposed ANOSIM for testing main effects in
factorial designs by simply treating each main
effect as a single factor test, averaging over the
other factor. Legendre & Legendre (1998) pointed
out that ANOSIM is very similar to a Mantel test
using a model matrix to define the groups spec-
ified in the hypothesis and the two methods
should produce similar P values for the same
hypothesis.

Both MRPP and ANOSIM use some measure of
average dissimilarity within and between groups.
Van Sickle (1997) described a useful graphical
display for representing the relative strength of
the differences in dissimilarity between groups,
called a mean similarity dendogram. In its sim-
plest form, a mean similarity dendogram for two
or more groups would have branches for each
group originating at the between-group mean
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dissimilarity and the length of each branch repre-
senting the within-group mean dissimilarities.
Alternatively, the origin of each group branch
could be staggered, with the mean between-group
dissimilarity for each pair of groups plotted separ-
ately. Displays for multifactor designs are also pos-
sible (Van Sickle 1997). Mean similarity
dendograms use the actual mean dissimilarities,
rather than their rank orders, for plotting and
therefore do not provide a direct graphical repre-
sentation of the ANOSIM results.

One of the limitations of both MRPP and the
ANOSIM procedure is that complex tests, such as
interaction terms in linear models, are not avail-
able. This is in part because tests of interactions
are difficult in the randomization context, since
the interaction hypothesis cannot be simply
expressed in terms of a random reallocation of
observations to groups (see slightly differing opin-
ions in Edgington 1995 and Manly 1997).
Interactions are most sensibly tested in a linear
model framework that also considers main
effects. Unfortunately, if non-metric dissimilar-
ities like Bray–Curtis are used, it is not straightfor-
ward to partition the variance (sum-of-squares)
from fitting a multivariate linear model because
of the difficulty of defining deviations from the
centroid of the observations (Anderson 2001,
Legendre & Anderson 1999a).

Distance-based redundancy analysis
Because of the difficulties in using MRPP or
ANOSIM tests for designs with interactions,
Legendre & Anderson (1999a; see 1999b for minor
correction) proposed an alternative approach for
testing group differences in dissimilarities, called
distance-based redundancy analysis (db-RDA).
Their method uses PCoA to convert the original
dissimilarities into their equivalent Euclidean dis-
tances, correcting for negative eigenvalues
(Section 18.1.1). The matrix of n objects by p prin-
cipal coordinates is then related to grouping
factors using redundancy analysis (RDA; Chapter
17), where the grouping factors are represented by
a matrix of dummy variables (Chapter 5) and the
relationship is tested by a linear model using ran-
domization tests (Chapters 3 and 8). This makes it
easy for testing interactions because the analysis
just becomes a multiple linear regression model

and any combination of crossed and nested, fixed
and random factors can be included.

It turns out that we can get the same results by
simply doing a MANOVA test on the corrected
principal coordinates, although Legendre &
Anderson (1999a) argued that db-RDA has the
advantages of more robust randomization tests
and does not require more objects than variables
in the original data matrix. The latter advantage
is important because ecological data sets nearly
always have more species (variables) than sam-
pling units (objects). The main limitation of db-
RDA is its complexity and the need to have
software for the RDA component.

Non-parametric MANOVA
Distance-based RDA was developed to translate
various non-metric measures of dissimilarity into
their equivalent distance in Euclidean space using
PCoA. We can then relate these distances to a
design matrix using linear models (e.g. RDA) and
calculate sum-of-squared deviations between
observations and their centroid. McArdle &
Anderson (2001) and Anderson (2001) have
recently shown that the partitioning of sums-of-
squares (SS) and variances used for testing linear
models can also be applied directly to dissimilar-
ities, even non-metric ones like Bray–Curtis. This
method means that using PCoA on the original
dissimilarities is not necessary and the negative
eigenvalues produced by db-RDA correspond to
negative SS. The correction for negative eigenval-
ues in db-RDA described by Legendre & Anderson
(1999a) actually produces overly conservative tests
when random factors are included in the design
(McArdle & Anderson 2001).

The non-parametric MANOVA described by
McArdle & Anderson (2001) and Anderson (2001) is
elegantly simple and can be applied to any design
structure. The main difficulty is developing a ran-
domization test for complex terms like interac-
tions (Chapter 9; see Manly 1997). Our view is that
the non-parametric MANOVA is so widely appli-
cable in the biological sciences that we will
describe it in some detail.

Consider a single factor design with p groups
and n objects in each group so the total number of
objects is N�pn. For the equations below, any two
objects are termed h (h�1 to N ) and i (i�1 to N ).
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From an N by N matrix of dissimilarities (dhi e.g.
Bray–Curtis) between all pairs of objects, we calcu-
late three SS.

The first is the sum of squared dissimilarities
between all pairs of objects divided by N:

SSTotal� dhi
2 (18.3)

Note that only the lower (or upper) diagonal of the
dissimilarity matrix is used. The dissimilarity
between objects h and i is the same as between i
and h and is only counted once in the calculation
of SSTotal.

The second is the within-groups SS. The
SSResidual is the sum of squared dissimilarities
between objects within each group, summed over
the groups:

SSResidual� dhi
2ehi (18.4)

In Equation 18.4, ehi equals one if object h and i are
in the same group and zero if they are in different
groups (just like the design matrix in the Mantel
test above).

The between-groups SS is determined from the
usual additive partitioning of the total SS
described for ANOVA models in Chapter 8:

SSGroups�SSTotal�SSResidual (18.5)

The approximate F-ratio statistic for testing the H0

that all allocations of objects, and therefore dis-
similarities between objects, between groups are
equally likely is:

F� (18.6)

This is analogous to the F-ratio statistic for a single
factor ANOVA model. The randomization test is
then done in the same manner as described for
single factor ANOVA tests in Chapter 8, using a
subset of all possible permutations for anything
except very small p and n.

Pairwise contrasts of specific groups, either
planned or unplanned, can be done using the
same test statistic. If there are many contrasts, the
significance levels may need to be adjusted to
control family-wise Type I error rate, using one of
the Bonferroni corrections described in Chapter
3.

SSGroups /(p�1)
SSResidual /(N�p)

1

N
 �
N�1

h�1
 �

N

i�h�1

1

N
 �
N�1

h�1
 �

N

i�h�1

However, the main advantage of this non-
parametric MANOVA is that it can handle more
complex designs, especially those that include
interactions. Anderson (2001) provides appropri-
ate formulae for factorial designs but the logic is
straightforward. The SSTotal are calculated using
Equation 18.3. The main change from a single
factor design is that we need to calculate within-
groups SS for each factor separately, ignoring the
other factor. The SS for each main effect are
simply the difference between the SSTotal and
within-groups SS for that factor. The SSResidual are
calculated using Equation 18.4 except that each
combination of the two factors (each cell) is con-
sidered a single group. So the ehi equals one if the
objects are in the same cell (combination of
factors) and zero if they are in different cells. The
SSInteraction are what is left after the main effects
and residual SS are subtracted from the total. The
F-ratios are determined following Equation 18.6,
although the denominator may need to be
changed if either factor is random (see Chapter
9).

As we discussed in Chapter 9, there are differ-
ent approaches to randomization tests in factorial
designs and some debate about whether random-
ization tests for interaction terms are possible.
Manly (1997) summarized these different
approaches, including whether to randomize
observations or residuals and whether to impose
restrictions on which objects are randomized for
tests of different terms. He argued that the differ-
ent methods produced comparable results.

We illustrate the use of a single factor non-
parametric MANOVA with the bird community
data from Mac Nally (1989) – see Box 18.4. There
were four replicate sites for each of five forest hab-
itats types; unclassified sites were not included in
the comparison. There was a significant differ-
ence between habitats, although like the ANOSIM
procedure, the small number of possible permuta-
tions with only four replicates per group meant
that pairwise comparisons were difficult to inter-
pret after adjusting significance levels. Based on
raw P values, the non-parametric MANOVA proce-
dure seemed more powerful than the ANOSIM
comparisons.

The two main advantages of the non-paramet-
ric MANOVA introduced by McArdle & Anderson
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(2001) and Anderson (2001) are that any dissimilar-
ity measure can be used and the tests are based on
the partitioning of sums-of-squares as used in clas-
sical linear models. This means that the method
can be used for any design structure that can be
formulated as a linear model (see Chapters 5, 6,
8–12) and can accommodate fixed and random
factors by using different denominators in the
approximate F-ratios. The only limitation is the dif-
ficulty of determining the appropriate randomiza-
tion test procedure for complex designs.

18.1.4 Relating MDS to original variables
Another question of interest in scaling (ordina-
tion) procedures is to determine which variables
contribute most to the observed pattern among
objects, e.g. which species contribute most to the
separation among sampling units or which
morphological variables contribute most to the
separation of organisms. As described in Section
18.1.3, we will often be using a sampling or experi-
mental design that includes groups of objects and
our interest will be which variables contribute
most to the any separation among groups. When
we scale using one of the R-mode methods
described in the previous chapter, then we obtain
loadings for each variable on each derived compo-
nent (axis of the scaling plot) as in PCA or can plot
object and variable scores jointly to examine cor-
relations as in CA.

Scaling techniques that are based directly on
dissimilarities, such as MDS, do not provide corre-
lations between derived axis scores and variables
as part of the algorithm but there are alternative
ways of investigating how the variables contribute
to the final configuration of objects. We could
simply correlate the axis scores from an MDS with
each variable or linear combination of variables.
This is not an ideal solution because, besides the
problem of increasing Type I error rates from
multiple testing if we do numerous correlations,
we have to decide how many and which dimen-
sions from the MDS we use. Additionally, we know
that the scores, or at least the distances between
objects, are imperfect representations of the
actual dissimilarities so a method that uses these
dissimilarities directly would be preferable.

Clarke & Warwick (1994) described a procedure
for ecological data termed SIMPER (similarity per-

centages) for determining which species (vari-
ables) are contributing most to the dissimilarity
between groups of object (sampling units). For
example, the Bray–Curtis dissimilarity for a pair of
sampling units is basically the differences
between the units for each species, summed over
all the species. SIMPER computes the percentage
contribution of each species to the dissimilarities
between all pairs of sampling units in different
groups and the percentage contribution of each
species to the similarities between all pairs of sam-
pling units within each group. It then calculates
the average of these percentage contributions,
with its standard deviation. Species with a large
ratio of average/standard deviation percentage
contribution to dissimilarity between sampling
units in different groups are those species that
best discriminate between the groups. Note that
there are no formal tests of hypotheses with
SIMPER, just a list of species in order of their per-
centage contributions to dissimilarities between
groups or similarities within groups.

18.1.5 Relating MDS to covariates
In ecological data sets, we often have two types of
variable recorded for each sampling unit, species
abundances (or presence/absence) and environ-
mental characteristics (covariates). In these
circumstances, we might wish to relate the dis-
similarities between sampling units, or groups of
sampling units, based on the species variables to
differences in the environmental characteristics.
Are sampling units that are very different from
others in terms of species composition also very
different in terms of one or more environmental
variables? There are numerous ways of relating
dissimilarities between sampling units to envi-
ronmental variables, two of which we have
already described. We could examine correlations
between, or fit regression models to, the scores for
each axis from the MDS and the environmental
variable(s) (Ludwig & Reynolds 1988), just as we
described for component scores from a PCA in
Chapter 17. These correlations can be represented
as vectors on the MDS plot, producing a biplot,
and tests of the correlations are best done in a ran-
domization context. The problems with relating
environmental variables (covariates) to axis scores
are the same as outlined in Sections 18.1.3 and
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18.1.4, i.e. the problem of multiple testing, axis
scores being an imperfect representation of the
actual dissimilarities, deciding how many and
which dimensions to use.

Clarke & Ainsworth (1993) proposed a proce-
dure for ecological data that basically measures
the correlation between dissimilarities between
sampling units based on species composition and
the dissimilarities between sampling units based
on environmental variables. They provided an
algorithm called BIO-ENV that first calculates a
dissimilarity matrix (e.g. Bray–Curtis) between
sampling units based on species abundances and
a separate dissimilarity matrix (e.g. Euclidean dis-
tance) between sampling units based on environ-
mental variables. It then measures any correlation
between the rank-orders of these two matrices
using the Spearman rank correlation coefficient.
Each pair of observations for the correlation will
be the rank of the Bray–Curtis dissimilarity (from
species abundances) between objects h and i and
the rank of the Euclidean distance (from environ-
mental variables) between objects h and i.

Legendre & Legendre (1998) pointed out that
the BIO-ENV procedure basically calculates the
same correlation as a Mantel test (Chapter 15 and
Section 18.1.3), except the former is based on rank
transformed data. The Mantel test could be used
for the global test of no correlation between the
two matrices, or even between the dissimilarities
based on species composition and differences
between sampling units for each environmental
variable separately. It can also be extended to
compare more than two matrices (Diniz-Filho &
Bini 1996).

Clarke & Ainsworth (1993) and Clarke &
Warwick (1994) incorporated a stepwise routine
into their BIO-ENV procedure, to find the combi-
nations of environmental variables that produce
dissimilarities between sampling units with the
highest correlations with dissimilarities between
sampling units based on species composition.
They argued that their implementation of the
Mantel test is not suitable for hypothesis testing,
both because the dissmilarities for both sets of
variables are not independent and also because
their stepwise procedure would produce numer-
ous significance tests that are difficult to interpret
(see Chapter 6).

Procrustes analysis (Section 18.1.2; Digby &
Kempton 1987, Legendre & Legendre 1998) can also
provide a descriptive measure of the fit of a config-
uration between objects based on one set of vari-
ables (e.g. species abundances) and a configuration
between the same objects based on a separate set
of variables (e.g. environmental characteristics).

18.2 Classification

The aim of classification is to group together a
number of objects based on their attributes or var-
iables to produce groups of objects where each
object within a group is more similar to other
objects in that group than to objects in other
groups. One form of classification analysis is dis-
criminant function analysis (DFA; Chapter 16)
where the number of groups was known a priori.
In this section, we are interested in classification
methods where the number of groups is not
known and must be determined from the data.

18.2.1 Cluster analysis
Cluster analysis is a method for combining
similar objects into groups or clusters, which can
usually be displayed in a tree-like diagram, called
a dendrogram (Figure 18.6). Legendre & Legendre
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Figure 18.6. Dendrogram from hierarchical UPGMA
cluster analysis of the eight subpopulations of the plant
Clarkia springvillensis based on Cavalli–Sforza genetic distances
between subpopulations; from McCue et al. (1996).



(1998) provide a recent, very thorough, discussion.
Cluster analyses are used commonly by biologists.
For example, Crews et al. (1995) examined plant
species in montane rainforest in Hawaii. They
compared six sites (varying in age) using the
cover–abundance measures for numerous plant
species. The objects were sites, the variables were
species abundances and cluster analysis was used
to place the sites into like groups. Koenig et al.
(1994) studied acorn production in oak trees in
California. They clustered five species of oaks
(objects) based on twelve mean annual values of
acorn production (variables). Probably the most
important use of cluster analysis in biology is tax-
onomic and phylogenetic research, where the dis-
similarity measures are often morphological or
genetic/molecular differences between organ-
isms, species, etc., and the dendrogram represents
a possible evolutionary sequence.

Agglomerative hierarchical clustering
Agglomerative methods start with individual
objects and join objects and then objects and
groups together until all the objects are in one big
group. This is the form of cluster analysis familiar
to most biologists. Usually objects are clustered
but sometimes you may wish to cluster variables
(e.g. species). Most algorithms for agglomerative
cluster analysis start with a matrix of pairwise
similarities or dissimilarities between the objects
and the steps are as follows.

1. Calculate a matrix of dissimilarities (dhi)
between all pairs of objects.

2. The first cluster is formed between the two
objects with the smallest dissimilarity.

3. The dissimilarities between this cluster and
the remaining objects are then recalculated.

4. A second cluster is formed between cluster
1 and the object most similar to cluster 1.

5. The procedure continues until all objects
are linked in clusters.

The graphical representation of the cluster
analysis is a dendrogram (Figure 18.6, Figure
18.7(a)), showing the links between groups of
objects with the lengths of the lines representing
dissimilarity. If there are many objects, the stan-
dard dendrogram can be very long and difficult to
represent on a single page. An alternative repre-
sentation is the polar dendrogram (Figure 18.7(b)),
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Figure 18.7. Dendrograms from hierarchical UPGMA
cluster analysis of the 37 sites from Mac Nally (1995) based
on a Bray–Curtis matrix of dissimilarities between sites. In
(a), the usual dendrogram is displayed with clusters identified
for Gippsland Manna Gum (Gr 1), Box-Ironbark (Gr 4) and
River Red Gum (Gr 5). In (b), the polar representation of the
dendrogram is displayed, with site numbers. Gippsland Manna
Gum includes sites 2, 3, 4 and 24; Montane forest sites 9, 11,
12, 15; Foothills woodland sites 10, 20, 21, 37; Box-Ironbark
sites 25, 33, 34, 36; River Red Gum sites 29,30, 31, 32;
remaining sites unclassified.



where the objects are arranged in a circle and
their distance from the center of the circle repre-
sents dissimilarities between objects and groups
of objects. Like scaling (ordination) plots, the
interpretation of the groupings in the dendro-
gram is subjective and the decision about which
groups to report is usually based on some arbi-
trary cut-off value for dissimilarity.

The major difference between the variety of
available hierarchical agglomerative clustering
methods is how the dissimilarities between clus-
ters and between clusters and objects (step 3) are
recalculated. These are termed linkage methods,
and three common ones are as follows.

• Single linkage (nearest neighbour), where the
dissimilarity between two clusters is measured
by the minimum dissimilarity between all
combinations of two objects, one from each
cluster.

• Complete linkage (furthest neighbour), where
the dissimilarity between two clusters is
measured by the maximum dissimilarity
between all combinations of two objects, one
from each cluster.

• Average linkage (group average or mean),
where the dissimilarity between two clusters is
measured by the average of all the dissimilari-
ties between all combinations of two objects,
one from each cluster. The group mean (or
average) linkage strategy, commonly called
unweighted pair-groups method using arith-
metic averages (UPGMA), is often recom-

mended. There is a weighted version of UPGMA
(WPGMA), which weights the original dissimi-
larities differently, and unweighted clustering
based on centroids (UPGMC), which is equiva-
lent to UPGMA except that centroids instead of
means are used.

Kent & Coker (1992), Legendre & Legendre (1998)
and Ludwig & Reynolds (1988) discuss the pros and
cons of these different linkage methods. If there are
“strong” (i.e. very dissimilar) groups in your data,
then the different methods will produce similar
dendrograms; in contrast, the different linkage
strategies can produce very different patterns for
data with weak structure (Ludwig & Reynolds 1988).
Belbin et al. (1993) proposed a flexible modification
of UPGMA that allowed the clusters to be better, if
artificially, defined and this method effectively
recovered true groups in the data based on simula-
tion studies (Belbin & McDonald 1993).

Box 18.5 illustrates a cluster analysis of the sub-
populations of Clarkia springvillensis based on
genetic differences recorded by McCue et al. (1996).
A cluster analysis of the 37 sites in southeastern
Australia, using Bray–Curtis dissimilarities based
on the densities of 102 species of forest birds (Mac
Nally 1989), is presented in Box 18.6.

Agglomerative cluster analysis does have some
disadvantages, primarily related to the inter-
pretation of the dendrogram. The hierarchical
approach means that once a group or cluster is
formed from two or more objects, that group
cannot be broken later in the process. As a result,
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Box 18.5 Worked example of cluster analysis: genetic
structure of a rare plant

Like MDS, hierarchical cluster analysis can be based on any type of dissimilarity
matrix. We clustered the data on the eight subpopulations of the rare annual plant
(Clarkia springvillensis) in California based on Cavalli–Sforza genetic distances
between the subpopulations (McCue et al. 1996). We used UPGMA and the
dendrogram is shown in Figure 18.6. The two Gauging Station subpopulations (GS)
split off first; these were most different in the NMDS scaling plot based on the same
matrix – see Box 18.2. Then the second of the Springville Clarkia Ecological Reserve
(SCER) subpopulations grouped with the second and third Bear Creek (BC) sub-
populations and the first BC subpopulation grouped with the first and third SCER
subpopulations.



the dendrogram is not a representation of all pair-
wise dissimilarities between objects like in multi-
dimensional scaling (MDS). A misleading cluster
formed early in the process will influence the
remaining clusters. Also, the analysis forces
objects into clusters and it would be easy for naïve
biologists to place too much emphasis on these
clusters without examining the actual dissimilar-
ities. We much prefer MDS as a method for graph-
ically representing relationships between objects
based on dissimilarities.

Divisive hierarchical clustering
Divisive methods have a long history for cluster-
ing ecological data. They basically start with the
objects in a single group and split them up into
smaller and smaller groups until each group is a
single object. One method popular with ecologists
is two-way indicator species analysis (TWINSPAN),
a complex procedure that uses the reciprocal aver-
aging algorithm of correspondence analysis
(Chapter 17) to successively divide the first axis for
both sampling units and species into smaller
groups. The output includes a two-way table that
orders the sampling units and species and shows
the groupings and the relative abundances of
species for each sampling unit. The actual compu-
tations are tedious, although a detailed descrip-
tion can be found in Kent & Coker (1992). Van
Groenewood (1992) and Belbin & McDonald (1993)
provided simulation results that showed that
TWINSPAN is not particularly good at detecting
true clusters in ecological data and the problems

that affect correspondence analysis, particularly
the distortion of sampling units along the first
axis, also affect TWINSPAN.

Non-hierarchical clustering
Non-hierarchical methods do not represent the
relationship between objects in hierarchical form.
Basically, they start with a single object and
cluster other objects that are similar to the first
one. In contrast to hierarchical clustering, objects
can be reassigned to clusters during the clustering
process. One method common in statistical soft-
ware is K-means clustering – see Legendre &
Legendre (1998) for a detailed description.
K-means works by splitting the objects into a pre-
defined number (K) of clusters, and then cluster
membership of objects is iteratively re-evaluated
by some criterion, such as to maximize the ratio
of between-cluster to within-cluster variance.
Another method is additive tree clustering, which
develops a tree-like network (dendrogram) where
the dissimilarity between objects within a cluster
is represented by the sum of the lengths of the
branches joining them (Gower 1996) and may be
more suited to non-metric dissimilarity measures.

18.3 Scaling (ordination) and
clustering for biological data

When the main purpose of the multivariate anal-
ysis is to scale objects, what ecologists term ordi-
nation, numerous techniques are available. There
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Box 18.6 Worked example of cluster analysis: geographic
variation and forest bird assemblages

A matrix of Bray–Curtis dissimilarities, based on densities of 102 species of birds,
between sites was used to hierarchically structure the 37 sites in southeastern
Australia (Mac Nally 1989). No standardization was used because the data were
densities of birds, rather than absolute counts. The UPGMA clustering procedure
produced the dendrogram shown in Figure 18.7(a), although representing this in
polar form (Figure 18.7(b)) makes presentation a little easier. The Gippsland Manna
Gum sites, the River Red Gum sites and the Box-Ironbark sites grouped into clear
clusters, whereas the remaining habitat types (Foothills woodland and Montane
forest) were not in separate clusters. This interpretation is similar to that from the
NMDS on the same matrix of dissimilarities (Box 18.5).



have been many evaluations and comparisons of
these techniques, particularly for ecological data
in the form of species abundances across sam-
pling units. Differing opinions on the relative
merits of different techniques can be found in
Faith et al. (1987), Jackson & Somers (1991),
Minchin (1987), Palmer (1993), Peet et al. (1988), ter
Braak & Verdonschot (1995), van Groenewood
(1992), and Wartenberg et al. (1987), among
others. In our view, the choice of method depends
on the nature of the data, the implicit measure of
dissimilarity used by each method, and, not
surprisingly, the biological question being
addressed. Our preferred approach is to use a
method that is applicable to a range of data types,
is amenable to various user-defined standardiza-
tions and transformations of the data, is flexible
in terms of which dissimilarity measure is used,
and can be used for describing patterns and
testing a priori hypotheses. Multidimensional
scaling (MDS), especially the robust non-metric
version (NMDS), meets all these criteria. Any
measure of dissimilarity can be used, thereby
allowing dissimilarities between objects based on
continuous, binary and mixed variables under
nearly every combination of transformation and
standardization. The scaling or ordination has
been shown to be robust for a range of data types,
accurately representing underlying true dissimi-
larities and recovering ecological gradients, and
hypothesis tests can be based on the dissimilar-
ities. For ecological data, NMDS also appears to be
the most robust for nonlinear relationships of
species abundances across sampling units along
long ecological gradients, which can result in
misleading arching of second and higher dimen-
sions in some methods.

The most obvious competing technique is cor-
respondence analysis (CA) or the more sophisti-
cated canonical version (CCA). The strengths of
these methods are also their weaknesses. By impli-
citly using the chi-square metric as the dissimilar-
ity measure, they allow joint scaling plots of
objects and variables and when axes are scaled
similarly, relative positions of objects and vari-
ables can be compared. Unfortunately, the restric-
tion to the chi-square metric also reduces
flexibility and this dissimilarity measure may not
be ideal for some forms of data (Faith et al. 1987).

There are also decisions to be made about how to
scale the axis scores, although the different scal-
ings don’t often alter the general pattern from the
joint plot.

Constrained ordinations like CCA and redun-
dancy analysis (RDA) also allow for biplots, where
covariates can be included on the scaling plot
showing which axes are correlated with which
covariates. This is probably the main reason for
the popularity of these methods, especially CCA.
Relationships between dissimilarities and covari-
ates under the MDS framework can also be evalu-
ated although not in the same direct manner as in
CCA and RDA. Finally, we shouldn’t forget the
oldest of these techniques, principal components
analysis (PCA). While not always suitable as a
scaling/ordination procedure, PCA is still a very
important method for variable reduction, espe-
cially when linear relationships between variables
are expected.

You may have inferred from Section 18.2.1 that
we are not big users of cluster analysis, especially
for representing dissimilarities between objects.
Clustering procedures do not really use all pair-
wise dissimilarities for grouping objects so the
dendrogram is not necessarily a good representa-
tion of a dissimilarity matrix. The main use of
clustering procedures in biology is to display pos-
sible evolutionary and phylogenetic relation-
ships, where the objects are organisms or
taxonomic groups and the dissimilarities are
morphological or genetic differences. Cluster
analysis has less applicability for analyzing
species abundance data to show relationships
among sampling units. Ecologists sometimes use
an initial cluster analysis to identify groups in a
data set and then indicate those groups on a sub-
sequent scaling plot. This approach has never
made much sense to us, the cluster analysis
almost certainly being a less efficient way of rep-
resenting dissimilarities between objects than a
method like enhanced MDS (but see Legendre &
Legendre 1998 for an alternative view). Certainly,
it is inappropriate to test hypotheses about differ-
ences between these groups; hypothesis tests
cannot be validly used to compare groups that
were defined by the same data.
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18.4 General issues and hints for
analysis

18.4.1 General issues

• Principal coordinates analysis (PCoA) is a
useful metric scaling procedure but has gener-
ally been superseded by enhanced, iterative
scaling procedures.

• Our preferred technique for scaling or ordina-
tion of ecological data, when there are numer-
ous zeros and extracting underlying ecological
gradients is important, is a combination of a
suitable dissimilarity measure, like Bray–
Curtis, and robust non-metric multidimen-
sional scaling.

• Non-metric MDS is probably more robust than
metric MDS, especially when the relationship
between dissimilarities and inter-object dis-
tances is nonlinear. Hybrid MDS may offer a
slight advantage.

• Hierarchical cluster analysis is not as useful as
MDS for representing a dissimilarity matrix
and has the disadvantage of forcing all objects
into clusters that cannot be reassessed during
the clustering procedure.

18.4.2 Hints for analysis
• Final enhanced MDS configurations should not

be interpreted without examining stress

values. Make sure you know which version of
stress your software uses. Values for version
one of Kruskal’s stress should be less than 0.15,
ideally less than 0.10, for configurations of
objects to be considered reliable.

• Multiple runs from random starting configura-
tions should be compared with enhanced MDS,
to ensure that any configuration does not rep-
resent a local, unrepeatable, pattern. With
large data sets, i.e. many objects, using an
initial PCoA to determine a starting config-
uration may help convergence.

• Analysis of similarities (ANOSIM) or multi-
response permutation procedures (MRPP) are
useful ways of testing hypotheses about group
differences in a multivariate context, the
former retaining the underlying philosophy of
NMDS. For pairwise comparisons of groups, n
greater than four per group is needed for the
randomization tests. For more complex
hypotheses, especially tests of interactions, the
non-parametric MANOVA of Anderson (2001)
offers great promise.

• The unweighted pair-groups method using
arithmetic averages (UPGMA) is usually recom-
mended as a linkage strategy for agglomerative
clustering. Non-hierarchical methods may
offer more flexibility because clusters are not
fixed once formed.
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A central part of reporting any scientific work is
the presentation of the results, in either tabular
or, more commonly, graphical form, and a consid-
erable literature has accumulated about the
appropriate ways for displaying quantitative data
(e.g. Cleveland 1993, Tufte 1983, 1990, and some
recent issues of The American Statistician). Much of
this literature focuses on clarity of graphs and it
is an issue that has become increasingly impor-
tant as biologists do multifactorial experiments,
often with complex underlying statistical models.
We then face the problem of explaining those
complex results to an audience that is pressed for
time, and deluged by the number of papers pub-
lished in any given month. In this environment,
the presentation of your results becomes almost
as important as the work itself, as you must con-
vince a reader that he or she should persist with
reading your paper, in the face of the many other
demands on their time.

In many cases, the decision whether to read a
paper completely is based initially on the title and
abstract, which are provided by many of the elec-
tronic databases and the web. Having decided to
look more closely at the paper, the next decision
made is whether to persist with reading it. That
decision will be made based in part on how clearly
you express your ideas, and there is a long tradition
of convincing scientists to write clearly, with
several excellent and essential guides (e.g. Pechenik
2001, Strunk & White 1979, Williams 1997). 

As a result of these issues, many of us think
carefully about our writing style. In contrast,
there is not such a long history of thinking about
how to present the data, although there are some

examples of creative ways to present the raw data
from a study in a very complex appendix. Because
the data and accompanying analyses determine
whether the audience believes the story you are
telling, it is critical that you present those results
as clearly as possible, drawing attention to the
most important features of the results, rather
than submerging them in a sea of extraneous
material. In this chapter, we present some simple
ways to present analytical results and display
results graphically, as well as making suggestions
of ways not to present results. Our aim is not to be
prescriptive about presentation, but to encourage
you to think more about how to report your work.

19.1 Presentation of analyses

We will deal with some of the most common anal-
yses, although many of these concerns and sug-
gestions apply to a range of other statistical
analyses.

19.1.1 Linear models

Regression analyses
Analyses of linear regression models are a clear
example of where most statistics packages gener-
ate extensive output, but much of the informa-
tion can be omitted. In the case of a simple linear
regression with a single predictor variable, you
will get an output similar to the one in Table 19.1
from most statistics packages.

The regression model examines the relation-
ship between the number of limpets in a quadrat
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(log-transformed, LOGLIMP) and the cover of algae
(ALGAE), and the output gives us the estimated
regression line, some measures of how precisely
the parameters of the line – slope and intercept –
have been estimated, and tests of hypotheses
about the slope and intercept (by default, that
each equals zero). Some or all of this material
could be added into a table, but we can present
most of the information in the text in standard-
ized form.

First, in a simple regression, there is consider-
able redundancy. Most statistics packages are
written to deal with complex regression models,
and a simple regression is treated as just a special
case of the general linear model. The bottom half
of the output is an ANOVA table, testing whether
the regression model (i.e. the set of predictor var-
iables) explains significant amounts of the varia-
tion in the dependent variable. The top section of
the table also shows tests of hypotheses – t tests for
the slope and intercept. With only one predictor
variable, the ANOVA F test and the t test for the
effect of algae are identical, and you can see on
the output that the F-ratio of 5.129 is the square of
t (�2.265), and the two P-values are identical
(Chapter 5). There is, in this case, no point in
reporting both values. Other parts of this output
only become relevant when we have more predic-
tor variables, e.g. tolerance, adjusted multiple r2

(see Chapter 6). In most cases, we are interested

only in whether the regression is significant, the
estimates of the model parameters (which gives
an idea whether the relationship is likely to be
important), and some measure of how well the
model fits the data. The t or F tests for the effects
of the predictor variable provide the first informa-
tion. The intercept and slope are listed under
“Coeff” in the output table above (“CONSTANT” is
often used to indicate the intercept of the regres-
sion model), and the simplest measure of the
scatter of points around the line is the r2, provided
at the top of the output. We could therefore
reduce that table of output to a single sentence in
the text, using just the information highlighted
on the output table: 

The number of limpets fell as algal cover
increased, although algal cover only explained
12% of the variation in limpet abundance
(equation: log(limpets)�1.076�0.006�algal
cover, F1,38�5.129, P�0.029, r2�0.119).

This format is a standard one; and you could
expect a reader to be familiar with the estimates
of the parameters of the regression model, etc. –
assuming that you’ve mentioned somewhere that
it’s a linear regression! If not, that information
could be added inside the parentheses. Again, if
we wished to be true minimalists or maximize the
data density, we could omit the r2 or even the F-
ratio. As we discuss below if you know the df and
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Table 19.1 Standard regression output from a major statistics package. The example is from SYSTAT version 6

Dep Var: LOGLIMP N: 40 Multiple R: 0.30.345 Squared multiple R: 0.119

Adjusted squared multiple R: 0.096 

Standard error of estimate: 0.373

Effect Coeff SE StdC Tol t P

CONSTANT �1.072 0.083 �0.0 . 12.994 0.000

ALGAE �0.006 0.003 �0.3 1.0 �2.265 0.029

Analysis of Variance

Source SS DF MS F P

Regression 0.713 1 0.713 5.129 0.029

Residual 5.282 38 0.139



P, you can back-calculate the F-ratio, so the P and
F are technically redundant. In the same fashion,
for a simple regression, the r2 can also be calcu-
lated from the ANOVA table – it’s the SSRegression/
(SSRegression�SSResidual), so the P-value is enough for
a desperate reader to calculate the r2. We recom-
mend this as overkill – most readers are comfort-
able with the information given in the previous
paragraph. The only additional information
might be interval estimates for the model param-
eters, such as confidence intervals.

The information from more complex regres-
sions can also generally be compressed, although
not to the same degree, and most complex regres-
sions are presented in tables.

ANOVA
The simplest way of presenting the results of a
linear model with categorical predictor variables
(i.e. a classical ANOVA model) is to display the com-
plete ANOVA table. However, in many publication
outlets, space is at a premium and there is usually
pressure on authors of scientific papers in biology
to reduce the amount of journal space devoted to
results of statistical analyses. With this in mind, we
should consider ways of presenting ANOVA results
more efficiently without sacrificing information.

We suggest the following.

• The degrees of freedom should always be
presented, as they indicate the sample size.
Therefore, we do not need both SS and MS, as
one can be calculated from the other using the
df.

• As long as the MSResidual and F-ratios are
provided, we don’t need the MS for groups or
specific contrasts as these can be calculated
from the F-ratio, the degrees of freedom, and
the MSResidual. This step does require that you
have described the statistical model adequately
in the Methods section.

• As discussed in Chapter 3, we prefer P-values to
be presented (at least for P�0.001), as they
allow readers to use their own significance
level for testing H0.

Single factor models
For a single factor ANOVA model, there is gener-
ally no need to report your findings in a table;
there is only one way to calculate the F-ratio. You

can report your analysis in the text of your results,
giving results in a standardized form:

“Attending a stats course by the authors of this
book did not markedly improve the quality of
students’ analyses (F1,4�1.23, P�0.546)”

The information in parentheses tells a reader
that the conclusion is based on an F test with
numerator df�1, denominator with df�4, that
the F-ratio is 1.23 (and hence the ratio of MSGroups

to MSResidual is 1.23), and gives the probability of
this value of F, or one larger, under the null
hypothesis. There is no need for further informa-
tion (except, perhaps, why this particular null
hypothesis is retained). Of course, a real minimal-
ist might argue that the value of the F-ratio is
unnecessary; it follows automatically from the P-
value and the two degrees of freedom.

If your analysis includes planned comparisons
within an overall analysis, you can specify them in
the same way, or you could include the analyses in
a table. If you have listed the dfResidual and MSResidual

in the table, all you need to describe for most
planned comparisons is the P-value. The vast
majority of planned comparisons have numerator
df�1, and you have provided the other informa-
tion (df, MS). In most cases, planned contrasts and
trend analyses are best incorporated into the body
of the ANOVA tables since they represent parti-
tioning of the SS (see Chapter 8).

Multiple comparison results are commonly
presented in two ways (i) labeling means in graphs
and tables with the same letter or symbol if they
are not significantly different, and (ii) listing the
means (or group labels) in order and joining those
not significantly different with an underline (see
Chapter 8). The results can also be presented in
the text, e.g. “a Tukey’s test (with ��0.05) showed
that the two highest densities had slower growth
rates than the two lowest densities”.

Complex ANOVA models
Two other issues are relevant for multifactor
ANOVAs.

• When random factors are included, it is often
useful to indicate the different error terms
used in the ANOVA table unless it is a standard
design. When the number of factors gets very
large, there can be many possible (and actual)
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denominators, and a reader may not wish to
derive the expected mean squares (e.g. Keough
& Quinn 1998, for a very complex example).

• Measures of explained variance (e.g. variance
components) are often incorporated into
ANOVA tables when random factors are
included.

19.1.2 Other analyses
Many other statistical methods also produce volu-
minous output with lots of redundancy, and you
can generally reduce the volume of analytical
results, without sacrificing information. There are
also often conventions of how to report particular
analyses – which pieces of information are critical
to assure a reader that you know what you’re
talking about, and that you have results that he or
she should believe. We will not go into details on
these other analyses here, but, in the earlier chap-
ters, you will find that the examples we cite can
also be used as guides for how to report those
kinds of analyses. Unfortunately, in some of the
analyses that are only now making their way into
the biological literature, such as randomization
tests, including bootstraps and jackknifes, logistic
regression, etc., there are no conventions for pre-
senting analyses, and inspection of the literature
shows great variation in how results are reported.

19.2 Layout of tables

Once you have decided which information to
incorporate into a table, there is the matter of
how the table can be laid out. Many current soft-
ware packages allow you a wide range of format-
ting options, and, just like the discussion on
graphic design in Section 19.3, some of those
options improve the appearance of your text,
while others produce hideous results. The table
should be laid out to make the reader’s job as easy
as possible. Look at the examples in Box 19.1, and
see which table provides the clearest layout of
simple information. The tables present the results
of testing for the effects of existing ascidians on
settlement of marine invertebrates larvae. The
analyses are single factor ANOVAs, and the table
shows the P value from each analysis, together
with an estimate of the residual variance and
power values (to detect a 50% change in settle-

ment rate). We had already decided to omit SS, MS,
and F-ratios. The table is laid out simply, with no
unusual formatting. The degrees of freedom were
constant across species, and were detailed in the
legend of the table.

We could improve the readability of the table
by a few changes – there are three statistically sig-
nificant results, and they can be highlighted by a
bold typeface. The table shows results from two
polychaetes, a species of barnacle, and a few bryo-
zoans. If we want a reader to see them in their
natural groups, and, perhaps, to contrast the
results for different groups, we could either put
faint lines between the groups or put some space
between some of the lines. A reader then sees that
all of the significant results fall in the same taxo-
nomic group. In contrast, the lower panel shows
one of the worst formatting styles, and we have
buried the important information behind a large
number of completely unnecessary grid lines.
There is nothing to draw a reader’s attention to the
most important bits of information, in this case
the tests of hypotheses, although we could equally
have decided to highlight the power values.

In some cases, complex sets of results can best
be displayed using non-standard table designs. For
example, if there are many analyses of the same
kind, such as analyses on a large number of
species, the point of interest may be the patterns
of significance, power, etc. For example, Table 19.2
shows an even simpler table, taken from Keough
& Raimondi (1996), summarizing results from a
whole suite of experiments. The experiments
cover the effects of microbial films, and at issue is
whether particular films stimulate, inhibit, or
have no effect on settlement of larvae. In this
table, the authors chose to use ticks and crosses to
indicate positive and negative results and circles
to indicate cases of no effect. A few weak or equiv-
ocal results are indicated by the “�”. Blanks indi-
cate that the species in question didn’t settle
during the particular experiment. Dotted lines
separate groups belonging to different phyla. The
table summarizes a large number of analyses
from three papers.

These examples aren’t an exhaustive list, nor
are they necessarily the best ways to present infor-
mation, but they do emphasize that there are
alternatives to tedious standard ANOVA tables
from complex models!
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19.3 Displaying summaries of the
data1

We will describe a number of different types of
graphical display that biologists commonly
use for summarizing numerical information and

presenting results. In general, too little informa-
tion is paid to the layout of these graphs, despite
their being the sections of the paper that readers’
attention is often drawn to first. There is a sub-
stantial literature on production of graphical
display of information, including the excellent
books by Tufte (1983, 1990), especially his wonder-
ful 1983 book, and Cleveland (1994). The manual
for the graphics component of the statistics
package SYSTAT (SPSS 1999) includes an introduc-
tory chapter by Leland Wilkinson that is a clear
discussion of graphic design.
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Box 19.1 Different arrangements of a table

Taxon P �MSResidual Power (ES�50% )

Serpulids 0.348 20.32 100
Spirorbids 0.455 2.60 47
Elminius 0.531 24.89 71
Cryptosula 0.025 1.90 48
Scruparia 0.789 0.62 61
Tricellaria 0.017 4.72 98
Watersipora 0.525 3.45 94
Bugula neritina 0.118 10.36 69
Bugula stolonifera 0.042 18.60 100

Taxon P �MSResidual Power (ES�50% )

Serpulids 0.348 20.32 100
Spirorbids 0.455 2.60 47

Elminius 0.531 24.89 71

Cryptosula 0.025 1.90 48
Scruparia 0.789 0.62 61
Tricellaria 0.017 4.72 98
Watersipora 0.525 3.45 94
Bugula neritina 0.118 10.36 69
Bugula stolonifera 0.042 18.60 100

Taxon P �MSResidual Power (ES�50% )

Serpulids 0.348 20.32 100
Spirorbids 0.455 2.60 47
Elminius 0.531 24.89 71
Cryptosula 0.025 1.90 48
Scruparia 0.789 0.62 61
Tricellaria 0.017 4.72 98
Watersipora 0.525 3.45 94
Bugula neritina 0.118 10.36 69
Bugula stolonifera 0.042 18.60 100

1 In presenting the following, often hideous, graphs, you
should be aware that we generally used the default settings of
one or more common graphics packages, rather than trying
hard to create awful graphs!



The guiding principle in constructing graphs
is to produce clear, unambiguous, representations
of your results. These representations should
draw a reader’s attention to what you consider the
most important aspects of your results, and
should be free of distracting elements. In most
cases, this will mean simple, clean graphics,
rather than the wonderfully ornate productions
possible in many graphics packages. For complex
experiments or sampling programs, this will
entail decisions about which factors to include,
which to highlight, etc.

Tufte coined phrases for some of what he saw
as important problems.

• Data:ink ratios reflect the amount of ink need
to present a given amount of data – high
values are desirable.

• Data density is similar to the data:ink ratio,
but reflects the space taken, rather than the
ink used.

• Chartjunk is extraneous ornamentation that
puts fancy things all around, but doesn’t help
explain your results. This a particular problem
in many graphics packages used to prepare
talks.

The way in which the information is presented
will also vary with your target audience – a figure
in a paper can be more complex than one that you
might show at a conference, because the reader
can sit and digest the information. Similarly,
careful or thoughtful use of color can help an oral
presentation, but most journals either don’t
permit colored graphs or impose an extra charge
for colored figures. Newer electronic journals or
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Table 19.2 Layout of summary table highlighting results from several
experiments

Variation in microbial cues

presence Short Long Large
absence time time spatial

SETTLERS (0–6 d) (0–4 wk) (10s of km)

Serpulid polych. ✓ ✓ ✓ ✓
Spirorbid polych. ✓ ✓ ❍ ∼
Elminius modestus ✘ ✘ ❍ ❍
Balanus variegatus ∼ ✘ ✓ ❍

Bugula neritina ∼ ∼ ✓ ✓
Bugula dentata ✓ ✓ ✓ ❍
Bugula stolonifera ∼ ✓ ✓ ❍
Tricellaria ∼ ✓ ✓
Encrusting bryozoans ✓ ✓ ✓ ✓

Trididemnum ❍ ❍
Botryllus schlosseri ∼ ❍ ❍
Didemnum ❍ ❍ ❍ ❍
Diplosoma ❍ ❍ ❍ ❍
Pyura stolonifera ❍ ❍
Ascidia ❍ ❍
Ciona intestinalis ❍ ❍ ∼
Sponges ✓ ✓ ❍
Electroma ❍ ❍
Total recruitment ✓ ✓ ✓ ✓

Note:
Ticks and crosses indicate positive and negative effects, circles for no
effect and tildes for weak or equivocal results.



similar outlets may permit color and reports, such
as those from consultancies that involve a smaller
number of copies, can use color to great advan-
tage.

The technical limitations of the medium will
also influence how you construct graphs. For
example, in presenting a computer-based talk,
you need to bear in mind that most computer pro-
jection facilities are still relatively low resolution
(typically 640�480 or 800�600 pixels), and you
can put less detail than on a high-resolution 35
mm slide. Similarly, many laser printers don’t
reproduce solid colors very well, and rather than
solid black as a filling pattern, you may be better
using hatched or stippled fill patterns. The same
cross-hatched patterns may look awful as part of a
computer presentation, when solid colors work
much better. Tufte refers to some of the unfortu-
nate choices of fill patterns as “unintentional
optical art”!

In talking about graphics, we focus on the
most common ways of displaying information.

19.3.1 Bar graph
A bar graph is used to plot some quantitative var-
iable on the Y-axis against a grouping (categorical)
variable on the X-axis, where the value of the var-
iable for each category is represented by the
height of a rectangular bar (Figure 19.1). The
width of the bars can be altered to improve aes-
thetic appearance. The top of the bar may repre-
sent a single value or it may represent a summary

statistic, such as a mean. In the latter case, some
measure of variation or precision should be pro-
vided using error bars (Figure 19.14; also see dis-
cussion on error bars below).

If there is a second grouping variable, then it
can be represented by adjacent bars, with differ-
ent fill patterns or colors, at each level of the first
grouping variable (Figure 19.2). A variation on bar
graphs sometimes used in business presentations
is called a pictogram (Snee & Pfeifer 1983), where
the bar is replaced by objects which illustrate the
variable being plotted, e.g. some product. We
eschew pictograms because the actual value rep-
resented by the object is sometimes difficult to
determine (see, for example, Chapter 2 of Tufte
1983), and there is no sensible way to include
error bars.

Some attention should be paid to the fill pat-
terns, too – as lamented by Tufte, most modern
software packages give you access to a wide range
of fill patterns, many of them appearing to have
been designed while blindfolded. Fill patterns
should not distract the reader – remember that
particular kinds of hatching can cause adjacent
bars to blur, or make it difficult to see where
objects really end. For example, Figure 19.3 shows
some samples of awful fill patterns or a poor
choice of fill patterns to be alongside each other.
Again, we’ve done nothing special here – these pat-
terns are standard options of a common software
package. On the left-hand panel, adjacent bars
with poor cross-hatching make the information
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Figure 19.1. Simple bar chart, showing means of four
treatments.

Figure 19.2. Simple bar graph with two sets of four
treatments, such as from a 4�2 factorial ANOVA.



hard to read, while on the right-hand panel, some
poorly chosen gradient fills make the tops of the
bars hard to identify. In the first case, different fill
patterns would make the comparison of bars
clearer, whereas the gradient fills could be fixed by
removing them completely, leaving the bars
empty.

The choice of fill patterns, etc., will also be
influenced by the printers available – be aware that
many laser printers don’t do a particularly good
job of printing solid black, especially if the toner is
running low, or if there is wear on some of the
internal parts. The same is true of photocopiers,
which use the same technology. Unless you are con-
fident that you’ll get uniform colours, try using a
densely stippled pattern or densely packed cross-
hatching. These patterns will print out evenly, even
on worn printers. This advice doesn’t apply to com-
puter presentations for talks, when solid fills
appear much clearer than cross-hatching, etc.

A fault that has been made more common by
the availability of graphics software designed for
business presentations is the three-dimensional
representation of two-dimensional data. This is
particularly noticeable for bar graphs and pie
charts, although we will emphasize bar graphs
here because even two-dimensional pie charts are
not much use. A “three-dimensional bar” graph is
shown in Figure 19.4. There are many problems
with this graph, the most serious being that it is
very difficult to tell what value along the Y-axis is
displayed by the top of the bars. 

Note that this is not a three-dimensional graph
– only the bars are three-dimensional. The graph
in Figure 19.4 shows only two variables, and just
adds a third dimension to the graph, without
adding any new information. Note also that we
haven’t even tried to include error bars on this
type of graph – the error bars would start some-
where on the tops of each of the bars below, and it
would be very hard to see exactly how much
overlap there is between means and errors of our
groups. As a rule of thumb, or, more usefully, an
absolute rule(!):

do NOT use three-dimensional graphs for two-
dimensional data!!!

There may, however, be occasions when we
want to display data with three variables, and may
need three axes. Even then, though, it may still be
just as good to plot that information in two
dimensions. Consider the example on Figure 19.2;
it shows the results of measurements on two dif-
ferent factors, but the results can be displayed as
a three-dimensional bar graph (Figure 19.5). There
is little doubt that the pattern has become less
clear. We’ve now reached almost the peak of
obscuring our information, although there is
worse to come, and we should also bear in mind
Tufte’s nomination for the worst graph ever pub-
lished (Tufte 1983, p. 118).

If we were concerned about the waste of space
or ink, we could reduce the simple bar graph even
further – a minimalist might argue that we could
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Figure 19.3. Examples of fill patterns from standard
software packages.

Figure 19.4. A three-dimensional bar graph plotting the
same data as in Figure 19.1.



replace the bar by a single point, without losing
any information). In Tufte’s terminology, we’d be
improving the data:ink ratio – the amount of
information conveyed, relative to the amount of
ink needed to print it.

19.3.2 Line graph (category plot)
Line graphs are like bar graphs except the top of
the bar is replaced by a symbol and the adjacent
symbols are joined by straight lines (Figure 19.6).
They are used when the categorical variable on
the X-axis can be ordered, or is quantitative, par-
ticularly to plot time series. The symbol can repre-
sent a single value or the sample mean (or

median, etc.) – the comments in Section 19.4
about error bars also apply here. These plots are
most often used for interaction plots (Chapter 9),
and they work very well for this purpose.

It is very important to appreciate that the lines
in this case may simply indicate a trend in the
(mean) values, without any interpolation. This is
particularly the case for interaction plots for fixed
effects in analyses of variance – there are by defi-
nition no other categories other than those used
in the analysis. The line connecting the symbols
does not represent any sort of formal relationship
between Y and X, and could be omitted (Figure
19.7). 

If we wish to include a second grouping vari-
able, then it can be represented by an additional
series of points, with different symbols (or differ-
ent colors – see Fig. 1 in Cleveland 1994) and/or
line styles (Figure 19.8). 

19.3.3 Scatterplots
We have already discussed scatterplots as an
exploratory tool in Chapters 4 and 5. They can also
be very effective ways of presenting a bivariate
relationship. For example, the scatterplot can
include a line that represents a regression or
smoothing function fitted to the observations
(Figure 19.9). Note that the line in Figure 19.9
extends only to the edge of the range of X-values.
Many computer graphics packages default to
drawing the fitted curve across the entire X-axis
(see Figure 19.10). This is inappropriate, as we have
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Figure 19.5. Three-dimensional plot of same data as in
Figure 19.2. See how one of the groups is almost completely
obscured.

Figure 19.6. The data from Figure 19.1 displayed as a
simple line graph (without error bars, for simplicity).

Figure 19.7. A minimalist graph of the data in Figure 19.6,
with the mean of each group now represented by a single
point.



no information about the relationship beyond the
largest and smallest X-values in our sample – even
a simple linear relationship might change shape
outside our range. A good example of that phe-
nomenon is when we estimate regresssion models
for relationships that logically must pass through
the origin (e.g. amount of food vs number of
limpets m�2, mass vs length, etc.), but where the
estimated line has a non-zero intercept. The
model may be estimated reliably for the range of
our data, and because we know that the curve
passes through the origin, we therefore know that
the line must change slope or shape outside that
data range (Figure 19.10; see also Chapter 5).

We could also plot confidence intervals about
the regression lines or confidence ellipses (Figure
19.11; Sokal & Rohlf 1995) and non-parametric
confidence kernels (Silverman 1986) can be
included to indicate our level of confidence in the
centroid (the mean of the two variables in multi-
dimensional space). Details on these methods
were provided in Chapter 5.

Multiple groups can be indicated on the scat-
terplot by simply using different symbols (or fill
patterns or colors) for each group.

19.3.4 Pie charts
A pie chart is a circle (or a “pie”) where each cate-
gory’s value is represented by a size of its section
or slice of the circle (Figure 19.12). The different
sections can be further emphasized by different
fill patterns or colors. 

Pie charts are very commonly used in business
graphics (hence their presence in most presenta-
tion graphics software) but have a much reduced
role in scientific graphics and none in statistical
graphics. Tufte (1983) argued that they should
never be used because their “data-density” is low
and they fail to order numbers along a visual
dimension. A reader can’t be sure whether to look
at the angle or the area to get an idea of how big
each group is. Contrast that with a bar or line
chart, where there is only one interpretation of
the height of the bar or point. It becomes even
worse if you allow the software to produce a
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Figure 19.8. The data from Figure 19.2 plotted as a pair of
lines. Compare this with the pseudo-three-dimensional
display in Figure 19.5.

Figure 19.9. A basic scatterplot, with a least-squares
straight line fitted through the observations.



three-dimensional aspect to this information
(Figure 19.13)

19.4 Error bars

Any graphical or tabular representation of means
should include some measure of the error asso-
ciated with the estimate of the mean. Common
measures of error include the standard deviation (a

measure of variability between observations in the
sample), the standard error (a measure of precision
for the sample mean) and 95% or 99% confidence
intervals (Chapter 2). Error bars on graphs are
usually represented by a straight line that is sym-
metrical on either side of the mean. If we are using
a bar graph with filled bars, one-sided error bars
can be used. The length of the line in each direction
indicates one standard deviation or one standard
error so the total error bar is two standard errors or,
alternatively, the 95% confidence interval.

One problem with error bars on complex
graphs with many plotting symbols is that the
error bars overlap with each other and other plot-
ting symbols, making the graph messy and diffi-
cult to read. In such cases, one alternative is to
present the largest and smallest error bars only in
one section of the plot to indicate the range of var-
iability or precision in the data. 

Where a plot of means relates to a specific anal-
ysis, such as a simple ANOVA model, illustrating
individual standard deviations or standard errors
may not be crucial. In doing the ANOVA, you have
assumed that the variances of the different
groups are similar and have compared the groups
using a pooled estimate of the variation within
groups (i.e. the MSResidual term). In showing a single
error bar, you may be representing more accu-
rately the variation used in the analysis, whereas
the individual errors for the particular treatments
may differ from this pooled value, and give the
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Figure 19.10. Scatterplot with inappropriate line fitted
through the observations.

Figure 19.11. Scatterplots with confidence intervals on the
regression line (left) or a confidence ellipse (right).



reader an indication of whether the assumption
of homogeneous variance is appropriate.

In some more complex linear models, particu-
larly for designs involving nested factors (includ-
ing repeated measures designs) or combinations
of fixed and random factors, a simple standard
error or the MSResidual may provide misleading
information. As discussed in Chapters 9–12, many
different hypotheses are tested in complex
models, often using different error terms. As a
simple example, consider a two-level nested
ANOVA design, with groups as the main factor,
plots nested within groups as the nested factor,
and replicate observations within plots (Chapter
9). We test the effects of groups against variation
among plots within groups, rather than using the
within-plots variation. Therefore, if we are
describing the differences between groups, we
should show some measure of the appropriate
variation within groups.

If we use the raw data file (or even the MSResidual

from the ANOVA), and plot means and standard
errors using common statistical packages, the
means may be reliable, but the error bars that are
produced by this procedure may bear little rela-
tion to the variances used to test particular
hypotheses. 

The problem is best illustrated with an
example. Figure 19.14 shows the graphical
summary from three simulated data sets for a
nested ANOVA design. All three data sets have four
groups, four subgroups within each group, and
four replicates per subgroup. The group means
were the same across the data sets, as was the vari-
ation within subgroups (i.e., the MSResidual was con-
stant). The level of variation between subgroups
varied between the data sets, and the graphs show
two measures of error.

• The left hand error bar represents the output
from a standard statistics package (SYSTAT)2,
from the raw data file. In this figure, the
standard error is calculated from all
observations within each main group,
regardless of the subgroups, i.e., it pools
replicate and subgroup variances, and uses the
total number of observations in each group as
the sample size.

• The right-hand error bar of each pair is based
on the variation among subgroups, and was
obtained by taking the means for each
subgroup, providing a single value for each
subgroup, and then plotting means and errors
from those data. 

The most important thing to note is that the
two error bars are similar in some cases, but very
different in others, depending on the patterns of
variance in a particular data set. When the varia-
tion among plots is highest, the “standard” error
bars are completely misleading. In the three data
sets, the means based on pooling across sub-
groups will be the same as those calculated from
the subgroup means, as long as the number of rep-
licates per subgroup is constant. If the design is
unbalanced, the means obtained by the two
methods will also be different.
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Figure 19.12. A basic two-dimensional pie chart of the
same data as in Figure 19.1.

Figure 19.13. One of the pinnacles of awful graphics, the
pseudo-three-dimensional pie chart.

2 The error bars calculated by SYSTAT ignore the structure of
the data, and pool all the subgroups into one set of replicates.



This situation becomes
more complex if we consider,
for example, groups by trials
or repeated measures designs
(Chapter 11). The test of the an
interaction involving the between-subjects and
within-subjects factors is made using the variation
among subjects across the repeated factor. For
example, if the repeated factor is time, the groups
by time effect, i.e. the variation in temporal pro-
files between groups, is tested using the variation
through time of the subjects within groups. An
overall residual error term will be worthless in this
case, and the default output from most software
packages would be for error bars to depict the vari-
ation among subjects at each level of the within-
subjects factor. These error bars might be
appropriate for a completely randomized design,
but will not have any clear relationship to the
denominators used to test the terms of most inter-
est.

19.4.1 Alternative approaches
Our strongest recommendation is that you think
about the message you want the reader to get,
and then think about the measure of variance
that is appropriate for this message. The best indi-
cation comes from the error term used to test the
hypothesis in question, in the case of ANOVA
models.

The correct alternative will not always be
obvious. To return to the example of the nested
ANOVA design, we can identify at least five differ-
ent error terms that we could calculate.

1. The �MSResidual from the ANOVA.
2. Standard deviations from individual

groups, from the raw data file.
3. Standard deviations from a file of means

for each subgroup or plot.
4. The �MSSubgroup term from the ANOVA,

which averages the variation among subgroups
across the groups.

5. The square root of the variance component
associated with groups, extracted from the
MSSubgroups.

3

As argued earlier, option 1 is incorrect, as is
option 2, since they use error terms unrelated to
the hypothesis in question. Option 3 provides one
correct answer, and results in different error bars
for each group. Option 4 is a reasonable approxi-
mation, but it leads to an error term that, like
option 2, includes two kinds of variation (see
Footnote 3). Depending on the relative sizes of the
two variances involved, this option may or may
not produce an error close to the correct one.
Option 5, like option 3, generates an appropriate
error, and will produce similar results – given
equal sample sizes, it is a pooled estimate of the
variation among subgroups, and will be close to
the average of the set of subgroup variances.

To see how these options produce different
answers, we have used the artificial data sets seen
already on Figure 19.14 to produce the data in
Table 19.3. You should note that in going from
standard deviations to standard errors, options 1
and 2 use the total sample size, i.e. number of sub-
groups�number of replicates per subgroup. In
the above example, with four and four, respec-
tively, the standard errors become quite different.
If we take options 3 and 5 as being appropriate,
you can see that the other options provide erratic,
and misleading error calculations. 

Given that most readers tend to look at graphs,
and interpret your results for themselves, based
on the differences among groups and the error
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Figure 19.14. Depiction of error
bars for three simulated data sets,
from a nested ANOVA design.

3 Recall that the Expected Mean Squares for subgroups in a
nested ANOVA model is given by 	

�
2� n	2

subgroups, and then
	2

subgroups can be calculated by (MSSubgroups�MSResidual)/n.



bars, you risk distracting the readers, or having a
reader sceptical of your results, just because you
provided other than the most relevant data.

19.5 Oral presentations

Although publishing our work in peer-reviewed
outlets such as scientific journals is the primary
way of making contributions to the field (and of
assessing our productivity), talking about our work
is a crucial part of publicizing that work, telling
colleagues about work in progress, and “advertis-
ing” yourself when in the market for scientific jobs.
Presenting information clearly and without dis-
tractions is just as important for oral papers, with
a few additional considerations. There is a range of
books and papers offering thoughts on how to con-
struct an effective talk, and, here, we focus on how
you display your data and analyses.

Most scientists now prepare talks using a
range of graphics packages, most of us lack any
training in graphical design, and a substantial
number of us have poor taste. These three factors
can combine to produce a wide range of distract-
ing graphical displays. While we don’t pretend to
be style gurus (or may pretend, but unconvinc-
ingly!), we can offer some thoughts about prepar-
ing audiovisual aids.

19.5.1 Slides, computers, or overheads?
One of the first decisions to make is the kinds of
tools you’ll use to display the information. You

will have three main options, assuming that most
of us won’t use the blackboard for a conference
talk or seminar. Computer-based presentations
are becoming easier, as more and more venues
offer computer projections. Slides remain a very
reliable, compact way of presenting information,
and offer very high resolution, while overhead
projection sheets are completely reliable, and also
high resolution.

When deciding which of these you should use,
you should consider the following.

• The venue. 
* How big is the room? Many overhead projec-

tors don’t produce large images, because
they can’t be moved far enough from the
stage, so you might want to avoid them in big
venues.

* Is the room likely to have good lighting con-
trols? If it can’t be darkened, as can be the
case at some convention facilities, you may
find that your slides can’t be seen, and that
overheads are much brighter.

* What is your target audience familiar with?
In the past, most people giving talks at
scientific conferences used slides. Meetings
involving government or industry people,
and less formal academic meetings, typically
involved overhead projections, with slides
being rare. This difference would not affect
your preparation of the talk, it was a guide to
the kinds of facilities you could expect when
you arrived to speak. Now, it is very common
to have computer projection facilities avail-
able, regardless of the venue.

* Do you have confidence in the computer
facilities? When you turn up for your talk,
you may find a beautifully equipped room,
with a computer with the latest version of
your graphics package, and you’ll just need
to insert your disk (or even drag your presen-
tation over the internet). Alternatively, you
may find that
– “computer projection facilities” means a

plug in the wall, and you are expected to
bring a computer with you, or 

– there’s an antique Macintosh, when you
prepared your talk using the newest
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Table 19.3 Error bars produced by five different
methods, for a two factor nested design, with three
different data sets

Option Data set 1 Data set 2 Data set 3

1 1.10 1.10 1.10
2 1.60 1.22 2.60
3 1.42 0.79 2.70
4 2.88 1.66 5.42
5 1.33 0.63 1.33

Note:
The numbers are standard deviations.



version of a Windows graphics package,or
– you love an obscure graphics package, used

it to prepare your talk, but the computers
in the venue lack that program, or

– you scanned some beautiful images into
your presentation, then needed a special
high-capacity disk to store your talk. The
computer in the room won’t read those
disks, or

– . . . you can add a range of other, real-world
disasters to this list.

• What kind of talk is it? Will you give it once, or
is it to be a travelling show that you expect to
give a few times, such as a talk about your PhD
research? You are likely to give a PhD talk for
at least a year or two, and it’s probably worth
making slides, but, later in your career, you
may be asked to give more general or synthetic
talks, on a range of topics, and you might write
a new talk each time, with little intention of
repeating it. One advantage of computer-based
presentations is that they can be changed at
no cost, while changing a slide costs money
and time. It may also be that working in this
way encourages you to create a fresh talk,
rather than planning your talk based on the
slides that you happen to have available.

• How organized are you? If you do everything at
the last moment, computer-based
presentations offer the most flexibility. It’s even
possible to change your overheads in response
to some profound (or inflammatory) thought
offered by the speaker preceding you in the
program. You can also fix the spelling error you
discovered when running through your talk.

• Where are you going to speak? Slides are the
most secure option – they are compact, can be
carried with you on planes, aren’t affected by
magnetic fields, etc. Computer disks are the
least stable option, but you can improve things
by making sure that you can get another copy
of your presentation over the internet if the
worst happens, and you can take multiple
copies, spread through your baggage, in the
heel of your shoe, etc.

19.5.2 Graphics packages
Whatever medium you choose, you will almost cer-
tainly use one of the common graphics packages to

construct your audiovisuals. These packages are
written for business users, and the software devel-
opers apparently think that business users love to
use extraneous, garishly colored graphics as back-
grounds. These packages also often lack many of
the things we need for scientific purposes – for
example, most lack the capacity to plot error bars
easily.

We offer a few pieces of opinion (based on
extensive, highly selective sampling of our col-
leagues’ biases) about ways to put together a pres-
entation.

• Keep the backgrounds simple. Use a uniform
or lightly graded background. Complex,
multicolored backgrounds will obscure parts
of the text.

• Keep the number of fonts to a minimum.
• Strange transitions between slides – blinds,

curtains to the left, checkerboards – and text
flying in from all directions can be done easily
from most software packages. It tends to polar-
ize your audience. Mixing different transitions
and patterns of appearance of objects should
be avoided. Doing this demonstrates to the
audience that you know how to use the bells
and whistles of the software, but it also tells
the audience something else about you . . .
almost certainly an impression you’d like to
avoid.

19.5.3 Working with color
As a general rule, graphics packages offer sets of
colors that are recommended for producing a par-
ticular overall look for your presentation. 

• We suggest that you choose a particular set, and
use exactly those colors, rather than designing
your own combination. The color combinations
that you select are, with all due respect, likely to
be awful, and consist of colors that shouldn’t be
combined, no matter what your drunken
friends think. In addition, many packages offer
an option to switch from a color scheme for
35 mm slides or computer graphics (often a dark
background and light text), to one designed for
overhead projection (a light background, dark
text). This switch can be made with a single
mouse click, but if you have redefined the color
palette, you may lose this ability.
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• There is a substantial literature on color per-
ception, and a good understanding of working
color combinations. You may want to read
some of that literature, and, again, consult
Tufte (1983) as an entry point.

• Remember color blindness and its incidence
among the general population. There are some
color combinations that are offered by many of
the graphics packages, particularly red and
green, which will be indistinguishable to as
many of 20% of your audience (especially if
you are in a particularly male-dominated forum).

• As a general rule, use solid fill patterns, and
distinguish groups by different colors for
audiovisuals (cf. contrasting fill patterns for
printed material).

19.5.4 Scanned images
To avoid switching between slides and computer,
you may decide to scan some images into your
presentation. Scanned images are very large, espe-
cially if they are stored with fine color detail (e.g.
16.7 million colors on the palette). Individual
images can be quite a few megabytes, but you may
not need high resolution everywhere.

• If you are converting your presentation into
slides, you should scan any images at the
highest resolution possible, because 35 mm
film is capable of fine details. 

• If you are preparing overheads, the resolution
will depend on the capabilities of your printer.
Use high resolution.

• If you are using computer projection, most
systems operate at only 800�600 pixel
resolution. Therefore, if your scanned image
exceeds this size, the finer details can’t be
displayed. You should reduce the resolution to
something only slightly finer (i.e. slightly more
pixels) than will be displayed. Most images are
also scanned with many colors. Reducing the
number of colors can dramatically decrease
the file size; try reducing the number of colors,
and see if the image is degraded. The net result
will be a presentation file that is more
compact, and fits onto fewer computer disks
(at least using twentieth-century technology).

Finally, remember that graphics file types vary
in whether they compress the information. Some

store the raw graphics information, with no com-
pression. Others compress the file size by search-
ing the image for blocks of identical color, and
replacing information about individual pixels
with a description of the boundaries of the block
and the color. Other file formats, such as JPEG, sac-
rifice some information for compaction.

19.5.5 Information content
Bear in mind that, in a printed paper, we can place
large amounts of information on a figure, with
the reader having time to digest that information.
When presenting the material orally, there’s
usually less time for the audience to assimilate
the information. More importantly, you are speak-
ing more or less continuously, and if you produce
an audiovisual with large amounts of informa-
tion, you’ll notice a large part of the audience
immediately shift their focus away from you, to
concentrate on reading. At that time, you’ve lost
control of the audience, and they won’t be listen-
ing to you. They may also not be getting the infor-
mation that you want them to.

In general, you should remove all extraneous
information from the figures. As part of your talk,
you should guide the audience through the par-
ticular figure – show them the key patterns,
explain what the different symbols represent,
and so on. That way, you control the emphasis
that is placed on the information, and the audi-
ence feels that they are getting a scientist’s view
of some information, rather than reading
another paper.

You probably do not need to show results of
statistical tests on the figure. For example, a
regression equation, together with F-ratios and P-
values, adds unneccesary clutter to a scatterplot,
and there is often a collective groan in the audi-
ence when the next slide is an analysis of variance
table. Our strong view is that, ethically, if you talk
about a pattern in your data – a difference in
groups, a correlation, etc. – you are describing the
results of a significant analysis. The audience
takes this on trust, and adding the analytical
results to your figure or table doesn’t help.
During the talk, there is no chance to scrutinize
your experimental design and analysis, to check
that you did everything appropriately, so they
must take the analysis on trust, anyway.
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19.6 General issues and hints

• Presenting results clearly is a neglected part of
publicizing scientific work.

• Most statistical packages produce considerable
redundancy in their output, and omitting ele-
ments of redundancy produces cleaner, more
concise, descriptions of results.

• Most graphics packages produce styles of
graphs and allow choices of fill pattern and
ornamentation that obscure, rather than
clarify, results.

• Graphical illustration of results should be tai-
lored to the audience, and optimal use of
colors, fill patterns, and explanatory text will
be very different for published scientific
papers and oral presentations.

• In preparing illustrations, decide what pattern
in the data you wish to illustrate, then identify
the kind of variation that was the background
against which the particular patterns were
assessed. This variation is an appropriate can-
didate for error bars.

510 PRESENTATION OF RESULTS



References

Abrahams, M.V. & Townsend, L.D. (1993)
Bioluminescence in dinoflagellates: a test of the
burglar alarm hypothesis. Ecology 74: 258–260.

Abrams, M.D., Kubiske, M.E. & Mostoller, S.A. (1994)
Relating wet and dry year ecophysiology to leaf struc-
ture in contrasting temperate tree species. Ecology 75:
123–133.

Agresti, A. (1990) Categorical Data Analysis. Wiley, New
York.

Agresti, A. (1996) An Introduction to Categorical Data
Analysis. Wiley, New York.

Aguiar, M.R. & Sala, O.E. (1997) Seed distribution con-
strains the dynamics of the Patagonian steppe. Ecology
78: 93–100.

Aiken, L.S. & West, S.G. (1991) Multiple Regression: Testing
and Interpreting Interactions. Sage, Newbury Park.

Akaike, H. (1978) A Bayesian analysis of the minimum
AIC procedure. Annals of the Institute of Statistical
Mathematics 30: 9–14.

Akritas, M.G. (1991) Limitations of the rank transform
procedure: a study of repeated measures designs, part
1. Journal of the American Statistical Association 86:
457–460.

Akritas, M.G., Ruscitti, T.F. & Patil, G.P. (1994) Statistical
analysis of censored environmental data. In: Handbook
of Statistics Vol. 12 Environmental Statistics (Patil, G.P. &
Rao, C.R. eds.), pp. 221–242. North Holland, Amsterdam.

Allchin, D. (1999) Negative results as positive knowl-
edge, and zeroing in on significant problems. Marine
Ecology Progress Series 191: 303–305.

Andersen, P.K. & Keiding, N. (1996) Survival analysis. In:
Advances in Biometry (Armitage, P. & David, H.A. eds.),
pp. 177–199. Wiley, New York.

Anderson, J.L. (1998) Embracing uncertainty: the inter-
face of Bayesian statistics and cognitive psychology.
Conservation Ecology 2(2):
http: //www.consecol.org/vol2/iss1/art2

Anderson, M.J. (2001) A new method for non-parametric
multivariate analysis of variance. Australian Ecology
26: 32–46.

Anderson-Sprecher, R. (1994) Model comparisons and R2.
The American Statistician 48: 113–117.

Andrew, N.L. & Mapstone, B.D. (1987) Sampling and the
description of spatial pattern in marine ecology.
Oceanography and Marine Biology Annual Review 25:
39–90.

Andrew, N.L. & Underwood, A.J. (1993) Density-depen-
dent foraging in the sea urchin Centrostephanus rodger-
sii on shallow subtidal reefs in New South Wales,
Australia. Marine Ecology Progress Series 99: 89–98.

Anscombe, F.J. (1973) Graphs in statistical analysis. The
American Statistician 27: 17–21.

Antelman, G. (1997) Elementary Bayesian Statistics
(Madansky, A. & McCulloch, R. eds.). Edward Elgar,
Cheltenham, UK.

Ayres, M.P. & Scriber, J.M. (1994) Local adaptation to
regional climates in Papilo canadensis (Lepidoptera:
Papilionidae). Ecological Monographs 64: 465–482.

Ayres, M.P. & Thomas, D.L. (1990) Alternative formula-
tions of the mixed-model ANOVA applied to quantita-
tive genetics. Evolution 44: 221–226.

Barnett, V. (1999) Comparative Statistical Inference, 3rd
edition. Wiley, New York.

Beck, M.W. (1995) Size-specific shelter limitation in
stone crabs: a test of the demographic bottleneck
hypothesis. Ecology 76: 968–980.

Beck, M.W. (1997) Inference and generality in ecology:
current problems and an experimental solution. Oikos
78: 265–273.

Becker, B.J. (1994) Combining significance levels. In: The
Handbook of Research Synthesis (Cooper, H. & Hedges, L.V.
eds.), pp. 215–230. Russell Sage Foundation, New York.

Begon, M., Harper, J.L. & Townsend, C.R. (1996) Ecology:
Individuals, Populations and Communities, 3rd edition.
Blackwell Scientific Publications, London.

Belbin, L. & McDonald, C. (1993) Comparing three clas-
sification strategies for use in ecology. Journal of
Vegetation Science 4: 341–348.

Belbin, L., Faith, D.P. & Milligan, G.W. (1993) A compari-
son of two approaches to beta-flexible clustering.
Multivariate Behavioral Research 27: 417–433.

Bellgrove, A., Clayton, M.N. & Quinn, G.P. (1997) Effects
of secondarily treated sewage effluent on intertidal
macroalgal recruitment processes. Marine and
Freshwater Research 48: 137–146.

Belsley, D.A., Kuh, E. & Welsch, R.E. (1980) Regression
Diagnostics: Identifying Influential Data and Sources of
Collinearity. Wiley, New York.

Bence, J.R. (1995) Analysis of short time series: correct-
ing for autocorrelation. Ecology 76: 628–639.

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society B
57: 289–300.

Berger, J.O. & Berry, D.A. (1988) Statistical analysis and the
illusion of objectivity. American Scientist 76: 159–165.

Berger, J.O. & Sellke, T. (1987) Testing a point null
hypothesis: the irreconcilability of P values and evi-
dence. Journal of the American Statistical Association 82:
112–122.



Bergerud, W.A. (1996) Displaying factor relationships in
experiments. The American Statistician 50: 228–233.

Bergmann, R., Ludbrook, J. & Spooren, W.P.J.M. (2000)
Different outcomes of the Wilcoxon–Mann–Whitney
test from different statistics packages. The American
Statistician 54: 72–77.

Berk, K. (1987) Computing for incomplete repeated
measures. Biometrics 43: 385–398.

Berk, R.A. (1990) A primer on robust regression. In:
Modern Methods of Data Analysis (Fox, J. & Long, J.S. eds.),
pp. 292–334. Sage, Newbury Park.

Berry, D.A. (1987) Logarithmic transformations in
ANOVA. Biometrics 43: 439–456.

Berry, D.A. (1996) Statistics: A Bayesian Perspective.
Duxbury Press, Belmont.

Berry, D.A. & Stangl, D.K. (1996) Bayesian methods in
health-related research. In: Bayesian Biostatistics
(Berry, D.A. & Stangl, D.K. eds.), pp. 3–66. Marcel
Dekker, New York.

Berteaux, D. & Boutin, S. (2000) Breeding dispersal in
female North American red squirrels. Ecology 81:
1311–1326.

Bijleveld, C.C.J.H. & van der Kamp, L.J.Th. (1998)
Longitudinal Data Analysis: Designs, Models and Methods.
Sage, London.

Birkes, D. & Dodge, Y. (1993) Alternative Methods of
Regression. Wiley, New York.

Bjorndal, K.A., & Bolten, A.B. & Chaloupka, M.Y. (2000)
Green turtle somatic growth model: evidence for
density dependence. Ecological Applications 10:
269–282.

Blackwell, T., Brown, C. & Mosteller, F. (1991) Which
denominator? In: Fundamentals of Exploratory Analysis
of Variance (Hoaglin, D.C., Mosteller, F. & Tukey, J.W.
eds.), pp. 252–294. Wiley, New York.

Blake, J.G., Hanowski, J.M., Niemi, G.J. & Collins, P.T.
(1994) Annual variation in bird populations of mixed
conifer-northern hardwood forests. The Condor 96:
381–399.

Blanche, K.R., Andersen, A.N. & Ludwig, J.A. (2001)
Rainfall-contingent detection of fire impacts:
responses of beetles to experimental fire regimes.
Ecological Applications 11: 86–96.

Boik, R.J. (1979) A priori tests in repeated measures
designs: effects of nonsphericity. Psychometrika 46:
241–255.

Boik, R.J. (1987) The Fisher–Pitman permutation test: a
non-robust alternative to the normal theory F tests
when variances are heterogeneous. British Journal of
Mathematical and Statistical Psychology 40: 26–42.

Bolger, D.T., Alberts, A.C., Sauvajot, R.M., Potenza, P.,
McCalvin, C., Tran, D., Mazzoni, S. & Soule, M. (1997)
Response of rodents to habitat fragmentation on
coastal southern California. Ecological Applications 7:
552–563.

Bollen, K.A. & Jackman, R.W. (1990) Regression diagnos-
tics: an expository treatment of outliers and influen-
tial cases. In: Modern Methods of Data Analysis (Fox, J. &
Long, J.S. eds.), pp. 257–291. Sage, Newbury Park.

Borcard, D., Legendre, P. & Drapeau, P. (1992) Partialling
out the spatial component of ecological variation.
Ecology 73: 1045–1055.

Bowerman, B.L. & O’Connell, R.T. (1990) Linear Statistical
Models: An Applied Approach. Duxbury Press, California.

Box, G.E.P. (1954) Some theorems on quadratic forms
applied in the study of analysis of variance problems,
II. Effects of inequality of variance and correlation
between errors in the two-way classification. Annals of
Mathematical Statistics 25: 484–498.

Box, G.E.P. & Tiao, G.C. (1973) Bayesian Inference in
Statistical Analysis. Wiley, New York.

Box, G.E.P., Hunter, W.G. & Hunter, J.S. (1978) Statistics for
Experimenters. An Introduction to Design, Data Analysis,
and Model Building. Wiley, New York.

Brieman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J.
(1984) Classification and Regression Trees. Wadsworth,
Belmont.

Bring, J. (1994) How to standardise regression coeffi-
cients. The American Statistician 48: 209–213.

Brown, C. & Mosteller, F. (1991) Components of variance.
In: Fundamentals of Exploratory Analysis of Variance
(Hoaglin, D.C., Mosteller, F. & Tukey, J.W. eds.). Wiley,
New York.

Brownie, C., Bowman, D.T. & Burton, J.W. (1993)
Estimating spatial variation in analysis of data from
yield trials: a comparison of methods. Agronomy
Journal 85: 1244–1253.

Brunet, J. (1996) Male reproductive success and varia-
tion in fruit and seed set in Aquilegia caerula
(Rarunculaceae). Ecology 77: 2458–2471.

Brunkow, P.E. & Collins, J.P. (1996) Effects of individual
variation in size on growth and development of larval
salamanders. Ecology 77: 1483–1492.

Burdick, R.K. (1994) Using confidence intervals to test
variance components. Journal of Quality Technology 26:
30–38.

Burdick, R.K. & Graybill, F.A. (1992) Confidence Intervals on
Variance Components. Marcel Dekker, New York.

Burton, P., Gurrin, L. & Sly, P. (1998) Extending the
simple linear regression model to account for corre-
lated responses: an introduction to generalized esti-
mating equations and multi-level mixed modelling.
Statistics in Medicine 17: 1261–1291. 

Cade, B.S & Terrell, J.W. (1997) Comment: cautions on
forcing regression equations through the origin. North
American Journal of Fisheries Management 17: 225–227.

Caley, M.J. & Schluter, D. (1997) The relationship
between local and regional diversity. Ecology 78:
70–80.

Cao, Y., Williams, D.D. & Williams, N.E. (1999) Data

512 REFERENCES



transformation and standardization in the multivar-
iate analysis of river water quality. Ecological
Applications 9: 669–677.

Carpenter, S.R., Bolgrien, D., Lathrop, R.C., Stow, C.A.,
Reed, T. & Wilson, M.A. (1998) Ecological and eco-
nomic analysis of lake eutrophication by nonpoint
pollution. Australian Journal of Ecology 23: 68–79.

Carpenter, S.R. (1990) Large-scale perturbations: oppor-
tunities for innovation. Ecology 71: 2038–2043.

Carpenter, S.R. (1996) Microcosm experiments have
limited relevance for community and ecosystem
ecology. Ecology 77: 677–680.

Carpenter, S.R., Chisholm, S.W., Krebs, C.J., Schindler,
D.W. & Wright, R.F. (1995) Ecosystem experiments.
Science 269: 324–327.

Carver, R.P. (1978) The case against statistical signi-
ficance testing. Harvard Educational Review 48:
378–399.

Carver, R.P. (1993) The case against statistical signifi-
cance testing, revisited. Journal of Experimental
Education 61: 287–292.

Casella, G. & Berger, R.L. (1987) Reconciling Bayesian and
frequentist evidence in the one-sided testing
problem. Journal of the American Statistical Association
82: 106–111.

Caselle, J.E. & Warner, R.R. (1996) Variability in recruit-
ment of coral reef fishes: the importance of habitat at
two spatial scales. Ecology 77: 2488–2504.

Chalmers, A.F. (1999) What Is This Thing Called Science?, 3rd
edition. Hackett Publishing Co., Indianapolis.

Chapman, M.G. (1986) Assessment of some controls in
experimental transplants of intertidal gastropods.
Journal of Experimental Marine Biology and Ecology 103:
181–201.

Chapman, M.G. & Underwood, A.J. (1999) Ecological pat-
terns in multivariate assemblages: information and
interpretation of negative value in ANOSIM tests.
Marine Ecology – Progress Series 180: 257–265.

Chatterjee, S. & Price, B. (1991) Regression Analysis by
Example, 2nd edition. Wiley, New York.

Chatfield, C. (1989) The Analysis of Time Series: An
Introduction, 4th edition. Chapman & Hall, London.

Chernoff, H. (1973) The use of faces to represent points
in k-dimensional space graphically. Journal of the
American Statistical Association 68: 361–368.

Chevan, A. & Sutherland, M. (1991) Hierarchical parti-
tioning. The American Statistician 45: 90–96.

Chow, S.L. (1988) Significance test or effect size?
Psychological Bulletin 103: 105–110.

Chow, S.L. (1991) Some reservations about power analy-
sis. American Psychologist 46: 1088.

Christensen, D.L., Herwig, B.R., Schindler, D.E. &
Carpenter, S.R. (1996) Impacts of lakeshore residential
development on coarse woody debris in north temper-
ate lakes. Ecological Applications 64: 1143–1149.

Christensen, R. (1997) Log-Linear Models and Logistic
Regression, 2nd edition. Springer, New York.

Clarke, K.R. (1993). Non-parametric multivariate analy-
ses of changes in community structure. Australian
Journal of Ecology 18: 117–143.

Clarke, K.R. and Ainsworth, M. (1993) A method of
linking multivariate community structure to envi-
ronmental variables. Marine Ecology Progress Series 92:
205–219.

Clarke, K.R. & Warwick, R.M. (1994) Change in Marine
Communities: an Approach to Statistical Analysis and
Interpretation. Natural Environment Research Council,
UK.

Clarke, M.R.B. (1980) The reduced major axis of a bivari-
ate sample. Biometrika 67: 441–446.

Cleveland, W.S. (1979) Robust locally weighted regres-
sion and smoothing scatterplots. Journal of the
American Statistical Association 74: 829–836.

Cleveland, W.S. (1993) Visualizing Data. Hobart Press,
Summit, NJ.

Cleveland, W.S. (1994) The Elements of Graphing Data.
Hobart Press, Summit, NJ.

Clevenger, A.P. & Waltho, N. (2000) Factors influencing
the effectiveness of wildlife underpasses in Banff
National Park, Alberta, Canada. Conservation Biology
14: 47–56.

Clinton, W.L. & Le Beouf, B.J. (1994) Sexual selection’s
effects on male life history and the pattern of male
mortality. Ecology 74: 1884–1892.

Cnaan, A., Laird, N.M. & Slasor, P. (1997) Using the
general linear model to analyse unbalanced repeated
measures and longitudinal data. Statistics in Medicine
16: 2349–2380.

Cochran, W.G. & Cox, G.M. (1957) Experimental Designs,
2nd edition. Wiley, New York.

Cohen, J. (1988) Statistical Power Analysis for the Behavioral
Sciences, 2nd edition. Lawrence Erlbaum, Hillsdale, NJ.

Cohen, J. (1990) Things I have learned (so far). American
Psychologist 45: 1304–1312.

Cohen, J. (1992) A power primer. Psychological Bulletin 112:
155–159.

Cohen, J. (1994) The earth is round (p < .05). American
Psychologist 49: 997–1003.

Cohen, J. & Cohen, P. (1983) Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences, 2nd
edition. Lawrence Erlbaum Associates, Hillsdale, NJ.

Cole, D.A., Maxwell, S.E., Arvey, R. & Salas, E. (1994) How
the power of MANOVA can both increase and decrease
as a function of the intercorrelations among the
dependent variables. Psychological Bulletin 115:
465–474.

Collier, R.O., Baker, F.B., Mandeville, G.K. & Hayes, T.F.
(1967) Estimates of test size for several test procedures
based on conventional variance ratios in the repeated
measures design. Psychometrika 32: 339–353.

REFERENCES 513



Conover, W.J. & Iman, R.L. (1981) Rank transform as a
bridge between parametric and nonparametric statis-
tics. The American Statistician 35: 124–133.

Conover, W.J., Johnson, M.E. & Johnson, M.M. (1981) A
comparative study of tests for homogeneity of vari-
ances, with applications to the outer continental
shelf bidding data. Technometrics 23: 351–361.

Constable, A.J. (1993) The role of sutures in shrinking of
the test in Heliocidaris erythrogramma (Echinoidea:
Echinometridae). Marine Biology 117: 423–430.

Cook, R.D. & Weisberg, S. (1982) Residuals and Influence in
Regression. Chapman & Hall, New York.

Coombs, W.T., Algina, J. & Oltman, D.O. (1996)
Univariate and multivariate omnibus hypothesis tests
selected to control Type I error rates when population
variances are not necessarily equal. Review of
Educational Research 66: 137–179.

Cooper, H. & Hedges, L.V. (eds.) (1994) The Handbook of
Research Synthesis. Russell Sage Foundation, New York.

Corti, D., Kohler, S.L. & Sparks, R.E. (1997) Effects of
hydroperiod and predation on a Mississippi River
floodplain invertebrate community. Oecologia 109:
154–165.

Cox, D.R. (1978) Some remarks on the role in statistics of
graphical methods. Applied Statistics 27: 4–9.

Cox, T.F. & Cox, M.A.A. (1994) Multidimensional Scaling.
Chapman & Hall, London.

Crews, T.E., Kitayama, K., Fownes, J.H., Riley, R.H.,
Herbert, D.A., Mueller-Dombois, D. & Vitousek, P.M.
(1995) Changes in soil phosphorus fractions and eco-
system dynamics across a long chronosequence in
Hawaii. Ecology 75: 1407–1424.

Crome, F.H.J., Thomas, M.R. & Moore, L.A. (1996) A novel
Bayesian approach to assessing impacts of rain forest
logging. Ecological Applications 6: 1104–1123.

Crowder, M.J. & Hand, D.J. (1990) Analysis of Repeated
Measures. Chapman & Hall, London.

Crowley, P.H. (1992) Resampling methods for computa-
tion-intensive data analysis in ecology and evolution.
Annual Review of Ecology and Systematics 23: 405–447.

Darlington, R.B. (1990) Regression and Linear Models.
McGraw-Hill, New York.

Day, R.W. & Quinn, G.P. (1989) Comparison of treatments
after an analysis of variance in ecology. Ecological
Monographs 59: 433–463.

De’ath, G. & Fabricius, K.E. (2000) Classification and
regression trees: a powerful yet simple technique for
ecological data analysis. Ecology 81: 3178–3192.

Dennis, B. (1996) Discussion: should ecologists become
Bayesians? Ecological Applications 6: 1095–1103.

Digby, P.G.N. & Kempton, R.A. (1987) Multivariate
Analysis of Ecological Communities. Chapman & Hall,
London.

Diggle, P.J. (1990) Time Series: A Biostatistical Introduction.
Oxford University Press, Oxford.

Diggle, P.J. (1996) Spatial analysis in biometry. In:
Advances in Biometry (Armitage, P. & David, H.A. eds.),
pp. 363–384. Wiley, New York.

Diggle, P.J., Liang, K.-Y. & Zeger, S.L. (1994) Analysis
of Longitudinal Data. Oxford University Press, Oxford.

Diniz-Filho, J.A.F. & Bini, L.M. (1996) Assessing the rela-
tionship between multivariate community structure
and environmental variables. Marine Ecology Progress
Series 143: 303–306.

Dixon, P.M. (1993) The bootstrap and the jackknife:
describing the precision of ecological indices. In:
Design and Analysis of Ecological Experiments (Scheiner, S.
& Gurevitch, J. eds.), pp. 290–318. Chapman & Hall,
New York.

Dobson, A.J. (1990) An Introduction to Generalized Linear
Models. Chapman & Hall, London.

Downes, B.J., Lake, P.S. & Schreiber, E.S.G. (1993) Spatial
variation in the distribution of stream invertebrates –
implications of patchiness for models of community
organization. Freshwater Biology 30: 119–132.

Downes, B.J., Barmuta, L.A.,. Fairweather, P.G., Faith,
D.P., Keough, M.J., Lake, P.S., Mapstone, B.D. & Quinn,
G.P. (2002) Assessing Ecological Impacts. Applications in
Flowing Waters. Cambridge University Press,
Cambridge.

Driscoll, D.A. & Roberts, J.D. (1997) Impact of fuel-reduc-
tion burning on the frog Geocrinia lutea in southwest
Western Australia. Australian Journal of Ecology 22:
334–339.

Dufour, P. & Berland, B. (1999) Nutrient control of phy-
toplanktonic biomass in atoll lagoons and Pacific
ocean waters: studies with factorial enrichment bio-
assays. Journal of Experimental Marine Biology and Ecology
234: 147–166.

Dunham, A.E. & Beaupre, S.J. (1998) Ecological experi-
ments: scale, phenomonology, mechanism and the
illusion of generality. In: Experimental Ecology: Issues
and Perspectives (Resetarits, W.J. & Bernado, J. eds.), pp.
27–49. Oxford University Press, New York.

Dunlop, D.D. (1994) Regression for longitudinal data: a
bridge from least squares regression. The American
Statistican 48: 299–303.

Edgington, E.S. (1995) Randomization Tests, 3rd edition.
Marcel Dekker, New York.

Edwards, D. (1996) Comment: the first data analysis
should be journalistic. Ecological Applications 6:
1090–1094.

Edwards, L.K. (1993) Analysis of time-dependent observa-
tions. In: Applied Analysis of Variance in Behavioral Science
(Edwards, L.K. ed.), pp. 437–457. Marcel Dekker, New
York.

Efron, B. (1982) The jackknife, the bootstrap and
other resampling methods. Society for Industrial and
Applied Mathematics, CBMS-NSF Monograph 38,
Philadelphia.

514 REFERENCES



Efron, B. & Gong, G. (1983) A leisurely look at the boot-
strap, the jackknife, and cross-validation. The American
Statistician 37: 36–48.

Efron, B. & Tibshirani, R. (1991) Statistical data analysis
in the computer age. Science 253: 390–395.

Elgar, M.A., Allan, R.A. & Evans, T.A. (1996) Foraging strat-
egies in orb-spinning spiders: ambient light and silk
decorations in Argiope aetherea Walckenaer (Araneae:
Araneoidea). Australian Journal of Ecology 21: 464–467.

Eliason, S.R. (1993) Maximum Likelihood Estimation Logic
and Practice. Sage Publications, Newbury Park.

Ellison, A.M. (1993) Exploratory data analysis and
graphic display. In: Design and Analysis of Ecological
Experiments (Scheiner, S.M. & Gurevitch, J. eds.).
Chapman & Hall, New York.

Ellison, A.M. (1996) An introduction to Bayesian inference
for ecological research and environmental decision-
making. Ecological Applications 64: 1036–1046.

Emerson, J.D. (1991) Introduction to transformation. In:
Fundamentals of Exploratory Analysis of Variance
(Hoaglin, D.C., Mosteller, F. & Tukey, J.W. eds.), pp.
365–400. Wiley, New York.

Emerson, J.D. & Hoaglin, D.C. (1983) Analysis of two-way
tables by medians. In: Understanding Robust and
Exploratory Data Analysis (Hoaglin, D.C., Mosteller, F. &
Tukey, J.W. eds.), pp. 166–210. Wiley, New York.

Emerson, J.D. & Wong, G.Y. (1985) Resistant nonadditive
fits for two-way tables. In: Exploring Data Tables, Trends,
and Shapes (Hoaglin, D.C., Mosteller, F. & Tukey, J.W.
eds.), pp. 67–124. Wiley, New York.

Evans, E.W. & England, S. (1996) Indirect interactions in
biological control of insects: pests and natural
enemies in alfalfa. Ecological Applications 6: 920–930.

Evans, M., Hastings, N. & Peacock, B. (2000) Statistical
Distributions, 3rd edition. Wiley, New York.

Everitt, B.S. & Dunn, G. (1991) Applied Multivariate Data
Analysis. Edward Arnold, London.

Faeth, S.H. (1992) Interspecific and intraspecific interac-
tions via plant responses to folivory: an experimental
field test. Ecology 73: 1802–1813.

Fairweather, P.G. (1991) Statistical power and design
requirements for environmental monitoring.
Australian Journal of Marine and Freshwater Research 42:
555–567.

Faith, D.P., Minchin, P.R. & Belbin, L. (1987). Compo-
sitional dissimilarity as a robust measure of ecologi-
cal distance. Vegetatio 69: 57–68.

Federer, W.T. & Meredith, M.P. (1992) Covariance analy-
sis for split-plot and split-block designs. The American
Statistician 46: 155–162.

Feinsinger, P., Tiebout III, H.M. & Young, B.M. (1991) Do
tropical bird-pollinated plants exhibit density-depen-
dent interactions? Field experiments. Ecology 72:
1953–1963.

Fenton, M.B., Cumming, D.H.M., Rautenbach, I.L.,

Cumming, G.S., Cumming, M.S., Ford, G., Taylor, R.D.,
Dunlop, J., Hovorka, M.D., Johnston, D.S., Portfors,
C.V., Kalcounis, M.C. & Mahlanga, Z. (1998) Bast and
the loss of tree canopy in African woodlands.
Conservation Biology 12: 399–407.

Fisher, R.A. (1935; numerous subsequent editions) The
Design of Experiments. Oliver & Boyd, Edinburgh.

Fisher, R.A. (1936) The use of multiple measurement in
taxonomic problems. Annals of Eugenics 7: 179–188.

Fisher, R.A. (1954) Statistical Methods for Research Workers.
Oliver & Boyd, Edinburgh.

Fisher, R.A. (1956) Statistical Methods and Scientific
Inference. Oliver & Boyd, Edinburgh.

Fitzmaurice, G.M. (1997) Model selection with overdis-
persed data. The Statistician 1: 81–91.

Flack, V.F. & Chang, P.C. (1987) Frequency of selecting
noise variables in subset regression analysis: a simu-
lation study. The American Statistician 41: 84–86.

Fligner, M.A. & Killeen, T.J. (1976) Distribution-free two-
sample tests for scale. Journal of the American Statistical
Association 71: 210–213.

Flury, B. & Riedwyl, H. (1988) Multivariate Statistics: a
Practical Approach. Chapman & Hall, London, 296 pp.

Ford, E.D. (2000) Scientific Method for Ecological Research.
Cambridge University Press, Cambridge.

Fortin, M.-J. & Gurevitch, J. (1993) Mantel tests: spatial
structure in field experiments. In: Design and Analysis
of Ecological Experiments (Scheiner, S.M. & Gurevitch, J.
eds.), pp. 342–359. Chapman & Hall, New York.

Fox, G.A. (1993) Failure-time analysis: emergence, flow-
ering, survivorship, and other waiting times. In:
Design and Analysis of Ecological Experiments (Scheiner,
S.M. & Gurevitch, J. eds.), pp. 253–289. Chapman &
Hall, New York.

French, K. & Westoby, M. (1996) Vertebrate-dispersed
species in a fire-prone environment. Australian Journal
of Ecology 21: 379–385.

Frick, R.W. (1995) Accepting the null hypothesis. Memory
& Cognition 23: 132–138.

Fry, J.D. (1992) The mixed-model analysis of variance
applied to quantitative genetics: biological meaning
of the parameters. Evolution 46: 540–550.

Furness, R.W. & Bryant, D.M. (1996) Effect of wind on
field metabolic rates of breeding Northern Fulmars.
Ecology 77: 1181–1188.

Gange, A.C. (1995) Aphid performance in an alder (Alnus)
hybrid zone. Ecology 76: 2074–2083.

Gardner, W., Mulvey, E.P. & Shaw, E.C. (1995) Regression
analyses of counts and rates: Poisson, overdispersed
Poisson, and negative binomial models. Psychological
Bulletin 118: 392–404.

Gates, C.E. (1995) What really is experimental error in
block designs? The American Statistician 49: 362–363.

Gauch, H.G. (1982) Multivariate Analysis in Community
Ecology. Cambridge University Press, New York.

REFERENCES 515



Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (1995)
Bayesian Data Analysis. Chapman & Hall, London.

Gigerenzer, G. (1993) The superego, the ego and the id in
statistical reasoning. In: A Handbook for Data Analysis in
the Behavioral Sciences – Methodological Issues (Keren, G.
& Lewis, C. eds.), pp. 311–339. Lawrence Erlbaum
Associates, New Jersey.

Glass, G.V. & Hakstian, A.R. (1969) Measures of associa-
tion in comparative experiment: their development
and interpretation. American Educational Research
Journal 6: 404–414.

Glass, G.V., Peckham, P.D. & Sanders, J.R. (1972)
Consequences of failure to meet assumptions
underlying the fixed effects analysis of variance
and covariance. Review of Educational Research 42:
237–288.

Glitzenstein, J.S., Platt, W.J. & Streng, D.R. (1995) Effects
of fire regime and habitat on tree dynamics in north
Florida longleaf pine savannas. Ecological Monographs
65: 441–476.

Golden, D.M. & Crist, T.O. (1999) Experimental effects of
habitat fragmentation on old-field canopy insects:
community, guild and species responses. Oecologia
118: 371–380.

Gonzalez, L. & Manly, B.F.J. (1998) Analysis of variance by
randomization with small data sets. Environmetrics 9:
53–65.

Goodall, C. (1990) A survey of smoothing techniques. In:
Modern Methods of Data Analysis (Fox, J. & Long, J.S. eds.),
pp. 126–176. Sage, Newbury Park.

Gough, L. & Grace, J.B. (1998) Herbivore effects on plant
species density at varying productivity levels. Ecology
79: 1586–1594.

Gower, B. (1997) Scientific Method. A Historical and
Philosophical Introduction. Routledge, London.

Gower, J.C. (1971) A general coefficient of similarity and
some of its properties. Biometrics 27: 857–871.

Gower, J.C. (1996) Multivariate and multidimensional
analysis. In: Advances in Biometry (Armitage, P. & David,
H.A., eds.), pp. 149–175. Wiley, New York.

Gower, J.C. & Hand, D.J. (1996) Biplots. Chapman & Hall,
London.

Green, P.T. (1997) Red crabs in rain forest on Christmas
Island, Indian Ocean: activity patterns, density and
biomass. Journal of Tropical Ecology 13: 17–38.

Green, R.H. (1979) Sampling Design and Statistical Methods
for Environmental Biologists. Wiley-Interscience Thesis,
New York.

Green, S.B. (1991) How many subjects does it take to do
regression analysis? Multivariate Behavioral Research 26:
499–510.

Guiller, A., Bellido, A. & Madec, L. (1998) Genetic dis-
tance and ordination – the land snail Helix aspersa in
North Africa as a test case. Systematic Biology 47:
208–227.

Gumpertz, M.L. & Brownie, C. (1993) Repeated measures
in randomized block and split-plot experiments.
Canadian Journal of Forest Research 23: 625–639.

Gurevitch, J. & Hedges, L.V. (1993) Meta-analysis: combin-
ing the results of independent experiments. In: Design
and Analysis of Ecological Experiments (Scheiner, S.M. &
Gurevitch, J. eds.), pp. 378–398. Chapman & Hall, New
York.

Gurevitch, J., Morrow, L.L., Wallace, A. & Walsh, J.S.
(1992) A meta-analysis of field experiments on compe-
tition. American Naturalist 140: 539–572.

Hadi, A.S. & Ling, R.F. (1998) Some cautionary notes on
the use of principal components regression. The
American Statistician 52: 15–19.

Hairston, N.G. (1980) The experimental test of an analy-
sis of field distributions: competition in terrestrial sal-
amanders. Ecology 61: 817–826.

Hairston, N.G. (1989) Ecological Experiments. Purpose, Design
and Execution. Cambridge University Press, Cambridge.

Hall, S.J., Gray, S.A. & Hammett, Z.L. (2000)
Biodiversity–productivity relations: an experimental
evaluation of mechanisms. Oecologia 122: 545–555.

Hancock, G.R. & Klockars, A.J. (1996) The quest for �:
developments in multiple comparison procedures in
the quarter century since Games (1971). Review of
Educational Research 66: 269–306.

Hanley, J.A. & Shapiro, S.H. (1994) Sexual activity and the
lifespan of male fruitflies: a dataset that gets atten-
tion. Journal of Statistics Education 2(1).
http: //www.amsat.org/publications/jse/

Hansson, B., Bensch, S. & Hasselquist, D. (2000) Patterns
of nest predation to polygyny in the Great Reed
Warbler. Ecology 81: 319–328.

Harlow, L.L., Mulaik, S.A. & Steiger, J.H. (1997) What If
There Were No Significance Tests? Lawrence Erlbaum,
New Jersey.

Harris, R.J. (1985) Primer of Multivariate Statistics, 2nd
edition. Academic Press, New York.

Harris, R.J. (1993) Multivariate analysis of variance. In:
Applied Analysis of Variance in Behavioral Science (Edwards,
L.K. ed.), pp. 691–716. Marcel Dekker, New York.

Harrison, S.R. & Tamaschke, H.U. (1984) Applied Statistical
Analysis. Prentice-Hall, Sydney.

Hasselblad, V. (1994) Meta-analysis in environmental
studies. In: Environmental Statistics Vol. 12 (Patil, G.P. &
Rao, C.R. eds.). North Holland, Amsterdam.

Hastie, T.J. & Tibshirani, R.J. (1990) Generalized Additive
Models. Chapman & Hall, London.

Haynes, D., Toohey, D., Clarke, D. & Marney, D. (1995)
Temporal and spatial variation in concentrations of
trace metals in coastal sediments from the ninety
mile beach, Victoria, Australia. Marine Pollution Bulletin
30: 414–418.

Hays, W.L. (1994) Statistics, 5th edition. Harcourt Brace,
Fort Worth.

516 REFERENCES



Hedges, L.V. & Olkin, I. (1985) Statistical Methods for Meta-
Analysis. Academic Press, New York.

Heitjan, D.F. (1997) Annotation: What can be done about
missing data? Approaches to imputation. American
Journal of Public Health 87: 548–549.

Herrera, C.M. (1992) Interspecific variation in fruit
shape: allometry, physlogeny, and adaptation to dis-
persal agents. Ecology 73: 1832–1841.

Heschel, M.S. & Paige, K.N. (1995) Inbreeding depression,
environmental stress, and population size variation
in scarlet gilia (Ipomopsis aggregata). Conservation
Biology 9: 126–133.

Hicks, C.R. & Turner, K.V. (1999) Fundamental Concepts in
the Design of Experiments, 5th edition. Oxford
University Press, Oxford.

Hilbe, J.M. (1993) Generalized additive models software.
The American Statistician 47: 59–64.

Hilborn, R. & Mangel, M. (1997) The Ecological Detective:
Confronting Models with Data. Princeton University
Press, Princeton, New Jersey.

Hill, M.O. (1973) Reciprocal averaging: an eigenvector
method of ordination. Journal of Ecology 61: 237–249. 

Hill, M.O. (1974) Correspondence analysis: a neglected
multivariate method. Applied Statistics 23: 340–354.

Hill, M.O. & Gauch, H.G. (1980) Detrended correspon-
dence analysis, an improved ordination technique.
Vegetatio 42: 47–58.

Hines, W.G.S. (1996) Pragmatics of pooling in ANOVA
tables. The American Statistician 50: 127–139.

Hoaglin, D.C & Welsch, R.E. (1978) The hat matrix in regres-
sion and ANOVA. The American Statistician 32: 17–22.

Hoaglin, J.D., Mosteller, F. & Tukey, J.W. (1983)
Understanding Robust and Exploratory Data Analysis.
Wiley, New York.

Hochberg, Y. (1988) A sharper Bonferroni procedure for
multiple tests of significance. Biometrika 75: 800–802.

Hochberg, Y. & Tamhane, A.C. (1987) Multiple Comparison
Procedures. Wiley, New York.

Hocking, R.R. (1985) The Analysis of Linear Models. Brooks-
Cole, California.

Hocking, R.R. (1993) Variance component estimation in
mixed linear models. In: Applied Analysis of Variance in
Behavioral Science (Edwards, L.K. ed.), pp. 541–571.
Marcel Dekker, New York.

Hocking, R.R. (1996) Methods and Applications of Linear
Models: Regression and the Analysis of Variance. Wiley,
New York.

Hoenig, J.M. & Heisey, D.M. (2001) The abuse of power:
the pervasive fallacy of power calculations for data
analysis. The American Statistician 55: 19–24.

Hollander, M. & Wolfe, D.A. (1999) Nonparametric
Statistical Methods, 2nd edition. Wiley, New York.

Holm, S. (1979) A simple sequentially rejective multiple
test procedure. Scandinavian Journal of Statistics 6:
65–70.

Horton, N.J. & Lipsitz, S.R. (1999) Review of software to
fit generalized estimating equation regression
models. The American Statistician 53: 160–169.

Hosmer, D.W. & Lemeshow, S. (1989) Applied Logistic
Regression. Wiley, New York.

Hosmer, D.W., Hosmer, T., Le Cessie, S. & Lemeshow, S.
(1997) A comparison of goodness-of-fit tests for the
logistic regression model. Statistics in Medicine 16:
965–980.

Huber, P.J. (1981) Robust Statistics. Wiley, New York.
Huberty, C.J. (1993) Historical origins of statistical

testing practices: the treatment of Fisher versus
Neyman–Pearson views in textbooks. Journal of
Experimental Education 61: 317–333.

Huberty, C.J. (1994) Applied Discriminant Analysis. Wiley,
New York.

Huitema, B.E. (1980) The Analysis of Covariance and Its
Alternatives. Wiley, New York.

Hull, D.L. (1999) The role of negative evidence in science.
Marine Ecology Progress Series 191: 305–307.

Hurlbert, S.J. (1984) Pseudoreplication and design of
ecological field experiments. Ecological Monographs 54:
187–211.

Hyndman, R.J. (1996) Computing and graphing highest
density regions. The American Statistician 50: 120–126.

Inman, H.F. (1994) Karl Perason and R.A. Fisher on statis-
tical tests: a 1935 exchange from Nature. The American
Statistician 48: 2–11.

Jaccard, J., Turrisi, R. & Wan, C.K. (1990) Interaction Effects
in Multiple Regression. Sage Publications, Newbury Park.

Jackson, D.A. (1993). Principal components analysis:
how many components are nontrivial and interpret-
able? Ecology 74: 2204–2214.

Jackson, D.A. & Somers, K.M. (1991). Putting things in
order – the ups and downs of detrended correspon-
dence analysis. American Naturalist 137: 704–712.

Jackson, J.E. (1991). A User’s Guide to Principal Components.
Wiley, New York.

Jackson, P.R. (1986) Robust methods in statistics. In:
New Developments in Statistics for Psychology and the
Social Sciences (Lovie, A.D. ed.), pp. 22–43. BPS and
Methuen, London.

James, F.C. & McCulloch, C.E. (1985) Data analysis and
the design of experiments in ornithology. In: Current
Ornithology Vol. 2 (Johnston, R.F. ed.), pp. 1–63. Plenum
Press, New York.

James, F.C. & McCulloch, C.E. (1990) Multivariate analy-
sis in ecology and systematics: Panacea or Pandora’s
box? Annual Review of Ecology and Systematics 21:
129–166.

Janky, D.G. (2000) Sometimes pooling for analysis of var-
iance hypothesis tests: a review and study of a split-
plot model. The American Statistician 54: 269–279.

Jobson, J.D. (1992) Applied Multivariate Data Analysis, Vol.
2. Springer-Verlag, New York.

REFERENCES 517



Johnson, C.R. & Field, C.A. (1993) Using fixed-effects
model multivariate analysis of variance in marine
biology and ecology. Oceanography and Marine Biology
Annual Review 31: 177–221.

Johnson, D.H. (1999) The insignificance of statistical sig-
nificance testing. Journal of Wildlife Management 63:
763–772.

Johnson, P.O. & Neyman, J. (1936) Tests of certain linear
hypotheses and their application to some educational
problems. Statistical Research Memoirs 1: 57–93.

Jones, D. & Matloff, N. (1986) Statistical hypothesis
testing in biology: a contradiction in terms. Journal of
Economic Entomology 79: 1156–1160.

Jongman, R.H.G., ter Braak, C.J.F. & van Tongeren, O.F.R.
(1995) Data Analysis in Community and Landscape Ecology.
Cambridge University Press, Cambridge.

Judd, C.M., McClelland, G.H. & Culhane, S.E. (1995) Data
analysis: continuing issues in the everyday analysis of
psychological data. Annual Review of Psychology 46:
433–465.

Juenger, T. & Bergelson, J. (2000) Does early season
browsing influence the effect of self-pollination in
scarlet gilia. Ecology 81: 41–48.

Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of
the American Statistical Association 90: 773–795.

Kause, A., Haukioja, E. & Hanhimäki, S. (1999)
Phenotypic plasticity in foraging behavior of sawfly
larvae. Ecology 80: 1230–1241.

Keene, O.N. (1995) The log transformation is special.
Statistics in Medicine 14: 811–819.

Kenny, D.A. & Judd, C.M. (1986) Consequences of violat-
ing the independence assumption in analysis of vari-
ance. Psychological Bulletin 99: 422–431.

Kent, M. & Coker, P. (1992). Vegetation Description and
Analysis: a Practical Approach. CRC Press, Boca Raton,
Florida.

Keough, M.J. & King, A. (1991) Recommendations for
monitoring of marine plant and animal populations
in Wilsons Promontory Marine National Park and the
Bunurong Marine Park. Department of Conservation
and Environment, Melbourne, Victoria. (Unpublished
report).

Keough, M.J. & Mapstone, B.D. (1995) Protocols for
designing marine ecological monitoring programs
associated with BEK mills. Technical Report No. 11,
National Pulp Mills Program. CSIRO, Canberra, 177
pp.

Keough, M.J. & Mapstone, B.D. (1997) Designing environ-
mental monitoring for pulp mills in Australia. Water
Science and Technology 35: 397–404.

Keough, M.J. & Quinn, G.P. (1998) Effects of periodic dis-
turbances from trampling on rocky intertidal algal
beds. Ecological Applications 8: 141–161.

Keough, M.J. & Raimondi, P.T. (1995) Responses of set-
tling invertebrate larvae to bioorganic films: effects of

different types of films. Journal of Experimental Marine
Biology and Ecology 185: 235–253.

Keough, M.J. & Raimondi, P.T. (1996) Responses of set-
tling invertebrate larvae to biofilms: a comparison of
the effects of local and “foreign” films at three sites.
Journal of Experimental Marine Biology and Ecology 207:
59–78.

Keough, M.J., Quinn, G.P. & King, A. (1993) Correlations
between human collecting and intertidal mollusc
populations on rocky shores. Conservation Biology 7:
378–391.

Keppel, G. (1991) Design and Analysis: A Researcher’s
Handbook. Prentice-Hall, Englewood Cliffs, NJ.

Keselman, H.J. & Keselman, J.C. (1993) Analysis of
repeated measurements. In: Applied Analysis of Variance
in Behavioral Science (Edwards, L.K. ed.), pp. 105–145.
Marcel Dekker, New York.

Keselman, H.J., Keselman, J.C. & Lix, L.M. (1995) The
analysis of repeated measurements: univariate tests,
multivariate tests, or both? British Journal of
Mathematical and Statistical Psychology 48: 319–338.

Kingsolver, J.G. & Schemske, D.W. (1991) Path analyses of
selection. Trends in Ecology and Evolution 6: 276–280.

Kirk, R.E. (1995) Experimental Design. Brooks/Cole, Pacific
Grove.

Kleinbaum, D.G., Kupper, L.L. & Muller, K.E. (1988)
Applied Regression Analysis and Other Multivariable
Methods. PWS-Kent, Boston, Mass.

Kleinbaum, D.G., Kupper, L.L. & Muller, K.E. (1997)
Applied Regression Analysis and Other Multivariable
Methods, 3rd edition Duxbury Press.

Koenig, W.D. (1999) Spatial autocorrelation of ecological
phenomena. Trends in Ecology and Evolution 14: 22–26.

Koenig, W.D., Mumme, R.L., Carmen, W.J. & Stanback,
M.T. (1994) Acorn production by oaks in central
coastal California: variation within and among years.
Ecology 75: 99–109.

Krebs, C.J. (1989) Ecological Methodology. Harper-Collins,
New York.

Krupnick, G.A. & Weis, A.E. (1999) The effect of floral her-
bivory on male and female reproductive success in
Isomeris arborea. Ecology 80: 135–149.

Kruskal, J.B. (1964a) Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypotheses.
Psychometrika 29: 1–27.

Kruskal, J.B. (1964b) Nonmetric multidimensional
scaling: a numerical method. Psychometrika 29:
115–129.

Kuhn, T.S. (1970) The Structure of Scientific Revolutions, 2nd
edition. University of Chicago Press, Chicago.

Kvalseth, T. (1985) Cautionary note about R2. The
American Statistician 39: 279–285.

LaBarbera, M. (1989) Analyzing body size as a factor in
ecology and evolution. Annual Review of Ecology and
Systematics 20: 97–117.

518 REFERENCES



Lafi, S.Q. & Kaneene, J.B. (1992) An explanation of the use
of principal-components analysis to detect and
correct for multicollinearity. Preventive Veterinary
Medicine 13: 261–275.

Laird, N.M. & Ware, J.H. (1982) Random effects models
for longitudinal data. Biometrics 38: 963–974.

Lakatos, I. (1978) The Methodology of Scientific Research
Programmes. Cambridge University Press, New York.

Larntz, K. (1993) Analysis of categorical response vari-
ables. In: Applied Analysis of Variance in Behavioral Science
(Edwards, L.K. ed.). Marcel Dekker, New York.

Legendre, P. (1993) Spatial autocorrelation: trouble or
new paradigm. Ecology 74: 1659–1673.

Legendre, P. & Anderson, M.J. (1999a) Distance-based
redundancy analysis: testing multispecies responses
in multifactorial ecological experiments. Ecological
Monographs 69: 1–24.

Legendre, P. & Anderson, M.J. (1999b) Distance-based
redundancy analysis: testing multispecies responses
in multifactorial ecological experiments. Ecological
Monographs 69: 1–24.

Legendre, P. & Legendre, L. (1998) Numerical Ecology, 2nd
English edition. Elsevier Science, Amsterdam.

Lehmann, E.L. (1993) The Fisher, Neyman–Pearson theo-
ries of testing hypotheses: one theory or two. Journal
of the American Statistical Association 88: 1242–1249.

Lentner, M., Arnold, J.C. & Hinkelmann, K. (1989) The
efficiency of blocking: how to use MS(Blocks)/
MS(Error) correctly. The American Statistician 43:
106–108.

Leonard, G.H., Bertness, M.D. & Yund, P.O. (1999) Crab
predation, waterborne cues, and inducible defences
in the blue mussel, Mytilus edulis. Ecology 80: 1–14.

Letourneau, D.K. & Dyer, L.A. (1998) Experimental test in
lowland tropical forest shows top-down effects
through four trophic levels. Ecology 79: 1678–1687.

Levin, J.R. (1998) To test or not to test H0? Educational and
Psychological Measurement 58: 313–333.

Levy, P.S. & Lemeshow, S. (1991) Sampling of Populations.
Wiley, New York.

Liang, K.-Y. & Zeger, S.L. (1986) Longitudinal data analy-
sis using generalized linear models. Biometrika 73:
13–22.

Lindsey, J.C. & Ryan, L.M. (1998) Tutorial in biostatistics
– methods for interval-censored data. Statistics in
Medicine 17: 219–238.

Little, R.J.A. (1999) Methods for handling missing values in
clinical trials. The Journal of Rheumatology 26: 1654–1656.

Little, R.J.A. & Rubin, D.B. (1987) Statistical Analysis with
Missing Data. Wiley, New York.

Loehle, C.J. (1987) Hypothesis testing in ecology: psycho-
logical aspects and the importance of theory matura-
tion. Quarterly Review of Biology 62: 397–409.

Loehle, C.J. (1990) Proper statistical treatment of species-
area data. Oikos 57: 143–145.

Looney, S.W. & Stanley, W.B. (1989) Exploratory repeated
measures analysis for two or more groups. The
American Statistician 43: 220–225.

Losos, E. (1995) Habitat specificity of two palm species:
experimental transplantation in Amazonian succes-
sional forests. Ecology 76: 2595–2606.

Lovett, G.M., Weathers, K.C. & Sobczak, W.V. (2000)
Nitrogen saturation and retention in forested water-
sheds of the Catskill Mountains, New York. Ecological
Applications 10: 73–84.

Loyn, R.H. (1987) Effects of patch area and habitat on bird
abundances, species numbers and tree health in frag-
mented Victorian forests. In: Nature Conservation: the
Role of Remnants of Native Vegetation (Saunders, D.A.,
Arnold, G.W., Burbidge, A.A. & Hopkins, A.J.M. eds.), pp.
65–77. Surrey Beatty & Sons, Chipping Norton, NSW.

Ludbrook, J. & Dudley, H. (1998) Why permutation tests
are superior to t and F tests in biomedical research.
The American Statistician 52: 127–132.

Ludwig, J.A. & Reynolds, J.F. (1988) Statistical Ecology: a
Primer on Methods and Computing. Wiley, New York.

Mac Nally, R.C. (1989) The relationship between habitat
breadth, habitat position, and abundance in forest
and woodland birds along a continental gradient.
Oikos 54: 44–54.

Mac Nally, R. (1996) Hierarchical partitioning as an
interpretative tool in multivariate inference.
Australian Journal of Ecology 21: 224–228

Mac Nally, R. (2000) Regression and model-building in
conservation biology, biogeography and ecology: The
distinction between, and reconciliation of, predictive
and explanatory models. Biodiversity and Conservation
9: 655–671.

Manly, B.F.J. (1992) The Design and Analysis of Research
Studies. Cambridge University Press, Cambridge.

Manly, B.F.J. (1994) Multivariate Statistical Methods: A
Primer. 2nd edition. Chapman & Hall, London.

Manly, B.F.J. (1997) Randomization and Monte Carlo Methods
in Biology, 2nd edition. Chapman & Hall, London. 

Manly, B.F.J. (2001) Statistics for Environmental Science and
Management. Chapman & Hall / CRC, Boca Raton,
Florida.

Mapstone, B.D. (1995) Scalable decision rules for envi-
ronmental impact studies: effect size, Type I, and
Type II errors. Ecological Applications 5: 401–410.

Maret, T.J. & Collins, J.P. (1996) Effect of prey vulnerabil-
ity on population size structure of a gape-limited
predator. Ecology 77: 320–324.

Markowski, C.A. & Markowski, E.P. (1990) Conditions for
the effectiveness of a preliminary test of variance. The
American Statistician 44: 322–326.

Marshall, P. & Keough, M.J. (1994) Asymmetry in intra-
specific competition in the limpet Cellana tramoserica
(Sowerby). Journal of Experimental Marine Biology and
Ecology 177: 121–138.

REFERENCES 519



Matlack, G.R. (1994) Plant species migration in a mixed-
history forest landscape in eastern North America.
Ecology 75: 1491–1502.

Matloff, N.S. (1991) Statistical hypothesis testing: prob-
lems and alternatives. Environmental Entomology 20:
1246–1250.

Maxwell, S.E. & Delaney, H.D. (1990) Designing
Experiments and Analyzing Data: a Model Comparison
Perspective. Wadsworth Publishing, Belmont,
California.

Maxwell, S.E., O’Callaghan, M.F. & Delaney, H.D. (1993)
Analysis of covariance. In Applied Analysis of Variance in
Behavioral Science (Edwards, L.K. ed.), pp. 63–104.
Marcel Dekker, New York.

Mayo, D.G. (1996) Error and the Growth of Experimental
Knowledge. University of Chicago Press, Chicago.

McArdle, B.H. (1988) The structural relationship: regres-
sion in biology. Canadian Journal of Zoology 66:
2329–2339.

McArdle, B.H. (1996) Levels of evidence in studies of com-
petition, predation and disease. New Zealand Journal of
Ecology 20: 7–15.

McArdle, B.H. & Anderson, M.J. (2001) Fitting multivari-
ate models to community data: a comment on dis-
tance-based redundancy analysis. Ecology 82: 290–297

McCue, K.A., Buckler, E.S. & Holtsford, T.P. (1996) A hier-
archical view of genetic structure in the rare annual
plant Clarkia springvillensis. Conservation Biology 10:
1424–1434.

McCullough, P. & Nelder, J.A. (1989) Generalized Linear
Models, 2nd edition. Chapman & Hall, New York.

McCune, B. & Mefford, M.J. (1999) Multivariate Analysis of
Ecological Data, Version 4.10, MjM Software, Gleneden
Beach, Oregon, USA.

McGoldrick, J.M. & Mac Nally, R.C. (1998) Impact of flow-
ering on bird community dynamics in some central
Victorian eucalypt forests. Ecological Research 13:
125–139.

McKean, J.W. & Vidmar, T.J. (1994) A comparison of two
rank-based methods for the analysis of linear models.
The American Statistician 48: 220–229.

McLean, R.A., Sanders, W.L. & Stroup, W.W. (1991) A
unified approach to mixed linear models. The
American Statistician 45: 54–64.

McShane, P. & Smith, M.G. (1990) Direct measurement of
fishing mortality in abalone (Haliotis rubraeach) off
southeastern Australia. Fisheries Research 8: 93–102.

McShane, P., Smith, M.G. & Beinssen, K.H.H. (1988)
Growth and morphometry in abalone (Haliotis rubra
Leach) from Victoria. Australian Journal of Marine and
Freshwater Research 39: 161–166.

Mead, R. (1988) The Design of Experiments. Cambridge
University Press, Cambridge.

Medley, C.N. & Clements, W.H. (1998) Responses of
diatom communities to heavy metals in streams: the

influence of longitudinal variation. Ecological
Applications 8: 631–644.

Menard, S. (1995) Applied Logistic Regression Analysis. Sage
Publications, Thousand Oaks, California.

Menard, S. (2000) Coefficients of determination for multi-
ple logistic regression. The American Statistician 54: 17–24.

Mentis, M.T. (1988) Hypothetico-deductive and inductive
approaches in ecology. Functional Ecology 12: 5–14.

Meredith, M.P. & Stehman, S.V. (1991) Repeated meas-
ures experiments in forestry: focus on analysis of
response curves. Canadian Journal of Forest Research 21:
957–965.

Meserve, P.L., Gutierrez, J.R., Yunger, J.A., Conteras, L.C.
& Jaksic, F.M. (1996) Role of biotic interactions in a
small mammal assemblage in semiarid Chile. Ecology
77: 133–148.

Mielke, P.W. (1985) Multiresponse permutation proce-
dures. In: Encyclopedia of Statistical Sciences, vol. 5 (Kotz,
S. & Johnson, N.L. eds.), pp. 724–727. Wiley, New York.

Mielke, P.W., Berry, K.J. & Johnson, E.J. (1976)
Multiresponse permutation procedures for a priori
classifications. Communications in Statistics – Theory and
Methods A5: 1409–1424.

Millard, S.P. & Deverel, S.J. (1988) Nonparametric statis-
tical methods for comparing two sites based on data
with multiple nondetect limits. Water Resources
Research 24: 2087–2098.

Miller, J.N. (1993) Outliers in experimental data and
their treatment. Analyst 118: 455–461.

Miller, R.G. (1981) Simultaneous Statistical Inference, 2nd
edition. Springer, New York.

Milliken, G.A. & Johnson, D.E. (1984) Analysis of Messy
Data. Vol. 1: Designed Experiments. Van Nostrand
Reinhold, New York.

Mills, K.E. & Bever, J.D. (1998) Maintenance of diversity
within plant communities: soil pathogens as agents
of negative feedback. Ecology 79: 1595–1601.

Minchin, P.R. (1987). An evaluation of the relative
robustness of techniques for ecological ordination.
Vegetatio 69: 89–107.

Minchinton, T.E. & Ross, P.M. (1999) Oysters as habitat
for limpets in a temperate mangrove forest. Australian
Journal of Ecology 24: 157–170.

Mitchell, R.J. (1992) Testing evolutionary and ecological
hypotheses using path analysis and structural equa-
tion modelling. Functional Ecology 6: 123–129.

Mitchell, R.J. (1993) Path analysis: pollination. In: Design
and Analysis of Ecological Experiments (Scheiner, S.M. &
Gurevitch, J. eds.), pp. 211–231. Chapman & Hall, New
York.

Morris, C.N. (1987) Comment. Journal of the American
Statistical Association 82: 131–133.

Morris, D.W. (1996) Coexistence of specialist and gener-
alist rodents via habitat selection. Ecology 77:
2351–2364.

520 REFERENCES



Morrison, D. (1991) Personal Type I error rates in the eco-
logical sciences. Bulletin of the Ecological Society of
Australia 21: 49–53.

Morse, S.R. & Bazzaz, F.A. (1994) Elevated CO2 and tem-
perature alter recruitment and size hierarchies in C3

and C4 annuals. Ecology 75: 966–975.
Mothershead, K. & Marquis, R.J. (2000) Fitness impacts of

herbivory through indirect effects of plant–pollina-
tor interactions in Oenothera macrocarpa. Ecology 81:
30–40.

Mulaik, S.A., Raju, N.S. & Harshman, R.A. (1997) There is
a time and a place for significance testing. In: What if
there were no significance tests? (Harlow, L.L., Mulaik, S.A.
& Steiger, J.H. eds.), pp. 65–115. Lawrence Erlbaum,
New Jersey. 

Mullens, A. (1993) The effects of inspired oxygen on the
pattern of ventilation in the Cane Toad (Bufo marinus)
and the Salt Water Crocodile (Crocodylus porosus).
Honours Thesis. University of Melbourne, Australia.

Murdoch, D.J. & Chow, E.D. (1996) A graphical display of
large correlation matrices. The American Statistician 50:
178–180.

Myers, R.H. (1990) Classical and Modern Regression Analysis
with Applications. Duxbury, Belmont.

Myers, R.H. & Montgomery, D.C. (1997) A tutorial on gen-
eralized linear models. Journal of Quality Technology 29:
274–291.

Naiman, R.J., Pinay, G., Johnston, C.A. & Pastor, J. (1994)
Beaver influences on the long-term biogeochemical
characteristics of boreal forest drainage networks.
Ecology 75: 905–921.

National Research Council (1990) Managing Troubled
Waters. The Role of Marine Environmental Monitoring.
National Academy of Sciences, Washington, DC.

Nelder, J. & Wedderburn, R.W.M. (1972) Generalized
linear models. Journal of the Royal Statistical Society
A135: 370–384.

Nelder, J.A. & Lane, P.W. (1995) The computer analysis of
factorial experiments: in memoriam – Frank Yates.
The American Statistician 49: 382–385.

Nester, M.R. (1996) An applied statistician’s creed.
Applied Statistics 45: 401–410.

Neter, J., Kutner, M.H., Nachtsheim, C.J. & Wasserman,
W. (1996) Applied Linear Statistical Models, 4th edition.
Irwin, Illinois.

Newman, J.A., Bergelson, J. & Grafen, A. (1997) Blocking
factors and hypothesis tests in ecology: is your statis-
tics text wrong? Ecology 78: 1312–1320.

Newman, M.C., Dixon, P.M., Looney, B.B. & Pinder, J.E.
(1989) Estimating mean and variance for environmen-
tal samples with below detection limit observations.
Water Resources Bulletin 25: 905–916.

Newman, R.A. (1994) Effects of changing density and
food level on metamorphosis of a desert amphibian,
Scaphiopus couchii. Ecology 75: 1085–1096.

Neyman, J. & Pearson, E. (1928) On the use and
interpretation of certain test criteria for purposes
of statistical inference: Part I. Biometrika 20A:
175–240.

Neyman, J. & Pearson, E.S. (1933) On the problem of the
most efficient tests of statistical hypotheses.
Philosophical Transactions of the Royal Society of London,
Series A 231: 289–337.

Noreen, E.W. (1989) Computer-Intensive Methods for Testing
Hypotheses : An Introduction. Wiley, New York.

Norman, G.R. & Streiner, D.L. (1994) Biostatistics: The Bare
Essentials. Mosby, St Louis.

O’Hear, A. (1989) An Introduction to the Philosophy of Science.
Oxford University Press, Oxford.

Oakes, M. (1986) Statistical Inference: a Commentary for
the Social and Behavioural Sciences. Wiley, Chichester.

Okansen, J. & Minchin, P.R. (1997) Instability of ordina-
tion results under changes in input order: explana-
tions and remedies. Journal of Vegetation Science 8:
447–454.

Olejnik, S.F. & Algina, S.L. (1987) An analysis of statisti-
cal power for parametric ANCOVA and rank transform
ANCOVA. Communications in Statistics – Theory and
Methods A16: 1923–1949.

Omar, R.Z., Wright, E.M., Turner, R.M. & Thompson, S.G.
(1999) Analysing repeated measurements data: a prac-
tical comparison of methods. Statistics in Medicine 18:
1587–1603.

Osenberg, C.W., Schmitt, R.J., Holbrook, S.J., Abu-Saba,
K.E. & Flegal, A.R. (1996). Detection of ecological
impacts: natural variability, effect size, and power
analysis. In The Design of Ecological Impact Studies:
Conceptual Issues and Application in Coastal Marine
Habitats, (Schmitt R.J. & Osenberg, C.W. eds.) pp.
83–108. Academic Press, San Diego.

Ouborg, N.J. & van Groenendael, J.M. (1996)
Demography, genetics, or statistics: comments on a
paper by Heschel and Paige. Conservation Biology 10:
1290–1291.

Ozaydin, F., van Leeuwen, D.M., Miller, C.S. & Schroeder,
J. (1999) Factor effects on the variance in a replicated
two-way treatment structure in an agricultural
system. Journal of Agricultural, Biological, and
Environmental Statistics 4: 166–184.

Paige, K.N. & Heschel, M.S. (1996) Inbreeding depression
in scarlet gilia: a reply to Ouborg and van
Groenendael. Conservation Biology 10: 1292–1294.

Palmer, M.W. (1993). Putting things in even better order:
the advantages of canonical correspondence analysis.
Ecology 74: 2215–2230.

Papineau, D. (1994) The virtues of randomization. British
Journal for the Philosophy of Science 45: 437–450.

Partridge, L. & Farquhar, M. (1981) Sexual activity
and the lifespan of male fruitflies. Nature 294:
580–581.

REFERENCES 521



Paruelo, J.M. & Lauenroth, W.K. (1996) Relative abun-
dance of plant functional types in grasslands and
shrublands of North America. Ecological Applications 6:
1212–1224.

Peake, A.J. & Quinn, G.P. (1993) Temporal variation in
species–area curves for invertebrates in clumps of an
intertidal mussel. Ecography 16: 269–277.

Pechenik, J. (2001) A Short Guide to Writing About Biology,
4th edition. Longman, New York.

Peckarsky, B.L., Cowan, C.A., Penton, M.A. & Anderson, C.
(1993) Sublethal consequences of stream-dwelling
predatory stoneflies on mayfly growth and fecundity.
Ecology 74: 1836–1846.

Peet, R.K., Knox, R.G.; Case, S.J. & Allen, R.B. (1988)
Putting things in order: the advantages of detrended
correspondence analysis. American Naturalist 131:
924–934.

Pennings, S.C. & Callaway, R.M. (1996) Impact of a para-
sitic plant on the structure and dynamics of salt
marsh vegetation. Ecology 77: 1410–1419.

Peterman, R. (1990a) The importance of reporting statis-
tical power: the forest decline and acidic deposition
example. Ecology 71: 2024–2027.

Peterman, R. (1990b) Statistical power analysis can
improve fisheries research and management.
Canadian Journal of Fisheries and Aquatic Sciences 47: 2–15.

Peterman, R.M. (1989) Application of statistical power
analysis on the Oregon coho salmon problem.
Canadian Journal of Fisheries and Aquatic Sciences 46:
1183–1187.

Peters, R.H. (1991) A Critique for Ecology. Cambridge
University Press, Cambridge.

Petit, L.J. & Petit, D.R. (1996) Factors governing habitat
selection by prothonotary warblers: field test of the
Fretwell–Lucas models. Ecological Monographs 66:
367–387.

Petraitis, P.S. (1998) How can we compare the impor-
tance of ecological processes if we never ask, “com-
pared to what?”. In: Experimental Ecology: Issues and
Perspectives (Resetarits, W.J. & Bernado, J. eds.), pp.
183–201. Oxford University Press, New York.

Petraitis, P.S., Dunham, A.E. & Niewiarowski, P.H. (1996)
Inferring multiple causality: the limitations of path
analysis. Functional Ecology 10: 421–431.

Philippi, T.E. (1993) Multiple regression: herbivory. In:
Design and Analysis of Ecological Experiments (Scheiner, S.
& Gurevitch, J. eds.), pp. 183–210. Chapman & Hall,
New York.

Platt, J.R. (1964) Strong inference. Science 146: 347–353.
Polis, G.A., Hurd, S.D., Jackson, C.D. & Sanchez-Piñero, F.

(1998) Multifactor population limitation: variable
spatial and temporal control of spiders on Gulf of
California islands. Ecology 79: 490–502.

Popper, K.R. (1968) The Logic of Scientific Discovery.
Hutchinson, London.

Popper, K.R. (1969) Conjectures and Refutations. Routledge
and Kegan Paul, London.

Posten, H.O. (1984) Robustness of the two-sample t-test.
In: Robustness of Statistical Methods and Nonparametric
Statistics (Rasch, D. & Tiku, M.L. eds.). D. Reidel,
Dordrecht, German Democratic Republic.

Potvin, C. (1993) ANOVA: Experiments in controlled
environments. In: Design and Analysis of Ecological
Experiments (Scheiner, S. & Gurevitch, J. eds.), pp.
46–68. Chapman & Hall, New York.

Potvin, C. & Roff, D.A. (1993) Distribution-free and
robust statistical methods: viable alternatives to par-
ametric statistics? Ecology 74: 1617–1628.

Potvin, C., Lechowicz, M.J. & Tradif, S. (1990) The statisti-
cal analysis of ecophysiological response curves
obtained from experiments involving repeated meas-
ures. Ecology 71: 1389–1400.

Poulson, T.L. & Platt, W.J. (1996) Replacement patterns of
beech and sugar maple in Warren Woods, Michigan.
Ecology 77: 1234–1253.

Prairie, Y.T., Peter, R.H. & Bird, D.F. (1995) Natural vari-
ability and the estimation of empirical relationships:
a reassessment of regression methods. Canadian
Journal of Fisheries and Aquatic Sciences 52: 788–798.

Pugusek, B.H. & Grace, J.B. (1998) On the utility of path
modelling for ecological and evolutionary studies.
Functional Ecology 12: 843–856.

Puri, M.L. & Sen, P.K. (1969) Analysis of covariance based
on general rank scores. Annals of Mathematical Statistics
40: 610–618.

Quinn, G.P. (1988) Ecology of the intertidal pulmonate
limpet Siphonaria diemenensis Quoy et Gaimard. II
Reproductive patterns and energetics. Journal of
Experimental Marine Biology and Ecology 117: 137–156.

Quinn, G.P. & Keough, M.J. (1993) Potential effect of
enclosure size on field experiments with herbivorous
intertidal gastropods. Marine Ecology Progress Series 98:
199–201.

Radwan, M.A., Shumway, J.S., DeBell, D.S. & Kraft, J.M.
(1992) Variance in response of pole-size trees and seed-
lings of Douglas-fir wetern hemlock to nitrogen and
phosphorous fertilizers. Canadian Journal of Forest
Research 21: 1431–1438.

Ramsey, P.H. (1993) Multiple comparisons of indepen-
dent means. In: Applied Analysis of Variance in Behavioral
Science (Edwards, L.K. ed.). Marcel Dekker, New York.

Rasmussen, J.L. (1989) Parameteric and non-parametric
analysis of groups by trials under variance–covari-
ance inhomogeneity. British Journal of Mathematical
and Statistical Psychology 42: 91–102.

Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression
Models. Marcel Dekker, New York.

Ratkowsky, D.A., Evans, M.A. & Alldredge, J.R. (1993)
Cross-Over Experiments : Design, Analysis, and Application.
Marcel Dekker, New York.

522 REFERENCES



Rawlings, J.O., Pantula, S.G. & Dickey, D.A. (1998) Applied
Regression Analysis; A Research Tool, 2nd edition.
Springer-Verlag, New York.

Reckhow, K.H. (1990) Bayesian inference in non-repli-
cated ecological studies. Ecology 71: 2053–2059.

Reich, P.B., Ellsworth, D.S., Walters, M.B., Vose, J.M.,
Gresham, C., Volin, J.C. & Bowman, W.D. (1999)
Generality of leaf trait relationships: a test across six
biomes. Ecology 80: 1955–1969.

Rejwan, C., Collins, N.C., Brunner, L.J., Shuter, B.J. &
Ridgeway, M.S. (1999) Tree regression analysis on the
nesting habitat of smallmouth bass. Ecology 80:
341–348.

Rencher, A.C. & Pun, F.C. (1980) Inflation of R2 in best
subset regression. Technometrics 22: 49–53.

Resetarits, W.J. & Fauth, J.E. (1998) From cattle tanks to
Carolina bays: the utility of model systems for under-
standing natural communities. In: Experimental Ecology:
Issues and Perspectives (Resetarits, W.J. & Bernado, J. eds.),
pp. 133–151. Oxford University Press, New York.

Reynolds, H.L., Hungate, B.A., Chapin III, F.S. & D’Antonio,
C.M. (1997) Soil heterogeneity and plant competition
in an annual grassland. Ecology 78: 2076–2090.

Rice, W.R. (1989) Analyzing tables of statistical tests.
Evolution 43: 223–225.

Richman, M.B. (1986) Rotation of principal components.
Journal of Climatology 6: 293–335.

Rivest, L.-P. (1986) Bartlett’s, Cochran’s, and Hartley’s
tests on variances are liberal when the underlying dis-
tribution is long-tailed. Journal of the American
Statistical Association 81: 124–128.

Roberts, J. (1993) Regeneration and growth of coolibah,
Eucalyptus coolabah subsp. arida, a riparian tree, in the
Cooper Creek region of South Australia. Australian
Journal of Ecology 18: 345–350.

Robertson, C. (1991) Computationally intensive statis-
tics. In: New Developments in Statistics for Psychology and
the Social Sciences Vol. 2 (Lovie, P. & Lovie, A.D. eds.), pp.
49–80. BPS and Routledge, London.

Robles, C.J., Sherwood-Stephens, R. & Alvarado, M. (1995)
Responses of a key intertidal predator to varying
recruitment of its prey. Ecology 76: 565–579.

Rodgers, J.L. & Nicewander, W.A. (1988) Thirteen ways to
look at the correlation coefficient. The American
Statistician 42: 59–66.

Rogosa, D.R. (1980) Comparing non-parallel regression
lines. Psychological Bulletin 88: 307–321.

Rohlf, F.J. & Sokal, R.R. (1969) Statistical Tables. W.H.
Freeman, San Francisco.

Rosenthal, R. (1994) Parametric measures of effect size.
In: The Handbook of Research Synthesis (Cooper, H. &
Hedges, L.V. eds.), pp. 231–244. Russell Sage
Foundation, New York.

Rossi, R.E., Mulla, D.J., Journel, A.G. & Franz, E.H. (1992)
Geostatistical tools for modeling and interpreting

ecological spatial dependence. Ecological Monographs
62: 277–314.

Roth, P.L. (1994) Missing data: a conceptual review for
applied psychologists. Personnel Psychology 47:
537–560.

Rousseeuw, P.J., Ruts, I. & Tukey, J.W. (1999) The bagplot:
a bivariate boxplot. The American Statistician 53:
382–387.

Rovine, M.J. & Delaney, M. (1990) Missing data estima-
tion in developmental research. In: Statistical Methods
in Longitudinal Research (von Eye, A. ed.), pp. 35–79.
Academic Press, San Diego.

Royall, R.M. (1997) Statistical Evidence. A Likelihood
Paradigm. Chapman & Hall, London.

Rubin, D.B. (1987) Multiple Imputation for Nonresponse in
Surveys. Wiley, New York.

Rubin, D.B. (1996) Multiple imputation after 18+ years.
Journal of the American Statistical Association 91:
473–489.

Rundle, H.D. & Jackson, D.A. (1996) Spatial and temporal
variation in littoral-zone fish communities: a new sta-
tistical approach. Canadian Journal of Fisheries and
Aquatic Sciences 53: 2167–2176.

Ruse, M. (1999) When is a negative result anomalous?
Marine Ecology Progress Series 191: 302–303.

Salsburg, D.S. (1985) The religion of statistics as prac-
ticed in medical journals. The American Statistician 39:
220–257.

Salter, K.C. & Fawcett, R.F. (1993) A robust and powerful
rank test of interaction in factorial models.
Communications in Statistics – Simulation and Computation
B22: 137–153.

Samuels, M.L., Casella, G. & McCabe, G.P. (1991)
Interpreting blocks and random factors. Journal of the
American Statistical Association 86: 798–808.

Sasieni, P.D. & Royston, P. (1996) Dotplots. Applied
Statistics 45: 219–234.

Schafer, J.L. (1999) Multiple imputation: a primer.
Statistical Methods in Medical Research 8: 3–15.

Scheffé, H. (1959) The Analysis of Variance. Wiley, New
York.

Scheiner, S.M. (1993) Introduction: theories, hypotheses,
and statistics. In Design and Analysis of Ecological
Experiments (Scheiner, S.M. & Gurevitch, J. eds.), pp.
1–13. Chapman & Hall, New York.

Schervish, M.J. (1996) P values: what they are and what
they are not. The American Statistician 50: 203–206.

Schmid, C.H. (1991) Value splitting: taking the data
apart. In: Fundamentals of Exploratory Analysis of
Variance (Hoaglin, D.C., Mosteller, F. & Tukey, J.W. eds.).
Wiley, New York.

Schnell, G.D., Watt, D.J. & Douglas, M.E. (1985) Statistical
comparison of proximity matrices: applications in
animal behavior. Animal Behavior 33: 239–253.

Schwartz, M.W., Hermann, S.M. & Vogel, C.S. (1995) The

REFERENCES 523



catastrophic loss of Torreya taxifolia: assessing environ-
mental induction of disease hypotheses. Ecological
Applications 5: 501–516.

Schwarz, C.J. (1993) The mixed model ANOVA: the truth,
the computer packages, the books. Part I: balanced
data. The American Statistician 47: 48–59.

Schwarz, G. (1978) Estimating the dimension of a model.
Annals of Statistics 6: 461–464.

Scott, A. & Wild, C. (1991) Transformations and R2. The
American Statistician 45: 127–129.

Seaman, J.W., Walls, S.C., Wise, S.E. & Jaeger, R.G. (1994)
Caveat emptor: rank transform methods and interac-
tion. Trends in Ecology and Evolution 9: 261–263.

Searle, S.R. (1988) Parallel lines in residual plots. The
American Statistician 42: 211.

Searle, S.R. (1993) Unbalanced data and cell means
models. In: Applied Analysis of Variance in Behavioral
Science (Edwards, L.K. ed.), pp. 375–420. Marcel Dekker,
New York.

Searle, S.R., Casella, G. & McCulloch, C.E. (1992) Variance
Components. Wiley, New York.

Shaffer, J.P. (1995) Multiple hypothesis testing. Annual
Review of Psychology 46: 561–584.

Sharpe, A. & Keough, M.J. (1998) An investigation of the
indirect effects of intertidal shellfish collection.
Journal of Experimental Marine Biology and Ecology 223:
19–38.

Shaver, J.P. (1993) What statistical significance testing is,
and what it is not. Journal of Experimental Education 61:
293–316.

Shaw, R.G. & Mitchell-Olds, T. (1993) ANOVA for unbal-
anced data: an overview. Ecology 74: 1638–1645.

Siegel, S. & Castellan, J.J. (1988) Nonparametric Statistics for
the Behavioral Sciences, 2nd edition. McGraw-Hill, New
York.

Silverman, B.W. (1986) Density Estimation for Statistics and
Data Analysis. Chapman & Hall, London.

Siminoff, J.S. (1998) Logistic regression, categorical pre-
dictors, and goodness-of-fit: it depends on who you
ask. The American Statistician 52: 10–14.

Sinclair, A.R.E. & Arcese, P. (1995) Population conse-
quences of predation-sensitive foraging: the Serengeti
wildebeest. Ecology 76: 882–891.

Skelly, D.S. (1995) A behavioural trade-off and its conse-
quences for the distribution of Pseudacris treefrog
larvae. Ecology 76: 150–164.

Sklenar, P. & Jorgensen, P.M. (1999) Distribution patterns
of paramo plants in Ecuador. Journal of Biogeography
26: 681–691.

Smith, F.A., Brown, J.H. & Valone, T.J. (1997) Path analy-
sis: a critical evaluation using long-term experimen-
tal data. The American Naturalist 149: 29–42.

Smith, P.L. (1982) Measures of variance accounted for:
theory and practice. In: Statistical and Methodological
Issues in Psychology and Social Sciences Research (Keren, G.

ed), pp. 101–129. Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

Snedecor, G.W. & Cochran, W.G. (1989) Statistical Methods,
8th edition. Iowa State College Press, Ames, Iowa.

Snee, R.D. & Pfeifer, C.G. (1983) Graphical representation
of data. In: Encyclopedia of Statistical Sciences Vol. 3 (Kotz,
S. & Johnson, N.L. eds.), pp. 488–511. Wiley, New York.

Sokal, R.R. & Rohlf, F.J. (1995) Biometry. 3rd edition. W.H.
Freeman, New York.

Speight, M.R. Hails, R.S., Gilbert, M. & Foggo, A. (1998)
Horse chestnut scale (Pulvinaria regalis) (Homoptera:
Coccidae) and urban tree host environment. Ecology
79(5): 1503–1513.

Sprent, P. (1993). Applied Nonparametric Statistical Methods,
2nd edition. Chapman & Hall, London.

SPSS. (1999) SYSTAT 9 Graphics. SPSS, Chicago.
Stehman, S.V. & Meredith, M.P. (1995) Practical analysis

of factorial experiments in forestry. Canadian Journal
of Forest Research 25: 446–461.

Stevens, J. (1992) Applied Multivariate Statistics for the Social
Sciences, 2nd edition. Lawrence Erlbaum, Hillsdale, NJ.

Stewart-Oaten, A. (1995) Rules and judgements in statis-
tics: three examples. Ecology 76: 2001–2009.

Stewart-Oaten, A. (1996). Goals in environmental moni-
toring. In: The Design of Ecological Impact Studies:
Conceptual Issues and Application in Coastal Marine
Habitats, (Schmitt, R.J. & Osenberg, C.W., eds.), pp.
17–28. Academic Press, San Diego.

Stewart-Oaten, A., Bence, J.R. & Osenberg, C.W. (1992)
Assessing effects of unreplicated perturbations: no
simple solutions. Ecology 73: 1396–1404.

Stewart-Oaten, A., Murdoch, W.W. & Parker, K.R. (1986).
Environmental impact assessment: “pseudoreplica-
tion” in time? Ecology 67: 929–940

Stow, C.A., Carpenter, S.R. & Cottingham, K.L. (1995)
Resource vs. ratio-dependent consumer-resource
models: a Bayesian perspective. Ecology 76: 1986–1990.

Strunk, W. & White, E.B. (1979) The Elements of Style, 3rd
edition. Macmillan, New York.

Tabachnick, B. & Fidell, L. (1996) Using Multivariate
Statistics, 3rd edition. Harper & Row, New York.

Taulman, J.F., Smith, K.G. & Thill, R.E. (1998)
Demographic and behavioral responses of southern
flying squirrels to experimental logging in Arkansas.
Ecological Applications 8: 1144–1155.

ter Braak, C.J.F. & Verdonschot, P.F.M. (1995) Canonical cor-
respondence analysis and related multivariate methods
in aquatic ecology. Aquatic Sciences 57: 255–289.

Thomas, L. (1997) Retrospective power analysis.
Conservation Biology 11: 276–280.

Thompson, B. (1993) The use of statistical significance
tests in research: bootstrap and other alternatives.
Journal of Experimental Education 61: 361–377.

Thompson, G.L. (1991a) A note on the rank transforma-
tion for interactions. Biometrika 78: 697–701.

524 REFERENCES



Thompson, G.L. (1991b) A unified approach to rank tests
for multivariate and repeated measures designs.
Journal of the American Statistical Association 86: 410–419.

Thompson, S.K. (1992) Sampling. Wiley, New York.
Thompson, S.K. & Seber, G.A.F. (1995) Adaptive Sampling.

Wiley, New York.
Todd, C.D. & Keough, M.J. (1994) Larval settlement in

hard substratum epifaunal assemblages: a manipula-
tive field study of the effects of substratum filming
and the presence of incumbents. Journal of
Experimental Marine Biology and Ecology 181: 159–187.

Tollrian, R. (1995) Predator-induced morphological
defenses: costs, life history shifts, and maternal
effects in Daphnia pulex. Ecology 76: 1691–1705.

Toothaker, L E. (1993) Multiple Comparison Procedures. Sage
Publications, Newbury Park, California.

Trexler, J.C. & Travis, J. (1993) Nontraditonal regression
analyses. Ecology 74: 1629–1637.

Trussell, G.C. (1997) Phenotypic plasticity in the foot size
of an intertidal snail. Ecology 78: 1033–1048.

Tufte, E.R. (1983) The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Cleveland.

Tufte, E.R. (1990) Envisioning Information. Graphics Press,
Cheshire, Connecticut.

Tukey, J.W. (1949) One degree of freedom for nonadditiv-
ity. Biometrics 5: 232–242.

Tukey, J.W. (1977) Exploratory Data Analysis. Addison-
Wesley, Reading.

Twombly, S. (1996) Timing of metamorphosis in a fresh-
water crustacean: comparison with anuran models.
Ecology 77: 1855–1866.

Underwood, A.J. (1981) Techniques of analysis of vari-
ance in experimental marine biology and ecology.
Oceanography and Marine Biology Annual Review 19:
513–605.

Underwood, A.J. (1990) Experiments in ecology and
management: their logics, functions and interpreta-
tions. Australian Journal of Ecology 14: 365–389.

Underwood, A.J. (1991) The logic of ecological experi-
ments: a case history from studies of the distribution
of macro-algae on rocky intertidal shores. Journal of the
Marine Biological Association of the United Kingdom 71:
841–866.

Underwood, A.J. (1997) Experiments in Ecology. Their Logical
Design and Interpretation Using Analysis of Variance.
Cambridge University Press, Cambridge.

Underwood, A.J. (1999) Publication of so-called “nega-
tive” results in marine ecology. Marine Ecology Progress
Series 191: 307–309.

Underwood, A.J. & Petraitis, P.S. (1993) Structure of inter-
tidal assemblages in different locations: how can
local processes be compared? In: Species Diversity in
Ecological Communities: Historical and Geographical
Perspectives. (Ricklefs, R.E. & Schluter, D. eds.), pp.
38–51. University of Chicago Press, Chicago.

Urbach, P. (1984) Randomization and the design of
experiments. Philosophy of Science 52: 256–272.

van den Wollenberg, A.L. (1977) Redundancy analysis.
An alternative for canonical correlation analysis.
Psychometrika 42: 207–219.

van Groenewood, H. (1992). The robustness of correspon-
dence, detrended correspondence and twinspan anal-
ysis. Journal of Vegetation Science 3: 239–246.

Van Sickle, J. (1997) Using mean similarity dendograms
to evaluate classifications. Journal of Agricultural,
Biological and Environmental Statistics 2: 370–388.

Vasquez, R.A. (1996) Patch utilization by three species of
Chilean rodents differing in body size and mode of
locomotion. Ecology 77: 2343–2351.

Ver Hoef, J.M. & Cressie, N. (1993) Spatial statistics:
analysis of field experiments. In: Design and Analysis
of Ecological Field Experiments (Scheiner, S.M. &
Gurevitch, J. eds.), pp. 319–341. Chapman & Hall, New
York.

Verschuren, D., Tibby, J., Sabbe, K. & Roberts, N. (2000)
Effects of depth, salinity, and substrate on the inver-
tebrate community of a fluctuating tropical lake.
Ecology 81: 164–182.

von Ende, C.N. (1993) Repeated-measures analysis:
growth and other time-dependent measures. In:
Design and Analysis of Ecological Experiments (Scheiner, S.
& Gurevitch, J. eds.), pp. 113–137. Chapman & Hall,
New York.

Voss, D.T. (1999) Resolving the mixed models contro-
versy. The American Statistician 53: 352–356.

Wagner, J.D. & Wise, D.H. (1996) Cannabilism regu-
lates densities of young wolf spiders: evidence
from field and laboratory experiments. Ecology 77:
639–652.

Walter, D.E. & O’Dowd, D.J. (1992) Leaves with domatia
have more mites. Ecology 73: 1514–1518.

Ward, S. & Quinn, G.P. (1988) Preliminary investigations
of the ecology of the predatory gastropod Lepsiella
vinosa (Lamarck) (Gastropoda Muricidae). Journal of
Molluscan Studies 54: 109–117.

Ware, J.H. & Liang, K.-Y. (1996) The design and analysis of
longitudinal studies: a historical perspective. In:
Advances in Biometry (Armitage, P. & David, H.A. eds.),
pp. 339–362. Wiley, New York.

Wartenberg, D., Ferson, S. and Rohlf, F.J. (1987). Putting
things in order: a critique of detrended correspon-
dence analysis. The American Naturalist 129: 434–448.

Werner, E.E. (1998) Ecological experiments and a
research program in community ecology. In:
Experimental Ecology: Issues and Perspectives (Resetarits,
W.J. & Bernado, J. eds.), pp. 3–26. Oxford University
Press, New York.

Westfall, P.H. & Young, S.S. (1993a) Resampling-Based
Multiple Testing: Examples and Methods for P-Value
Adjustment. Wiley, New York.

REFERENCES 525



Westfall, P.H. & Young, S.S. (1993b) On adjusting P-values
for multiplicity. Biometrics 49: 941–945.

Westly, L.C. (1993) The effect of inflorescence bud
removal on tuber production in Helianthus tuberosus L.
(Asteraceae). Ecology 74: 2136–2144.

White, G.C. & Bennetts, R.E. (1996) Analysis of count
data using the negative binomial distribution. Ecology
77: 2549–2557.

Wilcox, R.R. (1987a) New designs in analysis of variance.
Annual Review of Psychology 38: 29–60.

Wilcox, R.R. (1987b) Pairwise comparisons of J indepen-
dent regression lines over a finite interval, simultane-
ous pairwise comparisons of their parameter, and the
Johnson–Neyman procedure. British Journal of
Mathematical and Statistical Psychology 40: 80–93.

Wilcox, R.R. (1993) Robustness in ANOVA. In: Applied
Analysis of Variance in Behavioral Science (Edwards, L.K.
ed.), pp. 345–374. Marcel Dekker, New York.

Wilcox, R.R. (1997) Introduction to Robust Estimation and
Hypothesis Testing. Academic Press, San Diego.

Wilcox, R.R., Charlin, V. & Thompson, K. (1986) New
Monte Carlo results on the robustness of the ANOVA
F, W and F* statistics. Communications in Statistics –
Simulation and Computation B15: 933–944.

Wilkinson, L. (1999) Dot plots. The American Statistician
53: 276–281.

Williams, J.M. (1997) Style. Ten lessons in Clarity and Grace.
Longman, New York.

Winer, B.J., Brown, D.R. & Michels, K.M. (1991) Statistical
Principles in Experimental Design, 3rd edition. McGraw-
Hill, New York.

Winkler, R.L. (1993) Bayesian statistics: an overview. In:
A Handbook for Data Analysis in the Behavioral Sciences –
Statistical Issues (Keren, G. & Lewis, C. eds.), pp.

201–232. Lawrence Erlbaum Associates, New Jersey.
Wiser, S.K., Allen, R.B., Clinton, P.W. & Platt, K.H. (1998)

Community structure and forest invasion by an
exotic herb over 23 years. Ecology 79: 2071–2081.

Wissinger, S.A., Sparks, G.B., Rouse, G.L., Brown, W.S. &
Steltzer, H. (1996) Intraguild predation and cannabil-
ism among larvae of detritivorous caddisflies in sub-
alpine wetlands. Ecology 77: 2421–2430.

Wright, S. (1920) The relative importance of heredity
and environment in determining the piebald pattern
of guinea pigs. Proceedings of the National Academy of
Science, USA 6: 320–332.

Wright, S. (1934) The method of path coefficients. Annals
of Mathematics and Statistics 5: 161–215.

Yandell, B.S. (1997) Practical Data Analysis for Designed
Experiment. Chapman & Hall, London.

Yee, T.W. & Mitchell, N.D. (1991) Generalized additive
models in plant ecology. Journal of Vegetation Science 2:
587–602.

Zar, J.H. (1996) Biostatistical Analysis, 3rd edition. Prentice
Hall, Upper Saddle River, NJ.

Zimmerman, D.W. (1994) A note on the influence of out-
liers on parametric and nonparametric tests. The
Journal of General Psychology 121: 391–401.

Zimmerman, D.W. & Zumbo, B.D. (1993) The relative
power of parametric and nonparametric statistical
methods. In: A Handbook for Data Analysis in the
Behavioral Sciences – Statistical Issues (Keren, G. & Lewis,
C. eds.), pp. 481–517. Lawrence Erlbaum Associates,
New Jersey.

Zimmerman, G.M., Goetz, H. & Mielke, P.W. (1985) Use of
an improved statistical method for group compari-
sons to study effects of prairie fire. Ecology 66: 606–611.

526 REFERENCES



accelerated bootstrap 26
adaptive sampling 157
added variance component 188
additivity and transformations 67,

280
adjusted r2 137
adjusted univariate F tests 282–3, 319
adjusting significance levels 49–50
agglomerative hierarchical clustering

489–91
Akaike information criterion (AIC)

139, 370–1
alternative hypothesis 33–4
analysis of covariance (ANCOVA) 339

assumptions 348–9
comparing ANCOVA models 348
covariate values similar across

groups 349
designs with two or more

covariates 353–4
factorial designs 354–5
heterogeneous slopes 349

comparing regression lines 352
dealing with heterogeneous

within group regression slopes
350–2

Johnson–Neyman procedure,
Wilcox modification 350–1

testing for homogeneous within
group regression slopes
349–50

linear effects model 342–6
nested designs with one covariate

355–6
null hypotheses 347–8
partly nested models with one

covariate 256–7
robust 352–3
single factor 339–48
specific comparison of adjusted

means 353
analysis of deviance 399–400
analysis of similarities (ANOSIM)

484–5
analysis of variance (ANOVA) 

diagnostics 194–5
factorial designs 230–2
linear effects model 178–84,

210–13, 225–30
multifactor 208–61

multiple linear regression 119–21
multivariate see multivariate

analysis of variance (MANOVA)
nested (hierarchical) designs

214–15
partly nested designs 313–15
presentation of results 496
randomized complete block

designs 272–3
robust 195–6
simple linear regression 88–9
single factor (one way) designs

173–88, 191–5, 204–7
specific comparisons of means

196–201
testing equality of group variances

203–4
tests for trends 202–3

ANCOVA see analysis of covariance
angular transformations 66
ANOVA see analysis of variance
arbitrary significance levels 53
arcsin transformation 66
association matrix

choice in principal components
analysis 451–2

decomposition 449–50
audiovisual aids 507–9
axis rotation, principal components

analysis 447–9

backward variable selection 139–40
bar graphs 500–2
Bayes Theorem 9, 54
Bayesian inference 27–31, 54–7

likelihood function 28, 54–5
posterior probability 28–9, 54–7
prior knowledge and probability 28

Bayesian information criterion (BIC)
139

beta distribution 11
bias-corrected bootstrap 26
binary variables, dissimilarity

measures 413
binomial distribution 11
biological population 14
biological significance 44
biplots 456
bivariate normal distribution 72–3
block designs

crossover designs 296–8
factorial randomized block designs

290–2
generalized randomized block

designs 298
incomplete block designs 292
Latin square designs 292–6
randomized complete block (RCB)

designs 262–90
blocking, efficiency of 285–6
blocking factor, time as 287
Bonferroni procedure 49–50
bootstrap estimator 25–6
Box–Cox family of transformations 66
boxplots 60–1
Bray–Curtis dissimilarity 413, 483–5

Canberra distance 413
canonical correlation analysis 463–6
canonical correspondence analysis

(CCA) 467–8, 492
categorical data analyses 380–400
categorical predictors

linear regression 135–7
logistic regression 368, 371

cell plots
factorial design 251
randomized complete block design

277
censored data 69–70

comparing two or more
populations 70–1

estimation of mean and variance 70
center of distribution 15–16
centering variables 67
Central Limit Theorem 18, 20
central t distribution 36
centroid 402
chi-square (�2) distribution 12–13,

20–1, 38
chi-square (�2) statistic 380, 388
chi-square dissimilarity 413
City block distance 412–13
classical scaling 474–6
classical statistical hypothesis testing

32–4
classification analysis 488

cluster analysis 488–91
discriminant function analysis

435–41

Index



classification functions, discriminant
analysis 440

cluster analysis 488–9
agglomerative hierarchical

clustering 489–91
and scaling 491–2
divisive hierarchical clustering 491
non-hierarchical clustering 491

cluster sampling 156
coefficient of determination (r2) 91–2,

122
coefficient of variation (CV) 16–17
coefficients of linear combination

432–3
Cohen’s effect size 190–1
collinearity 127

dealing with 129–30
detecting 127–9

combining P values 50
combining results from statistical

tests 50–1
common population parameters and

sample statistics 15–16
complete independence, three way

contingency tables 393
completely randomized (CR) designs

173
comparison with randomized

complete block 286
complex factorial designs 255–7
compound symmetry assumption

281–2
conditional independence and odds

ratios, three way contingency
tables 389–93

conditional probabilities 9
confidence intervals

population mean 19–20
regression line 87
variances 22–3, 189

confidence regions, regression 76–7
confounding, experimental design

157–60
constrained ordinations 469–70, 492
contingency tables 381

analysis using log-linear models
393–400

three way tables 388–93, 395–400
two way tables 381–8, 394–5

continuous variables 7
dissimilarity measures for 412–13
probability distributions of 9–10

contrast–contrast interactions 254
controls 160–1
Cook’s D statistic 68, 95

correlated data models 375–6
generalized estimating equations

377–8
multi-level (random effects) models

376–7
correlation analysis 72

parametric and non-parametric
confidence regions 76–7

parametric correlation model 
73–6

power of tests 109–10
relationship with linear regression

106
robust correlation 76

correlation coefficient 72, 102
and regression slope 106
Kendall’s (�) 76
Pearson’s (r) 74–5
Spearman’s rank (rs) 76

correlation matrix 403, 405
correspondence analysis 459

canonical 467–8, 469–70
detrended 463
mechanics 459–60
reciprocal averaging 462
scaling and joint plots 461–2
use with ecological data 462–3

covariances
and correlation 73–5
assumption for randomized

complete block, repeated
measures and split-plot ANOVA
models 281–2, 318

crossover designs 296–8

data standardization, multivariate
analysis 415–17

decision errors
asymmetry and scalable decision

criteria 44–5
Type I and II errors 42–4

deductive reasoning 2
degrees of freedom (df) 19–20, 22
deleted residuals 95
dendrograms 488–9
detrended correspondence analysis

(DCA) 463
diagnostic graphics

multiple linear regression 125–6
simple linear regression 96–8

dichotomous variables, dissimilarity
measures for 413

discrete variables 7
discriminant function analysis 435

assumptions 441

classification and prediction
439–40

description and hypothesis testing
437–9

more complex designs 441
versus MANOVA 441

displaying summaries of data
498–500

dissimilarity matrices, comparing
414–15

dissimilarity measures
binary variables 413
comparison 414
continuous variables 412–13
mixed variables 413–14
testing hypotheses about groups of

objects 
(M)ANOVA based on axis scores

483
analysis of similarities (ANOSIM)

484–5
distance-based redundancy

analysis 485
MANOVA based on original

variables 483
Mantel test 483
multi-response permutation

procedures 483–4
non-parametric MANOVA 485–7

distance-based redundancy analysis
485

distance matrices, comparing 414–15
distance measures 409, 412–13
divisive hierarchical clustering 491
Dixon’s Q test 68
dotplots 60
dummy variables 135–7
Duncan’s Multiple Range test 200
Dunn–Sidak procedure 50
Dunnett’s test 201

eigenvalue equality 452–3
eigenvalues 128–9, 405–6, 450, 452,

454
eigenvectors 406–9, 450–1, 461–2
empiric models 2
enhanced multidimensional scaling

convergence problems 482
enhanced algorithm 476–8
interpretation of final

configuration 478, 481–2
stress 477

error bars 504–6
alternative approaches 506–7

estimation
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methods for 23–5
resampling methods 25–7
types of 15

Euclidean distance 412, 475, 483
examples (see also examples, worked)

aphids, effects of tree species and
time on abundance 306, 315

barnacle larvae, effects of copper
159–60

bats, dependence on area and
woodland disturbance 401–2

beavers, effect on aquatic
geochemistry 443–4

benthic invertebrates, effects of
fish 161–2

birds
spatial variation in Wisconsin

counts 265
species richness and habitat

variables 142
caddisflies, effects of competition

and hydroperiod on body mass
and survival 303, 309, 315

caterpillar, effects of sex,
population, and temperature
on growth 255

cladocerans, effects of kairomones
and body mass on morphology
339

copepods grazing on
dinoflagellates 4–5

coral reef fish, variation in
recruitment 209–12

crayfish, hormone levels in 157
elephant seals, association between

survival and mating success
382–5

eutrophication in lakes 8
fir trees, growth in response to N

and P 252–4
fish, similarity of fish assemblages

between sites 476
floral diversity, correlation

between floral similarity and
intensity of sampling 415

fossil invertebrates, effect of
salinity, lake level and swamp
development on community
structure 466

frogs, contribution of survivorship,
size, and larval period to
separation of species 441

grassland plants, competition
among 245–6

intertidal algae

effects of herbivore removals 322
variation in recruitment on

rocky shores 208–9
intertidal molluscs, effects of

harvesting on abundance 167
Jerusalem Artichoke, effects of

inflorescence removal on
asexual investment 303

leaf miners, effects of leaf damage
on mortality 263

limpets
distribution on rocky shores

65–6
effect of enclosure size on

growth 208
effects of intraspecific

competition on growth 198
marine invertebrates, larval

settlement in response to
microbial films 37

marsh plants, effects of herbivores
and nutrients on densities
335–6

mayfly larvae, life history responses
to predation and food
reduction 425

mussels and barnacles, effects of
flow and tidal height 302–3

oysters, variation in abundance
through mangrove forests
224–5

perennial herb
effects of flower position on fruit

and seed production  223
effects of leaf damage and

flowering order on floral traits
340

effects of plant diversity and
physicochemical variables on
presence of exotic species 365

phytoplankton, effects of sewage
159–60

plants, effects of fire 158–60
rainforest seedlings, effects of land

crabs and light gaps on
recruitment 332–4

rodents
effects of illumination and seed

distribution on seed
consumption 332–4

effects of predation and time on
survival 332–4

salamanders
competition between 160–2
effects of density and initial size

on larval growth and
metamorphosis 290

effects of invertebrate food level
and tadpole presence on
growth 222

sawfly larvae, effect of sawfly
species and trees on foraging
behavior 223, 229, 236

seastars, effects of mussel
recruitment on abundance
263

seed availability, effects of
microsite and time 328–31

smallmouth bass, relationship
between nests and habitat
variables 145

squirrels, effect of food abundance,
age, and reproductive history
on breeding success 374–5

stream insects, spatial variation in
density 219

trees
effects of light and seedling

height on sapling growth 222,
240

effects of temperature on
respiration rates 305, 309

variation in leaf structure 219
turtles, dependence of growth rate

on sex, site, and year 375
understory plants, effects of

competition on hummingbird
visits and seed production
296–7

warblers, contribution of
vegetation attributes to
habitat discrimination 440

weevil parasitoids on alfalfa plants,
effects of honeydew 263–4,
329–31

wildlife underpasses, effectiveness
in relationship to human
activity 401–9

examples, worked
abalone, abundance in marine

protected areas  165–6
annual plants, effects of

temperature, CO2, and biomass
on developmental age 354

ants, effects of predators, soil type
and light level on colony size
and herbivory of host plants
328–9

beetles, effects of experimental fire
on community structure 468
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examples, worked (cont.)
birds

abundances in different kinds of
forest patches 111, 115–7,
121–2, 124–7, 132, 135–41,
145–9, 372–4

characterization of assemblages
in forests 447–55, 474, 478–82,
486–91

effects of eucalypt flowering on
forest bird communities 
322–6

Cane toads, responses to hypoxia
306–10, 321, 356

chemistry of forested watersheds
21–3, 31–2, 60, 62–3, 66–9, 401,
420, 444–53, 463–4

coarse woody debris in lakes,
relationship with tree density
and other habitat variables
78–91, 100–3

Coolibah trees, occurrence of dead
trees in different sections of
floodplain 382–7, 394

copepod larvae, effects of food and
sibships on age at
metamorphosis 223, 258–9

diatoms, effects of heavy metals in
rivers 173–83, 206–7

flying squirrels, effects of logging
and time on age structure
388–93, 398–9

frogs in burned and unburned
catchments 266–74, 278–9,
281–8

fruitflies, effects of number and
types of mating partners on
longevity 340–7

heavy metals in marine sediments,
differences between locations
426–39

land crabs on Christmas Island,
relationship to burrow density
72–6, 447–50

leaf morphology of plants,
variation among functional
groups and ecosystems 243,
401–23, 426, 429–30, 435–40

limpets
effects of season and adult

density on fecundity 223–36,
241, 251–4

effects of trampling on
abundance 303–5, 310–15

variation in abundance on oyster

shells attached to mangroves
225–37, 253–4, 256–7

marine invertebrates
abundance in response to

nutrients 242–7
recruitment of polychaetes in

response to microbial films
176–81, 198, 202, 205, 
497–9

species richness in mussel
clumps 78–84, 94–8, 104–5,
108, 151

mites, effects of leaf domatia on
abundance 264–76, 283, 299

mussels, effects of crab predation,
location and size on
attachment strength 355–6

oldfield insects, effects of habitat
fragmentation on richness
293–5

palm seedling, survivorship in
different successional zones
240–1

perennial shrub, effects of
herbivory and plant size on
fruit production 357–8

plant functional groups,
relationship between
abundance and habitat
variables 111–14, 118–21,
124–7, 130, 135, 153

plant regeneration after fire,
comparison of ant and
vertebrate dispersal 382–7

plant reproduction, effects of
clipping and emasculation on
flower, fruit, and seed
production 435

pond invertebrates, effects of
hydroperiod and predation
254–5

predatory gastropods, fecundity
38–9, 45, 61  

rare plants, relationship between
genetic and geographic
distances 414, 478–9, 488–90

rodents
effects of distance to canyon,

habitat fragmentation and
vegetation cover on presence
365–8, 447–55, 460–1, 467–71,
474–81

effects of habitat type and
location on abundance 327–8

saltmarsh plants, effects of

parasites, patch size, and zone
on biomass 435

sea urchins
effects of food  and initial size on

inter-radial sutures 340–7, 350
effects of grazing 209–20

seabirds, energy budgets when
breeding 38, 40, 61

species richness, association
between local and regional
133–4

spiders
effect of lighting on web

structure 38, 41
effects of density and predator

reduction on spiderling
growth  290–2

effects of predation by lizards
and scorpions on
presence/absence 360–3

wildebeest carcasses, cross-
classification by sex, predation
and health 388–93, 395–9

Expectation–Maximization (EM)
algorithm and missing data
421–3

experimental design 157–64
controls 160–1
efficiency of blocking 285–6
independence 163
power analysis 166–8
problem of confounding 157–60
randomization 161–3
reducing unexplained variance 164
replication 158–60

experiments and other tests 5–7
exploratory data analysis 58–62
exponential distribution 11

F distribution 12–13, 186, 188
F-ratio statistic 38–9, 204
F-ratio test 42

single factor ANOVA 186–7
factorial ANOVA 235–6, 237

nested ANOVA 215–16
partly nested ANOVA 315–18
randomized complete block and

repeated measures ANOVA 
274

factor analysis 458–9
factor effects 188

factorial models 247–9
fixed effects 190–1
nested models 216–18
random effects 188–90
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factorial designs 
analysis of covariance 354–5
analysis of variance 230–2
assumptions 249–50
comparing ANOVA models 241
complex designs 255–7
factor effects 247–9
fractional designs 257–8
interpreting interactions

exploring interactions 251–2
simple main effects 252–4
unplanned multiple comparison

252
linear models 225–30
mixed factorial and nested designs

258–9
null hypotheses 232–7
power analysis 259–60
relationship with nested design

261
robust 250
specific comparisons on main

effects 250–1
unbalanced designs 241–7

factorial randomized block designs
290–1

falsification 2–3
alternatives to 4–5

field experiments 6
Fisherian hypothesis testing 33–4
Fisher’s Protected Least Significant

Difference test (LSD test) 200
fixed X assumption, regression 94
fixed covariate (X), ANCOVA models

349
fixed effects 190–1
fixed effects models 176–7

factorial designs 232–6, 237–40
forward variable selection 139
fourth root transformations 65
fractional factorial designs 223,

257–8
frequency analyses 380–400

G2 statistic 364, 367, 388
gamma distribution 11
Gauss–Newton algorithm 151–2
Gaussian distribution 10
generalized additive models (GAMs)

372–5, 379
generalized estimating equations

(GEEs) 377–9
generalized linear models (GLMs)

77–8, 359–60, 378–9
logistic regression 360–71

Poisson regression 371–2
generalized randomized block

designs 298
goodness-of-fit, logistic regression

368–70
goodness-of-fit tests, single variable

381
graphical displays 58–62

assumptions of parametric linear
models 62–4

principles 499
types of 500–4

graphics packages 508
working with color 508–9

group effects for a fixed factor 190–1
group means, specific comparisons of

196–201
group variances, testing equality of

203–4

Hampel M-estimator 16
hierarchical partitioning 141–2
histograms 59–60
Hodges–Lehmann estimator 16
Hosmer–Lemeshow statistic 369
Hotelling–Lawley trace 431
Huber M-estimator 16
hybrid multidimensional scaling 478
hybrid statistical hypothesis testing

34
hypotheses 3–4
hypothesis testing 32–57

Bayesian 54–7
statistical 32–54

hypothesis tests
for a single population 35–6
for two populations 37–9

imputation (missing observations)
420–1

incomplete block designs 292
independence, experimental design

163
independence assumption

factorial ANOVA models 249
linear models 64
linear regression models 93–4
nested ANOVA models 218
randomized complete block and

repeated measures ANOVA
models 280

single factor ANOVA models 193–4
indicator variables 135–7
inductive reasoning 2
influence

multiple regression 125
simple regression 95–6

interactions in factorial designs
251–2

simple main effects 252–4
treatment–contrast and

contrast–contrast interactions
254–5

interactions in multiple regression
130–1

probing interactions 131–3
interactions in partly nested designs

321
interactions in randomized complete

block designs
treatment by block interactions

274–7
unreplicated designs 277–80

intercept 87
interquartile range 17
interval estimates 15

jackknife estimator 26–7
jackknifed classification function 440
Johnson–Neyman procedure, Wilcox

modification 350–1
joint plots, correspondence analysis

461–2

Kendall’s correlation coefficient (�) 76
kernel estimation 59–60
kernels (smoothing) 108–9
Kolmogorov–Smirnov (K–S) test 381
Kruskal–Wallis test 195–6
Kruskal’s stress 477
Kuhnian approach to scientific

method 4
Kulczynski dissimilarity 413
KYST algorithm 476–7

L-estimators 15
laboratory experiments 6
Lakotsian approach to scientific

method 4
Latin square designs 292–6
layout of tables 497–8
least absolute deviations (LAD) 104–5
leverage 194

multiple regression 125
simple regression 95–6

likelihood functions 28, 54–5
likelihood inference 52
likelihood principle 52
likelihood ratio statistic 364
line graphs 502
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linear combinations of variables,
multivariate analysis 405–6

linear effects model
nested designs 210–13
partly nested designs 310–13
randomized complete block (RCB)

designs 269–71
single factor ANCOVA designs

342–6
single factor designs 178–84

linear models 77–8
ANCOVA models 342–7
assumptions

homogeneity of variances 63
independence 64
linearity 64
normality 62–3

definition 77
factorial ANOVA models 225,

227–230
fixed effects ANOVA models 176–7
multiple regression 114, 117–19
nested ANOVA models 210–14
partly nested ANOVA models

310–13
presentation of results 494–7
random effects ANOVA models

176–7
randomized complete block and

repeated measures ANOVA
models 268–72

simple regression 80, 82–7
single factor ANOVA models

178–81, 183–4
linear models for factorial designs

225–7
model 1 – both factors fixed 227–9
model 2 – both factors random 229
model 3 – one factor fixed and one

factor random 229–30
linear regression analysis 78

analysis of variance 88–9
assumptions 92

fixed X 94
homogeneity of variance 93
independence 93–4
normality 92–3

linear model for regression 81–5
null hypotheses 89–90
power analysis 109–10
presentation of results 493–6
relationship with correlation 106
residual plots 96–8
robust regression 104–6
scatterplots 96–7

simple linear regression 78–82
transformations 98
weighted least squares 99–100
variance explained 91–2
(see also multiple linear regression

analysis)
linear regression diagnostics 94–5

influence 95–6
leverage 95–6
residuals 87, 95–6

linear regression models 81–5
comparing models 90–1
diagnostic graphics 96–8
estimating model parameters 85

confidence intervals 87
intercept 87
predicted values and residuals 87
slope 85–6
standardized regression slope 86
Model II regression 100–4
regression through the origin

98–9
(see also multiple linear regression

models)
linearity, and transformations 67
linearity assumption

linear models 64
single factor ANCOVA 348–9

link function, generalized linear
models 359–60

loadings, MANOVAs 433
locally weighted regression

scatterplot smoothing 107–8
log-linear models 393–4

complex tables 400
three way tables 395

analysis of deviance tables
399–400

full and reduced models 395–8
test for complete independence

399–400
testing and interpreting two way

interactions 398–9
tests for three way interactions

398
two way tables

full and reduced models 394
test for independence 394–5

logistic regression 360
assumptions 368
categorical predictors 368
multiple 365–8
simple 360–5
software 371

logistic regression models

goodness-of-fit and residuals
368–70

model diagnostics 370
model selection 370–1

lognormal distributions 11, 65
Lo(w)ess smoothing 107–8

M-estimators 15–16
regression 105–6

main effects
factorial designs 237–41, 250–1,

252–4
partly nested designs 320–1

major axis (MA) regression 101–2
Mallow’s Cp 137
Manhattan distance 412–13
manipulative experiments 5–6
Mann–Whitney–Wilcoxon test 47–8
MANOVA see multivariate analysis of

variance
Mantel test 483
marginal independence and odds

ratios, three way contingency
tables 393

Mauchley’s test 284
Maximum Likelihood (ML) estimation

23–4, 190
and Expectation–Maximization

(EM) algorithm 421–3
and linear regression model 90
nonlinear regression modeling

150, 152
versus OLS estimation 25

maximum norm quadratic unbiased
estimation (MINQUE) 190

mean 10, 16
means, specific comparisons of

196–201
median 10, 15–16
median absolute deviation (MAD)

16–17
meta-analysis 50–1
Minkowski distance 413
missing cells, factorial designs 244–7
missing observations 68–9

deletion 420
imputation 420–1
maximum likelihood and EM

421–3
multiple regression analysis 143
multivariate data sets 419–20
principal components analysis 

454
mixed effects models, factorial

designs 236–7, 240–1
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mixed factorial and nested designs
258–9

mixed linear models 223
mixed variables, general dissimilarity

measures 413–14
mode 10
Model I regression see linear

regression analysis; linear
regression models

Model II regression 100–4, 142–3
models 2–3
multidimensional scaling (MDS)

473–4, 492
classical 474–6
enhanced 476–82
principal coordinates analysis

(PCoA) 474–6
relating to covariates 487–8
relating to original variables 487

multifactor analysis of variance
(ANOVA) 208

factorial designs 221–60
nested (hierarchical) designs

208–21
pooling in multifactor designs

260–1
presentation of results 496–7
relationship between factorial and

nested designs 261
multi-level (random effects) models

376–7
multimodal distributions 63
multinomial distribution 11
multiple linear regression analysis 111

analysis of variance 119–21
assumptions 125
collinearity 127–30
diagnostic graphics 125–6
finding the “best” regression model

137
criteria for “best model” 137–9
selection procedures 139–41

hierarchical partitioning 141–2
indicator (dummy) variables 135–7
interactions 130–3
missing data 143
null hypotheses 121
power analysis 143
relative importance of predictor

variables 122
change in explained variation 123
standardized partial regression

slopes 123–4
tests on partial regression slopes

122–3

residual plots 126
robust regression 143
scatterplots 125–6
transformations 127
variable selection 137–41
variance explained 122
weighted least squares 142
(see also polynomial regression)

multiple linear regression
diagnostics 125

influence 125
leverage 125
residuals 125

multiple linear regression models
114, 118–19

estimating model parameters 119
Model II regression 142–3
model comparisons 121–2
regression through the origin 142

multiple logistic regression 365–7
logistic model and parameters

367–8
multiple testing

adjusting significance levels and/or
P values 49–50

and increased probability of Type I
errors 48–9

multi-response permutation
procedures 483–4

multivariate analysis
derivation of components 409
eigenvalues 405–6
eigenvectors 406–9
linear combinations of variables

405
standardization, association and

dissimilarity 417
multivariate analysis of variance

(MANOVA) 283–4, 319, 425–35
and statistical software 433
assumptions 433–4
complex designs 434–5
multidimensional scaling 483
non-parametric 485–7
presentation of results 496–7
relationship to principal

components analysis 437
relative importance of each

response variable 432–3
robust 434
single factor 426–32
specific comparisons 432
versus discriminant function

analysis 441
multivariate data 400–1

standardizations 415–17
multivariate data sets, screening

418–23
multivariate dissimilarity measures

410–12, 417
comparison 414
for continuous variables 412–13
for dichotomous (binary) variables

413
for mixed variables 413–14

multivariate distance measures 409,
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