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Preface

Statistical analysis is at the core of most modern
biology, and many biological hypotheses, even
deceptively simple ones, are matched by complex
statistical models. Prior to the development of
modern desktop computers, determining whether
the data fit these complex models was the prov-
ince of professional statisticians. Many biologists
instead opted for simpler models whose structure
had been simplified quite arbitrarily. Now, with
immensely powerful statistical software available
to most of us, these complex models can be fitted,
creating a new set of demands and problems for
biologists.
We need to:

* know the pitfalls and assumptions of
particular statistical models,

¢ be able to identify the type of model
appropriate for the sampling design and kind
of data that we plan to collect,

¢ be able to interpret the output of analyses
using these models, and

* be able to design experiments and sampling
programs optimally, i.e. with the best possible
use of our limited time and resources.

The analysis may be done by professional stat-
isticians, rather than statistically trained biolo-
gists, especially in large research groups or
multidisciplinary teams. In these situations, we
need to be able to speak a common language:

* frame our questions in such a way as to get a
sensible answer,
* be aware of biological considerations that may
cause statistical problems; we can not expect a
statistician to be aware of the biological
idiosyncrasies of our particular study, but if he
or she lacks that information, we may get
misleading or incorrect advice, and
understand the advice or analyses that we
receive, and be able to translate that back into
biology.

This book aims to place biologists in a better
position to do these things. It arose from our
involvement in designing and analyzing our own

data, but also providing advice to students and
colleagues, and teaching classes in design and
analysis. As part of these activities, we became
aware, first of our limitations, prompting us to
read more widely in the primary statistical litera-
ture, and second, and more importantly, of the
complexity of the statistical models underlying
much biological research. In particular, we con-
tinually encountered experimental designs that
were not described comprehensively in many of
our favorite texts. This book describes many of the
common designs used in biological research, and
we present the statistical models underlying
those designs, with enough information to high-
light their benefits and pitfalls.

Our emphasis here is on dealing with biologi-
cal data - how to design sampling programs that
represent the best use of our resources, how to
avoid mistakes that make analyzing our data dif-
ficult, and how to analyze the data when they are
collected. We emphasize the problems associated
with real world biological situations.

In this book

Our approach is to encourage readers to under-
stand the models underlying the most common
experimental designs. We describe the models
that are appropriate for various kinds of biologi-
cal data - continuous and categorical response
variables, continuous and categorical predictor
or independent variables. Our emphasis is on
general linear models, and we begin with the
simplest situations — single, continuous vari-
ables - describing those models in detail. We use
these models as building blocks to understand-
ing a wide range of other kinds of data - all of
the common statistical analyses, rather than
being distinctly different kinds of analyses, are
variations on a common theme of statistical
modeling - constructing a model for the data
and then determining whether observed data fit
this particular model. Our aim is to show how a
broad understanding of the models allows us to
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deal with a wide range of more complex situa-
tions.

We have illustrated this approach of fitting
models primarily with parametric statistics. Most
biological data are still analyzed with linear
models that assume underlying normal distribu-
tions. However, we introduce readers to a range of
more general approaches, and stress that, once
you understand the general modeling approach
for normally distributed data, you can use that
information to begin modeling data with nonlin-
ear relationships, variables that follow other stat-
istical distributions, etc.

Learning by example

One of our strongest beliefs is that we understand
statistical principles much better when we see
how they are applied to situations in our own dis-
cipline. Examples let us make the link between
statistical models and formal statistical terms
(blocks, plots, etc.) or papers written in other dis-
ciplines, and the biological situations that we are
dealing with. For example, how is our analysis and
interpretation of an experiment repeated several
times helped by reading a literature about blocks
of agricultural land? How does literature devel-
oped for psychological research let us deal with
measuring changes in physiological responses of
plants?

Throughout this book, we illustrate all of the
statistical techniques with examples from the
current biological literature. We describe why
(we think) the authors chose to do an experiment
in a particular way, and how to analyze the data,
including assessing assumptions and interpret-
ing statistical output. These examples appear as
boxes through each chapter, and we are
delighted that authors of most of these studies
have made their raw data available to us. We
provide those raw data files on a website
http://[www.zoology.unimelb.edu.au/qkstats
allowing readers to run these analyses using
their particular software package.

The other value of published examples is that
we can see how particular analyses can be
described and reported. When fitting complex
statistical models, it is easy to allow the biology to

be submerged by a mass of statistical output. We
hope that the examples, together with our own
thoughts on this subject, presented in the final
chapter, will help prevent this happening.

This book is a bridge

It is not possible to produce a book that intro-
duces a reader to biological statistics and takes
them far enough to understand complex models,
at least while having a book that is small enough
to transport. We therefore assume that readers
are familiar with basic statistical concepts, such
as would result from a one or two semester intro-
ductory course, or have read one of the excellent
basic texts (e.g. Sokal & Rohlf 1995). We take the
reader from these texts into more complex areas,
explaining the principles, assumptions, and pit-
falls, and encourage a reader to read the excellent
detailed treatments (e.g, for analysis of variance,
Winer et al. 1991 or Underwood 1997).

Biological data are often messy, and many
readers will find that their research questions
require more complex models than we describe
here. Ways of dealing with messy data or solutions
to complex problems are often provided in the
primary statistical literature. We try to point the
way to key pieces of that statistical literature, pro-
viding the reader with the basic tools to be able to
deal with that literature, or to be able to seek pro-
fessional (statistical) help when things become
too complex.

We must always remember that, for biologists,
statistics is a tool that we use to illuminate and
clarify biological problems. Our aim is to be able
to use these tools efficiently, without losing sight
of the biology that is the motivation for most of us
entering this field.

Some acknowledgments

Our biggest debt is to the range of colleagues who
have read, commented upon, and corrected
various versions of these chapters. Many of these
colleagues have their own research groups, who
they enlisted in this exercise. These altruistic and
diligent souls include (alphabetically) Jacqui
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Brooks, Andrew Constable, Barb Downes, Peter
Fairweather, Ivor Growns, Murray Logan, Ralph
Mac Nally, Richard Marchant, Pete Raimondi,
Wayne Robinson, Suvaluck Satumanatpan and
Sabine Schreiber. Perhaps the most innocent
victims were the graduate students who have
been part of our research groups over the period
we produced this book. We greatly appreciate
their willingness to trade the chance of some illu-

mination for reading and highlighting our obfus-
cations.

We also wish to thank the various researchers
whose data we used as examples throughout.
Most of them willingly gave of their raw data,
trusting that we would neither criticize nor find
flaws in their published work (we didn’t!), or were
public-spirited enough to have published their
raw data.






Chapter |

Introduction

Biologists and environmental scientists today
must contend with the demands of keeping up
with their primary field of specialization, and at
the same time ensuring that their set of profes-
sional tools is current. Those tools may include
topics as diverse as molecular genetics, sediment
chemistry, and small-scale hydrodynamics, but
one tool that is common and central to most of
us is an understanding of experimental design
and data analysis, and the decisions that we
make as a result of our data analysis determine
our future research directions or environmental
management. With the advent of powerful
desktop computers, we can now do complex ana-
lyses that in previous years were available only to
those with an initiation into the wonders of early
mainframe statistical programs, or computer pro-
gramming languages, or those with the time for
laborious hand calculations. In past years, those
statistical tools determined the range of sam-
pling programs and analyses that we were
willing to attempt. Now that we can do much
more complex analyses, we can examine data in
more sophisticated ways. This power comes at a
cost because we now collect data with complex
underlying statistical models, and, therefore, we
need to be familiar with the potential and limita-
tions of a much greater range of statistical
approaches.

With any field of science, there are particular
approaches that are more common than others.
Texts written for one field will not necessarily
cover the most common needs of another field,
and we felt that the needs of most common biol-
ogists and environmental scientists of our

acquaintance were not covered by any one partic-
ular text.

A fundamental step in becoming familiar with
data collection and analysis is to understand the
philosophical viewpoint and basic tools that
underlie what we do. We begin by describing our
approach to scientific method. Because our aim is
to cover some complex techniques, we do not
describe introductory statistical methods in
much detail. That task is a separate one, and has
been done very well by a wide range of authors. We
therefore provide only an overview or refresher of
some basic philosophical and statistical concepts.
We strongly urge you to read the first few chapters
of a good introductory statistics or biostatistics
book (you can’t do much better than Sokal & Rohlf
1995) before working through this chapter.

1.1 | Scientific method

An appreciation of the philosophical bases for the
way we do our scientific research is an important
prelude to the rest of this book (see Chalmers
1999, Gower 1997, O’Hear 1989). There are many
valuable discussions of scientific philosophy from
a biological context and we particularly recom-
mend Ford (2000), James & McCulloch (1985),
Loehle (1987) and Underwood (1990, 1991).
Maxwell & Delaney (1990) provide an overview
from a behavioral sciences viewpoint and the first
two chapters of Hilborn & Mangel (1997) empha-
size alternatives to the Popperian approach in sit-
uations where experimental tests of hypotheses
are simply not possible.
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Early attempts to develop a philosophy of sci-
entific logic, mainly due to Francis Bacon and
John Stuart Mill, were based around the principle
of induction, whereby sufficient numbers of con-
firmatory observations and no contradictory
observations allow us to conclude that a theory or
law is true (Gower 1997). The logical problems
with inductive reasoning are discussed in every
text on the philosophy of science, in particular
that no amount of confirmatory observations can
ever prove a theory. An alternative approach, and
also the most commonly used scientific method
in modern biological sciences literature, employs
deductive reasoning, the process of deriving
explanations or predictions from laws or theories.
Karl Popper (1968, 1969) formalized this as the
hypothetico-deductive approach, based around
the principle of falsificationism, the doctrine
whereby theories (or hypotheses derived from
them) are disproved because proof is logically
impossible. An hypothesis is falsifiable if there
exists a logically possible observation that is
inconsistent with it. Note that in many scientific
investigations, a description of pattern and induc-
tive reasoning, to develop models and hypotheses
(Mentis 1988), is followed by a deductive process in
which we critically test our hypotheses.

Underwood (1990, 1991) outlined the steps
involved in a falsificationist test. We will illustrate
these steps with an example from the ecological
literature, a study of bioluminescence in dinoflag-
ellates by Abrahams & Townsend (1993).

[.1.1 Pattern description

The process starts with observation(s) of a pattern
or departure from a pattern in nature.
Underwood (1990) also called these puzzles or
problems. The quantitative and robust descrip-
tion of patterns is, therefore, a crucial part of the
scientific process and is sometimes termed an
observational study (Manly 1992). While we
strongly advocate experimental methods in
biology, experimental tests of hypotheses derived
from poorly collected and interpreted observa-
tional data will be of little use.

In our example, Abrahams & Townsend (1993)
observed that dinoflagellates bioluminesce when
the water they are in is disturbed. The next step is
to explain these observations.

[.1.2 Models

The explanation of an observed pattern is referred
to as a model or theory (Ford 2000), which is a
series of statements (or formulae) that explains
why the observations have occurred. Model devel-
opment is also what Peters (1991) referred to as the
synthetic or private phase of the scientific
method, where the perceived problem interacts
with insight, existing theory, belief and previous
observations to produce a set of competing
models. This phase is clearly inductive and
involves developing theories from observations
(Chalmers 1999), the exploratory process of
hypothesis formulation.

James & McCulloch (1985), while emphasizing
the importance of formulating models in science,
distinguished different types of models. Verbal
models are non-mathematical explanations of
how nature works. Most biologists have some idea
of how a process or system under investigation
operates and this idea drives the investigation. It
is often useful to formalize that idea as a concep-
tual verbal model, as this might identify impor-
tant components of a system that need to be
included in the model. Verbal models can be
quantified in mathematical terms as either
empiric models or theoretic models. These models
usually relate a response or dependent variable to
one or more predictor or independent variables.
We can envisage from our biological understand-
ing of a process that the response variable might
depend on, or be affected by, the predictor vari-
ables.

Empiric models are mathematical descrip-
tions of relationships resulting from processes
rather than the processes themselves, e.g. equa-
tions describing the relationship between metab-
olism (response) and body mass (predictor) or
species number (response) and island area (first
predictor) and island age (second predictor).
Empiric models are usually statistical models
(Hilborn & Mangel 1997) and are used to describe
a relationship between response and predictor
variables. Much of this book is based on fitting
statistical models to observed data.

Theoretic models, in contrast, are used to
study processes, e.g. spatial variation in abun-
dance of intertidal snails is caused by variations
in settlement of larvae, or each outbreak of
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Mediterranean fruit fly in California is caused by
anew colonization event (Hilborn & Mangel 1997).
In many cases, we will have a theoretic, or scien-
tific, model that we can re-express as a statistical
model. For example, island biogeography theory
suggests that the number of species on an island
is related to its area. We might express this scien-
tific model as a linear statistical relationship
between species number and island area and eval-
uate it based on data from a range of'islands of dif-
ferent sizes. Both empirical and theoretic models
can be used for prediction, although the general-
ity of predictions will usually be greater for theor-
etic models.

The scientific model proposed to explain biolu-
minescence in dinoflagellates was the “burglar
alarm model”, whereby dinoflagellates biolu-
minesce to attract predators of copepods, which
eat the dinoflagellates. The remaining steps in the
process are designed to test or evaluate a particu-
lar model.

[.1.3 Hypotheses and tests

We can make a prediction or predictions deduced
from our model or theory; these predictions are
called research (or logical) hypotheses. If a partic-
ular model is correct, we would predict specific
observations under a new set of circumstances.
This is what Peters (1991) termed the analytic,
public or Popperian phase of the scientific
method, where we use critical or formal tests to
evaluate models by falsifying hypotheses. Ford
(2000) distinguished three meanings of the term
“hypothesis”. We will use it in Ford’s (2000) sense
of a statement that is tested by investigation,
experimentally if possible, in contrast to a model
or theory and also in contrast to a postulate, a new
or unexplored idea.

One of the difficulties with this stage in the
process is deciding which models (and subsequent
hypotheses) should be given research priority.
There will often be many competing models and,
with limited budgets and time, the choice of
which models to evaluate is an important one.
Popper originally suggested that scientists should
test those hypotheses that are most easily falsified
by appropriate tests. Tests of theories or models
using hypotheses with high empirical content
and which make improbable predictions are what

Popper called severe tests, although that term has
been redefined by Mayo (1996) as a test that is
likely to reveal a specific error if it exists (e.g. deci-
sion errors in statistical hypothesis testing — see
Chapter 3). Underwood (1990, 1991) argued that it
is usually difficult to decide which hypotheses are
most easily refuted and proposed that competing
models are best separated when their hypotheses
are the most distinctive, i.e. they predict very dif-
ferent results under similar conditions. There are
other ways of deciding which hypothesis to test,
more related to the sociology of science. Some
hypotheses may be relatively trivial, or you may
have a good idea what the results can be. Testing
that hypothesis may be most likely to produce
a statistically significant (see Chapter 3), and,
unfortunately therefore, a publishable result.
Alternatively, a hypothesis may be novel or
require a complex mechanism that you think
unlikely. That result might be more exciting to the
general scientific community, and you might
decide that, although the hypothesis is harder to
test, you're willing to gamble on the fame, money,
or personal satisfaction that would result from
such a result.

Philosophers have long recognized that proof
of a theory or its derived hypothesis is logically
impossible, because all observations related to the
hypothesis must be made. Chalmers (1999; see
also Underwood 1991) provided the clever
example of the long history of observations in
Europe that swans were white. Only by observing
all swans everywhere could we “prove” that all
swans are white. The fact that a single observation
contrary to the hypothesis could disprove it was
clearly illustrated by the discovery of black swans
in Australia.

The need for disproof dictates the next step in
the process of a falsificationist test. We specify a
null hypothesis that includes all possibilities
except the prediction in the hypothesis. It is
much simpler logically to disprove a null hypoth-
esis. The null hypothesis in the dinoflagellate
example was that bioluminesence by dinoflagel-
lates would have no effect on, or would decrease,
the mortality rate of copepods grazing on dino-
flagellates. Note that this null hypothesis
includes all possibilities except the one specified
in the hypothesis.
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So, the final phase in the process is the experi-
mental test of the hypothesis. If the null hypothe-
sis is rejected, the logical (or research) hypothesis,
and therefore the model, is supported. The model
should then be refined and improved, perhaps
making it predict outcomes for different spatial
or temporal scales, other species or other new sit-
uations. If the null hypothesis is not rejected, then
it should be retained and the hypothesis, and the
model from which it is derived, are incorrect. We
then start the process again, although the statisti-
cal decision not to reject a null hypothesis is more
problematic (Chapter 3).

The hypothesis in the study by Abrahams &
Townsend (1993) was that bioluminesence would
increase the mortality rate of copepods grazing on
dinoflagellates. Abrahams & Townsend (1993)
tested their hypothesis by comparing the mortal-
ity rate of copepods in jars containing biolumi-
nescing dinoflagellates, copepods and one fish
(copepod predator) with control jars containing
non-bioluminescing dinoflagellates, copepods
and one fish. The result was that the mortality
rate of copepods was greater when feeding on bio-
luminescing dinoflagellates than when feeding
on non-bioluminescing dinoflagellates. Therefore
the null hypothesis was rejected and the logical
hypothesis and burglar alarm model was sup-
ported.

I.1.4 Alternatives to falsification

While the Popperian philosophy of falsificationist
tests has been very influential on the scientific
method, especially in biology, at least two other
viewpoints need to be considered. First, Thomas
Kuhn (1970) argued that much of science is
carried out within an accepted paradigm or
framework in which scientists refine the theories
but do notreally challenge the paradigm. Falsified
hypotheses do not usually result in rejection of
the over-arching paradigm but simply its enhance-
ment. This “normal science” is punctuated by
occasional scientific revolutions that have as
much to do with psychology and sociology as
empirical information that is counter to the pre-
vailing paradigm (O’Hear 1989). These scientific
revolutions result in (and from) changes in
methods, objectives and personnel (Ford 2000).
Kuhn’s arguments have been described as relativ-

istic because there are often no objective criteria
by which existing paradigms and theories are
toppled and replaced by alternatives.

Second, Imre Lakatos (1978) was not con-
vinced that Popper’s ideas of falsification and
severe tests really reflected the practical applica-
tion of science and that individual decisions
about falsifying hypotheses were risky and arbi-
trary (Mayo 1996). Lakatos suggested we should
develop scientific research programs that consist
of two components: a “hard core” of theories
that are rarely challenged and a protective belt of
auxiliary theories that are often tested and
replaced if alternatives are better at predicting
outcomes (Mayo 1996). One of the contrasts
between the ideas of Popper and Lakatos that is
important from the statistical perspective is the
latter’s ability to deal with multiple competing
hypotheses more elegantly than Popper’s severe
tests of individual hypotheses (Hilborn & Mangel
1997).

An important issue for the Popperian philoso-
phy is corroboration. The falsificationist test
makes it clear what to do when an hypothesis is
rejected after a severe test but it is less clear what
the next step should be when an hypothesis passes
a severe test. Popper argued that a theory, and its
derived hypothesis, that has passed repeated
severe testing has been corroborated. However,
because of his difficulties with inductive think-
ing, he viewed corroboration as simply a measure
of the past performance of a model, rather an
indication of how well it might predict in other
circumstances (Mayo 1996, O’Hear 1989). This is
frustrating because we clearly want to be able to
use models that have passed testing to make pre-
dictions under new circumstances (Peters 1991).
While detailed discussion of the problem of cor-
roboration is beyond the scope of this book (see
Mayo 1996), the issue suggests two further areas of
debate. First, there appears to be a role for both
induction and deduction in the scientific method,
as both have obvious strengths and weaknesses
and most biological research cannot help but use
both in practice. Second, formal corroboration of
hypotheses may require each to be allocated some
measure of the probability that each is true or
false, i.e. some measure of evidence in favor or
against each hypothesis. This goes to the heart of
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one of the most long-standing and vigorous
debates in statistics, that between frequentists
and Bayesians (Section 1.4 and Chapter 3).

Ford (2000) provides a provocative and thor-
ough evaluation of the Kuhnian, Lakatosian and
Popperian approaches to the scientific method,
with examples from the ecological sciences.

[.1.5 Role of statistical analysis

The application of statistics is important through-
out the process just described. First, the descrip-
tion and detection of patterns must be done in a
rigorous manner. We want to be able to detect gra-
dients in space and time and develop models that
explain these patterns. We also want to be confi-
dent in our estimates of the parameters in these
statistical models. Second, the design and analysis
of experimental tests of hypotheses are crucial. It
is important to remember at this stage that the
research hypothesis (and its complement, the null
hypothesis) derived from a model is not the same
as the statistical hypothesis (James & McCulloch
1985); indeed, Underwood (1990) has pointed out
the logical problems that arise when the research
hypothesis is identical to the statistical hypothe-
sis. Statistical hypotheses are framed in terms of
population parameters and represent tests of the
predictions of the research hypotheses (James &
McCulloch 1985). We will discuss the process of
testing statistical hypotheses in Chapter 3. Finally,
we need to present our results, from both the
descriptive sampling and from tests of hypothe-
ses, in an informative and concise manner. This
will include graphical methods, which can also be
important for exploring data and checking
assumptions of statistical procedures.

Because science is done by real people, there
are aspects of human psychology that can influ-
ence the way science proceeds. Ford (2000) and
Loehle (1987) have summarized many of these in
an ecological context, including confirmation
bias (the tendency for scientists to confirm their
own theories or ignore contradictory evidence)
and theory tenacity (a strong commitment to
basic assumptions because of some emotional or
personal investment in the underlying ideas).
These psychological aspects can produce biases in
a given discipline that have important implica-
tions for our subsequent discussions on research

design and data analysis. For example, there is a
tendency in biology (and most sciences) to only
publish positive (or statistically significant)
results, raising issues about statistical hypothesis
testing and meta-analysis (Chapter 3) and power of
tests (Chapter 7). In addition, successful tests of
hypotheses rely on well-designed experiments
and we will consider issues such as confounding
and replication in Chapter 7.

12| Experiments and other tests

Platt (1964) emphasized the importance of experi-
ments that critically distinguish between alterna-
tive models and their derived hypotheses when he
described the process of strong inference:

* devise alternative hypotheses,

* devise a crucial experiment (or several experi-
ments) each of which will exclude one or more
of the hypotheses,

e carry out the experiment(s) carefully to obtain
a “clean” result, and

» recycle the procedure with new hypotheses to
refine the possibilities (i.e. hypotheses) that
remain.

Crucial to Platt’s (1964) approach was the idea of
multiple competing hypotheses and tests to dis-
tinguish between these. What nature should
these tests take?

In the dinoflagellate example above, the
crucial test of the hypothesis involved a manipu-
lative experiment based on sound principles of
experimental design (Chapter 7). Such manipula-
tions provide the strongest inference about our
hypotheses and models because we can assess the
effects of causal factors on our response variable
separately from other factors. James & McCulloch
(1985) emphasized that testing biological models,
and their subsequent hypotheses, does not occur
by simply seeing if their predictions are met in an
observational context, although such results offer
support for an hypothesis. Along with James &
McCulloch (1985), Scheiner (1993), Underwood
(1990), Werner (1998), and many others, we argue
strongly that manipulative experiments are the
best way to properly distinguish between biologi-
cal models.
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There are at least two costs to this strong infer-
ence from manipulative experiments. First,
experiments nearly always involve some artificial
manipulation of nature. The most extreme form
of this is when experiments testing some natural
process are conducted in the laboratory. Even field
experiments will often use artificial structures or
mechanisms to implement the manipulation. For
example, mesocosms (moderate sized enclosures)
are often used to investigate processes happening
in large water bodies, although there is evidence
from work on lakes that issues related to the
small-scale of mesocosms may restrict generaliza-
tion to whole lakes (Carpenter 1996; see also
Resetarits & Fauth 1998). Second, the larger the
spatial and temporal scales of the process being
investigated, the more difficult it is to meet the
guidelines for good experimental design. For
example, manipulations of entire ecosystems are
crucial for our understanding of the role of
natural and anthropogenic disturbances to these
systems, especially since natural resource agen-
cies have to manage such systems at this large
spatial scale (Carpenter et al. 1995). Replication
and randomization (two characteristics regarded
as important for sensible interpretation of experi-
ments - see Chapter 7) are usually not possible at
large scales and novel approaches have been devel-
oped to interpret such experiments (Carpenter
1990). The problems of scale and the generality of
conclusions from smaller-scale manipulative
experiments are challenging issues for experi-
mental biologists (Dunham & Beaupre 1998).

The testing approach on which the methods in
this book are based relies on making predictions
from our hypothesis and seeing if those predic-
tions apply when observed in a new setting, i.e.
with data that were not used to derive the model
originally. Ideally, this new setting is experimen-
tal at scales relevant for the hypothesis, but this is
not always possible. Clearly, there must be addi-
tional ways of testing between competing models
and their derived hypotheses. Otherwise, disci-
plines in which experimental manipulation is dif-
ficult for practical or ethical reasons, such as
meteorology, evolutionary biology, fisheries
ecology, etc., could make no scientific progress.
The alternative is to predict from our
models/hypotheses in new settings that are not

experimentally derived. Hilborn & Mangel (1997),
while arguing for experimental studies in ecology
where possible, emphasize the approach of “con-
fronting” competing models (or hypotheses) with
observational data by assessing how well the data
meet the predictions of the model.

Often, the new setting in which we test the
predictions of our model may provide us with a
contrast of some factor, similar to what we may
have set up had we been able to do a manipula-
tive experiment. For example, we may never be
able to (nor want to!) test the hypothesis that
wildfire in old-growth forests affects populations
of forest birds with a manipulative experiment at
a realistic spatial scale. However, comparisons of
bird populations in forests that have burnt natu-
rally with those that haven’t provide a test of the
hypothesis. Unfortunately, a test based on such a
natural “experiment” (sensu Underwood 1990) is
weaker inference than a real manipulative
experiment because we can never separate the
effects of fire from other pre-existing differences
between the forests that might also affect bird
populations. Assessments of effects of human
activities (“environmental impact assessment”)
are often comparisons of this kind because we
can rarely set up a human impact in a truly
experimental manner (Downes et al. 2001). Well-
designed observational (sampling) programs can
provide a refutationist test of a null hypothesis
(Underwood 1991) by evaluating whether predic-
tions hold, although they cannot demonstrate
causality.

While our bias in favor of manipulative experi-
ments is obvious, we hope that we do not appear
too dogmatic. Experiments potentially provide
the strongest inference about competing hypoth-
eses, but their generality may also be constrained
by their artificial nature and limitations of spatial
and temporal scale. Testing hypotheses against
new observational data provides weaker distinc-
tions between competing hypotheses and the infe-
rential strength of such methods can be improved
by combining them with other forms of evidence
(anecdotal, mathematical modeling, correlations
etc. - see Downes et al. 2001, Hilborn & Mangel
1997, McArdle 1996). In practice, most biological
investigations will include both observational
and experimental approaches. Rigorous and sen-
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sible statistical analyses will be relevant at all
stages of the investigation.

|.3 ' Data, observations and
variables

In biology, data usually consist of a collection of
observations or objects. These observations are
usually sampling units (e.g. quadrats) or experi-
mental units (e.g. individual organisms, aquaria,
etc.) and a set of these observations should repre-
sent a sample from a clearly defined population
(all possible observations in which we are inter-
ested). The “actual property measured by the indi-
vidual observations” (Sokal & Rohlf 1995, p. 9), e.g.
length, number of individuals, pH, etc., is called a
variable. A random variable (which we will denote
as Y, with y being any value of Y) is simply a vari-
able whose values are not known for certain
before a sample is taken, i.e. the observed values
of a random variable are the results of a random
experiment (the sampling process). The set of all
possible outcomes of the experiment, e.g. all the
possible values of a random variable, is called the
sample space. Most variables we deal with in
biology are random variables, although predictor
variables in models might be fixed in advance and
therefore not random. There are two broad catego-
ries of random variables: (i) discrete random vari-
ables can only take certain, usually integer,
values, e.g. the number of cells in a tissue section
or number of plants in a forest plot, and (ii) con-
tinuous random variables, which take any value,
e.g. measurements like length, weight, salinity,
blood pressure etc. Kleinbaum et al. (1997) distin-
guish these in terms of “gappiness” - discrete var-
iables have gaps between observations and
continuous variables have no gaps between obser-
vations.

The distinction between discrete and continu-
ous variables is not always a clear dichotomy; the
number of organisms in a sample of mud from a
local estuary can take a very large range of values
but, of course, must be an integer so is actually a
discrete variable. Nonetheless, the distinction
between discrete and continuous variables is
important, especially when trying to measure
uncertainty and probability.

1.4 | Probability

The single most important characteristic of bio-
logical data is their uncertainty. For example, if
we take two samples, each consisting of the same
number of observations, from a population and
estimate the mean for some variable, the two
means will almost certainly be different, despite
the samples coming from the same population.
Hilborn & Mangel (1997) proposed two general
causes why the two means might be different, i.e.
two causes of uncertainty in the expected value of
the population. Process uncertainty results from
the true population mean being different when
the second sample was taken compared with the
first. Such temporal changes in biotic variables,
even over very short time scales, are common in
ecological systems. Observation uncertainty
results from sampling error; the mean value in a
sample is simply an imperfect estimate of the
mean value in the population (all the possible
observations) and, because of natural variability
between observations, different samples will
nearly always produce different means.
Observation uncertainty can also result from
measurement error, where the measuring device
we are using is imperfect. For many biological var-
iables, natural variability is so great that we rarely
worry about measurement error, although this
might not be the case when the variable is meas-
ured using some complex piece of equipment
prone to large malfunctions.

In most statistical analyses, we view uncer-
tainty in terms of probabilities and understand-
ing probability is crucial to understanding
modern applied statistics. We will only briefly
introduce probability here, particularly as it is
very important for how we interpret statistical
tests of hypotheses. Very readable introductions
can be found in Antelman (1997), Barnett (1999),
Harrison & Tamaschke (1984) and Hays (1994);
from a biological viewpoint in Sokal & Rohlf
(1995) and Hilborn & Mangel (1997); and from a
philosophical perspective in Mayo (1996).

We usually talk about probabilities in terms of
events; the probability of event A occurring is
written P(A). Probabilities can be between zero
and one; if P(A) equals zero, then the event is
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impossible; if P(A) equals one, then the event is
certain. As a simple example, and one that is used
in nearly every introductory statistics book,
imagine the toss of a coin. Most of us would state
that the probability of heads is 0.5, but what do we
really mean by that statement? The classical inter-
pretation of probability is that it is the relative fre-
quency of an event that we would expect in the
long run, or in a long sequence of identical trials.
In the coin tossing example, the probability of
heads being 0.5 is interpreted as the expected pro-
portion of heads in a long sequence of tosses.
Problems with this long-run frequency interpreta-
tion of probability include defining what is meant
by identical trials and the many situations in
which uncertainty has no sensible long-run fre-
quency interpretation, e.g. probability of a horse
winning a particular race, probability of it raining
tomorrow (Antelman 1997). The longrun fre-
quency interpretation is actually the classical sta-
tistical interpretation of probabilities (termed the
frequentist approach) and is the interpretation we
must place on confidence intervals (Chapter 2)
and P values from statistical tests (Chapter 3).

The alternative way of interpreting probabil-
ities is much more subjective and is based on a
“degree of belief” about whether an event will
occur. It is basically an attempt at quantification
of an opinion and includes two slightly different
approaches - logical probability developed by
Carnap and Jeffreys and subjective probability
pioneered by Savage, the latter being a measure of
probability specific to the person deriving it. The
opinion on which the measure of probability is
based may be derived from previous observations,
theoretical considerations, knowledge of the par-
ticular event under consideration, etc. This
approach to probability has been criticized
because of its subjective nature but it has been
widely applied in the development of prior prob-
abilities in the Bayseian approach to statistical
analysis (see below and Chapters 2 and 3).

We will introduce some of the basic rules of
probability using a simple biological example
with a dichotomous outcome - eutrophication in
lakes (e.g. Carpenter et al. 1998). Let P(A) be the
probability that a lake will go eutrophic. Then
P(~A) equals one minus P(A), i.e. the probability of
not A is one minus the probability of A. In our

example, the probability that the lake will not go
eutrophic is one minus the probability that it will
go eutrophic.

Now consider the P(B), the probability that
there will be an increase in nutrient input into
the lake. The joint probability of A and B is:

P(AUB)=P(A) +P(B)— PANB) (1.1)

i.e. the probability that A or B occur [P(A U B)] is the
probability of A plus the probability of B minus
the probability of A and B both occurring [P(A N B)].
In our example, the probability that the lake will
go eutrophic or that there will be an increase in
nutrient input equals the probability that the lake
will go eutrophic plus the probability that the
lake will receive increased nutrients minus the
probability that the lake will go eutrophic and
receive increased nutrients.

These simple rules lead on to conditional prob-
abilities, which are very important in practice.
The conditional probability of A, given B, is:

P(A|B)=P(ANB)[P(B) (1.2)

i.e. the probability that A occurs, given that B
occurs, equals the probability of A and B both
occurring divided by the probability of B occur-
ring. In our example, the probability that the lake
will go eutrophic given that it receives increased
nutrient input equals the probability that it goes
eutrophic and receives increased nutrients
divided by the probability that it receives
increased nutrients.

We can combine these rules to develop
another way of expressing conditional probability
- Bayes Theorem (named after the eighteenth-
century English mathematician, Thomas Bayes):

P(B|A)P(A)
P(B|A)P(A) + P(B| ~A)P(~A)

PA|B)= (1.3)
This formula allows us to assess the probability of
an event A in the light of new information, B. Let’s
define some terms and then show how this some-
what daunting formula can be useful in practice.
P(A) is termed the prior probability of A - it is the
probability of A prior to any new information
(about B). In our example, it is our probability of a
lake going eutrophic, calculated before knowing
anything about nutrient inputs, possibly deter-
mined from previous studies on eutrophication in
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lakes. P(B|A) is the likelihood of B being observed,
given that A did occur [a similar interpretation
exists for P(B| ~A)]. The likelihood of a model or
hypothesis or event is simply the probability of
observing some data assuming the model or
hypothesis is true or assuming the event occurs.
In our example, P(B|A) is the likelihood of seeing
a raised level of nutrients, given that the lake has
gone eutrophic (A). Finally, P(A|B) is the posterior
probability of A, the probability of A after making
the observations about B, the probability of a lake
going eutrophic after incorporating the informa-
tion about nutrient input. This is what we are
after with a Bayesian analysis, the modification of
prior information to posterior information based
on a likelihood (Ellison 1996).

Bayes Theorem tells us how probabilities might
change based on previous evidence. It also relates
two forms of conditional probabilities - the prob-
ability of A given B to the probability of B given A.
Berry (1996) described this as relating inverse
probabilities. Note that, although our simple
example used an event (A) that had only two pos-
sible outcomes, Bayes formula can also be used for
events that have multiple possible outcomes.

In practice, Bayes Theorem is used for estimat-
ing parameters of populations and testing hypoth-
eses about those parameters. Equation 1.3 can be
simplified considerably (Berry & Stangl 1996,
Ellison 1996):

_ P(data | 6)P(6)

P(6]|data) P(data)

(1.4)
where 6 is a parameter to be estimated or an
hypothesis to be evaluated, P(6) is the “uncondi-
tional” prior probability of 6 being a particular
value, P(data| 6) is the likelihood of observing the
data if 0 is that value, P(data) is the “uncondi-
tional” probability of observing the data and is
used to ensure the area under the probability dis-
tribution of 6 equals one (termed “normaliza-
tion”), and P(6| data) is the posterior probability of
0 conditional on the data being observed. This
formula can be re-expressed in English as:

posterior probability «likelihood X
prior probability (1.5)

While we don’t advocate a Bayesian philosophy in
this book, it is important for biologists to be aware

of the approach and to consider it as an alterna-
tive way of dealing with conditional probabilities.
We will consider the Bayesian approach to estima-
tion in Chapter 2 and to hypothesis testing in
Chapter 3.

1.5 | Probability distributions

A random variable will have an associated prob-
ability distribution where different values of the
variable are on the horizontal axis and the rela-
tive probabilities of the possible values of the var-
iable (the sample space) are on the vertical axis.
For discrete variables, the probability distribu-
tion will comprise a measurable probability for
each outcome, e.g. 0.5 for heads and 0.5 for tails
in a coin toss, 0.167 for each one of the six sides
of a fair die. The sum of these individual probabil-
ities for independent events equals one.
Continuous variables are not restricted to inte-
gers or any specific values so there are an infinite
number of possible outcomes. The probability dis-
tribution of a continuous variable (Figure 1.1) is
often termed a probability density function (pdf)
where the vertical axis is the probability density
of the variable [f{(y)], a rate measuring the prob-
ability per unit of the variable at any particular
value of the variable (Antelman 1997). We usually
talk about the probability associated with a range
of values, represented by the area under the prob-
ability distribution curve between the two
extremes of the range. This area is determined
from the integral of the probability density from
the lower to the upper value, with the distribu-
tion usually normalized so that the total prob-
ability under the curve equals one. Note that the
probability of any particular value of a continu-
ous random variable is zero because the area
under the curve for a single value is zero
(Kleinbaum et al. 1997) - this is important when
we consider the interpretation of probability dis-
tributions in statistical hypothesis testing
(Chapter 3).

In many of the statistical analyses described in
this book, we are dealing with two or more vari-
ables and our statistical models will often have
more than one parameter. Then we need to switch
from single probability distributions to joint
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the bivariate normal distribu-
tion, to be introduced in
Chapter 5.

Probability distributions nearly always refer to
the distribution of variables in one or more popu-
lations. The expected value of a random variable
[E(Y)]is simply the mean (u) of its probability distri-
bution. The expected value is an important concept
in applied statistics - most modeling procedures
are trying to model the expected value of a random
response variable. The mean is a measure of the
center of a distribution - other measures include
the median (the middle value) and the mode (the
most common value). It is also important to be able
to measure the spread of a distribution and the
most common measures are based on deviations
from the center, e.g. the variance is measured as
the sum of squared deviations from the mean. We
will discuss means and variances, and other meas-
ures of the center and spread of distributions, in
more detail in Chapter 2.

[.5.1 Distributions for variables
Most statistical procedures rely on knowing the
probability distribution of the variable (or the
error terms from a statistical model) we are ana-
lyzing. There are many probability distributions
that we can define mathematically (Evans et al.
2000) and some of these adequately describe the
distributions of variables in biology. Let’s consider
continuous variables first.

The normal (also termed Gaussian) distribu-
tion is a symmetrical probability distribution

Y y

with a characteristic bell-shape (Figure 1.1). It is
defined as:

(1.6)

where f{y) is the probability density of any value y
of Y. Note that the normal distribution can be
defined simply by the mean (u) and the variance
(0?), which are independent of each other. All
other terms in the equation are constants. A
normal distribution is often abbreviated to
N(Y:u,0). Since there are infinitely many possible
combinations of mean and variance, there is an
infinite number of possible normal distributions.
The standard normal distribution (z distribution)
is a normal distribution with a mean of zero and
a variance of one. The normal distribution is the
most important probability distribution for data
analysis; most commonly used statistical proce-
dures in biology (e.g. linear regression, analysis of
variance) assume that the variables being ana-
lyzed (or the deviations from a fitted model)
follow a normal distribution.

The normal distribution is a symmetrical prob-
ability distribution, but continuous variables can
have non-symmetrical distributions. Biological
variables commonly have a positively skewed dis-
tribution, i.e. one with a long right tail (Figure
1.1). One skewed distribution is the lognormal dis-
tribution, which means that the logarithm of the
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variable is normally distributed (suggesting a
simple transformation to normality - see Chapter
4). Measurement variables in biology that cannot
be less than zero (e.g. length, weight, etc.) often
follow lognormal distributions. In skewed distri-
butions like the lognormal, there is a positive rela-
tionship between the mean and the variance.

There are some other probability distributions
for continuous variables that are occasionally
used in specific circumstances. The exponential
distribution (Figure 1.1) is another skewed distri-
bution that often applies when the variable is the
time to the first occurrence of an event (Fox 1993,
Harrison & Tamaschke 1984), such as in failure
time analysis. This is a single parameter (A) distri-
bution with the following probability density
function:

fy)=2re™v (1.7)

where 1/\ is the mean time to first occurrence. Fox
(1993) provided some ecological examples.

The exponential and normal distributions are
members of the larger family of exponential dis-
tributions that can be used as error distributions
for a variety of linear models (Chapter 13). Other
members of this family include gamma distribu-
tion for continuous variables and the binomial
and Poisson (see below) for discrete variables.

Two other probability distributions for contin-
uous variables are also encountered (albeit rarely)
in biology. The two-parameter Weibull distribu-
tion varies between positively skewed and
symmetrical depending on parameter values,
although versions with three or more parameters
are described (Evans et al. 2000). This distribution
is mainly used for modeling failure rates and
times. The beta distribution has two parameters
and its shape can range from U to ] to symmetri-
cal. The beta distribution is commonly used as a
prior probability distribution for dichotomous
variables in Bayesian analyses (Evans et al. 2000).

There are also probability distributions for dis-
crete variables. If we toss a coin, there are two pos-
sible outcomes - heads or tails. Processes with
only two possible outcomes are common in
biology, e.g. animals in an experiment can either
live or die, a particular species of tree can be
either present or absent from samples from a
forest. A process that can only have one of two

outcomes is sometimes called a Bernoulli trial
and we often call the two possible outcomes
success and failure. We will only consider a sta-
tionary Bernoulli trial, which is one where the
probability of success is the same for each trial, i.e.
the trials are independent.

The probability distribution of the number of
successes in n independent Bernoulli trials is
called the binomial distribution, a very important
probability distribution in biology:

n!

TR

(1= (1.8)
where P(y =r) is the probability of a particular
value (y) of the random variable (Y) being r suc-
cesses out of n trials, n is the number of trials and
o is the probability of a success. Note that n, the
number of trials is fixed, and therefore the value
of a binomial random variable cannot exceed n.
The binomial distribution can be used to calculate
probabilities for different numbers of successes
out of n trials, given a known probability of
success on any individual trial. It is also important
as an error distribution for modeling variables
with binary outcomes using logistic regression
(Chapter 13). A generalization of the binomial dis-
tribution to when there are more than two pos-
sible outcomes is the multinomial distribution,
which is the joint probability distribution of
multiple outcomes from n fixed trials.

Another very important probability distribu-
tion for discrete variables is the Poisson distribu-
tion, which usually describes variables repre-
senting the number of (usually rare) occurrences
of a particular event in an interval of time or
space, i.e. counts. For example, the number of
organisms in a plot, the number of cells in a
microscope field of view, the number of seeds
taken by a bird per minute. The probability distri-
bution of a Poisson variable is:

r

e Hu

Ply=r= r

(1.9)
where P(y =) is the probability that the number
of occurrences of an event (y) equals an integer
value (r=0, 1, 2...), u is the mean (and variance) of
the number of occurrences. A Poisson variable can
take any integer value between zero and infinity
because the number of trials, in contrast to the
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binomial and the multinomial, is not fixed. One of
the characteristics of a Poisson distribution is that
the mean (u) equals the variance (¢?). For small
values of u, the Poisson distribution is positively
skewed but once u is greater than about five, the
distribution is symmetrical (Figure 1.1).

The Poisson distribution has a wide range of
applications in biology. It actually describes the
occurrence of random events in space (or time)
and has been used to examine whether organisms
have random distributions in nature (Ludwig &
Reynolds 1988). It also has wide application in
many applied statistical procedures, e.g. counts in
cells in contingency tables are often assumed to
be Poisson random variables and therefore a
Poisson probability distribution is used for the
error terms in log-linear modeling of contingency
tables (Chapter 14).

A simple example might help in understand-
ing the difference between the binomial and the
Poisson distributions. If we know the average
number of seedlings of mountain ash trees
(Eucalyptus regnans) per plot in some habitat, we
can use the Poisson distribution to model the
probability of different numbers of seedlings per
plot, assuming independent sampling. The bino-
mial distribution would be used if we wished to
model the number of plots with seedlings out of a
fixed number of plots, knowing the probability of
a plot having a seedling.

Another useful probability distribution for
counts is the negative binomial (White & Bennetts
1996). It is defined by two parameters, the mean
and a dispersion parameter, which measures the
degree of “clumping” in the distribution. White &
Bennetts (1996) pointed out that the negative
binomial has two potential advantages over the
Poisson for representing skewed distributions of
counts of organisms: (i) the mean does not have to
equal the variance, and (ii) independence of trials
(samples) is not required (see also Chapter 13).

These probability distributions are very impor-
tant in data analysis. We can test whether a partic-
ular variable follows one of these distributions by
calculating the expected frequencies and compar-
ing them to observed frequencies with a goodness-
of-fit test (Chapter 14). More importantly, we can
model the expected value of a response variable
[E(Y)] against a range of predictor (independent)

variables if we know the probability distribution
of our response variable.

I.5.2 Distributions for statistics

The remaining theoretical distributions to
examine are those used for determining probabil-
ities of sample statistics, or modifications thereof.
These distributions are used extensively for esti-
mation and hypothesis testing. Four particularly
important ones are as follows.

1. The z or normal distribution represents
the probability distribution of a random variable
that is the ratio of the difference between a
sample statistic and its population value to the
standard deviation of the population statistic
(Figure 1.2).

2. Student’s t distribution (Figure 1.2)
represents the probability distribution of
a random variable that is the ratio of the
difference between a sample statistic and its
population value to the standard deviation of
the distribution of the sample statistic. The ¢
distribution is a symmetrical distribution very
similar to a normal distribution, bounded by
infinity in both directions. Its shape becomes
more similar with increasing sample size
(Figure 1.2). We can convert a single sample
statistic to a t value and use the t distribution
to determine the probability of obtaining that
t value (or one smaller or larger) for a specified
value of the population parameter (Chapters 2
and 3).

3. x* (chi-square) distribution (Figure 1.2)
represents the probability distribution of a
variable that is the square of values from a
standard normal distribution (Section 1.5).
Values from a y? distribution are bounded by
zero and infinity. Variances have a y? distribu-
tion so this distribution is used for interval
estimation of population variances (Chapter 2).
We can also use the y? distribution to determine
the probability of obtaining a sample difference
(or one smaller or larger) between observed
values and those predicted by a model (Chapters
13 and 14).

4. F distribution (Figure 1.2) represents the
probability distribution of a variable that is the
ratio of two independent x? variables, each
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divided by its df (degrees of freedom) (Hays 1994).
Because variances are distributed as y?, the F
distribution is used for testing hypotheses about
ratios of variances. Values from the F distribu-
tion are bounded by zero and infinity. We can
use the F distribution to determine the prob-
ability of obtaining a sample variance ratio (or
one larger) for a specified value of the true ratio
between variances (Chapters 5 onwards).

All four distributions have mathematical deri-
vations that are too complex to be of much inter-
est to biologists (see Evans et al. 2000). However,

these distributions are tabled in many textbooks
and programmed into most statistical software,
so probabilities of obtaining values from each,
within a specific range, can be determined. These
distributions are used to represent the probability
distributions of the sample statistics (z, t, x? or F)
that we would expect from repeated random sam-
pling from a population or populations. Different
versions of each distribution are used depending
on the degrees of freedom associated with the
sample or samples (see Box 2.1 and Figure 1.2).



Chapter 2

Estimation

2.1 | Samples and populations

Biologists usually wish to make inferences (draw
conclusions) about a population, which is defined
as the collection of all the possible observations of
interest. Note that this is a statistical population,
not a biological population (see below). The collec-
tion of observations we take from the population
is called a sample and the number of observations
in the sample is called the sample size (usually
given the symbol n). Measured characteristics of
the sample are called statistics (e.g. sample mean)
and characteristics of the population are called
parameters (e.g. population mean).

The basic method of collecting the observa-
tions in a sample is called simple random sam-
pling. This is where any observation has the same
probability of being collected, e.g. giving every rat
in a holding pen a number and choosing a sample
of rats to use in an experiment with a random
number table. We rarely sample truly randomly in
biology, often relying on haphazard sampling for
practical reasons. The aim is always to sample in a
manner that doesn’t create a bias in favour of any
observation being selected. Other types of sam-
pling that take into account heterogeneity in the
population (e.g. stratified sampling) are described
in Chapter 7. Nearly all applied statistical proce-
dures that are concerned with using samples to
make inferences (i.e. draw conclusions) about pop-
ulations assume some form of random sampling.
If the sampling is not random, then we are never
sure quite what population is represented by our
sample. When random sampling from clearly

defined populations is not possible, then interpre-
tation of standard methods of estimation
becomes more difficult.

Populations must be defined at the start of any
study and this definition should include the
spatial and temporal limits to the population and
hence the spatial and temporal limits to our infer-
ence. Our formal statistical inference is restricted
to these limits. For example, if we sample from a
population of animals at a certain location in
December 1996, then our inference is restricted to
that location in December 1996. We cannot infer
what the population might be like at any other
time or in any other place, although we can spec-
ulate or make predictions.

One of the reasons why classical statistics has
such an important role in the biological sciences,
particularly agriculture, botany, ecology, zoology,
etc., is that we can often define a population about
which we wish to make inferences and from
which we can sample randomly (or at least hap-
hazardly). Sometimes the statistical population is
also a biological population (a group of individu-
als of the same species). The reality of random
sampling makes biology a little different from
other disciplines that use statistical analyses for
inference. For example, it is often difficult for
psychologists or epidemiologists to sample ran-
domly because they have to deal with whatever
subjects or patients are available (or volunteer!).

The main reason for sampling randomly from
a clearly defined population is to use sample sta-
tistics (e.g. sample mean or variance) to estimate
population parameters of interest (e.g. population
mean or variance). The population parameters
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cannot be measured directly because the popula-
tions are usually too large, i.e. they contain too
many observations for practical measurement. It
is important to remember that population param-
eters are usually considered to be fixed, but
unknown, values so they are not random variables
and do not have probability distributions. Note
that this contrasts with the Bayesian approach
where population parameters are viewed as
random variables (Section 2.6). Sample statistics
are random variables, because their values
depend on the outcome of the sampling experi-
ment, and therefore they do have probability dis-
tributions, called sampling distributions.

What are we after when we estimate popula-
tion parameters? A good estimator of a population
parameter should have the following characteris-
tics (Harrison & Tamaschke 1984, Hays 1994).

e It should be unbiased, meaning that the
expected value of the sample statistic (the mean
of its probability distribution) should equal the
parameter. Repeated samples should produce
estimates which do not consistently under- or
over-estimate the population parameter.

It should be consistent so as the sample size
increases then the estimator will get closer to
the population parameter. Once the sample
includes the whole population, the sample
statistic will obviously equal the population
parameter, by definition.

It should be efficient, meaning it has the
lowest variance among all competing esti-
mators. For example, the sample mean is a
more efficient estimator of the population
mean of a variable with a normal probability
distribution than the sample median, despite
the two statistics being numerically equivalent.

There are two broad types of estimation:

1. point estimates provide a single value
which estimates a population parameter, and

2. interval estimates provide a range of values
that might include the parameter with a known
probability, e.g. confidence intervals.

Later in this chapter we discuss different
methods of estimating parameters, but, for now,
let’s consider some common population parame-
ters and their point estimates.

2.2 | Common parameters and
statistics

Consider a population of observations of the vari-
able Y measured on all N sampling units in the
population. We take a random sample of n obser-
vations (y,, ¥, ¥g--.Y;s--.y,) from the population.
We usually would like information about two
aspects of the population, some measure of loca-
tion or central tendency (i.e. where is the middle
of the population?) and some measure of the
spread (i.e. how different are the observations in
the population?). Common estimates of parame-
ters of location and spread are given in Table 2.1
and illustrated in Box 2.2.

2.2.1 Center (location) of distribution

Estimators for the center of a distribution can be
classified into three general classes, or broad types
(Huber 1981, Jackson 1986). First are L-estimators,
based on the sample data being ordered from small-
est to largest (order statistics) and then forming a
linear combination of weighted order statistics. The
sample mean (y), which is an unbiased estimator of
the population mean (u), is an L-estimator where
each observation is weighted by 1/n (Table 2.1).
Other common L-estimators include the following.

¢ The median is the middle measurement of a
set of data. Arrange the data in order of
magnitude (i.e. ranks) and weight all
observations except the middle one by zero.
The median is an unbiased estimator of the
population mean for normal distributions,

is a better estimator of the center of skewed
distributions and is more resistant to outliers
(extreme values very different to the rest of the
sample; see Chapter 4).

The trimmed mean is the mean calculated
after omitting a proportion (commonly 5%) of
the highest (and lowest) observations, usually
to deal with outliers.

The Winsorized mean is determined as for
trimmed means except the omitted obser-
vations are replaced by the nearest remaining
value.

Second are M-estimators, where the weight-
ings given to the different observations change
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Table 2.1 ‘ Common population parameters and sample statistics

Parameter Statistic Formula
>
M v =
ean () y .
Median Sample median Yot 2 if n odd
(P Y+ DI2 if n even
n —\2
Variance (o) 2 > M
= n—
- o i—Y)
Standard deviation (o) s E |
=1 N
Median absolute deviation (MAD) Sample MAD median[ |y, — median|]
Coefficient of variation (CV) Sample CV §>< 100
y
i s
Standard error of y (ay) s; v
1) : _ S _ S
95% confidence interval for u V= to.osm— Din =usy+ tO‘OS(nf N

gradually from the middle of the sample and
incorporate a measure of variability in the estima-
tion procedure. They include the Huber M-
estimator and the Hampel M-estimator, which use
different functions to weight the observations.
They are tedious to calculate, requiring iterative
procedures, but maybe useful when outliers are
present because they downweight extreme values.
They are not commonly used but do have a role in
robust regression and ANOVA techniques for ana-
lyzing linear models (regression in Chapter 5 and
ANOVA in Chapter 8).

Finally, R-estimators are based on the ranks of
the observations rather than the observations
themselves and form the basis for many rank-
based “non-parametric” tests (Chapter 3). The only
common R-estimator is the Hodges-Lehmann esti-
mator, which is the median of the averages of all
possible pairs of observations.

For data with outliers, the median and
trimmed or Winsorized means are the simplest to
calculate although these and M- and R-estimators
are now commonly available in statistical software.

2.2.2 Spread or variability

Various measures of the spread in a sample are
provided in Table 2.1. The range, which is the dif-
ference between the largest and smallest observa-
tion, is the simplest measure of spread, but there
is no clear link between the sample range and
the population range and, in general, the range
will rise as sample size increases. The sample var-
iance, which estimates the population variance,
is an important measure of variability in many
statistical analyses. The numerator of the
formula is called the sum of squares (SS, the sum
of squared deviations of each observation from
the sample mean) and the variance is the average
of these squared deviations. Note that we might
expect to divide by n to calculate an average, but
then s? consistently underestimates ¢ (i.e. it is
biased), so we divide by n—1 to make s? an unbi-
ased estimator of ¢2. The one difficulty with s? is
that its units are the square of the original obser-
vations, e.g. if the observations are lengths in
mm, then the variance is in mm?, an area not a
length.
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Plot of normal probability distribution, showing
points between which values 95% of all values occur.

The sample standard deviation, which esti-
mates o, the population standard deviation, is the
square root of the variance. In contrast to the var-
iance, the standard deviation is in the same units
as the original observations.

The coefficient of variation (CV) is used to
compare standard deviations between popula-
tions with different means and it provides a
measure of variation that is independent of the
measurement units. The sample coefficient of
variation CV describes the standard deviation as a
percentage of the mean; it estimates the popula-
tion CV.

Some measures of spread that are more robust
to unusual observations include the following.

* The median absolute deviation (MAD) is
less sensitive to outliers than the above
measures and is the sensible measure of
spread to present in association with
medians.

* The interquartile range is the difference
between the first quartile (the observation
which has 0.25 or 25% of the observations
below it) and the third quartile (the observa-
tion which has 0.25 of the observations above
it). It is used in the construction of boxplots
(Chapter 4).

For some of these statistics (especially the
variance and standard deviation), there are

u+1960

equivalent formulae that can be found in any sta-
tistics textbook that are easier to use with a hand
calculator. We assume that, in practice, biologists
will use statistical software to calculate these sta-
tistics and, since the alternative formulae do not
assist in the understanding of the concepts, we do
not provide them.

2.3 | Standard errors and confidence
intervals for the mean
2.3.1 Normal distributions and the

Central Limit Theorem

Having an estimate of a parameter is only the first
step in estimation. We also need to know how
precise our estimate is. Our estimator may be the
most precise of all the possible estimators, butifits
value still varies widely under repeated sampling,
it will not be very useful for inference. If repeated
sampling produces an estimator that is very con-
sistent, then it is precise and we can be confident
that it is close to the parameter (assuming that it
is unbiased). The traditional logic for determining
precision of estimators is well covered in almost
every introductory statistics and biostatistics book
(we strongly recommend Sokal & Rohlf1995), sowe
will describe it only briefly, using normally distrib-
uted variables as an example.

Assume that our sample has come from a
normally distributed population (Figure 2.1). For
any normal distribution, we can easily deter-
mine what proportions of observations in the



18

ESTIMATION

lllustration of the

principle of the Central Limit
Theorem, where repeated samples
with large n from any distribution
will have sample means with a
normal distribution.

population occur within certain distances from
the mean:

* 50% of population falls between u * 0.6740
* 95% of population falls between p*+1.9600
* 99% of population falls between u =+ 2.5760.

Therefore, ifwe know wand o, we can work out these
proportions for any normal distribution. These pro-
portions havebeen calculated and tabulated in most
textbooks, but only for the standard normal distri-
bution, which has a mean of zero and a standard
deviation (orvariance) of one.To use these tables, we
must be able to transform our sample observations
to their equivalent values in the standard normal
distribution. To do this, we calculate deviations
from the mean in standard deviation units:
=2k (2.1)
g

These deviations are called normal deviates or
standard scores. This z transformation in effect
converts any normal distribution to the standard
normal distribution.

Usually we only deal with a single sample
(with n observations) from a population. If we took
many samples from a population and calculated
all their sample means, we could plot the fre-
quency (probability) distribution of the sample
means (remember that the sample mean is a
random variable). This probability distribution is
called the sampling distribution of the mean and
has three important characteristics.

* The probability distribution of means of
samples from a normal distribution is also
normally distributed.

N S

Y

* As the sample size increases, the probability
distribution of means of samples from any dis-
tribution will approach a normal distribution.
This result is the basis of the Central Limit
Theorem (Figure 2.2).

* The expected value or mean of the probability
distribution of sample means equals the mean
of the population (u) from which the samples
were taken.

2.3.2 Standard error of the sample mean
If we consider the sample means to have a normal
probability distribution, we can calculate the vari-
ance and standard deviation of the sample means,
just like we could calculate the variance of the
observationsin a single sample. The expected value
of the standard deviation of the sample means is:

a

g.=—F
7 \Vn

where o is the standard deviation of the original
population from which the repeated samples
were taken and n is the size of samples.

We are rarely in the position of having many
samples from the same population, so we esti-
mate the standard deviation of the sample means
from our single sample. The standard deviation of
the sample means is called the standard error of
the mean:

(2.2)

S

S =—r

" Vn
where s is the sample estimate of the standard
deviation of the original population and n is the
sample size.

(2.3)



STANDARD ERRORS AND CONFIDENCE INTERVALS

19

The standard error of the mean is telling us
about the variation in our sample mean. It is
termed “error” because it is telling us about the
errorin using y to estimate u (Snedecor & Cochran
1989). If the standard error is large, repeated
samples would likely produce very different
means, and the mean of any single sample might
not be close to the true population mean. We
would not have much confidence that any specific
sample mean is a good estimate of the population
mean. If the standard error is small, repeated
samples would likely produce similar means, and
the mean of any single sample is more likely to be
close to the true population mean. Therefore, we
would be quite confident that any specific sample
mean is a good estimate of the population mean.

2.3.3 Confidence intervals for population
mean

In Equation 2.1, we converted any value from a
normal distribution into its equivalent value from
a standard normal distribution, the z score.
Equivalently, we can convert any sample mean
into its equivalent value from a standard normal
distribution of means using:

z="—"— (2.4)

where the denominator is simply the standard
deviation of the mean, (r/\/n, or standard error.
Because this z score has a normal distribution, we
can determine how confident we are in the sample
mean, i.e. how close it is to the true population
mean (the mean of the distribution of sample
means). We simply determine values in our distri-
bution of sample means between which a given
percentage (often 95% by convention) of means
occurs, i.e. between which values of (y — M)/Uy- do
95% of values lie? As we showed above, 95% of a
normal distribution falls between u*1.9600, so
95% of sample means fall between u * 1.96a'y, (1.96
times the standard deviation of the distribution of
sample means, the standard error).

Now we can combine this information to make
a confidence interval for u:

P{j —1.960,= u=j+1967,) =0.95 (2.5)

This confidence interval is an interval estimate for
the population mean, although the probability
statement is actually about the interval, not

about the population parameter, which is fixed.
We will discuss the interpretation of confidence
intervals in the next section. The only problem is
that we very rarely know ¢ in practice, so we never
actually know 0y We can only estimate the stan-
dard error from s (sample standard deviation).
Our standard normal distribution of sample
means is now the distribution of (y — ,u)/sy.. This is
arandom variable called t and it has a probability
distribution that is not quite normal. It follows a
t distribution (Chapter 1), which is flatter and
more spread than a normal distribution.
Therefore, we must use the t distribution to calcu-
late confidence intervals for the population mean
in the common situation of not knowing the pop-
ulation standard deviation.

The t distribution (Figure 1.2) is a symmetrical
probability distribution centered around zero
and, like a normal distribution, it can be defined
mathematically. Proportions (probabilities) for a
standard t distribution (with a mean of zero and
standard deviation of one) are tabled in most sta-
tistics books. In contrast to a normal distribution,
however, t has a slightly different distribution
depending on the sample size (well, for mathe-
matical reasons, we define the different t distribu-
tions by n—1, called the degrees of freedom (df)
(see Box 2.1), rather than n). This is because s pro-
vides an imprecise estimate of o if the sample size
is small, increasing in precision as the sample size
increases. When n is large (say >30), the t distribu-
tion is very similar to a normal distribution
(because our estimate of the standard error based
on s will be very close to the real standard error).
Remember, the z distribution is simply the prob-
ability distribution of (y — u)/o or (y— ,u)/o-y. if we
are dealing with sample means. The t distribution
is simply the probability distribution of (y — ,u)/sy.
and there is a different t distribution for each df
(n—1).

The confidence interval (95% or 0.95) for the
population mean then is:

P{J~ by gsin 185 = W= F o515} =0.95 (2.6)

where to.05m-1) is the value from the t distribution
with n—1 df between which 95% of all t values lie
and s; is the standard error of the mean. Note that
the size of the interval will depend on the sample
size and the standard deviation of the sample,

both of which are used to calculate the standard
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Box 2.1 | Explanation of degrees of freedom

Degrees of freedom (df) is one of those terms that biologists use all the time in sta-
tistical analyses but few probably really understand. We will attempt to make it a
little clearer. The degrees of freedom is simply the number of observations in our
sample that are “free to vary” when we are estimating the variance (Harrison &
Tamaschke 1984). Since we have already determined the mean, then only n— |
observations are free to vary because knowing the mean and n— | observations,
the last observation is fixed. A simple example — say we have a sample of observa-
tions, with values 3, 4 and 5. We know the sample mean (4) and we wish to esti-
mate the variance. Knowing the mean and one of the observations doesn't tell us
what the other two must be. But if we know the mean and two of the observa-
tions (e.g. 3 and 4), the final observation is fixed (it must be 5). So, knowing the
mean, only two observations (n — |) are free to vary. As a general rule, the df is the
number of observations minus the number of parameters included in the formula
for the variance (Harrison & Tamaschke 1984).

error, and also on the level of confidence we
require (Box 2.3).

We can use Equation 2.6 to determine confi-
dence intervals for different levels of confidence,
e.g. for 99% confidence intervals, simply use the t
value between which 99% of all t values lie. The
99% confidence interval will be wider than the
95% confidence interval (Box 2.3).

2.3.4 Interpretation of confidence
intervals for population mean

It is very important to remember that we usually
do not consider p a random variable but a fixed,
albeit unknown, parameter and therefore the con-
fidence interval is not a probability statement
about the population mean. We are not saying
there is a 95% probability that u falls within this
specific interval that we have determined from
our sample data; u is fixed, so this confidence
interval we have calculated for a single sample
either contains u or it doesn’t. The probability
associated with confidence intervals is inter-
preted as a long-run frequency, as discussed in
Chapter 1. Different random samples from the
same population will give different confidence
intervals and if we took 100 samples of this size (n),
and calculated the 95% confidence interval from
each sample, 95 of the intervals would contain u
and five wouldn’t. Antelman (1997, p. 375) sum-
marizes a confidence interval succinctly as “. . .
one interval generated by a procedure that will
give correct intervals 95% of the time”.

2.3.5 Standard errors for other statistics
The standard error is simply the standard devia-
tion of the probability distribution of a specific
statistic, such as the mean. We can, however, cal-
culate standard errors for other statistics besides
the mean. Sokal & Rohlf (1995) have listed the for-
mulae for standard errors for many different stat-
istics but noted that they might only apply for
large sample sizes or when the population from
which the sample came was normal. We can use
the methods just described to reliably determine
standard errors for statistics (and confidence
intervals for the associated parameters) from a
range of analyses that assume normality, e.g.
regression coefficients. These statistics, when
divided by their standard error, follow a t distri-
bution and, as such, confidence intervals can
be determined for these statistics (confidence
interval =t X standard error).

When we are not sure about the distribution of
a sample statistic, or know that its distribution is
non-normal, then itis probably better to use resam-
pling methods to generate standard errors (Section
2.5). One important exception is the sample vari-
ance, which has a known distribution that is not
normal, i.e. the Central Limit Theorem does not
apply to variances. To calculate confidence inter-
vals for the population variance, we need to use the
chi-square (x?) distribution, which is the distribu-
tion of the following random variable:

,_ (y—w?
JER At O

/ (2.7)
ag
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Box 2.2 | Worked example of estimation: chemistry of
forested watersheds

Lovett et al. (2000) studied the chemistry of forested watersheds in the Catskill
Mountains in New York State. They chose 39 sites (observations) on first and
second order streams and measured the concentrations of ten chemical variables
(NO, ™, total organic N, total N, NH, =, dissolved organic C,5O,*~, CI~, Ca?*, Mg**,
H™), averaged over three years, and four watershed variables (maximum elevation,
sample elevation, length of stream, watershed area). We will assume that the 39 sites
represent a random sample of possible sites in the central Catskills and will focus
on point estimation for location and spread of the populations for two variables,
SO,>” and CI7, and interval estimation for the population mean of these two var-
iables. We also created a modified version of SO,?~ where we replaced the largest
value (72.1 ymol I=! at site BWS6) by an extreme value of 200 ymol I=! to illus-
trate the robustness of various statistics to outliers.

Boxplots (Chapter 4) for both variables are presented in Figure 4.3. Note that
SO,?" has a symmetrical distribution whereas Cl~ is positively skewed with outli-
ers (values very different from rest of sample). Summary statistics for SO,2~ (orig-
inal and modified) and CI~ are presented below.

Estimate SO Modified SO,>~  CI~
Mean 6192 65.20 22.84
Median 62.10 62.10 20.50
5% trimmed mean 61.90 61.90 20.68
Huber's M-estimate 61.67 61.67 2021
Hampel's M-estimate 61.85 61.62 19.92
Standard deviation 524 22.70 12.38
Interquartile range 8.30 8.30 7.80
Median absolute 4.30 4.30 390
deviation

Standard error of 0.84 3.64 1.98
mean

95% confidence 60.22-63.62  57.84-72.56 18.83-26.86

interval for mean

Given the symmetrical distribution of SO}ithe mean and median are similar
as expected. In contrast, the mean and the median are different by more than two
units for CI~, as we would expect for a skewed distribution. The median is a more
reliable estimator of the center of the skewed distribution for Cl~, and the various
robust estimates of location (median, 5% trimmed mean, Huber's and Hampel’s
M-estimates) all give similar values. The standard deviation for CI~ is also affected
by the outliers, and the confidence intervals are relatively wide.

The modified version of SO 2~ also shows the sensitivity of the mean and the
standard deviation to outliers. Of the robust estimators for location, only Hampel's
M-estimate changes marginally, whereas the mean changes by more than three units.
Similarly, the standard deviation (and therefore the standard error and 95%
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confidence interval) is much greater for the modified variable, whereas the inter-
quartile range and the median absolute deviation are unaffected by the outlier.

We also calculated bootstrap estimates for the mean and the median of SO~
concentrations, based on 1000 bootstrap samples (n = 39) with replacement from
the original sample of 39 sites. The bootstrap estimate was the mean of the 1000
bootstrap sample statistics, the bootstrap standard error was the standard devia-
tion of the 1000 bootstrap sample statistics and the 95% confidence interval was
determined from 25th and 975th values of the bootstrap statistics arranged in
ascending order. The two estimates of the mean were almost identical, and although
the standard error was smaller for the usual method, the percentile 95% confidence
interval for the bootstrap method was narrower. The two estimates for the median
were identical, but the bootstrap method allows us to estimate a standard error and
a confidence interval.

Usual Bootstrap
Mean 61.92 6191
Standard error 0.84 0.88
95% confidence interval 60.22-63.62 60.36—63.59
Median 61.72 61.72
Standard error NA [.34
95% confidence interval NA 58.60-63.40

The frequency distributions of the bootstrap means and medians are presented
in Figure 2.4. The distribution of bootstrap means is symmetrical whereas the boot-
strap distribution of medians is skewed. This is commonly the case and the confi-
dence interval for the median is not symmetrical around the bootstrap estimate.
We also calculated the bias corrected bootstrap confidence intervals. Forty nine
percent of bootstrap means were below the bootstrap estimate of 61.91, so the
bias-corrected confidence interval is basically the same as the standard bootstrap.
Forty four percent of bootstrap medians were below the bootstrap estimate of
61.72,50z,==0.151 and (2z,+ 1.96) = 1.658 and (22, — 1.96) = —2.262. The per-
centiles, from the normal cumulative distribution, are 95.2% (upper) and 1.2%
(lower). However, because so many of the bootstrap medians were the same value,
these bias-corrected percentiles did not change the confidence intervals.

(n—1)s?

This is simply the square of the standard z score
discussed above (see also Chapter 1). Because we
square the numerator, )? is always positive,
ranging from zero to «. The )? distribution is a
sampling distribution so, like the random variable
t, there are different probability distributions for
x* for different sample sizes; this is reflected in the
degrees of freedom (n —1). For small df, the prob-
ability distribution is skewed to the right (Figure
1.2) but it approaches normality as df increases.
Now back to the sample variance. It turns out
that the probability distribution of the sample var-
ianceis a chi-square distribution. Strictly speaking,

- (2.8)
ag

is distributed as y? with n—1 df (Hays 1994). We
can rearrange Equation 2.8, using the chi-square
distribution, to determine a confidence interval
for the variance:

p

Xin-1 Xo-1

where the lower bound uses the y? value below
which 2.5% of all y? values fall and the upper
bound uses the y* value above which 2.5% of all y?
values fall. Remember the longrun frequency
interpretation of this confidence interval -
repeated sampling would result in confidence
intervals of which 95% would include the true
population variance. Confidence intervals on

52(”_1)502552(”_1)]=0.95 (2.9)
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Box 2.3 | Effect of different sample variances, sample sizes
and degrees of confidence on confidence interval
for the population mean

We will again use the data from Lovett et al. (2000) on the chemistry of forested
watersheds in the Catskill Mountains in New York State and focus on interval esti-
mation for the mean concentration of SO,2~ in all the possible sites that could have
been sampled.

Original sample

Sample (n=39) with a mean concentration of SO,?~ of 61.92 and s of 5.24. The t
value for 95% confidence intervals with 38 df is 2.02. The 95% confidence interval
for population mean SO~ is 60.22 — 63.62, i.e. 3.40.

Different sample variance
Sample (n= 39) with a mean concentration of SO,*~ of 61.92 and s of 10.48 (twice
original). The t value for 95% confidence intervals with 38 df is 2.02. The 95% con-

fidence interval for population mean SO, is 58.53 —65.31, i.e. 6.78 (cf. 3.40).
So more variability in population (and sample) results in a wider confidence

interval.

Different sample size

Sample (n = 20; half original) with a mean concentration of SO,2~ of 61.92 and s of
5.24. The t value for 95% confidence intervals with 19 df is 2.09. The 95% confi-
dence interval for population mean SO,?~ is 59.47 — 64.37, i.e. 490 (cf. 3.40).

So a smaller sample size results in wider interval because our estimates of s and

s, are less precise.

Different level of confidence (99%)

Sample (n=39) with a mean concentration of SO,>~ of 61.92 and s of 5.24. The t
value for 99% confidence intervals with 38 df is 2.7 1. The 95% confidence interval
for population mean SO~ is 59.65 — 64.20, i.e. 4.55 (cf. 3.40).

So requiring a greater level of confidence results in a wider interval for a given

nands.

variances are very important for the interpreta-
tion of variance components in linear models
(Chapter 8).

2.4 | Methods for estimating

parameters

2.4.1 Maximum likelihood (ML)

A general method for calculating statistics that
estimate specific parameters is called Maximum
Likelihood (ML). The estimates of population
parameters (e.g. the population mean) provided
earlier in this chapter are ML estimates, except for

the variance where we correct the estimate to
reduce bias. The logic of ML estimation is decep-
tively simple. Given a sample of observations from
a population, we find estimates of one (or more)
parameter(s) that maximise the likelihood of
observing those data. To determine maximum
likelihood estimators, we need to appreciate the
likelihood function, which provides the likeli-
hood of the observed data (and therefore our
sample statistic) for all possible values of the
parameter we are trying to estimate. For example,
imagine we have a sample of observations with a
sample mean of y. The likelihood function, assum-
ing a normal distribution and for a given standard
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Generalized log-

possible parameter values

likelihood function for estimating a
parameter.

deviation, is the likelihood of
observing the data for all pos-
sible values of w, the popula-
tion mean. In general, for a
parameter 6, the likelihood
function is:

log-likelihood function

Uy: 0= 11 fiyi o) (2.10)
iz

where f{y,;0) is the joint prob-
ability distribution of y, and 0,
i.e. the probability distribu- v
tion of Y for possible values of

6. In many common situations, f{y,;6) is a normal
probability distribution. The ML estimator of 6 is
the one that maximizes this likelihood function.
Working with products (II) in Equation 2.10 is
actually difficult in terms of computation so it is
more common to maximize the log-likelihood
function:

n n
L(6)=1n {Hﬂyi; 0)} = Zln[ﬂyi; 0)] (2.11)
i i=

For example, the ML estimator of u (knowing ¢?)
for a given sample is the value of pu which maxi-
mises the likelihood of observing the data in the
sample. If we are trying to estimate w from a
normal distribution, then the f{y;u) would be the
equation for the normal distribution, which
depends only on w and o2 Eliason (1993) provides
a simple worked example.

The ML estimator can be determined graphi-
cally by simply trying different values of w and
seeing which one maximizes the log-likelihood
function (Figure 2.3). This is very tedious, however,
and it is easier (and more accurate) to use some
simple calculus to determine the value of u that
maximizes the likelihood function. ML estimators
sometimes have exact arithmetical solutions,
such as when estimating means or parameters for
linear models (Chapters 8-12). In contrast, when
analyzing some non-normal distributions, ML
estimators need to be calculated using complex
iterative algorithms (Chapters 13 and 14).

It is important to realize that a likelihood is

A\ 4

1 \ ML estimator

not the same as a probability and the likelihood
function is not a probability distribution (Barnett
1999, Hilborn & Mangel 1997). In a probability dis-
tribution for a random variable, the parameter is
considered fixed and the data are the unknown
variable(s). In a likelihood function, the data are
considered fixed and it is the parameter that
varies across all possible values. However, the like-
lihood of the data given a particular parameter
value is related to the probability of obtaining the
data assuming this particular parameter value
(Hilborn & Mangel 1997).

2.4.2 Ordinary least squares (OLS)

Another general approach to estimating parame-
ters is by ordinary least squares (OLS). The least
squares estimator for a given parameter is the one
that minimizes the sum of the squared differ-
ences between each value in a sample and the
parameter, i.e. minimizes the following function:

El [yi _ﬂg)]z
=

The OLS estimator of u for a given sample is the
value of u which minimises the sum of squared
differences between each value in the sample and
the estimate of w (i.e. Z(y,— y)?). OLS estimators are
usually more straightforward to calculate than
ML estimators, always having exact arithmetical
solutions. The major application of OLS estima-
tion is when we are estimating parameters of
linear models (Chapter 5 onwards), where
Equation 2.12 represents the sum of squared

(2.12)
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differences between observed values and those
predicted by the model.

2.4.3 ML vs OLS estimation
Maximum likelihood and ordinary least squares
are not the only methods for estimating popula-
tion parameters (see Barnett 1999) but they are
the most commonly used for the analyses we will
discuss in this book. Point and interval estimation
using ML relies on distributional assumptions, i.e.
we need to specify a probability distribution for
our variable or for the error terms from our statis-
tical model (see Chapter 5 onwards). When these
assumptions are met, ML estimators are generally
unbiased, for reasonable sample sizes, and they
have minimum variance (i.e., they are precise esti-
mators) compared to other estimators. In contrast,
OLS point estimates require no distributional
assumptions, and OLS estimators are also gener-
ally unbiased and have minimum variance.
However, for interval estimation and hypothesis
testing, OLS estimators have quite restrictive dis-
tributional assumptions related to normality and
patterns of variance.

For most common population parameters (e.g.
1), the ML and OLS estimators are the same when
the assumptions of OLS are met. The exception is
o? (the population variance) for which the ML esti-
mator (which uses n in the denominator) is
slightly biased, although the bias is trivial if the
sample size is reasonably large (Neter et al. 1996).
In balanced linear models (linear regression and
ANOVA) for which the assumptions hold (see
Chapter 5 onwards), ML and OLS estimators of
regression slopes and/or factor effects are identi-
cal. However, OLS is inappropriate for some
common models where the response variable(s) or
the residuals are not distributed normally, e.g.
binary and more general categorical data.
Therefore, generalized linear modeling (GLMs
such as logistic regression and log-linear models;
Chapter 13) and nonlinear modeling (Chapter 6)
are based around ML estimation.

2.5 | Resampling methods for

estimation

The methods described above for calculating stan-
dard errors for a statistic and confidence intervals

for a parameter rely on knowing two properties of
the statistic (Dixon 1993).

» The sampling distribution of the statistic,
usually assumed to be normal, i.e. the Central
Limit Theorem holds.

¢ The exact formula for the standard error (i.e.
the standard deviation of the statistic).

These conditions hold for a statistic like the
sample mean but do not obviously extend to other
statistics like the median (Efron & Gong 1983). In
biology, we would occasionally like to estimate
the population values of many measurements for
which the sampling distributions and variances
are unknown. These include ecological indices
such as the intrinsic rate of increase (r) and dissim-
ilarity coefficients (Dixon 1993) and statistics
from unusual types of analyses, such as the inter-
cept of a smoothing function (see Chapter 5; Efron
& Tibshirani 1991). To measure the precision (i.e.
standard errors and confidence intervals) of these
types of statistics we must rely on alternative,
computer-intensive resampling methods. The two
approaches described below are based on the
same principle: in the absence of other informa-
tion, the best guess for the distribution of the pop-
ulation is the observations we have in our sample.
The methods estimate the standard error of a stat-
istic and confidence intervals for a parameter by
resampling from the original sample.

Good introductions to these methods include
Crowley (1992), Dixon (1993), Manly (1997) and
Robertson (1991), and Efron & Tibshirani (1991)
suggest useful general applications. These resam-
pling methods can also be used for hypothesis
testing (Chapter 3).

2.5.1 Bootstrap

The bootstrap estimator was developed by Efron
(1982). The sampling distribution of the statistic is
determined empirically by randomly resampling
(using a random number generator to choose the
observations; see Robertson 1991), with replace-
ment, from the original sample, usually with the
same original sample size. Because sampling is
with replacement, the same observation can obvi-
ously be resampled so the bootstrap samples will
be different from each other. The desired statistic
can be determined from each bootstrapped
sample and the sampling distribution of each
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strap estimate of the parame-

ter is simply the mean of the

statistics from the bootstrapped samples. The
standard deviation of the bootstrap estimate (i.e.
the standard error of the statistic) is simply the
standard deviation of the statistics from the boot-
strapped samples (see Figure 2.4).

Techniques like the bootstrap can be used to
measure the bias in an estimator, the difference
between the actual population parameter and the
expected value (mean) of the estimator. The boot-
strap estimate of bias is simply the difference
between the mean of the bootstrap statistics and
the statistic calculated from the original sample
(which is an estimator of the expected value of the
statistic); see Robertson (1991).

Confidence intervals for the unknown popula-
tion parameter can also be calculated based on
the bootstrap samples. There are at least three
methods (Dixon 1993, Efron & Gong 1983,
Robertson 1991). First is the percentile method,
where confidence intervals are calculated directly
from the frequency distribution of bootstrap sta-
tistics. For example, we would arrange the 1000
bootstrap statistics in ascending order. Based on
1000 bootstrap samples, the lower limit of the 95%
confidence interval would be the 25th value and
the upper limit of the 95% confidence interval
would be the 975th value; 950 values (95% of the
bootstrap estimates) would fall between these
values. Adjustments can easily be made for other
confidence intervals, e.g. 5th and 995th value for
a 99% confidence interval.

Unfortunately, the distribution of bootstrap
statistics is often skewed, especially for statistics
other than the mean. The confidence intervals cal-
culated using the percentile method will not be
symmetrical around the bootstrap estimate of the
parameter, so the confidence intervals are biased.

Mean Median

The other two methods for calculating bootstrap
confidence intervals correct for this bias.

The bias-corrected method first works out the
percentage of bootstrap samples with statistics
lower than the bootstrap estimate. This is trans-
formed to its equivalent value from the inverse
cumulative normal distribution (z,) and this value
used to modify the percentiles used for the lower
and upper limits of the confidence interval:

95% percentiles = ¢@(2z,* 1.96) (2.13)

where @ is the normal cumulative distribution
function. So we determine the percentiles for the
values (2z,+1.96) and (2z, — 1.96) from the normal
cumulative distribution function and use these as
the percentiles for our confidence interval. A
worked example is provided in Box 2.2.

The third method, the accelerated bootstrap,
further corrects for bias based on a measure of the
influence each bootstrap statistic has on the final
estimate. Dixon (1993) provides a readable expla-
nation.

2.5.2 Jackknife
The jackknife is an historically earlier alternative
to the bootstrap for calculating standard errors
that is less computer intensive. The statistic is cal-
culated from the full sample of n observations
(call it ¢*), then from the sample with first data
point removed (6*,), then from the sample with
second data point removed (6*,) etc. Pseudovalues
for each observation in the original sample are
calculated as:

6,=n6"—(n—1)6",

1

(2.14)

where 60*. is the statistic calculated from the
sample with observation i omitted. Each pseudo-
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value is simply a combination of two estimates of
the statistic, one based on the whole sample and
one based on the removal of a particular observa-
tion.

The jackknife estimate of the parameter is
simply the mean of the pseudovalues (6). The stan-
dard deviation of the jackknife estimate (the stan-
dard error of the estimate) is:

n—1 . A
AVaarap (G

Note that we have to assume that the pseudoval-
ues are independent of each other for these calcu-
lations (Crowley 1992, Roberston 1991), whereas
in reality they are not. The jackknife is not usually
used for confidence intervals because so few
samples are available if the original sample size
was small (Dixon 1993). However, Crowley (1992)
and Robertson (1991) suggested that if normality
of the pseudovalues could be assumed, then con-
fidence intervals could be calculated as usual
(using the t distribution because of the small
number of estimates).

(2.15)

2.6 | Bayesian inference — estimation

The classical approach to point and interval esti-
mation might be considered to have two limita-
tions. First, only the observed sample data
contribute to our estimate of the population
parameter. Any previous information we have on
the likely value of the parameter cannot easily be
considered when determining our estimate,
although our knowledge of the population from
which we are sampling will influence the design
of our sampling program (Chapter 7). Second, the
interval estimate we have obtained has a frequen-
tist interpretation — a certain percentage of confi-
dence intervals from repeated sampling will
contain the fixed population parameter. The
Bayesian approach to estimating parameters
removes these limitations by formally incorporat-
ing our prior knowledge, as degrees-of-belief
(Chapter 1), about the value of the parameter and
by producing a probability statement about the
parameter, e.g. there is a 95% probability that u
lies within a certain interval.

2.6.1 Bayesian estimation
To estimate parameters in a Bayesian framework,
we need to make two major adjustments to the
way we think about parameters and probabilities.
First, we now consider the parameter to be a
random variable that can take a range of possible
values, each with different probabilities or
degrees-of-belief of being true (Barnett 1999). This
contrasts with the classical approach where the
parameter was considered a fixed, but unknown,
quantity. Dennis (1996), however, described the
parameter being sought as an unknown variable
rather than a random variable and the prior and
posterior distributions represent the probabilities
that this unknown parameter might take differ-
ent values. Second, we must abandon our frequen-
tist view of probability. Our interest is now only in
the sample data we have, not in some long run
hypothetical set of identical experiments (or
samples). In Bayesian methods, probabilities can
incorporate subjective degrees-of-belief (Chapter
1), although such opinions can still be quantified
using probability distributions.

The basic logic of Bayesian inference for esti-
mating a parameter is:

_P(data|6)P(6)

P(6|data) P(data)

(2.16)

where

0 is the population parameter to be
estimated and is regarded as a random variable,

P(0) is the “unconditional” prior probability
of 6, expressed as a probability distribution
summarizing our prior views about the
probability of 6 taking different values,

P(data] 6) is the likelihood of observing the
sample data for different values of 6, expressed
as a likelihood function (Section 2.4.1),

P(data) is the expected value (mean) of the
likelihood function; this standardization means
that the area under the posterior probability
distribution equals one, and

P(6 | data) is the posterior probability of 6
conditional on the data being observed,
expressed a probability distribution
summarizing the probability of 0 taking
different values by combining the prior
probability distribution and the likelihood
function.
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Equation 2.16 can be re-expressed more simply
as:

posterior probability «likelihood X

prior probability (2.17)

because the denominator in Equation 2.15,
P(data), is a normalizing constant, the mean of the
likelihood function (Ellison 1996).

2.6.2 Prior knowledge and probability
Prior probability distributions measure the rela-
tive “strength of belief” in possible values of the
parameter (Dennis 1996) and can be of two forms
(Barnett 1999).

1. Prior ignorance or only vague prior knowl-
edge, where we have little or no previous infor-
mation to suggest what value the parameter
might take. While some Bayesians might argue
that scientists will always have some prior infor-
mation, and that we will never be in a position
of complete ignorance, prior ignorance is a
conservative approach and helps overcome the
criticism of Bayesian statistics that subjectively
determined prior opinion can have too much
influence on the inferential process. We can
represent prior ignorance with a non-informa-
tive prior distribution, sometimes called a
diffuse distribution because such a wide range of
values of 6 is considered possible. The most
typical diffuse prior is a rectangular (uniform or
flat) probability distribution, which says that
each value of the parameter is equally likely.

One problem with uniform prior distribu-
tions is that they are improper, i.e. the probabil-
ity distribution does not integrate to one and
therefore the probability of any range of values
might not be less than one. In practice, this is
not a serious problem because improper priors
can be combined with likelihoods to produce
proper posterior distributions. When we use a
non-informative prior, the posterior distribution
of the parameter is directly proportional to the
likelihood function anyway. The uniform prior
distribution can be considered a reference
prior, a class of priors designed to represent
weak prior knowledge and let the data, and
therefore the likelihood, dominate the posterior
distribution.

2. Substantial prior knowledge or belief repre-
sented by an informative prior probability distri-
bution such as a normal or beta distribution.
The construction of these informative prior
distributions is one of the most controversial
aspects of Bayesian inference, especially if they
are constructed from subjective opinion. Crome
et al. (1996) illustrated one approach based on
surveying a small group of people for the
opinions about the effects of logging. Dennis
(1996) and Mayo (1996) have respectively high-
lighted potential practical and philosophical
issues associated with using subjective prior
information.

2.6.3 Likelihood function

The likelihood function P(data|#), standardized
by the expected value (mean) of likelihood func-
tion [P(data)], is how the sample data enter
Bayesian calculations. Note that the likelihood
function is not strictly a probability distribution
(Section 2.4.1), although we refer to it as the prob-
ability of observing the data for different values
of the parameter. If we assume that our variable
is normally distributed and the parameter of
interest is the mean, the standardized likelihood
function is a normal distribution with a mean
equal to the mean of the sample data and a vari-
ance equal to the squared standard error of the
mean of the sample data (Box & Tiao 1973, Ellison
1996).

2.6.4 Posterior probability
All conclusions from Bayesian inference are
based on the posterior probability distribution of
the parameter. This posterior distribution repre-
sents our prior probability distribution modified
by the likelihood function. The sample data only
enter Bayesian inference through the likelihood
function. Bayesian inference is usually based on
the shape of the posterior distribution, particu-
larly the range of values over which most of the
probability mass occurs. The best estimate of
the parameter is determined from the mean of
the posterior distribution, or sometimes the
median or mode if we have a non-symmetrical
posterior.

If we consider estimating a parameter (6) with
anormal prior distribution, then the mean of the



BAYESIAN INFERENCE — ESTIMATION

29

normal posterior distribution of 6 is (Box & Tiao
1973, Ellison 1996):
1 -

6= 6,+wy
Wo + Wy (o T w,)

(2.18)

where éo is the mean of the prior distribution, y is
the mean of the likelihood function (i.e. sample
mean from data), w, is the reciprocal of the esti-
mate of the prior variance o2 (1/s,?), w, is the
reciprocal of the sample variance times the
sample size (n/s?) and n is the sample size. In other
words, the posterior mean is a weighted average of
the prior mean and the sample mean (Berry 1996).
This posterior mean 6 is our estimate of 6, the
parameter of interest.

The variance of the posterior distribution
equals:

1
Wy + Wy

2

G (2.19)
Note that with a non-informative, flat, prior the
posterior distribution is determined entirely by
the sample data and the likelihood function. The
mean of the posterior then is y (the mean of the
sample data) and the variance is s?/n (the variance
of the sample data divided by the sample size).
The Bayesian analogues of frequentist confi-
dence intervals are termed Bayesian credible or
probability intervals. They are also called highest
density or probability regions because any value
in the region or interval has a higher probability
of occurring than any value outside. If we have a
normal posterior distribution for a parameter,
Bayesian credible intervals for this parameter are:

P{6-2VD=6=6+2VD}=0.95 (2.20)

where D= g2, the variance of the posterior distri-
bution (Ellison 1996). Alternatively, the usual
methods based on the t distribution can be used
(Winkler 1993). Note that because the parameter
is considered a random variable in Bayesian infer-
ence, the interval in Equation 2.20 is telling us
directly that there is a 95% probability that the
value of the parameter falls within this range,
based on the sample data. With a non-informative
(flat) prior distribution, the Bayesian confidence
interval will be the same as the classical, frequen-
tist, confidence interval and Edwards (1996)
argued that the difference in interpretation is
somewhat semantic. He recommended simply

reporting the interval and letting the reader inter-
pret it as required. If we have a more informative
prior distribution (i.e. we knew that some values
of 6 were more likely than others), then the
Bayesian credible interval would be shorter than
the classical confidence interval.

2.6.5 Examples

We provide a very simple example of Bayesian esti-
mation in Box 2.4, based on the data from Lovett
et al. (2000) on the chemistry of forested water-
sheds. Another biological example of Bayesian
estimation is the work of Carpenter (1990). He
compared eight different models for flux of pesti-
cides through a pond ecosystem. Each model was
given an equal prior probability (0.125), data were
collected from an experiment using radioactively
labeled pesticide and likelihoods were deter-
mined for each model from the residuals after
each model was fitted using OLS (see Chapter 2).
He found that only one of the models had a poste-
rior probability greater than 0.1 (actually it was
0.97, suggesting it was a very likely outcome).

2.6.6 Other comments

We would like to finish with some comments.
First, normal distributions are commonly used for
both prior and posterior distributions and likeli-
hood functions for the same reasons as for classi-
cal estimation, especially when dealing with
means. Other distributions can be used. For
example, Crome et al. (1996) used a mixture of log-
normal distributions for an informative prior (see
also Winkler 1993) and the beta distribution is
commonly used as a prior for binomially distrib-
uted parameters.

Second, the data generally are much more
influential over the posterior distribution than
the prior, except when sample sizes, and/or the
variance of the prior, are very small. Carpenter
(1990) discussed Bayesian analysis in the context
of large-scale perturbation experiments in
ecology and he also argued that prior probabil-
ities had far less impact than the observed data on
the outcome of the analysis and implied that the
choice of prior probabilities was not crucial.
However, Edwards (1996) noted that if the prior
standard deviation is very small, then differences
in the prior mean could have marked effects on



30

ESTIMATION

Box 2.4 | Worked example of Bayesian estimation:
chemistry of forested watersheds

To illustrate the Bayesian approach to estimation, we will revisit the earlier example
of estimating the mean concentration of SO,?~ in first and second order stream
sites in the Catskill Mountains in New York State based on a sample of 39 sites
(Lovett et al. 2000). Now we will consider the mean concentration of SO,>~ a
random variable, or at least an unknown variable (Dennis 1996), and also make use
of prior information about this mean, i.e. we will estimate our mean from a Bayesian
perspective. For comparison, we will also investigate the effect of more substantial
prior knowledge, in the form of a less variable prior probability distribution. VWe will
follow the procedure for Bayesian estimation from Box & Tiao (1973;see also Berry
1996 and Ellison 1996).

|. Using whatever information is available (including subjective assessment;
see Crome et al. 1996), specify a prior probability distribution for Y. Note that
initial estimates of the parameters of this distribution will need to be specified; a
normal prior requires an initial estimate of the mean and variance. Imagine we
had sampled the central Catskill Mountains at a previous time so we had some
previous data that we could use to set up a prior distribution. VWe assumed the
prior distribution of the concentration of SO,?~ was normal and we used the
mean and the variance of the previous sample as the parameters of the prior
distribution. The prior distribution could also be a non-informative (flat) one if no
such previous information was available.

2. Collect a sample to provide an estimate of the parameter and its variance.
In our example, we had a sample of concentration of SO,2~ from 39 streams and
determined the sample mean and variance.

3. Determine the standardized likelihood function, which in this example is
a normal distribution with a mean equal to the mean of the sample data
and a variance equal to the squared standard error of the mean of the sample
data.

4. Determine the posterior probability distribution for the mean
concentration of 5042’, which will be a normal distribution because we used a
normal prior and likelihood function. The mean of this posterior distribution
(Equation 2.18) is our estimate of population mean concentration of SO,2~ and
we can determine credible intervals for this mean (Equation 2.20).

High variance prior distribution

Prior mean = 50.00, prior variance = 44.00.

Sample mean = 61.92, sample variance =27.47,n = 39.

Using Equations 2.18,2.19 and 2.20, substituting sample estimates where
appropriate:

w,=0.023

w, = 1419

Posterior mean = 61.73, posterior variance = 0.69, 95% Bayesian probability
interval = 60.06 to 62.57.

Note that the posterior distribution has almost the same estimated mean as
the sample, so the posterior is determined almost entirely by the sample data.
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Low variance prior distribution

If we make our prior estimate of the mean much more precise:

Prior mean = 50.00, prior variance = |0.00.

Sample mean=61.92, sample variance =27.47,n=39.
w,=0.100

w, = 1419

Posterior mean = 61.14, posterior variance = 0.66, 95% Bayesian probability

interval =59.51 to 62.76.

Now the prior distribution has a greater influence on the posterior than previ-
ously, with the posterior mean more than half one unit lower: In fact, the more dif-
ferent the prior mean is from the sample mean, and the more precise our estimate
of the prior mean is, i.e. the lower the prior variance, the more the prior will influ-

ence the posterior relative to the data.

Note that if we assume a flat prior; the posterior mean is just the mean of the

data (61.92).

the posterior mean, irrespective of the data. He
described this as “editorial”, where the results of
the analysis are mainly opinion.

Third, if a non-informative prior (like a rectan-
gular distribution) is used, and we assume the
data are from a normally distributed population,
then the posterior distribution will be a normal
(or t) distribution just like in classical estimation,
i.e. using a flat prior will result in the same esti-
mates as classical statistics. For example, if we
wish to use Bayesian methods to estimate u, and
we use a rectangular prior distribution, then the
posterior distribution will turn out to be a normal
distribution (if o is known) or a t distribution (if o
is unknown and estimated from s, which means
we need a prior distribution for s as well).

Finally, we have provided only a very brief
introduction to Bayesian methods for estimation

and illustrated the principle with a simple
example. For more complex models with two or
more parameters, calculating the posterior distri-
bution is difficult. Recent advances in this area
use various sampling algorithms (e.g. Hastings—
Metropolis Gibbs sampler) as part of Markov chain
Monte Carlo methods. These techniques are
beyond the scope of this book - Barnett (1999) and
Gelman et al. (1995) provide an introduction
although the details are not for the mathemati-
cally challenged. The important point is that once
we get beyond simple estimation problems,
Bayesian methods can involve considerable statis-
tical complexity.

Other pros and cons related to Bayesian infer-
ence, particularly in comparison with classical
frequentist inference, will be considered in
Chapter 3 in the context of testing hypotheses.



Chapter 3

Hypothesis testing

3.1 | Statistical hypothesis testing

In Chapter 2, we discussed one component of stat-
istical inference, estimating population parame-
ters. We also introduced the philosophical and
statistical differences between frequentist and
Bayesian approaches to parameter estimation.
The other main component of inference, and one
that has dominated the application of statistics in
the biological sciences, is testing hypotheses
about those parameters. Much of the philosophi-
caljustification for the continued use of statistical
tests of hypotheses seems to be based on Popper’s
proposals for falsificationist tests of hypotheses
(Chapter 1). Although Jerzy Neyman, Egon
Pearson and Sir Ronald Fisher had developed their
approaches to statistical testing by the 1930s, it is
interesting to note that Popper did not formally
consider statistical tests as a mechanism for fal-
sifying hypotheses (Mayo 1996). Hilborn & Mangel
(1997, pp. 15-16) stated that “Popper supplied the
philosophy and Fisher, Pearson, and colleagues
supplied the statistics” but the link between
Popperian falsificationism and statistical tests of
hypotheses is still controversial, e.g. the contrast-
ing views of Mayo (1996) and Oakes (1986). We will
present a critique of statistical hypothesis tests,
and significance tests in particular, in Section 3.6.
The remainder of this section will provide an
overview of statistical tests of hypotheses.

3.1.1 Classical statistical hypothesis testing
Classical statistical hypothesis testing rests on two
basic concepts. First, we must state a statistical

null hypothesis (H,), which is usually (though not
necessarily) an hypothesis of no difference or no
relationship between population parameters (e.g.
no difference between two population means). In
many cases, we use the term effect to describe a
difference between groups or experimental treat-
ments (or a non-zero regression slope, etc.), so the
H, is usually an hypothesis of no effect. The philo-
sophical basis for the statistical null hypothesis,
at least in part, relates back to Popperian falsifica-
tionism, whereby science makes progress by
severely testing and falsifying hypotheses. The
implication is that rejection of the statistical H, is
equivalent to falsifying it and therefore provides
support (“corroboration”) for the research hypoth-
esis as the only alternative (Underwood 1997). We
do not test the research hypothesis in this way
because it is rarely more exact than postulating
an effect, sometimes in a particular direction.
Fisher (1935) pointed out that the null hypothesis
is exact, e.g. a difference of zero, and is the result
we would expect from randomizing observations
to different experimental groups when there is no
effect of the experimental treatment (Mulaik et al.
1997). The philosophical justification for testing
the null hypothesis is still a controversial issue.
For example, Oakes (1986) argued that support for
the research hypothesis as a result of the null
being rejected is not true corroboration and statis-
tical tests, as currently practiced, have only super-
ficial philosophical respectability.

Second, we must choose a test statistic to test
the H,. A test statistic is a random variable and, as
such, can be described by a probability distribu-
tion. For example, a commonly used test statistic
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for testing hypotheses about population means is
t, where:

_G-w

Sy

We introduced the t statistic and its probability
distribution in Chapters 1 and used it in Chapter
2 for determining confidence intervals for popula-
tion means. Test statistics like t have a number of
probability distributions (see Figure 1.2), called
sampling distributions, one for each possible
degrees of freedom (n — 1). These sampling distri-
butions represent the probability distributions of
t based on repeated random sampling from popu-
lations when the H, is true and are sometimes
called central distributions. Probabilities asso-
ciated with particular ranges of values of test sta-
tistics are tabled in most statistics textbooks. Note
that test statistics are continuous random vari-
ables, so we cannot define the probability of a
single t value, for example. We can only talk about
the probability that t is greater (or less than) a
certain value or that t falls in the range between
two values.

Before we look at the practical application of
statistical tests, some consideration of history is
warranted. The early development of statistical
hypothesis testing was led primarily by Sir Ronald
Fisher, whose influence on statistics was enor-
mous. Fisher (1954, 1956) gave us null hypothesis
or significance testing in statistics with the follow-
ing methodology (Huberty 1993).

t (3.1)

1. Construct a null hypothesis (H,).

2. Choose a test statistic that measures devia-
tion from the H, and that has a known sampling
distribution (e.g. t statistic).

3. Collect the data by one or more random
samples from the population(s) and compare the
value of the test statistic from your sample(s) to
its sampling distribution.

4. Determine P value, the associated probabil-
ity of obtaining our sample value of the statistic,
or one more extreme, if H is true

5. Reject H,, if P is small; retain H, otherwise.

Fisher proposed that we should report the
actual P value (e.g. P=0.042), which is a property
of the data and could be viewed as a “strength of
evidence” measure against H; (Huberty 1994).

Fisher also introduced the idea of a conventional
probability (of obtaining our sample data or data
more extreme if H; is true) for rejecting H; this is
called a significance level. He suggested a probabil-
ity of one in twenty (0.05 or 5%) as a convenient
level and the publication of tables of sampling dis-
tributions for various statistics reinforced this by
only including tail probabilities beyond these con-
ventional levels (e.g. 0.05, 0.01, 0.001). Later,
however, Fisher (1956) recommended that fixed
significance levels (e.g. 0.05) were too restrictive
and argued that a researcher’s significance level
would depend on circumstances. Fisher also intro-
duced the idea of fiducial inference, although this
approach is rarely used in the biological sciences
- Mayo (1996) and Oakes (1986) provide details.
Jerzy Neyman and Egon Pearson (Neyman &
Pearson 1928, 1933) offered a related but slightly
different approach, which has sometimes been
called statistical hypothesis testing. Their
approach differed from Fisher’s in a number of
important ways (Oakes 1986, Royall 1997).

1. They argued that we should set a level of
significance (e.g. 0.05) in advance of the data col-
lection and stick with it - this is sometimes
called fixed level testing. The significance level is
interpreted as the proportion of times the H;
would be wrongly rejected using this decision
rule if the experiment were repeated many times
and the H; was actually true. Under the
Neyman-Pearson scheme, the P value provides
no additional information beyond indicating
whether we should reject the H, at our specified
significance level (Oakes 1986). They emphasized
making a dichotomous decision about the H;
(reject or nor reject) and the possible errors asso-
ciated with that decision (see below) whereas
Fisher was more concerned with measuring evi-
dence against the H. Whether P values provide a
suitable measure of evidence is a matter of
debate (e.g. Royall 1997) that we will consider
further in Section 3.6.

2. Another major difference between the
Fisher and the Neyman-Pearson approaches was
that Neyman and Pearson explicitly incorporated
an alternative hypothesis (H,) into their scheme.
The H, is the alternative hypothesis that must be
true if the H, is false, e.g. if the H is that two
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population means are equal, then the H, is that
they are different by some amount. In contrast,
Fisher strongly opposed the idea of H, in
significance testing (Cohen 1990).

3. Neyman and Pearson developed the con-
cepts of Type I error (long-run probability of
falsely rejecting H, which we denote «) and Type
II error (long-run probability of falsely not reject-
ing H,, which we denote ) and their a priori
significance level (e.g. « =0.05) was the long-run
probability of a Type I error (Gigerenzer 1993).
This led naturally to the concept of power (the
probability of correctly rejecting a false H,).
Fisher strongly disagreed with Neyman and
Pearson about the relevance of the two types of
error and even criticized Neyman and Pearson
for having no familiarity with practical applica-
tion of hypothesis testing in the natural sciences
(Oakes 1986)!

Statisticians have recently revisited the contro-
versy between the Fisher and Neyman-Pearson
approaches to hypothesis testing (Inman 1994,
Lehmann 1993, Mulaik et al. 1997, Royall 1997),
pointing out their similarities as well as their dis-
agreements and the confusion in terminology.
Biologists, like psychologists (Gigerenzer 1993),
most commonly follow a hybrid approach, com-
bining aspects of both Fisherian inference and
Neyman-Pearson decision-making to statistical
hypothesis testing.

1. Specify Hy, H, and appropriate test statistic

2. Specify a priori significance level (e.g. 0.05),
which is the long-run frequency of Type I errors
() we are willing to accept.

3. Collect the data by one or more random
samples from the population(s) and calculate the
test statistic from our sample data.

4. Compare that value of the statistic to its
sampling distribution, assuming H, true.

5. If the probability of obtaining this value or
one greater is less than the specified significance
level (e.g. 0.05), then conclude that the H, is false
and reject it (“significant” result),

6. If the probability of obtaining this value is
greater than or equal to the specified
significance level (e.g. 0.05), then conclude there
is no evidence that the H is false and retain it
(“non-significant” result).

The Fisherian aspect of this hybrid approach is
that some biologists use P<0.05 (significant),
P<0.01 (very significant) and P<<0.001 (highly sig-
nificant) or present the actual P values to indicate
strength of evidence against the H,. Although the
latter has been strongly criticized by some in the
psychological literature (Shaver 1993), there is
some logical justification for providing P values
(Oakes 1986). For one thing, it allows readers to
use their own a priori significance levels to decide
whether or not to reject the H,,.

To reiterate, interpretations from classical sta-
tistical tests are based on a longrun frequency
interpretation of probabilities, i.e. the probability
in a long run of identical “trials” or “experi-
ments”. This implies that we have one or more
clearly defined population(s) from which we are
sampling and for which inferences are to be made.
If there is no definable population from which
random samples are collected, the inferential
statistics discussed here are more difficult to
interpret since they are based on long-run fre-
quencies of occurrence from repeated sampling.
Randomization tests (Section 3.3.2), which do not
require random sampling from a population, may
be more applicable.

3.1.2 Associated probability and Type |
error

Fisher and Neyman & Pearson both acknowledged
that probabilities from classical statistical
hypothesis testing must be interpreted in the
long-run frequency sense, although the latter
were more dogmatic about it. The sampling distri-
bution of the test statistic (e.g. t) gives us the long-
run probabilities of different ranges of t values
occurring if we sample repeatedly from a popula-
tion(s) in which the H is true. The P value, termed
the associated probability by Oakes (1986), then is
simply the long-run probability of obtaining our
sample test statistic or one more extreme, if H, is
true. Therefore, the P value can be expressed as
P(data|Hy), the probability of observing our
sample data, or data more extreme, under
repeated identical experiments if the H, is true.
This is not the same as the probability of H,being
true, given the observed data - P(H,|data). As
Oakes (1986) has pointed out, there is rarely a sen-
sible long-run frequency interpretation for the
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probability that a particular hypothesis is true. If
we wish to know the probability of H, being true,
we need to tackle hypothesis testing from a
Bayesian perspective (Berger & Berry 1988; see
Section 3.7).

The P value is also sometimes misinterpreted
as the probability of the result of a specific analy-
sis being due to chance, e.g. a P value of <0.05
means that there is a less than 5% probability that
the result is due to chance. This is not strictly
correct (Shaver 1993); it is the probability of a
result occurring by chance in the long run if H; is
true, not the probability of any particular result
being due to chance.

Traditionally, biologists are correctly taught
that a non-significant result (not rejecting H)
does not indicate that H is true, as Fisher himself
stressed. In contrast, the Neyman-Pearson logic is
that Hj and H, are the only alternatives and the
non-rejection of H; implies the acceptance of H
(Gigerenzer 1993), a position apparently adopted
by some textbooks, e.g. Sokal & Rohlf (1995) refer
to the acceptance of H, The Neyman-Pearson
approach is really about alternative courses of
actions based on the decision to accept or reject.
Accepting the H, does not imply its truth, just that
one would take the action that results from such
a decision.

Our view is that a statistically non-significant
result basically means we should suspend judge-
ment and we have no evidence to reject the H,.
The exception would be if we show that the power
of our test to detect a desired alternative hypothe-
sis was high, then we can conclude the true effect
is probably less than this specific effect size
(Chapter 7). Underwood (1990, 1999) has argued
that retention of the H, implies that the research
hypothesis and model on which it is based are fal-
sified (see Chapter 1). In this context, a statistically
non-significant result should initiate a process of
revising or even replacing the model and devising
new tests of the new model(s). The philosophical
basis for interpreting so-called ‘negative’ results
continues to be debated in the scientific literature
(e.g. see opinion articles by Allchin 1999, Hull
1999 and Ruse 1999 in Marine Ecology Progress
Series).

The Type I error rate is the long-run probabil-
ity of rejecting the H, at our chosen significance

level, e.g. 0.05, if the H is actually true in all the
repeated experiments or trials. A Type I error is
one of the two possible errors when we make a
decision about whether the H is likely to be true
or not under the Neyman-Pearson protocol. We
will consider these errors further in Section 3.2.

3.1.3 Hypothesis tests for a single
population
We will illustrate testing an H, with the simplest
type of test, the single-parameter t test. We dem-
onstrated the importance of the t distribution for
determining confidence intervals in Chapter 2. It
can also be used for testing hypotheses about
single population parameters or about the differ-
ence between two population parameters if
certain assumptions about the variable hold. Here
we will look at the first type of hypothesis, e.g.
does the population mean equal zero? The value
of the parameter specified in the H, doesn’t have
to be zero, particularly when the parameter is a
mean, e.g. testing an H; that the mean size of an
organism is zero makes little biological sense.
Sometimes testing an H, that the mean equals
zero is relevant, e.g. the mean change from before
to after a treatment equals zero, and testing
whether other parameters equal zero (e.g. regres-
sion coefficients, variance components, etc.) is
very important. We will consider these parame-
ters in later chapters.
The general form of the t statistic is:

St— 0
=

] (3.2)
Ss;

where St is the value of the statistic from our
sample, 6 is the population value against which
the sample statistic is to be tested (as specified in
theH )and S is the estimated standard error of the
sample statistic. We will go through an example of
a statistical test using a one-sample ¢ test.

1. Specify the H; (e.g.u=0) and H, (e.g. u#0).

2. Take a random sample from a clearly
defined population.

3. Calculate t=(y— O)/sy from the sample,
where s; is the estimated standard error of the
sample mean. Note that if H is true, we would
expect t to be close to zero, i.e. when we sample
from a population with a mean of zero, most
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Probability (a)
distributions of t for (a) two-tailed
and (b) one-tailed tests, showing

critical t values (t.). P(t)

samples will have means close

to zero. Sample means
further from zero are less
likely to occur if H, is true.
The probability of getting a (b)
sample mean a long way from

zero, and therefore a large t,

either positive or negative, is P(t)
less if the H is true. Large ¢

values are possible if H, is

true — they are just unlikely.

a=0.05

4. Compare t with the
sampling distribution of t at
a=0.05 (or 0.01 or whatever
significance level you choose a priori) with n —1
df. Look at the t distribution in Figure 3.1.
Values of t greater than +t_or less than —t_have
a less than 0.05 chance of occurring from this ¢
distribution, which is the probability
distribution of t when H is true. This value (t)
is sometimes called the critical value. If the
probability (P value) of obtaining our sample t
value or one larger is less than 0.05 (our «), then
we reject the H;. Because we can reject H; in
either direction, if w is greater than zero or if u
is less than zero, then large values of the test
statistic at either end of the sampling
distribution will result in rejection of H, (Figure
3.1). This is termed a two-tailed test (see Section
3.1.4). To do a test with «=0.05, then we reject
H, if our t value falls in the regions where P=
0.025 at each end of the sampling distribution
(0.025+ 0.025 = 0.05). If the probability (P value)
of obtaining our t value or one larger is =0.05,
then we do not reject the H,.

As mentioned earlier, the sampling distribu-
tion of the t statistic when the H, is true is also
called the central t distribution. The probabilities
for the t distribution for different degrees of
freedom are tabled in most textbooks (usually for
P=0.05, 0.01 and sometimes 0.001). In addition, ¢
distributions are programmed into statistical

software. When using statistical tables, our value
of tis simply compared to the critical t value at a =
0.05. Larger t values always have a smaller P value
(probability of this or a larger value occurring if H;
is true) so if the statistic is larger than the critical
value at 0.05, then H is rejected. Statistical soft-
ware usually gives actual P values for statistical
tests, making the use of tables unnecessary.

We could theoretically use the sampling distri-
bution of the sample mean (which would be a
normal distribution) to test our H,. However, there
are an infinite number of possible combinations
of mean and variance, so in practice such sam-
pling distributions are not calculated. Instead, we
convert the sample mean to a t value (subtracting
w specified in H; and dividing by the standard
error of the mean), whose central distribution is
well defined.

Finally, itis important to note the relationship
between the hypothesis test illustrated here and
confidence intervals described in Chapter 2. The
H, that u equals zero is tested using a t distribu-
tion; a confidence interval for w is also con-
structed using the same ¢t distribution (based on n
—1 df). Not surprisingly then, a test of this H,
with a 0.05 significance level is the equivalent of
seeing whether the 95% (0.95) confidence interval
for u overlaps zero; if it does, we have no evidence
to reject H,,.
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3.1.4 One- and two-tailed tests
In most cases in biology, the H; is one of no effect
(e.g. no difference between two means) and the H,
(the alternative hypothesis) can be in either direc-
tion; the H is rejected if one mean is bigger than
the other mean or vice versa. This is termed a two-
tailed test because large values of the test statistic
at either end of the sampling distribution will
result in rejection of H, (Figure 3.1). The H, that a
parameter equals a specific value is sometimes
called a simple hypothesis or a point hypothesis
(Barnett 1999). To do a test with a=0.05, then we
use critical values of the test statistic at «=0.025
at each end of the sampling distribution.
Sometimes, our H; is more specific than just no
difference. We might only be interested in
whether one mean is bigger than the other mean
but not the other way. For example, we might
expect increased density of organisms to induce
competition and reduce their growth rate, and we
can think of no mechanism whereby the organ-
isms at the higher density would increase their
growth. Here our H,, is that the population mean
growth rate for increased density is greater than
or equal to the population mean growth rate for
lower density. Our H, is, therefore, that the popu-
lation mean growth rate for increased density is
less than the population mean growth rate for
lower density. This is a one-tailed test, the H, being
directional or composite (Barnett 1999), because
only large values of the test statistic at one end of
the sampling distribution will result in rejection
of the H; (Figure 3.1). To do a test with a=0.05,
then we use critical values of the test statistic at
a=0.05 at one end of the sampling distribution.
We should test one-tailed hypotheses with care
because we are obliged to ignore large differences
in the other direction, no matter how tempting it
may be to deal with them. For example, if we
expect increased phosphorous (P) to increase
plant growth compared to controls (C) with no
added phosphorous, we might perform a one-
tailed t test (H: pp= uc; H,: pp> p). However, we
cannot draw any formal conclusions if growth
rate is much less when phosphorous is added,
only that it is a non-significant result and we have
no evidence to reject the H. Is this unrealistic,
expecting a biologist to ignore what might be an
important effect just because it was in the oppo-

site direction to that expected? This might seem
like an argument against one-tailed tests, avoid-
ing the problem by never ruling out interest in
effects in both directions and always using two-
tailed tests. Royall (1997) suggested that research-
ers who choose one-tailed tests should be trusted
to use them correctly, although he used the prob-
lems associated with the one-tail versus two-tail
choice as one of his arguments against statistical
hypothesis testing and Pvalues more generally. An
example of one-tailed tests comes from Todd &
Keough (1994), who were interested in whether
microbial films that develop on marine hard sub-
strata act as cues inducing invertebrate larvae to
settle. Because they expected these films to be a
positive cue, they were willing to focus on changes
in settlement in one direction only. They then
ignored differences in the opposite direction from
their a priori one-tailed hypothesis.

Most statistical tables either provide critical
values for both one- and two-tailed tests but some
just have either one- or two-tailed critical values
depending on the statistic, so make sure you look
up the correct P value if you must use tables.
Statistical software usually produces two-tailed P
values so you should compare the P value to
a=0.10 for a one-tailed test at 0.05.

3.1.5 Hypotheses for two populations
These are tests of null hypotheses about the equiv-
alent parameter in two populations. These tests
can be one- or two-tailed although testing a point
null hypothesis with a two-tailed test is more
common in practice, i.e. the parameter is the same
in the two populations. If we have arandom sample
from each of two independent populations, i.e. the
populations represent different collections of
observations (i.e. sampling or experimental units),
then to test the H, that u,=pu, (comparing two
independent population means):
t= Y1~ ¥>

55172

(3.3)
where

n—1s2+m,—1)s2 (1 1
. A/ Dstr s (1 1)
Y172 ny+n,—2 fny Ny

Equation 3.4 is the standard error of the differ-
ence between the two means. This is just like the
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one-parameter t test except the single sample sta-
tistic is replaced by the difference between two
sample statistics, the population parameter spec-
ified in the H; is replaced by the difference
between the parameters of the two populations
specified in the H, and the standard error of the
statistic is replaced by the standard error of the
difference between two statistics:

t:(}_’1_}_’2)_(#~1_ﬂv2) (3.5)

55172

We follow the steps in Section 3.1.1 and compare t
to the t distribution with n, +n, — 2 dfin the usual
manner. This H; can also be tested with an ANOVA
Fratio test (Chapter 8).

We will illustrate tests of hypotheses about two
populations with two examples. Ward & Quinn
(1988) studied aspects of the ecology of the inter-
tidal predatory gastropod Lepsiella vinosa on a
rocky shore in southeastern Australia (Box 3.1). L.
vinosa occurred in two distinct zones on this
shore: a high-shore zone dominated by small
grazing gastropods Littorina spp. and a mid-shore
zone dominated by beds of the mussels
Xenostrobus pulex and Brachidontes rostratus. Both
gastropods and mussels are eaten by L. vinosa.
Other data indicated that rates of energy con-
sumption by L. vinosa were much greater in the
mussel zone. Ward & Quinn (1988) were interested
in whether there were any differences in fecun-
dity of L. vinosa, especially the number of eggs per
capsule, between the zones. From June to
September 1982, they collected any egg capsules
they could find in each zone and recorded the
number of eggs per capsule. There were 37 cap-
sules recorded from the littorinid zone and 42
from the mussel zone. The H, was that there is no
difference between the zones in the mean
number of eggs per capsule. This is an indepen-
dent comparison because the egg capsules were
independent between the zones.

Furness & Bryant (1996) studied energy
budgets of breeding northern fulmars (Fulmarus
glacialis) in Shetland (Box 3.2). As part of their
study, they recorded various characteristics of
individually labeled male and female fulmars. We
will focus on differences between sexes in meta-
bolic rate. There were eight males and six females
labeled. The H, was that there is no difference

between the sexes in the mean metabolic rate of
fulmars. This is an independent comparison
because individual fulmars can only be either
male or female.

If we have a random sample from a population
and we have recorded two (paired) variables from
each observation, then we have what are com-
monly called paired samples, e.g. observations at
two times. To test whether the population mean
difference between the two sets of observations
equals zero, we basically use a test for a single pop-
ulation (Section 3.1.3) to test the H, that u,=0:

_d

= (3.6)

where d is the mean of the pairwise differences
and s; is the standard error of the pairwise differ-
ences. We compare t with a t distribution with n —
1 dfin the usual manner. This H, can also be tested
with a two factor unreplicated ANOVA F-ratio test
(Chapter 10).

For example, Elgar et al. (1996) studied the
effect of lighting on the web structure of an orb-
spinning spider (Box 3.3). They set up wooden
frames with two different light regimes (con-
trolled by black or white mosquito netting), light
and dim. A total of 17 orb spiders were allowed to
spin their webs in both a light frame and a dim
frame, with six days’ “rest” between trials for each
spider, and the vertical and horizontal diameter
of each web was measured. Whether each spider
was allocated to a light or dim frame first was ran-
domized. The null hypotheses were that the two
variables (vertical diameter and horizontal diam-
eter of the orb web) were the same in dim and
light conditions. Elgar et al. (1996) correctly
treated this as a paired comparison because the
same spider spun her web in a light frame and a
dark frame.

We can also test whether the variances of two
populations are the same. Recall from Chapter 2
that variances are distributed as chi-squares and
the ratio of two chi-square distributions is an F dis-
tribution, another probability distribution that is
well defined. To test the H, that ¢,?>= 0> (compar-
ing two population variances), we calculate an F-
ratio statistic:

_s?

F (3.7)

S5
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Box 3.1/ Fecundity of predatory gastropods

Ward & Quinn (1988) collected 37 egg capsules of the intertidal predatory gastro-
pod Lepsiella vinosa from the littorinid zone on a rocky intertidal shore and 42 cap-
sules from the mussel zone. Other data indicated that rates of energy consumption
by L. vinosa were much greater in the mussel zone so there was interest in differ-
ences in fecundity between the zones. The H, was that there is no difference
between the zones in the mean number of eggs per capsule. This is an indepen-
dent comparison because individual egg capsules can only be in either of the two

Zones.

Standard  SE of 95% Cl for
Zone n Mean Median Rank sum deviation  mean mean
Littorinid 37 8.70 9 1007 2.03 033 8.03-9.38
Mussel 42 1136 |l 2153 2.33 0.36 10.64—12.08

Note that standard deviations (and therefore the variances) are similar and box-
plots (Figure 4.4) do not suggest any asymmetry so a parametric t test is appropri-
ate.

Pooled variance test:

t=—5.39,df=77,P<0.001.

We would reject the H, and conclude there was a statistically significant difference
in mean number of eggs per capsule between zones.
Effect size (difference between means) =—2.65 (95% Cl: —1.674 to —3.635)
Separate variance test:

t=—544,df=77,P<0.00].

Note that the t values were almost identical and the degrees of freedom were the
same, not surprising since the variances were almost identical.

Although there was little justification for a non-parametric test, we also tested
the H, that there was no difference in a more general measure of location using
the Mann—Whitney—Wilcoxon test.

U=304.00, y? approximation=21.99 with | df,P<0.00l.

Again we would reject the H. In this example, the parametric pooled and separ-
ate variance t tests and non-parametric test all give P values<0.001.

A randomization test was done to test the H, that there is no difference
between the mean number of eggs per capsule so that any possible allocation of
observations to the two groups is equally likely.

Mean difference =—2.65, P<0.00| (significant) for difference as or more
extreme than observed based on 10 000 randomizations.

where s % is the larger sample variance and s,? is
the smaller sample variance. We compare this F-
ratio with an F distribution with n,—1 df for
numerator (sample one) and n, — 1 df for denomi-
nator (sample two). We will consider Fratio tests
on variances in more detail in Chapters 5 onwards.

3.1.6 Parametric tests and their
assumptions

The t tests we have just described for testing null

hypotheses about population means are classified

as parametric tests, where we can specify a prob-

ability distribution for the populations of the
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Box 3.2 | Metabolic rate of male and female fulmars

Furness & Bryant (1996) studied energy budgets of breeding northern fulmars
(Fulmarus glacialis) in Shetland. As part of their study, they recorded various char-
acteristics of individually labeled male and female fulmars. We will focus on differ-
ences between sexes in metabolic rate. There were eight males and six females
labeled. The H, was that there is no difference between the sexes in the mean
metabolic rates of fulmars. This is an independent comparison because individual
fulmars can only be either male or female.

Standard SE of 95% Cl for
Sex n Mean Median deviation  mean mean
Male 8 1563.78 157055 89437 316.21 816.06—2311.49
Female 6 1285.52 1226.15 42096 171.86 843.74—1727.29

Note that variances are very different although the boxplots (Figure 4.5) do not
suggest strong asymmetry. The small and unequal sample sizes, in conjunction with
the unequal variances, indicate that a t test based on separate variances is more

appropriate.

Separate variance test:

t=0.77,df=10.5,P=0.457.

We would not reject the H, and conclude there was no statistically significant dif-
ference in mean metabolic rate of fulmars between sexes.
The effect size (difference between means) =27826 (95% Cl: —518.804 to

1075.321).

Note that the confidence interval on the mean difference includes zero, as expected
given the non-significant result from the test.

The very different variances would make us reluctant to use a rank-based non-

parametric test. Even a randomization test might be susceptible to unequal vari-

ance, although the results from such a test support the previous conclusion.
Mean difference =278.26, P=0.252 (not significant) for difference as or more
extreme than observed based on |0 000 randomizations.

variable from which our samples came. All statis-
tical tests have some assumptions (yes, even so-
called “non-parametric tests” — see Section 3.3.3)
and if these assumptions are not met, then the
test may not be reliable. Basically, violation of
these assumptions means that the test statistic
(e.g.t) may no longer be distributed as a t distribu-
tion, which then means that our P values may not
be reliable. Although parametric tests have these
assumptions in theory, in practice these tests may
be robust to moderate violations of these assump-
tions, i.e. the test and the P values may still be reli-
able even if the assumptions are not met. We
will describe the assumptions of t tests here and

introduce ways of checking these assumptions,
although these methods are presented in more
detail in Chapter 4. The assumptions themselves
are also considered in more detail as assumptions
for linear models in Chapters 5 onwards.

The first assumption is that the samples are
from normally distributed populations. There is
reasonable evidence from simulation studies
(Glass et al. 1972, Posten 1984) that significance
tests based on the t test are usually robust to viola-
tions of this assumption unless the distributions
are very non-symmetrical, e.g. skewed or multi-
modal. Checks for symmetry of distributions can
include dotplots (if n is large enough), boxplots and
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Box 3.3/0rb spider webs and light intensity

Elgar et al. (1996) exposed |7 orb spiders each to dim and light conditions and
recorded two aspects of web structure under each condition. The Hs are that the
two variables (vertical diameter and horizontal diameter of the orb web) were the
same in dim and light conditions. Because the same spider spun her web in both
light conditions, then this was a paired comparison. Boxplots of paired differences
for both variables suggested symmetrical distributions with no outliers, so a para-
metric paired t test is appropriate.

Horizontal diameter (cm):
Mean difference = 46.18, SE difference =21.49.
t=2.15,df=16,P=0.047 (significant).

So we would reject the H; and conclude that, for the population of female orb
spiders, there is a difference in the mean horizontal diameter of spider webs
between light and dim conditions.

Wilcoxon signed rank z= —1.84, P = 0.066 (not significant), do not reject H,. Note
the less powerful non-parametric test produced a different result.

Vertical diameter (cm):

Mean difference = 20.59, SE difference =21.32.
t=0.97,df= 6,P=0.349 (not significant), do not reject H,,

So we would not reject the H, and conclude that, for the population of female orb
spiders, there is no difference in the mean vertical diameter of spider webs between
light and dim conditions.

Wilcoxon signed rank z= —0.78, P=0.434 (not significant). In this case, the non-
parametric test produced the same conclusion as the ¢ test.

pplots (see Chapter 4). Transformations of the vari-
able to a different scale of measurement (Chapter
4) can often improve its normality. We do not rec-
ommend formal significance tests for normality
(e.g. Shapiro-Wilk test, Lilliefors test; see Sprent
1993) because, depending on the sample size, these
tests may reject the H; of normality in situations
when the subsequent t test may be reliable.

The second assumption is that samples are
from populations with equal variances. This is a
more critical assumption although, again, the
usual t test is very robust to moderately unequal
variances if sample sizes are equal (Glass et al.
1972, Posten 1984). While much of the simulation
work relates to analysis of variance (ANOVA) prob-
lems (see Day & Quinn 1989, Wilcox et al. 1986,
Chapter 8), the results also hold for t tests, which
are equivalent to an ANOVA Fratio test on two
groups. For example, if n equals six and the ratio

of the two standard deviations is four or less, sim-
ulations show that the observed Type I error rate
for the t test is close to the specified rate (Coombs
et al. 1996). If sample sizes are very unequal, espe-
cially if the smaller sample has the larger vari-
ance, then Type I error rates may be much higher
than postulated significance level. If the larger
sample has the larger variance, then the rate of
Type Il errors will be high (Judd et al. 1995, Coombs
et al. 1996). Coombs et al. (1996) illustrated this
with simulation data from Wilcox et al. (1986) that
showed that for sample sizes of 11 and 21, a four to
one ratio of standard deviations (largest standard
deviation associated with small sample size)
resulted in a Type I error rate of nearly 0.16 for a
nominal @ 0f 0.05. Note that unequal variances are
often due to skewed distributions, so fixing the
non-normality problem will often make variances
more similar. Checks for this assumption include
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Statistical decisions STATISTICAL CONCLUSION

and errors when testing null Reject H, Retain H,

hypotheses.
examining boxplots of each Ex Correct decision Type Il error
sample for similar spreads. We popy| ATION ect Effect detected Effect not detected
do not routinely recommenda S|TUATION
preliminary test of equal pop-
ulation variances llSng an F- Ef}'yped| errord NCori['fect ?jecisiond

: : ect detected; o effect detected;

ratio test (Section 3.1.5) for No effect hone oxists Pone exists
three reasons.

* The Fratio test might be more sensitive to non-
normality than the t test it is “protecting”.
Depending on sample size, an F-ratio test may
not detect variance differences that could
invalidate the following t test, or it might find
unequal variances (and hence recommend the
following analysis not be done), which would
not adversely affect the subsequent t test
(Markowski & Markowski 1990). This
dependence of the results of a statistical
hypothesis test on sample size is well known
and will be discussed further in Section 3.6.
Statistical hypothesis testing should be used
carefully, preferably in situations where power
and effect sizes have been considered; this is
rarely the case for exploratory checks of
assumptions.

The third assumption is that the observations are
sampled randomly from clearly defined popula-
tions. This is an assumption that must be consid-
ered at the design stage. If samples cannot be
sampled randomly from populations, then a more
general hypothesis about differences between
samples can be tested with a randomization test
(see Section 3.3.2).

These t tests are much more sensitive to
assumptions about normality and equal variances
if sample sizes are unequal, so for this reason
alone, it’s always a good idea to design studies
with equal sample sizes. On an historical note,
testing differences between means when the vari-
ances also differ has been a research area of long-
standing interest in statistics and is usually called
the Behrens-Fisher problem. Solutions to this
problem will be discussed in Section 3.3.1.

An additional issue with many statistical tests,
including parametric tests, is the presence of

outliers (Chapter 4). Outliers are extreme values
in a sample very different from the rest of the
observations and can have strong effects on the
results of most statistical tests, in terms of both
Type I and Type II errors. Note that both paramet-
ric t tests and non-parametric tests based on ranks
(Section 3.3) are affected by outliers (Zimmerman
1994), although rank-based tests are less sensitive
(Zimmerman & Zumbo 1993). Detection and treat-
ment of outliers is considered in Chapter 4.

3.2 | Decision errors

3.2.1 Typeland Il errors

When we use the Neyman-Pearson protocol to
test an H, there are four possible outcomes based
on whether the H; was actually true (no effect) or
not (real effect) for the population (Figure 3.2). A
rejection of a H; is usually termed a significant
result (statistically significant, not necessarily bio-
logically significant - see Box 3.4) and implies that
some alternative hypothesis (H,) is true. Clearly,
two of the outcomes result in the right statistical
decision being made; we correctly reject a false H
or we correctly retain a true H,. What about the
two errors?

* A Type I error is when we mistakenly reject a
correct H, (e.g. when we conclude from our
sample and a t test that the population
parameter is not equal to zero when in fact the
population parameter does equal zero) and is
denoted «. A Type I error can only occur when
H, is true.

* AType II error is when we mistakenly accept
an incorrect H; (e.g. when we conclude from
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Region where H, retained

Type Il error

our sample and a t test that the population
parameter equals zero when in fact the
population parameter is different from zero).
Type II error rates are denoted by 8 and can
only occur when the H is false.

Both errors are the result of chance. Our
random sample(s) may provide misleading infor-
mation about the population(s), especially if the
sample sizes are small. For example, two popula-
tions may have the same mean value but our
sample from one population may, by chance,
contain all large values and our sample from the
other population may, by chance, contain all
small values, resulting in a statistically significant
difference between means. Such a Type I error is
possible even if H, (u,=pu,) is true, it’s just
unlikely. Keep in mind the frequency interpreta-
tion of P values also applies to the interpretation
of error rates. The Type I and Type II error prob-
abilities do not necessarily apply to our specific
statistical test but represent the long-run prob-
ability of errors if we repeatedly sampled from the
same population(s) and did the test many times.

Examine Figure 3.3, which shows the probabil-
ity sampling distribution of t when the H is true
(left curve) and the probability sampling distribu-
tion of t when a particular H, is true (right curve).
Of course, we never know what this latter distribu-
tion looks like in practice because if H is false, we
don’t know what the real H, is. For a particular df,
there will be a different distribution for each pos-
sible H, but only one sampling distribution for H,.
The critical value of t for «=0.05 is indicated. If H,,
is actually true, any t value greater than this criti-
cal value will lead to a rejection of H, and a Type
I error. If H is actually false and H, is true, any

Region where Hj rejected

Type | error

Graphical
representation of Type | and Type ||
error probabilities, using a t test as
an example.

value equal to or smaller than
this critical value will lead to
non-rejection of H, and a
Type II error. Note that if H is,
for example, no difference
between means, then H, is a
difference between means.
The bigger the difference, the further the t distri-
bution for H, will be to the right of the t distribu-
tion for H, and the less likely will be a Type II
error.

Traditionally, scientists have been most con-
cerned with Type I errors. This is probably
because statistically significant results imply fal-
sification of a null hypothesis and therefore
progress in science and maybe because we
wrongly equate statistical significance with bio-
logical significance (see Box 3.4). Therefore, we
protect ourselves (and our discipline) from false
significant results by using a conservative signifi-
cance level (e.g. 0.05); this means that we are con-
trolling our Type I error rate to 0.05 or 5%. If the
probability of obtaining our sample when the H,
is true is less than 0.05, then we reject that H;
otherwise we don’t reject it. Why don’t we use an
even lower significance level to protect ourselves
from Type I errors even more? Mainly because for
most statistical tests, for a given sample size and
level of variation, lowering the Type I error rate
(the significance level) results in more Type II
errors (imagine moving the vertical line to the
right in Figure 3.3) if it turns out that the H, is
true.

For some activities, especially environmental
monitoring and impact assessment and experi-
ments involving human health issues, Type II
errors may be of much greater importance than
Type 1. Consider a monitoring program, and the
consequences of the two kinds of errors. A Type I
error results in an erroneous claim of a significant
environmental change. In an ideal world, the
result would be a requirement by the relevant reg-
ulatory authority for some mitigation or cessa-
tion of the activity causing that change. The
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Box 3.4 Biological versus statistical significance

It is important to distinguish between biological and statistical significance. As men-
tioned in Section 3.6.1, if we take larger and larger samples, we can detect even very
small differences. Whenever we get a (statistically) significant result, we must still
decide whether the effects that we observe are biologically meaningful. For
example, we might measure 100 snails in each of two populations, and we would
almost certainly find that the two populations were different in size. However; if the
mean size differed by = 1%, we may struggle to explain the biological meaning of
such a small difference.

What is biologically significant? The answer has nothing to do with statistics, but
with our biological judgment, and the answer will vary with the questions being
answered. Small effects of experimental treatments may be biologically significant
when we are dealing with rates of gene flow, selection, or some physiological meas-
urements, because small differences can have important repercussions in popula-
tion genetics or organism health. For example, small changes in the concentration
of a toxin in body tissues may be enough to cause mortality. In contrast, small effects
may be less important for ecological processes at larger spatial scales, especially
under field conditions.

It is important for biologists to think carefully about how large an effect has to
be before it is biologically meaningful. In particular, setting biologically important

effect sizes is crucial for ensuring that out statistical test has adequate power:

“costs” would be purely financial - the cost of
(unnecessary) mitigation. A Type II error, on the
other hand, is a failure to detect a change that has
occurred. The verdict of “no significant impact”
results in continuation of harmful activities.
There is no added financial cost, but some time in
the future the environmental change will become
large enough to become apparent. The conse-
quence of this error is that significant environ-
mental degradation may have occurred or become
more widespread than if it had been detected
early, and mitigation or rehabilitation may be nec-
essary, perhaps at significant cost. A strong argu-
ment can therefore be made that for many
“applied” purposes, Type Il errors are more impor-
tant than Type I errors. A similar argument
applies to other research areas. Underwood (1990,
1997), in describing the logical structure of
hypothesis testing, indicates very clearly how
Type II errors can misdirect research programs
completely.

The inverse of Type II error is power, the prob-
ability of rejecting a false H,. We will consider
power in more detail as part of experimental
design in Chapter 7.

3.2.2 Asymmetry and scalable decision
criteria

One of the problems of fixing our significance
level «, even if we then use power analysis to deter-
mine sample sizes to minimize the probability of
Type Il errors, is that there is an implicit asymme-
try in the importance of H; relative to H, (Barnett
1999, Oakes 1986). In many practical situations,
fixing « to 0.05 will make it difficult to reduce the
probability of Type II errors to a comparable level,
unless sample sizes or effect sizes are very large.
The only solution to this problem, while still
maintaining the structure of statistical tests and
errors associated with decisions, is to abandon
fixed level testing and use decision criteria that
provide a more sensible balance between Type I
and Type II errors.

Mapstone (1995) has proposed one way of
incorporating flexible decision criteria in statisti-
cal hypothesis testing in ecology and environmen-
tal science. He suggested that we should set the
ratio of acceptable Type I and Type II errors a
priori, based on the relative costs of making each
kind of error, and the critical effect size is the
most crucial element. Keough & Mapstone (1995)
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have incorporated this idea into a framework for
designing environmental monitoring programs,
and included a worked example. Downes et al.
(2001) have also advocated scalable decision crite-
ria for assessing environmental impact in fresh-
water ecosystems. The logic of considering costs of
making errors in statistical decision making is
much closer to the Bayesian approach to making
decisions, although Bayesians eschew the long-
run frequency view of probability (Section 3.7).

3.3 | Other testing methods

The statistical tests most commonly used by biol-
ogists, and the tests based on the t distribution we
have just described, are known as parametric
tests. These tests make distributional assumptions
about the data, which for t tests are that the dis-
tributions of the populations from which the
samples came are normal. Most textbooks state
that parametric tests are robust to this assump-
tion, i.e. the sampling distribution of the t statis-
tic still follows the appropriate mathematical
distribution even if the variable has a non-normal
distribution. This means that the conclusions
from the test of H; are still reliable even if the
underlying distribution is not perfectly normal.
This robustness is limited, however, and the
assumption of normality (along with other
assumptions inherent in all statistical tests — see
Section 3.1.6) should always be checked before
doing a parametric analysis.

3.3.1 Robust parametric tests

A number of tests have been developed for the H
that u, = w, which do not assume equal variances.
For example, there are approximate versions of
the t test (called variously the Welch test,
Welch-Aspin test, the Satterthwaite-adjusted t
test, Behrens-Fisher test, separate variances t test),
which are available in most statistical software.
The most common version of this test recalculates
the df for the t test as (Hays 1994):

(5,/V'1; + 5,/ V11,)? ,
(s,/Vn)2/(ny + 1) + (s,/ Vny)?/(ny + 1)

(3.8)

This results in lower df (which may not be an
integer) and therefore a more conservative test.

Such a test is more reliable than the traditional ¢
test when variances are very unequal andjor
sample sizes are unequal.

Coombs et al. (1996) reviewed all the available
tests for comparing two population means when
variances may be unequal. They indicated that the
Welch test is suitable when the samples come
from normally distributed populations but rec-
ommended the Wilcox H test, based on M-
estimators and bootstrapped estimates of
variance (Chapter 2), for skewed distributions.
Unfortunately, this test is not available in most
software.

Some common types of null hypotheses can
also be tested with non-parametric tests. Non-
parametric tests do not assume that the underly-
ing distribution of the population(s) from which
the samples came is normal. Before looking at
“classical” non-parametric tests based on ranks,
let’s consider another type of statistical test called
a randomization test.

3.3.2 Randomization (permutation) tests
These tests resample or reshuffle the original data
many times to generate the sampling distribution
of a test statistic directly. Fisher (1935) first pro-
posed that this method might be suitable for
testing hypotheses but, without computers, could
only analyze very small data sets. To illustrate ran-
domization tests, we will revisit the example
described in Section 3.1.5 where Ward & Quinn
(1988) wished to test the H that there is no differ-
ence between the mussel and littorinid zones in
the mean number of eggs per capsule of L.vinosa.
The steps in the randomization test are as follows
(Manly 1997).

1. Calculate the difference between the mean
numbers of eggs per capsule of the two groups
(D).

2. Randomly reassign the 79 observations so
that 37 are in the littorinid zone group and 42
are in the mussel zone group and calculate the
difference between the means of the two groups
(D,).

3. Repeat this step a large number of times,
each time calculating the D, How many
randomizations? Manly (1997) suggested 1000
times for a 0.05 test and 5000 times for a
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0.01 test. With modern computer power, these
numbers of randomizations only take a few
seconds.

4. Calculate the proportion of all the Ds that
are greater than or equal to D, (the difference
between the means in our samples). This is the
“Pvalue” and it can be compared to an a prioti
significance level (e.g. 0.05) to decide whether to
reject the Hy or not (Neyman-Pearson tradition),
or used as a measure of “strength of evidence”
against the H, (Fisher tradition - see Manly
1997).

The underlying principle behind randomiza-
tion tests is that if the null hypothesis is true, then
any random arrangement of observations to
groups is equally possible (Crowley 1992).
Randomization tests can be applied to situations
where we are comparing groups or testing
whether a set of observations occurs in a random
order (e.g. time series). They are particularly
useful when analyzing data for which the distri-
bution is unknown (Potvin & Roff 1993), when
random sampling from populations is not pos-
sible (e.g. we are using data that occurred oppor-
tunistically, such as museum specimens - see
Manly 1997) or perhaps when other assumptions
such as independence of observations are ques-
tionable, as when testing for temporal trends
(Manly 1997). There are some potential interpreta-
tion problems with randomization tests that
users should be aware of. First, they involve resam-
pling the data to generate a probability distribu-
tion of the test statistic. This means that their
results are more difficult to relate to any larger
population but the positive side is that they are
particularly useful for analyzing experiments
where random sampling is not possible but ran-
domization of observations to groups is used
(Ludbrook & Dudley 1998). Crowley (1992, p. 432)
argued that the difficulty of making inferences to
some population is a problem “of greater theoret-
ical than applied relevance” (see also Edgington
1995), particularly as randomization tests give
similar Pvalues to standard parametric tests when
assumptions hold (Manly 1997). Manly (1997) also
did not see this as a serious problem and pointed
out that one of the big advantages of randomiza-
tion tests is in situations when a population is not

relevant or the whole population is effectively
measured. Second, the H, being tested then is not
one about population parameters, but simply that
there is no difference between the means of the
two groups, i.e. is the difference between group
means “greater then we would expect by chance”.
Finally, the P value is interpreted differently from
the usual “classical” tests. In randomization tests,
the Pvalue is the proportion of possible data rear-
rangements (e.g. between two groups) that are
equal to, or more extreme than, the one we
observed in our sample(s). Interestingly, because
the P value is determined by a (re)sampling
process, confidence intervals for the Pvalue can be
determined (Crowley 1992).

Randomization tests for differences between
group means are not free of assumptions. For
example, randomization tests of the H; of no dif-
ference between means are likely to be sensitive to
differences in variances (Boik 1987, Stewart-Oaten
et al. 1992). Indeed, randomization tests of loca-
tion (e.g. mean) differences should be considered
to have an assumption of similar distributions in
the different samples, and transformations used
where appropriate (Crowley 1992). So these tests
should not be automatically applied to overcome
problems of variance heterogeneity.

Manly (1997) is an excellent introduction to
randomization tests from a biological perspective
and Crowley (1992) critically summarized many
applications of randomization tests in biology.
Other good references for randomization tests are
Edgington (1995) and Noreen (1989).

3.3.3 Rank-based non-parametric tests

Statisticians have appreciated the logic behind
randomization tests for quite a long time, but the
computations involved were prohibitive without
computers. One early solution to this problem was
to rank the observations first and then randomize
the ranks to develop probability distributions of a
rank-based test statistic. Ranking the observations
has two advantages in this situation. First, deter-
mining the probability distribution of a rank-
based test statistic (e.g. sum of the ranks in each
sample) by randomization is relatively easy,
because for a given sample size with no ties, the
distribution is identical for any set of data. The
critical values for such distributions are tabled in
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many statistics books. In contrast, determining
the probability distribution for a test statistic (e.g.
difference between means) based on randomizing
the original observations was not possible before
computers except for small sample sizes. Second,
using the ranks of the observations removes the
assumption of normality of the underlying distri-
bution(s) in each group, although other assump-
tions may still apply.

Although there is a wide range of rank-based
non-parametric tests (Hollander & Wolfe 1999,
Siegel & Castellan 1988, Sprent 1993), we will only
consider two here. First, consider a test about dif-
ferences between two populations. The Mann-
Whitney-Wilcoxon test is actually two indepen-
dently developed tests (Mann-Whitney and
Wilcoxon) that produce identical results. The H,
being tested is that the two samples come from
populations with identical distributions against
the H, that the samples come from populations
which differ only in location (mean or median).
The procedure is as follows.

1. Rank all the observations, ignoring the
groups. Tied observations get the average of their
ranks.

2. Calculate the sum of the ranks for both
samples. If the H is true, we would expect a
similar mixture of ranks in both samples (Sprent
1993).

3. Compare the smaller rank sum to the
probability distribution of rank sums, based on
repeated randomization of observations to
groups, and test in the usual manner.

4. For larger sample sizes, the probability
distribution of rank sums approximates a
normal distribution and the z statistic can be
used. Note that different software can produce
quite different results depending on whether the
large-sample approximation or exact
randomization methods are used, and also how
ties are handled (Bergmann et al. 2000).

Second, we may have a test about differences
based on paired observations. For paired samples,
we can use the Wilcoxon signed-rank test to test
the H; that the two sets of observations come from
the same population against the H, that the pop-
ulations differ in location (mean or median). This
test is actually a test of a single population param-

eter, analyzing the paired differences, and the
procedure is as follows.

1. Calculate the difference between the obser-
vations for each pair, noting the sign of each dif-
ference. If H, is true, we would expect roughly
equal numbers of + and — signs.

2. Calculate the sum of the positive ranks and
the sum of the negative ranks.

3. Compare the smaller of these rank sums to
the probability distribution of rank sums, based
on randomization, and test in the usual manner.

4. For larger sample sizes, the probability dis-
tribution of rank sums follows a normal distribu-
tion and the z statistic can be used, although the
concern of Bergmann et al. (2000) about differ-
ences between the large sample approximation
and exact methods for the
Mann-Whitney-Wilcoxon test may also apply to
the Wilcoxon signed-rank test.

Another non-parametric approach using
ranks is the class of rank transformation tests.
This is a more general approach that theoreti-
cally can be applied to any analysis for which
there is a parametric test. The data are trans-
formed to ranks and then these ranks are ana-
lyzed using the appropriate parametric analysis.
Note that this technique is conceptually no differ-
ent to transforming data to logs to meet the
assumptions of a parametric test (Chapter 4) and
is therefore not a true non-parametric test (Potvin
& Roff 1993). The rank transform approach will
generally give the same answer as the appropri-
aterank-based test, e.g. rank transform t testis the
same as the Mann-Whitney-Wilcoxon test
(Zimmerman & Zumbo 1993), although if there
are a large number of ties the results will vary a
little. Tests based on the rank transform method
have also been used for various linear model ana-
lyses (Chapters 5, 8 and 9).

Although these non-parametric tests of loca-
tion differences do not assume a particular shape
(e.g. normal) of the underlying distributions, they
do assume that the distributions of the popula-
tions are similar, so the assumption of equal
variances still applies (Crowley 1992, Manly 1997,
Sprent 1993, Stewart-Oaten et al. 1992,
Zimmerman & Zumbo 1993). The common
strategy in biological research to use rank-based
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non-parametric tests to overcome variance hetero-
geneity is inappropriate. Variance heterogeneity
in the two-sample hypothesis test should be dealt
with by using a robust test, such as the Welch ¢ test
(Section 3.3.1) or by transforming the data to
remove the relationship between the mean and
variance (Chapter 4).

These non-parametric tests generally have
lower power than the analogous parametric tests
when parametric assumptions are met, although
the difference in power is surprisingly small (e.g.
<5% difference for Mann-Whitney-Wilcoxon test
versus t test) given the former’s use of ranks rather
than the original data (Hollander & Wolfe 1999).
With non-normal distributions, the non-paramet-
ric tests do cope better but because normality by
itselfis the least critical of all parametric assump-
tions, its hard to recommend the rank-based tests
except in situations where (i) the distributions are
very weird, and transformations do not help, or
(ii) outliers are present (see Chapter 4). It is some-
times recommended that if the data are not meas-
ured on a continuous scale (i.e. the data are
already in the form of ranks), then tests like the
Mann-Whitney-Wilcoxon are applicable. We dis-
agree because such a test is equivalent to applying
a parametric test (e.g. t test) to the ranks, a much
simpler and more consistent approach. It is also
worth noting that the rank-based randomization
tests don’t really have any advantage over random-
ization tests based on the original data, except in
terms of computation (which is irrelevant with
modern computer power) - see Ludbrook &
Dudley (1998). Both have assumptions of equal dis-
tributions in the two groups, and therefore equal
variances, and neither is very sensitive to non-nor-
mality.

Rank-based tests have been argued to be more
powerful than parametric tests for very skewed
(heavy tailed) distributions. However, this is pri-
marily because rank-based tests deal with outliers
more effectively (Zimmerman & Zumbo 1993).
Indeed, outliers cause major problems for para-
metric tests and their identification should be a
priority for exploratory data analysis (Chapter 4).
The alternative to rank-based tests is to remove or
modify the outlying values by trimming or win-
sorizing (Chapter 2) and using a parametric test.
Note that non-parametric tests are not immune to

outliers; they are just not affected as much as par-
ametric tests (Zimmerman & Zumbo 1993).

3A‘PNMMewﬁmg

3.4.1 The problem
One of the most difficult issues related to statisti-
cal hypothesis testing is the potential accumula-
tion of decision errors under circumstances of
multiple testing. As the number of tests
increases, so does the probability of making at
least one Type I error among the collection of
tests. The probability of making one or more Type
I errors in a set (or family) of tests is called the
family-wise Type I error rate, although Day &
Quinn (1989) and others have termed it experi-
ment-wise Type I error rate because it is often
used in the context of multiple comparisons of
means when analyzing experimental data. The
problem of increasing family-wise Type I error
rate potentially occurs in any situation where
there are multiple significance tests that are con-
sidered simultaneously. These include pairwise
comparisons of treatment groups in an experi-
ment (Chapter 8), testing pairwise correlations
between multiple variables recorded from the
same experimental or sampling units (Rice 1989)
or multiple univariate analyses (e.g. t tests) of
these variables.

If the tests are orthogonal (i.e. independent of
each other), the family-wise Type I error can be
calculated:

1-(1—a) (3.9)

where «is the significance level (e.g. 0.05) for each
test and c is the number of tests. For example,
imagine having a random sample from a number
of populations and we wish to test the Hgs that
each independent pair of population means is
equal. We keep these comparisons independent by
not using the same population in more than one
test. As the number of populations we wish to
compare increases, so does the number of pair-
wise comparisons required and the probability of
at least one Type I error among the family of tests
(Table 3.1). If the tests are non-orthogonal, then
the family-wise Type I error rate will be lower
(Ramsey 1993), but cannot be calculated as it will
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Table 3.1 ‘ Accumulation of probability of at least
one Type 1 error among a “family” of tests

Family-wise probability of at

No. of tests least one Type | error
3 0.14

10 0.40

45 0.90

depend on the degree of non-independence
among the tests.

The different approaches for dealing with the
increased probability of a Type I error in multiple
testing situations are based on how the Type I
error rate for each test (the comparison-wise Type
I error rate) is reduced to keep the family-wise
Type I error rate at some reasonable level. Each
test will then have a more stringent significance
level but as a consequence, much reduced power
if the H is false. However, the traditional priority
of recommendations for dealing with multiple
testing has been strict control of family-wise Type
I error rates rather than power considerations.
Before describing the approaches for reducing the
Type I error rate for each test to control the family-
wise Type I error rate, we need to consider two
other issues. The first is how we define the family
of tests across which we wish to control the Type
I error rate and the second is to what level should
we control this error rate.

What comprises a family of tests (Shaffer 1995,
Hancock & Klockars 1996) for determining error
rates is a difficult decision. An extreme view, and
not one to which we subscribe, might be to define
a family as all the tests a researcher might doin a
lifetime (see Maxwell & Delaney 1990 and Miller
1981 for discussion), and try to limit the Type I
error rate over this family. Controlling error rates
over such a family of tests has interesting and
humorous implications for biologists’ career
structures (Morrison 1991). More generally, a
family is defined as some collection of simultane-
ous tests, where a number of hypotheses are tested
simultaneously using a single data set from a
single experiment or sampling program.

We agree with Hochberg & Tamhane (1987)
that unrelated hypotheses (in terms of intended

use or content) should be analyzed separately,
even if they are not independent of each other. We
recommend that each researcher, in a specific
analytical situation, must make an a priori deci-
sion about what a family of tests is; this decision
should be based, at least in part, on the relative
importance of Type I versus Type II errors.

The other issue is what level to set for family-
wise error rate. It is common practice for biolo-
gists to set the family-wise Type I error rate to the
same level as they use for individual comparisons
(e.g.0.05). This is not easy to justify, especially as it
reduces the comparison-wise Type I error rate to
very low levels, increasing the probability of Type
I errors if any of the H s are false. So this is a very
conservative strategy and we should consider
alternatives. One may be to use a procedure that
controls the family-wise error rate but to set a sig-
nificance level above 0.05. There is nothing sacred
about 0.05 (see Section 3.6) and we are talking
here about the probability of any Type I error in a
collection of tests. Setting this significance level a
priori to 0.10 or higher is not unreasonable.
Another approach is the interesting proposal by
Benjamini & Hochberg (1995). They also argued
that control of family-wise Type I error rate may
be too severe in some circumstances and recom-
mended controlling the false discovery rate (FDR).
This is the expected proportion of Type I errors
among the rejected hypotheses.

3.4.2 Adjusting significance levels and/or P
values

Whatever philosophy we decide to use, there will
be situations when some control of family-wise
Type I error rate will be required. The procedures
we will describe here are those which are indepen-
dent of the test statistic used and are based on
adjusting the significance levels for each test
downwards to control the family-wise Type I error
rate. Note that instead of adjusting significance
levels, we could also adjust the P values and use
the usual significance levels; the two approaches
are equivalent.

Bonferroni procedure

This is a general procedure for adjusting signifi-
cance levels to control Type I error rates in multi-
ple testing situations. Each comparison is tested at
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afc where « is the nominated significance level
(e.g. 0.05) and c is the number of comparisons in
the family. It provides great control over Type I
error but is very conservative when there are lots
of comparisons, i.e. each comparison or test will
have little power. The big advantage is that it can
be applied to any situation where we have a family
of tests, so it has broad applicability.

Dunn-Sidak procedure

This is a modification of the Bonferroni procedure
that slightly improves power for each comparison,
which is tested at 1 — (1 — )/~

Sequential Bonferroni (Holm 1979)

This is a major improvement on the Bonferroni
procedure where the c test statistics (F, t, etc.) or P
values are ranked from largest to smallest and the
smallest P value is tested at «fc, the next at
af(c—1), the next at af(c—2), etc. Testing stops
when a non-significant result occurs. This proce-
dure provides more power for individual tests and
is recommended for any situation in which the
Bonferroni adjustment is applicable.

Hochberg (1988) described a similar procedure
that works in reverse. The largest P value is tested
at a, rejecting all other tests if this one is signifi-
cant. If not significant, the next largest is tested
against «/2, and so on. Shaffer (1995) stated that
Hochberg’s procedure is slightly more powerful
than Holm’s.

Resampling-based adjusted P values

Westfall & Young (1993a,b) have developed an
interesting approach to P value adjustment for
multiple testing based around resampling. They
defined the adjusted P value as:

Py=PminP_ =P |H,) (3.10)

where P_ . is the random P value for any test.
Basically, their procedure measures how extreme
any particular P value is out of a list of P values
from multiple tests, assuming all Hys are true.
Westfall & Young (1993b) argue that their proce-
dure generalizes to Holm’s and other methods as
special cases and also accounts for correlations

among the P values.

3.5 | Combining results from
statistical tests

We sometimes need to evaluate multiple studies
in which statistical analyses have been used to test
similar hypotheses about some biological process,
such as the effect of a particular experimental
treatment. Our interest is in summarizing the
size of the treatment effect across studies and also
testing an H about whether there is any overall
effect of the treatment.

3.5.1 Combining P values

Fisher (1954) proposed a method for combining
the P values from a number of independent tests
of the same hypothesis, even though different stat-
istical procedures, and therefore different Hgs,
may have been used (see also Hasselblad 1994,
Manly 2001, Sokal & Rohlf1995). For cindependent
tests, each producing a Pvalue for the test of a com-
mensurate Hy, the P values can be combined by:

C
-2 In(P) (3.11)
i=1

which is distributed as a y* with 2c degrees of
freedom. The overall H is that all the Hs in the
collection of tests are true (Sokal & Rohlf 1995). If
we reject the overall H, we conclude that there is
an overall effect of whatever treatment or contrast
was commensurate between the analyses.
Alternative methods, including ones that weight
the outcomes from the different tests differently,
are described in Becker (1994) and Manly (2001).

3.5.2 Meta-analysis

The limitation of Fisher’s method is that P values
are only one piece of information that we use for
drawing conclusions from a statistical test. They
simply indicate whether we would reject the H  at
the chosen level of significance. The biological
interpretation of that result would depend on the
size of the difference or effect, and the sample
sizes, so a better approach would incorporate
effect sizes, the variances of the effect sizes and
sample sizes when combining results from differ-
ent tests. Such a more sophisticated approach is
called meta-analysis. Meta-analysis is used primar-
ily when reviewing the literature on a particular
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topic, e.g. competition between organisms
(Gurevitch et al. 1992), and some overall summary
of the conclusions from different studies is
required.

Basically, meta-analysis calculates, for each
analysis being incorporated, a measure of effect
size (Rosenthal 1994, see also Chapters 7 and 8)
that incorporates the variance of the effect. These
effect sizes from the c different tests are averaged
using the sum of the inverse of the variance of
each effect size (“inverse variance weighted
average”: Hasselblad 1994, p. 695). This average
effect size can be used as a summary measure of
the overall effect of the process being investigated.

Most meta-analyses are based on fixed effects
models (see also Chapter 8) where we are assum-
ing that the set of analyses we are combining
share some true effect size for the process under
investigation (Gurevitch & Hedges 1993). Under
this model, the test of H; that the true effect size
is zero can be tested by constructing confidence
intervals (based on the standard normal distribu-
tion) for the true average effect size (Gurevitch &
Hedges 1993) and seeing if that confidence inter-
val includes zero at the chosen level (e.g. 95%). We
can also calculate a measure of homogeneity (Q)
for testing whether all ¢ effect sizes are equal. Q is
the sum of weighted (by the inverse of the vari-
ance of each effect size) squared differences
between each effect size and the inverse variance
weighted average of the effect sizes. It sounds
messy but the computations are quite simple
(Gurevitch & Hedges 1993, Hasselblad 1994). Q is
distributed as a y? with ¢—1 degrees of freedom.
In some cases, the analyses being combined fall
into different a priori groups (e.g. studies on com-
petition in marine, freshwater and terrestrial
environments) and within-group and between-
group measures of homogeneity can be calculated
(analogous to partitioning the variance in an
ANOVA - Chapter 8).

Meta-analysis can be used in any situation
where an effect size, and its variance, can be cal-
culated so it is not restricted to continuous vari-
ables. Nor is it restricted to fixed effects models,
with both random and mixed models possible
(Gurevitch & Hedges 1993; see also Chapters 8 and
9). Meta-analyses do depend on the quality of the
literature being surveyed. For some studies, not

enough information is provided to measure an
effect size or its variance. There is also the issue of
quality control, ensuring that the design of the
studies we have used in a meta-analysis are accept-
able, and whether we can combine studies based
on experimental manipulations versus those
based on weaker survey designs. Nonetheless,
meta-analysis is increasing in use in the biological
literature and some appreciation of its strengths
and weaknesses is important for biologists. One
important weakness worth noting is the “file-
drawer problem”. The database of published
papers is highly censored, with non-significant
results underrepresented, so a meta-analysis of
published work should include careful thought
about what “population” these published studies
represent.

Two detailed texts are Hedges & Olkin (1985)
and the volume edited by Cooper & Hedges (1994),
although excellent reviews from a biological per-
spective include Gurevitch & Hedges (1993) and
Hasselblad (1994).

3.6 | Critique of statistical

hypothesis testing

Significance testing, especially null hypothesis
significance testing, has been consistently criti-
cized by many statisticians (e.g. Nester 1996,
Salsburg 1985) and, in particular, in the recent
psychological and educational literature (e.g.
Carver 1978, 1993, Cohen 1990, 1994, Shaver 1993,
Harlow et al. 1997 and chapters therein). Biologists
have also questioned the validity of statistical
hypothesis testing (e.g. Johnson 1999, Jones &
Matloff 1986, Matloff 1991, Stewart-Oaten 1996). A
thorough review of this literature is beyond the
scope of our book but a brief discussion of these
criticisms is warranted.

3.6.1 Dependence on sample size and
stopping rules

There is no question that results for classical stat-
istical tests depend on sample size (Chow 1988,
Mentis 1988, Thompson 1993), i.e. everything else
being the same, larger sample sizes are more
likely to produce a statistically significant result
and with very large sample sizes, trivial effects
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Box 3.5/ Likelihood inference and the likelihood principle

Oakes (1986) described four major schools of statistical inference, three of which
we describe in this chapter — Fisherian and Neyman—Pearson hypothesis testing,
aspects of both being used by many biologists, and the Bayesian methods based on
subjective probabilities. The fourth school is likelihood inference, based on the like-
lihood function that we outlined in Chapter 2 (see also Royall 1997). There are two
important issues involved. First, the evidence that the observed data provide about
the hypothesis is represented by the likelihood function, the likelihood of observing
our sample data given the hypothesis. Second, the likelihood principle states that
two sets of data that produce proportional likelihood functions are equal in terms
of evidence about the hypothesis. One of the arguments often used against statis-
tical significance tests is that they violate the likelihood principle.

Likelihood inference is really about relative measures of evidence of support
between competing hypotheses so the focus is on the likelihood ratio:

L(data|H,)
L(data|H,)

although, as discussed in Chapter 2, we often convert likelihoods to log-likelihoods
and the result is a ratio of log-likelihoods. The likelihood ratio can be viewed as a
measure of the relative strength of evidence provided by the data in H, compared
with H,.

Likelihoods are relevant to both classical and Bayesian inference. Likelihood
ratios can often be tested in a classical framework because, under many conditions,
the ratio follows a y? distribution. The observed data contribute to a Bayesian ana-
lysis solely through the likelihood function and, with a non-informative, uniform prior,
the Bayesian posterior probability distribution has an identical shape to the likeli-

hood function.

can produce a significant result. However, while
this is true by definition and can cause problems
in complex analyses (e.g. factorial ANOVAs) where
there are numerous tests based on different df,
designing experiments based on a priori power
considerations is crucial here. Rather than arbi-
trarily choosing sample sizes, our sample size
should be based on that necessary to detect a
desired effect if it occurs in the population(s)
(Cohen 1988, 1992, Fairweather 1991, Peterman
1990a,b). There is nothing new in this recommen-
dation and we will consider power analysis
further in Chapter 7.

The sample size problem relates to the stop-
ping rule, how you decide when to stop an experi-
ment or sampling program. In classical
hypothesis testing, how the data were collected
influences how we interpret the result of the test,
whereas the likelihood principle (Box 3.5) requires

the stopping rule to be irrelevant (Oakes 1986).
Mayo (1996) and Royall (1997) provide interesting,
and contrasting, opinions on the relevance of
stopping rules to inference.

3.6.2 Sample space — relevance of data
not observed

A well-documented aspect of P values as measures
of evidence is that they comprise not only the
long-run probability of the observed data if H, is
true but also of data more extreme, i.e. data not
observed. The set of possible outcomes of an
experiment or sampling exercise, such as the pos-
sible values of a random variable like a test statis-
tic, is termed the sample space. The dependence of
statistical tests on the sample space violates the
likelihood principle (Box 3.5) because the same
evidence, measured as likelihoods, can produce
different conclusions (Royall 1997). The counter



CRITIQUE OF STATISTICAL HYPOTHESIS TESTING

53

argument, detailed by Mayo (1996), is that likeli-
hoods do not permit measures of probabilities of
error from statistical tests. Measuring these errors
in a frequentist sense is crucial to statistical
hypothesis testing.

3.6.3 P values as measure of evidence
Cohen (1994) and others have argued that what we
really want to know from a statistical test is the
probability of H, being true, given our sample
data, i.e. P(H,|data). In contrast, Mayo (1996) pro-
posed that a frequentist wants to know what is
“the probability with which certain outcomes
would occur given that a specified experiment is
performed” (p. 10). What the classical significance
test tells us is the long-run probability of obtain-
ing our sample data, given that Hj is true, i.e.
P(data|Hy). As Cohen (1994) and others have
emphasized, these two probabilities are not inter-
changeable and Bayesian analyses (Section 3.7),
which provide a measure of the P(H,|data), can
produce results very different from the usual sig-
nificance test, especially when testing two-tailed
“point” hypotheses (Berger & Sellke 1987). Indeed,
Berger & Sellke (1987) presented evidence that the
Pvalue can greatly overstate the evidence against
the H, (see also Anderson 1998 for an ecological
example). We will discuss this further in the next
section. In reply to Berger & Sellke (1987), Morris
(1987) argued that differences between P values
and Bayesian posteriors will mainly occur when
the power of the test is weak at small sample sizes;
otherwise P values work well as evidence against
the H,. Reconciling Bayesian measures and P
values as evidence against the H,, is still an issue of
debate among statisticians.

3.6.4 Null hypothesis always false

Cohen (1990) and others have also argued that
testing an H is trivial because the H is always
false: two population means will never be exactly
the same, a population parameter will never be
exactly zero. In contrast, Frick (1995) has pointed
out an H; can be logically true and illustrated this
with an ESP experiment. The H, was that a person
in one room could not influence the thoughts of
a person in another room. Nonetheless, the argu-
ment is that testing Hs is pointless because most
common Hs in biology, and other sciences, are

always false. Like Chow (1988, 1991) and Mulaik et
al. (1997), we argue that the H is simply the com-
plement of the research hypothesis about which
we are trying to make a decision. The H; repre-
sents the default (or null) framework that
“nothing is happening” or that “there is no effect”
(3.1.1). A rejection of the H; is not important
because we thought the H might actually be true.
It is important because it indicates that we have
detected an effect worth reporting and investigat-
ing further. We also emphasise that Hys do not
have to be of the “no effect” form. There may be
good reasons to test H s that a parameter equals a
non-zero value. For example, in an environmental
monitoring situation, we might compare control
and impact locations to each other, and look for
changes through time in this control-impact dif-
ference. We might find that two locations are
quite different from each other as a result of
natural processes, but hypothesize that a human
activity will change that relationship.

3.6.5 Arbitrary significance levels

One long-standing criticism has been the arbitrary
use of &= 0.05 as the criterion for rejecting or not
rejecting H,. Fisher originally suggested 0.05 but
later argued against using a single significance
level for every statistical decision-making process.
The Neyman-Pearson approach also does not rely
on a single significance level (a), just a value
chosen a priori. There is no reason why all tests have
to be done with a significance level fixed at 0.05.
For example, Day & Quinn (1989) have argued that
there is nothing sacred about 0.05 in the context of
multiple comparisons. Mapstone (1995) has also
provided a decision-making framework by which
the probabilities of Type I and Type I errors are set
based on our assessment of the cost of making the
two types of error (Section 3.2.2). The point is that
problems with the arbitrary use of 0.05 as a signifi-
cance level are not themselves a reason to dismiss
statistical hypothesis testing. Irrespective of which
philosophy we use for making statistical decisions,
some criterion must be used.

3.6.6 Alternatives to statistical hypothesis
testing

In the discussions on significance testing, particu-

larly in the psychological literature, three general
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alternatives have been proposed. First, Cohen
(1990, 1994) and Oakes (1986) and others have
argued that interval estimation and determina-
tion of effect sizes (with confidence intervals) is a
better alternative to testing null hypotheses.
While we encourage the use and presentation of
effect sizes, we do not see them as an alternative
to significance testing; rather, they are comple-
mentary. Interpreting significance tests should
always be done in conjunction with a measure of
effect size (e.g. difference between means) and
some form of confidence interval. However, effect
sizes by themselves do not provide a sensible phil-
osophical basis for making decisions about scien-
tific hypotheses.

Second, Royall (1997) summarized the view
that likelihoods provide all the evidence we need
when evaluating alternative hypotheses based on
the observed data. Finally, the Bayesian approach
of combining prior probability with the likeli-
hood function to produce a posterior probability
distribution for a parameter or hypothesis will be
considered in the next section.

In summary, biologists should be aware of the
limitations and flaws in statistical testing of null
hypotheses but should also consider the philo-
sophical rationale for any alternative scheme.
Does it provide us with an objective and consistent
methodology for making decisions about hypoth-
eses? We agree with Dennis (1996), Levin (1998),
Mulaik et al. (1997) and others that misuse of stat-
istical hypothesis testing does not imply that the
process is flawed. When used cautiously, linked to
appropriate hypotheses, and combined with other
forms of interpretation (including effect sizes and
confidence intervals), it can provide a sensible and
intelligent means of evaluating biological hypoth-
eses. We emphasize that statistical significance
does not necessarily imply biological importance
(Box 3.4); only by planning studies and experi-
ments so they have a reasonable power to detect
an effect of biological importance can we relate
statistical and biological significance.

3.7 | Bayesian hypothesis testing

One approach that may provide a realistic alterna-
tive to classical statistical hypothesis testing in

some circumstances is Bayesian methodology. As
we discussed in Chapter 2, the Bayesian approach
views population parameters (e.g. means, regres-
sion coefficients) as random, or at least unknown,
variables. Bayesians construct posterior probabil-
ity distributions for a parameter and use these
probability distributions to calculate confidence
intervals. They also use prior information to
modify the probability distributions of the param-
eters and this prior information may include sub-
jective assessment of prior probabilities that a
parameter may take specific values.

The Bayesian approach rarely incorporates
hypothesis testing in the sense that we have been
discussing in this chapter and Bayesian do not
usually evaluate alternative hypotheses or models
with a reject/accept decision framework. They
simply attach greater or lesser favor to the alterna-
tives based on the shape of the posterior distribu-
tions. Nonetheless, there are some formal ways of
assessing competing hypotheses using Bayesian
methods.

We might, for example, have two or more rival
hypotheses (H,, H,,...H,); in the classical hypothe-
sis testing framework, these would be H, and H,,
although a null hypothesis of no effect would
seldom interest Bayesians. We can then use a
similar version of Bayes theorem as described for
estimation in Chapter 2:

P(data|H,)P(H
P(H, | data) = (422 HOP(H,) a;’jtl:lat;)( )

(3.11)
where P(H, | data) is the posterior probability of H,,
P(H,) is the prior probability of H, and
P(data|H,)/P(data) is the standardized likelihood
function for H,, the likelihood of the data given
the hypothesis. For example, we could test an H,
using the Bayesian approach by:

posterior probability of H, = likelihood

of data given Hprior probability of H, (3.12)

The posterior probability is obtained by integrat-
ing (if the parameter in the H; is continuous) or
summing (if discrete) under the posterior prob-
ability distribution for the range of values of the
parameter specified in the H,. For continuous
parameters, the procedure is straightforward for
directional (composite) hypotheses, e.g. H;: 6 less
than some specified value, but difficult for a point
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(simple) hypothesis, e.g. H;: 6 equals some spec-
ified value, because we cannot determine the
probability of a single value in a probability distri-
bution of a continuous variable.

We can present the relative evidence for H,
and H, as a posterior odds ratio:

P(H,|data)

P(H,|data) (3-13)

i.e. the ratio of the posterior probabilities, given
the data, of the competing hypotheses (Reckhow
1990). This posterior odds ratio is also the product
of the prior odds ratio with a term called the Bayes
factor (Barnett 1999, Ellison 1996, Kass & Raftery
1995, Reckhow 1990). If the two hypotheses were
considered equally likely beforehand, then the
Bayes factor equals the posterior odds ratio. If the
prior odds were different, then the Bayes factor
will differ from the posterior odds ratio, although
it seems that the Bayes factor is primarily used in
the situation of equal priors (Kass & Raftery 1995).
Both the Bayes factor and the posterior odds ratio
measure the weight of evidence against H, in
favor of H,, although the calculations can be
reversed to measure the evidence against H,.

When both hypotheses are simple (i.e. § equals
a specified value), the Bayes factor is just the like-
lihood ratio (Box 3.5):

_ L(data|H,)

~ L(data [Hp) 3.14)

where the numerator and denominator are the
maxima of the likelihood functions for the values
of the parameter specified in the hypotheses.
When one or both hypotheses are more complex,
the Bayes factor is still a likelihood ratio but the
numerator and denominator of Equation 3.14 are
determined by integrating under the likelihood
functions for the range of parameter values spe-
cific in each hypothesis (Kass & Raftery 1995). We
are now treating the likelihood functions more
like probability distributions. For complex
hypotheses with multiple parameters, this inte-
gration may not be straightforward and the
Monte Carlo posterior sampling methods men-
tioned in Chapter 2 might be required.

To choose between hypotheses, we can either
set up a decision framework with an a priori criti-
cal value for the odds ratio (Winkler 1993) or,

more commonly, use the magnitude of the Bayes
factor as evidence in favor of a hypothesis.
A simpler alternative to the Bayes factor is
the Schwarz criterion (or Bayes Information
Criterion, BIC), which approximates the log of the
Bayes factor and is easy to calculate. Ellison (1996)
has provided a table relating different sizes of
Bayes factors (both as log, B and 2log, B) to conclu-
sions against the hypothesis in the denominator
of Equation 3.14. Odds and likelihood ratios will
be considered in more detail in Chapters 13 and
14.

Computational formulae for various types of
analyses, including ANOVA and regression linear
models, can be found in Box & Tiao (1973), while
Berry & Stangl (1996) have summarized other
types of analyses. Hilborn & Mangel (1997) focused
on assessing the fit of models to data using
Bayesian methods. In a fisheries example, they
compared the fit of two models of the dynamics of
hake off the coast of Namibia where one model
was given a higher prior probability of being
correct than the second model. As another
example, Stow et al. (1995) used Bayesian analysis
to estimate the degree of resource dependence (¢)
in lake mesocosms with different ratios of grazing
Daphnia. Using a non-informative prior, a high
value of ¢, indicating much interference among
the predators, had the highest posterior probabil-
ity. Stow et al. (1995) pointed out that, in contrast,
classical statistical analysis would only have
shown that ¢ was significantly different to some
hypothesized value. A third example is Crome et
al. (1996), who compared Bayesian (with a range of
prior distributions) and classical linear model
analyses of a BACI (Before-After-Control-Impact)
design assessing the effects of logging on birds
and mammals in a north Queensland rainforest.
Although the two approaches produced similar
conclusions for some variables, the posterior dis-
tributions for some variables clearly favored some
effect sizes over others, providing more informa-
tion than could be obtained from the classical test
of a null hypothesis.

When classical P values [P(data|H)] are com-
pared to Bayes factors or Bayesian posterior prob-
abilities [P(H,|data)], the differences can be
marked, even when H; and H, are assigned equal
prior probabilities (i.e. considered equally likely).
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Berger & Sellke (1987) and Reckhow (1990) argued
that the differences are due to the P value being
“conditioned” on the sample space, including an
area of a probability distribution that includes
hypothetical samples more extreme than the one
observed (Section 3.6.2). In contrast, the Bayesian
posterior probability is conditioned only on the
observed data through the likelihood. The differ-
ences between P values and Bayesian posterior
probabilities seem more severe for two-tailed
testing problems (Casella & Berger 1987), where
the P value generally overstates the evidence
against H, i.e. it rejects H, when the posterior
probability suggests that the evidence against H,
is relatively weak. Nonetheless, P values will
mostly have a monotonic relationship with poste-
rior probabilities of H, i.e. smaller P values imply
smaller posterior probabilities, and for one-tailed
tests (e.g. ANOVA F-ratio tests), there may be equiv-
alence between the P values and posterior prob-
abilities for reasonable sorts of prior distributions
(Casella & Berger 1987). So it may be that the rela-
tive sizes of P values can be used as a measure of
relative strength of evidence against H,, in the
sense that they are related to Bayesian posterior
probabilities (but see Schervish 1996; also Royall
1997 for alternative view).

One of the main difficulties classical frequen-
tist statisticians have with Bayesian analyses is the
nature of the prior information (i.e. the prior
probabilities). We discussed this in Chapter 2 and
those issues, particularly incorporating subjective
probability assessments, apply just as crucially for
Bayesian hypothesis testing.

So, when should we adopt the Bayesian
approach? We have not adopted the Bayesian phi-
losophy for the statistical analyses described in
this book for a number of reasons, both theoreti-
cal and practical. First, determining prior prob-
abilities is not straightforward in those areas of
biology, such as ecology, where much of the
research is still exploratory and what happened at
other times and places does not necessarily apply
in a new setting. We agree with Edwards (1996)
that initial analyses of data should be “journalis-
tic”, i.e. should not be influenced by our opinions
of what the outcome might be (prior probabilities)
and that there is an argument that using prior
(personal) beliefs in analyses should not be

classified as science. While Carpenter (1990) and
others have argued that the prior probabilities
have relatively little influence on the outcome
compared to the data, this is not always the case
(Edwards 1996). For the types of analyses we will
discuss in this book, any prior information has
probably already been incorporated in the design
components of the experiment. Morris (1987) has
argued that P values are interpretable in well-
designed experiments (and observational studies)
where the power to detect a reasonable H, (effect)
has been explicitly considered in the design
process. Such a well-designed experiment expli-
citly considering and minimizing Type I and Type
II errors is what Mayo (1996) would describe as a
severe test of an hypothesis. Second, treating a
population parameter as a random variable does
not always seem sensible. In ecology, we are often
estimating parameters of real populations (e.g.
the density of animals in an area) and the mean of
that population is a fixed, although unknown,
value. Third, Bayesian analyses seem better suited
to estimation rather than hypothesis testing (see
also Dennis 1996). Some well-known Bayesian
texts (e.g. Box & Tiao 1973, Gelman et al. 1995) do
not even discuss hypothesis testing in their
Bayesian framework. In contrast, the philosophi-
cal position we take in this book is clear. Advances
in biology will be greatest when unambiguously
stated hypotheses are tested with well-designed
sampling or preferably experimental methods.
Finally, the practical application of Bayesian ana-
lyses is not straightforward for complex analyses
and there is little software currently available (but
see Berry 1996, Berry & Stangl 1996 and references
in Ellison 1996). We suspect that if biologists have
enough trouble understanding classical statisti-
cal analyses, Bayesian analyses, with their reli-
ance on defining probability distributions and
likelihood functions explicitly, are more likely to
be misused.

There are some circumstances where the
Bayesian approach will be more relevant. In envi-
ronmental management, managers often wish to
know the probability of a policy having a certain
outcome or the probabilities of different policies
being successful. Whether policies are signifi-
cantly different from one another (or different
from some hypothesized value) is not necessarily
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helpful and Bayesian calculation of posterior
probabilities of competing models might be
appropriate. Hilborn & Mangel (1997) also empha-
size Bayesian methods for distinguishing between
competing models. This in itself has difficulties.
Dennis (1996) correctly pointed out the danger of
various interest groups having input into the
development of prior probabilities, although we
have argued earlier (Section 3.2.2) that such nego-
tiation in terms of error rates in the classical deci-
sion-making framework should be encouraged.
One-off, unreplicated, experiments might also be
more suited to Bayesian analyses (Carpenter 1990)

because the long-run frequency interpretation
doesn’t have much meaning and the probability
of a single event is of interest.

Bayesian approaches are being increasingly
used for analyzing biological data and it is impor-
tant for biologists to be familiar with the
methods. However, rather than simply being an
alternative analysis for a given situation, the
Bayesian approach represents a different philoso-
phy for interpreting probabilities and we, like
Dennis (1996), emphasize that this must be borne
in mind before it is adopted for routine use by
biologists.



Chapter 4

Graphical exploration of data

Graphical displays are very important in the ana-
lysis of data. There are four main functions of
graphical displays in data analysis (Snee & Pfeifer
1983).

* Exploration, which involves checking data for
unusual values, making sure the data meet the
assumptions of the chosen analysis and occa-
sionally deciding what analysis (or model) to
use.

* Analysis, which includes checking assump-
tions but primarily ensuring that the chosen
model is a realistic fit to the data.

* Presentation and communication of results,
particularly summarizing numerical informa-
tion (Chapter 19).

* Graphical aids, which are graphical displays
for specific statistical purposes, e.g. power
curves for determining sample sizes.

We describe graphical displays for the first two
functions here, and the third in our final chapter,
although some graphs are useful for more than
one function, e.g. scatterplots of Y against X are
important exploratory tools and often the best
way of communicating such data to readers.

4.1 | Exploratory data analysis

Before any formal statistical analysis is carried
out, it is essential to do preliminary checks of
your data for the following reasons:

* to reassure yourself that you do actually have
some meaningful data,

* to detect any errors in data entry,

* to detect patterns in the data that may not be
revealed by the statistical analysis that you will
use,

* to ensure the assumptions of the analysis are
met,

* to interpret departures from the assumptions,
and

* to detect unusual values, termed outliers
(Section 4.5).

Exploratory data analysis (EDA) was originally
developed by John Tukey (1977) and extended by
Hoaglin et al. (1983). The aim is basically to
describe and find patterns in your data. A good
introduction for biologists is given by Ellison
(1993).

4.1.1 Exploring samples

It is usually very important to become familiar
with your data before doing any formal analysis.
What sort of numbers are they? How variable are
they? What sort of distribution do they have? For
small data sets, simply examining the raw data in
rows and columns is possible. For large samples,
especially with multiple variables, graphical tech-
niques are much more appropriate.

The most important thing we want to know
about our sample data, and therefore about the
population from which our data came, is the
shape of the distribution. Many of the statistical
procedures we describe in this book assume, to
some extent, that the variables being analyzed
have normal distributions. The best way of exam-
ining the distribution of values of a variable



EXPLORATORY DATA ANALYSIS

59

(@) (b)

,_i '—***** #* 000

Figure 4.1
boxplots for (a) normal and
(b) positively skewed data (n=200).

Histograms and

but to use the observed data to
generate a probability density
curve. This is non-parametric
estimation because we are not
assuming a specific underly-
ing population distribution

T

is with a density plot, where the frequencies
(“densities”) of different values, or categories, are
represented. Many of the graphs described below
are density plots and show the shape of a sample
distribution.

Histogram

One simple way of examining the distribution of
a variable in a sample is to plot a histogram, a
graphical representation of a frequency (or
density) distribution. A histogram is a type of bar
graph (see Chapter 19) grouping the observations
into a priori defined classes on the horizontal axis
and their frequency on the vertical axis (Figure
4.1). If the variable is continuous, the size (width)
of the classes will depend on the number of obser-
vations: more observations mean that more
classes can be used. The values of a discrete vari-
able usually determine the classes. Histograms
are very useful for examining the shape of a distri-
bution of observations (Figure 4.1). For example, is
the distribution symmetrical or skewed? Is it uni-
modal or multimodal? The vertical axis of a histo-
gram can also be relative frequency (proportions),
cumulative frequency or cumulative relative fre-
quency. Unfortunately, histograms are not always
particularly useful in biology, especially experi-
mental work, because we are often dealing with
small sample sizes (<20).

A useful addition to a histogram is to superim-
pose a more formal probability density function.
For example, we could include a normal probabil-
ity distribution function, based on our sample
mean and variance. An alternative approach is to
not stipulate a specific distribution for the sample

for our variable. Our estima-
tion procedure may produce
probability density curves that
are symmetrical, asymmetrical or multimodal,
depending on the density pattern in the observed
data. The standard reference to non-parametric
density estimation is Silverman (1986) and the
most common method is kernel estimation. For
each observation, we construct a window of a
certain width, like the categories in a histogram.
We then fit a symmetric probability density func-
tion (called the kernel) to the observations in each
window; commonly, the normal distribution is
used. The estimated density for any value of our
variable is simply the sum of the estimates from
the density functions in each window. The calcu-
lations are tedious, even when the kernel is a
normal distribution, but kernel density estima-
tors are now common options in statistical soft-
ware.

The window width is sometimes termed the
smoothing parameter because it influences the
shape of final estimated density function. For stan-
dard kernel density estimation, the smoothing
parameter is constant for all observations; other
approaches allow the smoothing parameter to
vary depending on the local density of data
(Silverman 1986). If the smoothing parameter is
low (narrow windows), then the density function
can have numerous modes, many artificial if the
sample size is small. If the smoothing parameter is
high (wide windows), then the density function
will be much smoother but important detail, such
as real modes, might be missed. Clearly, kernel
estimation requires a large sample size so that
there can be enough observations to reliably fit a
probability density function (e.g. normal) in each
window and also enough windows to represent

Y
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[JF- 0B Histogram with normal density function (dashed
line) and kernel density curve or smooth (solid line) for a
positively skewed distribution (n =200). Smoothing

parameter for kernel curve equals one.

the detail present in the data. The choice of the
probability density function fitted in each window
is also determined by the user. Symmetrical distri-
butions such as normal are most common,
although others are possible (Silverman 1986).
For the positively skewed distribution plotted
in Figure 4.2, it is clear that a normal distribution
function based on the sample mean and variance
isnotagood fit to thedata.In contrast, the non-par-
ametric kernel smoothing curve is a much more
realistic representation of the distribution of the
data. The kernel density estimator is particularly
useful as an exploratory tool for describing the
shape of a distribution if we have a sample of rea-
sonable size and may indicate what more formal
parametric distribution should be used in model-
ing (see Chapter 13). Other uses include density

[JF-OI XMW Dotplots and boxplots
of concentrations of (a) SO,2~ and
(b) CI~ for 39 sites from forested
watersheds in the Catskill

estimation for bivariate distributions (see Chapter
5) and for determining density functions for use in
procedures such as discriminant function analysis
(Silverman 1986).

Dotplot

A dotplot is a plot where each observation is rep-
resented by a single dot or symbol, with the value
of the wvariable along the horizontal axis
(Wilkinson 1999a). Dotplots can be used for uni-
variate and bivariate data (Sasieni & Royston
1996); in the latter case, they are like scatterplots.
Univariate dotplots can be very effective ways of
representing single samples because skewness
and unusually large or small values are easy to
detect (Figure 4.3).

Boxplot

A good alternative for displaying the sample
observations of a single variable, when we have
a sample size of about eight or more, is to use a
boxplot (Figure 4.4 and Figure 4.5), also called a
box-and-whiskers plot. The boxplot uses the
median to identify location and 25% quartiles for
the hinges (ends of the box). The difference
between the values of the two hinges is called the
spread. Unusually large or small values (outliers)
are highlighted, although the actual formulae
for identifying outliers vary between different
textbooks and statistical software (commonly, an
outlier is any value greater than 1.5 times the
spread outside the closest hinge). The lines (or
whiskers) extend to the extreme values within
1.5 times the spread beyond the hinges. Boxplots
efficiently indicate several aspects of the sample.

* The middle of the sample is identified by the
median, which is resistant (robust) to unusual
values (Chapter 2).
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* The variability of the sample is indicated by
the distance between the whiskers (with or
without the outliers).

* The shape of the sample, especially whether it is
symmetrical or skewed (Figure 4.1, Figure 4.3).

* The presence of outliers, extreme values very
different from the rest of the sample (Figure 4.3).

Because boxplots are based on medians and
quartiles, they are very resistant to extreme
values, which don’t affect the basic shape of the
plot very much (Chapter 2). The boxplots and dot-
plots for the concentrations of SO,2~ and Cl~ from
39 stream sites in the Catskill Mountains are pre-
sented in Figure 4.3 (Lovett et al. 2000, Chapter 2).
The skewness and outliers present in the sample
of C1™ are clear, in contrast to the symmetrically
distributed SO,*>~. Boxplots can also be used to
graphically represent summaries of data in
research publications (Chapter 19) instead of the
more traditional means (* standard deviations or
similar). This is particularly the case when non-
parametric analyses are used, as the mean might

are also available. Hyndman

(1996) described a modifica-
tion of the boxplot that graphs high-density
regions and shows bimodality very well.
Rousseeuw et al. (1999) described the bagplot, a
bivariate version of the boxplot. Both papers pro-
vided computer code for these plots.

Scatterplot

When we have two variables, each measured on
the same units, we are often interested in the rela-
tionship between the variables. A very important
graphical technique is the scatterplot, where the
vertical axis represents one variable, the horizon-
tal axis represents the other variable and the
points on the plot are the individual observations
(Chapter 5). Scatterplots are very informative,
especially when bordered by boxplots for each var-
iable (Figure 5.3). Nonlinearity and outliers can be
identified, as well as departures from fitted linear
models.

Scatterplot matrix (SPLOM)
An extension of the scatterplot to three or more
variables is the scatterplot matrix (SPLOM). Each
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VW N W Scatterplot matrix for three variables (site
elevation, concentration of 5042‘ and concentration of CI7)
for 39 sites from forested watersheds in the Catskill
Mountains in New York State (data from Lovett et al. 2000).

panel in the matrix represents a scatterplot
between two of the variables and the panels along
the diagonal can indicate which variable forms
the horizontal and vertical axes or show other uni-
variate displays such as boxplots or frequency dis-
tributions (Figure 4.6). Recently, Murdoch & Chow
(1996) illustrated a method for displaying large
correlation matrices (Chapter 15), where different
shaped and angled ellipses represent the magni-
tude of the correlation.

Multivariate plots

There are other, more complex, methods for
graphing multivariate data, including icon plots,
such as Chernoff’s faces and the like (see Chapter
15; also Cleveland 1994, Tufte 1983).

42 | Analysis with graphs

Most of the analyses that we describe in this book
are based on linear models (regression and analy-
sis of variance models). These analyses have impor-
tant assumptions, besides that of random
sampling, that must be assessed before linear
models (or even t tests) can be applied. We discuss
these assumptions in detail in the relevant chap-
ters, but briefly introduce them here in the

context of exploratory data analysis. Sometimes,
these assumptions are not critical because the
result of your analysis (estimation or hypothesis
tests) will be the same even if the assumptions are
violated. Such tests are termed robust. Other
assumptions are critical because the statistical
test may give unreliable results when assump-
tions are violated.

4.2.1 Assumptions of parametric linear
models

The assumptions of linear models apply to the

response (or dependent) variable and also to the

error terms from the fitted model.

Normality

Linear models are based on OLS estimation and
the reliability of interval estimates and tests of
parameters depends on the response variable
being sampled from a population (or populations)
with a normal (Gaussian) distribution. Most ana-
lyses are robust to this assumption, particularly if
sample sizes are equal. Despite this robustness,
the symmetry (roughly equal spreads on each side
of the mean or median) of each sample should be
checked with a graphical procedure like boxplots.
Another way of assessing normality is to use prob-
ability plots (pplots). These plots examine a cumu-
lative frequency distribution of your data, and
compare the shape of that distribution to that
expected of a normal distribution having the
same mean and variance. If your data are normal,
the pplot will be a straight line; various kinds of
skewness, multimodality, etc., will show as a
kinked line. A pplot is shown in Figure 4.7 for a
normal and a lognormal distribution. We don’t
suggest that you do any formal analyses of these
plots, but just look for major kinks. The method is
really only useful for large sample sizes, say 25 or
more; with fewer data points, you’ll always get a
fairly irregular line.

The most common asymmetry in biological
data is positive skewness, i.e. populations with a
long right tail (Figure 4.1). Positive skewness in
biological data is often because the variables have
alognormal (measurement variables) or a Poisson
(count) distribution. In our experience, skewed
distributions are more common than symmetri-
cal distributions. This makes sense when you
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realize that most variables cannot have values less
than zero (lengths, weights, counts, etc.) but have
no mathematical upper limit (although there
may be a biological limit). Their distributions are
usually truncated at zero, resulting in skewness in
the other direction. Transformations of skewed
variables to a different scale (e.g. log or power
transformations) will often improve their normal-
ity (Section 4.3).

The other distribution that will cause major
problems is multimodal, where there are two or
more distinct peaks. There is not much that you
can do about this distribution; both parametric
and non-parametric tests become unreliable. The
best option is to treat each peak of the distribu-
tion as representing a different “population”, and
to split your analyses into separate populations. In
ecological studies, you might get such a problem
with different cohorts in a population of plants or
animals, and be forced to ask questions about the
mean size of the first, second, etc., cohorts. In
physiological or genetic studies, you might get
such a result from using animals or plants of dif-
ferent genotypes. For example, allozymes with
“fast” and “slow” alleles might produce two differ-
ent classes of physiological response, and you
could analyze the response of fast and slow tissues
as an additional factor in your experiment.

One final distribution that often causes prob-
lems in biological data is when we have many
zeroes, and a few non-zero points. In his case, the
distribution is so skewed that no transformation
will normalize the distribution; whatever we do to
these zeros, they will remain a peak in our distri-
bution. Non-parametric approaches will fare little
better, as these values will all be assigned the

1 1 .
=0 20 30 40 50 60 70 so Whether or not a particular

Cl- replicate has a response or
not, and the level of response
when it occurs. We could make two different com-
parisons - does the likelihood of a response differ
between groups (Chapters 13 and 14), regarding
each replicate as zero or not-zero, and a compari-
son of the response between groups, using only
those replicates in which a response occurred.

Homogeneity of variances

Tests of hypotheses in linear models assume that
the variance in the response variable is the same
at each level, or combination of levels, of the pre-
dictor variables. This is a more important assump-
tion than normality although the analyses are
more robust if sample sizes are equal. If the
response variable has a normal distribution, then
unequal variances will probably be due to a few
unusual values, especially if sample sizes are
small. If the response variable has a lognormal or
Poisson distribution, then we would expect a rela-
tionship between the mean (expected or predicted
values from the linear model) and unequal vari-
ances are related to the underlying distribution.
Transformations that improve normality will also
usually improve homogeneity of variances.

There are formal tests for variance homogen-
eity, such as an Fratio test before a t test. Our
reluctance to recommend such tests has already
been discussed in Chapter 3 and also applies to
the use of Cochran’s, Bartlett’s or Levene’s tests
before an ANOVA model (Chapter 8). Less formal,
but more useful, checks include side-by-side box-
plots for multiple groups, which allow a check of
homogeneity of spread of samples (Figure 4.3,
Figure 4.5). Note that plots of residuals from the
model against predicted values are also valuable
exploratory checks (see Chapters 5 and 8).
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Linearity

Parametric correlation and linear regression
analyses are based on straight-line relationships
between variables. The simplest way of checking
whether your data are likely to meet this assump-
tion is to examine a scatterplot of the two vari-
ables, or a SPLOM for more than two variables.
Figure 5.17(a) illustrates how a scatterplot was
able to show a nonlinear relationship between
number of species of invertebrates and area of
mussel clumps on a rocky shore. Smoothing func-
tions through the data can also reveal nonlinear
relationships. We will discuss diagnostics for
detecting nonlinearity further in Chapter 5.

Independence

This assumption basically implies that all the
observations should be independent of each
other, both within and between groups. The most
common situation where this assumption is not
met is when data are recorded in a time sequence.
For experimental designs, there are modifications
of standard analyses of variance when the same
experimental unit is observed under different
treatments or times (Chapters 10 and 11). We will
discuss independence in more detail for each type
of analysis in later chapters.

43| Transforming data

We indicated in the previous section that transfor-
mation of data to a different scale of measure-
ment can be a solution to distributional
assumptions, as well as related problems with var-
iance homogeneity and linearity. In this section,
we will elaborate on the nature and application of
data transformations.

The justification for transforming data to dif-
ferent scales before data analysis is based, at least
in part, on the appreciation that the scales of
measurement we use are often arbitrary. For
example, many measurements we take are based
on a decimal system. This is probably related to
the number of digits we have on our hands; char-
acters from the Simpsons would probably
measure everything in units of base eight! Sokal &
Rohlf (1995) point out that linear (arithmetic)

scale of measurement we commonly use can be
viewed in the same way. For example, we might
measure the length of an object in centimeters
but we could just as easily measure the length in
log units, such as log centimeters. In fact, we
could do so directly just by altering the scale on
our measuring device, like using a slide ruler
instead of a normal linear ruler.

Surprisingly, transformations are quite
common for measurements we encounter in
everyday life. Sometimes, these transformations
simply change the zero value, i.e. adding a con-
stant. Slightly more complex transformations
may change the zero value but also rescale the
measurements by a constant value, e.g. the
change in temperature units from Fahrenheit to
Celsius. Such transformations are linear, in that
the relationship between the original variable
and the transformed variable is a perfect straight
line. Statistical tests of null hypotheses will be
identical, in most cases, for the untransformed
and the transformed data.

More commonly in data analysis, particularly
in biology, are transformations that change the
data in a nonlinear fashion. The most common
transformation is the log transformation, where
the transformed data are simply the logs (to any
base) of the original data. The log transformation,
while nonlinear, is monotonic, i.e. the order of
data values after transformation is the same as
before. A log-transformed scale is often the
default scale for commonly used measurements.
For example, pH is simply the log of the concentra-
tion of H* ions, and most cameras measure aper-
ture as fstops, with each increase in f
representing a halving of the amount of light
reaching the film, i.e. a log, scale.

There are at least five aims of data transforma-
tions for statistical analyses, especially for linear
models:

* to make the data and the model error terms
closer to a normal distribution (i.e. to make the
distribution of the data symmetrical),

* to reduce any relationship between the mean
and the variance (i.e. to improve homogeneity
of variances), often as a result of improving
normality,
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* to reduce the influence of outliers, especially
when they are at one end of a distribution,

* to improve linearity in regression analyses,
and

* to make effects that are multiplicative on the
raw scale additive on a transformed scale, i.e.
to reduce the size of interaction effects
(Chapters 6 and 9).

The most common use of transformations in
biology is to help the data meet the distributional
and variance assumptions required for linear
models. Emerson (1991), Sokal & Rohlf (1995) and
Tabachnick & Fidell (1996) provide excellent
descriptions and justification of transformations.
These authors are reassuring to those who are
uncomfortable about the idea of transforming
their data, feeling that they are “fiddling” the
data to increase the chance of getting a significant
result. A decision to transform, however, is always
made before the analysis is done.

Remember that after any transformation, you
must re-check your data to ensure the transforma-
tion improved the distribution of the data (or at
least didn’t make it any worse!). Sometimes, log or
square root transformations can skew data just as
severely in the opposite direction and produce
new outliers!

A transformation is really changing your
response variable and therefore your formal
null hypothesis. You might hypothesize that
growth of plants varies with density, and formal-
ize that as the H, that the mean growth of plants
at high density equals the mean growth at
low density. If you are forced to log-transform

S or you might say that in the
first case, growth is defined as
mg of weight gained, whereas

after log-transforming, growth is the log-mg

weight gained.

4.3.1 Transformations and distributional
assumptions
The most common type of transformation useful
for biological data (especially counts or measure-
ments) is the power transformation (Emerson
1991, Neter et al. 1996), which transforms Y to Y?,
where p is greater than zero. For data with right
skew, the square root (\/) transformation, where
p=0.5, is applicable, particularly for data that are
counts (Poisson distributed) and the variance is
related to the mean. Cube roots (p = 0.33), fourth
roots (p = 0.25), etc., will be increasingly effective
for data that are increasingly skewed; fourth root
transformations are commonly used for abun-
dance data in ecology when there are lots of zeros
and a few large values (Figure 4.8). For very skewed
data, a reciprocal transformation can help,
although interpretation is a little difficult
because then order of values is reversed.
Transforming data to logarithms (the base is
irrelevant although base 10 logs are more familiar
to readers) will also make positively skewed distri-
butions more symmetrical (Keene 1995; Figure
4.9), especially when the mean is related to the
standard deviation. Such a distribution is termed
lognormal because it can be made normal by log
transforming the values. Use log (Y + ¢) where c is
an appropriate constant if there are zeros in the
data set because you can’t take the log of zero.
Some people use the smallest possible value for
their variable as a constant, others use an arbi-
trarily small number, such as 0.001 or, most
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If skewness is actually negative, i.e. the distri-
bution has a long left tail, Tabachnick & Fidell
(1996) suggested reflecting the variable before
transforming. Reflection simply involves creating
a constant by adding one to the largest value in
the sample and then subtracting each observation
from this constant.

These transformations can be considered part
of the Box-Cox family of transformations:

YA -1

when A#0 (4.1)

log(Y) when A=0 (4.2)

When A=1, we have no change to the distribu-
tion, when A= 0.5 we have the square root trans-
formation, and when A=-1 we have the
reciprocal transformation, etc. (Keene 1995, Sokal
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& Rohlf 1995). The Box-Cox family of transforma-
tions can also be used to find the best transforma-
tion, in terms of normality and homogeneity of
variance, by an iterative process that selects a
value of A that maximizes a log-likelihood func-
tion (Sokal & Rohlf 1995).

When data are percentages or proportions,
they are bounded at 0% and 100%. Power transfor-
mations don’t work very well for these data
because they change each end of the distribution
differently (Emerson 1991). One common
approach is to use the angular transformation,
specifically the arcsin transformation. With the
data expressed as proportions, then transform Y
to sin"(V'Y), and the result is shown in Figure
4.10. It is most effective if Y is close to zero or one,
and has little effect on mid-range proportions.

Finally, we should mention the rank transfor-
mation, which converts the observations to ranks,
as described in Chapter 3 for non-parametric tests.
The rank transformation is different from the
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other transformations discussed here because it is
bounded by one and n, where n is the sample size.
This is an extreme transformation, as it results in
equal differences (one unit, except for ties)
between every pair of observations in this ranked
set, regardless of their absolute difference. It
therefore results in the greatest loss of informa-
tion of all the monotonic transformations.

For common linear models (regressions and
ANOVAs), transformations will often improve nor-
mality and homogeneity of variances and reduce
the influence of outliers. If unequal variances and
outliers are a result of non-normality (e.g. skewed
distributions), as is often the case with biological
data, then transformation (to log or square root
for skewed data) will improve all three at once.

4.3.2 Transformations and linearity
Transformations can also be used to improve line-
arity of relationships between two variables and
thus make linear regression models more appro-
priate. For example, allometric relationships with
body size have a better linear fit after one or both
variables are log-transformed. Note that nonlin-
ear relationships might be better investigated
with a nonlinear model, especially one that has a
strong theoretical justification.

4.3.3 Transformations and additivity

Transformations also affect the way we measure
effects in linear models. For example, let’s say we
were measuring the effect of an experimental
treatment compared to a control at two different
times. If the means of our control groups are dif-
ferent at each time, how we measure the effect of
the treatment is important. Some very artificial
data are provided in Table 4.1 to illustrate the
point. At Time 1, the treatment changes the mean
value of our response variable from 10 to 5 units, a
decrease of 5 units. At Time 2 the change is from 50
to 25 units, a change of 25 units. On the raw scale
of measurement, the effects of the treatments are
very different, butin percentage terms, the effects
are actually identical with both showing a 50%
reduction. Biologically, which is the most mean-
ingful measure of effect, a change in raw scale or a
change in percentage scale? In many cases, the per-
centage change might be more biologically rele-
vant and we would want our analysis to conclude

Table 4.1 ‘ Means for treatment and control
groups for an experiment conducted at two times.
Artificial data and arbitrary units used.

Log-

Untransformed  transformed

Time | Time2 Time | Time 2

Control 10 50
Treatment 5 25

1.000
0.699

1.699
1.398

that the treatment effects are the same at the two
times. Transforming the data to a log scale
achieves this (Table 4.1).

Interpretation of interaction terms in more
complex linear models (Chapter 9) can also be
affected by the scale on which data are measured.
Transforming data to reduce interactions may be
useful if you are only interested in main effects or
you are using a model that assumes no interaction
(e.g.some randomized blocks models; Chapter 10).
Log-transformed data may better reflect the
underlying nature and interpretation of an inter-
action term.

4.4 | Standardizations

Another change we can make to the values of our
variable is to standardize them in relation to each
other. If we are including two or more variables in
an analysis, such as a regression analysis or a more
complex multivariate analysis, then converting
all the variables to a similar scale is often impor-
tant before they are included in the analysis. A
number of different standardizations are pos-
sible. Centering a variable simply changes the var-
iable so it has a mean of zero:

yi:yi_}-/ (43)

This is sometimes called translation (Legendre &
Legendre 1998).

Variables can also be altered so they range
from zero (minimum) to one (maximum).
Legendre & Legendre (1998) describe two ways of
achieving this:
yiziand}/i: Yi ~ Ymin

max Ymax ~ Ymin

(4.4)
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The latter is called ranging and both methods are
particularly useful as standardizations of abun-
dance data before multivariate analyses that
examine dissimilarities between sampling units
in terms of species composition (Chapter 15).

Changing a variable so it has a mean of zero
and a standard deviation (and variance) of one is
often termed standardization:

Yi—y

: (4.5)

Y=
The standardized values are also called z scores
and represent the values of the variable from a
normal distribution with a mean of zero and a
standard deviation of one (Chapter 2).

45 | Outliers

Outliers (or unusual values) are values of a vari-
able that lie outside the usual range of that vari-
able. They can seriously affect the results of
analyses. There are two aspects in dealing with
outliers (i) identifying them, and (ii) dealing with
them. There are formal tests for detecting outliers,
which assume that the observations are normally
distributed. Dixon’s Q test examines the difference
between the outlier and the next closest observa-
tion relative to the overall range of the data (Miller
1993, Sokal & Rohlf 1995), although such tests
have difficulties when there are multiple outliers.
For some linear models (e.g. linear regression),
Cook’s D statistic indicates the influence of each
observation on the result of the analysis (Chapter
5). Outliers are often easier to detect with EDA
methods. For example, boxplots will highlight
unusually large or small values, plots of residuals
from linear models reveal observations a long way
from the fitted model, as will scatterplots with an
appropriate smoothing function.

Once you identify outliers, you should first
check to make sure they are not a mistake, such as
an error typing in your data or in writing values
down. They often show up as impossible values,
e.g.a 3 m ant, a blood pressure that would result
in an animal exploding, etc. If you can classify an
outlier as a mistake, it should be deleted.

The second kind of outlier can occur if
something unusual happened to that particular

observation. Perhaps the tissue preparation took
longer than usual or an experimental enclosure
was placed in an unusual physical location. In this
case, you may have had a priori cause to be suspi-
cious of that value. It is important to keep detailed
notes of your experiments, to identify potential
outliers. If you were suspicious of this observation
a prioti, you may be able to delete such an outlier.

In other cases, you may simply have an anom-
alous value. Although evolutionary biologists
might make their reputations from rare variants,
they are an unfortunate fact of life for the rest of
us. If you have no reason to suspect an outlier as
being a mistake, there are two options. First, you
can re-run the analysis without the outlier(s) to
see how much they influence the outcome of the
analysis. If the conclusions are altered, then you
are in trouble and should try and determine why
those values are so different. Perhaps you are
unwittingly counting two very similar species, or
have a batch of laboratory animals that came from
very different sources. Sometimes thinking about
why particular observations are outliers can stim-
ulate new research questions. Second, use statisti-
cal techniques that are robust to outliers, e.g. for
simple analyses, rank-based tests can provide
some protection (Chapter 3). Don’t forget that out-
liers may be a result of a very skewed underlying
distribution and transformations will often make
the distribution more symmetrical and bring out-
liers more in line with the rest of the sample.

It is crucial that outliers only be deleted when
you have a priori reasons to do so — dropping obser-
vations just because they are messy or reduce the
chance of getting a significant result is unethical,
to say the least. The other unacceptable behaviour
is to run the analysis and then go back and look
for outliers to remove if the analysis is not signifi-
cant.

4.6 Censored and missing data

4.6.1 Missing data

A common occurrence in biology is that, despite
careful field or laboratory work, we might end up
with samples that are missing observations that
were originally planned to be collected. It is very
important to distinguish between missing values
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and zero values. The former are observations
where we did not record a value for a variable (e.g.
there was no response from an experimental unit)
or where we did record a value that went subse-
quently missing (e.g. the observation was lost).
The latter are recorded observations where the
value of the variable was zero, such as the absence
of an organism when we are recording counts.
Zero values are real data and do not represent a
problem in data analysis except that distribu-
tional assumptions might be harder to meet and
some transformations do not deal with zeros (e.g.
logs). Missing observations can cause great diffi-
culties although these problems are much more
severe for multivariate data sets and we will
describe methods for handling missing observa-
tions in those circumstances in Chapter 15. Note
that these methods will be relevant for linear
models with multiple continuous predictor vari-
ables (multiple regression models; Chapter 6).
For univariate analyses described in Chapter 3
and in subsequent chapters on linear models with
categorical predictor variables (ANOVA models),
the main difficulty with missing observations is
that they might result in unequal sample sizes
between the two or more groups that we wish to
compare. These are termed unbalanced data. We
emphasized in Chapter 3 that the results of t tests
comparing two population means are much more
sensitive to assumptions about normality and var-
iance homogeneity when sample sizes are
unequal. There are three general approaches to
handling such missing values. First is to do
nothing because linear model analyses can easily
handle unequal sample sizes. You need to choose
which sum-of'squares to use in factorial models
(Chapter 9) and also to check the assumptions of
the analyses carefully (Sections 4.2.1, Chapters 5, 8,
etc.). There are also difficulties with estimation of
variance components (Chapter 8). Second is to
delete observations from all samples so that the
sample size is equal across groups. It is difficult to
recommend this conservative approach; it wastes
data and sample sizes in biology are often small, so
that power is a real consideration. Third, we can
substitute (impute) replacement values for the
missing observations. These replacement values
mightbe simply the mean of the remaining values,
although these methodsresultin underestimation

of the variances and standard errors of the esti-
mates of parameters based on these imputed
values, i.e. our estimates will be artificially more
precise. More complex imputation methods are
available for multivariate data sets (Chapter 15).

Our preferred option is to do nothing and
analyze the data with unequal sample sizes.
However, equal sample sizes make data analysis
and interpretation much easier, so every effort
must be made during the design and execution
stages to achieve this balance.

4.6.2 Censored (truncated) data

A problem related to missing data is that of cen-
sored or truncated data, where some of the obser-
vations in our data set have values but others are
simply recorded as less than or greater than a par-
ticular value, or between two values. Clearly we
have some information about a censored value
independently of the other values whereas we
have no information about a missing value.
Censored data in biology occur most often in two
types of situation.

When we are measuring the concentration of
some substance in the environment (e.g. air or
water quality monitoring), our field and labora-
tory analytical equipment will have limits to its
sensitivity. Sometimes we might only be able to
record the level of a substance as being below a
detection limit (BDL), the smallest concentration
we are able to record. For example, in their study
of chemical characteristics of 39 streams in the
Catskill Mountains in New York State (see worked
example in Chapter 2, Section 4.1.1), Lovett et al.
(2000) recorded the concentration of ammonium
(NH, ™). Over the course of the three years, 38% of
the values of ammonium concentration were
below their detection limit of 1.1 pmol 171. Data
that are below some detection limit are termed
left censored. Right censoring is also possible, e.g.
counts of organisms in a sampling unit might be
integers up to 100 but larger numbers are simply
recorded as >100. Left censoring of air and water
quality data has been the focus in the literature
(Akritas et al. 1994). When the detection limit is
fixed in advance, such as when we know the limits
of our equipment, and the number of observa-
tions occurring below this limit is random, then
we have Type I censoring.
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The second situation in which censored data
are common is time-to-event, survival or failure-
time analysis (Fox 1993, Lindsey & Ryan 1998). In
these studies, sampling or experimental units are
observed at regular intervals and we usually only
know that an event occurred (e.g. response of
patients in a clinical trial, flowering of plants or
germination of seeds, etc.) after the last recording.
These data are nearly always right censored but
since the observation is actually somewhere in a
time interval, the phrase interval-censored is
often used. Sometimes our variable of interest
might be the time between two events occurring,
e.g. the first introduction of an exotic species to a
system and the first loss of a native species. Both
events will often be interval-censored, i.e. we only
know when each occurred within an interval, and
such data are termed doubly censored. Doubly
censored data are more common in medicine and
clinical trials than in general biological research.
Unfortunately, the area of survival analysis is
beyond the scope of this book (but see Andersen &
Keiding 1996, Fox 1993).

The methods for dealing with censored data
are related to those for dealing with missing data.
We will only provide a brief mention here and
recommend Akritas et al. (1994) for a good intro-
duction to the literature for left-censored environ-
mental data.

Estimation of mean and variance

Three methods have been proposed for dealing
with censored, especially left-censored, data when
the aim is to estimate parameters of a single pop-
ulation.

The first is simple substitution, where the
detection limit, half the detection limit (as used
by Lovett et al. 2000 for their ammonium data) or
zero are substituted for the censored data. A less
common alternative is to assume a distribution
(e.g. normal or uniform) for the values below the
detection limit and substitute random data from
the distribution. Parameters are estimated from
the complete data set, although these estimates
will be biased and the extent of the bias depends
on the actual values of the censored observations,
which, of course, we do not know. As with missing
data, simple substitution is not recommended.

Parametric methods assume a mnormal

distribution and use maximum likelihood
methods to estimate parameters, based primarily
on the non-censored data but incorporating the
size of the censored and non-censored compo-
nents of the sample (Newman et al. 1989). The ML
estimates can also be used to infill the censored
data (Akritas et al. 1994). These ML estimates are
biased but usually more precise than other
methods; restricted ML (REML; see Chapter 8)
methods are also available that reduce the bias.
There are more robust parametric methods, often
based on order statistics (Chapter 2) where the cen-
sored values are infilled from predicted values
from a regression through a normal or lognormal
probability plot fitted to the ordered data. These
methods are termed normal or lognormal prob-
ability regressions (Akritas et al. 1994) or regres-
sions on expected order statistics (Newman et al.
1989). We have to assume that the censored values
are extensions of the same distribution as the
uncensored values. The simulations of Newman et
al.(1989)indicated that ML estimates are best when
distributional assumptions are met, otherwise the
probability regression method should be used.

Comparing two or more populations

There is some consensus in the literature that
non-parametric, rank-based, tests are most appro-
priate for hypothesis testing with censored data.
Millard & Deveral (1988) compared twelve rank
tests for comparing two populations based on
sample data with single censoring and multiple
censoring (the detection limit varies between
groups). For tests like the Mann-Whitney-
Wilcoxon (Chapter 3), values below the detection
limit are given the same tied rank. Millard &
Deverel (1988) recommended score tests (linear
rank tests) for comparing two populations,
whereas Akritas et al. (1994) preferred a form of
the robust Theil-Sen regression (Sprent 1993; see
also Chapter 5) in which the predictor variable
defines the two groups. For more than two groups,
multiple pairwise tests, with a suitable correction
for multiple testing (Chapter 3), are probably the
simplest approach.

Akritas et al. (1994) also describe regression
methods for censored data. For survival data, pro-
portional hazards models can be used. For left-
censored data, various non-parametric regression
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analyses (Chapter 5) are possible, with a form of ¢ Many current statistical packages emphasize

the Theil-Sen method being the simplest. exploratory data analysis, and make it easy to
produce boxplots, residual plots, etc.

* Initial graphical analysis is also very valuable
for identifying outliers, which can have a great

4.7 = General issues and hints for

analysis influence on your analyses.
» Transformations are routinely used to improve
4.7.1 General issues the fit of biological data to the assumptions of
* Graphical analysis of the data should be the the planned statistical analyses, especially
first step in every analysis. Besides allowing linear models.
you to assess the assumptions of your planned * Data transformations should be monotonic, so
analysis, it allows you to get familiar with your that the order of the observations for a

data. variable does not change.



Chapter 5

Correlation and regression

Biologists commonly record more than one vari-
able from each sampling or experimental unit.
For example, a physiologist may record blood pres-
sure and body weight from experimental animals,
or an ecologist may record the abundance of a par-
ticular species of shrub and soil pH from a series
of plots during vegetation sampling. Such data are
termed bivariate when we have two random vari-
ables recorded from each unit or multivariate
when we have more than two random variables
recorded from each unit. There are a number of
relevant questions that might prompt us to collect
such data, based on the nature of the biological
and statistical relationship between the variables.
The next two chapters consider statistical proce-
dures for describing the relationship(s) between
two or more continuous variables, and using that
relationship for prediction. Techniques for detect-
ing patterns and structure in complex multivari-
ate data sets, and simplifying such data sets for
further analyses, will be covered in Chapters
15-18.

5.1 | Correlation analysis

Consider a situation where we are interested in
the statistical relationship between two random
variables, designated Y, and Y,, in a population.
Both variables are continuous and each sampling
or experimental unit (i) in the population has a
value for each variable, designated y,; and y,,.

Land crabs on Christmas Island

Christmas Island in the northeast Indian Ocean is
famous for its endemic red land crabs, Gecarcoidea
natalis, which undergo a spectacular mass migra-

tion back to the ocean each year to release their
eggs. The crabs inhabit the rain forest on the
island where they consume tree seedlings. In a
study on the ecology of the crabs, Green (1997)
tested whether there was a relationship between
the total biomass of red land crabs and the density
of their burrows within 25 m? quadrats (sampling
units) at five forested sites on the island. The full
analyses of these data are provided in Box 5.1.

5.1.1 Parametric correlation model

The most common statistical procedure for meas-
uring the ‘strength’ of the relationship between
two continuous variables is based on distribu-
tional assumptions, i.e. it is a parametric proce-
dure. Rather than assuming specific distributions
for the individual variables, however, we need to
think of our data as a population of y, and y,,
pairs. We now have a joint distribution of two var-
iables (a bivariate distribution) and, analogous to
the parametric tests we described in Chapter 3,
the bivariate normal distribution (Figure 5.1)
underlies the most commonly used measure of
the strength of a bivariate relationship. The bivar-
iate normal distribution is defined by the mean
and standard deviation of each variable and a
parameter called the correlation coefficient,
which measures the strength of the relationship
between the two variables. A bivariate normal dis-
tribution implies that the individual variables
are also normally distributed and also implies
that any relationship between the two variables,
i.e. any lack of independence between the vari-
ables, is a linear one (straightline; see Box 5.2;
Hays 1994). Nonlinear relationships between two
variables indicate that the bivariate normal distri-
bution does not apply and we must use other
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Box 5.1 | Worked example: crab and burrow density on
Christmas Island

Green (1997) studied the ecology of red land crabs on Christmas Island and exam-
ined the relationship between the total biomass of red land crabs and the density
of their burrows within 25 m? quadrats (sampling units) at five forested sites on the
island. We will look at two of these sites: there were ten quadrats at Lower Site (LS)
and eight quadrats at Drumsite (DS). Scatterplots and boxplots are presented in
Figure 5.3. There was slight negative skewness for biomass and burrow density for
LS, and an outlier for burrow density for DS, but no evidence of nonlinearity.
Pearson’s correlation coefficient was considered appropriate for these data
although more robust correlations were calculated for comparison.

Site Correlation type Statistic P value

DS (n=8) Pearson 0.392 0.337
Spearman 0.168 0.691
Kendall 0.036 0.901

LS (n=10) Pearson 0.882 0.001
Spearman 0.851 0.002
Kendall 0.719 0.004

The H, of no linear relationship between total crab biomass and number of
burrows at DS could not be rejected. The same conclusion applies for monotonic
relationships measured by Spearman and Kendall's coefficients. So there was no evi-
dence for any linear or more general monotonic relationship between burrow
density and total crab biomass at site DS.

The H, of no linear relationship between total crab biomass and number of
burrows at LS was rejected. The same conclusion applies for monotonic relation-
ships measured by Spearman and Kendall's coefficients. There was strong evidence
of a linear and more general monotonic relationship between burrow density and
total crab biomass at site LS.

procedures that do not assume this distribution
for quantifying the strength of such relationships
(Section 5.1.2).

Covariance and correlation
One measure of the strength of a linear relation-
ship between two continuous random variables is
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to determine how much the two variables covary,
i.e. vary together. If one variable increases (or
decreases) as the other increases (or decreases),
then the two variables covary; if one variable does
not change as the other variable increases (or
decreases), then the variables do not covary. We
can measure how much two variables covary in a
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distribution for (a) two variables
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Table 5.1 ‘ Parameters used for parametric correlation analysis and their estimates, with standard error for

correlation coefficient. Note that y,, and y,, are the values of the two variables for observation i, y, and y, are the

sample means for the two variables and n is the number of observations

Parameter Estimate

Standard error

n

Z(YH

=) i =)

n/a

Covariance: o
YiY2

n—|
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Correlation: py, ,,
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Scatterplots illustrating o

(a) a positive linear relationship o o
(r=0.72), (b) a negative linear
relationship (r=—0.72), (c) and (d) o
no relationship (r=0.10 and —0.17),
respectively,and (e) a nonlinear o
relationship (r=0.08).

sample of observations by the °
covariance (Table 5.1). The o o o
numerator is the sum of cross- | (d)
products (SSCP), the bivariate o o
analogue of the sum of
squares (SS). The covariance
ranges from —o to +o°. Note
that a special case of the covariance is the sample
variance (see Chapter 2), the covariance of a vari-
able with itself.

One limitation of the covariance as a measure
of the strength of a linear relationship is that its
absolute magnitude depends on the units of the
two variables. For example, the covariance
between crab biomass and number of burrows in
the study of Green (1996) would be larger by a
factor of 10° if we measured biomass in grams
rather than kilograms. We can standardize the
covariance by dividing by the standard deviations
of the two variables so that our measure of the
strength of the linear relationship lies between
—1 and +1. This is called the Pearson (product-
moment) correlation (Table 5.1) and it measures
the “strength” of the linear (straight-line) rela-
tionship between Y, and Y,. If our sample data

comprise a random sample from a population of
(¥,.¥;,) pairs then the sample correlation coeffi-
cient r is the maximum likelihood (ML) estimator
of the population correlation coefficient p; r actu-
ally slightly under-estimates p, although the bias
is small (Sokal & Rohlf 1995). Along with the
means and standard deviations of the two vari-
ables, the population correlation coefficient (p) is
the parameter that defines a bivariate normal dis-
tribution. The sample correlation coefficient is
also the sample covariance of two variables that
are both standardized to zero mean and unit var-
iance (Rodgers & Nicewander 1988; see Chapter 4
for details on standardized variables). Note that r
can be positive or negative (Figure 5.2) with +1 or
-1 indicating that the observations fall along a
straight line and zero indicating no correlation.
The correlation coefficient measures linear



CORRELATION ANALYSIS

75

LS DS

No. of
burrows

—AT . .
o . [ SF-UTY-R I Scatterplots showing
the relationship between number of

o burrows of red land crabs and total
crab biomass in 25 m? quadrats at
° two sites (LS, DS) on Christmas

° Island (Green 1997). Each plot
includes bordered boxplots for each

variable separately.

Total crab biomass (kg)

relationships; two variables may have a strong
nonlinear relationship but not have a large corre-
lation coefficient (Figure 5.2(e)).

Since the sample correlation coefficient is a
statistic, it has a sampling distribution (probabil-
ity distribution of the sample correlation coeffi-
cient based on repeated samples of size n from a
population). When p equals zero, the distribution
of r is close to normal and the sample standard
error of r can be calculated (Table 5.1). When p
does not equal zero, the distribution of r is skewed
and complex (Neter et al. 1996) and, therefore, the
standard error cannot be easily determined
(although resampling methods such as the boot-
strap could be used; see Chapter 2). Approximate
confidence intervals for p can be calculated using
one of the versions of Fisher’s z transformation
(see Sokal & Rohlf 1995) that convert the distribu-
tion of r to an approximately normal distribution.

Hypothesis tests for p

The null hypothesis most commonly tested with
Pearson’s correlation coefficient is that p equals
zero, i.e. the population correlation coefficient
equals zero and there is no linear relationship
between the two variables in the population.
Because the sampling distribution of r is normal
when p equals zero, we can easily test this H) with
a t statistic:

t=— (5.1)

We compare t with the sampling distribution of t
(the probability distribution of t when H is true)
with n—2 df. This is simply a t test that a single
population parameter equals zero (where t equals
the sample statistic divided by the standard error

of the statistic) as described

for the population mean in

Chapter 3. The value of r can
also be compared to the sampling distribution for
r under the H (see tables in Rohlf & Sokal 1969,
Zar 1996). The results of testing the H,, using the
sampling distribution of t or r will be the same;
statistical software usually does not provide a t
statistic for testing correlation coefficients.

Tests of null hypotheses that p equals some
value other than zero or that two population cor-
relation coefficients are equal cannot use the
above approach because of the complex sampling
distribution of + when p does not equal zero. Tests
based on Fisher’s z transformation are available
(Sokal & Rohlf 1995).

Assumptions

Besides the usual assumptions of random sam-
pling and independence of observations, the
Pearson correlation coefficient assumes that the
joint probability distribution of Y, and Y, is bivar-
iate normal. If either or both variables have
non-normal distributions, then their joint distri-
bution cannot be bivariate normal and any rela-
tionship between the two variables might not be
linear. Nonlinear relationships can even arise if
both variables have normal distributions.
Remembering that the Pearson correlation coeffi-
cient measures the strength of the linear relation-
ship between two variables, checking for a
nonlinear relationship with a simple scatterplot
and for asymmetrical distributions of the vari-
ables with boxplots is important. Modern statisti-
cal software produces these plots very easily (see
Figure 5.3).

If the assumption of bivariate normality is
suspect, based on either of the two variables
having non-normal distributions and/or apparent
nonlinearity in the relationship between the two
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ST-OT-R K- W Comparison of 95% 80
confidence ellipses (——) and LS
kernel density estimators (------- ) for 60 -
the relationship between total crab No. of
biomass and number of burrows at burrows
sites LS and DS on Christmas Island 40
(Green 1997).

20 [~

variables, we have two options.

DS

First, we can transform one or 0
both wvariables if they are

skewed and their nature sug-

gests an alternative scale of
measurement might linearize their relationship
(see Chapter 4 and Section 5.3.11). Second, we can
use more robust measures of correlation that do
not assume bivariate normality and linear rela-
tionships (Section 5.1.2).

5.1.2 Robust correlation

We may have a situation where the joint distribu-
tion of our two variables is not bivariate normal,
as evidenced by non-normality in either variable,
and transformations do not help or are inappro-
priate (e.g. the log of a variable does not make
much theoretical sense). We may also be inter-
ested in testing hypotheses about monotonic rela-
tionships or more general associations between
two variables, i.e. one variable increases (or
decreases) as the other increases (or decreases) but
not necessarily in a linear (straight-line) manner.
One general approach for testing monotonic rela-
tionships between variables that does not assume
bivariate normality is to examine the association
of the ranks of the variables; statistical tests based
on rank transformations were described in
Chapter 3.

Spearman’s rank correlation coefficient (r,) is
simply the Pearson correlation coefficient after
the two variables have been separately trans-
formed to ranks but the (y, .y,,) pairing is retained
after ranking. An equivalent computation that
uses the ranked data directly is also available (e.g.
Hollander & Wolfe 1999, Sokal & Rohlf 1995,
Sprent 1993). The null hypothesis being tested is
that there is no monotonic relationship between
Y, and Y, in the population. An alternative
measure is Kendall’s rank correlation coefficient,
sometimes termed Kendall’s tau (7). The value of

Total crab biomass (kg)

Spearman’s r, will be slightly greater than 7 for a
given data set (Box 5.1), and both are more conser-
vative measures than Pearson’s correlation when
distribution assumptions hold. Note that these
non-parametric correlation analyses do not detect
all nonlinear associations between variables, just
monotonic relationships.

5.1.3 Parametric and non-parametric
confidence regions

When representing a bivariate relationship with a
scatterplot, it is often useful to include confidence
regions (Figure 5.4, left). The 95% confidence
region, for example, is the region within which we
would expect the observation represented by the
population mean of the two variables to occur
95% of the time under repeated sampling from
this population. Assuming our two variables
follow a bivariate normal distribution, the confi-
dence band will always be an ellipse centered on
the sample means of Y, and Y, and the orientation
of the ellipse is determined by the covariance (or
the Pearson correlation coefficient). The two
major axes (length and width) of these ellipses are
determined from the variances (or standard devi-
ations) of Y, and Y,,. These axes are used for some
forms of regression analysis (Section 5.3.14) and
also for some statistical procedures that deal with
multivariate data sets, such as principal compo-
nents analysis (Chapters 15 and 16). Note that if
the linear relationship between Y, and Y, is weak,
then the bounds of the ellipse may exceed the
actual and theoretical range of our data, e.g.
include impossible values such as negatives
(Figure 5.4, right).

Sometimes we are not interested in the
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Box 5.2|What does “linear” mean?

The term linear model has been used in two distinct ways. First, it means a model

of a straight-line relationship between two variables. This is the interpretation most

biologists are familiar with. A second, more correct, definition is that a linear model

is simply one in which any value of the variable of interest (y,) is described by a linear

combination of a series of parameters (regression slopes, intercept),and‘no param-
eter appears as an exponent or is multiplied or divided by another parameter”
(Neter et al. 1996, p. 10). Now the term “linear” refers to the combination of
parameters, not the shape of the relationship. Under this definition, linear models
with a single predictor variable can represent not only straight-line relationships
such as Equation 5.3, but also curvilinear relationships, such as the models with poly-

nomial terms described in Chapter 6.

population mean of Y, and Y, but simply want a
confidence region for the observations them-
selves. In Chapter 4, we introduced kernel density
estimators for univariate data (Silverman 1986).
The estimated density for a value of Y is the sum
of the estimates from a series of symmetrical dis-
tributions (e.g. normal, although others are often
used) fitted to groups of local observations. In the
bivariate case, we determine contours that sur-
round regions of high bivariate density where
these contours are formed from summing a series
of symmetrical bivariate distributions fitted to
groups of local paired observations. Note that the
kernel estimators are not constrained to a specific
ellipsoid shape and will often better represent the
pattern of density of observations in our sample
(Figure 5.4, right).

5.2 ‘ Linear models

Most of the analyses in the following chapters are
concerned with fitting statistical models. These
are used in situations where we can clearly specify
a response variable, also termed the dependent
variable and designated Y, and one or more pre-
dictor variables, also termed the independent var-
iables or covariates and designated X, X,, etc. A
value for each response and predictor variable is
recorded from sampling or experimental units in
a population. We expect that the predictor vari-
ables may provide some biological explanation for
the pattern we see in the response variable. The

statistical models we will use take the following
general form:

response variable = model + error (5.2)

The model component incorporates the predictor
variables and parameters relating the predictors
to the response. In most cases, the predictor vari-
ables, and their parameters, are included as a
linear combination (Box 5.2), although nonlinear
terms are also possible. The predictor variables
can be continuous or categorical or a combination
of both. The error component represents the part
of the response variable not explained by the
model, i.e. uncertainty in our response variable.
We have to assume some form of probability dis-
tribution for the error component, and hence for
the response variable, in our model.

Our primary aim is to fit our model to our
observed data, i.e. confront our model with the
data (Hilborn & Mangel 1997). This fitting is basi-
cally an estimation procedure and can be done
with ordinary least squares or maximum likeli-
hood (Chapter 2). We will emphasize OLS for most
of our models, although we will be assuming nor-
mality of the error terms for interval estimation
and hypothesis testing. Such models are called
general linear models, the term “general” refer-
ring to the fact that both continuous and categor-
ical predictors are allowed. If other distributions
are applicable, especially when there is a relation-
ship between the mean and the variance of the
response variable, then ML must be used for esti-
mation. These models are called generalized
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linear models, generalized meaning that other
distributions besides normal and relationships
between the mean and the variance can be accom-
modated.

We nearly always have more than one statisti-
cal model to consider. For example, we might have
the simplest model under a null hypothesis versus
a more complex model under some alternative
hypothesis. When we have many possible predic-
tor variables, we may be comparing a large
number of possible models. In all cases, however,
the set of models will be nested whereby we have
a full model with all predictors of interest
included and the other models are all subsets of
this full model. Testing hypotheses about predic-
tors and their parameters involves comparing the
fit of models with and without specific terms in
this nested hierarchy. Non-nested models can also
be envisaged but they cannot be easily compared
using the estimation and testing framework we
will describe, although some measures of fit are
possible (Hilborn & Mangel 1997; Chapter 6).

Finally, it is important to remember that there
will not usually be any best or correct model in an
absolute sense. We will only have sample data with
which to assess the fit of the model and estimate
parameters. We may also not have chosen all the
relevant predictors nor considered combinations
of predictors, such as interactions, that might
affect the response variable. All the procedure for
analyzing linear models can do is help us decide
which of the models we have available is the best fit
to our observed sample data and enable us to test
hypotheses about the parameters of the model.

5.3 | Linear regression analysis

In this chapter, we consider statistical models that
assume a linear relationship between a continu-
ous response variable and a single, usually contin-
uous, predictor variable. Such models are termed
simple linear regression models (Box 5.2) and
their analysis has three major purposes:

1. to describe the linear relationship between
Yand X,

2. to determine how much of the variation
(uncertainty) in Y can be explained by the linear

relationship with X and how much of this
variation remains unexplained, and

3. to predict new values of Y from new values
of X.

Our experience is that biologists, especially
ecologists, mainly use linear regression analysis
to describe the relationship between Y and X and
to explain the variability in Y. They less commonly
use it for prediction (see discussion in Ford 2000,
Peters 1991).

5.3.1 Simple (bivariate) linear regression
Simple linear regression analysis is one of the
most widely applied statistical techniques in
biology and we will use two recent examples from
the literature to illustrate the issues associated
with the analysis.

Coarse woody debris in lakes

The impact of humans on freshwater environments
is an issue of great concern to both scientists and
resource managers. Coarse woody debris (CWD) is
detached woody material that provides habitat for
freshwater organisms and affects hydrological pro-
cesses and transport of organic materials within
freshwater systems. Land use by humans has
altered the input of CWD into freshwater lakes in
North America, and Christensen et al. (1996) studied
the relationships between CWD and shoreline veg-
etation and lake development in a sample of 16
lakes. They defined CWD as debris greater than
5 cm in diameter and recorded, for a number of
plots on each lake, the density (no. km ') and basal
area (m? km™!) of CWD in the nearshore water, and
the density (no. km™!) and basal area (m?>km™!) of
riparian trees along the shore. They also recorded
density of cabins along the shoreline. Weighted
averages of these values were determined for each
lake, the weighting based on the relative propor-
tion of lake shore with forest and with cabins. We
will use their data to model the relationships
between CWD basal area and two predictor vari-
ables separately, riparian tree density and cabin
density. These analyses are presented in Box 5.3.

Species—area relationships

Ecologists have long been interested in how abun-
dance and diversity of organisms relate to the area
of habitat in which those organisms are found.
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Box 5.3 | Worked example of linear regression analysis:
coarse woody debris in lakes

Christensen et al. (1996) studied the relationships between coarse woody debris
(CWD) and shoreline vegetation and lake development in a sample of |6 lakes in
North America. The main variables of interest are the density of cabins (no. km™"),
density of riparian trees (trees km™"), the basal area of riparian trees (m? km™"),
density of coarse woody debris (no. km™'), basal area of coarse woody debris
(m?km™").

CWD basal area against riparian tree density
A scatterplot of CWD basal area against riparian tree density, with a Loess
smoother fitted, showed no evidence of a nonlinear relationship (Figure 5.13(a)).
The boxplots of each variable were slightly skewed but the residuals from fitting the
linear regression model were evenly spread and there were no obvious outliers
(Figure 5.13(b)). One lake (Tenderfoot) had a higher Cook's D, than the others that
was due mainly to a slightly higher leverage value because this lake had the great-
est riparian density (X-variable). Omitting this lake from the analysis did not alter
the conclusions so it was retained and the variables were not transformed.

The results of the OLS fit of a linear regression model to CWD basal area
against riparian tree density were as follows.

Standard Standardized

Coefficient error coefficient t P
Intercept —77.099 30.608 0 —2519 0.025
Slope 0.116 0.023 0.797 4929  <0.00I
Correlation coefficient (r) =0.797,r* = 0.634
Source df MS F P
Regression I 3205 % 10* 24.303 <0.001
Residual |4 1318.969

The t test and the ANOVA F test cause us to reject the H that 8, equals zero.
Note that F (24.307) = t* (4.929), allowing for rounding errors. We would also reject
the H, that B, equals zero, although this test is of little biological interest. The r?
value (0.634) indicates that we can explain about 63% of the total variation in CWD
basal area by the linear regression with riparian tree density.

We can predict CWD basal area for a new lake with 1500 trees km~" in the
riparian zone. Plugging 1500 into our fitted regression model:

CWD basal area=—77.099 +0.1 16 X 1500

the predicted basal area of CWD is 96.901 m? km~'. The standard error of this
predicted value (from Equation 5.10) is 37.900, resulting in a 95% confidence inter-
val for true mean CWD basal area of lakes with a riparian density of 1500 trees
km™! of £81.296.

CWD basal area against cabin density
A scatterplot of CWD basal area against cabin density, with a Loess smoother fitted,
showed some evidence of a nonlinear relationship (Figure 5.14(a)). The boxplot of
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cabin density was highly skewed, with a number of zero values. The residuals from
fitting the linear regression model to untransformed data suggested increasing
spread of residuals with an unusual value (Arrowhead Lake) with a low (negative)
predicted value and a much higher Cook's D, than the others (Figure 5.14(b)).
Following Christensen et al. (1996), we transformed cabin density to log, ; and refit-
ted the linear model. The scatterplot of CWD basal area against log, , cabin density
suggested a much better linear relationship (Figure 5.15(a)). The boxplot of log,,
cabin density was less skewed but the residuals from fitting the linear regression
model still showed increasing spread with increasing predicted values. Lake
Arrowhead was no longer influential but Lake Bergner was an outlier with a mod-
erate Cook's D, Finally, we fitted a linear model when both variables were log,,
transformed. The scatterplot of log,, CWD basal area against log,, cabin density
suggested a slightly less linear relationship (Figure 5.16(a)) and the boxplot of log,
CWD basal area was now negatively skewed. The residuals from fitting the linear
regression model were much improved with constant spread and no observations
were particularly influential.

Overall, transforming both variables seems to result in a linear model that fits
best to these data, atthough we will present the analysis with just cabin density trans-
formed as per Christensen et al. (1996). The results of the OLS fit of a linear regres-
sion model to CWD basal area against log, , cabin density were as follows.

Standard Standardized

Coefficient error coefficient t P
Intercept 121.969 13.969 0 8732  <0.00!
Slope —93.301 18296 —0.806 —5.099 <0.00I
Correlation coefficient (r) = —0.806, r*= 0.650
Source df MS F P
Regression | 3284 X 10* 26.004 <0.001
Residual 14 1262.870

The t test and the ANOVA F test cause us to reject the H, that 8, equals zero.
We would also reject the H, that 8, equals zero, although this test is of little bio-
logical interest, especially as the slope of the relationship is negative.

For example, it has been shown that as the area of
islands increases, so does the number of species of
a variety of taxa (Begon et al. 1996). On rocky inter-
tidal shores, beds of mussels are common and
many species of invertebrates use these mussel
beds as habitat. These beds are usually patchy and
isolated clumps of mussels mimic islands of
habitat on these shores. Peake & Quinn (1993)
investigated the relationship between the
number of species of macroinvertebrates, and the
total abundance of macroinvertebrates, and area
of clumps of mussels on a rocky shore in southern
Australia. They collected a sample of 25 clumps of
mussels in June 1989 and all organisms found
within each clump were identified and counted.

We will use their data to model the relationship
between two separate response variables, the total
number of species and the total number of indi-
viduals, and one predictor variable, clump area in
dm?. These analyses are presented in Box 5.4.

5.3.2 Linear model for regression

Consider a set of i = 1 to n observations where each
observation was selected because of its specific X-
value, i.e. the X-values were fixed by the investiga-
tor, whereas the Y-value for each observation is
sampled from a population of possible Y-values.
The simple linear regression model is:

Yi=BytBxte (5.3)
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Box 5.4 | Worked example of linear regression analysis:
species richness of macroinvertebrates in mussel
clumps

Peake & Quinn (1993) investigated the relationship between the number of species
of macroinvertebrates, and the total abundance of macroinvertebrates, and area of
clumps of mussels on a rocky shore in southern Australia. The variables of interest
are clump area (dm?), number of species, and number of individuals.

Number of species against clump area

A scatterplot of number of species against clump area, and the plot of residuals
against predicted number of species from a linear regression analysis, both suggested
a nonlinear relationship (Figure 5.17(a,b)). Atthough only clump area was positively
skewed, Peake & Quinn (1993) transformed both variables because of the nature
of the species—area relationships for other seasons in their study plus the conven-
tion in species—area studies to transform both variables.

The scatterplot of log number of species against log clump area (Figure 5.18)
linearized the relationship effectively except for one of the small clumps. The resid-
ual plot also showed no evidence of nonlinearity but that same clump had a larger
residual and was relatively influential (Cook's D, = 1.02). Reexamination of the raw
data did not indicate any problems with this observation and omitting it did not alter
the conclusions from the analysis (b, changed from 0.386 to 0.339,r* from 0.819 to
0.850, all tests still P<0.001) so it was not excluded from the analysis. In fact, just
transforming clump area produced the best linearizing of the relationship with no
unusually large residuals or Cook’s D, statistics but, for the reasons outlined above,
both variables were transformed.

The results of the OLS fit of a linear regression model to log number of species
and log clump area were as follows.

Standard Standardized

Coefficient error coefficient t P
Intercept 1.270 0.024 0 52237  <0.00I
Slope 0.386 0.038 0.905 10.215 <0.001
Correlation coefficient (r) =0.905,2=0.819
Source df MS F P
Regression \ 1.027 104.353 <0.001
Residual 23 0.010

The t test and the ANOVA F test cause us to reject the H that 8, equals zero.
We would also reject the H, that 4 equals zero, indicating that the relationship
between species number and clump area must be nonlinear for small clump sizes
since the model must theoretically go through the origin. The % value (0.819) indi-
cates that we can explain about 82% of the total variation in log number of species
by the linear regression with log clump area.

Number of individuals against clump area

A scatterplot of number of individuals against clump area, with a Loess smoother
fitted, suggested an approximately linear relationship (Figure 5.19(a)). The plot of
residuals against predicted number of individuals from a linear regression model
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fitted to number of individuals against clump area (Figure 5.19(b)) showed a clear
pattern of increasing spread of residuals against increasing predicted number of indi-
viduals (o1, equivalently, clump area); the pattern in the residuals was wedge-shaped.
The boxplots in Figure 5.19(a) indicated that both variables were positively skewed
so we transformed both variables to logs to correct for variance heterogeneity.

The scatterplot of log number of individuals against log clump area (Figure
5.20(a)) showed an apparent reasonable fit of a linear regression model, with sym-
metrical boxplots for both variables. The residual plot showed a more even spread
of residuals with little wedge-shaped pattern (Figure 5.20(b)).

The results of the OLS fit of a linear regression model to log number of indi-
viduals and log clump area were as follows.

Standard Standardized

Coefficient error coefficient t P
Intercept 2.764 0.045 0 60.766  <0.001
Slope 0.835 0.071 0927 [1.816  <0.00I
Correlation coefficient (r) =0.927, r* = 0.859
Source df MS F P
Regression I 4.809 139.615 <0.001
Residual 23 0.034

The t test and the ANOVA F test cause us to reject the H that 8, equals zero.
We would also reject the H that 8, equals zero, although this test is of little bio-
logical interest. The r? value (0.859) indicates that we can explain about 86% of the
total variation in log number of individuals by the linear regression with log clump

area.

The details of the linear regression model, includ-
ing estimation of its parameters, are provided in
Box 5.5.

For the CWD data from Christensen et al.
(1996), we would fit:

(CWD basal area), =
B, + B,(riparian tree density), + &, (5.4)

where n =16 lakes.
For the species—area data from Peake & Quinn
(1993), we would fit:

(number of species), =
B, * B,(mussel clump area), + ¢, (5.5)

where n =25 mussel clumps.
In models 5.3 and 5.4:

y, is the value of Y for the ith observation
when the predictor variable X = x,. For example,
this is the basal area of CWD for the ith lake
when the riparian tree density is x;

B, is the population intercept, the mean

value of the probability distribution of Y when
x;,= 0, e.g. mean basal area of CWD for lakes with
no riparian trees;

B, is the population slope and measures the
change in Y per unit change in X, e.g. the change
in basal area of CWD for a unit (one tree km™1)
change in riparian tree density; and

g, is random or unexplained error associated
with the ith observation, e.g. the error terms for
a linear model relating basal area of CWD to
riparian tree density in lakes are the differences
between each observed value for CWD basal area
and the true mean CWD basal area at each
possible riparian tree density.

In this model, the response variable Y is a
random variable whereas the predictor variable
X represents fixed values chosen by the
researcher. This means that repeated sampling
from the population of possible sampling units
would use the same values of X; this restriction
on X has important ramifications for the use of
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Box 5.5/ The linear regression model and its parameters

Consider a set of i= | to n observations with fixed X-values and random Y-values.
The simple linear regression model is:
V=B tBxte ©3)

In model 5.3 we have the following.

y, is the value of Y for the ith observation when the predictor variable X = x.

B, is the population intercept, the mean value of the probability distribution of
Y when x. equals zero.

B, is the population slope and measures the change in Y per unit change in X.

& is random or unexplained error associated with the ith observation. Each &
measures, for each x, the difference between each observed y, and the mean
of y, the latter is the value of y, predicted by the population regression
model, which we never know. We must make certain assumptions about
these error terms for the regression model to be valid and to allow interval
estimation of parameters and hypothesis tests. VWWe assume that these error
terms are normally distributed at each x, their mean at each x; is zero [E(e)
equals zero] and their variance is the same at each x, and is designated o2
This assumption is the same as the homogeneity of variances of y, described
in Section 5.3.8. We also assume that these £ terms are independent of, and
therefore uncorrelated with, each other. Since the £ terms are the only
random ones in our regression model, then these assumptions (normality,
homogeneity of variances and independence) also apply to the response
variable y, at each x. We will examine these assumptions and their
implications in more detail in Section 5.3.8.

Figure 5.5 illustrates the population linear regression model and shows some
important features:

| For any particular value of X (x,), there is a population of Y-values with a
probability distribution. For most regression applications, we assume that the
population of Y-values at each x, has a normal distribution. While not necessary
to obtain point estimates of the parameters in the model, this normality
assumption is necessary for determining confidence intervals on these
parameters and for hypothesis tests.

2. These populations of Y-values at each x; are assumed to have the same
variance (o%); this is termed the homogeneity of variance assumption.

3. The true population regression line joins the means of these populations
of Y-values.

4. The overall mean value of Y, also termed the expected value of Y [E(Y)],
equals 4, + 8 X. This implies that we can re-express the linear regression model
in terms of means of the response variable Y at each x:

V= HTE

where w is the population mean of Y-values at each x. This type of linear
model is particularly useful when the predictor variable is categorical and the
effects of the predictor on the response variable are usually expressed in terms of
mean values.
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As we described in Chapter 2, we can use either of two methods for estimat-
ing parameters, (ordinary) least squares (OLS) and maximum likelihood (ML). If we
assume normality of the &, it turns out that the OLS and ML estimates of £, and 3,
are identical, although, as is usual for variance estimation, the ML estimate of the var-
iance (o?) is slightly biased whereas the OLS estimate of o2 is not. In this book, we
will focus on OLS estimates of these parameters; details of the calculations for ML
estimation of regression parameters can be found in Neter et al. (1996).

The OLS estimates of £ and B, are the values that produce a sample regres-
sion line (§,= b, + b x,) that minimize Z(y,— )% These are the sum of the squared
deviations (SS) between each observed y, and the value of y. predicted by the sample
regression line for each x. This is the sum of squared vertical distances between each
observation and the fitted regression line (Figure 5.6). Note that for any x, . is our
best estimate of the mean of y. in the usual case of only a single y. at each x.. In prac-
tice, the values of b, and b, that minimize 2(y, —#,)? are found by using a little cal-
culus to derive two new equations, termed normal equations, that are solved
simultaneously for by and b, (see Neter et al. 1996, Rawlings et al. 1998 for detalils).

Because we have different populations of Y for each x, the estimate of the
common variance of & and y, (o,%) must be based on deviations of each observed
Y-value from the estimated value of the mean Y-value at each X, As stated above,
our best estimate of the mean of y. is y. This difference between each observed
Y-value and each predicted y, is called a residual:

&=y

These residuals are very important in the analysis of linear models. They provide
the basis of the OLS estimate of o> and they are valuable diagnostic tools for check-
ing assumptions and fit of our model. The OLS estimate of o is the sample vari-
ance of these residuals and is termed the Residual (or Error) Mean Square (Table
5.2). Remember from Chapter 2 that a variance is also termed a mean square. The

numerator of the MS is the sum-of-squares (SS) of the residuals and the quan-

Residual
tity that OLS estimation minimizes when determining estimates of the regression
model parameters. The degrees of freedom (the denominator) are n — 2 because
we must estimate both B, and B, to estimate o> The SS and MS._ .
measure the variation in Y around the fitted regression line. Two other attributes
of residuals are important: their sum equals zero (27_ e, = 0) and, therefore, their
mean must also equal zero (€ = 0). Note that the residuals (e,=y.— ) are related
to the model error terms (¢ =y, — ¢) because our best estimate of the mean of Y

at each x; is the predicted value from the fitted regression model.

Residual

regression analysis in biology because usually
both Y and X are random variables with a joint
probability distribution. For example, the predic-
tor variable in the study by Peake & Quinn (1993)
was the area of randomly chosen clumps of
mussels, clearly a random variable. Some aspects
of classical regression analysis, like prediction
and tests of hypotheses, might not be affected by
X being a random variable whereas the estimates
of regression coefficients can be inaccurate. We

will discuss this issue in some detail in Section
5.3.14.

From the characteristics of the regression
model summarized in Box 5.5, we assume that (a)
there is a population of lakes with a normal distri-
bution of CWD basal areas, (b) the variances of
CWD basal area (0%) are the same for all of these
populations and (c) the CWD basal areas in differ-
ent lakes are independent of each other. These
assumptions also apply to the error terms of the
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Diagrammatic

representation of a linear regression
model showing the population of y,
at two values of x. Note that the
population regression model relates
the mean of Y at each X-value (x,) to

Byt Bx;

predicted Y-value for x;

(-0 [N W lllustration of the least
squares regression line and residual
values.

In model 5.6:

7, is the value of y,
predicted by the fitted
regression line for each x, e.g.

X X3
Y
least squares
regression
y i line
v~ yi = residual I

Vi

_ [

y °

the predicted basal area of
CWD for lake i.

b, is the sample estimate
of B,, the Y-intercept, e.g. the
predicted basal area of CWD
for a lake with no riparian
trees; and

X X;

model, so the common variance of the error terms
is 0,2 We will examine these assumptions and
their implications in more detail in Section 5.3.8.

5.3.3 Estimating model parameters

The main aim of regression analysis is to estimate
the parameters (8, and §,) of the linear regression
model based on our sample of n observations with
fixed X-values and random Y-values. Actually,
there are three parameters we need to estimate:
B, B, and o ? (the common variance of &; and
therefore of y). Once we have estimates of these
parameters (Box 5.5), we can determine the
sample regression line:

yi = b0 + bixi (56)

b, is the sample estimate
X of B,, the regression slope,
e.g. the estimated change in
basal area of CWD for a unit (one tree km™1)
change in riparian tree density.

The OLS estimates of B, and B, are the values
that minimize the sum of squared deviations (SS)
between each observed value of CWD basal area
and the CWD basal area predicted by the fitted
regression model against density of riparian trees.
The estimates of the linear regression model are
summarized in Table 5.2.

Regression slope

The parameter of most interest is the slope of the
regression line B, because this measures the
strength of the relationship between Y and X. The
estimated slope (b,) of the linear regression
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Table 5.2 ‘ Parameters of the linear regression model and their OLS estimates with standard errors

Parameter OLS estimate Standard error
Zl[(xf —X)(i—)]
IBI b\ = n Sb| =
> (x—x)?
i=1
_ _ | X2
IBO bO =y- b \X Sbo = lvlSP\eswdual + n
> (x—x)?
i=1
Er ey = y, - )7, v lvlSP\eswdual (approx.)

model derived from the solution of the normal
equations is the covariance between Y and X
divided by the sum of squares (SS) of X (Table 5.2).
The sample regression slope can be positive or
negative (or zero) with no constraints on upper
and lower limits.

The estimate of the 3, is based on X being fixed
so in the common case where X is random, we
need a different approach to estimating the
regression slope (Section 5.3.14). Nonetheless,
there is also a close mathematical relationship
between linear regression and bivariate correla-
tion that we will discuss in Section 5.4. For now,
note that we can also calculate b, from the sample
correlation coefficient between Y and X as:

b, =1 (5.7)
Sx

where s, and s, are the sample standard deviations

of X and Y and r is the sample correlation coeffi-

cient between X and Y.

Standardized regression slope

Note that the value of the regression slope
depends on the units in which X and Y are meas-
ured. For example, if CWD basal area was meas-
ured per 10 km rather than per kilometer, then
the slope would be greater by a factor of ten. This
makes it difficult to compare estimated regression
slopes between different data sets. We can calcu-

late a standardized regression slope b,’, termed a

beta coefficient:
. s

b =b=>

1 1

. (5.8)

This is simply the sample regression slope multi-
plied by the ratio of the standard deviation of X
and the standard deviation of Y. It is also the
sample correlation coefficient. The same result
can be achieved by first standardizing X and Y
(each to a mean of zero and a standard deviation
of one) and then calculating the usual sample
regression slope. The value of b,” provides an esti-
mate of the slope of the regression model that is
independent of the units of X and Y and is useful
for comparing regression slopes between data
sets. For example, the estimated slopes for regres-
sion models of CWD basal area and CWD density
against riparian tree density were 0.116 and 0.652
respectively, suggesting a much steeper relation-
ship for basal area. The standardized slopes were
0.797 and 0.874, indicating that when the units of
measurement were taken into account, the
strength of the relationship of riparian tree
density on CWD basal area and CWD density were
similar. Note that the linear regression model for
standardized variables does not include an inter-
ceptbecause its OLS (or ML) estimate would always
be zero. Standardized regression slopes are pro-
duced by most statistical software.
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Intercept

The OLS regression line must pass through y and
X. Therefore, the estimate (b,) of the intercept of
our regression model is derived from a simple
rearrangement of the sample regression equa-
tion, substituting b, ¥ and X. The intercept might
not be of much practical interest in regression
analysis because the range of our observations
rarely includes X equals zero and we should not
usually extrapolate beyond the range of our
sample observations. A related issue that we will
discuss below is whether the linear regression
line should be forced through the origin (Y equals
zero and X equals zero) if we know theoretically
that Y must be zero if X equals zero.

Confidence intervals

Now we have a point estimate for both ¢ * and 3,,
we can look at the sampling distribution and stan-
dard error of b, and confidence intervals for §,. It
turns out that the Central Limit Theorem applies
to b, so its sampling distribution is normal with
an expected value (mean) of 8,. The standard error
of b, the standard deviation of its sampling distri-
bution, is the square root of the residual mean
square divided by the SS, (Table 5.2). Confidence
intervals for 8, are calculated in the usual manner
when we know the standard error of a statistic
and use the t distribution. The 95% confidence
interval for B, is:

b, >+t S

17— "0.05,n-2b,

(5.9)

Note that we use n — 2 degrees of freedom (df) for
the t statistic. The interpretation of confidence
intervals for regression slopes is as described for
means in Chapter 2. To illustrate using 95% confi-
dence interval, under repeated sampling, we
would expect 95% of these intervals to contain the
fixed, but unknown, true slope of our linear
regression model. The standard error (Table 5.2)
and confidence intervals for 8, can also be deter-
mined (Neter et al. 1996, Sokal & Rohlf 1995) and
are standard output from statistical software.

We can also determine a confidence band (e.g.
95%) for the regression line (Neter et al. 1996, Sokal
& Rohlf 1995). The 95% confidence band is a bicon-
cave band that will contain the true population
regression line 95% of the time. To illustrate with

the data relating number of individuals of macro-
invertebrates to mussel clump area from Peake &
Quinn (1993), Figure 5.20(a) shows the confidence
bands that would include the true population
regression line 95% of the time under repeated
sampling of mussel clumps. Note that the bands are
wider further away from &, indicating we are less
confident about our estimate of the true regression
line at the extremes of the range of observations.

Predicted values and residuals

Prediction from the OLS regression equation is
straightforward by substituting an X-value into
the regression equation and calculating the pre-
dicted Y-value. Be wary of extrapolating when
making such predictions, i.e. do not predict from
X-values outside the range of your data. The pre-
dicted Y-values have a sampling distribution that
is normal and we provide the equation for the
standard error of a new predicted Y-value because
these standard errors are not always produced by
statistical software:

1 X, — X)>?
5;= MSgesidual {1 + ” + %);)} (5.10)

;(Xi —x)’

where x_ is the new value of X from which we are
predicting and the other terms have already been
used in previous calculations. This predicted
Y-value is an estimate of the true mean of Y for
the new X-value from which we are predicting.
Confidence intervals (also called prediction inter-
vals) for this mean of Y can be calculated in the
usual manner using this standard error and the t
distribution with n— 2 df.

This difference between each observed y, and
each predicted J, is called a residual (e,):

e,=y,— 79, (5.11)

For example, the residuals from the model relat-
ing CWD basal area to riparian tree density are the
differences between each observed value of CWD
basal area and the value predicted by the fitted
regression model. We will use the residuals for
checking the fit of the model to our data in
Section 5.3.9.
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Table 5.3 ‘ Analysis of variance (ANOVA) table for simple linear regression of Y on X

Source of variation SS df

MS Expected mean square

>0
|
:il(y» _)//\’)2

n—>2 ¢

a}-l—,ﬁlzi(xl—)?)z
i=1

Regression D —7)?
i=1
Residual S v,—9)* n—2
i=1
Total S (v, =) n—I
i=1
(@) (b) ®
yz '“? PY )ji
s A
(d)
- Ty
A %
Vi~

AT WA llustration of explained and residual variation in

regression analysis. Residual variation: (a) and (b) have
identical regression lines but the differences between
observed and predicted observations in (b) are greater than
in (a) so the MS, .,
variation: (c) and (d) have identical MS,__, .. (the differences

in (b) is greater than in (a). Explained

between the observed and predicted values are the same)
but the total variation in Y is greater in (c) than (d) and the
differences between the predicted values and the mean of Y
are greater in (c) than in (d) so MS
in (c) than in (d).

Regression would be greater

5.3.4 Analysis of variance

A fundamental component of the analysis of
linear models is partitioning the total variability
in the response variable Y into the part due to the
relationship with X (or X, X,, etc. - see Chapter 6)
and the part not explained by the relationship.
This partitioning of variation is usually presented
in the form of an analysis of variance (ANOVA)
table (Table 5.3). The total variation in Y is
expressed as a sum of squared deviations of each

observation from the sample mean. This SS;  has
n—1 df and can be partitioned into two additive
components. First is the variation in Y explained
by the linear regression with X, which is meas-
ured as the difference between J, and y (Figure
5.7). This is a measure of how well the estimated
regression model predicts y. The number of
degrees of freedom associated with a linear model
is usually the number of parameters minus one.
For a simple linear regression model, there are
two parameters (3, and 8,) so deegression =1.

Second is the variation in Y not explained by
the regression with X, which is measured as the
difference between each observed Y-value and the
value of Y predicted by the model (y,) (Figure 5.7).
This is a measure of how far the Y-values are from
the fitted regression line and is termed the resid-
ual (or error) variation (see Section 5.3.3). The
dfyqu =" — 2, because we have already esti-
mated two parameters (3, and 8,) to determine
the J..

The SS and df are additive (Table 5.3):

SSRegression + SSResidual = SSTotal
deegression + deesidual = dfTotal

Although the SS is a measure of variation, it is
dependent on the number of observations that
contribute toit, e.g. SS;_, will always get bigger as
more observations with different values are
included. In contrast to the SS, the variance (mean
square, MS) is a measure of variability that does
not depend on sample size because it is an average
of the squared deviations and also has a known
probability distribution (Chapter 2). So the next
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step in the analysis of variance is to convert the SS
into MS by dividing them by their df:
The MS are not additive:

MSRegression + MSResidual 7 MSTotal
and the “MS_ " does not play a role in analyses of
variance.

These MS are sample variances and, as such,
they estimate parameters. But unlike the situa-
tion where we have a single sample, and therefore
asingle variance (Chapter 2), we now have two var-
iances. Statisticians have determined the
expected values of these mean squares, i.e. the
average of all possible values of these mean
squares or what population values these mean
squares actually estimate (Table 5.3).

The MS,_., ., estimates ¢ 2, the common vari-
ance of the error terms (g,), and therefore of the
Y-values at each x,. The implicit assumption here,
that we mentioned in Section 5.3.2 and will detail
in Section 5.3.8, is that the variance of ¢, (and
therefore of y) is the same for all x, (homogeneity
of variance), and therefore can be summarized by
a single variance (o, ?). If this assumption is not
met, then MS; ., ., does not estimate a common
variance o2 and interval estimation and hypothe-
sis tests associated with linear regression will be
unreliable. The MSy egression also estimates o, plus
an additional source of variation determined by
the strength of the absolute relationship between
Y and X (i.e. 8,> multiplied by the SS,).

Sometimes the total variation in Y is
expressed as an “uncorrected” total sum-of-
squares (SS; .. uncorreceqs S€€ Neter et al. 1996,
Rawlings et al. 1998). This is simply =7 |y?* and can
be “corrected” by subtracting njy? (termed “correct-
ing for the mean”) to convert SS; ., .4 i0nto
the SS .., we have used. The uncorrected total SS
is occasionally used when regression models are
forced through the origin (Section 5.3.12) and in
nonlinear regression (Chapter 6).

5.3.5 Null hypotheses in regression

The null hypothesis commonly tested in linear
regression analysis is that 8, equals zero, i.e. the
slope of the population regression model equals
zero and there is no linear relationship between Y
and X. For example, the population slope of the
regression model relating CWD basal area to

riparian tree density is zero or there is no linear
relationship between number of species and
mussel clump area in the population of all pos-
sible mussel clumps. There are two equivalent
ways of testing this H,.

The first uses the ANOVA we have described in
Section 5.3.4. If H is true and B, equals zero, then
it is apparent from Table 5.3 that MSy g ression and
MS,. ;. Doth estimate o * because the term
B,22"_(x,— X)* becomes zero. Therefore, the ratio
of MSRegression to MS; 4, Should be less than or
equal to one. If H is not true and 8, does not equal
zero, then the expected value of MS,, gression is
larger than that of MS and their ratio should
be greater than one.

If certain assumptions hold (Section 5.3.8), the
ratio of two sample variances (the F-ratio) follows
awell-defined probability distribution called the F
distribution (Chapter 2). A central F distribution is
a probability distribution of the F-ratio! when the
two sample variances come from populations
with the same expected values. There are different
central F distributions depending on the df of the
two sample variances. Therefore, we can use the
appropriate probability distribution of F (defined
by numerator and denominator df) to determine
whether the probability of obtaining our sample
F-ratio or one more extreme (the usual hypothesis
testing logic; see Chapter 3), is less than some spec-
ified significance level (e.g. 0.05) and therefore
whether we reject H. This F test basically com-
pares the fit to the data of a model that includes a
slope term to the fit of a model that does not.

We can also test the H; that 8, equals zero
using a single parameter t test, as described in
Chapter 3. We calculate a t statistic from our data:

_b,— 6
Sp

Residual

t (5.12)

1

In Equation 5.12, 6 is the value of 8, specified in
the H,. We compare the observed t statistic to a
tdistribution with (n — 2) df with the usual logic of

1 F-ratio versus F. Hypothesis tests that involve comparisons of
variance (ANOVA, ANCOVA, etc.) use an F-ratio, which is the
ratio of two variances. This ratio follows an F distribution.
Strictly speaking, any test statistic that we calculated as part
of an ANOVA or ANCOVA is an Fratio, but in much of the
biological literature, there is reference to the less
cumbersome F. We will often use this abbreviation.
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at test. Note that the F test of the H,, that 8, equals
zero is mathematically identical to the t test; in
fact, the F-ratio equals t? for a given sample. So, in
practice, it does not matter which we use and both
are standard output from statistical software. We
offer some suggestions about presenting results
from linear regression analyses in Chapter 19.

While the test of the Hj that 8, equals zero is
most common, a test whether 8, equals some
other value may also be relevant, especially when
variables have been log transformed. Examples
include increases in metabolic rate with body
size, an allometric relationship with a predicted
slope of 0.75, and the selfthinning rule, that
argues that the relationship between log plant
size and log plant density would have a slope of
—3/2 (Begon et al. 1996).

We can also test the H, that 5 equals zero, i.e.
the intercept of the population regression model
is zero. Just as with the test that 8, equals zero, the
H, that B, equals zero can be tested with a t test,
where the t statistic is the sample intercept
divided by the standard error of the sample inter-
cept. Alternatively, we can calculate an F test by
comparing the fit of a model with an intercept
term to the fit of a model without an intercept
term (Section 5.3.6). The conclusions will be iden-
tical as the F equals t? and the t test version is stan-
dard output from statistical software. This H is
not usually of much biological interest unless we
are considering excluding an intercept from our
final model and forcing the regression line
through the origin (Section 5.3.12).

Finally, we can test the H, that two regression
lines come from populations with the same slope
using a t test, similar to a test of equality of means
(Chapter 3). A more general approach to compar-
ing regression slopes is as part of analysis of covar-
iance (ANCOVA, Chapter 12).

5.3.6 Comparing regression models
Methods for measuring the fit of a linear model to
sample data fall into two broad categories based
on the way the parameters of the models are esti-
mated (see also Chapter 2).

1. Using OLS, the fit of a model is determined
by the amount of variation in Y explained by the
model or conversely, the lack of fit of a model is
determined by the unexplained (residual)

variation. This approach leads to the analysis of
variance described above and F tests of null
hypotheses about regression model parameters.

2. Using maximum likelihood (ML), the fit of
a model is determined by the size of likelihood
or log-likelihood. This approach leads to
likelihood ratio tests of null hypotheses about
regression model parameters and is most
commonly used when fitting generalized linear
models (GLMs) with non-normal error terms
(Chapter 13).

The logic of comparing the fit of different
models is the same whichever approach is used to
measure fit. We will illustrate this logic based on
the OLS estimation we have been using throughout
this chapter. We can measure the fit of different
models to the data and then compare their fits to
test hypotheses about the model parameters. For
example, smaller unexplained (residual) variation
when a full model that includes g, is fitted com-
pared with when a reduced model is fitted that
omits @, is evidence against the H, that 8, equals
zero.Including a slope term in the model results in
a better fit to the observed data than omitting a
slope term. If there is no difference in the explana-
tory power of these two models, then there is no
evidence against the H; that 8, equals zero.

Let’s explore this process more formally by
comparing the unexplained, or residual, SS (the
variation due to the difference between the
observed and predicted Y-values) for full and
reduced models (Box 5.6). To test the H; that 3,
equals zero, we fit the full model with both an
intercept and a slope term (Equation 5.3):

Yi=BytBix T
We have already identified the unexplained SS
from the full model as =7 (y,—$)> This is the
SSpesiqua from our standard regression ANOVA in
Table 5.3.

We then fit a reduced model that omits the

slope term, i.e. the model expected if the H, that
B, equals zero is true:

yi=B,tg

This is a model with zero slope (i.e. a flat line). The
predicted Y-value for each x, from this model is the
intercept, which equals y. Therefore, the unex-
plained SS from this reduced model is the sum of
squared differences between the observed Y-

(5.13)
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Box 5.6 | Model comparisons in simple linear regression

We can use the model relating CWD basal area to riparian tree density to illustrate
comparing the fit of full and reduced models to test null hypotheses about popu-

lation parameters.
Test Hy: B, equals zero:

Full model:
(CWD basal area). =B, + B, (riparian tree density), +¢,

SS =18 465.56 (14 df).

Residual

Reduced model:

(CWD basal area), =4, + ¢

SSpeciaua = 20 520.00 (15 df).
Reduced SSp g, — Full SSp gy, =32 054.44 (1 df). This is identical to MS; .,
from the ANOVA from fitting the original full model (Box 5.3).
Test H: B, equals zero:
Full model:
(CWD basal area). =B, + B, (riparian tree density), + &
SSReciqua = |8 465.56 (14 df).
Reduced model:
(CWD basal area), =B, (riparian tree density), +¢,
SSReciun = 26 834.35 (15 df).
Reduced SS; ., —Full SS; ., ., =8368.79 (I df).
values and j (i.e. =7 ,(y,—¥)*), which is the SS,_ , y,=Bx,* ¢, (5.14)

from our standard regression ANOVA.

The difference between the unexplained varia-
tion of the full model (SS;.,..) and the unex-
plained variation from the reduced model (SS__ ) is
simply the SS,, gression® 11 II€ASUTES how much more
variation in Yis explained by the full model than by
thereduced model.Itis, therefore, the relative mag-
nitude of the SS;, gression (which equals MS,, gression
with one df) that we use to evaluate the H; that 8,
equals zero (Box 5.6). So describing the SSegression OF
MS; egression 35 the variation explained by the regres-
sion model is really describing the SSgegression OT
MSRegression as how much more variation in Y the full
model explains over the reduced model.

The same logic can be used to test H, that 3,
equals zero by comparing the fit of the full model
and the fit of a reduced model that omits the

intercept:

This is the model expected if the H, that 8, equals
zero is true and therefore, when x, equals zero
then y, equals zero (Box 5.6).

For most regression models, we don’t have to
worry about comparing full and reduced models
because our statistical software will do it auto-
matically and provide us with the familiar
ANOVA table and F tests and/or t tests. While com-
parisons of full and reduced models are trivial for
linear models with a single predictor variable,
the model comparison approach has broad appli-
cability for testing null hypotheses about particu-
lar parameters in more complex linear (Chapter
6) and generalized linear models (Chapter 13).

5.3.7 Variance explained
A descriptive measure of association between Y
and X is r? (also termed R? or the coefficient of
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determination), which measures the proportion
of the total variation in Y that is explained by its
linear relationship with X. When we fit the full
model, it is usually calculated as (Kvalseth 1985,
Neter et al. 1996):

— SSRegression —1_ SSResidual
SSTotal SSTotal

2 (5.15)
Anderson-Sprecher (1994) argued that 12 is better
explained in terms of the comparison between the
full model and a reduced (no slope parameter)
model:

SSgesi
— 1 — —2°Residual(Full)
=1 Residual(Full)

(5.16)
SSResidual(Reduced)

Equations 5.15 and 5.16 are identical for models
with an intercept (see below for no intercept
models) but the latter version emphasizes that r2 is
a measure of how much the fit is improved by the
full model compared with the reduced model. We
can also relate explained variance back to the
bivariate correlation model because r? is the
square of the correlation coefficient r. Values of 12
range between zero (no relationship between Y and
X) and one (all points fall on fitted regression line).
Therefore, * is not an absolute measure of how
well a linear model fits the data, only a measure of
how much a model with a slope parameter fits
better than one without (Anderson-Sprecher 1994).

Great care should be taken in using r? values
for comparing the fit of different models. It is
inappropriate for comparing models with differ-
ent numbers of parameters (Chapter 6) and can be
problematical for comparing models based on dif-
ferent transformations of Y (Scott & Wild 1991). If
we must compare the fit of a linear model based
on Y with the equivalent model based on, say
log(Y), using 2, we should calculate +? as above
after re-expressing the two models so that Y is on
the same original scale in both models (see also
Anderson-Sprecher 1994).

5.3.8 Assumptions of regression analysis

The assumptions of the linear regression model
strictly concern the error terms (g,) in the model,
as described in Section 5.3.2. Since these error
terms are the only random ones in the model,
then the assumptions also apply to observations
of the response variable y. Note that these

assumptions are not required for the OLS estima-

Table 5.4 ‘ Types of residual for linear regression
models, where h, is the leverage for observation i

Residual &=y~
Stahdardized €

residual m
Studentized &

residual VMSgega (1 —h)
Studentized =

el vssResidua( | = hl) - elz

tion of model parameters but are necessary for
reliable confidence intervals and hypothesis tests
based on t distributions or F distributions.

The residuals from the fitted model (Table 5.4)
are important for checking whether the assump-
tions of linear regression analysis are met.
Residualsindicate how far each observation is from
the fitted OLS regression line, in Y-variable space
(i.e. vertically). Observations with larger residuals
are further from the fitted line that those with
smaller residuals. Patterns of residuals represent
patterns in the error terms from the linear model
and can be used to check assumptions and also the
influence each observation has on the fitted model.

deleted residual

Normality

This assumption is that the populations of
Y-values and the error terms (g, are normally dis-
tributed for each level of the predictor variable x,.
Confidence intervals and hypothesis tests based
on OLS estimates of regression parameters are
robust to this assumption unless the lack of nor-
mality results in violations of other assumptions.
In particular, skewed distributions of y, can cause
problems with homogeneity of variance and line-
arity, as discussed below.

Without replicate Y-values for each x, this
assumption is difficult to verify. However, reason-
able checks can be based on the residuals from
the fitted model (Bowerman & O’Connell 1990).
The methods we described in Chapter 4 for check-
ing normality, including formal tests or graphical
methods such as boxplots and probability plots,
can be applied to these residuals. If the assump-
tion is not met, then there are at least two
options. First, a transformation of Y (Chapter 4
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and Section 5.3.11) may be appropriate if the dis-
tribution is positively skewed. Second, we can fit a
linear model using techniques that allow other
distributions of error terms other than normal.
These generalized linear models (GLMs) will be
described in Chapter 13. Note that non-normality
of Yis very commonly associated with heterogene-
ity of variance and/or nonlinearity.

Homogeneity of variance

This assumption is that the populations of Y-
values, and the error terms (g;), have the same var-
iance for each x;:

0.

Z=o02=...=0’=...=c’fori=1ton

(5.17)

The homogeneity of variance assumption is
important, its violation having a bigger effect on
the reliability of interval estimates of, and tests of
hypotheses about, regression parameters (and
parameters of other linear models) than non-
normality. Heterogeneous variances are often a
result of our observations coming from popula-
tions with skewed distributions of Y-values at each
x;, and can also be due to a small number of
extreme observations or outliers (Section 5.3.9).

Although without replicate Y-values for each
X, the homogeneity of variance assumption
cannot be strictly tested, the general pattern of
the residuals for the different x, can be very infor-
mative. The most useful check is a plot of residu-
als against x, or , (Section 5.3.10). There are a
couple of options for dealing with heterogeneous
variances. If the unequal variances are due to
skewed distributions of Y-values at each x, then
appropriate transformations will always help
(Chapter 4 and Section 5.3.11) and generalized
linear models (GLMs) are always an option
(Chapter 13). Alternatively, weighted least squares
(Section 5.3.13) can be applied if there is a consis-
tent pattern of unequal variance, e.g. increasing
variance in Y with increasing X.

Independence

There is also the assumption that the Y-values and
the g, are independent of each other, i.e. the
Y-value for any x; does not influence the Y-values
for any other x,. The most common situation in
which this assumption might not be met is when
the observations represent repeated measure-
ments on sampling or experimental units. Such

data are often termed longitudinal, and arise
from longitudinal studies (Diggle et al. 1994, Ware
& Liang 1996). A related situation is when we have
a longer time series from one or a few units and
we wish to fit a model where the predictor vari-
able is related to a temporal sequence, i.e. a time
series study (Diggle 1990). Error terms and
Y-values that are non-independent through time
are described as autocorrelated. A common occur-
rence in biology is positive first-order autocorrela-
tion, where there is a positive relationship
between error terms from adjacent observations
through time, i.e. a positive error term at one time
follows from a positive error term at the previous
time and the same for negative error terms. The
degree of autocorrelation is measured by the auto-
correlation parameter, which is the correlation
coefficient between successive error terms. More
formal descriptions of autocorrelation structures
can be found in many textbooks on linear regres-
sion models (e.g Bowerman & O’Connell 1990,
Neter et al. 1996). Positive autocorrelation can
result in underestimation of the true residual var-
iance and seriously inflated Type I error rates for
hypothesis tests on regression parameters. Note
that autocorrelation can also be spatial rather
than temporal, where observations closer
together in space are more similar than those
further apart (Diggle 1996).

If our Y-values come from populations in
which the error terms are autocorrelated between
adjacent x,, then we would expect the residuals
from the fitted regression line also to be corre-
lated. An estimate of the autocorrelation parame-
ter is the correlation coefficient between adjacent
residuals, although some statistical software cal-
culates this as the correlation coefficient between
adjacent Y-values. Autocorrelation can therefore
be detected in plots of residuals against x, by an
obvious positive, negative or cyclical trend in the
residuals. Some statistical software also provides
the Durbin-Watson test of the H, that the auto-
correlation parameter equals zero. Because we
might expect positive autocorrelation, this test is
often one-tailed against the alternative hypothe-
sis that the autocorrelation parameter is greater
than zero. Note that the Durbin-Watson test is
specifically designed for first-order autocorrela-
tions and may not detect other patterns of non-
independence (Neter et al. 1996).
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There are a number of approaches to modeling
a repeated series of observations on sampling or
experimental units. These approaches can be used
with both continuous (this chapter and Chapter 6)
and categorical (Chapters 8-12) predictor vari-
ables and some are applicable even when the
response variable is not continuous. Commonly,
repeated measurements on individual units occur
in studies that also incorporate a treatment struc-
ture across units, i.e. sampling or experimental
units are allocated to a number of treatments (rep-
resenting one or more categorical predictor vari-
ables or factors) and each unit is also recorded
repeatedly through time or is subject to different
treatments through time. Such “repeated meas-
ures” data are usually modeled with analysis of
variance type models (partly nested models incor-
porating a random term representing units; see
Chapter 11). Alternative approaches, including
unified mixed linear models (Laird & Ware 1982,
see also Diggle et al. 1994, Ware & Liang 1996) and
generalized estimating equations (GEEs; see Liang
& Zeger 1986, Ware & Liang 1996), based on the
generalized linear model, will be described briefly
in Chapter 13.

When the data represent a time series, usually
on one or a small number of sampling units, one
approach is to adjust the usual OLS regression
analysis depending on the level of autocorrela-
tion. Bence (1995) discussed options for this
adjustment, pointing out that the usual estimates
of the autocorrelation parameter are biased
and recommending bias-correction estimates.
Usually, however, data forming a long time series
require more sophisticated modeling procedures,
such as formal time-series analyses. These can be
linear, as described by Neter et al. (1996) but more
commonly nonlinear as discussed in Chatfield
(1989) and Diggle (1990), the latter with a biologi-
cal emphasis.

Fixed X

Linear regression analysis assumes that the x, are
known constants, i.e. they are fixed values con-
trolled or set by the investigator with no variance
associated with them. A linear model in which the
predictor variables are fixed is known as Model I
or a fixed effects model. This will often be the case
in designed experiments where the levels of X are
treatments chosen specifically. In these circum-

stances, we would commonly have replicate Y-
values for each x, and X may well be a qualitative
variable, so analyses that compare mean values of
treatment groups might be more appropriate
(Chapters 8-12). The fixed X assumption is prob-
ably not met for most regression analyses in
biology because X and Y are usually both random
variables recorded from a bivariate distribution.
For example, Peake & Quinn (1993) did not choose
mussel clumps of fixed areas but took a haphazard
sample of clumps from the shore; any repeat of
this study would use clumps with different areas.
We will discuss the case of X being random (Model
II or random effects model) in Section 5.3.14 but it
turns out that prediction and hypothesis tests
from the Model I regression are still applicable
even when X is not fixed.

5.3.9 Regression diagnostics

So far we have emphasized the underlying
assumptions for estimation and hypothesis
testing with the linear regression model and pro-
vided some guidelines on how to check whether
these assumptions are met for a given bivariate
data set. A proper interpretation of a linear regres-
sion analysis should also include checks of how
well the model fits the observed data. We will
focus on two aspects in this section. First, is a
straight-line model appropriate or should we
investigate curvilinear models? Second, are there
any unusual observations that might be outliers
and could have undue influence on the parameter
estimates and the fitted regression model?
Influence can come from at least two sources -
think of aregression line as a see-saw, balanced on
the mean of X. An observation can influence, or
tip, the regression line more easily if it is further
from the mean (i.e. at the ends of the range of
X-values) or if it is far from the fitted regression
line (i.e. has a large residual, analogous to a heavy
person on the see-saw). We emphasized in Chapter
4 that it is really important to identify if the
conclusions from any statistical analysis are influ-
enced greatly by one or a few extreme observa-
tions. A variety of “diagnostic measures” can be
calculated as part of the analysis that identify
extreme or influential points and detect nonline-
arity. These diagnostics also provide additional
ways of checking the underlying assumptions of
normality, homogeneity of variance and indepen-
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dence. We will illustrate some of the more
common regression diagnostics that are standard
outputs from most statistical software but others
are available. Belsley et al. (1980) and Cook &
Weisberg (1982) are the standard references, and
other good discussions and illustrations include
Bollen & Jackman (1990), Chatterjee & Price (1991)
and Neter et al. (1996).

Leverage
Leverage is a measure of how extreme an observa-
tion is for the X-variable, so an observation with
high leverage is an outlier in the X-space (Figure
5.8). Leverage basically measures how much each
x; influences y, (Neter et al. 1996). X-values further
from x influence the predicted Y-values more than
those close to x. Leverage is often given the symbol
h, because the values for each observation come
from a matrix termed the hat matrix (H) that
relates the y, to the J, (see Box 6.1). The hat matrix
is determined solely from the X-variable(s) so Y
doesn’tenterinto the calculation of leverage at all.
Leverage values normally range between 1/n
and 1 and a useful criterion is that any observa-
tion with a leverage value greater than 2(p/n)
(where p is the number of parameters in the
model including the intercept; p=2 for simple
linear regression) should be checked (Hoaglin &
Welsch 1978). Statistical software may use other
criteria for warning about observations with high
leverage. The main use of leverage values is when
they are incorporated in Cook’s D, statistic, a
measure of influence described below.

Residuals

We indicated in Section 5.3.8 that patterns in
residuals are an important way of checking
regression assumptions and we will expand on
this in Section 5.3.10. One problem with sample
residuals is that their variance may not be con-
stant for different x, in contrast to the model
error terms that we assume do have constant var-
iance. If we could modify the residuals so they had
constant variance, we could more validly compare
residuals to one another and check if any seemed
unusually large, suggesting an outlying observa-
tion from the fitted model. There are a number of
modifications that try to make residuals more
useful for detecting outliers (Table 5.4).

Standardized residuals use the VMS as

Residual

an approximate standard error for the residuals.
These are also called semistudentized residuals by
Neter et al. (1996). Unfortunately, this standard
error doesn’t solve the problem of the variances of
the residuals not being constant so a more sophis-
ticated modification is needed. Studentized resid-
uals incorporate leverage (h) as defined earlier.
These studentized residuals do have constant var-
iance so different studentized residuals can be
validly compared. Large (studentized) residuals
for a particular observation indicate that it is an
outlier from the fitted model compared to the
other observations. Studentized residuals also
follow a t distribution with (n — 1) df if the regres-
sion assumptions hold. We can determine the
probability of getting a specific studentized resid-
ual, or one more extreme, by comparing the stu-
dentized residual to a t distribution. Note that we
would usually test all residuals in this way, which
will result in very high family-wise Type I error
rates (the multiple testing problem; see Chapter 3)
so some type of P value adjustment might be
required, e.g. sequential Bonferroni.

The deleted residual for observation i, also
called the PRESS residual, is defined as the differ-
ence between the observed Y-values and those pre-
dicted by the regression model fitted to all the
observations except i. These deleted residuals are
usually calculated for studentized residuals.
These studentized deleted residuals can detect
outliers that might be missed by usual residuals
(Neter et al. 1996). They can also be compared to a
t distribution as we described above for the usual
studentized residual.

Influence

A measure of the influence each observation has on
the fitted regression line and the estimates of the
regression parameters is Cook’s distance statistic,
denoted D,. It takes into account both the size of
leverage and the residual for each observation and
basically measures the influence of each observa-
tion on the estimate of the regression slope (Figure
5.8). Alarge D, indicates that removal of that obser-
vation would change the estimates of the regres-
sion parameters considerably. Cook’s D, can be used
in two ways. First, informally by scanning the D;s of
all observations and noting if any values are much
larger than the rest. Second, by comparing D, to an
F,, distribution; an approximate guideline is that
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X

[JF-OI W R Residuals, leverage, and influence. The solid

regression line is fitted through the observations with open
symbols. Observation | is an outlier for both Y and X (large

leverage) but not from the fitted model and is not influential.
Observation 2 is not an outlier for either Y or X but is an
outlier from the fitted model (large residual). Regression line
2 includes this observation and its slope is only slightly less
than the original regression line so observation 2 is not
particularly influential (small Cook’s D,). Observation 3 is not
an outlier for Y but it does have large leverage and it is an
outlier from the fitted model (large residual). Regression line
3 includes this observation and its slope is markedly different
from the original regression line so observation 3 is very
influential (large Cook’s D,, combining leverage and residual).

an observation with a D, greater than one is partic-
ularly influential (Bollen & Jackman 1990). An
alternative measure of influence that also incorpo-
rates both the size of leverage and the residual for
each observation is DFITS,, which measures the
influence of each observation (i) on its predicted
value (9,).

We illustrate leverage and influence in Figure
5.8. Note that observations one and three have
large leverage and observations two and three
have large residuals. However, only observation
three is very influential, because omitting obser-
vations one or two would not change the fitted
regression line much.

Transformations of Y that overcome problems
of non-normality or heterogeneity of variance
might also reduce the influence of outliers from
the fitted model. If not, then the strategies for
dealing with outliers discussed in Chapter 4
should be considered.

5.3.10 Diagnostic graphics

We cannot over-emphasize the importance of pre-
liminary inspection of your data. The diagnostics
and checks of assumptions we have just described
are best used in graphical explorations of your data
before you do any formal analyses. We will describe
the two most useful graphs for linear regression
analysis, the scatterplot and the residual plot.

Scatterplots

A scatterplot of Y against X, just as we used in
simple correlation analysis, should always be the
first step in any regression analysis. Scatterplots
can indicate unequal variances, nonlinearity and
outlying observations, as well as being used in
conjunction with smoothing functions (Section
5.5) to explore the relationship between Y and X
without being constrained by a specific linear
model. For example, the scatterplot of number of
species of invertebrates against area of mussel
clump from Peake & Quinn (1993) clearly indicates
nonlinearity (Figure 5.17(a)), while the plot of
number of individuals against area of mussel
clump indicates increasing variance in number of
individuals with increasing clump area (Figure
5.19(a)). While we could write numerous para-
graphs on the value of scatterplots as a prelimi-
nary check of the data before a linear regression
analysis, the wonderful and oft-used example
data from Anscombe (1973) emphasize how easily
linear regression models can be fitted to inappro-
priate data and why preliminary scatterplots are
so important (Figure 5.9).

Residual plots

The most informative way of examining residuals
(raw or studentized) is to plot them against x; or,
equivalently in terms of the observed pattern, J,
(Figure 5.10). These plots can tell us whether the
assumptions of the model are met and whether
there are unusual observations that do not match
the model very well.

If the distribution of Y-values for each x, is pos-
itively skewed (e.g. lognormal, Poisson), we would
expect larger J, (an estimate of the population
mean of y) to be associated with larger residuals.
A wedge-shaped pattern of residuals, with a
larger spread of residuals for larger x, or y; as
shown for the model relating number of individ-
uals of macroinvertebrates to mussel clump area
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[SF-UNYW R M Scatterplots of four data sets provided in

Anscombe (1973). Note that despite the marked differences
in the nature of the relationships between Y and X, the OLS
regression line, the r? and the test of the H, that 3, equals
zero are identical in all four cases:y,=3.0+0.5x,n= 11,
r2=0.68,H: B, =0,t=4.24,P=0.002.

in our worked example (Box 5.4 and Figure
5.19(b)), indicates increasing variance in ¢, and y,
with increasing x, associated with non-normality
in Y-values and a violation of the assumption of
homogeneity of variance. Transformation of Y
(Section 5.3.11) will usually help. The ideal
pattern in the residual plot is a scatter of points
with no obvious pattern of increasing or decreas-
ing variance in the residuals. Nonlinearity can be
detected by a curved pattern in the residuals
(Figure 5.17b) and outliers also stand out as
having large residuals. These outliers might be
different from the outliers identified in simple
boxplots of Y, with no regard for X (Chapter 4).
The latter are Y-values very different from the rest
of the sample, whereas the former are observa-
tions with Y-values very different from that pre-
dicted by the fitted model.

Searle (1988) pointed out a commonly observed
pattern in residual plots where points fall along
parallel lines each with a slope of minus one
(Figure 5.11). This results from a number of obser-
vations having similar values for one of the vari-
ables (e.g. a number of zeros). These parallel lines
are not a problem, they just look a little unusual.
If the response variable is binary (dichotomous),

Residual

Residual

Predicted Y

from linear regression: (a) regression showing even spread
around line, (b) associated residual plot, (c) regression
showing increasing spread around line, and (d) associated
residual plot showing characteristic wedge-shape typical of
skewed distribution.

AW NN Diagrammatic representation of residual plots
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Predicted number of limpets

Example of parallel lines in a residual plot.
Data from Peake & Quinn (1993), where the abundance of
the limpets (Cellana tramoserica) was the response variable,
area of mussel clump was the predictor variable and there
were n=25 clumps.
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then the points in the residual plot will fall along
two such parallel lines although OLS regression is
probably an inappropriate technique for these
data and a generalized linear model with a bino-
mial error term (e.g. logistic regression) should be
used (Chapter 13). The example in Figure 5.11 is
from Peake & Quinn (1993), where the response
variable (number of limpets per mussel clump)
only takes three values: zero, one or two.

5.3.11 Transformations

When continuous variables have particular
skewed distributions, such as lognormal or
Poisson, transformations of those variables to a
different scale will often render their distribu-
tions closer to normal (Chapter 4). When fitting
linear regression models, the assumptions under-
lying OLS interval estimation and hypothesis
testing of model parameters refer to the error
terms from the model and, therefore, the
response variable (Y). Transformations of Y can
often be effective if the distribution of Y is non-
normal and the variance of y, differs for each x,,
especially when variance clearly increases as x,
increases. For example, variance heterogeneity for
the linear model relating number of individuals
of macroinvertebrates to mussel clump area was
greatly reduced after transformation of Y (and
also X - see below and compare Figure 5.19 and
Figure 5.20). Our comments in Chapter 4 about
the choice of transformations and the interpreta-
tion of analyses based on transformed data are
then relevant to the response variable.

The assumption that the x; are fixed values
chosen by the investigator suggests that transfor-
mations of the predictor variable would not be
warranted. However, regression analyses in
biology are nearly always based on both Y and X
being random variables, with our conclusions
conditional on the x, observed in our sample or
we use a Model II analysis (Section 5.3.14).
Additionally, our discussion of regression diag-
nostics shows us that unusual X-values determine
leverage and can cause an observation to have
undue influence on the estimated regression coef-
ficient. Transformations of X should also be con-
sidered to improve the fit of the model and
transforming both Y and X is sometimes more
effective than just transforming Y.

The other use of transformations in linear
regression analysis is to linearize a nonlinear rela-
tionship between Y and X (Chapter 4). When we
have a clear nonlinear relationship, we can use
nonlinear regression models or we can approxi-
mate the nonlinearity by including polynomial
terms in a linear model (Chapter 6). An alternative
approach that works for some nonlinear relation-
ships is to transform one or both variables to make
a simple linear model an appropriate fit to the
data. Nonlinear relationships that can be made
linear by simple transformations of the variables
are sometimes termed “intrinsically linear”
(Rawlings et al. 1998); for example, the relationship
between the number of species and area of an
island can be modeled with a nonlinear power
function or a simple linear model after log trans-
formation of both variables (Figure 5.17 and Figure
5.18). If there is no evidence of variance heteroge-
neity, then it is best just to transform X to try and
linearize the relationship (Neter et al. 1996).
Transforming Y in this case might actually upset
error terms that are already normally distributed
with similar variances. The relationship between
number of species and area of mussel clump from
Peake & Quinn (1993) illustrates this point, as a log
transformation of just clump area (X) results in a
linear model that best fits the data although both
variables were transformed in the analysis (Box
5.4). However, nonlinearity is often associated with
non-normality of the response variable and trans-
formations of Y and/or Y and X might be required.

Remember that the interpretation of our
regression model based on transformed variables,
and any predictions from it, must be in terms of
transformed Y and/or X, eg. predicting log
number of species from log clump area, although
predictions can be back-transformed to the origi-
nal scale of measurement if required.

5.3.12 Regression through the origin

There are numerous situations when we know
that Y must equal zero when X equals zero. For
example, the number of species of macroinverte-
brates per clump of mussels on a rocky shore must
be zero if that clump has no area (Peake & Quinn
1993), the weight of an organism must be zero
when the length of that organism is zero etc. It
might be tempting in these circumstances to force
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our regression line through the origin (Y equals
zero, X equals zero) by fitting a linear model
without an intercept term:

y,=Bx,te (5.14)

There are several difficulties when trying to inter-
pret the results of fitting such a no-intercept
model. First, our minimum observed x, rarely
extends to zero, and forcing our regression line
through the origin not only involves extrapolat-
ing the regression line outside our data range but
also assuming the relationship is linear outside
this range (Cade & Terrell 1997, Neter et al. 1996).
If we know biologically that Y must be zero when
Xis zero, yet our fitted regression line has an inter-
cept different to zero, it suggests that the relation-
ship between Y and X is nonlinear, at least for
small values of X. We recommend that it is better
to have a model that fits the observed data well
than one that goes through the origin but pro-
vides a worse fit to the observed data.

Second, although residuals from the no-inter-
cept model are (y,—7,) as usual, they no longer
sum to zero, and the usual partition of SS;_, into
SSgegression and SS; .., doesn’t work. In fact, the
SSpesiauar €aN be greater than SS; . (Neter et al.
1996). For this reason, most statistical software
presents the partitioning of the variance in terms
Of SS; i1 uncorrectea (S€CtION 5.3.4) that will always
be larger than SS, ., .. However, the value of 12
for a no-intercept model determined from
SS tal uncorrected Will IOt be comparable to r* from
the full model calculated using SS; ., (Cade &
Terrell 1997, Kvalseth 1985). The residuals are still
comparable and the MS, ., . is probably better for
comparing the fit of models with and without an
intercept (Chatterjee & Price 1991).

If a model with an intercept is fitted first and
the test of the H, that B, equals zero is not
rejected, there may be some justification for
fitting a no-intercept model. For example, Caley &
Schluter (1997) examined the relationship
between local species richness (response variable)
and regional species richness (predictor variable)
for a number of taxa and geographic regions at
two spatial scales of sampling (1% of region and
10% of region). They argued that local species rich-
ness must be zero when regional richness was zero
and that no-intercept models were appropriate.

Re-analysis of their data showed that when a
model with an intercept was fitted to each combi-
nation of region and spatial scale, the test of the
H, that B, equals zero was not rejected and the
MS, iqua Was always less for a no-intercept model
than a model with an intercept. This indicates
that the no-intercept model was probably a better
fit to the observed data. So no-intercept models
were justified in this case, although we note that
the estimates of 8, were similar whether or not an
intercept was included in the models.

Generally, however, we recommend against
fitting a model without an intercept. The interpre-
tation is more difficult and we must assume line-
arity of the relationship between Y and X beyond
the range of our observed data.

5.3.13 Weighted least squares

The usual OLS approach for linear regression
assumes that the variances of g, (and therefore the
y) are equal, i.e. the homogeneity of variance
assumption discussed in Section 5.3.8. If the vari-
ance of y, varies for each x,, we can weight each
observation by the reciprocal of an estimate of its
variance (0;%):

1
w.=—
i 51‘2

(5.18)

We then fit our linear regression model using
generalized least squares which minimizes
27 w(y,— )% This is the principle of weighted
least squares (Chaterjee & Price 1991, Myers 1990,
Neter et al. 1996). The difficulty is calculating the
w; because we can’t calculate s? unless we have
replicate Y-values at each x,. One approach is to
group nearby observations and calculate s?
(Rawlings et al. 1998), although there are no clear
guidelines for how many observations to include
in each group. A second approach uses the abso-
lute value of each residual (|e,|) from the OLS
regression as an estimate of ;. Neter et al. (1996)
suggested that the predicted values from an OLS
regression of |e,| against x, could be used to calcu-
late the weights for each observation, where w; is
the inverse of the square of this predicted value.
These weights can be used in statistical software
with a weighted least squares option or, equiva-
lently, OLS regression used once y, and x, in each
pair has been multiplied (i.e. weighted) by w,.
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Box 5.7 |Model II regression.

For the data from Christensen et al. (1996), both the response variable (CWD basal
area) and the predictor variable (riparian tree density) are random. These variables
are measured in different units, so reduced major axis (RMA; also called standard
major axis) and ranged MA regression are appropriate. We used the program
“Model Il regression” from Pierre Legendre at the University of Montreal.

Statistic RMA Ranged MA OLS

b, 0.145 0.164 0.116

95% Cl 0.103 to 0.204 0.109 to 0.275 0.065 to 0.166

by —113.904 —137.108 —77.099

95% Cl —187.152 to —275514 to —142.747 to
—61.767 —70.160 —11.451

The correlation coefficient was nearly 0.8, so we would not expect much difference
in the estimates of the regression slope. The estimated regression slope from the
RMA model and the ranged MA model were both larger than the OLS estimate,
and, not surprisingly, the estimates of the intercept also differed. Note that the width
of the confidence interval for B, was the same for RMA and OLS, but wider for
ranged MA. A randomization test of the H, that B, equals zero for ranged MA
resulted in a P value of 0.001. The test for the OLS regression is the same as the
test for the correlation coefficient and provides a test for the RMA slope, with a P
value less than 0.001.

Weighted least squares seems to have been
rarely applied in the biological literature, most
biologists including us preferring to transform
one or both variables to meet the assumption of
homogeneity of variance or else use generalized
linear models (Chapter 13).

5.3.14 X random (Model Il regression)

The linear regression model we have been using
in this chapter is sometimes called Model I regres-
sion because X is a fixed variable, i.e. the x, are
fixed values set by the investigator and a new
sample of observations from the population
would use the same x.. As we have previously dis-
cussed, most applications of linear regression in
biology are unlikely to involve fixed X-values.
Although we can usually conceptually distin-
guish a response variable (Y) from a predictor var-
iable (X), the (x,y,) pairs are commonly a sample
from a bivariate distribution of two random vari-
ables, X and Y. For example, number of species per
clump and area of mussel clump were clearly
both random variables in the study by Peake &
Quinn (1993) because clumps were chosen

haphazardly from the shore and both variables
recorded from each clump. Fitting a linear regres-
sion model for Y on X to data where both variables
are random, and assumed to be jointly distributed
with a bivariate normal distribution has been
termed Model II regression (Legendre & Legendre
1998, Sokal & Rohlf 1995). It is a topic of some con-
troversy and there are several ways of looking at
the problem.

If the main aim of our regression analysis is
prediction, then we can use the usual OLS regres-
sion model when Y and X are random as long as
the probability distributions of y; at each x, are
normal and independent. We must constrain our
inferences about Y to be conditional given partic-
ular values of X (Neter et al. 1996).

If the main aim of our regression analysis is
not prediction but to describe the true nature of
the relationship between Y and X (i.e. estimate 3,),
then OLS regression might not be appropriate.
There is error variability associated with both Y
(0,?)and X (o) and the OLS estimate of B, is biased
towards zero (Box 5.7). The extent of the bias
depends on the ratio of these error variances
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X
Distances or areas minimized by OLS (1), MA
(2) and RMA (shaded area 3) linear regressions of Y on X.

(Legendre & Legendre 1998, Prairie et al. 1995,
Snedecor & Cochran 1989):

(5.19)

If X is fixed then o* equals zero and the usual OLS
estimate of B, is unbiased; the greater the error
variability in X relative to Y, the greater the down-
ward bias in the OLS estimate of 3,. Remember
that the usual OLS regression line is fitted by mini-
mizing the sum of squared vertical distances from
each observation to the fitted line (Figure 5.12).
Here, o equals zero (fixed X) and A equals «. The
choice of method for estimating a linear regres-
sion model when both Y and X are random vari-
ables depends on our best guess of the value of A,
which will come from our knowledge of the two
variables, the scales on which they are measured
and their sample variances.

Major axis (MA) regression is estimated by
minimizing the sum of squared perpendicular
distances from each observation to the fitted line
(Figure 5.12). For MA regression, o,* is assumed to
equal o so A equals one. The calculation of the
estimate of the slope of the regression model is a
little tedious, although it can be calculated using
the estimate of the slope of the Model I regression
and the correlation coefficients:
_d*xVd*+4

1(MA) 2

b (5.20)

If ris +ve, use the +ve square root and vice versa.
In Equation 5.20:

b 2 _ 1’2
=109 (5.21)

T’Zb1(0LS)
Standard errors and confidence intervals are best
estimated by bootstrapping and a randomization
test used for testing the H; of zero slope. Legendre
& Legendre (1988) argued that MA regression was
appropriate when both variables are measured on
the same scales with the same units, or are dimen-
sionless. They described a modification of MA
regression, termed ranged MA regression. The var-
iables are standardized by their ranges, the MA
regression calculated, and then the regression
slope is back-transformed to the original scale. The
advantage of ranged MA regression is that the var-
iables don’t need to be in comparable units and a
test of the H,, of zero slope is possible (see below).

Reduced major axis (RMA) regression, also
called the standard major axis (SMA) regression by
Legendre & Legendre (1998), is fitted by minimiz-
ing the sum of areas of the triangles formed by
vertical and horizontal lines from each observa-
tion to the fitted line (Figure 5.12). For RMA regres-
sion, it is assumed that o and oy are
proportional to ¢,* and o, respectively so A equals
02|02 The RMA estimate of 8, is simply the ratio
of standard deviation of Y to the standard devia-
tion of X:

p =

5.22
e (5:22)

This is also the average of the OLS estimate of the
slope of Y on X and the reciprocal of the OLS esti-
mate of the slope of X on Y. The standard error for
the RMA estimate can be determined by boot-
strapping but it turns out that the standard error
of B, is, conveniently, the same as the standard
error of the OLS estimate. Confidence intervals
for B, can then be determined in the usual
manner (Section 5.3.3). The H; that 8, equals
some specified value (except zero) can also be
tested with a T-statistic (McArdle 1988, modified
from Clarke 1980):

_ |log b, —log By |
V(1-r)(n—2)

where b, is the RMA estimate of B, B," is the value
of B, specified in the H; and the denominator is

(5.23)
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m (a) Scatterplot (with

Loess smoother, smoothing (a)
parameter = 0.5) of CWD basal area
against riparian tree density. (b)
Scatterplot of residuals against
predicted CWD basal area from
linear regression of CWD basal area

against riparian tree density.

CWD basal area

I NEN (2) Scatterplot (with

Loess smoother, smoothing 200 ~ (a)
parameter = 0.5) of CWD basal area
against cabin density. (b) Scatterplot
of residuals against predicted CWD

150

basal area from linear regression of
CWD basal area against cabin
density.

100

50

CWD basal area

the standard error of the cor-
relation coefficient (r). Note
again the close relationship
between RMA regression and the correlation
coefficient. Testing 3, against a specific non-
zero value is applicable in many aspects of
biology, such as the scaling of biological pro-
cesses with body size of organisms (LaBarbera
1989). The H that 3, equals zero cannot be tested
because log zero is undefined; the RMA regres-
sion slope is related to A and cannot be strictly
zero unless o,? is also zero, an unlikely occur-
rence in practice (Legendre & Legendre 1998,
McArdle 1988, Sokal & Rohlf 1995). The inability
to formally test the H, that 8, equals zero is actu-
ally a trivial problem because the H; that the pop-
ulation correlation coefficient (p) equals zero is
essentially the same.

Prairie et al. (1995) proposed the slope-range
method, which estimates 8, when X is random
from the relationship between the OLS estimate
and (1/s,?) for subsets of the data covering different
ranges of X. This is a modification of methods
based on instrumental variables (a third variable
which may separate the data into groups). The
main limitation of the method is that it needs a

Cabin density

80
o (b),
& o
40
T @]
=}
S 0r o
& o)
i g
40 @) o
-80 | L | ]
0 50 100 150 200
Predicted value
100
(b) o
50 [
o) o %
©
>
S 0 o)
® o)
4 @ @O
-50 -
o ©
L ~100 ! | L J
30 -50 0 50 100 150

Predicted value

reasonablylarge sample size - at least ten potential
groups in the data set with n>20 in each
group.

The intercepts are straightforward to calculate
for any of these estimates of the slope because
each regression line passes through the point (7,
X) — see Section 5.3.3. The MA and RMA regression
lines can be related to principal components ana-
lysis (see Chapter 17); the former is the first prin-
cipal component of the covariance matrix
between Y and X and the latter is the first princi-
pal component of the correlation matrix between
Y and X. The RMA regression line is also the long
axis of the bivariate confidence ellipse (Figure 5.4),
indicating a close relationship between the corre-
lation coefficient and the RMA regression line
that we will elaborate on below.

Note that fitting a regression model of Y on X
will produce a different OLS regression line than
a regression model of X on Y for the same data
because the first is minimizing deviations from
the fitted line in Y and the latter is minimizing
deviations from the fitted line in X. Interestingly,
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m (a) Scatterplot (with

Loess smoother, smoothing
parameter = 0.5) of CWD basal area
against log , cabin density. (b)
Scatterplot of residuals against
predicted CWD basal area from
linear regression of CWD basal area

ao

against log, cabin density.
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[ SF-UT-R NI (2) Scatterplot (with

o Loess smoother, smoothing
o parameter =0.5) of log,, CWD

¢} basal area against log, cabin density.
(b) Scatterplot of residuals against
predicted log,, CWD basal area

© O

from linear regression of log,
CWD basal area against log, ; cabin

© density.

Log cabin density

as pointed out by Jackson (1991), the RMA line
seems to most observers a more intuitive and
better “line-of-best-fit” than the OLS line since it
lies half way between the OLS line for Y on X and
the OLS line for X on Y.

Simulations by McArdle (1988) comparing OLS,
MA and RMA regression analyses when X is
random showed two important results. First, the
RMA estimate of 8, is less biased than the MA esti-
mate and is preferred, although he did not con-
sider the ranged MA method. Second, if the error
variability in X is more than about a third of the
error variability in Y, then RMA is the preferred
method; otherwise OLS is acceptable. As the corre-
lation coefficient between Y and X approaches one
(positive or negative), the difference between the
OLS and RMA estimates of §8,, and therefore the
difference between the fitted regression lines,
gets smaller. Legendre & Legendre (1998) pre-
ferred the ranged MA over RMA, partly because
the former permits a direct test of the H; that 3,
equals zero. We don’t regard this as a crucial issue

0 50 100

15(‘) because the test of the H,, that
the correlation coefficient
equals zero is the same test. A
more sophisticated decision

tree for choosing between methods for Model II

regression is provided by Legendre & Legendre

(1998), in addition to a detailed but very readable

discussion of the issues.

Examples of the application of Model II regres-
sion analyses are most common in studies of
scaling of aspects of biology with body size of
organisms. Herrera (1992) calculated the OLS, MA
and RMA estimates of the slope of the linear
regression of log fruit width on log fruit length
for over 90 species of plants from the Iberian
Peninsula. He showed that, averaging across the
species, the RMA estimate of the regression slope
was greater than MA, which in turn was greater
than OLS. He argued that MA regression was
appropriate because the error variabilities for log
width and log length were similar. Trussell (1997)
used RMA regression for describing relationships
between morphological characteristics (e.g. shell
height, shell length, foot size, etc.) of an intertidal
snail. However, he used OLS regressions to
compare between shores as part of an analysis of

Predicted value
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TSNV E (2) Scatterplot (with

Loess smoother, smoothing
parameter = 0.5) of number of
species against clump area. (b)
Scatterplot (with Loess smoother,
smoothing parameter = 0.5) of
residuals against predicted number
of species from linear regression of

Number of species

number of species against clump
area.
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covariance (see Chapter 12).
Both Herrera (1992) and
Trussell (1997) tested whether
their regression slopes were significantly differ-
ent from unity, the value predicted if the relation-
ships were simply allometric.

It is surprising that there are not more uses of
Model II regression, or acknowledgment of the
potential biases of using OLS estimates when both
Y and X are random, in biological research litera-
ture, particularly given the extensive discussion
in the influential biostatistics text by Sokal &
Rohlf (1995). This may be partly because many
excellent linear models textbooks are based on
examples in industry or business and marketing
where the assumption of fixed X is commonly
met, so the issue X being random is not discussed
in detail. Also, biologists seem primarily inter-
ested in the test of the H, that 8, equals zero. Since
the test is identical for OLS regression of Y on X
and X on Y, and both are identical to the test that
the correlation coefficient (p) equals zero, then it
essentially does not matter whether OLS or RMA
regression is used for this purpose. Biologists less
commonly compare their estimates of B, with

Log clump area

Predicted value

other values, so underestimating the true slope
may not be costly.

5.3.15 Robust regression

One of the limitations of OLS is that the estimates
of model parameters, and therefore subsequent
hypothesis tests, can be sensitive to distributional
assumptions and affected by outlying observa-
tions, i.e. ones with large residuals. Even general-
ized linear model analyses (GLMs; see Chapter 13)
that allow other distributions for error terms
besides normal, and are based on ML estimation,
are sensitive to extreme observations. Robust
regression techniques are procedures for fitting
linear regression models that are less sensitive to
deviations of the underlying distribution of error
terms from that specified, and also less sensitive
to extreme observations (Birkes & Dodge 1993).

Least absolute deviations (LAD)
LAD, sometimes termed least absolute residuals
(LAR; see Berk 1990), is where the estimates of 3,
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linear regression line and 95%
confidence band fitted) of log
number of individuals against log,,
clump area. (b) Scatterplot of
residuals against predicted number
o of individuals from linear regression
of log,, number of individuals against

o log,, clump area.

Log clump area

and B, are those that minimize the sum of abso-
lute values of the residuals:

Z|ei| :ZHJ@_?)

rather than the sum of squared residuals (27 e?)
as in OLS. By not squaring the residuals, extreme
observations have less influence on the fitted
model. The difficulty is that the computations of
the LAD estimates for 8, and 3, are more complex
than OLS estimates, although algorithms are
available (Birkes & Dodge 1993) and robust regres-
sion techniques are now common in statistical
software (often as part of nonlinear modeling rou-
tines).

(5.24)

M-estimators

These were introduced in Chapter 2 for estimating
the mean of a population. In a regression context,
M-estimators involve minimizing the sum of some
function of e, with OLS (minimizing X7 e?) and
LAD (minimizing =7, |e;|) simply being special

2 3 4

Predicted value cases (Birkes & Dodge 1993).

Huber M-estimators, described

in Chapter 2, weight the obser-
vations differently depending how far they are
from the center of the distribution. In robust
regression analyses, Huber M-estimators weight
the residuals (e) differently depending on how far
they are from zero (Berk 1990) and use these new
residuals to calculate adjusted Y-values. The esti-
mates for 3, and B, are those that minimize both
2" e? (i.e. OLS) when the residuals are near zero
and X|e| (i.e. LAD) when the residuals are far
from zero. We need to choose the size of the resid-
ual at which the method switches from OLS to
LAD; this decision is somewhat subjective,
although recommendations are available (Huber
1981, Wilcox 1997). You should ensure that the
default value used by your statistical software for
robust regression seems reasonable. Wilcox (1997)
described more sophisticated robust regression
procedures, including an M-estimator based on
iteratively reweighting the residuals. One
problem with M-estimators is that the sampling
distributions of the estimated coefficients are
unlikely to be normal, unless sample sizes are
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large, and the usual calculations for standard
errors, confidence intervals and hypothesis
testing may not be valid (Berk 1990). Resampling
methods such as bootstrap (Chapter 2) are prob-
ably the most reliable approach (Wilcox 1997).

Rank-based (“non-parametric”) regression

This approach does not assume any specific distri-
bution of the error terms but still fits the usual
linear regression model. This approach might be
particularly useful if either of the two variables is
not normally distributed and nonlinearity is
evident but transformations are either ineffective
or misrepresent the underlying biological
process. The simplest non-parametric regression
analysis is based on the [n(n—1)]/2 OLS slopes of
the regression lines for each pair of X values (the
slope for y,x, and y,x,, the slope for y,x, and y.x,,
the slope for y,x, and y,x,, etc.). The non-paramet-
ric estimator of B, (b,) is the median of these
slopes and the non-parametric estimator of 8 (b,)
is the median of all the y, — b, x, differences (Birkes
& Dodge 1993, Sokal & Rohlf 1995, Sprent 1993). A
t test for B, based on the ranks of the Y-values is
described in Birkes & Dodge (1993); an alternative
is to simply use Kendall’s rank correlation coeffi-
cient (Sokal & Rohlf 1995).

Randomization test

Arandomization test of the H; that 8, equals zero
can also be constructed by comparing the
observed value of b, to the distribution of b, found
by pairing the y, and x, values at random a large
number of times and calculating b, each time
(Manly 1997). The P value then is the % of values of
b, from this distribution equal to or larger than
the observed value of b,.

5.4  Relationship between

regression and correlation

The discussion on linear regression models when
both Y and X are random variables in Section
5.3.14 indicated the close mathematical and con-
ceptual similarities between linear regression and
correlation analysis. We will formalize those sim-
ilarities here, summarizing points we have made
throughout this chapter. The population slope of

thelinear regression of Y on X (8,,) is related to the
correlation between Y and X (p,,) by the ratio of
the standard deviations of Y and X:

gy
=Py 5.25
Byx = Pyx oy (5.25)
Therefore, the OLS estimate of 8, from the linear
regression model for Y on X is:
s
by, =1,

YX YX

. (5.26)

The equivalent relationship also holds for the pop-
ulation slope of the linear regression of X on Y
with the ratio of standard deviations reversed.
Therefore the sample correlation coefficient
between Y and X can be calculated from the stan-
dardized slope of the OLS regression of Y on X
(Rodgers & Nicewander 1988).

These relationships between regression slopes
and correlation coefficients result in some inter-
esting equivalencies in hypothesis tests. The test
of the H, that B,, equals zero is also identical to
the test of the H, that S, equals zero, although
the estimated values of the regression slopes will
clearly be different. These tests that g, or S,
equal zero are also identical to the test of the H
that p,, equals zero, i.e. the test of the OLS regres-
sion slope of Y on X is identical to the test of the
OLS regression slope of X on Y and both are iden-
tical to the test of the Pearson correlation coeffi-
cient between Y and X, although neither
estimated value of the slope will be the same as
the estimated value of the correlation coefficient.
The sample correlation coefficient is simply the
geometric mean of these two regression slopes
(Rodgers & Nicewander 1988):

r=+ Vb

Simple correlation analysis is appropriate when
we have bivariate data and we simply wish to
measure the strength of the linear relationship
(the correlation coefficient) between the two vari-
ables and test an H about that correlation coeffi-
cient. Regression analysis is called for when we
can biologically distinguish a response (Y) and a
predictor variable (X) and we wish to describe the
form of the model relating Y to X and use our esti-
mates of the parameters of the model to predictY
from X.

(5.27)



SMOOTHING

107

5.5 | Smoothing

The standard OLS regression analysis, and the
robust regression techniques, we have described
in this chapter specify a particular model that we
fit to our data. Sometimes we know that a linear
model is an inappropriate description of the rela-
tionship between Y and X because a scatterplot
shows obvious nonlinearity or because we know
theoretically that some other model should apply.
Other times we simply have no preconceived
model, linear or nonlinear, to fit to the data and
we simply want to investigate the nature of the
relationship between Y and X. In both situations,
we require a method for fitting a curve to the rela-
tionship between Y and X that is not restricted to
a specific model structure (such as linear).
Smoothers are a broad class of techniques that
describe the relationship between Y and X, etc,,
with few constraints on the form the relationship
might take (Goodall 1990, Hastie & Tibshirani
1990). The aim of the usual linear model analysis
is to separate the data into two components:

model + residual (error) (5.28)

Smoothing also separates data into two compo-
nents:

smooth + rough (5.29)

where the rough component should have as little
information or structure as possible (Goodall
1990). The logic of smoothing is relatively simple.

» Each observation is replaced by the mean or
the median of surrounding observations or the
predicted value from a regression model
through these local observations.

* The surrounding observations are those within

a window (sometimes termed a band or a

neighbourhood) that covers a range of observa-

tions along the X-axis and the X-value on
which the window is centered is termed the
target. The size of the window, i.e. the number

of observations it includes, is determined by a

smoothing parameter for most smoothers

(Hastie & Tibshirani 1990).

Successive windows overlap so that the result-

ing line is smooth.

* The mean or median in one window are not
affected by observations in other windows so
smoothers are robust to extreme observations.

* Windows at the extremes of the X-axis often
extend beyond the smallest or largest X-value
and must be handled differently (see Section
5.5.5).

Smoothing functions are sometimes termed
non-parametric regressions; here, non-parametric
refers to the absence of a specified form of the
relationship between Y and X rather than the dis-
tribution of the error terms from the fit of a
model. Smoothing functions don’t set any specific
conditions for Y or X. For example, the observa-
tions may come from a joint distribution of Y and
X (both Y and X random) or X may be considered
fixed (Hastie & Tibshirani 1990). There are numer-
ous varieties of smoothers and our descriptions
are based on Goodall (1990) and Hastie &
Tibshirani (1990).

5.5.1 Running means

A running (moving) means (averages) smoother is
determined from the means of all the observa-
tions in a window. Each window is centered on the
target X-value and the remaining X-values
included in the window can be determined in two
ways: (i) including a fixed number of observations
both sides of the target X-value, or (ii) including a
fixed number of nearest observations to the target
x, irrespective of which side of the target they
occur (Hastie & Tibshirani 1990, Neter et al. 1996).
The latter tend to perform better (Hastie &
Tibshirani 1990), especially for locally weighted
smoothers (see Cleveland’s Loess below). Note that
any observation might be included in a number of
neighbouring windows. Using running medians
instead of means makes the smoothing more
resistant to extreme observations, i.e. more robust
(Figure 5.21(a,b)). Running means or medians have
been used commonly for analyzing data from
simple time series (Diggle 1990), although the
resulting line is rarely smooth (Hastie &
Tibshirani 1990).

5.5.2 LO(W)ESS
A simple modification of running means or
medians is to calculate the OLS regression line
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is locally weighted regression

scatterplot smoothing (Loess

or Lowess; Cleveland 1979,

1994; see Figure 5.21). Here, the observations in a
window are weighted differently depending on
how far they are from the target X-value using a
tri-cube weight function (see Hastie & Tibshirani
1990 and Trexler & Travis 1993 for details). In
essence, observations further from the target X-
value are downweighted compared with values
close to the target X-value (Goodall 1990). Further
refinement can be achieved by repeating the
smoothing process a number of times during
which observations with large residuals (differ-
ence between observed y, and those predicted by
the smooth) are downweighted. The final Loess
smooth is often an excellent representation of the
relationship between Y and X, although the
choice of smoothing parameter (window size) can
be important for interpretation (see Section 5.5.5).
A related smoother is distance weighted least
squares (DWLS) that also weights observations dif-
ferently within each window. DWLS is slightly less
sensitive to extreme observations than Loess for a
given smoothing parameter.

5.5.3 Splines

Splines approach the smoothing problem by
fitting polynomial regressions (see Chapter 6),
usually cubic polynomials, in each window. The
final smoother is termed a piecewise polynomial.

2 3 0 1 2 3

Clump area (dm?2)

The windows are separated at user-defined break-
points termed knots and the polynomials within
each window are forced to be continuous between
windows, i.e. two adjacent polynomials join
smoothly at a knot (Hastie & Tibshirani 1990). The
computations are complex and a rationale for the
choice of the number of knots, that will influence
the shape of the smooth, is not obvious. Our expe-
rience is that regression splines are less useful
than Loess smoothers as an exploratory tool for
bivariate relationships.

5.5.4 Kernels

We have already discussed kernel functions as
non-parametric estimators of univariate (Chapter
2) and bivariate (Section 5.1.3) probability density
functions. Hastie & Tibshirabni (1990) also
described a kernel smoother for Y versus X rela-
tionships. Within a window, observations are
weighted based on a known function (e.g. normal
distribution), termed the kernel, so that the
weights decrease the further the observation is
from the target X-value (just like in Loess smooth-
ing). The estimated smoother results from the
means of the Y-values within each window. Again,
a smoothing parameter sets the size of the
window and this, along with the kernel (the func-
tion that sets the weights of the observations
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within each window), are defined by the user.
Kernels are not often used as smoothers for esti-
mating the relationship between Y and X but are
useful as more general univariate or bivariate
density estimators.

5.5.5 Other issues

All the above smoothers describe the relationship
between Y and X, and a predicted Y-value (§,) can
be determined for each x,. Therefore, residuals
(y,— 7. can also be calculated for each observation,
and are produced from some statistical software.
These residuals can be used in a diagnostic
fashion to assess the fit of the smooth to the data,
similar to the methods described in Section 5.3.10
for OLS linear regression. In particular, large
residuals might indicate influential observations,
although most smoothing techniques are consid-
ered robust to outliers because the components of
the smoother are fitted to local observations
within windows. Also, standard errors for y, can be
determined using bootstrap techniques (Efron &
Tibshirani 1991; Chapter 2) and hypotheses about
9, tested with randomization procedures (Chapter
3).

There are several important issues related to
the practical application of all the smoothers
described here. First, whichever smoothing
method is used, an important decision for the
user is the value for the smoothing parameter, i.e.
how many observations to include in each
window. Hastie & Tibshirani (1990) have discussed
this in some detail. Increasing the number of
observations in each window (larger smoothing
parameter) produces a flatter and “smoother”
smooth that has less variability (Figure 5.21(a,c))
but is less likely to represent the real relationship
between Y and X well (the smooth is probably
biased). In contrast, fewer observations in each
window (smaller smoothing parameter) produces
a “jerkier”, more variable, smooth (Figure
5.21(b,d)) but which may better match the pattern
in the data (less biased). Hastie & Tibshirani (1990)
have described complex, data-based methods for
choosing the smoothing parameter (window-size)
and producing a smooth that best minimizes both
variance and bias. These methods might be useful
iflow variance is important because the smooth is
being used as part of a modeling process, e.g.

generalized additive modeling (GAM; see Chapter
13). Lower variance will result in predictions from
such models being more precise. Trexler & Travis
(1993) recommended the approach of Cleveland
(1994) for Loess smoothing whereby the smooth-
ing parameter (window-size) is as large as possible
without resulting in any relationship between the
residuals and X. In our experience, such a relation-
ship is not common irrespective of the value of
the smoothing parameter so this recommenda-
tion does not always work. Since smoothers are
most commonly used as an exploratory tool
rather than for modelfitting, we recommend
trying different values of smoothing functions as
part of the phase of exploring patterns in data
before formal analyses.

A second issue is what we do when the end-
points (the smallest and largest X-values) are the
targets, because their windows will usually
exceed the range of the data. Goodall (1990) sug-
gested a step-down rule so that the window size
decreases as the largest and smallest X-values are
approached, although he emphasized that defini-
tive recommendations are not possible.

In summary, smoothing functions have a
number of applications. First, they are very useful
for graphically describing a relationship between
two variables when we have no specific model in
mind. Second, they can be used as a diagnostic
check of the suitability of a linear model or help
us decide which form of nonlinear model might
be appropriate. Third, they can be used for model-
ing and prediction, particularly as part of general-
ized additive models (Chapter 13).

5.6 | Power of tests in correlation

and regression

Since Hs about individual correlation and regres-
sion coefficients are tested with t tests, power cal-
culations are relatively straightforward based on
non-central t distributions (Neter et al. 1996; see
also Chapters 3 and 7). In an a priori context, the
question of interest is “How many observations do
we need to be confident (at a specified level, i.e.
power) that we will detect a regression slope of a
certain size if it exists, given a preliminary esti-
mate of ¢ *?” Equivalent questions can be phrased
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for correlation coefficients. As always with power
analyses, the difficult part is determining what
effect size, e.g. size of regression slope, is impor-
tant (see Chapter 7).

5.7 | General issues and hints for
analysis
5.7.1 General issues

Estimating and testing correlations are
straightforward for linear (straight-line) rela-
tionships. Use robust methods (e.g. non-para-
metric) if relationships are nonlinear but
monotonic.

Classical linear regression models fitted by OLS
assume that X is a fixed variable (Model I). In
biology, both Y and X are usually random
(Model II) and alternative methods are avail-
able for estimating the slope. Even with X
random, predictions and tests of hypotheses
about the regression slope can be based on
Model I analyses.

The null hypothesis that the slope of the
Model I regression equals zero can be tested
with either a t test or an ANOVA Fratio test.
The conclusions will be identical and both are
standard output from statistical software.
These are also identical to the tests of the null
hypotheses that the correlation coefficient
equals zero and the slope of the RMA (Model II)
regression equals zero.

The standardized regression slope provides a
measure of the slope of the linear relationship
between the response and the predictor vari-
able that is independent of their units.

The assumptions of linear regression analysis
(normality, homogeneity of variance, indepen-
dence) apply to the error terms from the model
and also to the response variable. Violations of
these assumptions, especially homogeneity of
variances and independence, can have impor-
tant consequences for estimation and testing
of the linear regression model.

If transformations are ineffective or inapplica-
ble, robust regression based on M-estimation or
on ranks should be considered to deal with
outliers and influential observations.
Smoothing functions are very useful
exploratory tools, suggesting the type of model
that may be most appropriate for the data, and
also for presentation, describing the relation-
ship between two variables without being con-
strained by a specific model.

5.7.2 Hints for analysis

Tests of null hypotheses for non-zero values of
the correlation coefficient are tricky because
of complex distribution of r; use procedures
based on Fishers’s z transformation.

A scatterplot should always be the first step in
any correlation or simple regression analysis.
When used in conjunction with a smoothing
function (e.g. Loess), scatterplots can

reveal nonlinearity, unequal variances and out-
liers.

As always when fitting linear models, use diag-
nostic plots to check assumptions and ade-
quacy of model fit. For linear regression, plots
of residuals against predicted values are valu-
able checks for homogeneity of residual vari-
ances. Checks for autocorrelation, especially if
the predictor variable represents a time
sequence, should also precede any formal
analysis. Cook’s D, statistic (or DFITS)) is a valu-
able measure of the influence each observation
has on the fitted model.

Transformations of either or both variables
can greatly improve the fit of linear regression
models to the data and reduce the influence of
outliers. Try transforming the response vari-
able to correct for non-normality and unequal
variances and the predictor if variances are
already roughly constant.

Think carefully before using a no-intercept
model. Forcing the model through the origin
is rarely appropriate and renders measures of
fit (e.g. 1?) difficult to interpret.



Chapter 6

Multiple and complex regression

In Chapter 5, we examined linear models with a
single continuous predictor variable. In this
chapter, we will discuss more complex models,
including linear models with multiple predictor
variables and models where one predictor inter-
acts with itself in a polynomial term, and also
nonlinear models. Note that this chapter will
assume that you have read the previous chapter
on bivariate relationships because many aspects
of multiple regression are simply extensions from
bivariate (simple) regression.

6.1 | Multiple linear regression

analysis

A common extension of simple linear regression
is the case where we have recorded more than one
predictor variable. When all the predictor vari-
ables are continuous, the models are referred to as
multiple regression models. When all the predic-
tor variables are categorical (grouping variables),
then we are dealing with analysis of variance
(ANOVA) models (Chapters 8-11). The distinction
between regression and ANOVA models is not
always helpful as general linear models can
include both continuous and categorical predic-
tors (Chapter 12). Nonetheless, the terminology is
entrenched in the applied statistics, and the bio-
logical, literature. We will demonstrate multiple
regression with two published examples.

Relative abundance of C, and C, plants
Paruelo & Lauenroth (1996) analyzed the geo-
graphic distribution and the effects of climate

variables on the relative abundance of a number
of plant functional types (PFTs) including shrubs,
forbs, succulents (e.g. cacti), C, grasses and C,
grasses. The latter PFTs represent grasses that
utilize the C from the atmosphere differently in
photosynthesis and are expected to have different
responses to CO, and climate change. They used
data from 73 sites across temperate central North
America and calculated the relative abundance of
each PFT, based on cover, biomass and primary
production, at each site. These relative abundance
measures for each PFT were the response vari-
ables. The predictor variables recorded for each
site included longitude and latitude (centesimal
degrees), mean annual temperature (°C), mean
annual precipitation (mm), the proportion of pre-
cipitation falling in winter between December
and February, the proportion of precipitation
falling in summer between June and August, and
a categorical variable representing biome (one for
grassland, two for shrubland). The analyses of
these data are in Box 6.1.

Abundance of birds in forest patches

Understanding which aspects of habitat and
human activity affect the biodiversity and abun-
dance of organisms within remnant patches of
forest is an important aim of modern conserva-
tion biology. Loyn (1987) was interested in what
characteristics of habitat were related to the abun-
dance and diversity of forest birds. He selected 56
forest patches in southeastern Victoria, Australia,
and recorded the number of species and abun-
dance of forest birds in each patch as two response
variables. The predictor variables recorded for
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Box 6.1 | Worked example of multiple linear regression:
relative abundance of plant functional types

Paruelo & Lauenroth (1996) analyzed the geographic distribution and the effects of
climate variables on the relative abundance of a number of plant functional types
(PFTs) including shrubs, forbs, succulents (e.g. cacti), C; grasses and C, grasses.
There were 73 sites across North America. The variables of interest are the rela-
tive abundance of C, plants, the latitude in centesimal degrees (LAT), the longitude
in centesimal degrees (LONG), the mean annual precipitation in mm (MAP), the
mean annual temperature in °C (MAT), the proportion of MAP that fell in June, July
and August (JJAMAP) and the proportion of MAP that fell in December, January
and February (DJFMAP). The relative abundance of C, plants was positively skewed
and transformed to log ,+ 0.1 (log,,C,).

A correlation matrix between the predictor variables indicated that some pre-
dictors are strongly correlated.

LAT LONG MAP MAT JJAMAP  DJFMAP
LAT 1.00
LONG 0.097 1.000
MAP —0247 —=0.734 1.000
MAT —0839 —-0213 0.355 1.000
JJAMAP 0074 —0492 0.2 =008l 1.000
DJFMAP —0.065 0.771 —0.405 0001 =0.792 1.00

Note the high correlations between LAT and MAT, LONG and MAP and
JJAMAP and DJFMARP suggesting that collinearity may be a problem with this analy-
Sis.

With six predictor variables, a linear model with all possible interactions would
have 64 model terms (plus an intercept) including four-, five- and six-way interac-
tions that are extremely difficult to interpret. As a first pass, we fitted an additive
model:

(log,,C3), =B, + B, (LAT) + B,(LONG), + B,(MAP). + B,(MAT), + B, (JJAMAP) +
B(DIFMAP). + ¢

Coefficient Estimate  Standard ~ Standardized Tolerance t P
error coefficient

Intercept —2.689 1.239 0 —-2.170 0.034
LAT 0.043 0.010 0.703 0.285 4375  <0.00lI
LONG 0.007 0.010 0.136 0.190 0.690 0942
MAP <0.001 <0.001 0.181 0.357 1,261 0212
MAT —0.001 0.012 —-0.012 0.267 —-0.073 0942
JJAMAP —0.834 0475 —0.268 0316 —1.755 0.084
DJFMAP —0962 0716 —0.275 0.175 —[.343 0.184

It is clear that collinearity is a problem with tolerances for two of the
predictors (LONG & DJFMAP) approaching O.1.
Paruelo & Lauenroth (1996) separated the predictors into two groups for
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their analyses. One group included LAT and LONG and the other included
MAP MAT, JJAMAP and DJFMAPR We will focus on the relationship between
log-transformed  relative abundance of C, plants and latitude and longitude.
We fitted a multiplicative model including an interaction term that measured how
the relationship between C, plants and latitude could vary with longitude and vice
versa:

(log,,C,). =8, +B8,(LAT) + B,(LONG). + B,(LAT X LONG), + ¢

Coefficient Estimate Standard Tolerance t P
error

Intercept 7.391 3.625 2.039 0.045

LAT —0.191 0.091 0.003 —2.102 0.039

LONG —0.093 0.035 0.015 —2.659 0.010

LAT X LONG 0.002 0.001 0.002 2572 0.012

Note the very low tolerances indicating high correlations between the predic-
tor variables and their interactions. An indication of the effect of collinearity is that
if we omit the interaction and refit the model, the partial regression slope for lati-
tude changes sign. We refitted the multiplicative model after centring both LAT and
LONG.

Coefficient Estimate Standard  Tolerance t P

error
Intercept —0.553 0.027 20.130 <0.00]1
LAT 0.048 0.006 0.829 8.483 <0.00]
LONG —0.003 0.004 0.980 —0.597 0.552
LAT X LONG 0.002 0.001 0.820 2572 0012

Now the collinearity problem has disappeared. Diagnostic checks of the model
did not reveal any outliers nor influential values. The boxplot of residuals was rea-
sonably symmetrical and afthough there was some heterogeneity in spread of resid-
uals when plotted against predicted values, and a 45° line representing sites with
zero abundance of C, plants, this was not of a form that could be simply corrected
(Figure 6.2).

The estimated partial regression slope for the interaction hasn't changed and
we would reject the H, that there is no interactive effect of latitude and longitude
on log-transformed relative abundance of C; plants. This interaction is evident in
the DWLS smoother fitted to the scatterplot of relative abundance of C, plants
against latitude and longitude (Figure 6.1 1). If further interpretation of this interac-
tion is required, we would then calculate simple slopes for relative abundance of C,
plants against latitude for specific values of longitude or vice versa. We will illustrate
the simple slopes analysis with Loyn's (1987) data in Box 6.2.

Out of interest, we also ran the full model with all six predictors through both
a forward and backward selection routine for stepwise multiple regression. For both
methods, the significance level for entering and removing terms based on partial £
statistics was set at 0.15.
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The backward selection is as follows.

Coefficient Estimate Standard error t P

JJAMAP —1.002 0433 —2314 0.024
DJFMAP —1.005 0.486 —2.070 0.042
LAT 0.042 0.005 8.033 <0.001

The forward selection is as follows.

Coefficient Estimate Standard error t P
MAP <0.001 <0.001 [.840 0.070
LAT 0.044 0.005 66319 <0.001

Note the marked difference in the final model chosen by the two methods,

with only latitude (LAT) in common.

each patch included area (ha), the number of years
since the patch was isolated by clearing (years),
the distance to the nearest patch (km), the dis-
tance to the nearest larger patch (km), an index of
stock grazing history from 1 (light) to 5 (heavy),
and mean altitude (m). The analyses of these data
are in Box 6.2.

6.1.1 Multiple linear regression model
Consider a set of i =1 to n observations where each
observation was selected because of its specific
X-values, i.e. the values of the p (j =2 to p) predic-
tor variables X, X, X X, were fixed by the
investigator, whereas the Y-value for each observa-
tion was sampled from a population of possible
Y-values. Note that the predictor variables are
usually random in most biological research and
we will discuss the implications of this in Section
6.1.17. The multiple linear regression model that
we usually fit to the data is:

yi=,80+lei1+Bzxi2+...+Bjxij+...+3pxip+si
(6.1)

The details of the linear regression model, includ-
ing estimation of its parameters, are provided in
Box 6.3.

For Loyn’s (1987) data, p equals six and a linear
model with all predictors would be:

(bird abundance), = B, + B8,(patch area), +
B,(vears isolated), + B,(nearest patch distance), +
B,(nearest large patch distance), +

Bs(stock grazing), + B (altitude), + &, (6.2)

Using the data from Paruelo & Lauenroth
(1996), we might fit a model where p equals two to
represent geographic pattern of C, grasses:

(relative abundance of C, grasses),= 3, +

0
B,(latitude), + B (longitude), +¢,; (6.3)

A multiple regression model cannot be repre-
sented by a two-dimensional line as in simple
regression and a multidimensional plane is
needed (Figure 6.1). We can only graphically
present such a model with two predictor variables
although such graphs are rarely included in
research publications.

Note that this is an additive model where all
the explained variation in Y is due to the additive
effects of the response variables. This model does
not allow for interactions (multiplicative effects)
between the predictor variables, although such
interactions are possible (even likely) and will be
discussed in Section 6.1.12.

We have the following in models 6.1 and 6.3.

¥, is the value of Y for the ith observation
when the predictor variable X, equals x,, X,
equals x,,, X, equals X, etc.

By By B, B etc. are population parameters,
also termed regression coefficients, where

B, is the population intercept, e.g. the true
mean value of the relative abundance of C,
grasses when latitude and longitude equal zero.

BB, is the population slope for Y on X, holding
X,, X, etc., constant. It measures the change in
relative abundance of C, grasses for a one

i1’
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Box 6.2 | Worked example of multiple linear regression:
abundance of birds in forest patches

Loyn (1987) selected 56 forest patches in southeastern Victoria, Australia, and
related the abundance of forest birds in each patch to six predictor variables: patch
area (ha), distance to nearest patch (km), distance to nearest larger patch (km),
grazing stock (| to 5 indicating light to heavy), altitude (m) and years since isolation
(years). Three of the predictor variables (patch area, distance to nearest patch or
dist, distance to nearest larger patch or Idist) were highly skewed, producing obser-
vations with high leverage, so these variables were transformed to log, ;. A corre-
lation matrix indicated some moderate correlations between predictors, especially
between log,, dist and log, , Idist, log , area and graze, and graze and years.

Logdist Log,ldist Log,area Grazing Altitude Years

Log,, dist 1.000

Log,, I dist 0.604 1.000

Log,, area 0.302 0.382 1.000

Grazing —0.143 —0.034 —0559 1.000

Altitude -0219 —0274 0275 —0.407 1.000

Years —0.020 0.161 —0278 0636 —0233 1.000

As for the data set from Paruelo & Lauenroth (1996), a multiple linear regres-
sion model relating abundance of forest birds to all six predictor variables and their
interactions would have 64 terms plus an intercept, and would be unwieldy to inter-
pret. So an additive model was fitted:

(bird abundance), = 8, + B, (log,, area), + B,(log,, dist), + B;(log,, Idist), +
B (grazing), + B (altitude), + B,(years), + &

Estimate Standard Standardized ~ Tolerance t P
error coefficient
Intercept 20.789 8.285 0 2.509 0.015
Log,, area 7470 1.465 0.565 0.523 5.099 <0.001
Log,, dist —0.907 2.676 —0.035 0.604 -0.339 0.736
Log,, Idist —0.648 2.123 —0.035 0.498 —0.305 0.761
Grazing —1.668 0.930 -0229 0.396 —1.793 0.079
Altitude 0.020 0.024 0.079 0.681 0.814 0419
Years —0.074 0.045 —0.176 0.554 —1.634 0.109

Diagnostic checks of the model did not reveal any outliers or influential values.
The response variable (bird abundance) was not skewed, the boxplot of residuals
was reasonably symmetrical and although there was some heterogeneity of spread
of residuals when plotted against predicted values, this was not of a form that could
be simply corrected (Figure 6.3). The r? was 0.685, indicating that about 69% of the
variation in bird abundance can be explained by this combination of predictors.
Note that none of the tolerances were very low suggesting that despite some cor-
relations among the predictors, collinearity may not be a serious issue for this data
set. There was a significant positive partial regression slope for bird abundance
against log, ; area. No other partial regression slopes were significant.
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Source df MS F P
Regression 6 723513 17.754 <0.00l
Residual 49 40.752

The H, that all partial regression slopes equal zero was also rejected.

Now we will fit a second model to investigate possible interactions between
predictor variables. A model with six predictors plus interactions is unwieldy so we
will simplify the model first by omitting those predictors that contributed little to
the original model (log, dist, log,, Idist, altitude). The first two were correlated with
each other and with log, , area anyway. Refitting the additive model with these three
predictors omitted changed the estimated regression slopes of the remaining terms
only slightly, suggesting that any bias in the estimates of the remaining predictors
from omitting other predictors is small. This leaves us with a model with three pre-
dictors and their interactions:

(bird abundance), =4, + B, (log,, area), + B,(grazing), + B;(years), +
B, (log,, area X grazing), + B(log,, area X years), + B,(grazing X years), +
B(log,, area X grazing X years), + &

Tolerance values were unacceptably low (all <0.10) unless the predictor vari-
ables were centered so the model was based on centered predictors.

Estimate ~ Standard  Standardized Tolerance t P
error coefficient

Intercept 22.750 [.152 0 19.755  <0.001
Log,, area 8.128 1.540 0615 0.373 5277  <0.00lI
Grazing —2979 0.837 —0.408 0.386 —3.560 0.001
Years 0.032 0.057 0.076 0.280 0.565 0.574
Log,, area X 2.926 0932 0.333 0.450 3.141 0.003
Grazing
Log,, area X —0.173 0.063 —0.305 0411 —2.748 0.008
Years
GrazingX Years ~ —0.101 0.035 —0.343 0.362 —2.901I 0.006
Log,, area X —0011 0.034 —0.037 0.397 —0.329 0.743
Grazing X Years

The three-way interaction was not significant so we will focus on the two-way
interactions. The log , area X grazing term indicates how much the effect of grazing
on bird density depends on log,; area. This interaction is significant, so we might
want to look at simple effects of grazing on bird density for different values of log,
area. We chose mean log,; area (0.932) = one standard deviation (0.120, |.744).
Because the three-way interaction was not significant, we simply set years since iso-
lation to its mean value (33.25). We could also just have ignored years since isola-
tion and calculated simple slopes as for a two predictor model and got similar
patterns. The simple slopes of bird abundance against grazing for different log, , area
values and mean of years since isolation were as follows.
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Log,area  Simple slopes  Standard error  Standardized slope ¢ P

0.120 =5355 1223 =074 —4377 <000l
0932 —2979 0.837 —0.408 —3.560 0.00
1.744 —0.603 1.024 —0.083 —0.589 0.558

As we predicted, the negative effect of grazing on bird abundance is stronger in
small fragments and there is no relationship between bird abundance and grazing
in the largest fragments.

Box 6.3 | The multiple linear regression model and its
parameters

Consider a set of i=1 to n observations where each observation was selected
because of its specific X-values, i.e. the values of the p (j=2 to p) predictor vari-
ables X, Xz,...X/...XP were fixed by the investigator, whereas the Y-value for each
observation was sampled from a population of possible Y-values. The multiple linear
regression model that we usually fit to the data is:

yl:/BOJ’_/BIX/I+ﬂ2X12+"'+IBJXy+"'+16pxlp+£/ (6|)
In model 6.1 we have the following.

y, is the value of Y for the ith observation when the predictor variable X|
equals Xy X2 equals X XJ equals X;s etc.

B, is the population intercept, the true mean value of Y when X, equals zero,
X2 equals zero, Xj equals zero, etc.

B, is the partial population regression slope for Y on X, holding X, X;, etc,
constant. It measures the change in Y per unit change in X| holding the value
of all other X-variables constant.

B, is the partial population regression slope for Y on X, holding X, X;, etc,
constant. [t measures the change in ¥ per unit change in X, holding the value
of all other X-variables constant.

/B, is the partial population regression slope for Y on X; holding X, X, etc.,
constant; it measures the change in Y per unit change in X/ holding the value
of the other p — | X-variables constant.

& is random or unexplained error associated with the ith observation. Each &
measures the difference between each observed y, and the mean of y; the
latter is the value of y, predicted by the population regression model, which
we never know. We assume that when the predictor variable X equals x;,
X, equals XQ,XJ equals x; etc, these error terms are normally distributed,
their mean is zero (E(g) equals zero) and their variance is the same and is
designated . This is the assumption of homogeneity of variances. We also
assume that these ¢ terms are independent of, and therefore uncorrelated
with, each other. These assumptions (normality, homogeneity of variances
and independence) also apply to the response variable Y when the predictor

variable X, equals x,, X, equals x

il

. XJ equals X etc.
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Fitting the multiple regression model to our data and obtaining estimates of the
model parameters is an extension of the methods used for simple linear regression,
although the computations are complex. We need to estimate the parameters (4,

ﬂl,,ﬁz,...,,@p and a}) of the multiple linear regression model based on our random

sample of n (x,, X,,..., X, ;) observations. Once we have estimates of the param-
P’/

eters, we can determine the sample regression line:
Y, =by+bx, +bx,+... +b/><y+ -|-bp><lp

where:

v is the value of Y, for X1 Xigrevs Xjooo X predicted by the fitted regression line,

b, is the sample estimate of B, the Y-intercept,
1By Bspoo bj,...bp are the sample estimates of,@l,ﬁz,...,ﬂj,...,ﬁp, the partial
regression slopes.

We can estimate these parameters using either (ordinary) least squares (OLS)
or maximum likelihood (ML). If we assume normality, the OLS estimates of 8, 5,
etc, are the same as the ML estimates. As with simple regression, we will focus on
OLS estimation. The actual calculations for the OLS estimates of the model param-
eters involve solving a set of simultaneous normal equations, one for each param-
eter in the model, and are best represented with matrix algebra (Box 6.4).

The OLS estimates of 5, B,, B, etc, are the values that produce a sample
regression line (f.=by+b x, +bx,+...+ b)x/j +..+ bpxlp) that minimizes
31 (y,—¥)% These are the sum of the squared deviations (SS) between each
observed y. and the value of y, predicted by the sample regression line for each X;s
Each (y,—7,) is a residual from the fitted regression plane and represents the ver-
tical distance between the regression plane and the Y-value for each observation
(Figure 6.1). The OLS estimate of o (the variance of the model error terms) is the
sample variance of these residuals and is the Residual (or Error) Mean Square from

the analysis of variance (Section 6.1.3).

centesimal degree change in latitude, holding

longitude constant.

BB, is the population slope for Y on X, holding
X,, X, etc., constant. It measures the change in
relative abundance of C, grasses for a one
centesimal degree change in longitude, holding

latitude constant.

log,,C3 grass abundance

3PN Nl Scatterplot of the log-transformed relative
abundance of C, plants against longitude and latitude for 73
sites from Paruelo & Lauenroth (1996) showing OLS fitted
multiple regression linear response surface.

B, is the population slope for Y on X holding
X, X,, etc., constant; it measures the change in Y
per unit change in X holding the value of the
other p — 1 X-variables constant.

g;is random or unexplained error associated
with the ith observation of relative abundance of
C, grasses not explained by the model.

The slope parameters (8,, B,..., By Bp) are
termed partial regression slopes (coefficients)
because they measure the change in Y per unit
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change in a particular X holding the other p—1
X-variables constant. It is important to distinguish
these partial regression slopes in multiple linear
regression from the regression slope in simple
linear regression. If we fit a simple regression
model between Y and just one of the X-variables,
then that slope is the change in Y per unit change
in X, ignoring the other p —1 predictor variables
we might have recorded plus any predictor vari-
ables we didn’t measure. Again using the data
from Paruelo & Lauenroth (1996), the partial
regression slope of the relative abundance of C,
grasses against longitude measures the change in
relative abundance for a one unit (one centesimal
degree) change in longitude, holding latitude con-
stant. If we fitted a simple linear regression model
for relative abundance of C, grasses against longi-
tude, we completely ignore latitude and any other
predictors we didn’t record in the interpretation
of the slope. Multiple regression models enable us
to assess the relationship between the response
variable and each of the predictors, adjusting for
the remaining predictors.

6.1.2 Estimating model parameters

We estimate the parameters (8,, 8,, B,,.-- B, and
o ?) of the multiple linear regression model, based
on our random sample of n (x,, x,,,..., Kijpover Xy ¥)
observations, using OLS methods (Box 6.3). The
fitted regression line is:

9.=b,+bx, +bx, +.. .+bjxij+ .. .+bpx. (6.4)

p

where:

7, is the value of relative abundance of C,
grasses for x,;, X,,,..., X;,.... X, (e.g. a given
combination of latitude and longitude)
predicted by the fitted regression model,

b, is the sample estimate of 3, the Y-
intercept,

b, b,,..., bj,...bp are the sample estimates of
By> Byrevos Byos By the partial regression slopes.
We can also determine standardized partial
regression slopes that are independent of the
units in which the variables are measured

(Section 6.1.6).

The OLS estimates of these parameters are
the values that minimize the sum of squared
deviations (SS) between each observed value of rel-

ative abundance of C, grasses and the relative
abundance of C, grasses predicted by the fitted
regression model. This difference between each
observed y, and each predicted J, is called a resid-
ual (e). We will use the residuals for checking the
fit of the model to our data in Section 6.1.8.

The actual calculations for the OLS estimates
of the model parameters involve solving a set of
simultaneous normal equations (see Section
5.2.3), one for each parameter in the model, and
are best represented with matrix algebra (Box 6.4).
The computations are tedious but the estimates,
and their standard errors, should be standard
output from multiple linear regression routines
in your statistical software. Confidence intervals
for the parameters can also be calculated using
the t distribution with n —p df. New Y-values can
be predicted from new values of any or all of the p
X-variables by substituting the new X-values into
the regression equation and calculating the pre-
dicted Y-value. As with simple regression, be
careful about predicting from values of any of the
X-variables outside the range of your data.
Standard errors and prediction intervals for new
Y-values can be determined (see Neter et al. 1996).
Note that the confidence intervals for model
parameters (slopes and intercept) and prediction
intervals for new Y-values from new X-values
depend on the number of observations and the
number of predictors. This is because the divisor
for the MS;_,,..» and the df for the t distribution
used for confidence intervals, is n—(p+1).
Therefore, for a given standard error, our confi-
dence in predicted Y-values from our fitted model
is reduced when we include more predictors.

6.1.3 Analysis of variance

Similar to simple linear regression models
described in Chapter 5, we can partition the total
variation in Y (SS; ) into two additive compo-
nents (Table 6.1). The first is the variation in Y
explained by its linear relationship with X, X,,, ..,
X, termed SS;, . .,- The second is the variation
in Y not explained by the linear relationship with
X Xy X, termed SS; ., ., and which is meas-
ured as the difference between each observed y,
and the Y-value predicted by the regression model
(9,)- These SS in Table 6.1 are identical to those in

Table 5.1 for simple regression models. In fact, the



120

MULTIPLE AND COMPLEX REGRESSION

Box 6.4 | Matrix algebra approach to OLS estimation of
multiple linear regression models and
determination of leverage values

Consider an additive linear model with one response variable (Y) and p predictor
variables (X, Xz---X,;) and a sample of n observations. The linear model will have
p+ | parameters, a slope term for each X-variable and an intercept. Let Y be a
vector of observed Y-values with n rows, Y be a vector of predicted Y-values with
n rows and X be an nX (p+ |) matrix of the values of the X-variables (one
X-variable per column) plus a column for the intercept. The linear model can be
written as:

Y=p8X+e

where Bis a vector of model parameters (8, B,.... 8,) with p+ | rows and £is a
vector of error terms with n rows. The OLS estimate of A can be found by solving
the normal equations:

X'Xb=X'Y
The OLS estimate of B then is:
b=(X'X)"'(X"Y)

where b is a vector of sample partial regression coefficients (b, b, .., bp) with p+ |
rows. Note that (X’X) ™! is the inverse of (X’X) and is critical to the solution of
the normal equations and hence the OLS estimates of the parameters. The calcu-
lation of this inverse is very sensitive to rounding errors, especially when there are
many parameters, and also to correlations (linear dependencies — see Rawlings et
al. 1998) among the X-variables, i.e. collinearity. Such correlations exaggerate the
rounding errors problem and make estimates of the parameters unstable and their
variances large (see Box 6.5).

The matrix containing the variances of, and the covariances between, the
sample partial regression coefficients (b, b,,..., bp) is:

§,2=MS._, (X'X)""

Residual

From the variances of the sample partial regression coefficients, we can calculate
standard errors for each partial regression coefficient.
We can also create a matrix H whereby:

H=X(X'X)"'X’

H is an n X n matrix, usually termed the hat matrix, whose n diagonal elements are
leverage values (h,) for each observation (Neter et al. 1996). These leverage values
measure how far an observation is from the means of the X-variables. We can then
relate Y to Y by:

Y=HY

So the hat matrix transforms observed Y into predicted Y (Bollen & Jackman 1990).
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Table 6.1 ‘ Analysis of variance table for a
multiple linear regression model with an intercept,
p predictor variables and n observations

Source of
variation SS df MS

. > 0=7)
Regression > (,—7)? b ':'?

i=1

" 2()//‘_)7/)2
Residual —g n—p—1 L —

esidua ;(y/ 7 n—p =]

Total D=9 n—|

i=1

partitioning of the SS; , for the simple linear
regression model is just a special case of the multi-
ple regression model where p equals one,
although the calculation of the SS for multiple
regression models is more complex. These SS can
be converted into variances (mean squares) by
dividing by the appropriate degrees of freedom.
For example, using the data from Paruelo &
Lauenroth (1996) and the regression model 6.3,
the SS; ., in relative abundance of C, grasses
across the 73 sites is partitioned into the SS
explained by the linear regression on latitude and
longitude and that unexplained by this regres-
sion.

The expected values of these two mean squares
are again just an extension of those we described
for simple regression (Table 6.2). The expected
value for MS, ., . is ¢ % the variance of the error
terms (g,), and of y, which are assumed to be con-
stant across each combination of x,, x,,,..., X, etc.
The expected value for MS; egression is more complex
(Neter et al. 1996) but importantly it includes the
square of each regression slope plus o 2.

6.1.4 Null hypotheses and model
comparisons

The basic null hypothesis we can test when we fit

a multiple linear regression model is that all the

partial regression slopes equal zero, i.e. H: B, = 3,

=...=B;=...=0. For example, Paruelo &

Lauenroth (1996) might have tested the H, that
the partial regression slopes for abundance of C,
plants on latitude and longitude both equal zero.
We test this H, with the ANOVA partitioning of the
total variation in Y into its two components, that
explained by the linear regression with X, X, etc,,
and the residual variation. If the H, is true, then
MS;gression ad MSp 4., Doth estimate o,? and
their Fratio should be one. If the H is false, then
at least one of the partial regression slopes does
not equal zero and MS,, gression estimates o % plus a
positive term representing the partial regression
slopes, so the Fratio of MS;egression 10 MSgegiaual
should be greater than one. So we can test this H,
by comparing the Fratio statistic to the appropri-
ate F distribution, just as we did with simple
linear regression in Chapter 5.

Irrespective of the outcome of this test, we
would also be interested in testing null hypothe-
ses about each partial regression coefficient, i.e.
the H, that any B; equals zero. We can use the
process of comparing the fit of full and reduced
models that we introduced in Chapter 5 to test
these null hypotheses. Imagine we have a model
with three predictor variables (X,, X,, X,). The full
model is:

Yi=Byt ByXy t Byxy T Bxis t g

Using the data from Loyn (1987), we might model
the abundance of forest birds against patch area,
years since isolation and grazing intensity:

(6.5)

(bird abundance), = 8, + B,(patch area), +

i i

B,(years isolated), + B,(stock grazing), + ¢, (6.6)

To test the H,, that the partial regression slope for
bird abundance against patch area holding years
since isolation and grazing intensity constant (i.e.
B,) equals zero, we compare the fit of models 6.5
and 6.6 to the reduced models:

yi:B0+Bzxi2+B3xi3+8i (67)
(bird abundance), = B, + B,(years isolated), +
B,(stock grazing), + ¢, (6.8)

Models 6.7 and 6.8 assume the H, (8, equals zero)
is true. If the explained variance (SSy,. . .n) Of
models 6.6 and 6.8 is not different, then there is
no evidence to reject H; if there is an increase in
explained variation for the full model compared
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to the reduced model, we have evidence suggest-
ing the H; is false. We calculate the extra SS
explained by including g, in the model:

SSExtra =Full SSRegression —Reduced SSRegression (69)
This SS,,., 1is sometimes expressed as
SSRegression(Xl |X2’X3)’ the increase in SSRegression

when X, is added to a model already including X,
and X, e.g. SSRegression(patch area | years isolated,
grazing stock). This is identical to measuring the
drop in unexplained variation by omitting S,
from the model:

SS =Reduced SS

Drop Residual Full SS

(6.10)

Residual

residuall X | X5-X5), the decrease
in SS;. ;4. When X, is added to a model already
including X, and X,. We convert the SS_  or SSprop
into a MS by dividing by the df. There is one df in
this case because we are testing a single regression
parameter. In general, the dfis the number of pre-
dictor variables in the full model minus the
number of predictor variables in the reduced
model. We can then use an F test, now termed a
partial F test, to test the H; that a single partial
regression slope equals zero:

also expressed as SS

F MSExtra

_ MSpu 6.11
Ln-p Full MSResidual ( )

For any predictor variable X, we can also test the
H, that B, equals zero with a t statistic with (n—
(p+1))df:

p=2

Sy,
where s, is the standard error of bj (see Box 6.4).
These t tests are standard multiple regression
output from statistical software. Note that the F
and t tests for a given H, are equivalent and F
equals t2. We prefer the F tests, however, because
the model fitting procedure (comparing full and
reduced models) can be used to test any subset of
regression coefficients, not just a single coeffi-
cient. For example, we could calculate the
SSpegressionX2-X5 | Xy) to test the Hy that g, equals g,
equals zero. We just need to fit a full and a reduced
(H, is true) model. In general, the full model will
contain all the predictor variables and the
reduced model omits those predictors that are
specified in H; to be zero. In Section 6.1.15, we will

(6.12)

see that it is also possible to test partial regression
coefficients in a sequential fashion, omitting
those terms found to be not significantly different
from zero from the model.

The H, that 8, (population intercept) equals zero
can also be tested, either with a t test or with an F
test by comparing a full model with an intercept to
areduced model without. The test of zero intercept
is usually of much less interest because it is testing
a parameter using an estimate that is usually
outside the range of our data (see Chapter 5).

6.1.5 Variance explained
The multiple 2 is the proportion of the total vari-
ation in Y explained by the regression model:

Full SSResidual

2 SSRegression =1— SSResidual —
Reduced SSgegidual

SSTotal S STotal

(6.13)

Here the reduced model is one with just an inter-
cept and no predictor variables (i.e. B, =8,=...=
B=...= 0). Interpretation of r? in multiple linear
regression must be done carefully. Just like in
simple regression, t? is not directly comparable
between models based on different transforma-
tions (Anderson-Sprecher 1994; Chapter 5).
Additionally, 1? is not a useful measure of fit when
comparing models with different numbers of, or
combinations of, predictor variables (e.g. interac-
tion terms, see Section 6.1.12). As more predictors
are added to a model, * cannot decrease so that
models with more predictors will always appear
to fit the data better. Comparing the fit of models
with different numbers of predictors should use
alternative measures (see Section 6.1.15).

6.1.6 Which predictors are important!?
Once we have fitted our multiple linear regression
model, we usually want to determine the relative
importance of each predictor variable to the
response variable. There are a number of related
approaches for measuring relative importance of
each predictor variable in multiple linear regres-
sion models.

Tests on partial regression slopes
The simplest way of assessing the relative impor-
tance of the predictors in a linear regression
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model is to use the F or ¢ statistics, and their asso-
ciated P values, from the tests of the null hypothe-
ses that each B; equals zero. These tests are
straightforward to interpret but only tell us the
probability of observing our sample observations
or ones more extreme for these variables if the H,
for a given predictor is true. Also, some statisti-
cians (Neter et al. 1996, Rawlings et al. 1998) have
argued that we are testing null hypotheses about a
number of regression coefficients simultaneously
from a single data set, so we should adjust the sig-
nificance level for each test to limit the overall
probability of at least one Type I error among all
our tests to a. Such an adjustment will reduce the
power of individual tests, and as we discussed in
Chapter 3, seems unnecessarily harsh. If you deem
such an adjustment necessary, however, one of the
sequential Bonferroni procedures is appropriate.

Change in explained variation

The change in variation explained by the model
with all predictors and the model with a specific
predictor omitted is also a measure of importance
of that predictor. This is basically comparing the
fit of two models to the data; because the number
of predictors differs between the two models, the
choice of measure of fit is critical and will be dis-
cussed further when we consider model selection
in Section 6.1.15. To measure the proportional
reduction in the variation in Y when a predictor
variable X, is added to a model already including
the other predictors (X, to X, except XJ.) is simply:

SSExtra

PSR - 6.14
% Reduced SSgesiqual ( !

where SS_  is the increase in SS;, gression” OF the
decrease in SS; ., .. when X, is added to the
model and Reduced SS, ., .. is unexplained SS
from the model including all predictor variables
except X.. This r,* is termed the coefficient of
partial determmatlon for X; and its square root is
the partial correlation Coefﬁc1ent between Y and
X, holding the other predictor variables constant
(i.e. already including them in the model).
Arelated approach is hierarchical partitioning
(Chevan & Sutherland 1991, Mac Nally 1996),
which quantifies the independent correlation
of each predictor variable with the response
variable. It works by partitioning any measure of

explained variance (e.g. r?) into components meas-
uring the independent contribution of each pre-
dictor. It is an important tool for multivariate
inference, especially in multiple regression
models, and we will describe it in more detail in
Section 6.1.16.

Standardized partial regression slopes

The sizes of the individual regression slopes are
difficult to compare if the predictor variables are
measured in different units (see Chapter 5). We
can calculate standardized regression slopes by
regressing the standardized response variable
against the standardized predictor variables, or
alternatively, calculate for predictor X

b—b

sz (6.15)
These standardized regression slopes are compar-
able independently of the scales on which the pre-
dictors are measured. Note that the regression
model based on standardized variables doesn’t
include an intercept, because its OLS (and ML) esti-
mate will always be zero. Note also that if the pre-
dictor variables are not correlated with each
other, then the standardized regression slopes
relating Y to each X; are the same as the correla-
tion coefficients relating Y to X..

For model 6.3, standardized regression slopes
would not assist interpretation because both pre-
dictors (latitude and longitude) are in the same
units (centesimal degrees). However, if we
included mean annual temperature (°C)and mean
annual precipitation (mm) in the model, then the
magnitudes of the unstandardized regression
slopes would not be comparable because of the dif-
ferent units, so standardization would help.

Bring (1994) suggested that the size of each
standardized slope should relate to the reduction
in explained variation when each predictor is
omitted from the full model (see Equation 6.14).
He argued that standardization should be based
on partial standard deviations rather than ordi-
nary standard deviations, so that the size of the bj*
relates to the reduction in r? when that X, is
omitted from the model. The partial standard
deviation of predictor variable j (X) is:

(6.16)
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AW WA Plot of residuals against predicted values (with
boxplots) from fitting the multiplicative model (log,,C,),= 8,
+ B,(LAT), + B,(LONG), + B,(LAT X LONG), + ¢, to data

with centered predictors from Paruelo & Lauenroth (1996).

VIF is the variance inflation factor and will be
defined in Section 6.1.11 when we examine the
problem of multicollinearity. This partial stan-
dard deviation can then be incorporated in the
formula for the standardized regression slope
(Equation 6.15).

Regressions on standardized variables will
produce coefficients (except for the intercept)
that are the same as the standardized coeffi-
cients described above. The hypothesis tests on
individual standardized coefficients will be iden-
tical to those on unstandardized coefficients.
Standardization might be useful if the variables
are on very different scales and the magnitude of
coefficients for variables with small values may
not indicate their relative importance in influ-
encing the response variable. However, it is the
predictor variables that are important here and
standardizing the response variable may not be
necessary and will make predicted values from
the model more difficult to interpret. Regression
models using standardized (or simply centered)
predictors are very important for detecting and
treating multicollinearity and interpreting inter-
actions between predictors (Sections 6.1.11 and
6.1.12).
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P UIYW. W Plot of residuals against predicted values (with
boxplots) from multiple linear regression of bird abundance
in forest patches against patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log,,
transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).

6.1.7 Assumptions of multiple regression
As with simple linear regression (Chapter 5), inter-
val estimation and hypothesis tests of the param-
eters of the multiple linear regression model rely
on a number of assumptions about the model
error terms at each combination of x,, X,,..., X, .
We assume that the error terms, and therefore the
Y-values, are normally distributed, they have con-
stant variance and they are independent of each
other. Checks of these assumptions are carried
out as for simple linear regression (Chapter 5).
Boxplots and probability plots of the residuals can
be used to check for normality, plots of residuals
against y, can detect heterogeneity of variance
(Section 6.1.9; Figure 6.2, Figure 6.3) and plots of
residuals against each X can detect autocorrela-
tion if X, is a time sequence.

We also assume that each X is a fixed variable
with the values x, x,,, etc., being constants that
would not vary from sample to sample. This is
unlikely in biological research with some or all of
the predictors likely to be random variables and
our observations actually coming from a multi-
variate distribution that we assume is normal.
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Both of our examples illustrate this point: Paruelo
& Lauenroth (1996) did not choose specific lati-
tudes and longitudes for their sampling sites and
Loyn (1987) did not choose forest patches with spe-
cifically chosen values of area, number of years
since the patch was isolated by clearing, distance
to the nearest patch, distance to the nearest larger
patch, stock grazing history, or altitude. Our infer-
ences are then conditional on the particular
values of x, x,,, etc., that we have in our sample.
Model II multiple regression when the predictor
variables are random will be discussed in Section
6.1.17.

An additional assumption that affects multi-
ple linear regression is that the predictor vari-
ables must be uncorrelated with each other.
Violation of this assumption is called (multi)col-
linearity and is such an important issue for multi-
ple regression that we will discuss it separately in
Section 6.1.11.

Finally, the number of observations must
exceed the number of predictor variables or else
the matrix calculations (Box 6.4) will fail. Green
(1991) proposed specific minimum ratios of obser-
vations to predictors, such as p + 104 observations
for testing individual predictor variables, and
these guidelines have become recommendations
in some texts (e.g. Tabachnick & Fidell 1996). These
numbers of observations are probably unrealistic
for many biological and ecological research pro-
grams. Neter et al. (1996) are more lenient, recom-
mending six to ten times the number of
predictors for the number of observations. We can
only suggest that researchers try to maximize the
numbers of observations and if trade-offs in terms
of time and cost are possible, reducing the
numbers of variables to allow more observations
is nearly always preferable to reducing the
number of observations.

6.1.8 Regression diagnostics

Diagnostic checks of the assumptions underlying
the fitting of linear models and estimating their
parameters, and to warn of potential outliers and
influential observations, are particularly impor-
tant when there are multiple predictor variables.
We are usually dealing with large data sets and
scanning the raw data or simple bivariate scatter-
plots (see Section 6.1.9) that might have worked

for simple regression models will rarely be ade-
quate for checking the appropriateness of a multi-
ple regression model. Fortunately, the same
diagnostic checks we used for simple regression in
Chapter 5 apply equally well for multiple regres-
sion. All are standard output from regression or
linear model routines in good statistical software.

Leverage

Leverage measures how extreme each observation
is from the means of all the Xj (the centroid of the
p X-variables), so in contrast to simple regression,
leverage in multiple regression takes into account
all the predictors used in the model. Leverage
values greater than 2(p/n) should be cause for
concern, although such values would also be
detected as influential by Cook’s D..

Residuals

Residuals in multiple regression are interpreted in
the same way as for simple regression, the differ-
ence between the observed and predicted Y-values
for each observation (y,—J,). These residuals can be
standardized and studentized (see Chapter 5) and
large residuals indicate outliers from the fitted
model that could be influential.

Influence

Measures of how influential each observation is
on the fitted model include Cook’s D, and DFITS,
and these are as relevant for multiple regression
as they were for simple regression (Chapter 5).
Observations with a D, greater than one are
usually considered influential and such observa-
tions should be checked carefully.

6.1.9 Diagnostic graphics

As we emphasized for simple regression models,
graphical techniques are often the most informa-
tive checks of assumptions and for the presence of
outliers and influential values.

Scatterplots

Bivariate scatterplots between the X;s are impor-
tant for detecting multicollinearity (see Section
6.1.11) and scatterplots between Y and each X, par-
ticularly in conjunction with smoothing func-
tions, provide an indication of the nature of
relationships being modeled. Scatterplot matrices
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[JF-01 Y XM Partial regression plots for three of the

predictors from a linear model relating bird abundance in
forest patches to patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log,,
transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).Vertical
axis is residuals from OLS regression of bird abundance
against all predictors except the one labelled, horizontal axis
is residuals from OLS regression of labelled predictor against
remaining predictors. See Section 6.1.9 for full analysis.

(SPLOMs; see Chapter 4) are the easiest way of dis-
playing these bivariate relationships. However,
scatterplots between Y and X, Y and X,, etc,
ignore the other predictor variables in the model
and therefore do not represent the relationship
we are modeling, i.e. the relationship between Y
and X, holding all other Xs constant.

A scatterplot that does show this relationship
for each predictor variable is the added variable,
or partial regression, plot, which is a plot between
two sets of residuals. Let’s say we are fitting a
model of Y against p predictor variables and we
want a scatterplot to show the relationship
between Y and X holding the other p —1 X-vari-
ables constant. The residuals for the vertical axis
of the plot (e;,) come from the OLS regression of Y
against all p predictors except X.. The residuals for
the horizontal axis of the plot (e,,) come from the
OLS regression of X; against all p predictors except
X.. This scatterplot of e;, against e, shows the rela-
tionship between Y and X; holding the other X-
variables constant and will also show outliers that
might influence the regression slope for X;. If we
fit an OLS regression of e, against e, the fitted
slope of this line is the partial regression slope of
YonX from the full regression model of Y on all
p predictors.

Three partial regression plots are illustrated in
Figure 6.4 from a model relating bird abundance
in forest patches to patch area, distance to nearest
patch, distance to nearest larger patch (these
three variables log,, transformed), stock grazing,
altitude, and years since isolation for the 56
patches surveyed by Loyn (1987). The partial
regression plot for patch area (Figure 6.4, left) has
the residuals from a model relating bird abun-
dance to all predictors except patch area on the
vertical axis and the residuals from a model relat-
ing patch area to the other predictors on the hor-
izontal axis. Note the strong positive relationship
for log,, area and the weak negative relationships
for grazing and years since isolation. There was
little pattern in the plots for the other three pre-
dictors. The slopes of the OLS regression lines
fitted to these residual plots are the partial regres-
sion slopes from the multiple regression model
relating bird abundance to these predictors.

Residual plots

There are numerous ways residuals from the fit of
a multiple linear regression model can be plotted.
A plot of residuals against y,, as we recommended
for simple regression (Chapter 5), can detect het-
erogeneity of variance (wedge-shaped pattern)
and outliers (Figure 6.2 and Figure 6.3). Plots of
residuals against each X, can detect outliers spe-
cific to that X nonlinearity between Y and that X
and can also detect autocorrelation if X; is a time
sequence. Finally, residuals can be plotted against
predictors, or interactions between predictors,
notincluded in the model to assess whether these
predictors or their interactions might be impor-
tant, even if they were deleted from the model
based on other criteria (Neter et al. 1996).
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6.1.10 Transformations

Our general comments on transformations from
Chapter 4, and specifically for bivariate regression
in Chapter 5, are just as relevant for multiple
regression. Transformations of the response vari-
able can remedy non-normality and heterogene-
ity of variance of error terms and transformations
of one or more of the predictor variables might be
necessary to deal with nonlinearity and influen-
tial observations due to high leverage. For
example, the abundance of C, plants in the study
by Paruelo & Lauenroth (1996) was transformed to
logs to reduce strong skewness and three of the
predictor variables in the study by Loyn (1987)
were also log transformed to deal with observa-
tions with high leverage (Box 6.2). Transforma-
tions can also reduce the influence of interactions
between predictors on the response variable, i.e.
make an additive model a more appropriate fit
than a multiplicative model (see Section 6.1.12).

6.1.11 Collinearity

One important issue in multiple linear regression
analysis, and one that seems to beignored by many
biologists who fit multiple regression models to
their data, is the impact of correlated predictor
variables on the estimates of parameters and
hypothesis tests. If the predictors are correlated,
then the data are said to be affected by (multi)col-
linearity. Severe collinearity can have important,
and detrimental, effects on the estimated regres-
sion parameters. Lack of collinearity is also very
difficult to meet with real biological data, where
predictor variables that might be incorporated
into a multiple regression model are likely to be
correlated with each other to some extent. In the
data set from Loyn (1987), we might expect heavier
grazing history the longer the forest patch has
been isolated and lighter grazing history for
bigger patches since domestic stock cannot easily
access larger forest fragments (Box 6.2).

The calculations for multiple linear regression
analysis involve matrix inversion (Box 6.4).
Collinearity among the X-variables causes compu-
tational problems because it makes the determi-
nant of the matrix of X-variables close to zero and
matrix inversion basically involves dividing by the
determinant. Dividing by a determinant that is
close to zero results in values in the inverted

matrix being very sensitive to small differences
in the numbers in the original data matrix
(Tabachnick & Fidell 1996), i.e. the inverted matrix
is unstable. This means that estimates of parame-
ters (particularly the partial regression slopes) are
also unstable (see Philippi 1993). Small changes in
the data or adding or deleting one of the predic-
tor variables can change the estimated regression
coefficients considerably, even changing their
sign (Bowerman & O’Connell 1990).

A second effect of collinearity is that standard
errors of the estimated regression slopes, and
therefore confidence intervals for the model
parameters, are inflated when some of the predic-
tors are correlated (Box 6.5). Therefore, the overall
regression equation might be significant, i.e. the
test of the H, that all partial regression slopes
equal zero is rejected, but none of the individual
regression slopes are significantly different from
zero. This reflects lack of power for individual
tests on partial regression slopes because of the
inflated standard errors for these slopes.

Note that as long as we are not extrapolating
beyond the range of our predictor variables and
we are making predictions from data with a
similar pattern of collinearity as the data to which
we fitted our model, collinearity doesn’t necessar-
ily prevent us from estimating a regression model
that fits the data well and has good predictive
power (Rawlings et al. 1998). It does, however,
mean that we are not confident in our estimates
of the model parameters. A different sample from
the same population of observations, even using
the same values of the predictor variables, might
produce very different parameter estimates.

Detecting collinearity

Collinearity can be detected in a number of ways
(e.g. Chaterjee & Price 1991, Neter et al. 1996,
Philippi 1993) and we illustrate some of these in
Box 6.1 and Box 6.2 with our example data sets.
First, we should examine a matrix of correlation
coefficients (and associated scatterplots) between
the predictor variables and look for large correla-
tions. A scatterplot matrix (SPLOM) is a very useful
graphical method (Chapter 4) and, if the response
variable is included, also indicates nonlinear rela-
tionships between the response variable and any
of the predictor variables.
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Box 6.5/ Collinearity

Here is a simple illustration of the effects of collinearity in a multiple regression
model with one response variable (Y) and two predictor variables (X, X,). Two
artificial data sets were generated for the three variables from normal distributions.
In the first data set, X| and X are relatively uncorrelated (r=0.21). A multiple linear
regression model, including an intercept, was fitted to these data.

Coefficient Standard error Tolerance t P
Intercept —1.045 |.341 —-0.779 0.447
Slope X| 0.893 0.120 0954 7 Ak <0.001
Slope X, —0.002 0.112 0954 —-0.017 0987

Note that tolerance is 0.95 indicating no collinearity problems and standard

errors are small. The partial regression slope for Y on X, holding X, constant is sig-

nificant.

For the second data set, the values of X2 were re-arranged between observa-

tions (but the values, their mean and standard deviation were the same) so that they

are highly correlated with X, (r=0.99), which along with Y'is unchanged. Again a

multiple linear regression model, including an intercept, was fitted.

Coefficient Standard error Tolerance t P
Intercept 0.678 [.371 0.495 0.627
Slope X, —046| 0.681 0.024 —0.678 0.507
Slope X, 1.277 0.634 0.024 2013 0.060

Note that tolerance is now very low indicating severe collinearity. The standard

error for the partial regression slope of Y against X, is much bigger than for the first
data set and the test of the H, that this slope equals zero is now not significant,
despite the values of Y and X, being identical to the first data set.

Now let's add a third predictor (X;) that is correlated with both X| and X,

Coefficient Standard error Tolerance t P
Intercept —0.306 1410 —0217 0.831
Slope X, —0.267 0.652 0.023 —0410 0.687
Slope X, 0.495 0.746 0.015 0.664 0.516
Slope X, 0.657 0.374 0.068 [.758 0.098

Note that the estimated regression coefficients for X, and X, have changed

markedly upon the addition of X, to the model.

Second, we should check the tolerance value
for each predictor variable. Tolerance for X, is
simply 1 — 2 from the OLS regression of X, against
the remaining p — 1 predictor variables. A low tol-
erance indicates that the predictor variable is cor-
related with one or more of the other predictors.
An approximate guide is to worry about tolerance
values less than 0.1. Tolerance is sometimes

expressed as the variance inflation factor (VIF),
which is simply the inverse of tolerance (and can
also be calculated from the eigenvectors and
eigenvalues derived from a PCA on the predictor
variables — see Chapter 17); VIF values greater than
ten suggest strong collinearity.

Third, we can extract the principal compo-
nents from the correlation matrix among the
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predictor variables (see Chapter 17). Principal
components with eigenvalues (i.e. explained vari-
ances) near zero indicate collinearity among the
original predictor variables, because those compo-
nents have little variability that is independent of
the other components. Three statistics are com-
monly used to assess collinearity in this context.
First, the condition index is the square root of the
largest eigenvalue divided by each eigenvalue
(V' Apax/A). There will be a condition index for
each principal component and values greater
than 30 indicate collinearities that require atten-
tion (Belsley et al. 1980, Chaterjee & Price 1991).
The second is the condition number, which is
simply the largest condition index (V Apax/Amin)-
Third, Hocking (1996) proposed an indicator of
collinearity that is simply A _, and suggested
values less than 0.5 indicated collinearity prob-
lems.

It is worth noting that examining eigenvalues
from the correlation matrix of the predictor vari-
ables implicitly standardizes the predictors to
zero mean and unit variance so they are on the
same scale. In fact, most collinearity diagnostics
give different results for unstandardized and stan-
dardized predictors and two of the solutions to
collinearity described below are based on stan-
dardized predictor variables.

Dealing with collinearity

Numerous solutions to collinearity have been pro-
posed. All result in estimated partial regression
slopes that are likely to be more precise (smaller
standard errors) but are no longer unbiased. The
first approach is the simplest: omit predictor vari-
ables if they are highly correlated with other pre-
dictor variables that remain in the model.
Multiple predictor variables that are really meas-
uring similar biological entities (e.g. a set of
morphological measurements that are highly cor-
related) clearly represent redundant information
and little can be gained by including all such var-
iables in a model. Unfortunately, omitting vari-
ables may bias estimates of parameters for those
variables that are correlated with the omitted var-
iable(s) but remain in the model. Estimated
partial regression slopes can change considerably
when some predictor variables are omitted or
added. Nonetheless, retaining only one of a

number of highly correlated predictor variables
that contain biologically and statistically redun-
dant information is a sensible first step to dealing
with collinearity.

The second approach is based on a principal
components analysis (PCA) of the X-variables (see
Chapter 17) and is termed principal components
regression. The p principal components are
extracted from the correlation matrix of the pre-
dictor variables and Y is regressed against these
principal components, which are uncorrelated,
rather than the individual predictor variables.
Usually, components that contribute little to the
total variance among the X-variables or that are
not related to Y are deleted and the regression
model of Y against the remaining components
refitted. The regression coefficients for Y on the
principal components are not that wuseful,
however, because the components are often diffi-
cult to interpret as each is a linear combination of
all p predictor variables. Therefore, we back-
calculate the partial regression slopes on the orig-
inal standardized variables from the partial
regression slopes on the reduced number of prin-
cipal components. The back-calculated regression
slopes are standardized because the PCA is usually
based on a correlation matrix of X-variables, so we
don’t have to worry about an intercept term.
Because principal components regression
requires an understanding of PCA, we will
describe it in more detail in Chapter 17; see also
Jackson (1991), Lafi & Kaneene (1992) and Rawlings
et al. (1998).

Note that deciding which components to omit
is critical for principal components regression.
Simply deleting those with small eigenvalues
(little relative contribution to the total variation
in the X-variables) can be very misleading (Jackson
1991, Hadi & Ling 1998). The strength of the rela-
tionship of each component with Y must also be
considered.

The third approach is ridge regression,
another biased regression estimation technique
that is somewhat controversial. A small biasing
constant is added to the normal equations that
are solved to estimate the standardized regression
coefficients (Chaterjee & Price 1991, Neter et al.
1996). Adding this constant biases the estimated
regression coefficients but also reduces their
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Table 6.2 | Expected values of mean squares from analysis of variance for a multiple linear regression

model with two predictor variables

Mean square Expected value
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variability and hence their standard errors. The
choice of the constant is critical. The smaller its
value, the less bias in the estimated regression
slopes (when the constant is zero, we have an OLS
regression); the larger its value, the less collinear-
ity (increasing the constant reduces the VIF).
Usually a range of values is tried (say, increasing
from 0.001) and a diagnostic graphic (the ridge
trace) used to determine the smallest value of the
constant that is the best compromise between
reducing the variation in the estimated regres-
sion slopes and reducing their VIFs. Neter et al.
(1996) provided a clear worked example.

Careful thought about the predictor variables
to be included in a multiple linear regression
model can reduce collinearity problems before
any analysis. Do not include clearly redundant
variables that are basically measuring similar bio-
logical entities. If the remaining predictor vari-
ables are correlated to an extent that might affect
the estimates of the regression slopes, then we
prefer principal components regression over ridge
regression for two reasons. First, it is relatively
straightforward to do with most statistical soft-
ware that can handle multiple regression and
PCA, although some hand calculation might be
required (e.g. for standard errors). Second, PCA is
also a useful check for collinearity so is often done
anyway. The calculations required for ridge regres-
sion, in contrast, are complex and not straightfor-
ward in most statistical software.

6.1.12 Interactions in multiple regression

The multiple regression model we have been using
so far is an additive one, i.e. the effects of the pre-
dictor variables on Y are additive. In many biolog-
ical situations, however, we would anticipate
interactions between the predictors (Aiken & West

1991, Jaccard et al. 1990) so that their effectson Y
are multiplicative. Let’s just consider the case
with two predictors, X, and X,. The additive multi-
ple linear regression model is:

yi:B0+leil+BzxiZ+8i
This assumes that the partial regression slope of Y

on X, is independent of X, and vice-versa. The
multiplicative model including an interaction is:
yi:BO+lei1+BZXi2+BBXi1Xi2+8i
The new term (B,x,,x,,) in model 6.18 represents the
interactive effect of X, and X, on Y. It measures the
dependence of the partial regression slope of Y
against X, on the value of X, and the dependence
of the partial regression slope of Y against X, on the
value of X,. The partial slope of the regression of Y
against X, is no longer independent of X, and vice
versa. Equivalently, the partial regression slope of
Y against X is different for each value of X,,.

Using the data from Paruelo & Lauenroth
(1996), model 6.2 indicates that we expect no
interaction between latitude and longitude in
their effect on the relative abundance of C, plants.
But what if we allow the relationship between C,
plants and latitude to vary for different longi-
tudes? Then we are dealing with an interaction
between latitude and longitude and our model
becomes:

(6.17)

(6.18)

(relative abundance of C, grasses), =3, +
B,(latitude), + B (longitude), +

B,(latitude), X (longitude), + &, (6.19)

One of the difficulties with including interaction
terms in multiple regression models is that lower-
order terms will usually be highly correlated with
their interactions, e.g. X, and X, will be highly cor-
related with their interaction X X,. This results in
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all the computational problems and inflated vari-
ances of estimated coefficients associated with
collinearity (Section 6.1.11). One solution to this
problem is to rescale the predictor variables by
centering, i.e. subtracting their mean from each
observation, so the interaction is then the product
of the centered values (Aiken & West 1991, Neter et
al. 1996; see Box 6.1 and Box 6.2). If X, and X, are
centered then neither will be strongly correlated
with their interaction. Predictors can also be stan-
dardized (subtract the mean from each observa-
tion and divide by the standard deviation) which
has an identical affect in reducing collinearity.

When interaction terms are not included in
the model, centering the predictor variables does
not change the estimates of the regression slopes
nor hypothesis tests that individual slopes equal
zero. Standardizing the predictor variables does
change the value of the regression slopes, but not
their hypothesis tests because the standardization
affects the coefficients and their standard errors
equally. When interaction terms are included,
centering does not affect the regression slope for
the highest-order interaction term, nor the
hypothesis test that the interaction equals zero.
Standardization changes the value of the regres-
sion slope for the interaction but not the hypoth-
esis test. Centering and standardization change all
lower-order regression slopes and hypothesis tests
that individual slopes equal zero but make them
more interpretable in the presence of an interac-
tion (see below). The method we will describe for
further examining interaction terms using simple
slopes is also unaffected by centering but is
affected by standardizing predictor variables.

We support the recommendation of Aiken &
West (1991) and others that multiple regression
models with interaction terms should be fitted to
data with centered predictor variables.
Standardization might also be used if the vari-
ables have very different variances but note that
calculation and tests of simple slopes must then
be based on analyzing standardized variables but
using the unstandardized regression coefficients
(Aiken & West 1991).

Probing interactions
Even in the presence of an interaction, we can still
interpret the partial regression slopes for other

terms in model 6.18. The estimate of B, deter-
mined by the OLS fit of this regression model is
actually the regression slope of Y on X, when X, is
zero. If there is an interaction (8, does not equal
zero), this slope will obviously change for other
values of X,; if there is not an interaction (g,
equals zero), then this slope will be constant for
all levels of X,. In the presence of an interaction,
the estimated slope for Y on X, when X, is zero is
not very informative because zero is not usually
within the range of our observations for any of the
predictor variables. If the predictors are centered,
however, then the estimate of 38, is now the regres-
sion slope of Y on X, for the mean of X,, a more
useful piece of information. This is another
reason why variables should be centered before
fitting a multiple linear regression model with
interaction terms.

However, if the fit of our model indicates that
interactions between two or more predictors are
important, we usually want to probe these inter-
actions further to see how they are structured.
Let’s express our multiple regression model as
relating the predicted y, to two predictor variables
and their interaction using sample estimates:

9,=b,+b,x, +bx, +bx x (6.20)

37172

This can be algebraically re-arranged to:

9,=(b, +bx,

2% T (byx, T D)

2772

(6.21)

3

We now have (b, +b,x,,), the simple slope of the
regression of Y on X, for any particular value of X,
(indicated as x,,). We can then choose values of X,
and calculate the estimated simple slope, for
either plotting or significance testing. Cohen &
Cohen (1983) and Aiken & West (1991) suggested
using three different values of X,: %,, &, +s, X, —s,
where s is the sample standard deviation of X,. We
can calculate simple regression slopes by substi-
tuting these values of X, into the equation for the
simple slope of Y on X,.

The H, that the simple regression slope of Y on
X, for a particular value of X, equals zero can also
be tested. The standard error for the simple regres-
sion slope is:

\/s%1 + 2%,5%5 + x3s52, (6.22)

where s? and s2, are the variances of b, and b,
respectively, s, is the covariance between b, and b,
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and x, is the value of X, chosen. The variance and
covariances are obtained from a covariance
matrix of the regression coefficients, usually stan-
dard output for regression analyses with most
software. Then the usual ¢ test is applied (simple
slope divided by standard error of simple slope).
Fortunately, simple slope tests can be done easily
with most statistical software (Aiken & West 1990,
Darlington 1990). For example, we use the follow-
ing steps to calculate the simple slope of Y on X,
for a specific value of X,, such as %, +s.

1. Create a new variable (called the condi-
tional value of X,,, say CVX,), which is x,, minus
the specific value chosen.

2. Fit a multiple linear regression model for Y
onX,, CVX,, X, by CVX,.

3. The partial slope of Y on X, from this
model is the simple slope of Y on X, for the
specific value of X, chosen.

4. The statistical program then provides a
standard error and t test.

This procedure can be followed for any condi-
tional value. Note that we have calculated simple
slopes for Y on X, at different values of X,.
Conversely, we could have easily calculated simple
slopes for Y on X, at different values of X.

If we have three predictor variables, we can
have three two-way interactions and one three-
way interaction:

y _BO+BIX11+B2X12+BSX13+B4X11X12+

Bsxll i3 + BSXIZ i3 + B7X11X12X13 + 8 ( 6'23)

In this model, B, is the regression slope for the
three-way interaction between X,, X, and X, and
measures the dependence of the regression slope
of Y on X, on the values of different combinations
of both X, and X,. Equivalently, the interaction is
the dependence of the regression slope of Y on X,
on values of different combinations of X, and X,
and the dependence of the regression slope of Y
on X, on values of different combinations of X,
and X,. If we focus on the first interpretation, we
can determine simple regression equations for Y
on X, at different combinations of X, and X, using
sample estimates:

(b, +bx, +bx. . +bx x )x, +

¥=
(b2x12 + b3x13 + b6X12X13 + bO) (6'24)

Now we have (b, +bx,+bx,+bx,x) as the
simple slope for Y on X, for specific values of X,
and X, together. Following the logic we used for
models with two predictors, we can substitute
values for X, and X, into this equation for the
simple slope. Aiken & West (1991) suggested using
X, and %, and the four combinations of X, s, and
X, *s, - S1mp1e slopes for Y on X, or X, can be cal-
culated by just reordering the predlctor variables
in the model. Using the linear regression routine
in statistical software, simple slopes, their stan-
dard errors and t tests for Y on X, at specific values
of X, and X, can be calculated.

1. Create two new variables (called the condi-
tional values of X, and X,, say CVX, and CVX,),
which are x,, and x,, minus the specific values
chosen.

2. For each combination of specific values of
X, and X,, fit a multiple linear regression model
for Yon X, CVX,, CVX,, X, by CVX,, X, by CVX,,
CVX, by CVX,, and X, by CVX, by CVX,.

3. The partial slope of Y on X, from this
model is the simple slope of Y on X, for the
chosen specific values of X, and X,.

With three or more predictor variables, the
number of interactions becomes large and they
become more complex (three-way interactions
and higher). Incorporating all possible interac-
tions in models with numerous predictors
becomes unwieldy and we would need a very large
sample size because of the number of terms in the
model. There are two ways we might decide which
interactions to include in a linear regression
model, especially if our sample size does not allow
us to include them all. First, we can use our biolog-
ical knowledge to predict likely interactions and
only incorporate this subset. For the data from
Loyn (1987), we might expect the relationship
between bird density and grazing to vary with
area (grazing effects more important in small frag-
ments?) and years since isolation (grazing more
important in new fragments?), but not with dis-
tance to any forest or larger fragments. Second, we
can plot the residuals from an additive model
against the possible interaction terms (new vari-
ables formed by simply multiplying the predic-
tors) to see if any of these interactions are related
to variation in the response variable.
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There are two take-home messages from this
section. First, we should consider interactions
between continuous predictors in multiple linear
regression model because such interactions may
be common in biological data. Second, these inter-
actions can be further explored and interpreted
using relatively straightforward statistical tech-
niques with most linear regression software.

6.1.13 Polynomial regression

Generally, curvilinear models fall into the class of
nonlinear regression modeling (Section 6.4)
because they are best fitted by models that are
nonlinear in the parameters (e.g. power func-
tions). There is one type of curvilinear model that
can be fitted by OLS (i.e. it is still a linear model)
and is widely used in biology, the polynomial
regression.

Let’s consider a model with one predictor var-
iable (X,). A second-order polynomial model is:
Y= Byt Byxy T Bxit g
where B, is the linear coefficient and B, is the
quadratic coefficient. Such models can be fitted by
simply adding the x2 term to the right-hand side
of the model, and they have a parabolic shape.
Note that 2 is just an interaction term (i.e. x,, by
x,). There are two questions we might wish to ask
with such a model (Kleinbaum et al. 1988). First, is
the overall regression model significant? This is a
test of the Hj that 3, equals 8, equals zero and is
done with the usual F test from the regression
ANOVA. Second, is a second-order polynomial a
better fit than a first-order model? We answer this
with a partial F statistic, which tests whether the
full model including X? is a better fit than the
reduced model excluding X? using the principle of
extra SS we described in Section 6.1.4:

(SSgyra due to added X?)/1
RO X) == s
Residual

(6.25)

(6.26)
where the SS_  is the difference between the
SSpegression fOT the full model with the second-order
polynomial term and the SSgegression for the
reduced model with just the first-order term.

For example, Caley & Schluter (1997) examined
the relationship between local and regional
species diversity for a number of taxa and geo-
graphic regions at two spatial scales of sampling
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Regional species richness

T W B Scatterplot of local species richness against
regional species richness for 10% of regions sampled in
North America for a range of taxa (Caley & Schluter 1997)
showing linear (solid line) and second-order polynomial

(quadratic; dashed line) regression functions.

(1% of region and 10% of region). Regional species
diversity was the predictor variable and local
species diversity was the response variable and
Caley & Schluter (1997) showed that adding a
quadratic term to the model explained signifi-
cantly more of the variance in local species diver-
sity compared with a simple linear model (Box 6.6;
Figure 6.5).

Polynomial regressions can be extended to

third-order (cubic) models, which have a sigmoid
shape:
Yi= Byt Byxyy T BT Byxite
Polynomial models can also contain higher orders
(quartic, quintic, etc.) and more predictors. We
have to be very careful about extrapolation
beyond the range of our data with polynomial
regression models. For example, a quadratic
model will have a parabolic shape although our
observations may only cover part of that function.
Imagine fitting a quadratic model to the species
area data in Figure 5.17. Predicting species
number for larger clumps using this quadratic
model would be misleading as theory suggests
that species number would not then decline with
increasing clump area.

(6.27)
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Box 6.6 Worked example of polynomial regression

We will use the data set from Caley & Schluter (1997), examining the regression of
local species richness against regional species richness just for North America and
at a sampling scale of 10% of the region. Although there was some evidence that
both local and regional species richness were skewed, we will, like the original
authors, analyze untransformed variables. Caley & Schluter (1997) forced their
models through the origin, but because that makes interpretation difficult, we will
include an intercept in the models. First, we will fit a second-order polynomial to
the data:

(local species richness), =4, + B, (regional species richness), + 5, (regional species

richness)? + ¢

Coefficient Standard error Tolerance t P
B, 8.124 6.749 1.204 0.283
B 0.249 0.170 0.066 [.463 0.203
5 0.003 0.001 0.066 3.500 0.017

We would reject the H, that 8, equals zero. Note that the tolerances are very low,
indicating collinearity between regional species richness and (regional species rich-
ness)? as we would expect. This collinearity might affect the estimate and test of 5,
but won't affect the partitioning of the variance and the calculation of SS__
[(regional species richness)? | regional species richness], so we, like Caley & Schluter
(1997) will continue the analysis with uncentered data.

The partitioning of the variation resutted in the following ANOVA.

Source SS df MS F P
Regression 2781 X 10* 2 [.390 % 10* 184.582 <0.001
Residual 376.620 5 75.324

Note the SSRegreSSion has two df because there are three parameters in the

model. We would reject the H, that 8, equals £, equals zero.
Now we fit a reduced model without the quadratic term:

(local species richness), =4, + B, (regional species richness), + ¢

Source SS df MS F P

Regression 2.688 X 0% | 2.688 X | 0% 124.152 <0.001

Residual 1299.257 6 216.543

The SSq, from the full model is 2.781 X |10* and the SSH from the
gression egression

reduced model is 2.688 X 10%. Therefore SS__ _is 922.7 with one df and F [(regional
species richness)? | regional species richness] equals 12249 with P<<0.018. We
would conclude that adding the second-order polynomial term to this model con-
tributes significantly to explained variation in local species richness. It is apparent
from Figure 6.5, despite the small sample size, that the second-order polynomial
model provides a better visual fit than a simple linear model. Note that quadratic
models were not better fits than linear for any of the other combinations of region
(worldwide, Australia, North America) and spatial scale (1% and 10% of region).
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Table 6.3 ‘ Dummy variable coding for grazing effect from Loyn (1987)

Grazing intensity Grazing, Grazing, Grazing, Grazing,
Zero (reference category) 0 0 0 0
Low | 0 0 0
Medium 0 | 0 0
High 0 0 | 0
Intense 0 0 0 |

Polynomial terms in these models will always
be correlated with lower-order terms, so collinear-
ity can be a problem, causing unstable estimates
of the coefficients for the lower order terms and
increasing their standard errors. Since the polyno-
mial term is just an interaction, centring the pre-
dictors will reduce the degree of collinearity,
without affecting the estimate and test of the
slope for the highest-order term in the model nor
the partitioning of the SS. However, the estimate
of the slope for the lower-order terms will be dif-
ferent but also more reliable with smaller stan-
dard errors once collinearity has been reduced.

6.1.14 Indicator (dummy) variables
There are often situations when we would like to
incorporate a categorical variable into our multi-
ple regression modeling. For example, Loyn (1987)
included a predictor variable indicating the his-
torical intensity of grazing in each of his forest
patches. This variable took values of 1, 2, 3, 4 or 5
and was treated as a continuous variable for the
analysis. We could also treat this as a categorical
variable, with five categories of grazing. While the
values of this variable actually represent a quanti-
tative scale (from low grazing intensity to high
grazing intensity), many categorical variables will
be qualitative. For example, Paruelo & Lauenroth
(1996) included a categorical variable that separ-
ated sites into shrubland and grassland. To
include categorical variables in a regression
model, we must convert them to continuous vari-
ables called indicator or dummy variables.
Commonly, dummy variables take only two
values, zero or one, although other types of
coding are possible.

In the example from Paruelo & Lauenroth
(1996) where there are only two categories, we

could code grasslands as zero and shrublands as
one, although the authors used coding of one and
two. As long as the interval is the same, the coding
doesn’t matter in this case. For Loyn’s (1987)
grazing history variable, there are five categories
that we will call zero, low, medium, high, and
intense grazing. The dummy variables would be as
follows.

X, 1iflow
0 if not

X, 1 if medium
0 ifnot

X, 1 if high
0 ifnot

X, 1 if intense
0 if not

This defines all our categories (Table 6.3) and
we would fit a linear model including each of
these dummy variables as predictors. For a predic-
tor variable with c categories, we only need c—1
dummy variables. Interpreting the regression
coefficients is a little tricky. The coefficients for X,
X,, X, and X, indicate how different the effects of
low, medium, high and intense grazing respec-
tively are compared to zero grazing, i.e. the coeffi-
cients for dummy variables measure the
differential effects of each category compared to a
reference category (in which all dummy variables
equal zero). The choice of the reference category
should be made prior to analysis. In this example,
we used the zero grazing category (“control”) as
the reference category. An alternative method of
coding dummy variables is using the deviation of
each category mean from the overall mean, which
is commonly used in analysis of variance models
(see Chapter 8 onwards) and is termed effects
coding.



136

MULTIPLE AND COMPLEX REGRESSION

Box 6.7 | Worked example of indicator (dummy) variables

We will consider a subset of the data from Loyn (1987) where abundance of forest
birds is the response variable and grazing intensity (| to 5 from least to greatest)
and log,, patch area are the predictor variables. First, we treat grazing as a contin-
uous variable and fit model 6.28.

Coefficient Estimate Standard error t P

Intercept 21.603 3.092 6.987 <0.001
Grazing —2.854 0713 —4.005 <0.001
Log,, area 6.890 1.290 5.341 <0.001

Note that both the effects of grazing and log , area are significant and the partial
regression slope for grazing is negative, indicating that, holding patch area constant,
there are fewer birds in patches with more intense grazing.

Now we will convert grazing into four dummy variables with no grazing (level
) as the reference category (Table 6.3) and fit model 6.29.

Estimate Standard error t P
Intercept 15716 2.767 5.679 <0.001
Grazing, 0.383 2912 0.131 0.896
Grazing, —0.189 2.549 —0.074 0.941
Grazing, —1.592 2976 —0.535 0.595
Grazing, —11.894 2931 —4.058 <0.001
Log,, area 7.247 |.255 5774 <0.001

The partial regression slopes for these dummy variables measure the difference in
bird abundance between the grazing category represented by the dummy variable
and the reference category for any specific level of log, area. Note that only the
effect of intense grazing (category: 5; dummy variable: grazing,) is different from the

no grazing category.

If our linear model only has categorical pre-
dictor variables (“factors”), then they are usually
considered as classical analyses of variance
models. Commonly, we have linear models with
a mixture of categorical and continuous vari-
ables. The simplest case is one categorical pre-
dictor (converted to dummy variables) and one
continuous predictor. For example, consider a
subset of the data from Loyn (1987) where we
will model the abundance of forest birds against
grazing intensity (1 to 5 indicating no grazing
to intense grazing) and patch area (transformed
to log,) — see Box 6.7. Because the levels of
grazing categories are quantitative, grazing
intensity can be treated as a continuous vari-
able with the following typical multiple regres-
sion model:

(bird abundance), = B, + 8,(grazing), +
B,(log,, area), + &, (6.28)

Alternatively, we could consider grazing intensity
as a categorical variable and we would create four
dummy variables (Table 6.3) and include these in
our model:

(bird abundance), = 8+ B8,(grazing, ), +

Bz(grazingz)i + Bs(grazingg)i +
B,(grazing,), + B(log,, area), + ¢, (6.29)

This model can be envisaged as separate linear
regression models between Y and log,, area for
each level of the categorical predictor (grazing).
The partial regression slope for each dummy vari-
able measures the difference in the predicted
value of Y between that category of grazing and
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the reference category (zero grazing) for any spe-
cific value of log,, area. Using analysis of covari-
ance terminology (Chapter 12), each regression
slope measures the difference in the adjusted
mean of Y between that category and the refer-
ence category (Box 6.7). Interaction terms between
the dummy variables and the continuous variable
could also be included. These interactions
measure how much the slopes of the regressions
between Y and the log,, area differ between the
levels of grazing. Most statistical software now
automates the coding of categorical variables in
regression analyses, although you should check
what form of coding your software uses. Models
that incorporate continuous and categorical pre-
dictors will also be considered as part of analysis
of covariance in Chapter 12.

6.1.15 Finding the “best” regression model
In many uses of multiple regression, biologists
want to find the smallest subset of predictors that
provides the “best fit” to the observed data. There
are two apparent reasons for this (Mac Nally 2000),
related to the two main purposes of regression
analysis - explanation and prediction. First, the
“best” subset of predictors should include those
that are most important in explaining the varia-
tion in the response variable. Second, other things
being equal, the precision of predictions from our
fitted model will be greater with fewer predictor
variables in the model. Note that, as we said in the
introduction to Chapter 5, biologists, especially
ecologists, seem to rarely use their regression
models for prediction and we agree with Mac
Nally (2000) that biologists are usually searching
for the “best” regression model to explain the
response variable.

It is important to remember that there will
rarely be, for any real data set, a single “best”
subset of predictors, particularly if there are many
predictors and they are in any way correlated with
each other. There will usually be a few models,
with different numbers of predictors, which
provide similar fits to the observed data. The
choice between these competing models will still
need to be based on how well the models meet the
assumptions, diagnostic considerations of outli-
ers and other influential observations and biolog-
ical knowledge of the variables retained.

Criteria for “best” model

Irrespective of which method is used for selecting
which variables are included in the model (see
below), some criterion must be used for deciding
which is the “best” model. One characteristic of
such a criterion is that it must protect against
“overfitting”, where the addition of extra predic-
tor variables may suggest a better fit even when
these variables actually add very little to the
explanatory power. For example, t? cannot
decrease as more predictor variables are added to
the model even if those predictors contribute
nothing to the ability of the model to predict or
explain the response variable (Box 6.8). So % is not
suitable for comparing models with different
numbers of predictors.

We are usually dealing with a range of models,
with different numbers of predictors, but all are
subsets of the full model with all predictors. We
will use P to indicate all possible predictors, p is
the number of predictors included in a specific
model, n is the number of observations and we
will assume that an intercept is always fitted. If
the models are all additive, i.e. no interactions,
the number of parameters is p + 1 (the number of
predictors plus the intercept). When interactions
are included, then p in the equations below
should be the number of parameters (except the
intercept) in the model, including both predictors
and their interactions. We will describe four crite-
ria for determining the fit of a model to the data
(Table 6.4).

The first is the adjusted > which takes into
account the number of predictors in the model
and, in contrast to the usual 2, basically uses
mean squares instead of sum of squares and can
increase or decrease as new variables are added to
the model. A larger value indicates a better fit.
Using the MS, ., .. from the fit of the model is
equivalent where a lower value indicates a better
fit.

The second is Mallow’s Cp which works by
comparing a specific reduced model to the full
model with all P predictors included. For the full
model with all P predictors, C, will equal P+ 1 (the
number of parameters including the intercept).
The choice of the best model using Cp has two com-
ponents: C, should be as small as possible and as
close to p as possible.
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Box 6.8/ Hierarchical partitioning and model selection.

The data from Loyn (1987) were used to compare model selection criteria. Only
the best two models (based on the BIC) for each number of predictors are pre-
sented as well as the full model. The model with the lowest BIC is in bold.

No. predictors Model & Adir C, AIC Schwarz (BIC)
I log,, area 0548 0539 184 22439 22845
I grazing 0466 0456 3.1 22371 23776
2 log,, area+grazing 0.653 0.640 4.0 211.59 217.67
2 log,, area + years 0643 0630 54 21306 219.14
3 log,, area + grazing + 0.673 0.654 28 210.19 21829
years
3 log,, area + grazing + 0.664 0644 43 21177  219.88
log,, Idist
4 log,, area + grazing + 0.682 0.657 34 21060 220.73
years + altitude
4 log,, area + grazing + 0679 0654 39 21115 221.28
years + log, , Idist
5 log,, area + grazing + 0.681 0.649 5.1 21289 22505
years + log,  Idist +
log,, dist
5 log,, area + grazing + 0668 0.635 5.1 21511 22727
altitude +log, , Idist
+log,, dist
6 log,, area + grazing + 0.685 0.646 7.0 214.14 22832
years + altitude +log,
Idist + log, , dist

The Schwarz criterion (BIC) selects a model with just two predictors (log,; area
and grazing). In contrast, the AIC and Mallow's C ' selected a model that included
these two predictors and years since isolation, and the adjusted r* selected a four-
predictor model that added altitude to the previous three predictors. Note that the
unadjusted r? is highest for the model with all predictors.

For these data, automated forward and backward selection procedures (the sig-
nificance level for entering and removing terms based on partial F-ratio statistics
was set at 0.15) produced the same final model including log,, area, grazing and
years since isolation. The results from a hierarchical partitioning of r* from the model
relating abundance of forest birds to all six predictor variables from Loyn (1987) are
shown below.

Independent Joint Total
Log,, area 0315 0232 0.548
Log,, dist 0.007 0.009 0016
Log,, Idist 0014 <0.001 0014
Altitude 0.057 0.092 0.149
Grazing 0.190 0275 0466
Years 0.101 0.152 0.253

Clearly, log, , area and grazing contribute the most to the explained variance in
abundance of forest birds, both as independent effects and joint effects with other
predictors, with some contribution also by years since isolation.



MULTIPLE LINEAR REGRESSION ANALYSIS

139

Table 6.4 ‘ Criteria for selecting “best” fitting model in multiple linear regression. Formulae are for a specific
model with p predictors included. Note that p excludes the intercept

Criterion Formula
SS In—(p+ 1
Adjusted I’2 | — Residual [I’) (p )]
SSTota\/(n = )
Reduced SSg.
Mallow's C, Reduced Sopesigual _ [n—2(p+ ]

Akaike Information Criterion (AIC)

Schwarz Bayesian Information Criterion (BIC)

FU“ MSReswdua\
n[ln(SSResidual)
n[ln(SSResidua‘)] + (p+ 1In(n) —nin(n)

1+2(p+1)—nIn(n)

The remaining two measures are in the cate-
gory of information criteria, introduced by Akaike
(1978) and Schwarz (1978) to summarize the infor-
mation in a model, accounting for both sample
size and number of predictors (Table 6.4).
Although these information criteria are usually
based on likelihoods, they can be adapted for use
with OLS since the estimates of parameters will be
the same when assumptions hold. The first of
these criteria is the Akaike information criterion
(AIC), which tends to select the same models as
Mallow’s C, as n increases and the MS; ., ..
becomes a better estimate of o2 (Christensen
1997; see Box 6.8). The Bayesian (or Schwarz) infor-
mation criterion (BIC) is similar but adjusts for
sample size and number of predictors differently.
It more harshly penalizes models with a greater
number of predictors than the AIC (Rawlings et al.
1998).

For both AIC and BIC, smaller values indicate
better, more parsimonious, models (Box 6.8). We
recommend the Schwarz criterion for determin-
ing the model that best fits the data with the
fewest number of parameters (see also Mac Nally
2000). It is simple to calculate and can be applied
to linear and generalized linear models (see
Chapter 13).

Selection procedures

The most sensible approach to selecting a subset
of important variables in a complex linear model
is to compare all possible subsets. This procedure
simply fits all the possible regression models (i.e.
all possible combinations of predictors) and

chooses the best one (or more than one) based on
one of the criteria described above. Until rela-
tively recently, automated fitting of all subsets
was beyond the capabilities of most statistical
software because of the large number of possible
models. For example, with six predictors, there
are 64 possible models! Consequently, stepwise
procedures were developed that avoided fitting
all possible models but selected predictor vari-
ables based on some specific criteria. There are
three types of stepwise procedures, forward
selection, backward selection and stepwise selec-
tion.

Forward selection starts off with a model with
no predictors and then adds the one (we’ll call X )
with greatest F statistic (or t statistic or correlation
coefficient) for the simple regression of Y against
that predictor. If the H, that this slope equals zero
is rejected, then a model with that variable is
fitted. The next predictor (X,) to be added is the
one with the highest partial F statistic for X, given
that X _is already in the model [F(X, | X ). If the H,
that this partial slope equals zero is rejected, then
the model with two predictors is refitted and a
third predictor added based on F(X |X X,). The
process continues until a predictor with a non-sig-
nificant partial regression slope is reached or all
predictors are included.

Backward selection (elimination) is the oppo-
site of forward selection, whereby all predictors
are initially included and the one with the small-
est and non-significant partial F statistic is
dropped. The model is refitted and the next pre-
dictor with the smallest and non-significant
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partial F statistic is dropped. The process contin-
ues until there are no more predictors with non-
significant partial F statistics or there are no
predictors left.

Stepwise selection is basically a forward selec-
tion procedure where, at each stage of refit-
ting the model, predictors can also be
dropped using backward selection. Predictors
added early in the process can be omitted later
and vice versa.

For all three types of variable selection, the
decision to add, drop or retain variables in the
model is based on either a specified size of partial
F statistics or significance levels. These are some-
times termed F-to-enter and F-to-remove and obvi-
ously, the values chosen will greatly influence
which variables are added or removed from the
model, especially in stepwise selection.
Significance levels greater than 0.05, or small F
statistics, are often recommended (and are
default settings in stepwise selection routines of
most regression software) because this will result
in more predictors staying in the model and
reduce the risk of omitting important variables
(Bowerman & O’Connell 1990). However, as
always, the choice of significance levels is arbi-
trary. Note that so many P values for tests of
partial regression slopes are generated in variable
selection procedures that these P values are diffi-
cult to interpret, due to the multiple testing
problem (see Chapter 3) and lack of independence.
Variable selection is not suited to the hypothesis
testing framework.

It is difficult to recommend any variable selec-
tion procedure except all subsets. The logical and
statistical problems with the forward, backward
and stepwise procedures have been pointed out
elsewhere (e.g. James & McCulloch 1990,
Chaterjee & Price 1991, Neter et al. 1996). They all
use somewhat arbitrary statistical rules (signifi-
cance levels or the size of F statistics) for deciding
which variables enter or leave the model and
these rules do not consider the increased prob-
ability of Type I errors due to multiple testing.
These approaches seem to be an abuse of the logic
of testing a priori statistical hypotheses; statistical
hypothesis testing and significance levels are ill-
suited for exploratory data-snooping. Also, the
forward, backward and stepwise approaches for

including and excluding variables can produce
very different final models even from the same set
of data (James & McCulloch 1990, Mac Nally 2000),
particularly if there are many predictors.
Additionally, simulation studies have shown that
these stepwise procedures can produce a final
model with a high 12, even if there is really no rela-
tionship between the response and the predictor
variables (Flack & Chang 1987, Rencher & Pun
1980). Finally, variable selection techniques are
sensitive to collinearity between the predictors
(Chaterjee & Price 1991). This is because collinear-
ity will often result in large variances for some
regression slopes that may result in those predic-
tor variables being excluded from the model irre-
spective of their importance.

The all-subsets procedure is limited by the
large number of models to be compared when
there are many predictor variables, although
most statistical software can now compare all
subsets for reasonable numbers of predictors. It is
difficult to envisage a data set in biology with too
many variables for all subsets comparisons that is
also not plagued by serious collinearity problems,
which would invalidate any variable selection pro-
cedure.

If the number of observations is large enough,
then we recommend using cross-validation tech-
niques to check the validity of the final model.
The simplest form of cross-validation is randomly
to split the data set in two and fit the model with
half the data set and then see how well the model
predicts values of the response variable in the
other half of the data set. Unfortunately, splitting
the data for cross-validation is not always possible
because of small sample sizes often encountered
in biology.

In the end, however, the best argument against
stepwise variable selection methods is that they
do not necessarily answer sensible questions in
the current age of powerful computers and sophis-
ticated statistical software. If a regression model
is required for explanation, then we wish to know
which variables are important, and the criteria we
described above, combined with hierarchical par-
titioning (Section 6.1.16), are the best approaches.
If a model is required for prediction, with as few
predictor variables as possible, then comparing
all-subsets is feasible and probably the most



MULTIPLE LINEAR REGRESSION ANALYSIS

sensible, although more complex procedures are
possible (Mac Nally 2000). We conclude with a
quote from James & McCulloch (1990, pp.
136-137): “Many authors have documented the
folly of using stepwise procedures with any multi-
variate method. Clearly, stepwise regression is not
able to select from a set of variables those that are
most influential.”

6.1.16 Hierarchical partitioning
Hierarchical partitioning is a method that has
been around for some time but its utility for inter-
preting the importance of variables in linear
models has only recently been appreciated in the
statistical (Chevan & Sutherland 1991) and biolog-
ical literature (Mac Nally 1996). Its purpose is to
quantify the “independent” correlation of each
predictor variable with the response variable. It
works by measuring the improvement in the fit of
all models with a particular predictor compared
to the equivalent model without that predictor
and the improvement in fit is averaged across all
possible models with that predictor. We can use
any of a number of measures of fit, but for linear
models, it is convenient to use 12

Consider a model with a response variable (Y)
and three predictor variables (X, X,, X,). There are
2P possible models when there are p “indepen-
dent” predictor variables, so here, there are 23
equals eight models. We can calculate 12 for the
eight possible models listed in Table 6.5. Note that
there are four hierarchical levels of model com-
plexity, representing the number of predictors in
the model. Hierarchical partitioning splits the
total 12 for each predictor, i.e. the t2 for the linear
relationship between Y and each predictor by
itself (as in Models 2, 3 and 4), into two additive
components.

* The “independent” contributions of each
predictor variable, which is a partitioning of
the r? for the full model with all predictors
(Model 8).

* The “joint” contributions of each predictor in
conjunction with other predictors.

For the independent contributions, we calcu-
late for each predictor variable the improvement
in fit by adding that predictor to reduced models
without that predictor at each hierarchical level.

Table 6.5 ‘ Eight possible models with one
response variable and three predictor variables

Label Model Level of hierarchy

| No predictors, 0
r? equals zero

oUW N
>
_|_
<

For example, for X,, we would compare the follow-
ing r? values:

r2(X,) vs r2(Null)

T 1X,) Vs rz(Xz)
r?(X,.X;) vs r3(X,)

(X, X,.X,) vs (X, X,)

Xl
X
X

The differences in r? values are averaged within
each hierarchical level (first order, second order,
third order) and then averaged across the levels to
produce the independent contribution of X, to
the explained variance in Y. The same procedure
is followed for the other predictor variables.
These independent contributions of all the pre-
dictor variables represent a partitioning of the r?
from the full model with all predictors included.
For example, the sum of the independent contri-
butions of log,, area, log,, dist, log,, 1dist, alti-
tude, grazing and years to forest bird abundance
for the data from Loyn (1987) equals the +? from
the fit of the full model with all these predictors
(Box 6.8).

If the predictor variables are completely inde-
pendent of (i.e. uncorrelated with) each other,
then there will be no joint contributions and the
sum of the r* for Models 2, 3 and 4 (Table 6.5) will
equal the total +? from the full model. This latter
r2 can be unambiguously partitioned into the
independent contributions of each predictor and
the analysis would be complete. We know,
however, that correlations between predictors
nearly always occur within real data sets so the
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sum of the 2 for Models 2, 3 and 4 will exceed the
total 2 from the full model because of the joint
effects of predictors. These joint effects represent
the variation in Y that is shared between two or
more predictors. The joint effects for each predic-
tor are calculated from the difference between the
squared partial correlation for the model relating
Y to that predictor and the average r? representing
the independent contribution of that predictor
already determined. This simply uses the additive
nature of the independent and joint contribu-
tions of each predictor to the total 12 for each pre-
dictor, as described above.

The sum of the average independent and
average joint contribution to 12 is the total contri-
bution of each predictor variable to the variation
in the response variable, measured by the 2 for
the model relating Y to each predictor. We might
like to test the H; that this total contribution
equals zero for each predictor. Unfortunately,
hypothesis tests for r? are not straightforward,
although Mac Nally (1996) suggested an expedient
solution of using the appropriate critical value of
the correlation coefficient (V+?).

As Mac Nally (1996) has pointed out, hierarchi-
cal partitioning uses all possible models and aver-
ages the improvement in fit for each predictor
variable, both independently and jointly, across
all these models. Note that hierarchical partition-
ing does not produce a predictive model nor does
it provide estimates of, and tests of null hypothe-
ses about, parameters of the regression model.
With anything more than a few predictors, hier-
archical partitioning cannot be done manually
and the algorithm of Chevan & Sutherland (1991)
needs to be programmed.

Mac Nally (1996) illustrated the utility of hier-
archical partitioning for a data set relating breed-
ing passerine bird species richness to seven
habitat variables. The two predictor variables
retained by hierarchical partitioning were the
same as those with significant bivariate correla-
tions with the response variable but were quite
different from those chosen by a full model multi-
ple regression and variable selection (backwards
and forwards) procedures (Box 6.8).

6.1.17 Other issues in multiple linear
regression

Regression through the origin

We argued in Chapter 5 that forcing a regression
model through the origin by omitting an inter-
cept was rarely a sensible strategy. This is even
more true for multiple regression because we
would need to be sure that Y equals zero when all
X, equal zero. Even if this was the case, forcing our
model through the origin will nearly always
involve extrapolating beyond the range of our
observed values for the predictor variables and
measures of fit for no-intercept models are diffi-
cult to interpret.

Weighted least squares

Weighting each observation by a value related to
the variance in y, is one way of dealing with het-
erogeneity of variance although determining the
appropriate weights is not straightforward
(Chapter 5). As with simple linear regression, our
preference is to transform Y and/or the X-variables
if the heterogeneity of variance is due to skewed
distributions of the variables, particularly if our
understanding of the biology suggests a different
scale of measurement is more appropriate for one
or more of the variables. Alternatively, general-
ized linear models with an appropriate non-
normal distribution of the error terms should be
used (Chapter 13).

X random (Model II regression)
The extension of Model II bivariate regression
techniques (Chapter 5) to the situation with multi-
ple predictor variables was reviewed by McArdle
(1988). To calculate the RMA equivalent estimates
for each B, first produce a correlation matrix
among all the variables (Y and all p X-variables).
Then run a principal components analysis (see
Chapter 17) on this correlation matrix and extract
the eigenvector for the last component with the
smallest eigenvalue (explained variance). The esti-
mate of the regression slope for each predictor
variable (X)) is:
%

b="1

(6.30)
j) ay

where bj is the regression slope for X a; is the coef
ficient for X;and o is the coefficient for Y from the
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eigenvector for the principal component with the
smallest eigenvalue. McArdle (1988) refers to this
method as the standard minor axis (SMA) and
simply becomes the RMA method when p equals
one. Note that these are standardized regression
slopes, because they are based on a correlation
matrix, so the regression model does not include
an intercept.

The choice between OLS and SMA is not as
straightforward as that between OLS and RMA for
simple bivariate regression. McArdle’s (1988) sim-
ulations suggested that if the error variance in X;
is greater than about half the error variance in Y,
then SMA is better. However, the relative perfor-
mance of OLS and SMA depended on the correla-
tion between Y and X; so definitive guidelines
cannot be given.

Robust regression

When the underlying distribution of error terms
may not be normal, especially if extreme observa-
tions (outliers) occur in the data that we cannot
deal with via deletion or transformation, then the
usual OLS procedure may not be reliable. One
approach is to use robust fitting methods that are
less sensitive to outliers. The methods described
in Chapter 5, least absolute deviations, Huber M-
estimation and non-parametric (rank-based)
regression, all extend straightforwardly to multi-
ple predictor variables. The major difficulty is that
the computations and associated algorithms are
complex (Birkes & Dodge 1993). Fortunately,
robust regression procedures are now common
components of good statistical software.

The randomization test of the H that 8, equals
zero in simple linear regression can also be
extended to multiple regression. We compare the
observed partial regression slopes to a distribu-
tion of partial regression slopes determined by
randomly allocating the y, to observations but not
altering the x,, x,, etc, for each observation
(Manly 1997). Other randomization methods can
be used, including using the residuals, although
the different methods appear to give similar
results (Manly 1997).

Missing data

It is common for biological data comprising two
or more variables to have missing data. In data
sets suited to multiple regression modeling, we

may be missing values for some of the predictor
variables or the response variable for some sam-
pling units. It is important to distinguish missing
values (no data) from zero values (data recorded
but the value was zero) — see Chapter 4. If missing
values for the response variable reflect a biologi-
cal process, e.g. some organisms died during an
experiment and therefore growth rate could not
be measured, then analyzing the pattern of
missing values in relation to the predictor vari-
ables may be informative. More commonly, we
have missing values for our predictor variables,
often due to random events such as equipment
failure, incorrect data entry or data being subse-
quently lost. In these circumstances, most linear
models software will omit the entire sampling
unit from analysis, even if data are only missing
for one of the variables. Alternatives to deletion
when missing data occur, including imputing
replacement values, will be discussed in Chapter
15.

Power of tests

The tests of whether individual partial regression
coefficients equal zero are based on t statistics and
therefore the determination of power of these
tests is the same as for any simple t test that a
single population parameter equals zero
(Chapters 3 and 7). Our comments on power calcu-
lations for simple regression analyses (Chapter 5)
apply similarly for multiple regression.

6.2 | Regression trees

An alternative to multiple linear regression anal-
ysis for developing descriptive and predictive
models between a response variable and one or
more predictor variables is regression tree analy-
sis (Brieman et al. 1984, De’ath & Fabricius 2000).
A “upside-down” tree is created where the root at
the top contains all observations, which are
divided into two branches at a node, then each
branch is further split into two at subsequent
nodes and so on. A branch that terminates
without further branching is called a leaf.
Consider the data from Loyn (1987), where we
have a continuous response variable (abundance
of forest birds) and six predictor variables describ-
ing 56 forest patches, in this case all continuous.
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All possible binary splits of the observations are
assessed for each predictor variable. The first split
is based on the predictor that results in two
groups with the smallest within-group (residual)
sums-of-squares for the response variable. Other
measures of (lack of) fit can be used, including
absolute deviations around the mean or median
for a more robust measure of fit (see Chapter 5).
These splitting criteria are different indices of
impurity, a measure of heterogeneity of the
groups at a split (De’ath & Fabricius 2000). This
“recursive  binary-partitioning”  process is
repeated within each of the two groups for all the
predictors, again choosing the next split based on
the predictor that results in the minimum resid-
ual SS within groups. Groups further along in the
splitting process are more homogeneous than
those higher up. The regression tree looks like a
dendrogram from cluster analysis (Chapter 18),
but is really a tree with the root (the undivided
complete data set) at the top, branches with nodes
for each division and leaves where branches termi-
nate (terminal nodes).

Regression trees produce a predictive model.
For any observation, a predicted value is the mean
of the observations at a leaf, i.e. in a terminal
group. Obviously, predicted values for observa-
tions in the one group (leaf) will be the same. This
isin contrast to the usual linear model, which will
have different predicted values for all observa-
tions unless they have identical values for all pre-
dictors. Because we have observed and predicted
values, we can also calculate residuals for each
observation and use these residuals as a diagnos-
tic check for the appropriateness of the model and
whether assumptions have been met. Normality
of predictor variables is not a concern because
only the rank order of a variable governs each
split, although transformation of the response
variable to alleviate variance heterogeneity may
be important (De’ath & Fabricius 2000).

The splitting process (tree building) could con-
tinue until each leaf contains a single observation
and for the Loyn (1987) data, we would have 56 ter-
minal nodes. In this situation, the tree would
predict the observed values of the response vari-
able perfectly and explain all the variance in the
response variable, the equivalent of fitting a satu-
rated linear regression model (Section 6.1.4).

Usually, we want the best compromise between
tree simplicity (few nodes) and explained variance
in the response variable. In practice, therefore, a
priori stopping criteria are used, such as a
maximum number of nodes allowed, a minimum
number of objects in each group or a minimum
reduction in explained variance from adding
more nodes. Different software for building trees
will use different measures of fit and different
default stopping rules so don’t expect trees based
on the same data built using different programs
to be the same unless these criteria are set to be
the same. Once the tree is built, using the stop-
ping criteria, we can also “prune” or “shrink”
trees to produce simpler models that achieve a
better compromise between fit and simplicity,
often using criteria similar to those used for
model selection in standard multiple regression
(Section 6.1.15). Alternatively, we can assess the
predictive capabilities of different sized trees and
choose the “best” tree as the one with the small-
est prediction error, i.e. the model that provides
the most accurate predictions.

De’ath & Fabricius (2000) argue strongly that
the best approach for determining prediction
error and thus appropriate tree size is using cross-
validation (Section 6.1.15; De’ath & Fabricius
2000). One method for cross-validation is where
the observations are divided randomly into two
groups of a specified size, e.g. 10% and 90% of the
observations, and the regression tree model is
fitted to the larger group (“training group”) to
predict values in the smaller group (“validation
group”). The difference between the observed and
predicted values of the response variable in the
smaller group is a measure of prediction error. Of
interest is how much of the total variation in
the observed values of the response variable is
explained by the predicted values. Cross-
validation is usually repeated many times, each
with a new random allocation of observations to
the groups of pre-defined size, i.e. in a randomiza-
tion testing framework. Randomization testing
can also be used to test whether the derived
regression tree explains more of the variation in
the response variable than we would expect by
chance. Brieman et al. (1984) and De’ath &
Fabricius (2000) provide more detail on cross-
validation for regression trees.
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Regression trees are often included in statisti-
cal software under the acronym CART (classifica-
tion and regression tree analyses). The main
distinction between classification and regression
trees is that the former is based on categorical
response variables and the latter on continuous
response variables. Two common algorithms are
AID (Automatic Interaction Detection) for regres-
sion trees and CHAID (Chi-squared Automatic
Interaction Detection) for classification trees.

We will use two biological examples of regres-
sion tree analysis. The first comes from Rejwan et
al. (1999), who used both standard multiple
regression and regression trees to analyze the
relationship between the density of nests of small-
mouth bass (continuous response variable) and
four predictor variables (wind/wave exposure,
water temperature, shoreline reticulation and lit-
toral-floor rugosity) for 36 sites in Lake Opeongo,
Canada. There were nonlinear relationships
between both exposure and littoral-floor rugosity
and nest density. The standard multiple regres-
sion analysis showed that shoreline reticulation,
temperature and (temperature)?, and exposure
were significant predictors, the final model
explaining 47% of the variation in nest density
between sites. However, cross-validation analysis
showed that the model had little predictive
power, with almost none of the variation in nest
density in random samples of 10% of the sites pre-
dictable from the model fitted to the other 90% of
the sites.

Their regression tree analysis split the sites
based on a temperature cut-off of 17.05 °C into two
initial groups of 28 and 8 sites, and then split the
latter group into two groups of four sites each
based on shoreline reticulation below and above
100m. This tree explained 58% of the variation in
nest density and cross-validation analysis showed
that the tree model had more predictive power
and could explain about 20% of the variation nest
density in random samples of 10% of sites.

The second example, illustrated in Box 6.9,
uses the data set from Loyn (1987), who recorded
the abundance of forest birds in 56 forest frag-
ments and related this response variable to six
predictors that described aspects of each patch
(area, distance to nearest patch and nearest larger
patch, stock grazing, altitude and years since iso-

lation) - see Box 6.2. We built a regression tree
model for these data, after transforming area and
the two distances to logs. The first split was
between patches with grazing indices from one to
four and those with a grazing index of five. This
former group was further split into two groups
with log,, area+1.176 (approx. 15 ha). The final
tree is presented in Figure 6.6. This tree is a little
different from the results of the multiple linear
regression analysis of these data in Box 6.2. There,
log,, area was a significant predictor, with grazing
not significant (P=0.079), although model selec-
tion and hierarchical partitioning both resulted
in a model with log,, area and grazing as the two
predictors (Box 6.8). The fit of the regression tree
model was 0.699. The equivalent multiple linear
regression model including just grazing and log,,
area as predictors resulted in an r* of 0.653 so the
regression tree model produced a slightly better
fit.

This brief introduction might encourage you
to explore these methods further. The standard
reference is Brieman et al. (1984), and De’ath &
Fabricius (2000) provide an excellent and up-dated
overview with ecological applications.

6.3 | Path analysis and structural

equation modeling

The linear model we fit for a multiple regression
represents our best guess at causal relationships.
The model is postulating that the predictor vari-
ables we have incorporated may have biological
effects on our response variable. The multiple
regression model is, however, a conveniently
simple representation of potential causal path-
ways among our variables as it only considers
direct effects of each predictor, adjusting for the
others, on the response variable. We may hypoth-
esize much more complex causal links between
variables. For example, we may include indirect
effects where one predictor affects a second pre-
dictor, which in turn affects the response variable,
and we may have two or more response variables
that can affect each other. The statistical tech-
nique we use to analyze models of potential causal
relationships was first developed over 50 years ago
by Wright (1920, 1934) and is called path analysis
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Box 6.9 | Worked example of regression trees: abundance
of birds in forest patches

A regression tree for the data from Loyn (1987) related the abundance of forest
birds in 56 forest fragments to log area, log distance to nearest patch and nearest
larger patch, grazing intensity; altitude and years since isolation. We used OLS as our
measure of fit and set stopping criteria so that no split would result in less than five
observations in a group, the maximum number of nodes was less than 20 (atthough
this latter criterion turned out to be irrelevant) and the minimum proportional
reduction in residual variance was 5%. The first node in the tree was between 43
habitat patches with grazing indices from one to four and the |3 patches with a
grazing index of five (Figure 6.6). This former group was further split into two
groups, 24 patches with log,, area less than |.176 (approx. |5 ha) and 19 patches
with log, area greater than I.176.

The fit of this tree model was 0.699. The plot of residuals from the tree model
is shown in Figure 6.8(a) with four observations in the group of small patches with
low grazing (less than five) standing out from the others and warranting checking
and possibly re-running the analysis after their omission to evaluate their influence.

Out of interest, we refitted the tree with looser stopping criteria (smaller allow-
able reduction in residual variance) to see what subsequent splits in the data would
have occurred (Figure 6.7). On one side of the tree, the |3 patches with a grazing
index of five were further split by log, , dist. On the other side, the 24 small patches
were further split by age (and then by log,; area and log, , dist) and the |9 larger
patches were further split by log,  area again. The fit of the model was improved
to 0.84 but the model is much more complex with additional variables, some
repeated throughout the tree (e.g. log,, area) so the improvement in fit is at least
partly a consequence of the increased number of predictors in the tree model. The
residuals show a more even pattern, with no obvious outliers (Figure 6.8(b)).

SN XW Regression tree modeling bird abundance in Grazing1-4:5

forest patches against patch area, distance to nearest patch,
distance to nearest larger patch (these three variables log,
transformed), grazing intensity, altitude, and years since
isolation for the 56 patches surveyed by Loyn (1987).The
criteria for each node are included, with left-hand branches
indicating observations with values for that predictor below
the cut-off and right-hand branches indicating observations
with values for that predictor above the cut-off. The
predicted value (mean) and number of observations for each

leaf (terminal group) are also provided.

(see also Mitchell 1993 for a review). Path analysis
was originally designed for simple multiple
regression models and is now considered a subset
of a more sophisticated collection of analytical
tools called structural equation modeling (SEM),
also called analysis of covariance (correlation)

Log,,area(l1.15

6.29
(13)

18.31 30.08
(24) (19)

structure (Tabachnick & Fidell 1996). It is very
important to remember that causality can only
really be demonstrated by carefully designed and
analyzed manipulative experiments, not by any
specific statistical procedure. SEM and path analy-
sis are basically analyses of correlations, although
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they can be used to analyze experimental data
(Smith et al. 1997), and simply test how well postu-
lated causal pathways fit the observed data in a
modeling context.

The fundamental component of SEM or path
analysis is the a priori specification of one or more
causal models, although most published applica-
tions of path analysis in biology do not seem to
compare competing models. Let’s consider a
simple path diagram, based on the data from
Loyn (1987), that relates the abundance of forest
birds in isolated patches of remnant forest to a
number of predictor variables (Figure 6.9). We
will include three of these predictors (log,, patch
area, years since isolation, grazing) and include
all correlations among the predictors and all sup-
posed causal links between each predictor and

Log,, area

A\

Abundance of
forest birds

- »

Years since
isolation

JT-(N Y R W Path diagram for simple multiple regression
model relating three predictor variables (log,, patch area,
grazing, years since isolation) to one response variable
(abundance of forest birds) using the data from Loyn (1987).
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the response variable in our path diagram.
Single-headed arrows represent supposed causal
links between variables and double-headed
arrows represent correlations between variables
with no directional causality postulated. U repre-
sents unexplained causes (variables we have not
measured) that might affect a response variable.

The process starts by specifying the model for
each response variable. In our simple example,
there is only one response variable and the model
is a standardized multiple regression model
without an intercept:

(bird abundance), = g, (log,, area), +

B,(years), + B,(grazing), + ¢, (6.31)

Path analyses basically represent a restructuring
of the correlations (or covariances) between all
the variables under consideration (Mitchell 1993).
The correlation (r;;) between any predictor vari-
able X; and the response variable Y can be parti-
tioned into two components: the direct and the
indirect effects (Mitchell 1993). This partitioning
simply represents the normal equations that we
used for fitting the regression model using OLS
(Box 6.3). The direct effect is measured by the stan-
dardized partial regression coefficient between Y
and X holding all other predictor variables con-
stant. This direct effect is now the path coefficient
relating Y to X.. Path coefficients are identical to
standardized regression coefficients if all correla-
tions between predictor variables are included in
our path diagram. The indirect effect is due to the
correlations between X; and the other predictors,
which may in turn have direct effects on Y.
Mathematically, this decomposition of the cor-
relations can be derived from the set of normal
equations used for estimating the parameters of
the multiple regression model (Petraitis et al. 1996).
For example, for predictor variable one (log,, area):

ry=b, tr,b, +1.b, (6.32)

where r represents simple correlations and b rep-
resents standardized partial regression coeffi-
cients.

For the Loyn (1987) data:

rloglo area.abundance bloglo area.abundance

logq( area.years" years.abundance

(6.33)

log1g area.grazingbgrazing.abundance

The direct effect of log,, area on bird abundance is
represented by the standardized regression slope.
The indirect effect of log,, area on bird abundance
via the former’s correlation with years since isola-
tion and with grazing is calculated from the sum
of the last two terms in the right hand side of
Equation 6.33 above. The correlations between
years since isolation and bird abundance and
between grazing and bird abundance can be simi-
larly decomposed into direct and indirect effects.
The path identified by U (unexplained effects) can
be determined from \/(1 —1?) from the fit of the
model for a given response variable (Mitchell
1993). The results are summarized in Box 6.10 and
Figure 6.9.

Complex path models, with multiple response
variables, are not as easily handled by the multi-
ple regression approach to path analysis we have
just described (Mitchell 1992). More sophisticated
forms of structural equation modelling, such as
those implemented in software based on CALIS
(Covariance Analysis of Linear Structural equa-
tions; in SAS) and LISREL (Linear Structural
Relations; in SPSS) algorithms, offer some advan-
tages, especially in terms of model testing and
comparison. These procedures estimate the path
coefficients and the variances and covariances of
the predictor variables simultaneously from the
data using maximum likelihood, although other
estimation methods (including OLS) are available
(Tabachnick & Fidell 1996). A covariance matrix is
then determined by combining these parameter
estimates and this covariance matrix is compared
to the actual covariance matrix based on the data
to assess the fit of the model. Most software pro-
duces numerous measures of model fit, the AIC
(see Section 6.1.15) being one of the preferred
measures. As pointed out by Mitchell (1992) and
Smith et al. (1997), such goodness-of-fit statistics
can only be determined when there are more cor-
relations between variables than there are coeffi-
cients being estimated, i.e. the model is
over-identified. For example, we cannot test the fit
of the path model in Figure 6.9 because we have
estimated all the direct and indirect effects pos-
sible, i.e. there are no unestimated correlations.
The number of unestimated correlations contrib-
utes to the df of the goodness-of-fit statistic
(Mitchell 1993).
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Box 6.10 | Worked example of path analysis: abundance of
birds in forest patches

We will use the data from Loyn (1987) to relate the abundance of forest birds in
isolated patches of remnant forest to three predictor variables: log, , patch area,
years since isolation, grazing (Figure 6.9). Our path model includes all correlations
among the predictors and all supposed causal links between each predictor and the
response variable. The path model outlined in Figure 6.9 was evaluated by calculat-
ing both direct and indirect effects of predictors on the response variable. The full
correlation matrix was as follows.

Abundance  Log,area Years Grazing

Abundance 1.000

Log,, area 0.740 1.000

Years —0.503 —0.278 |.000

Grazing —0.683 —0.559 0.636  1.000

The direct and indirect effects for log, , area were calculated from:

rIog|o area.abundance = b\og‘o area.abundance + r\og‘o area‘yearsbyears,abundance + rIog|0

area.grazing ~ grazing.abundance

where b bundance 19 The direct effect of log,, area on abundance (the partial
glo area.abundance

regression coefficient) is the indirect effect of log,, area on

r
' "log| g area.years™ yearsabundance

abundance via years andr, is the indirect effect of log, , area

log | area.grazing ~ grazing.abundance
on abundance via grazing. Equivalent equations were used for the other predictors.
Correlations between predictor variables were also calculated. The final results

were as follows.

Predictor Direct effects Indirect effects Total effects
Log,, area 0.542 0.198 0.740
Via years 0.542
via grazing 0.146
Years since isolation —0.187 —0317 —0.503
via log, area —0.151
via grazing —0.166
Grazing —0.261 —0422 —0.683
via log , area —0.303
Vvia years =0.119

It is clear that the “effect” of log, , area on bird abundance is primarily a direct
effect whereas the “effects” of grazing and years since isolation are primarily indi-
rect through the other predictors. Our use of quotation marks around “effect” here
emphasizes that this is simply a correlation analysis; attributing causality to any of
these predictor variables can only be achieved by using manipulative experiments.
The r* for this model is 0.673 so the coefficient of the path from U to bird abun-
dance is 0.572.
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These programs also allow for latent (unmeas-
ured) variables, which are unfortunately termed
factors in the SEM literature. Latent variables are
not commonly included in path models in the
biological literature, although Kingsolver &
Schemske (1991) discussed the inclusion of
unmeasured phenotypic factors in path analyses
of selection in evolutionary studies. The difficulty
with these sophisticated SEM programs is they are
more complex to run. For example, LISREL
requires that a number of matrices be specified,
representing the variances, covariances and rela-
tionships between variables. Detailed compari-
sons of these different programs, including
required input and interpretation of the output,
are available in Tabachnick & Fidell (1996)

The limitations and assumptions of classical
path analysis are the same as those for multiple
regression. The error terms from the model are
assumed to be normally distributed and indepen-
dent and the variances should be similar for dif-
ferent combinations of the predictor variables.
Path analysis will also be sensitive to outliers and
influential observations, and missing observa-
tions will have to be addressed, either by replace-
ment or deletion of an entire observation (see
Chapters 4 and 15). Collinearity among the predic-
tor variables can seriously distort both the accu-
racy and precision of the estimates of the path
coefficients, as these are simply partial regression
coefficients (Petraitis et al. 1996; Section 6.1.11).
There is still debate over whether more sophisti-
cated SEM techniques, such as those based on
LISREL, are more robust to these issues (Petraitis et
al. 1996, Pugusek & Grace 1998). Diagnostics, such
as residual plots, should be an essential compo-
nent of any path analysis. Irrespective of which
method is used, all estimates of path coefficients
are sensitive to which variables are included or
which coefficients (correlation or path) are set to
zero (Mitchell 1992, Petraitis et al. 1996). This is no
different to multiple regression, where estimates
of partial regression slopes are sensitive to which
predictors are included or not.

Finally, we repeat our earlier caution that,
although structural equation modeling analyzes
postulated causal relationships, it cannot
“confirm or disprove the existence of causal links”
(Petraitis et al. 1996 p. 429). Such causal links can

only be demonstrated by manipulative experi-
ments. SEM and path analyses do allow complex
linear models to be evaluated and path diagrams
provide a useful graphical representation of the
strengths of these relationships.

6.4 ‘ Nonlinear models

When the relationship between Y and X is clearly
curvilinear, there are a number of options. We
have already discussed using a polynomial model
(Section 6.1.13) or linearizing transformations of
the variables (Section 6.1.10), but these are not
always applicable. For example, the relationship
between Y and X might be complex and cannot be
approximated by a polynomial nor can it be line-
arized by transformations of the variables. The
third option is to fit a model that is nonlinear in
the parameters. For example, the relationship
between number of species (S) and island area (A)
can be represented by the power function:

S=aAP (6.34)

where « and S are the parameters to be estimated
(Loehle 1990) - see Box 6.11. This is a two parame-
ter nonlinear model. A three parameter non-
linear model which is very useful for relating a
binary variable (e.g. presence/absence, alive/dead)
to an independent variable is the logistic model:

o

el ®

(6.35)
where «, B and & are the parameters to be esti-
mated. Ratkowsky (1990) has described a large
range of multiparameter nonlinear models, both
graphically and statistically, and some of their
practical applications.

OLS or ML methods can be used for estimation
in nonlinear regression modeling, as we have
described for linear models. The OLS estimates of
the parameters are the ones that minimize the
sum of squared differences between the observed
and fitted values and are determined by solving a
set of simultaneous normal equations. Solving
these equations is much trickier than in linear
models and some sort of iterative search proce-
dure is required, whereby different estimates are
tried in a sequential fashion. Obviously, with two
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Box 6.11 | Worked example of nonlinear regression:
species richness of macroinvertebrates in
mussel clumps

As described in Chapter 5, Peake & Quinn (1993) collected 25 clumps of an inter-
tidal mussel from a rocky shore at Phillip Island inVictoria. The relationship between
the number of species (Y) per clump and clump area in m? (X) was examined. The
scatterplot suggested a nonlinear relationship between number of species and
clump area (Figure 5.17) and theory suggests that a power function might be appro-
priate:

species = a(area)’

This power function was fitted using a modified Gauss—Newton method (quasi-
Newton). No starting values were provided. The algorithm took six iterations to
converge on the following estimates, with their approximate standard errors.

Parameter  Estimate  Standard error ¢t B
a 18.540 0.630 29449  <0.00|
yZj 0334 0.035 9532 <0.00lI
The MS , was 7.469. The fitted model was, therefore:

Residual

species = |8.540(area)?3*

Note that the MS,__, ., for the nonlinear power function (7.469) is about half that
for a linear model (14.133), indicating the former is a better fit to the data. The
fitted model is shown in Figure 6.10(a) and the residual plot (Figure 6.10(b))
suggested no strong skewness in the response variable and there were no unusual

outliers.
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species against mussel clump area
from Peake & Quinn (1993) showing
fitted nonlinear model: number of
species = 18.540 X (area)®33,

(b) Plot of residuals against
predicted values (with boxplots)
from fitted nonlinear model in (a)
fitted to number of species against
mussel clump area from Peake &
Quinn (1993).

or more parameters, the number of possible com-
binations of values for the parameters is essen-
tially infinite so these searching procedures are
sophisticated in that they only try values that
improve the fit of the model (i.e. reduce the
SSResidual)'

The most common method is the Gauss-

Newton algorithm or some modification of it

(Myers 1990). Starting values of the parameters
must be provided and these are our best guess of
what the values of the parameters might be. The
more complex the model, the more important it
is for the starting values to be reasonably close to
the real parameter values. Starting values may
come from fits of the equivalent model to other,
similar, data (e.g. from the published literature),
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theoretical considerations or, for relationships
that can be linearized by transformation, back-
transformed values from a linear model fitted to
transformed data. The Gauss-Newton search
method is complex, using partial derivatives from
the starting values and X-values to fit an iterative
series of essentially linear models and using OLS
to estimate the parameters. The best estimates are
reached when the sequential iterations converge,
i.e. don’t change the estimates by very much.
Variances and standard errors for the parameter
estimates can be determined; the calculations are
tedious but most statistical software provides this
information. Confidence intervals, and t tests for
null hypotheses, about parameters can also be
determined (Box 6.11).

There are a number of difficulties with nonlin-
ear modeling. First, sometimes the iterative
Gauss-Newton procedure won’t converge or con-
verges to estimates that are not the best possible
(“local minimum”). Most statistical software use
modified Gauss-Newton procedures, which help
convergence, and choosing realistic starting
values is very important. It is usually worth refit-
ting nonlinear models with different starting
values just to be sure the final model can be
achieved consistently. Second, OLS works fine for
linear models if the errors (residuals) are indepen-
dent, normally distributed with constant vari-
ance; however, for nonlinear models, even when
these assumptions are met, OLS estimators and
their standard errors, and confidence intervals
and hypothesis tests for the parameters, are only
approximate (Myers 1990; Rawlings et al. 1998). We
can be more certain of our estimates and confi-
dence intervals if different combinations of
search algorithms and starting values produce
similar results. Finally, measuring the fit of non-
linear models to the data is tricky; r* cannot be
easily interpreted because the usual SS; , for the
response variable cannot always be partitioned
into two additive components (SSp,, ., and
SSgesiquar): COmparing different models, some of
which might be nonlinear, can only be done with
variables measured on the same scale (i.e.
untransformed; see Chapter 5) and the MS is
probably the best criterion of fit.

Once a nonlinear model has been estimated,
diagnostic evaluation of its appropriateness is

Residual

essential. Residuals can be calculated in the usual
manner and large values indicate outliers.
Because OLS estimation is commonly used for
nonlinear models, assumptions of normality,
homogeneity of variance and independence of the
error terms from the model are applicable.
Boxplots of residuals and scatterplots of residuals
against predicted values (Figure 6.10) can detect
problems with these assumptions as described for
linear models. Other estimation methods, such as
maximum likelihood, might be more robust than
OLS.

For simple nonlinear structures, transforming
the variables to achieve linearity is usually recom-
mended, particularly if the transformed variables
can be easily interpreted because the transformed
scale is a natural alternative scale of measure-
ment for that variable. Note that the transformed
model is not the same as the untransformed non-
linear model, in the same way that a t test on
untransformed data is not testing the same H as
attest on the same data transformed. Our param-
eter estimates from the transformed model
cannot easily be interpreted in terms of the origi-
nal nonlinear model, which may have the
stronger theoretical basis.

6.5 ' Smoothing and response

surfaces

The linear plane representing the linear regres-
sion model of Y against X, and X, illustrated in
Figure 6.1 is sometimes referred to as a response
surface, a graphical representation of the rela-
tionship between a response variable and two pre-
dictors. Response surfaces obviously also exist
when there are more than two predictors but we
cannot display them graphically. Response sur-
faces, in this graphical context, are often used to
display the model chosen as the best fit based on
the modelfitting techniques we have already
described. Additionally, exploring a range of
response surfaces may help decide what sort of
model is best to use and detect patterns we might
have missed by being restricted to a specific
model.

Model-based surfaces that are linear in param-
eters include linear and curvilinear relationships.
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For example, polynomial models (quadratic,
cubic, etc.) are often good approximations to more
complex relationships and provide a more realis-
tic representation of the relationship between Y
and X, and X, than a simple linear model. Figure
6.11(a) shows a quadratic response surface, repre-
senting a model including linear and quadratic
terms for both predictors as well as their interac-
tion, fitted to the data from Paruelo & Lauenroth
(1996). Note that compared with the first-order
linear model in Figure 6.1, the quadratic model
allows a hump-shaped response of log-trans-
formed C, plant abundance to longitude for a
given latitude. The choice of whether to use this
response surface would depend on the results of
fitting this model compared with a simpler first-
order model.

Smoothing functions, like we discussed in
Chapter 5, can sometimes also be applied to three-
dimensional surfaces. While the Loess smoother
cannot easily be extended to three dimensions,
DWLS can and allows a flexible exploration of the
nature of the relationship between Y and X, and
X, unconstrained by a specific model. For the data
from Paruelo & Lauenroth (1996), the DWLS
surface (Figure 6.11(b)) suggests a potentially
complex relationship between log transformed C,
plant abundance and longitude in the northern,
high latitude, sites, a pattern not revealed by the
linear or polynomial models. Note that, like the
bivariate case, parameters for these smoothing
functions cannot be estimated because they are
not model-based; they are exploratory only.

Response surfaces also have other uses. For
example, comparing the fitted response surfaces
for linear models with and without an interaction

such an interaction. Again for

the data from Paruelo &
Lauenroth (1996), the DWLS smoothing function
suggests that the relationship between log-trans-
formed abundance of C, plants and latitude
depends on longitude and vice versa (Figure
6.11(b)). Most statistical software can plot a range
of model-based and smoothing response surfaces
on three-dimensional scatterplots.

6.6 | General issues and hints for
analysis
6.6.1 General issues

* Multiple regression models are fitted in a
similar fashion to simple regression models,
with parameters estimated using OLS
methods.

The partial regression slopes in a multiple
regression model measure the slope of the
relationship between Y and each predictor,
holding the other predictors constant. These
relationships can be represented with partial
regression plots.

Comparisons of fit between full and reduced
models, the latter representing the model
when a particular H, is true, are an important
method for testing null hypotheses about
model parameters, or combinations of
parameters, in complex models.
Standardized partial regression slopes should
be used if the predictors and the response vari-
able are measured in different units.
Collinearity, correlations between the predic-
tor variables, can cause estimates of parame-
ters to be unstable and have artificially large
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variances. This reduces the power of tests on
individual parameters.

Interactions between predictors should be con-
sidered in multiple regression models and
multiplicative models, based on centered pre-
dictors to avoid collinearity, should be fitted
when appropriate.

Hierarchical partitioning is strongly recom-
mended for determining the relative indepen-
dent and joint contribution of each predictor
to the variation in the response variable.
Regression trees provide an alternative to mul-
tiple linear models for exploring the relation-
ships between response and predictor variables
through successive binary splits of the data,
although cross-validation is necessary for eval-
uation of predictive power and hypothesis
testing.

Path analysis can be a useful technique for
graphically representing possible causal links
between response and predictor variables, and
also between predictor variables themselves.
Nonlinear models can be fitted using OLS,
although the estimation procedure is more
complex. The trick is deciding a priori what the
most appropriate theoretical model is.

6.6.2 Hints for analysis

* Multiple regression analyses are sensitive to
outliers and influential values. Plots of residu-
als and Cook’s D, statistic are useful diagnostic
checks.

¢ Information criteria, such as Akaike’s (AIC) or
Schwarz’s (BIC) are the best criteria for distin-
guishing the fit of different models, although
MS, . i4ua1 1S @lso applicable for regression
models fitted using OLS.

* Avoid automated selection procedures

(forward, backward, etc.) in model fitting.

Their results are inconsistent and hard to

interpret because of the large number of

significance tests. For moderate numbers of
predictors, compare the fit of all possible
models.

Use simple slopes for further interpretation of

interactions between predictor variables in

multiple regression models.

Causality can only be demonstrated by careful

research and experimentation, not by a partic-

ular statistical analysis. For example, path
analysis is a method for summarizing correla-
tion structures among variables and cannot
show causality.

* Always examine scatterplots and correlations
among your variables, to detect nonlinear rela-
tionships but also to detect collinearity among
predictors. Tolerance (or the variance inflation
factor) will also indicate collinearity. Choose
which predictor variables to include in the
final model carefully, avoiding variables that
are highly correlated and measuring a similar
quantity.



Chapter 7

Design and power analysis

7.1 | Sampling

Fundamental to any statistical analysis, including
the regression models we described in the previ-
ous two chapters, is the design of the sampling
regime. We are assuming that we can clearly
define a population of interest, including its
spatial and temporal boundaries, and that we have
chosen an appropriate type and size of sampling
unit. These units may be natural units (e.g. stones,
organisms, and lakes) or artificially delineated
units of space (e.g. plots or quadrats). Our aim is to
design a sampling program that provides the most
efficient (in terms of costs) and precise estimates
of parameters of the population. It is important to
remember that we are talking about a statistical
population, all the possible sampling or experi-
mental units about which we wish to make some
inference. The term population has another
meaning in biology, a group of organisms of the
same species (Chapter 2), although this might also
represent a statistical population of interest.

We will only provide a brief overview of some
sampling designs. We recommend Levy &
Lemeshow (1991), Manly (2001) and Thompson
(1992), the latter two having more of a biological
emphasis, as excellent references for more detail
on the design of sampling programs and using
them to estimate population parameters.

7.1.1 Sampling designs

Simple random sampling was introduced in
Chapter 2 and is where all the possible sampling
units in our population have an equal chance of

being selected in a sample. Technically, random
sampling should be done by giving all possible sam-
pling units a number and then choosing which
units are included in the sample using a random
selection of numbers (e.g. from a random number
generator). In practice, especially in field biology,
this method is often difficult, because the sampling
units do not represent natural distinct habitat
units (e.g. they are quadrats or plots) and cannot be
numbered in advance or because the sampling
units are large (e.g. 20 m? plots) and the population
covers a large area. In these circumstances, biolo-
gists often resort to “haphazard” sampling, where
sampling units are chosen in a less formal manner.
We are assuming that a haphazard sample has the
same characteristics as a random sample.

The formulae provided in Chapter 2 for esti-
mating population means and variances, stan-
dard errors of the estimates and confidence
intervals for parameters assume simple random
sampling. If the size of the total population of
sampling units is finite, then there are correction
factors that can be applied to the formulae for var-
iances and standard errors, although many popu-
lations in biological research are essentially
infinite.

You can’t really go wrong with simple random
sampling. Estimates of the parameters of the pop-
ulation, especially the mean, will be ML estima-
tors and generally unbiased. The downside of
simple random sampling is that it may be less effi-
cient than other sampling designs, especially
when there is identified heterogeneity in the
population or we wish to estimate parameters at a
range of spatial or temporal scales.
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Other sampling designs take into account het-
erogeneity in the population from which we are
sampling. Stratified sampling is where the popu-
lation is divided into levels or strata that repre-
sent clearly defined groups of units within the
population and we sample independently (and
randomly) from each of those groups. For
example, we may wish to estimate characteristics
of a population of stones in a stream (our variable
might be species richness of invertebrates). If the
stones clearly fall into different habitat types, e.g.
riffles, pools and backwaters, then we might take
random samples of stones from each habitat
(stratum) separately. Stratified sampling is likely
to be more representative in this case than a
simple random sample because it ensures that the
major habitat types are included in the sample.
Usually, the number of units sampled from each
stratum is proportional to the total number of
possible units in each stratum or the total size of
each stratum (e.g. area). Estimating population
means and variances from stratified sampling
requires modification of the formulae provided in
Chapter 2 for simple random sampling. If sam-
pling within a stratum is random, the estimate of
stratum population mean is as before but the esti-
mate of the overall population mean is:

!
yStl‘ = 2 W
=1
where there are h=1 to | strata, W, is the propor-
tion of total units in stratum h (often estimated
from the proportion of total area in stratum h)
and y, is the sample mean for stratum h (Levy &
Lemeshow 1991). If our sample size within each
stratum is proportional to the number of possible

units within each stratum, Equation (7.1) sim-
plifies to:

1 ny
E Eyhi

(7.1)

5/ :h:l i=1 (72)

str n

where there are i=1 to n, observations sampled
within stratum h, y,, is the ith observation from
the hth stratum and n is the total sample size
across all strata. The standard error of this mean
is:

1
YStr \/ 2 W)Z

(7.3)

where s is the sample variance for stratum h.
Approximate confidence intervals can also be
determined (Levy & Lemeshow 1991, Thompson
1992). When statistical models are fitted to data
from stratified sampling designs, the strata
should be included as a predictor variable in the
model. The observations from the different strata
cannot be simply pooled and considered a single
random sample except maybe when we have evi-
dence that the strata are not different in terms of
our response variable, e.g. from a preliminary test
between strata.

Cluster sampling also uses heterogeneity in
the population to modify the basic random sam-
pling design. Imagine we can identify primary
sampling units (clusters) in a population, e.g. indi-
vidual trees. For each primary unit (tree), we then
record all secondary units, e.g. branches on each
tree. Simple cluster sampling is where we record
all secondary units within each primary unit. Two
stage cluster sampling is where we take a random
sample of secondary units within each primary
unit. Three stage cluster sampling is where we
take a random sample of tertiary units (e.g. leaves)
within each secondary unit (e.g. branches) within
each primary unit (e.g. trees). Simple random sam-
pling is usually applied at each stage, although
proportional sampling can also be used. These
designs are used to estimate variation at a series
of hierarchical (or nested) levels, often represent-
ing nested spatial scales and nested linear ANOVA
models are often fitted to data from two or more
stage cluster sampling designs (Section 9.1).

Systematic sampling is where we choose sam-
pling units that are equally spaced, either spa-
tially or temporally. For example, we might choose
plots along a transect at 5 m intervals or we might
choose weekly sampling dates. Systematic sam-
pling is sometimes used when we wish to describe
an environmental gradient and we want to know
where changes in the environment occur. For
example, we want to measure the gradient in
species richness away from a point source of pol-
lution. Simple random sampling away from the
source might miss the crucial region where the
species richness undergoes rapid change.
Sampling at regular intervals is probably a better
bet. Various methods exist for estimating means
and variances from systematic sampling,
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although the estimates are biased unless certain
conditions are met (Levy & Lemeshow 1991).

The big risk with systematic sampling is that
the regular spacing may coincide with an
unknown environmental gradient and so any
inference to the whole population of possible
sampling units would be biased (Manly 2001). This
is probably more likely in field biology (e.g.
ecology) where environmental gradients can
occur at a range of different spatial and temporal
scales.

Systematic sampling can have a single random
starting point, where the first unit is chosen ran-
domly and then the remainder evenly spaced.
Alternatively, a cluster design could be used,
where clusters are chosen at random and then
systematic selection on secondary sampling units
within each cluster is used.

Finally, we should briefly mention adaptive
sampling. When a sampling program has a tempo-
ral component, which is often the case in biology,
especially when sampling ecological phenomena
or environmental impacts, then we might modify
our sampling design on the basis of estimates of
parameters early in the program. For example, we
might change our sample size based on prelimi-
nary estimates of variance or we might even
change to a stratified design if the initial simple
random sampling indicates clear strata in the pop-
ulation that were not detected early on.
Thompson (1992) provides an introduction to
adaptive sampling but a more detailed text is
Thompson & Seber (1995).

7.1.2 Size of sample

If we have idea of the level of variability between
sampling units in our population, we can use this
information to estimate the required sample size
to be confident (e.g. 95% confident) that any
sample mean will not be different from the true
mean by more than a specified amount under
repeated sampling. The calculations are simple,
assuming we have sampled randomly and the
Central Limit Theorem (Chapter 2) holds:

7202
n=

=5

(7.4)

where z is the value from a standard normal dis-
tribution for a given confidence level (z equals 1.96

for 95% confidence so z?> approximately equals
four - Manly 2001), o2 is the variance of the popu-
lation (usually estimated with s? from some pilot
sample or previous information) and d is the
maximum allowable absolute difference between
the estimated mean and the true population
mean. Note that the estimation of sample sizes
depends on the variance estimate from the pilot
study matching the variance in the population
when we sample.

7.2 | Experimental design

While our emphasis is on manipulative experi-
ments, most of the principles we will outline
below also apply to non-manipulative contrasts
that we might make as part of sampling pro-
grams. General principles of experimental design
are described in many standard statistical texts,
and in great statistical detail in some very good,
specialized books, such as Mead (1988) and
Underwood (1997). Hairston (1989) and Resetarits
& Fauth (1998) describe many examples of ecolog-
ical experiments and evaluate their design.

The most important constraint on the unam-
biguous interpretation of an experiment is the
problem of confounding. Confounding means
that differences due to experimental treatments,
i.e. the contrast specified in your hypothesis,
cannot be separated from other factors that might
be causing the observed differences. A simple,
albeit trivial, example will illustrate the problem.
Imagine you wished to test the effect of a particu-
lar hormone on some behavioral response of cray-
fish. You create two groups of crayfish, males and
females, and inject the hormone into the male
crayfish and leave the females as the control
group. Even if other aspects of the design are OK
(random sampling, controls, etc.), differences
between the means of the two groups cannot be
unambiguously attributed to effects of the
hormone. The two groups are also different
genders and this may also be, at least partly, deter-
mining the behavioral responses of the crayfish.
In this example, the effects of hormone are con-
founded with the effects of gender. The obvious
solution is to randomize the allocation of crayfish
to treatments so that the two groups are just as
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Example of an Burnt area Unburnt area
inappropriately replicated study on
the effects of fire on soil ® ) @)
invertebrates. Each area is sampled [5) 0)
with five replicate soil cores. (@)
_ ® ¢ ®
likely to have males and

females. Unfortunately, pos-

sible confounding is rarely

this obvious and confounding can sneak into an
experimental design in many ways, especially
through inappropriate replication, lack of proper
controls and lack of randomized allocation of
experimental units to treatments. These issues
will be our focus in this chapter.

Sometimes, confounding is a deliberate part of
experimental design. In particular, when we have
too many treatment combinations for the
number of available replicate units, we might con-
found some interactions so we can test main
effects (Chapter 9). Designs with such deliberate
confounding must be used with care, especially in
biology where interactive effects are common and
difficult to ignore.

7.2.1 Replication
Replication means having replicate observations
at a spatial and temporal scale that matches the
application of the experimental treatments.
Replicates are essential because biological
systems are inherently variable and this is partic-
ularly so for ecological systems. Linear model
analyses of designed experiments usually rely on
comparing the variation between treatment
groups to the inherent variability between experi-
mental units within each group. An estimate of
this latter variability requires replicate units.
Replication at an appropriate scale also helps
us avoid confounding treatment differences with
other systematic differences between experimen-
tal units. For example, to test if there are effects of
fish predation on the abundance of a species of
bivalve on intertidal mudflats, we might set up a
field experiment using fish exclusion cages and
suitable cage controls (see Section 7.2.2 for discus-
sion of controls) over plots (experimental units)
on the mudflat. If we simply have a single exclu-
sion plot and a single control plot, then the effects
of our treatment (fish exclusion) are confounded

with inherent differences between the two plots
related to their spatial location, such as tidal
height, sediment composition, etc. With two or
more replicate plots for each of the two treat-
ments (exclusion and control), we can be much
more confident in attributing differences
between treatment and control plots to fish exclu-
sion rather than inherent plot differences. Note
that replication does not guarantee protection
from confounding because it is still possible that,
by chance, all our treatment plots are different
from our control plots in some way besides access
to fish. However, the risk of confounding is
reduced by replication, especially when combined
with randomized allocation of treatments to
experimental units (Section 7.2.3).

While most biologists are well aware of the
need for replication, we often mismatch the scale
of those replicates relative to treatments being
applied. Probably no other aspect of experimental
design causes more problems for biologists
(Hurlbert 1984). Imagine a study designed to test
the effects of fire on the species richness of soil
invertebrates. Fire is difficult to manipulate in the
field, so investigators often make use of a natural
wildfire. In our example, one burnt area might be
located and compared to an unburnt area nearby.
Within each area, replicate cores of soil are col-
lected and the species richness of invertebrates
determined for each core (Figure 7.1). The mean
number of species of invertebrates between the
two areas was compared with a ¢ test, after verify-
ing that the assumptions of normality and equal
variances were met.

There is nothing wrong with the statistical test
in this example. If the assumptions are met, a t test
is appropriate for testing the H, that there is no
difference in the mean number of invertebrate
species between the two areas. The difficulty is
that the soil cores are not the appropriate scale of
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replication for testing the effects of fire. The
spatial unit to which fire was either applied or not
applied was the whole area, and the measures of
species richness from within the burned area
measure the impact of the same fire. Therefore,
there is only one replicate for each of the two treat-
ments (burnt and unburnt). With only a single rep-
licate area for each of our treatments, the effect of
fire is completely confounded with inherent dif-
ferences between the two areas that may also
affect invertebrates, irrespective of fire. It is very
difficult to draw conclusions about the effect of
fire from this design; we can only conclude from
our analysis that the two areas are different.

The replicate soil cores within each area
simply represent subsamples. Subsampling of
experimental units does not provide true replica-
tion, only pseudoreplication (sensu Hurlbert 1984).
Pseudoreplication is a piece of jargon that has
been adopted by many biologists and used to refer
to a wide range of flawed experimental designs. In
many cases, biologists using this term do not have
a clear understanding of the problem with a par-
ticular design, and are using the phrase as a catch-
all to describe different kinds of confounding. We
will avoid the term, in part to encourage you to
learn enough of experimental design to under-
stand problem designs, but also because the term
is a little ambiguous. The design is replicated, but
the replication is at the wrong scale, with repli-
cates that allow us to assess each area, and the dif-
ferences between areas, but no replicates at the
scale of the experimental manipulation.

Confounding as a result of inappropriate rep-
lication is not restricted to non-manipulative field
studies. Say as marine biologists, we wished to test
the effects of copper on the settlement of larvae of
a species of marine invertebrate (e.g. a barnacle).
We could set up two large aquaria in a laboratory
and in each aquarium, lay out replicate substrata
(e.g. Perspex panels) suitable for settling barnacle
larvae. We dose the water in one aquarium with a
copper solution and the other aquarium with a
suitable inert control solution (e.g. seawater). We
then add 1000 cyprid larvae to each aquarium and
record the number of larvae settling onto each of
the panels in each aquarium. The mean number
of settled larvae between the two aquaria was
compared with a ¢ test.

We have the same problem with this experi-
ment as with the fire study. The appropriate
experimental units for testing the effects of
copper are the aquaria, not individual panels
within each aquarium. The effects of copper are
completely confounded with other inherent dif-
ferences between the two aquaria and panels are
just subsamples. We emphasize that there is
nothing wrong with the t test; it is just not testing
a null hypothesis about copper effects, only one
about differences between two aquaria. To prop-
erly test for the effects of copper (rather than just
testing for differences between two aquaria), this
experiment requires replicate treatment and
control aquaria. Note that this experiment has
other problems, particularly the lack of indepen-
dence between the multiple larvae in one aquar-
ium - barnacle cyprids are well known to be
gregarious settlers.

As a final example, consider a study to inves-
tigate the effects of a sewage discharge on the
biomass of phytoplankton in a coastal habitat.
Ten randomly chosen water “samples!” are taken
from the sea at a location next to the outfall and
another ten water “samples” are taken from the
sea at a location away (upcurrent) from the
outfall. As you might have guessed, the appropri-
ate units for testing the effects of sewage are
locations, not individual volumes of water. With
this design, the effect of sewage on phytoplank-
ton biomass is completely confounded with
other inherent differences between the two loca-
tions and the water “samples” are just subsam-
ples.

How do we solve these problems? The best
solution is to have replicates at the appropriate
scale. We need replicate burnt and unburnt areas,
replicate aquaria for each treatment, replicate
locations along the coast with and without
sewage outfalls. Such designs with correct replica-
tion provide the greatest protection against

1 Biologists and environmental scientists often use the term
sample to describe a single experimental or sampling unit,
e.g. a sample of mud from an estuary, a sample of water from
a lake. In contrast, a statistical sample is a collection of one or
more of these units (“samples”) from some defined
population. We will only use the term sample to represent a
statistical sample, unless there are no obvious alternative
words for a biological sample, as in this case.
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confounding. In some cases, though, replication
is either very difficult or impossible. For example,
we might have an experiment in which constant
temperature rooms are the experimental units,
but because of their cost and availability within a
research institution, only two or three are avail-
able. In the example looking at the effects of
sewage outfalls, we usually only have a single
outfall to assess, although there may be no limit
to the availability of locations along the coast
without outfalls. Experiments at very large
spatial scales, such as ecosystem manipulations
(Carpenter et al. 1995), often cannot have replica-
tion because replicate units simply don’t exist in
nature.

In situations where only one replicate unit is
possible for each treatment, especially in a true
manipulative experiment that is relatively short-
term, one possibility is to run the experiment a
number of times, each time switching the treat-
ments between the experimental units. For
example, run the copper experiment once, and
then repeat it after reversing which aquarium is
the treatment and which 1is the control.
Repositioning the aquaria and repeating the
experiment a number of times will reduce the
likelihood that differences between aquaria will
confound the effects of copper. Alternatively, we
could try and measure all variables that could pos-
sibly influence settlement of barnacles and see if
they vary between our aquaria - if not, then we
are more confident that the only difference
between aquaria is copper. Of course, we can never
be sure that we have accounted for all the relevant
variables, so this is far from an ideal solution.

For the sewage outfall example, the problem of
confounding can be partly solved by taking
samples at several places well away from the
outfall, so we can at least assess the amount of
variation between places. Ideally, however, we
need samples from several outfalls and corre-
sponding areas far away, but it is difficult to rec-
ommend the installation of multiple outfalls just
for statistical convenience. A substantial litera-
ture has developed to try and make a conclusion
about impacts of human activities when there is
only one place at which a potential impact occurs.
These designs are generally called Before-After-
Control-Impact (BACI) designs (Green 1979,

Stewart-Oaten et al. 1986), and various suggestions
include sampling through time to provide replica-
tion, sampling multiple control areas, etc. These
designs have been contentious, and a critical eval-
uation of their pros and cons can be found in
Keough & Mapstone (1995) and Downes et al.
(2002).

The above examples illustrate spatial con-
founding, but confounding with time can also
occur, although it is less common. Consider an
experiment to test for the effects of floods on drift-
ing insects in streams. We might set up six artifi-
cial stream channels with drift nets at the end -
six stream channels are all we have available. We
want to impose two treatments, high flow and
normal flow, and we know from previous work
that we will need a minimum of six replicates per
treatment to detect the desired effect if it occurs
(see Section 7.3 on power analyses). We could do
the experiment at two times with six replicates of
high flow at time one and six replicates of normal
flow at time two. Unfortunately, the effects of flow
would be completely confounded with differences
between the two times. The appropriate design of
this experiment would be to have three replicates
of each treatment at each time, therefore becom-
ing a two factor experiment (treatment and time).
If we only have enough experimental units to have
one replicate for each treatment, then we can use
time as a blocking factor (see Chapter 10).

7.2.2 Controls

In most experimental situations, many factors
that could influence the outcome of the experi-
ment are not under our control and are allowed to
vary naturally. Therefore, it is essential to know
what would happen if the experimental manipu-
lation had not been performed. This is the func-
tion of controls. An excellent example of the need
for controls comes from Hairston (1980, see also
1989) who wished to test the hypothesis that two
species of salamanders (Plethodon jordani and P. glu-
tinosus) in the Great Smoky Mountains compete.
He set up experiments where P. glutinosus was
removed from plots. The population of P. jordani
started increasing during the three years follow-
ing P. glutinosus removal, but the population of P.
jordani on control plots (with P. glutinosus not
removed) showed an identical increase. Without



EXPERIMENTAL DESIGN

161

the control plots, the increase in P. jordani might
have been incorrectly attributed to P. glutinosus
removal.

Simply deciding to have controls is not
enough. The controls must also allow us to elimi-
nate as many artifacts as possible introduced by
our experimental procedure. For example,
research in animal physiology often looks at the
effects of a substance (e.g. some drug or hormone
or toxin) on experimental animals, e.g. rats, or in
vitro tissue preparations. The effects of the sub-
stance are assessed by comparing the response of
animals injected with the substance to the
response of control animals not injected.
However, differences in the responses of the two
groups of animals may be due to the injection pro-
cedure (handling effects, injury from needle etc.),
not just the effect of the substance. The effects of
the substance are confounded with differences in
experimental procedure. Such an experiment
would need control animals that are injected with
some inert substance (e.g. saline solution), but
which undergo the experimental procedure iden-
tically to the treatment animals; such a control is
sometimes termed a procedural control. Then any
difference between the groups can be more confi-
dently attributed to the effect of the substance
alone.

Ecological field experiments also offer chal-
lenges in designing appropriate controls (Hairston
1989, Underwood 1997). For example, to examine
the effect of predatory fish on marine benthic
communities, we might compare areas of substra-
tum with fish exclusion cages to areas of substra-
tum with no cages. However, the differences
between two types of area may be due to effects of
the cages other than excluding fish (e.g. shading,
reduced water movement, presence of hard struc-
ture). The effects of fish exclusion are confounded
with these other caging effects. We must use cage
controls, e.g. cages that have larger gaps in the
mesh that allow in fish but are otherwise as
similar to the exclusion cages as possible. Then,
any difference between treatments can be more
confidently attributed to the effect of excluding
fish alone. This is not a simple matter - if a major
effect of cages is to alter water movement (and
hence sedimentation), it may be difficult to leave
big enough gaps for fish to enter at the same rate

as they enter uncaged areas, without changing
flow rates. In many cases, the cage control will be
physically intermediate between caged and
uncaged areas. The marine ecological literature
contains many examples of different kinds of cage
controls, including the step of using cages to both
enclose and exclude a particular predator.

Ecological experiments sometimes involve
translocating organisms to different areas to test
a specific hypothesis. For example, to test what
determines the lower limit of intertidal gastro-
pods on intertidal rocky shores, we might con-
sider translocating gastropods to lower levels of
the shore. If they die, it may be an effect of height
on the shore or an effect of translocation proce-
dure. Appropriate controls should include gastro-
pods that are picked up and handled in exactly
the same way as translocated animals except they
are replaced at the original level. Additional con-
trols could include gastropods at the original level
that are not moved, as a test for the effects of han-
dling by themselves. Controls for translocation
experiments are tricky - see Chapman (1986) for a
detailed evaluation.

7.2.3 Randomization

There are two aspects of randomization that are
important in the design and analysis of experi-
ment. The first concerns random sampling from
clearly defined populations, as we discussed in
Chapter 2 and in Section 7.1.1. It is essential that
the experimental units within each of our treat-
ments represent a random (or at least haphazard)
sample from an appropriate population of experi-
mental units. This ensures that our estimates of
population parameters (means, treatment effects,
mean squares) are unbiased and our statistical
inferences (conclusions from the statistical test)
are reliable.

For example, our experimental animals that
received a substance in a treatment should repre-
sent a random sample of all possible animals that
we could have given the substance and about
which we wish to draw conclusions. Our caged
plots in the marine example must be a random
sample of all possible caged plots in that habitat -
similarly for our control plots. We must clearly
define our treatment (and control) populations
when we design our experiment. The converse is
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Possible result of
random allocation of ten plots on an
intertidal mudflat to two treatments
— fish exclusion (E) and cage-control
©).

that we can only draw conclu-
sions about the population
from which we have taken a
random sample. If our plots on
a mud flat were scattered over
a 20 m X 20 m area, then our

Water

conclusions only apply to that

area; if we used a particular

strain of rats, then we have

only a conclusion about that genetic strain, and so
on.

The second aspect of randomization concerns
the allocation of treatments to experimental
units or vice versa. One of the standard recom-
mendations in experimental design is that the
experimental units be randomly allocated to
treatment groups. This means that no pattern of
treatments across experimental units is subjec-
tively included or excluded (Mead 1988) and
should ensure that systematic differences
between experimental units that might confound
our interpretation of treatment effects are mini-
mized (Hurlbert 1984, Underwood 1997). The cray-
fish example described at the beginning of
Section 7.2 is an illustration, if somewhat con-
trived, of the problem.

An artificial example, analogous to one
described by Underwood (1997), involves an
experiment looking at the difference in growth
rates of newly hatched garden snails fed either the
flowers or the leaves of a particular type of plant.
The flowers are only available for a short period of
time, because the plant flowers soon after rain.
When the flowers are available, we feed it to any
snails that hatch over that period. Snails that
hatch after the flowering period are given the
leaves of the plant. The obvious problem here is
that the two groups of snails may be inherently
different because they hatched at different times.
Snails that hatch earlier may be genetically differ-
ent from snails that hatch later, have had differ-
ent levels of yolk in their eggs, etc. Our results may

Land

reflect the effect of diet, or they may reflect differ-
ences in the snails that hatch at different times,
and these two sources of variation are con-
founded. Clearly, we should take all the snails that
hatch over a given period, say the flowering
period, and give some of them flowers and others
leaves to eat.

The allocation of experimental units to treat-
ments raises the difficult issue of randomization
versus interspersion (Hurlbert 1984). Reconsider
the experiment described earlier on the effects of
fish predation on marine benthic communities.
Say we randomly choose ten plots on an intertidal
mudflat and we randomly allocate five of these as
fish exclusion (E) plots and five as cage-control (C)
plots. What do we do if, by chance, all the control
plots end up higher on the shore than all the
exclusion plots (Figure 7.2)? Such an arrangement
would concern us because we really want our
treatment and control plots to be interspersed to
avoid confounding fish effects with spatial differ-
ences such as tidal height. The simplest solution if
we end up with such a clumped pattern after an
initial randomization is to re-randomize - any
other pattern (except the complete reverse with all
control plots lower on the shore) will incorporate
some spatial interspersion of treatments and con-
trols. However, we must decide a priori what
degree of spatial clumping of treatments is unac-
ceptable; retandomizing until we get a particular
pattern of interspersion is not really randomiza-
tion at all.

Why not guarantee interspersion by arranging
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ten plots on mudflat combined with
systematic allocation of plots to two
treatments — fish exclusion (E) and
cage-control (C) — to guarantee

interspersion.

(o] [m]

not marked clearly, regular
spacing of plots makes it
easier for researchers and
their assistants to avoid
walking on one plot acciden-

Land

our plots regularly spaced along the shore and
alternating which is exclusion and which is
control (Figure 7.3)? One problem with this design
is that our plots within each group no longer rep-
resent a random sample of possible plots on this
shore so itis difficult to decide what population of
plots our inferences refer to. Also, it is possible
that the regular spacing coincides with an
unknown periodicity in one or more variables
that could confound our interpretation of the
effects of excluding fish. A compromise might be
to randomly select plots on the shore but then
ensure interspersion by alternating exclusions
and controls. At least we have chosen our plots
randomly to start with so the probability of our
treatments coinciding with some unknown, but
systematic, gradient along the shore won’t change
compared to a completely randomized design.
There is still a problem, however; because, once we
have allocated an E, the next plot must be a C, and
it becomes more difficult to know what popula-
tion our E and C plots refer to. This example has
additional complications - our replicates will not
be truly random, as we will have some minimal
separation of replicates. We would not place plots
on top of each other, and, as biologists, we have
some feeling for the distance that we need to keep
plots apart to ensure their independence. If the
minimum separation distance is large, we may
tend towards uniformly spaced replicates. In a
field study, it is also possible that plots are easier
to find when they are regular, or, for example if we
are working on an intertidal mudflat, with plots

tally when moving across the

area. The eventual positioning

ofreplicates will be a combina-
tion of desired randomization, minimum
spacing, and logistic considerations.

This issue of randomization versus intersper-
sion illustrates one of the many grey areas in
experimental design (and in philosophy - see
debate between Urbach 1984 and Papineau 1994).
Randomization does not guarantee avoidance of
confounding but it certainly makes it less likely.
With only a small number of experimental units,
spatial clumping is possible and deliberate inter-
spersion, but combined with random sampling,
might be necessary. It is crucial that we recognize
the potential problems associated with non-
randomized designs.

7.2.4 Independence

Lack of independence between experimental
units will make interpretation difficult and may
invalidate some forms of statistical analysis.
Animals and plants in the same experimental
arena (cage, aquarium, zoo enclosure, etc.) may be
exposed to a set of physical and biological condi-
tions that are different from those experienced by
organisms in other arenas. We may have a
number of preparations of tissue from a single
animal, and other such sets taken from other
animals. The animals may differ from each other,
so two tissue samples from the same animal
might have more similar responses than two
pieces of tissue chosen at random from different
animals or plants. We will consider statistical
problems arising from lack of independence in
the appropriate chapters.
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7.2.5 Reducing unexplained variance

One of the aims of any biological research project
is to explain as much about the natural world as
possible. Using linear models, we can estimate the
amount of variation in our response variable that
we have explained with our predictor variables.
Good experimental design will include considera-
tion of how to reduce the unexplained variation
(MS;giqua) @8 much as possible. There are two
broad strategies to achieve this.

¢ Including additional predictor variables in our
analyses. We have discussed this in the context
of multiple regression in Chapter 6 and will
examine it further in the analysis of
multifactor experiments in Chapter 9.

* Change the spatial structure of the design,
particularly by incorporating one or more
blocking variables. This will be discussed in
Chapters 10 and 11.

7.3 | Power analysis

Recall from Chapter 3 that the complement to a
Type Il error is the concept of power - the long-run
probability of detecting a given effect with our
sample(s) if it actually occurs in the population(s).
If B is the risk of making a Type II error, 1 — 3, or
power, is the probability that we haven’t made an
error. More usefully, statistical power is a measure
of our confidence that we would have detected an
important effect if one existed.

This concept can be used in a range of situa-
tions. In designing an experiment or making an a
posteriori assessment of the usefulness of an experi-
ment, the important questions are as follows.

Supposing that there is a change of a particu-
lar size, what kind of sampling program would be
needed to detect that change with reasonable cer-
tainty (or to estimate the magnitude of such a
change)? Or, given a particular level of resources,
what kind of change could we reasonably expect
to detect? For post hoc assessment (of a non-signifi-
cant result), we must ask, if our treatments really
did have an effect (of a particular size), would we
have detected that effect with our experimental
design and analysis?

Power analysis is therefore a useful tool for

designing an experiment, and it should (but will
not, unfortunately, in many cases) also provide
justification for publishing non-significant
results.

An emerging body of the statistical and biolog-
ical literature is concerned with questions of
power. Here we provide a very broad overview of
the uses of statistical power, but for detailed plan-
ning of specific experiments or programs, good
general reviews are provided by Cohen (1988,
1992), Peterman (1990a,b), National Research
Council (1990), Fairweather (1991), and Keough &
Mapstone (1995). We will also return to power
analysis as we begin to consider more complex
designs later in this book.

To determine the power of an analysis, we
need to specify the alternative hypothesis (H,), or
effect size, that we wish to detect. For most types
of analyses (e.g. simple two group comparisons,
ANOVA and regression models), power is propor-
tional to the following.

* Effect size (ES) - how big a change is of inter-
est. We are more likely to detect large effects.

» Sample size (n) - a given effect is easier to
detect with a larger sample size.

* Variance (0?) between sampling or experimen-
tal units - it is harder to detect an effect if the
population is more variable.

« Significance level («) to be used. Power varies
with «. As mentioned in Chapter 3, most biolo-
gists use a value of «=0.05.

More formally,

ESa Vn
g

Power « (7.5)
Exactly how we link values of these parameters to
power depends on the particular statistical test
being used (hence the proportional sign in the
equation). For individual cases, we construct a spe-
cific equation, usually using the relevant non-
central statistical distribution? which in turn
requires precise knowledge of the statistical test
that will be used (see Box 7.1 and Figure 7.4).

2 A non-central distribution describes the distribution of our
test statistic that would be expected if H,, rather than H, is
correct.
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Box 7.1 |Simp|e example of power analysis

In an earlier project (Keough & King 199 1), we were examining the effect of closing
a range of shores to collection of abalone, through proclamation of two marine
parks. The closure was contentious, denying both commercial and recreational
divers the chance to collect, and, therefore, it was imperative to collect information
to test whether the management strategy had worked. The assumption (untested)
was that exploitation of abalone had reduced abundances. The intention was to
survey a range of rocky headlands after a few years of protection, surveying areas
where collection was still allowed and areas where it had been banned (there were
no differences between these areas before proclamation of the marine parks). The
important question was the feasibility of these surveys. The parameters of the
power equation were estimated as follows:

* the test of management could be simplified to a t test, with a replicate obser-
vation being a rocky reef site (with some replicate observations within each
reef, to get a better idea of its state),

* awas left at 0.05,and | — B set to 0.80, by convention, and

* o was estimated by sending teams of divers out to sample a range of sites in
the same way planned for the real monitoring. Those pilot surveys produced a
mean density of abalone of 47.5 legal-sized animals per 50 m? area, with a
standard deviation of 27.7. This latter value was used as an estimate of o.

In the first case, let's calculate the number of observations (sites) required.
Determining the effect size was very difficult, as little work had been done on these
animals in the areas concerned, and was eventually calculated using a range of
unconnected data sets. As a working assumption, recreational divers and poachers
were assumed to take approximately as many animals as commercial divers.
Commercial divers were required to file regular reports listing the mass of abalone
taken, broken down into small reporting regions. An earlier paper (McShane &
Smith 1990) had described size—frequency relationships for commercial catches of
abalone, and length—weight relationships (McShane et al. 1988), so it was possible
to convert a mass of abalone into an average number of animals taken per year
from each reporting region. Another fisheries publication provided maps of major
abalone reefs, giving their approximate areas. From these data, the number of
animals taken could be converted into an approximate number per 50 m?. In this
case, the value for heavily fished areas (averaged over 6 years of diver returns) was

(ZF- 1YW Rl Power functions for

the abalone example.The panel on
the left is for n =24, and the dashed
lines indicate the solution for 80%
power.The right panel shows
detectable effect size vs sample size,
and the dashed line shows the

calculated effect size.
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I'1.6 animals m~2, or approximately 25% of the standing stock. Adding supposed
recreational and poaching catches, these values become 23.2, and 50%, respectively.

The power calculations then become quite simple, and can be done using a
range of software packages. For these values, the number of sites to be sampled is
24.

In the second case, if we are unhappy with the number of approximations made
in calculating the effect size, we could construct a curve of MDES vs n (Figure 7.4)3.
The relationship is also shown as a curve of power vs effect size for n equals 24, to
illustrate the comparison with the first approach. Note that the solution for 80%
power corresponds to an effect size of 23.

The important panel is the one for detectable effect size vs sample size, showing
that small numbers of sites (less than seven) would require at least a doubling of
the number of legal-sized abalone in the area for an effect to show up, whereas our
best guess is that the change is more likely to be around 50%, and the dashed line
shows that an effect size of 23 corresponds to n=24. The curve also emphasizes
the rapid returns resulting from an increase in sample size, if you start with a poorly
replicated experiment — the detectable effect declines dramatically at low n values,

but tapers off, indicating a region of diminishing return.

3 We constructed the curve shown on using the free software package Power Pack, written by

Russell Lenth. His web site (www.divms.uiowa.edu/~rlenth/Power) includes several options for

doing power calculations.

7.3.1 Using power to plan experiments

(a priori power analysis)
There are two ways that power analysis can be
used in the design of an experiment or sampling
program.

Sample size calculation (power, o, «, ES known)
The most common use of power analysis during
the planning of an experiment is to decide how
much replication is necessary. We can then decide
whether it is feasible to use this many replicates.
To do these calculations, we need to specify the
effect size and have an estimate of ¢. At the plan-
ning stage, you may not have a good idea of the
variation you are likely to get, and need to get an
estimate, either from previous studies or pilot
work. The most difficult step will be specifying the
effect size (Section 7.3.3).

Effect size (power, n, o, known)

If external factors are likely to restrict the number
of observations (sample size) to relatively low
levels, the alternative approach is to calculate the
constraints of the experiment - using this many
observations, and with the likely background

variability, what is the smallest change that we
could expect confidently to identify? This situa-
tion is common when the sampling itselfis expen-
sive. For example:

 expensive laboratory analyses for trace chemi-
cals,

* benthic marine sampling requiring large
ships,

« if there are few laboratories capable of doing
assays,

* if processing each observation takes a large
amount of your time,

» experimental units are expensive, such as
doing physiological work on small mammals,
where the cost of each animal may be very
restrictive, especially for students.

At either the planning stage, or after an
experiment or sampling program has been com-
pleted, it is possible to calculate the size of change
that could be or could have been detected. This
has been termed “reverse power analysis” by
Cohen (1988), and the effect size that we calculate
has been labelled the Minimum Detectable Effect
Size (MDES). We are asking, for a given level of
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background variability, sample size, and a desired
certainty or power, how big would the change
need to be before we would detect it as signifi-
cant? Again, it is best to use this calculation
beforehand, to decide if the work is worth doing,
and although it might also be used afterwards to
reassure readers that everything was done prop-
erly. Calculating the detectable effect may be a
preferred solution when you are not comfortable
with specifying an a priori effect size.

For example, from surveys of intertidal mol-
luscs in protected and collected areas near
Williamstown in Victoria, we found changes of
15-25% in the mean size of species that are col-
lected by humans (Keough et al. 1993). Because
these data came from surveys, rather than con-
trolled experiments, we also measured sizes of a
set of species that are not collected by humans in
great numbers. To be confident that the patterns
seen for collected species did not reflect a
response to some unmeasured environmental var-
iable, we analysed the non-collected species, and
found no significant difference between sites with
and without human access. For non-collected
species to be an appropriate control, we need to be
confident that we could have detected a pattern
the same as that shown by collected species. We
used power analysis to show that our sampling
program would have detected a change as small as
10% for some of these species, i.e., if non-collected
species changed as much as collected ones, we
would have detected it (Keough et al. 1993).

Sequence for using power analysis to design
experiments

The statistical design stage of any experiment or

sampling program should include the following

steps.

1. State clearly the patterns to be expected if
no effect occurs, and the patterns expected if
there are changes. In formal statistical terms,
this corresponds to clear formulations of the
null hypothesis and its alternative.

2. Identify the statistical model to be applied
to the data, and state the desired power and the
significance levels to be used.

3. Identify the assumptions of that statistical
procedure. If possible, use existing or compara-

ble data as a rough guide to whether those
assumptions are likely to be satisfied. Consider
possible data transformations. If you expect to
use transformed data, the effect size must be
expressed on that transformed scale. For
example, if you are interested in a doubling of
numbers of a particular organism, and will
analyze log-transformed data, your effect size
will be 0.301 when converted to a log,, scale.

4. Obtain some pilot estimate of variation in
the variable to be analyzed. In some cases, we
require estimates of variation in space and time,
while in other cases we may only be comparing
in space or through time alone. In some
ecological studies, estimating variation through
time requires pre-existing data sets involving
time periods of at least a few years. If there are
no local data, some ballpark estimates may be
obtained from the literature from other
geographic regions. It is crucial that the estimate
of variability must be based on same scales of
space and time as your final data. There is no
reason to expect that variation on one scale will
be a good predictor of variation on a different
scale.

If you have complex experimental designs
(e.g. Chapters 9-11), you need to think about the
variation that is used to test a particular
hypothesis. If you have, for example, nested or
split-plot designs, different hypotheses will be
tested against different measures of variation,
and you would need to do power analyses for
each separate hypothesis. Importantly in this
context, you must get an estimate of o at the
appropriate level.

5. The next step depends on whether your
design will be limited by logistical constraints.

(a) If our aim is to design the best possible
experiment, we should specify the effect size
that we wish to detect - how large a change is of
biological interest? The implication here is that
detecting changes less than the specified
amount has low priority. In practice, this
decision is very difficult, but it is nevertheless
critical. The effect size may be chosen from a
range of sources, e.g. other studies of the same
biological system, studies of other processes that
you might wish to compare to the one you are
investigating, etc. (Section 7.3.3). Using our
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desired ES, an estimate of ¢ and the specified
value of «, it should then be possible to calculate
the number of replicates needed to detect that
effect size with power 1 — 3.

(b) If we have constraints on the size of our
experiment or sampling program, we can use an
estimate of o, the chosen values of « and 8 and
the upper limit to the number of observations
possible to determine the Minimum Detectable
Effect Size (MDES). It is often useful to calculate
MDES values for a range of sampling efforts, and
to represent the results as a plot of MDES versus
sample size. This relationship can then be used
to show how much return we would get for a big
change in sampling effort, or the sample size
necessary to reach a particular MDES value (see
Peterman 1989).

7.3.2 Post hoc power calculation
If an experiment or sampling program has been
completed, and a non-significant result has been
obtained, post hoc power analysis can be used to
calculate power to detect a specified effect, or to
calculate the minimum detectable effect size for
a given power. Calculating post hoc power requires
that we define the effect size we wished to detect,
given that we know n and have an estimate of o.
Obviously, once the experiment has been done, we
have estimates of o, e.g. from the MS_, .. from a
regression or ANOVA model, and we know how
much replication we used. The effect size should
be the size of change or effect that it is important
for us to detect. It is obviously useful to demon-
strate that our test had high power to detect a bio-
logically important and pre-specified effect size
(Thomas 1997). The downside is that if power is
low, all that you have demonstrated is your inabil-
ity to design a very good experiment, or, more
charitably, your bad luck in having more variable
data than expected! It is far more useful to use
these calculations at the planning stage (Section
7.3.1; Underwood 1999). After an experiment, we
would expect to use the calculations to satisfy our-
selves that power is high enough, that our initial
power calculations, often based on very rough
estimates of variance, were correct.

Some statistical packages offer a flawed kind of
post hoc power calculation, sometimes called
“observed power” (Hoenig & Heisey 2001). In this

approach, we use the existing analysis to estimate
both the effect size and sample variance, and use
those values in the power equation. For example,
in a two-sample t test, we would use the difference
between the two means as the effect size. This
observed effect size is unlikely to match a differ-
ence that we decide independently is important.
Perhaps most importantly, Hoenig & Heisey (2001)
have demonstrated that observed power has a 1:1
relationship with the P value so higher P values
mean lower power and calculation of observed
power tells us nothing new (see also Thomas
1997). We emphasize again the importance of
thinking carefully about the kinds of effects that
you wish to detect in any experiment, and the
value of making this and other decisions before
you sample.

Post hoc power calculations can be used to con-
vince reviewers and editors that our non-signifi-
cant results are worth publishing. Despite the
clear value of a confident retention of a null
hypothesis (see Underwood 1990, 1999), it can still
be difficult in practice to get such results pub-
lished. We have already emphasized in Chapter 3
that any assessment of the literature can be seri-
ously compromised by the “file-drawer problem”.
If non-significant results are less likely to be pub-
lished, because of an active policy of editors and
referees or lack of enthusiasm of the researchers,
then unbiased syntheses of a particular discipline
are not possible. Providing measures of observed
effect size and showing you had good power to
detect pre-specified effect sizes of biological inter-
est will make non-significant results much more
interpretable.

7.3.3 The effect size

The most difficult step of power analyses is decid-
ing an effect size. Our aim is to identify an effect
of experimental treatments that we consider
important, and that, therefore, we would want to
detect. How do we decide on an important effect?
The decision is not statistical, but in most cases
uses biological judgment by the research worker,
who must understand the broad context of the
study. In most pieces of research, the work is not
self-contained, but our aim is to investigate a phe-
nomenon and to compare that phenomenon to
related ones. We might want to:
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» compare results for our species to those for
other species,

» compare the role of a particular biological
process to other processes acting on a particu-
lar species or population, or

* contrast the physiological responses to a chem-
ical, gas mixture, exercise regime, etc., to other
such environmental changes.

In these cases, we should be guided by two
questions. Can we identify a change in the
response variable that is important for the organ-
ism, such as a change in a respiration parameter,
blood pressure, etc., that would be likely to impair
an organism’s function, or a change in population
density that would change the risk of local extinc-
tion? What were the levels of response observed in
the related studies that we intend to compare to
our own? These questions sound simple, but are
in practice very difficult, especially in whole-
organism biology, where we are often dealing
with biological systems that are very poorly
studied. In this case, we may not be able to predict
critical levels of population depletion, changes in
reproductive performance, etc., and will have very
little information with which to make a decision.
The available information gets richer as we move
to sub-organismal measurements, where work is
often done on broadly distributed species, stan-
dard laboratory organisms, or on systems that are
relatively consistent across a wide range of
animals or plants. In any case, we must decide
what kind of change is important to us.

What if we can not identify an effect size about
which we feel confident?

Quite often, we will not be able to select an effect

size that we could defend easily. In this case, there

are three options available.

1. Use an arbitrary value as a negotiating
point. In many published ecological studies,
including a range of environmental impact
studies, an arbitrary change, usually of 50 or
100% (relative to a control group) in the
abundance of a target species, has been used.
These values seem to be accepted as being
“large”, and with the potential to be important.
They are not necessarily biologically meaningful
- a much smaller change may be important for

some populations, while others that vary widely
through time may routinely change by 50% or
more between years or places. The major value of
this approach is in environmental monitoring,
where a sampling program may be the result of
negotiation or arbitration between interested
parties arguing for increases and decreases in
the scope of the monitoring program.

2. Cohen (1988) proposed conventions of large,
medium, and small effects. Rather than
expressing an effect size as, for example, a
difference between two means, he standardized
the effect size by dividing by o. For a simple case
of comparing two groups, he suggested, based on
a survey of the behavioral and psychological
literature, values 0f 0.2, 0.5, and 0.8 for
standardized differences (i.e., (¥, — ¥,)/o, for small,
medium, and large). He acknowledged that these
values are arbitrary, but argued that we use
arbitrary conventions very often, and proposed
this system as one for dealing with cases where
there is no strong reason for a particular effect
size. These values may or may not be appropriate
for his field of research, but they are not
necessarily appropriate for the range of biological
situations that we deal with. A critical change in
migration rates between geographically
separated populations, for example, will be very
different when we are investigating genetic
differentiation between populations, compared
to measuring ecologically important dispersal
that produces metapopulations. Considerable
exchange is necessary for ecological links, but
very low rates of exchange are sufficient to
prevent genetic separation. Any broad
recommendation such as Cohen’s must be
tempered by sensible biological judgment.

3. A more useful approach may be the one we
describe above, in which, rather than use a
single effect size, we plot detectable effect size
versus sampling effort or power versus effect
size. In this case, we get an idea of the kinds of
changes that we could detect with a given
sampling regime, or, the confidence that we
would have in detecting a range of effects. While
we don’t have a formal criterion for deciding
whether to proceed, this approach is useful for
giving an idea of the potential of the
experiment.
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Environmental monitoring - a special case

One common activity for biologists is to assess the
effects of various human interventions in the
natural environment, and, in this case, we are not
always comparing our results to a broader litera-
ture, but collecting information to make deci-
sions about the acceptability of a particular
activity, in a particular region. The question, then,
is whether the activity in question has an unac-
ceptable impact. We need to decide how big a
change in the response variable is unacceptable.
In this case, we may get advice on the effect size
from formal regulations (e.g. criteria for water
quality, setting standards for human health or
environmental “health”). There may also be occa-
sions when the level at which the human popula-
tion becomes concerned defines the target effect
size. This level may be unrelated to biological cri-
teria. For example, oiled seabirds washing up on
beaches triggers public complaints, but the
number of sick or dead animals may not result in
a population decline. There will, however, be
intense pressure to monitor charismatic mega-
fauna, with an effect size determined by political
considerations. In other monitoring situations,
we may fall back on arbitrary values, using them
as a negotiating point, as described above. Keough
& Mapstone (1995, 1997) have described this
process, and there is a good discussion of effect
sizes in Osenberg et al. (1996).

7.3.4 Using power analyses

The importance of these power calculations is
that the proposed experiment or sampling
program can then be assessed, to decide whether
the MDES, power, or sample size values are accept-
able. For example, if the variable of interest is the
areal extent of seagrass beds, and a given sam-
pling program would detect only a thousand-fold
reduction over ten years, it would be of little
value. Such a reduction would be blindingly
obvious without an expensive monitoring
program, and public pressure would stimulate
action before that time anyway.

If the results of the power analyses are accept-
able because the MDES is small enough, or the rec-
ommended number of observations is within the
budget of the study, we should proceed. If the
solution is unacceptable, the experiment will not

be effective, and the level of replication should be
increased. If you decide to go ahead with no
increase in sample size, it is important that you
are aware of the real limitations of the sampling.
Proceeding with such a program amounts to a
major gamble - if a real effect does occur, the
chance of your actually detecting it may be very
low - often less than 20%, rather than the com-
monly used 80%. That means that there is a high
probability that you’ll get a non-significant result
that is really a non-result — a result in which you
have little confidence, and your resources will
have been wasted. You may be lucky, and the effect
of your treatments may be much larger than the
one you aimed to detect, but that result is
unlikely.

How much should you gamble? Again, there’s
no simple answer, as we are dealing with a contin-
uum, rather than a clear cut-off. If the power is
75%, you wouldn’t be too worried about proceed-
ing, but what of 70%? 50%? The decision will most
often be the result of a suite of considerations.
How exciting would a significant result be? How
important is it that we get some information,
even if it’s not conclusive? Will some other people
add to my data, so eventually we’ll be able to get a
clear answer to the hypothesis? Would an unpub-
lishable non-significant result be a career impedi-
ment? The answer to the last question depends on
who you are, what stage of your career you are at,
how strong your scientific record is, and so on.

If you aren’t willing to gamble, you have only
a couple of options. The first is to look hard at the
experimental design. Are there ways to make the
experiment more efficient, so I need less time or
money to deal with each replicate? Decreasing the
resources needed for each experimental unit
may allow you to increase the sample size.
Alternatively, are there other variables that could
be incorporated into the design that might reduce
the background noise?

The second option, which is intermediate
between a calculated gamble and rethinking the
analysis, is the approach described in Chapter 3,
in which we don’t regard the rates of Type I and
Type I errors as fixed. One conventional approach
would be to use a less stringent criterion for statis-
tical significance, i.e., increase «, producing an
increase in power. This solution isn’t satisfactory,
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as we would still be allowing the Type II error rate
to fluctuate according to logistic constraints, and
just fixing the Type I error rate at a new value. The
solution proposed by Mapstone (1995) is that,
when we must compromise an experimental
design, we do so by preserving the relative sizes of
the two errors. He suggests that, as part of the
design phase, we have identified the desirable
error rates, and those two rates should be chosen
to reflect our perception of the importance of the
two kinds of errors. He suggested that compro-
mises should preserve those relative rates, so that
if we proceed with a less than optimal experi-
ment, we are more likely to make both kinds of
decision errors. That approach has been detailed
for environmental monitoring by Keough &
Mapstone (1995, 1997), including a flow diagram
to detail those authors’ view of how a sampling
program gets designed. This approach is sensible,
but it is too soon to see if it will gain wide accep-
tance in the broader scientific literature.

Occasionally, the calculations may show that
the MDES is much less than the desirable effect
size, suggesting that the experimental/sampling
program is more sensitive than expected. In this
case, you could consider reducing the replication,
with the possibility of using “spare” resources for
further studies. Our experience suggests that this
latter situation is uncommon.

While formal power analysis is part of the
Neyman-Pearson approach (Chapter 3), and most
often discussed as part of hypothesis testing, the
general principles apply to other statistical tasks.
When estimating the value of a particular param-
eter, we may wish to be certain that we produce an
accurate estimate of that parameter (Section
7.1.2), and the confidence that we have in that esti-
mate will be similar to power, depending on sam-
pling effort, variability, etc. If our aim is to
produce a confidence interval around an esti-
mate, the procedures become even more similar -
a confidence interval requires a statement about
the level of confidence, e.g. 0.95, and depends also
on sampling effort and variation. We must also
make some decision about the distribution of our
parameter, either by assigning a formal distribu-
tion (e.g. normal, Poisson), or by opting for a ran-
domization procedure.

A priori power analysis should, we think, be a

routine part of planning any experiment. Our
initial power estimates may be quite crude, espe-
cially when we have a poor estimate of the varia-
tion present in our data. As we will see in later
chapters, too, for complex designs, we may be
faced with a large range of power curves, corre-
sponding to different patterns among our treat-
ments, and we will not be sure what pattern to
expect. However, we will at least know whether
“important” effects are likely to be detected, given
our available resources. Having that knowledge
makes us decide whether to reallocate our
resources to maximize the power for our key
hypotheses.

Perhaps the most valuable part of a priori
power analysis is that, to do the calculations, we
must specify the alternative hypothesis, and, most
importantly, the statistical model that we will
apply to the data. Specifying the model makes us
think about the analysis before the data have been
collected, a habit that we recommend strongly.

The final, important point is that power calcu-
lations, especially at the planning stage, are
approximate. We usually use pilot estimates of
variation that, if we do the appropriate calcula-
tions, tend to have alarmingly large confidence
intervals, so our power estimates will also have
considerable imprecision. If our target power
value is 0.80, we should be looking for calcula-
tions that give power values in this region. Often,
our sample sizes in biological work are quite
small, and power values move in substantial incre-
ments, because the sample size, n, is an integer. In
planning, we should not focus on whether power
is 0.75, 0.80, etc., but on making sure we have
enough samples to approach the desirable value,
rather than giving values of 0.30 or 0.40.

7.4 | General issues and hints for
analysis
7.4.1 General issues

* When thinking about experimental design,
the need for appropriate controls is familiar to
most researchers, but less attention is often
paid to appropriate units of replication. It is
crucial to identify, for a particular hypothesis,
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and set of experimental treatments, the
experimental units to which these treatments
are applied. These experimental units are the
replicates for testing that hypothesis.

In more complex designs, testing several
hypotheses, the experimental units may occur
at several temporal and spatial scales.
Attention must be paid to identifying the
appropriate amount of replication for each of
these hypotheses.

Power analysis, used when planning a
sampling or experimental program, provides a
means of determining whether our plan is
feasible, or of deciding the resources that are
necessary for a particular experiment.

A power analysis can only be done when we
have an estimate of the variation in the system
under study. If the power analysis is done
before sampling, we must obtain an estimate
of variation on the same spatial and temporal
scale as our planned experimental units.
Power analysis also requires us to specify the
statistical model that will be applied to the
data - without this step, no calculations can be
made. While we may be forced to make
changes when the real data arrive, this step is
useful in formalizing our experimental design.
Power equations can be used to determine the
number of replicates (at the planning stage),
the change that could be detected (at planning

or analysis stages), or the degree of confidence
in the analysis (after a non-significant result).

¢ The most difficult task is almost always
determining an important effect size, but
doing so focuses our attention on what is
biologically important, rather than just
looking for statistical significance.

7.4.2 Hints for analysis

At the planning stage, write out an analysis
table and its associated statistical model, to be
sure that you understand the design clearly.
Identify the key hypothesis tests.

Determine the effect size by thinking about
what would be important biologically.

Focus on using power analysis to determine
appropriate sample sizes in the design stage.
Post hoc power calculations can be useful for
pre-specified effect sizes. Calculating observed
power, the power to detect the observed effect,
is pointless.

The formal analysis of power for simple
designs can now be done using a wide range of
software packages.

More complex analyses require an understand-
ing of the calculation of non-centrality para-
meters. After making that calculation,
non-central distribution functions are freely
available for most common statistical distri-
butions.



Chapter 8

Comparing groups or treatments — analysis of

variance

The analysis of variance (ANOVA) is a general sta-
tistical technique for partitioning and analyzing
the variation in a continuous response variable.
We used ANOVA in Chapters 5 and 6 to partition
the variation in a response variable into that
explained by the linear regression with one or
more continuous predictor variables and that
unexplained by the regression model. In applied
statistics, the term “analysis of variance” (ANOVA)
is commonly used for the particular case of parti-
tioning the variation in a response variable into
that explained and that unexplained by one or
more categorical predictors, called factors,
usually in the context of designed experiments
(Sokal & Rohlf 1995, Underwood 1997). The catego-
ries of each factor are the groups or experimental
treatments and the focus is often comparing
response variable means between groups. We
emphasized in Chapter 5 that the statistical dis-
tinction between “classical regression” and “clas-
sical ANOVA” is artificial. Both involve the general
technique of partitioning variation in a response
variable (analysis of variance) and of fitting linear
models to explain or predict values of the
response variable. It turns out that ANOVA can
also be used to test hypotheses about group (treat-
ment) means.

The two main aims of classical ANOVA, there-
fore, are:

* to examine the relative contribution of differ-
ent sources of variation (factors or combina-
tion of factors, i.e. the predictor variables) to
the total amount of the variability in the
response variable, and

* to test the null hypothesis (H,) that population
group or treatment means are equal.

8.1 | Single factor (one way) designs

A single factor or one way design deals with only
a single factor or predictor, although that factor
will comprise several levels or groups. Designs
that can be analyzed with single factor ANOVA
models are completely randomized (CR) designs,
where there is no restriction on the random allo-
cation of experimental or sampling units to factor
levels. Designs that involve restricted randomiza-
tion will be described in Chapters 10 and 11. We
will use two recent examples from the literature
to illustrate use of this analysis.

Diatom communities and heavy metals in rivers
Medley & Clements (1998) studied the response of
diatom communities to heavy metals, especially
zinc, in streams in the Rocky Mountain region of
Colorado, USA. As part of their study, they sampled
a number of stations (between four and seven) on
six streams known to be polluted by heavy metals.
At each station, they recorded a range of physico-
chemical variables (pH, dissolved oxygen etc.), zinc
concentration, and variables describing the
diatom community (species richness, species
diversity H" and proportion of diatom cells that
were the early-successional species, Achanthes min-
utissima). One of their analyses was to ignore
streams and partition the 34 stations into four
zinc-level categories: background (<20 pg 171,
8 stations), low (21-50 pwg 171, 8 stations), medium
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51-200 pg 171, 9 stations), and high (>200 pg171,9
stations) and test the null hypothesis that there
were no differences in diatom species diversity
between zinc-level groups, using stations as repli-

hypothesis that there are no differences in diatom
species diversity between streams, again using sta-
tions as replicates. The full analyses of these data
are in Box 8.1.

cates. We will also use these data to test the null
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Box 8.1 | Worked example: diatom communities in metal-
affected streams

Medley & Clements (1998) sampled a number of stations (between four and seven)
on six streams known to be polluted by heavy metals in the Rocky Mountain region
of Colorado, USA. They recorded zinc concentration, and species richness and
species diversity of the diatom community and proportion of diatom cells that were
the early-successional species, Achanthes minutissima.

Species diversity versus zinc-level group

The first analysis compares mean diatom species diversity (response variable)
across the four zinc-level groups (categorical predictor variable), zinc level treated
as a fixed factor The H,; was no difference in mean diatom species diversity
between zinc-level groups. Boxplots of species diversity against group (Figure
8.1(a)) showed no obvious skewness; two sites with low species diversity were high-
lighted in the background and medium zinc groups as possible outliers. The results
from an analysis of variance from fitting a linear model with zinc level as the predic-
tor variable were as follows.

Source SS df MS [F P
Zinc level 2.567 3 0.856 3939 0018
Residual 6516 30 0217

Total 9.083 33

The residual plot from this model (Figure 8.1 (b)) did not reveal any outliers or any
unequal spread of the residuals, suggesting the assumptions of the ANOVA were
appropriate. Additionally, Levene's test produced no evidence that the H, of no dif-
ferences in variances of species diversity between the zinc-level groups should be
rejected (Levene-mean: F3,3o =0.087, P=0.967; Levene-median: F3130 =0.020,
P=0.9596).

Tukey's pairwise comparison of group means: mean differences with Tukey
adjusted P values for each pairwise comparison in brackets.

Background Low Medium High
Background 0.000 (1.000)
Low 0.235 (0.746) 0.000 (1.000)
Medium 0.080 (0.985) 0.315 (0.515) 0.000 (1.000)
High 0.520 (0.122) 0.755 (0.012) 0.440 (0.209) 0.000 (1.000)

The only H, to be rejected is that of no difference in diatom diversity between
sites with low zinc and sites with high zinc.

We could also analyze these data with more robust methods, especially if we
were concerned about underlying non-normality or outliers. To test the H that
there is no difference in the location of the distributions of diatom diversity between
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of one more extreme when the Hy is true (testing with a chi-square distribution
with 3 df) is 0.033, so we would reject the H,

We might also consider a randomization test, where we reallocate observations
to the four groups at random many times to generate a distribution of a suitable
test statistic. We used Manly's (1997) program RT, the percentage of total SS attrib-
utable to zinc levels (groups) as the statistic and used 1000 randomizations. The
percentage of SS;  accounted for by SSGrOUPS was 28.3% and the probability of
getting this value or one more extreme if the H, of no effects of zinc level on diatom
diversity was true was 0.023. Again, we would reject the H at the 0.05 level.

Species diversity versus stream

The second analysis compared diatom species diversity across the streams.
Streams are treated as a random factor, assuming these streams represent a
random sample of all possible streams in this part of the Rocky Mountains. The H,
then is that there is no added variance (above the variation between stations) due
to differences in diatom species diversity between streams in this part of the Rocky
Mountains.

Source SS df MS F P
Stream 1.828 5 0.366 1411 0.251
Residual 7.255 28 0.259

Total 9.083 33

The residual plot (Figure 8.2) indicates no variance heterogeneity, although the
sample sizes within each stream are too small for useful boxplots. We used the
ANOVA, ML and REML methods to estimate the two variance components (o2
and o %). ML and REML estimates are tedious to calculate by hand so we used SPSS
(Ver 9.0) to obtain these estimates. Confidence intervals (95%) are provided for
% only; unequal sample sizes preclude reliable confidence intervals for o 2.

Method Estimate of 052 Estimate of Uaz
ANOVA 0.259 (0.159-0.452) 0.0189
ML 0.257 0.0099
REML 0.258 0.0205

Note that there is little difference in the estimates of 0'52, afthough both ML and
REML estimates will be biased. The estimates of o * differ considerably between
estimation methods, however. Based on Section 8.2.1,the REML estimate of 0.0205
is probably the most reliable. Most of the variance is due to differences between
stations within streams rather than due to differences between all possible streams.

Stream mean diatom diversity

[FF-0[R: MW Residual plot from fit

of single factor random effects
ANOVA model relating diatom
diversity to stream group from

Medley & Clements (1998).
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Settlement of invertebrate larvae

Keough & Raimondi (1995) were interested in the
degree to which biofilms - films of diatoms, algal
spores, bacteria, and other organic material -
that develop on hard surfaces influence the set-
tlement of invertebrate larvae. In an earlier
paper, from southeastern Australia, Todd &
Keough (1994) had manipulated these biofilms
by covering experimental surfaces with fine
mesh that excluded most larvae, but allowed
diatoms, etc., to pass through. These nets were
then removed to allow invertebrates to settle.
Keough & Raimondi focused on the ability of
larvae to respond to successional changes that
occur in biofilms, and, because the earlier proce-
dure was time-consuming, decided to test
whether the films that developed in laboratory
seawater systems had similar effects to those
developing in the field. At the same time, they
tested whether covering a surface with netting
altered the biofilm (or at least its attractiveness
to larvae). They used four experimental treat-
ments: substrata that had been conditioned in
sterile seawater, surfaces immersed in laboratory
aquaria, surfaces in laboratory aquaria, but with
fine mesh netting over the surface, and surfaces
immersed in the field, and covered with identi-
cal netting. After one week for biofilms to
develop, the experimental surfaces (11 cm X 11
cm pieces of Perspex (Plexiglas)) were placed in
the field in a completely randomized array. They
were left for one week, and then the newly
settled invertebrates identified and counted. To
control for small numbers of larvae passing
through the netting during the conditioning
period, they used an additional treatment,
which was netted, and returned to the labora-
tory after one week and censused. The values of
this treatment were used to adjust the numbers
in the treatment that started in the field. The
data for analysis then consisted of four treat-
ments: sterile, lab films with net, lab films
without net, and field films with net. We will use
their data to test the null hypothesis that there
are no differences in recruitment of one family
of polychaete worms, the serpulids, and to spe-
cifically compare some combinations of treat-
ments. The analyses of these data are in Box 8.2
and Box 8.4.

8.1.1 Types of predictor variables (factors)
There are two types of categorical predictor vari-
ables in linear models. The most common type is
a fixed factor, where all the levels of the factor (i.e.
all the groups or treatments) that are of interest
are included in the analysis. We cannot extrapo-
late our statistical conclusions beyond these spe-
cific levels to other groups or treatments not in
the study. If we repeated the study, we would
usually use the same levels of the fixed factor
again. Linear models based on fixed categorical
predictor variables (fixed factors) are termed fixed
effects models (or Model 1 ANOVAs). Fixed effect
models are analogous to linear regression models
where X is assumed to be fixed. The other type of
factor is a random factor, where we are only using
a random selection of all the possible levels (or
groups) of the factor and we usually wish to make
inferences about all the possible groups from our
sample of groups. If we repeated the study, we
would usually take another sample of groups
from the population of possible groups. Linear
models based on random categorical predictor
variables (random factors) are termed random
effects models (or Model 2 ANOVAs). Random
effects models are analogous to linear regression
models where X is random (Model II regression;
see Chapter 5).

To illustrate the difference between these
types of factors, the zinc-level groups created by
Medley & Clements (1998) clearly represent a fixed
factor. These groups were specifically chosen to
match the USA EPA chronic criteria values for zinc
and any further study would definitely use the
same groupings. Any conclusions about differ-
ences in diatom communities between zinc levels
are restricted to these specific groups. In contrast,
we might consider the six streams used by Medley
& Clements (1998) as a possible random sample
from all metal-polluted streams in the southern
Rocky Mountain ecoregion of Colorado and hence
treat streams as a random factor. A new study
might choose a different sample of streams from
this region. Conclusions from our analysis could
be extrapolated to all metal-polluted streams in
this region.

We argue that the random (or at least haphaz-
ard) nature of the selection of groups for arandom
factor is important for valid interpretation of
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Box 8.2 | Worked example: serpulid recruitment onto
surfaces with different biofilms

Keough & Raimondi (1995) set up an experiment to examine the response of ser-
pulid (polychaete worms) larvae to four types of biofilms on hard substrata in
shallow marine waters. The four treatments were: sterile substrata, biofilms devel-
oped in the lab with a covering net, lab biofilms without a net, and biofilms devel-
oped in the field with a net. The substrata were left for one week, and then the
newly settled worms identified and counted. To control for small numbers of larvae
passing through the netting during the conditioning period, they used an additional
treatment, which was netted, and returned to the laboratory after one week and
censused. The values of this treatment were used to adjust the numbers in the
treatment that started in the field.

We have not shown the initial data screening stages, but the response variable
was log-transformed to improve skewed distributions. The H, was that there was
no difference between treatments in the mean log-transformed number of serpulid
recruits per substratum. The residual plot from the single factor model 8.3 with log-
transformed numbers of serpulid recruits revealed a single outlier; but very similar
spread of data between groups, suggesting that the assumptions were met. The sim-
ilarity of data ranges is probably a more reliable guide to the reliability of the
ANOVA than the formal identification of outliers from boxplots, when there are
only seven observations per group.

The results from the analysis of variance were as follows.

Source SS df MS F P
Biofilms 0.241 3 0.080 6.006 0.003
Residual 0.321 24 0013

Total 0.562 27

We would reject the H, of no difference between treatments in the log
numbers of serpulid recruits. In this particular example, however, we are more inter-
ested in the planned contrasts between specific treatments (Box 8.4).

the subsequent analysis. Selecting specific levels
of a factor and then calling the factor random
simply to allow extrapolation to some popula-
tion of levels is inappropriate, just as would be
selecting a specific set of observations from a
population and calling that set a random
sample.

Our conclusions for a fixed factor are
restricted to those specific groups we used in the
experiment or sampling program. For a random
factor, we wish to draw conclusions about the
population of groups from which we have ran-
domly chosen a subset. Random factors in biology
are often randomly chosen spatial units like sites
or blocks. Time (e.g. months or years) is also some-

times considered a random factor but it is much
more difficult to envisage a sequence of months
(or years) being a random sample from a popula-
tion of times to which we would wish to extrapo-
late.

Although the distinction between fixed and
random factors does not affect the model fitting
or calculations for subsequent hypothesis tests in
a single factor model, the hypotheses being tested
are fundamentally different for fixed and random
factors. When we consider more complex experi-
mental designs in later chapters, it will be clear
that the distinction between fixed and random
factors can also affect the calculation of the
hypothesis tests.
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8.1.2 Linear model for single factor
analyses

Linear effects model

We introduced linear models in Chapters 5 and 6
for regression analysis. The structure of the linear
model when the predictor variable is categorical
is similar to those models, although there are two
types of models we can fit (Box 8.3). Consider a
data set consisting of p groups or treatments (i=1
to p) and n replicates (j =1 to n) within each group
(Figure 8.1). From Medley & Clements (1998), p
equals four zinc levels and n equals eight or nine
stations. From Keough & Raimondi (1995), p
equals four biofilm treatments and n equals seven
substrata.

The linear effects model is:
yi=mtote; (8.1)

The details of the linear single factor ANOVA
model, including estimation of its parameters
and means, are provided in Box 8.3 and Table 8.1.
OLS means and their standard errors are standard
output from linear models routines in statistical
software.

From Medley & Clements (1998):

(diatom species diversity)ij =p+
(effect of zinc level), +, (8.2)

From Keough & Raimondi (1995):

(no. of serpulids), = p+
(effect of biofilm type), + g; (8.3)

Box 8.3 |Single factor ANOVA models,
overparameterization and estimable functions

Consider a data set consisting of p groups or treatments (i= | to p) and n repli-
cates (j= | to n) within each group (Figure 8.4).
The linear effects model is:

W:#+q+ﬂ

In this model:

Y is the jth replicate observation of the response variable from the ith group of

factor A:

w is the overall population mean of the response variable (also termed the
constant because it is constant for all observations);

if the factor is fixed, a; is the effect of ith group (the difference between each
group mean and the overall mean v — u);

if the factor is random, a; represents a random variable with a mean of zero

and a variance of & 2, measuring the variance in mean values of the
response variable across all the possible levels of the factor that could have

been used;

& is random or unexplained error associated with the jth replicate observation
from the ith group. These error terms are assumed to be normally
distributed at each factor level, with a mean of zero (E(EU) equals zero) and a

variance of o2

This model is structurally similar to the simple linear regression model described in
Chapter 5. The overall mean replaces the intercept as the constant and the treat-
ment or group effect replaces the slope as a measure of the effect of the predictor
variable on the response variable. Like the regression model, model 8.1 has two
components: the model (¢ + a) and the error (fy)-

We can fit a linear model to data where the predictor variable is categorical in
a form that is basically a multiple linear regression model with an intercept. The
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factor levels (groups) are converted to dummy variables (Chapter 6) and a multi-
ple regression model is fitted of the form:

y,=utp (dummy‘)v +,62(dummy2)i/ +,63(dummy3)u. +..t8,_ (dummyPi ‘ )U tg

Fitting this type of model is sometimes called dummy coding in statistical software.
The basic results from estimation and hypothesis testing will be the same as when
fitting the usual ANOVA models (effects or means models) except that estimates
of group effects will often be coded to compare with a reference category so only
p — | effects will be presented in output from statistical software. You should always
check which category your preferred software uses as its reference group when
fitting a model of this type.

The linear effects model is what statisticians call “overparameterized” (Searle
1993) because the number of group means (p) is less than the number of param-
eters to be estimated (v, al...ap). Not all parameters in the effects model can be
estimated by OLS unless we impose some constraints because there is no unique
solution to the set of normal equations (Searle 1993). The usual constraint, some-
times called a sum-to-zero constraint (Yandell 1997),a Z-restriction (Searle 1993),
or a side condition (Maxwell & Delaney 990), is that the sum of the group effects
equals zero, ie. 2P a=0. This constraint is not particularly problematical for
single factor designs, although similar constraints for some multifactor designs
are controversial (Chapter 9). The sum-to-zero constraint is not the only way of
allowing estimation of the overall mean and each of the a. We can also set one
of the parameters, either 4 or one of the a, to zero (set-to-zero constraint;Yandell
1997), although this approach is only really useful when one group is clearly a
control or reference group (see also effects coding for linear models in Chapter
5).

An alternative single factor ANOVA model is the cell means model. It
simply replaces u+a; with # and therefore uses group means instead of group
effects (differences between group means and overall mean) for the model com-
ponent:

Vi THTE

The cell means model is no longer overparameterized because the number
of parameters in the model component is obviously the same as the number of
group means. While fitting such a model makes little difference in the single factor
case, and the basic ANOVA table and hypothesis tests will not change, the cell
means model has some advantages in more complex designs with unequal sample
sizes or completely missing cells (Milliken & Johnson 1984, Searle 1993; Chapter 9).

Some linear models statisticians (Hocking 1996, Searle 1993) regard the sum-
to-zero constraint as an unnecessary complication that limits the practical and ped-
agogical use of the effects model and can cause much confusion in multifactor
designs (Nelder & Lane 1995). The alternative approach is to focus on parameters
or functions of parameters that are estimable. Estimable functions are “those func-
tions of parameters which do not depend on the particular solution of the normal
equations” (Yandell 1997, p. I I ). Although all of the & are not estimable (at least,
not without constraints), («+ &) is estimable for each group. If we equate the effects
model with the cell means model:

yy=utate=ute
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we can see that each estimable function (¢+ ;) is equivalent to the appropriate
cell mean («), hence the emphasis that many statisticians place on the cell means
model. In practice, it makes no difference for hypothesis testing whether we fit the
cell means or effects model. The F-ratio statistic for testing the H, that ¢, =, = ...
=u =...=uis identical to that for testing the H, that all @, equal zero.

We prefer the effects model for most analyses of experimental designs because,
given the sum-to-zero constraints, it allows estimation of the effects of factors and
their interactions (Chapter 9), allows combinations of continuous and categorical
variables (e.g. analyses of covariance, Chapter 12) and is similar in structure to the
multiple linear regression model. The basic features of the effects model for a single
factor ANOVA are similar to those described for the linear regression model in
Chapter 5. In particular, we must make certain assumptions about the error terms
(fy) from the model and these assumptions equally apply to the response variable.

I. For each group (factor level, i) used in the design, there is a population of
Y-values (yy) and error terms (fy) with a probability distribution. For interval
estimation and hypothesis testing, we assume that the population of Y and
therefore £ at each factor level (i) has a normal distribution.

2. These populations of Y and therefore g at each factor level are assumed
to have the same variance (¢.% sometimes simplified to o2 when there is no
ambiguity). This is termed the homogeneity of variance assumption and can be
A— A — 2

i £

formally expressed as o> =0,

3. The Y and the £ are independent of, and therefore uncorrelated with,
each other within each factor level and across factor levels if the factor is fixed or,
if the factor is random, once the factor levels have been chosen (Neter et dl.

1996).

These assumptions and their implications are examined in more detail in
Section 8.3.

There are three parameters to be estimated when fitting model 8.1: x, & and
052, the latter being the variance of the error terms, assumed to be constant across
factor levels. Estimation of these parameters can be based on either OLS or ML
and when certain assumptions hold (see Section 8.3), the estimates for « and a; are
the same whereas the ML estimate of &% is slightly biased (see also Chapter 2).We
will focus on OLS estimation, although ML is important for estimation of some
parameters when sample sizes differ between groups (Section 8.2).

The OLS estimates of 4, 4 and a: are presented in Table 8.1. Note the estimate
of a:is simply the difference between the estimates of ¢ and . Therefore, the pre-
dicted or fitted values of the response variable from our model are:

9,=7+G~-N=7,
So any predicted Y-value is simply predicted by the sample mean for that factor
level.

In practice, we tend not to worry too much about the estimates of x and &
because we usually focus on estimates of group means and of differences or con-

trasts between group means for fixed factors (Section 8.6) and components of var-
iance for random factors (Section 8.2). Standard errors for these group means are:

M SResidua\

Yi n;
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and confidence intervals for 4 can be construct