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Quatro métodos principais para obter modelos moleculares
de proteinas e outras macromoléculas

Cristalografia/Difracdo de Raios X (Xray)
Ressonancia Magnética Nuclear (NMR)
Crio-microscopia eletronica (CryoEM)

Modelagem molecular / aprendizagem de maquina guiada com informacgao de co-evolugdo de

pares de residuos (Mod/CoEv)
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_ Sistema de Secrec¢ao do Tipo IV de
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1) Cristalografia/Difracdo de Raios X (Xray)
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1) Cristalografia/Difracdao de Raios X (Xray)
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1) Cristalografia/Difracdao de Raios X (Xray)

Xray
1

Amostra

'] F;..t.-zfffp-{.r,_‘r'.;jlt’zrfih"+*3+!‘3d.=:.:z‘_vf.i":,
Xa¥ox

O padrao de difragdo é o FT do mapa de densidade eletrénica do cristal

Coleta de
dados

Vlapa de densidade

~n .

amplitudes

]- \ D e ¥l ¥
p(xay:'z):;ZZZ‘E:ki‘e Pl @
7 S

O mapa de densidade eletrénica do cristal é o FT reversa do padrao de difragao

fases




1) Cristalografia/Difracdo de Raios X (Xray) a b ¢
Full Diffraction FTs of single Sums
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1) Cristalografia/Difracdo de Raios X (Xray)
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1)X-ray Crystallography
Advantages:
- Highest resolution
- No theoretical size limit (5000 g/mol to 107 g/mol)
Disadvantages:
- Not applicable to highly flexible proteins
- Dafficult to study kinetics and dynamics
- Limiting step 1s obtaining well-diffracting crystals
- Serial Crystallography may overcome many of these
limitations



2) Ressonancia Magnética Nuclear (NMR)
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2) Ressonancia Magnética Nuclear (NMR)

NMR
J

Amostra

g

Coleta de

4

Assinalamentos
NOEs, RDCs, etc

i

.
Modelo

@

r

[

A =
'

1

Central Analitica do 1Q-USP

800MHz + cryoprobe,
500 MHz,
300 MHz Instruments




2) Ressonancia Magnética Nuclear (NMR)
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O momento magnético resultante pode ser manipulado por pulsos de radiofrequéncia,
gerando estados de spin que podem ser detectados na bobina da sonda.
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NMR Signal Preparation Detection

Each 1D NMR experiment consists of two sections: preparation and detection.
During preparation the spin-system is set to a defined state.

During detection the resulting signal is recorded.
- In the simplest case the preparation is a 90° pulse which rotates the equilibrium magnetization M, onto the y axis (M,).

After this pulse each spin precesses with its own Larmor frequency around the z axis and induces a signal in the receiver coil.
- The signal decays due to T2 relaxation and is therefore called free induction decay (FID).

Usually, the experiment is repeated several times and the data are summed up to increase the signal to noise ratio.

After summation the data are Fourier transformed to yield the final 1D spectrum.

1-D spectrum: many overlapping
peaks — very difficult to interpret
for large molecules
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Homonuclear expts.
Heteronuclear expts.
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Preparation Evolution Mixing Time Detection

* The construction of a 2D experiment is simple: In addition to preparation and detection which are already known from 1D
experiments the 2D experiment has an indirect evolution time t; and a mixing sequence. This scheme can be viewed as:

i) Do something with the nuclei (preparation),

i) let them precess freely (evolution),

Iii) do something else (mixing),

Iv) and detect the result (detection, FT of the FID).

- After preparation the spins can precess freely for a given time t,. During this time the magnetization is labelled with the
chemical shift of the first nucleus.

- During the mixing time magnetization is then transferred from the first nucleus to a second one.

- Mixing sequences utilize two mechanisms for magnetization transfer: scalar coupling or dipolar interaction (NOE).

- Data are acquired at the end of the experiment (detection, often called direct evolution time); during this time the
magnetization is labelled with the chemical shift of the second nucleus.
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Two dimensional FT yields the 2D spectrum with two frequency axes

The diagonal results from contributions of the magnetization that has not been changed by
the mixing sequence (equal frequency in both dimensions) i.e. from contributions which
remained on the same nucleus during both evolution times.

The cross signals (“cross peaks”) originate from nuclei that exchanged magnetization during
the mixing time (frequencies of the first and second nucleus in each dimension,
respectively). They indicate an interaction of these two nuclei. Therefore, the cross signals

contain the really important information of 2D NMR spectra.



2) Ressonancia Magnética Nuclear (NMR)
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2) Ressonancia Magnética Nuclear (NMR)
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2) Ressonancia Magnética Nuclear (NMR)
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2) Ressonancia Magnética Nuclear (NMR)
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2) Ressonancia Magnética Nuclear (NMR)
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2)

Ressonancia Magnética Nuclear (NMR)
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2) NMR
Advantages:
- Applicable to small proteins and peptides
(up to 30 — 50 kDa)
- Can be used to study conformational dynamics with
frequencies of 10°sto 1 s

- Can be used to study kinetics of molecular

interactions and protein folding

- Disadvantages:
- Upper size limit: < 30 - 50 kDa



3) Crio-microscopia eletronica (CryoEM)
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The Nobel Prize in Chemistry 2017
was awarded jointly to
Jacques Dubochet,
Joachim Frank and
Richard Henderson "for
developing cryo-electron
microscopy for the high-
resolution structure
determination of biomolecules
In solution."




3) Crio-microscopia eletronica (CryoEM)
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https://www.youtube.com/watch?v=BJKkC0W-6Qk&feature=youtu.be

INFRAESTRUTURA PARA CRYO-EM SP
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3) Crio-microscopia eletronica (CryoEM)
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Sgro et al. (2018) Nature Microbiology



3) Crio-microscopia eletronica (CryoEM)
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3) Crio-microscopia eletronica (CryoEM)
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Resolution Revolution
important improvements
over the last 10 years in

- Microscope hardware

- Sample preparation

- Software for data analysis
- Direct electron detectors

LDH
145 kDa
28A

B-galactosidase
465 kDa
22A

29A

Dengue Virus
11,200 kDa
36 A



Breaking the next Cryo-EM resolution barrier — Atomic resolution
[ [ [ l . .
determination of proteins! bioRyiv

THE PREPRINT SERVER FOR BIOLOGY

Ka Man Yip, Niels Fischer, Elham Paknia, Ashwin Chari, Holger Stark
doi: https://doi.org/10.1101/2020.05.21.106740

Here we report a 1.25 A resolution structure of apoferritin obtained by cryo-EM with a
newly developed electron microscope providing unprecedented structural details.

Trp93

Fig. 3 True atomic resolution: Visualization of individual atoms and hydrogens at 1.25 A

resolution



Single-particle cryo-EM at atomic resolution bioRyiv

Takanori Nakane, Abhay Kotecha, Andrija Sente, .... and Sjors H.W. Scheres
doi: https://doi.org/10.1101/2020.05.22.110189

Here, we show that using a new electron source, energy filter and camera, we obtained a 1.7
A resolution cryo-EM reconstruction for a prototypical human membrane protein, the B3
GABAA receptor homopentamer. Applied to mouse apo-ferritin, our strategy led to a 1.2 A
resolution

d
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1) X-ray Crystallography
Advantages:
- Highest resolution
- No theoretical size limit (5000 g/mol to 107 g/mol)
Disadvantages:

- Not applicable to highly flexible proteins

- Difficult to study kinetics and dynamics
- Limiting step is obtaining well-diffracting crystals

2) NMR
Advantages:
- Applicable to small proteins and peptides (up to 30 — 50 kDa)
- Can be used to study conformational dynamics with frequencies of 10°sto 1's
- Can be used to study kinetics of molecular interactions and protein folding
- Disadvantages:
- Upper size limit: <30 - 50 kDa

3) Cryo-EM
- Advantages:
- No crystallization
- Good for large macromolecular complexes
- Can study multiple conformational states
- Disadvantages:
- Lower size limit: > 100 - 300 kDa
- Lowest resolution (but improving every year)
- Very large data sets (Tb) and intensive data processing required



4) Modelagem guiada com informacao de co-evolucgdo de pares de residuos (Mod/CoEv)
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multiplo metagenomica nos ultimos anos)
')
SCA
Pares de
contato 14th Critical Assessment of protein Structure Prediction (CASP14)
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Alpha Fold 2 (Deep Mind, Google, London, UK)
RoseTTaFold (David Baker Lab, University of Washington, Seattle, USA)



4) Modelagem guiada com informacao de coevolugao de pares de residuos (Mod/CoEv)
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Protein structure determination
using metagenome sequence data

Sergey Ovchinnikov,?? Hahnbeom Park,"? Neha Varghese,* Po-Ssu Huang,'?
Georgios A. Pavlopoulos,* David E. Kim,"* Hetunandan Kamisetty,®
Nikos C. Kyrpides,*” David Baker>**

Despite decades of work by structural biologists, there are still ~5200 protein families with
unknown structure outside the range of comparative modeling. We show that Rosetta
structure prediction guided by residue-residue contacts inferred from evolutionary
information can accurately model proteins that belong to large families and that
metagenome sequence data more than triple the number of protein families with sufficient
sequences for accurate modeling. We then integrate metagenome data, contact-based
structure matching, and Rosetta structure calculations to generate models for 614 protein
families with currently unknown structures; 206 are membrane proteins and 137 have folds
not represented in the Protein Data Bank. This approach provides the representative
models for large protein families originally envisioned as the goal of the Protein Structure
Initiative at a fraction of the cost.

Ovchinnikov et al., Science 355, 294-298 (2017) 20 January 2017



Analise de Acoplamento Estatistica (Statistical Coupling Analysis — SCA)
The EVolutionary Couplings Server (https://evcouplings.org/)
Bis2Analyzer (http://www.lcgb.upmc.fr/BIS2Analyzer/index.php)
Gremlin e RosettaFold (https://www.bakerlab.org/; https://robetta.bakerlab.org/login.php)
RaptorX (http://raptorx.uchicago.edu/)
AlphaFold (https://alphafold.ebi.ac.uk/)

What is Coevolution, Covariance and Correlated Mutations?

-

e For protein coding genes, when a residue mutates a compensatory
mutation follows. These mutations are captured in our DNA and in the
DNA of all living organisms. By analyzing a MSA (multiple sequence
alignment) of homolgous protein sequences, we can measure coupling
of any given residue pairs.

 Example on the left shows two shapes complementing eachother (red
and green). If one of them changes, the other has to change. By
comparying positions in a MSA, we can determine which pairs of
positions might be in contact.


https://evcouplings.org/
http://www.lcqb.upmc.fr/BIS2Analyzer/index.php
https://www.bakerlab.org/
https://robetta.bakerlab.org/login.php
http://raptorx.uchicago.edu/
https://alphafold.ebi.ac.uk/

Filling in the protein fold picture

Fewer than a third of the 14,849 known protein families have at least one member with an
experumentally determined structure. This leaves more than 5000 protein families with no structural
mmformation. Protein modeling using residue-residue contacts inferred from evolutionary data has been
successful in modeling unknown structures, but it requires large numbers of aligned sequences.
Ovchinnikov ef al. augmented such sequence alignments with metagenome sequence data (see the
Perspective by Séding). They determined the number of sequences required to allow modeling.
developed criteria for model quality. and, where possible, improved modeling by matching predicted
contacts to known structures. Their method predicted quality structural models for 614 protein families.
of which about 140 represent newly discovered protein folds.

Seience, this issue p. 294; see also p. 248
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Structures from sequences

Protein structures are reliably predicted from nothing more than large multiple sequence alignments (13).

1 Aprotein sequence with unknown structure K E 2 Correlated mutations are found
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3 Find the 3D contacts 4 Predict the structure
Using a statistical method, predict which of the A 3D structure is predicted de novo,
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Highly accurate protein structure prediction with
AlphaFold

John Jumper ™ Richard Evans, [...|Demis Hassabis

Nature (2021)

Abstract

... Predicting the 3-D structure that a protein will adopt based solely on its amino acid sequence,
the structure prediction component of the ‘protein folding problem’®, has been an important
open research problem for more than 50 years®. Despite recent progressi®14, existing methods
fall far short of atomic accuracy, especially when no homologous structure is available.

Here we provide the first computational method that can regularly predict protein structures
with atomic accuracy even where no similar structure is known.

We validated an entirely redesigned version of our neural network-based model, AlphaFold, in
the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)1>,
demonstrating accuracy competitive with experiment in a majority of cases and greatly
outperforming other methods.

Underpinning the latest version of AlphaFold is a novel machine learning approach that
incorporates physical and biological knowledge about protein structure, leveraging multi-
sequence alignments, into the design of the deep learning algorithm.



NEWS | 22 July 2021 Callaway, (2021) Nature

DeepMind’s Al predicts structures
for a vast trove of proteins

AlphaFold neural network produced a ‘totally transformative’ database of more than
350,000 structures from Homo sapiens and 20 model organisms.

The human genome holds the instructions for more than 20,000 proteins. But only about
one-third of those have had their 3D structures determined experimentally. And in many
cases, those structures are only partially known.

Now, a transformative artificial intelligence (Al) tool called AlphaFold, which has been
developed by Google’s sister company DeepMind in London, has predicted the structure
of nearly the entire human proteome (the full complement of proteins expressed by an
organism). In addition, the tool has predicted almost complete proteomes for various
other organisms, ranging from mice and maize (corn) to the malaria parasite.

The more than 350,000 protein structures, which are available through a public
database, vary in their accuracy. But researchers say the resource — which is set to
grow to 130 million structures by the end of the year — has the potential to revolutionize
the life sciences.



NEWS | 15 July 2021 Callaway, (2021) Nature

DeepMind’s Al for protein
structure is coming to the masses

Machine-learning systems from the company and from a rival academic group are now
open source and freely accessible.

On 15 July, the London-based company DeepMind released an open-source version of its
deep-learning neural network AlphaFold 2 and described its approach in a paper in Naturel.

The network dominated a protein-structure prediction competition last year.

Meanwhile, an academic team has developed its own protein-prediction tool inspired by
AlphaFold 2, which is already gaining popularity with scientists. That system, called
RoseTTaFold, performs nearly as well as AlphaFold 2, and is described in a Science paper also
published on 15 July?2


https://www.nature.com/articles/d41586-021-01968-y
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-020-03348-4
https://www.nature.com/articles/d41586-021-01968-y

RESEARCH ARTICLE Science 15 Jul 2021

Accurate prediction of protein structures and
interactions using a three-track neural network

1 Minkyung Baek':2, @ Frank DiMaio'-2, @ Ivan Anishchenko'-, ® Justas Dauparas'2, @ Sergey Ovchinnikov®*, @ Gyu
Rie Lee'2, @ Jue Wang'2, @ Qian Cong>®, @ Lisa N. Kinch’, @ R. Dustin Schaeffer®, & Claudia Millan®, ® Hahnbeom
Park'2, Carson Adams'%, ( Caleb R. Glassman®'?, Andy DeGiovanni'?, @ Jose H. Pereira'?, Andria V. Rodrigues'?,
Alberdina A. van Dijk'?, @ Ana C. Ebrecht’?, @ Diederik J. Opperman'4, ® Theo Sagmeister'®, @ Christoph
Buhlheller'>'%, @ Tea Pavkov-Keller'>'’, € Manoj K. Rathinaswamy'?, Udit Dalwadi'®, ® Calvin K. Yip'®, © John E.
Burke'8, @ K. Christopher Garcia®'%1":20, @ Nick V. Grishin®2"7, ® Paul D. Adams'%%2, @ Randy J. Read®, © David
Baker'%23."

Abstract

DeepMind presented remarkably accurate predictions at the recent CASP14 protein structure
prediction assessment conference. We explored network architectures incorporating related
ideas and obtained the best performance with a three-track network in which information at
the 1D sequence level, the 2D distance map level, and the 3D coordinate level is successively
transformed and integrated. The three-track network produces structure predictions with
accuracies approaching those of DeepMind in CASP14, enables the rapid solution of
challenging X-ray crystallography and cryo-EM structure modeling problems, and provides
insights into the functions of proteins of currently unknown structure. The network also
enables rapid generation of accurate protein-protein complex models from sequence
information alone, short circuiting traditional approaches which require modeling of
individual subunits followed by docking. We make the method available to the scientific
community to speed biological research.



Scales of various methods

x-ray crystallography
NMR

protein »f: &

15"
Y

alanine micelle

SANS or SAXS

OEticaI microscogg
EM

e

Cryo-EM
—



Biologia Estrutural se destaca entre
ganhadores do prémio Nobel

... somente alguns exemplos



X-rays

Wilhelm Conrad Rontgen (Nobel Prize in
physics, 1901), Max von Laue (Nobel Prize in
physics, 1914), and father and son Sir William
Henry Bragg and William Lawrence Bragg
(Nobel Prize in physics,1915): The prizes were
awarded to these 4 persons for their
contribution to the discovery of X-rays,
understanding their nature as electromagnetic
waves and their use in revealing the atomic
structure of matter.




Linus Pauling,

Nobel Prize in chemistry 1954,

California Institute of Technology (Caltech)
Pasadena, CA, USA. b 1901, d. 1994

"for his research into the nature of the
chemical bond and its application to the
elucidation of the structure of complex

substances”.
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Max Ferdinand Perutz

(b. 1914, d. 2002) and

John Cowdery Kendrew

(b. 1917, d. 1997).

Nobel Prize in Chemistry 1962. MRC
Laboratory of Molecular Biology,
Cambridge, United Kingdom.

The Nobel Prize in
Chemistry 1962 "for
their studies of the
structures of globular
proteins"



The Nobel Prize in Physiology or Medicine 1962 was
awarded jointly to

Francis Harry Compton Crick,

James Dewey Watson and

Maurice Hugh Frederick Wilkins "for their discoveries
concerning the molecular structure of nucleic acids and its
significance for information transfer in living material".

It has not escaped our notice that the' specific

iring we have postulated immediately suggesta a
g‘@i@ﬂ copying mechaniam for the gonstio material.




Dorothy Crowfoot Hodgkin

(b. 1910, d. 1994)

Nobel Prize in Chemistry 1964. University of Oxford,
Royal Society, Oxford, United Kingdom.

The Nobel Prize in Chemistry 1964 was awarded "for
her determinations by X-ray techniques of the
structures of important biochemical substances".
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AINTLLL

Johann Deisenhofer (b. 1943), University of
Texas Southwestern Medical Center at Dallas,
Dallas, TX, USA; Howard Hughes Medical
Institute;

Robert Huber (b. 1937) & Hartmut Michel (b.
1948); Max-Planck-Institut flur Biochemie,
Martinsried, Federal Republic of Germany

The Nobel Prize in Chemistry
1988

"for the determination of the
three-dimensional structure of
a photosynthetic reaction
centre"

Schematic picture of a photosyn-
thetic reaction center from the bac-
terium Rhodopseudomonas virdis.
The polypeptide chains are drawn
as ribbons of different colors for
the four different protein sub-
units.
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John B. Fenn, Koichi Tanaka and Kurt Wiuithrich were awarded the 2002 Nobel Prize in
Chemistry for the development of methods for identification and structure analyses of
biological macromolecules, mass spectrometric analyses of biological macromolecules
and nuclear magnetic resonance spectroscopy for determining the three-dimensional
structure of biological macromolecules in solution.



Structure and function of ionic
and water channels, 2003

Water channel

Cell membrane Cell membrane

Peter Agre & Roderick MacKinnon, Nobel prize
in Chemistry 2003 or discoveries concerning
channels in cell membranes



Roger Kornberg,
Nobel prize in

Chemistry, 2006 for
his studies of the

molecular basis of

eukaryotic

transcription




Venkatraman (Venki) Ramakrishnan, Thomas
A. Steitz, and Ada Yonath

2009 Nobel prize in chemistry, for studies of
the structure and function of the ribosome.



The Nobel Prize in Chemistry
2012 was awarded jointly to
Robert J. Lefkowitz and Brian
K. Kobilka "for studies of G-
protein-coupled receptors”

oy,




The 2013 Nobel Prize was awarded to Martin
Karplus, Michael Levitt and Arieh Warshel “for
the development of multiscale models for
complex chemical systems”



The Nobel Prize in Chemistry 2017
was awarded jointly to Jacques
Dubochet, Joachim Frank and
Richard Henderson "for
developing cryo-electron
microscopy for the high-
resolution structure
determination of biomolecules
in solution."




MINHA PREDICAO PARA PREMIO NOBEL NOS PROXIMOS ANOS

AlphaFold is an Al system developed
by DeepMind that predicts a
protein’s 3D structure from its amino
acid sequence. It regularly achieves
accuracy competitive with
experiment.

DeepMind and EMBL’s European Bioinformatics
Institute (EMBL-EBI) have partnered to create
AlphaFold DB to make these predictions freely
available to the scientific community. The first release
covered the human proteome and the proteomes of
several other key organisms, while the second release
added the majority of manually curated UniProt
entries (Swiss-Prot). In 2022 we plan to expand the
database to cover a large proportion of all catalogued
proteins (the over 100 million in UniRef90).

Q8I3H7: May protect the malaria parasite against attack by the immune system.
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