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We derive general relations between the maximum power, maximum efficiency, and minimum

dissipation regimes from linear irreversible thermodynamics. The relations simplify further in the presence

of a particular symmetry of the Onsager matrix, which can be derived from detailed balance. The results are

illustrated on a periodically driven system and a three-terminal device subject to an external magnetic field.
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Introduction.—Thermodynamic machines transform

different forms of energy into one another. For such a

machine, it would be of obvious interest to maximize the

power P and the efficiency η, and to minimize the

dissipation _S [1–37]. The extrema (maximum or minimum)

here are understood with respect to a variation of the

engine’s load parameters, which are often the ones that are

easy to tune. In general, the above goals are incompatible.

For example, the efficiency when operating at maximum

power is (in a time-symmetric setting) limited to half of the

reversible efficiency ηr ¼ 1. The latter efficiency, being an

overall upper bound, can only be reached when operating

reversibly, hence infinitely slowly. Consequently, the cor-

responding power vanishes. More generally, one may

wonder whether there exist specific relationships between

the regimes of maximum power (which will be denoted by

the subscript MP), maximum efficiency (subscript ME),

and minimum dissipation (subscript mD). Recently, such

relations have been discovered between the MP and ME in

the context of two case studies [23,36].

In this Letter, we derive general relations between the

three regimes, within the framework of linear irreversible

thermodynamics. Two results stand out. The first one is a

remarkably simple relation linking the MP to the ME:

ηMP ¼
PMP

2PMP − PME

ηME: ð1Þ

As an implication, note that, since the power output

PME > 0 and efficiency ηMP > 0 are positive, the efficiency

at maximum power is at least half the maximum efficiency,

ηMP ≥ ηME=2. The second result links the regimes of MP

and mD by two equally simple equations:

T _SmD ¼



1

ηMP

−
1

η2ME

− 1



PMP þ
1

η2ME

PME; ð2Þ

PmD ¼ PMP −
1

η2ME

ðPMP − PMEÞ; ð3Þ

where T is the reference temperature of the system. As a

consequence, note that when the minimum dissipation

coincides with a reversible operation, i.e., _SmD ¼ 0 and

PmD ¼ 0, one finds from Eqs. (2) and (3) that ηMP ¼ 1=2.
The above relations become more specific when the

Onsager matrix, which links the thermodynamic fluxes

and forces, satisfies a generalized Onsager symmetry

condition, which we discuss in more detail below. The

“standard” Onsager symmetry, which applies to time-

symmetric machines, is a particular case. Under this extra

condition, the link between the maximum power and

efficiency, cf. Eq. (1), splits into two separate relations,

in agreement with the special cases discussed in

Refs. [23,36]:

PME

PMP

¼ 1 − η2ME; ηMP ¼
ηME

1þ η2ME

: ð4Þ

To mention some further implications of these results,

reversible efficiency, ηME ¼ 1, can only be reached

when the power goes to zero, PME ¼ 0. Furthermore, 0 ≤

ηME ≤ 1 implies 0 ≤ ηMP ≤ 1=2, as first noted in Ref. [1]

(for a symmetric Onsager matrix). Note also that the

equality sign in PME ≤ PMP is only reached for ηME ¼ 0,

hence ηMP ¼ 0, illustrating the conflict between maximiz-

ing efficiency and maximizing power.

Under the same generalized Onsager symmetry

condition, the links between the maximum power and

minimum dissipation, Eqs. (2) and (3), simplify as follows

[38]:

PmD ¼ 0; T _SmD ¼



1

ηMP

− 2



PMP: ð5Þ

A zero minimum dissipation (with PMP > 0) implies

ηMP ¼ 1=2, ηME ¼ 1, and PME ¼ 0. Note the close inter-

connection between the results (4) and (5), since all of them

follow from Eqs. (1)–(3), if any one of them is valid.

We close the introduction with an important comment

concerning the mathematical and physical content of the

above relations. We will derive the above results first in the

simple setting of two thermodynamic fluxes and forces,

linked by a 2 × 2 Onsager matrix L. The relations (1)–(3)
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follow from straightforward algebra applied to the standard

expressions from linear irreversible thermodynamics. No

additional assumptions are needed. Equations (4) and (5)

on the other hand require Onsager symmetry or antisym-

metry [39], i.e., L12 ¼ L21. We next will show that both

sets of results remain valid when the thermodynamic

driving and loading force and flux are vectorial, i.e., they

are composed of subforces and subfluxes, provided one

performs the “full” optimization, i.e., with respect to all the

components of the loading force. The validity of Eqs. (4)

and (5) then rests in addition on a generalized Onsager

symmetry L12 ¼ LT
21 (T standing for the transpose) or

L12 ¼ L21. This property can be derived from time

reversibility and detailed balance of the underlying

microdynamics, and is therefore expected to have a very

wide range of validity. We will illustrate this state of

affairs on a system subject to a time-asymmetric periodic

driving and a three-terminal device with an external

magnetic field.

Linear irreversible thermodynamics.—The thermody-

namic processes that drive machines are generally induced

by a spatial or temporal variation in quantities such as

(inverse) temperature, chemical potential, pressure, etc.

These differences are responsible for so-called thermody-

namic forces, which we will denote by F. With every

thermodynamic force, one can associate a flux, for exam-

ple, a heat flux or a particle flux, denoted as J. The generic
function of a machine is to transform one type of energy

into another one. The simplest such construction thus

features two forces, one playing the role of a load force,

say F1, and another functioning as a driving force F2.

With proper definitions of fluxes and forces, the entropy

production or dissipation _S can be written as a bilinear

form [40,41]:

_S ¼ F1J1 þ F2J2: ð6Þ

The working regime is defined as a driving entropy

producing a flux, say J2 with F2J2 ≥ 0, generating another

flux J1 against its own thermodynamic force, F1J1 ≤ 0.

The standard example is that of a thermal machine,

where a downhill heat flux pushes particles up a

potential. The quantities of interest are the net dissipation
_S, given in Eq. (6), the power output P, which we define

as [42]

P ¼ −TF1J1; ð7Þ

and the efficiency η,

η ¼ −
F1J1

F2J2
: ð8Þ

The power output and efficiency are both positive by

definition of the working regime. In addition, the second

law _S ≥ 0 implies that, in the working regime, η ≤ ηr ¼ 1,

with the reversible limit η ¼ ηr reached for zero entropy

production, _S ¼ 0. Hence, one has

_S ≥ 0; P ≥ 0; 0 ≤ η ≤ ηr ¼ 1: ð9Þ

Finally, by their definitions, power, efficiency and entropy

production are not independent quantities but obey the

following relation:

T _S ¼ P



1

η
− 1



: ð10Þ

Focusing on the regime of linear irreversible thermody-

namics, one assumes that the thermodynamic forces are

small, so that the associated thermodynamic fluxes are

linear in the forces:



J1

J2



¼



L11 L12

L21 L22



F1

F2



: ð11Þ

The coefficients Lij are known as the Onsager coefficients.

For a given thermodynamic process, one can consider its

time inverse, denoted by a tilde. It is obtained by reversing

the time dependencies and inverting the variables, such as

speed and magnetic field, which are odd under time

inversion. The above coefficients satisfy the so-called

Onsager-Casimir symmetry ~Lij ¼ Lji, [43]. This relation

is particularly useful in the time-symmetric scenario with

even variables, for which it reduces to the celebrated

Onsager symmetry, Lij ¼ Lji [44,45].

We are now ready to calculate the values of the three key

quantities power, efficiency, and dissipation when perform-

ing the extremum of one of them with respect to the loading

force F1. In calculating the maximum efficiency and power,

we will assume them to be in the working regime. This

leads to nine expressions PMP, PME, PmD, ηMP, ηME, ηmD,
_SMP, _SME, _SmD, of which, in view of Eq. (10), six are

a priori independent. Straightforward algebra leads to the

following explicit expressions:

PMP ¼ T
L2
12F

2
2

4L11

; ηMP ¼
L2
12

4L11L22 − 2L12L21

; ð12Þ

PmD ¼ T
ðL2

12 − L2
21ÞF

2
2

4L11

;

_SmD ¼ F2
2



L22 −
ðL12 þ L21Þ

2

4L11



;

ð13Þ

PME ¼ −TF2
2ðL11L22 −



L11L22ðL11L22 −L12L21Þ
p

Þ

×
ðL11L22 −L12L21 −



L11L22ðL11L22 −L12L21Þ
p

Þ

L11L
2
21

;

ð14Þ
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ηME ¼ −ðL11L22 −


L11L22ðL11L22 −L12L21Þ
p

Þ

×
ðL11L22 −L12L21 −



L11L22ðL11L22 −L12L21Þ
p

Þ

L2
21



L11L22ðL11L22 −L12L21Þ
p :

ð15Þ

The surprise is that there are, in fact, only three independent

quantities: one verifies by inspection the validity of the

relations (1) and (3). In the case of Onsager symmetry or

antisymmetry, these equations further simplify with the

appearance of one additional relation, cf. Eqs. (4) and (5).

Hence, we are left with only two independent quantities out

of the original nine, for example, any pair of power and

efficiency, _SmD and ηMP, _SmD and PMP, etc.

Multiple processes.—In a more general setting, a thermo-

dynamic machine can involve many processes with input

and output flux combinations of multiple subfluxes.

Keeping the notation of subindices i ¼ 1, 2 for loading

and driving quantities, respectively, the corresponding

fluxes Ji, forces Fi, and Onsager coefficients Lij are no

longer scalars but vectors and matrices, respectively.

Onsager-Casimir symmetry predicts ~Lij ¼ LT
ji. Although

the proof now requires some more involved matrix algebra

(cf. the Supplemental Material [46]), one can show that

the first set of power-efficiency-dissipation relations,

Eqs. (1)–(3), remain valid provided the optimum is carried

out with respect to all components of the loading force F1.

Under the same optimization, the second set of relations (4)

and (5) follows for Onsager matrices obeying the following

generalized Onsager condition:

L12;sL
−1
11;sL12;s ¼ L21;sL

−1
11;sL21;s;

L12;aL
−1
11;sL12;a ¼ L21;aL

−1
11;sL21;a ð16Þ

with Lij;s ¼ ðLij þLT
ijÞ=2, the symmetric part of the

matrix and Lij;a ¼ ðLij −LT
ijÞ=2 the antisymmetric part

of the matrix. We make the important observation that this

condition is satisfied for matrices obeying

L12 ¼ LT
21; L12 ¼ L21: ð17Þ

It is clear from Onsager symmetry that systems with time-

symmetric driving satisfy this condition, but it may also

hold for systems violating time-reversal symmetry. Indeed,

it has been shown that Onsager matrices of this form arise

as a consequence of detailed balance [27,35], even though

the setup itself might break time-reversal symmetry, cf. the

Supplemental Material [46]. Consequently, Eqs. (4) and (5)

are expected to have a wide range of validity, including

systems that break time symmetry. We stress again that the

optimization needs to be carried out with respect to all

components of the loading force. In the case of partial

optimization, the corresponding effective Onsager matrix

of lower rank no longer satisfies Eq. (16), and therefore

Eqs. (4) and (5) break down. On the other hand, Eqs. (1)

and (3) remain valid when the system is optimized with

respect to the reduced set of variables, since the latter

results are algebraic in nature, and do not require additional

physical input.

Two examples.—We illustrate the above results on two

systems that do not satisfy time-reversal symmetry: a

thermodynamic machine subject to explicit time-periodic

driving [27–29,35–37,47–50] and a three-terminal device

in an external magnetic field [15,51–58].

The first example is a work-to-work converter consisting

of a particle that can hop between two discrete energy

levels, cf. Fig. 1. Transitions are induced by a thermal bath,

while the periodic modulation (period T ) of the energy

levels via two external work mechanisms allows the

conversion of work extracted from the second source,

driving the second energy level, and delivered to the first

source, loading the first energy level. The time dependence

of the energy in each level i ¼ 1, 2 can be developed in

terms of its Fourier components:

EiðtÞ¼
X

n

Fði;n;sÞ sin



2πnt

T



þFði;n;cÞcos



2πnt

T



; ð18Þ

where the amplitudes Fði;n;cÞ and Fði;n;sÞ play the role of

thermodynamic forces, n refers to the Fourier mode, and c
and s refer to cosine and sine, respectively. Following

standard techniques from stochastic thermodynamics

[59–64], one can determine the explicit expression for

the elements of the associated Onsager matrix [27] (cf. the

Supplemental Material [46]):

Lð1;n;σÞ;ð2;n;σÞ ¼ −
4π3n3ð4π2n21þ T 2Wð0Þ2Þ−112p

eq
2

T
; ð19Þ

where Wð0Þ and peq are the transition matrix and equilib-

rium probability distribution associated with the state of

the particle in the absence of time-dependent driving, and

σ ¼ s, c. As a direct consequence of detailed balance,

W
ð0Þ
12 p

eq
2 ¼ W

ð0Þ
21 p

eq
1 , one finds

Lð1;n;σÞ;ð2;n;σÞ ¼ Lð2;n;σÞ;ð1;n;σÞ: ð20Þ

FIG. 1. Schematic representation of a periodically driven two-

level system in contact with a heat reservoir.
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Analogous relations are found for Lð1;n;σÞ;ð2;m;ρÞ, with ρ ≠ σ

and m ≠ n. We conclude that the following symmetry

relation holds:

Lð1;n;σÞ;ð2;m;ρÞ ¼ Lð2;n;σÞ;ð1;m;ρÞ; ð21Þ

which satisfies Eq. (17). Hence, the second set of power-

efficiency-dissipation relations, Eqs. (4) and (5), will be

verified, see also Ref. [36] for a similar conclusion in a

different model, and Fig. 2 for an illustration in case of a

time-symmetric driving.

As another example of a system with broken time-

reversal symmetry we consider a three-terminal thermo-

electric device in a magnetic field, cf. Fig. 3. In this setup,

three terminals are connected with each other via a central

scattering region, inducing a particle flux Jρ and a heat flux

Jq. In the working regime, the heat flux is from high to low

temperature, while the particle flux is from low to high

chemical potential. We assume that both fluxes are in the

direction of the second reservoir in Fig. 3. In this way heat

is converted into chemical energy. A magnetic field B can

be added to interact with the scattering region and break the

time-reversal symmetry. An additional constraint that is

often imposed is that the particle and heat flux through the

third terminal vanish. The resulting 2 × 2 Onsager matrix,

associated with the heat and particle flux between reservoir

1 and 2, is generally not symmetric, and the efficiency at

maximum power can reach values up to ηMP ¼ 4=7 [15],

clearly violating the second set of power-efficiency-

dissipation relations, Eqs. (4) and (5), cf. the

Supplemental Material [46]. Crucial to this analysis, how-

ever, is the constraint that the fluxes through the third

terminal are zero, which makes it impossible to fully

optimize the power output. Dropping the flux constraints

will introduce thermodynamic subfluxes associated with

the third terminal, and thereforeLρq andLqρ become 2 × 2

matrices.

In the present context of linear thermodynamics, we set

the reference values for the temperature and chemical

potential equal to those of the second reservoir, T ¼ T2

and μ ¼ μ2. The fluxes can be decomposed into a net flux

from the first to the second terminal and from the third

to the second terminal, JρðqÞ ¼ ðJρðqÞ;12; JρðqÞ;32Þ with the

associated thermodynamic forces Fρ ¼ ðe=TÞðμ1 − μ; μ3 −
μÞ and Fq ¼ ð1=T2ÞðT1 − T; T3 − TÞ, where e is the charge
of one electron. The behavior of the central region is

described by the scattering matrix SðE;BÞ, which gives the
fluxes of electrons with energy E between the different

terminals, when an external magnetic field B is applied

to the central region. The resulting Onsager matrix is given

by [65]

Lαβ ¼

Z

∞

−∞

dEfαβðEÞ½1 − Sð1;3ÞðE;BÞ ð22Þ

with α; β ¼ ρ or q, Sð1;3ÞðE;BÞ the scattering matrix

associated with the first and the third terminal only, and

fαβðEÞ a function independent of the central scattering

region, and in particular of the presence of a magnetic field

(cf. the Supplemental Material [46]). Hence, it is invariant

under time-reversal symmetry and satisfies fρqðEÞ ¼
fqρðEÞ, implying Lρq ¼ Lqρ. We conclude that Eqs. (4)

and (5) will be valid when the optimization is carried

out without constraints on the third terminal. In particular,

the efficiency at maximum power will drop to a value

below 1=2.

*
Karel.Proesmans@Uhasselt.be

[1] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).

[2] T. Schmiedl and U. Seifert, Europhys. Lett. 81, 20003

(2008).

[3] T. Schmiedl and U. Seifert, Europhys. Lett. 83, 30005

(2008).

[4] Z. Tu, J. Phys. A 41, 312003 (2008).

FIG. 2. Efficiency, power, and dissipation of a driven two-level

system, E1ðtÞ ¼ F1 cosð2πt=T Þ and E2ðtÞ ¼ F2½cosð2πt=T Þþ
cosð4πt=T Þ, with T ¼ 1, T ¼ 1, and F2 ¼ 1. The Onsager

coefficients are given by Ref. [27]: L11 ¼ −L12 ¼ −L21 ¼ 0.244,

L22 ¼ 0.492. PmD ¼ 0, as can be seen by visual inspection. One

also verifies that ηME=ð1þ η2MEÞ ¼ 0.164 ¼ ηMP, PME=PMP ¼
0.971 ¼ 1 − η2ME, ð1=ηMP − 2ÞPMP ¼ 0.25 ¼ _SmD, in agreement

with Eqs. (4) and (5).

FIG. 3. Schematic representation of the three-terminal thermo-

electric device.

PRL 116, 220601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

220601-4



[5] B. Rutten, M. Esposito, and B. Cleuren, Phys. Rev. B 80,

235122 (2009).

[6] M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys.

Rev. Lett. 102, 130602 (2009).

[7] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den

Broeck, Phys. Rev. Lett. 105, 150603 (2010).

[8] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den

Broeck, Phys. Rev. E 81, 041106 (2010).

[9] G. Benenti, K. Saito, and G. Casati, Phys. Rev. Lett. 106,

230602 (2011).

[10] J. Wang, J. He, and Z. Wu, Phys. Rev. E 85, 031145 (2012).

[11] Y. Izumida and K. Okuda, Europhys. Lett. 97, 10004

(2012).

[12] N. Golubeva and A. Imparato, Phys. Rev. Lett. 109, 190602

(2012).

[13] S. Sheng and Z. Tu, J. Phys. A 46, 402001 (2013).

[14] A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh,

and S. G. Gevorkian, Phys. Rev. Lett. 111, 050601 (2013).

[15] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. Lett. 110,

070603 (2013).

[16] K. Brandner and U. Seifert, New J. Phys. 15, 105003

(2013).

[17] R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014).

[18] Y. Wang, Phys. Rev. E 90, 062140 (2014).

[19] Y. Izumida and K. Okuda, Phys. Rev. Lett. 112, 180603

(2014).

[20] O. Entin-Wohlman, J.-H. Jiang, and Y. Imry, Phys. Rev. E

89, 012123 (2014).

[21] V. Holubec, J. Stat. Mech. (2014) P05022.

[22] J. Stark, K. Brandner, K. Saito, and U. Seifert, Phys. Rev.

Lett. 112, 140601 (2014).

[23] J.-H. Jiang, Phys. Rev. E 90, 042126 (2014).

[24] M. Polettini, G. Verley, and M. Esposito, Phys. Rev. Lett.

114, 050601 (2015).

[25] B. Cleuren, B. Rutten, and C. Van den Broeck, Eur. Phys. J.

Spec. Top. 224, 879 (2015).

[26] S. Sheng and Z. C. Tu, Phys. Rev. E 91, 022136 (2015).

[27] K. Proesmans and C. Van den Broeck, Phys. Rev. Lett. 115,

090601 (2015).

[28] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. X 5,

031019 (2015).

[29] K. Yamamoto and N. Hatano, Phys. Rev. E 92, 042165

(2015).

[30] V. Holubec and A. Ryabov, Phys. Rev. E 92, 052125 (2015).

[31] N. Shiraishi, K. Saito, and H. Tasaki, arXiv:1605.00356.

[32] O. Raz, Y. Subaş, and R. Pugatch, Phys. Rev. Lett. 116,

160601 (2016).

[33] A. Ryabov and V. Holubec, Phys. Rev. E 93, 050101(R)

(2016).

[34] N. Shiraishi and K. Saito, arXiv:1602.03645.

[35] K. Proesmans, B. Cleuren, and C. Van den Broeck, J. Stat.

Mech. (2016) 023202.

[36] M. Bauer, K. Brandner, and U. Seifert, Phys. Rev. E 93,

042112 (2016).

[37] L. Cerino, A. Puglisi, and A. Vulpiani, Phys. Rev. E 93,

042116 (2016).

[38] Equation (49) from Ref. [36] is identical to the second part

of our Eq. (5) provided one identifies the “idle heat flux”Jidleq

with our minimal dissipation _SmD.

[39] Onsager antisymmetry is defined by Lij ¼ −Lji for all

i ≠ j.
[40] I. Prigogine, Introduction to Thermodynamics of Irrevers-

ible Processes, 3rd ed (Interscience, New York, 1967).

[41] S. R. De Groot and P. Mazur, Non-equilibrium Thermody-

namics (Courier Corporation, New York, 2013).

[42] The temperature of the power producing device is the

natural choice for the multiplicative factor T. We however

stress that the results (1)–(5) are valid, irrespective of the

choice of this temperature.

[43] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).

[44] L. Onsager, Phys. Rev. 37, 405 (1931).

[45] L. Onsager, Phys. Rev. 38, 2265 (1931).

[46] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.220601 for a deri-

vation of the power-efficiency-dissipation relations, and a

detailed description of the two case studies discussed in the

main text.

[47] Y. Izumida and K. Okuda, Phys. Rev. E 80, 021121 (2009).

[48] Y. Izumida and K. Okuda, Eur. Phys. J. B 77, 499 (2010).

[49] O. Raz, Y. Subasi, and C. Jarzynski, Phys. Rev. X 6, 021022

(2016).

[50] G. Falasco and M. Baiesi, Europhys. Lett. 113, 20005

(2016).

[51] M. Büttiker, IBM J. Res. Dev. 32, 317 (1988).

[52] D. Sánchez and L. Serra, Phys. Rev. B 84, 201307 (2011).

[53] O. Entin-Wohlman and A. Aharony, Phys. Rev. B 85,

085401 (2012).

[54] V. Balachandran, G. Benenti, and G. Casati, Phys. Rev. B

87, 165419 (2013).

[55] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C.

Heyn, W. Hansen, H. Buhmann, and L. W. Molenkamp,

Nat. Nanotechnol. 10, 854 (2015).

[56] R. Sánchez, B. Sothmann, and A. N. Jordan, Phys. Rev.

Lett. 114, 146801 (2015).

[57] R. Sánchez, B. Sothmann, and A. N. Jordan, New J. Phys.

17, 075006 (2015).

[58] P. P. Hofer and B. Sothmann, Phys. Rev. B 91, 195406

(2015).

[59] R. Harris and G. Schütz, J. Stat. Mech. (2007) P07020.

[60] K. Sekimoto, Stochastic Energetics, Vol. 799 (Springer,

New York, 2010).

[61] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).

[62] R. Spinney and I. Ford, in Nonequilibrium Statistical

Physics of Small Systems: Fluctuation Relations and Be-

yond, edited by H. G. Schuster, R. Klages, W. Just, and C.

Jarzynski (John Wiley & Sons, New York, 2013).

[63] C. Van den Broeck and M. Esposito, Physica 418A, 6

(2014).

[64] T. Tomé and M. J. de Oliveira, Phys. Rev. E 91, 042140

(2015).

[65] U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).

PRL 116, 220601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JUNE 2016

220601-5


