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We derive a linear thermodynamics theory for general Markov dynamics with both steady-state and

time-periodic drivings. Expressions for thermodynamic quantities, such as chemical work, heat, and entropy

production are obtained in terms of equilibrium probability distribution and the drivings. The entropy production

is derived as a bilinear function of thermodynamic forces and the associated uxes. We derive explicit formulae

for the Onsager coefcients and use them to verify the Onsager-Casimir reciprocal relations. Our results are

illustrated on a periodically driven quantum dot in contact with two electron reservoirs and optimization protocols

are discussed.
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I. INTRODUCTION

Due to the seminal work of primarily Onsager and Pri-

gogine, the theory of linear irreversible thermodynamics has

become one of the cornerstones of modern statistical physics.

Close to equilibrium, one can use this framework to determine

the thermodynamic uxes, such as heat and work, and show

that they satisfy general properties, such as Onsager symmetry

and the Green-Kubo relations [1].

Over the last two decades, a somewhat different approach

has been undertaken to study the thermodynamics of small-

scaled systems [2,3]. This theory, known as stochastic ther-

modynamics, uses Markov dynamics to model systems at the

mesoscale, where uctuations in the thermodynamic uxes

become important. The assumption of local detailed balance

then leads to a consistent denition of the thermodynamic

properties of the system. The stochastic uxes of the system

satisfy general relations such as the Jarzynski equality [4,5].

Furthermore, this theory has lead to applications in several

other branches of science, such as information theory [6],

chemical reaction networks [7], and active matter [8,9].

A natural question to ask is how the classical ideas of

linear irreversible thermodynamics can be incorporated in

the theory of stochastic thermodynamics. This problem has

been addressed for several case studies [10–21]. Furthermore,

general theories have been derived for periodically driven

systems in contact with a single reservoir [22–24], and for

steady-state systems in contact with two reservoirs [25,26],

leading to bounds the power and efciency of thermodynamic

engines [27–29]. A more general approach for systems with

any number of reservoirs and time-dependent driving has not

been studied thoroughly.

In this paper, we close this gap by deriving a general for-

malism for the linear thermodynamics of stochastic systems

with both steady-state and time-periodic drivings. Our study

is carried out by taking into account multiple heat and particle

reservoirs. We obtain expressions for thermodynamic quanti-

ties, such as chemical work, heat, and entropy production in

terms of equilibrium probability distribution and the drivings.

In particular, we show that general results of linear irreversible

thermodynamics, such as the structure of entropy production

rate and Onsager symmetry are valid for this general class of

systems.

This paper is organized as follows. We start in Sec. II

by introducing the model and by discussing its linearized

dynamics. In Sec. III, we dene the work and heat uxes

and show how they are related to the entropy production rate.

The evaluation of Onsager coefcients and the existence of an

Onsager-Casimir symmetry relation are discussed in Sec. IV.

In Sec. V, we apply our formalism to a periodically driven

two-level system. Conclusions and outlook are discussed in

Sec. VI.

II. MODEL

Throughout this paper, we focus on systems with a discrete

set of states in contact with multiple temperature and particle

reservoirs that can induce transitions between distinct cong-

urations. The system can be in a given state m, specied by its

energy m(t ) and particle number nm with probability pm(t ).

The time-evolution of pm(t ) is described by a master equation

ṗm(t ) =


n, j

W j
mn(t )pn(t ), (1)

whereW
j
mn(t ) is the probability per unit of time of a transition

from a state n to a statem induced by reservoir j. Conservation

of probability implies that



m

W j
mn(t ) = 0, (2)

valid for all m, and thereforeW
j
mm(t ) = −



n =mW
j
nm(t ).

Each reservoir j is characterized by a temperature Tj (t )

and chemical potential μ j (t ). If the system is in contact with

a single reservoir with time-independent temperature Tj and

chemical potential μ j , it will converge to an equilibrium state

2470-0045/2019/100(2)/022141(7) 022141-1 ©2019 American Physical Society



KAREL PROESMANS AND CARLOS E. FIORE PHYSICAL REVIEW E 100, 022141 (2019)

given by the Boltzmann-Gibbs distribution:

P j
m =

1

Z
j
eq

e
−(m−μ j nm )

Tj , (3)

where Z
j
eq =



m e−(m−μ j nm )/Tj is the (grand-canonical) parti-

tion function. By denition, the above equilibrium distribu-

tion should satisfy the detailed balance condition,W
j,eq
mn P

j
n −

W
j,eq
nm P

j
m = 0, implying the following ratio between the transi-

tion ratesW
j,eq
mn andW

j,eq
nm :

W
eq; j
mn

W
eq; j
nm

= e−{(m−n )−μ j (nm−nn )}/Tj . (4)

This expression allows us to write the transition rateW
eq; j
mn as

follows:

Weq; j
mn = C j

mnλ
eq; j
n , (5)

where λ
eq; j
n = exp ((n − μ jnn)/Tj ) and C

j
mn is a matrix that

quanties the coupling strength between states m and n, in

this way specifying the time-symmetric part of the dynamics

[30]. Due to the assumption of local detailed balance and the

properties of the transition matrix, C j satises the following

symmetry relations:

C j
mn = C j

nm, C j
nn = −



m =n

C j
mn. (6)

A. Linear description

As stated before, the system will reach an equilibrium

Boltzmann state when it is in contact with a single reservoir at

constant temperature and chemical potential. This is generally

not the case when the system is in contact with multiple

reservoirs or when the temperature and chemical potential

are modulated time-periodically. In those cases, detailed bal-

ance is broken, and the system starts dissipating heat and

producing entropy. As each reservoir operates independently,

each transition rate W
j
mn(t ) has the same form as in Eq. (5),

but with time-dependent parameters m(t ), Tj (t ),μ j (t ), and

C
j
mn(t ). The total transition matrix is obtained by summing

over all reservoirs, Wmn(t ) =


j W
j
mn(t ), where W

j
mn(t ) is

given by Eq. (5) for every reservoir j.

The temperatures and chemical potentials are modulated

time-periodically. We introduce the driving functions gTj
(t )

and gμ j
(t ) as

1

Tj (t )
=

1

T0, j
+ FTj

gTj
(t ), (7)

μ j (t ) = μ0, j + T0, jFμ j
gμ j

(t ), (8)

where Fα j
’s correspond to the strength of the thermodynamic

drivings α j ∈ {Tj,μ j}. The energy of each microscopic state

is also driven periodically by an external work source,

n(t ) = 0,n + T0, jFγ,ng (t ), (9)

where γ,n is the amplitude with which the level n is mod-

ulated. As we are focusing on the regime close to equilib-

rium, both temperature and chemical potential modulations

are assumed to be around the same equilibrium state for all

reservoirs, T0, j = T0 and μ0, j = μ0 for all j.

To make further progress, we assume that the thermody-

namic forces are sufciently small so that we can perform a

linear approximation. This is the crucial assumption for the

theory of linear irreversible thermodynamics [1]. By expand-

ing the coupling matrix C up to rst-order with respect to

modulations of temperature, chemical potential and energy,

we have that

C j
mn(t ) = Ceq, j

mn +


α, j

Fα j
gα j

(t )C
α j

mn. (10)

The perturbed coupling matrices Cα j should satisfy the same

symmetry relations as the unperturbed coupling matrices,

Eq. (6). They are used for obtaining the following linear

expression forW
j
mn(t ) in terms of thermodynamic forces:

W j
mn(t ) =Weq, j

mn +


α

Fα j
W

α j

mn (t ), (11)

where

W α; j
mn (t ) = gα j

(t )


Weq, j
mn γ α

n +C
α j

mnλ
eq; j
n



, (12)

and the vector γ α has elements given by

γ α
n =

⎧

⎨

⎩

(0,n − μ0nn) α = Tj

γ,n α = 

−nn α = μ j .

(13)

Since the driving functions gα j
(t ) are assumed to be time

periodic, gα j
(t +T ) = gα j

(t ) with T being the period of the

driving, the system will relax to a time-periodic steady-state

distribution. This distribution can be expanded up to linear

order in terms of the thermodynamic forces [24],

p(t ) = peq +


α, j

Fα j
pα j (t ), (14)

where peq is the Boltzmann-Gibbs distribution associated to

the reference energy, temperature and chemical potential,

0,n,T0, and μ0, respectively. Substituting Eq. (14) into the

master equation (1) leads to

ṗα j (t ) =Weqpα j (t )+W α j (t )peq. (15)

Thus, the rst-order contribution in the probability ṗα j (t )

depends only on the total equilibrium matrixW
eq
mn =



j W
eq, j
mn

and on the linear perturbation matrix W α j (t ) evaluated over

the equilibrium probability. The above expression can be

integrated, leading to

pα j (t ) =

 ∞

0

dτ eW
eqτW α j (t − τ )peq, (16)

which is time-periodic. Inserting the explicit formula for

W α j (t ) and once again taking into account the properties of

the coupling matrix given by Eq. (6), we arrive at the nal

expression for the component pα j (t ):

pα j (t ) =

 ∞

0

dτ eW
eqτWeq, jγ α peqgα j

(t − τ ), (17)

i.e., the rst order correction in the coupling matrix does not

contribute to pα j (t ). This is a manifestation of the fact that the

time-symmetric part of the dynamics does not contribute to

the linear response [30]. We conclude that, up to rst-order,

the time-periodic steady-state distribution can be obtained
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exactly in terms of the equilibrium properties, the driving

function gα (t )’s and the γα’s.

Finally, it is worth mentioning that Eq. (17) reduces to the

one obtained in Ref. [24] for the one reservoir case.

III. THERMODYNAMIC FLUXES

Having developed a general formalism to derive the linear

dynamics of the system under study, we are now ready to

evaluate the thermodynamic properties, using the framework

of stochastic thermodynamics [2,3]. In particular, the direct

work rate Ẇd (t ), chemical work ux Ẇchem(t ), and the heat

ux Q̇(t ) are given by

Ẇd (t ) =


m

̇m(t )pm(t ), (18)

Ẇchem(t ) =


m, j

μ j (t )nm ṗ
j
m(t ), (19)

Q̇(t ) =


m, j

[m − μ j (t )nm]ṗ
j
m(t ) (20)

with

ṗ j
m(t ) =



n

W j
mn(t )pn(t ). (21)

The time evolution of the mean internal energy of the system

U (t ) =


m m(t )pm(t ) is given by

U̇ (t ) = Ẇd (t )+ Ẇchem(t )+ Q̇(t ), (22)

in agreement with the rst law of thermodynamics. By insert-

ing Eq. (9) into Eq. (18), the average direct work per unit of

time can be written as

˙̄Wd =
T0F

T



T

0

dt ġ (t )


m

γ,mpm(t ). (23)

Equation (23) is conveniently rewritten as a product of forces

and ux, ˙̄Wd = T0FJ , with work ux J given by

J = −
1

T



T

0

dt g (t )


m

γ,m ṗm(t ), (24)

where a partial integration was performed taking into account

the periodicity of pm(t ). One can decompose it further as

J =


j

J j (25)

with J j given by

J j = −
1

T



T

0

dt g (t )


m,n

γ j ,mW
j
mn(t )pn(t ), (26)

and T0FJ j can be interpreted as the direct work delivered to

reservoir j.

Proceeding analogously, the total mean chemical work per

cycle can be obtained by integrating Eq. (19) over one period

and subtracting μ0



j



T

0
ṗ
j
m(t )dt = 0, which gives

˙̄Wchem = T0


j

Fμ j
Jμ j

, (27)

where Jμ j
is dened as

Jμ j
= −

1

T



T

0

dt gμ j
(t )



m,n

γμ j ,mW
j
mn(t )pn(t ). (28)

Since the driving is periodic, the average internal energy of

the system does not change over a period of the driving, ˙̄U =

0. The rst law of thermodynamics then leads to an expression

for the average heat in terms of uxes,

˙̄Q = − ˙̄Wd − ˙̄Wchem = −T0


j



F j J j + Fμ j
Jμ j



. (29)

This expression can also be evaluated by a direct integration

of Eq. (20) over one period and summing over the contribution

of all reservoirs.

The total entropy production σ̄ is given by the sum of the

contribution of all reservoirs

σ̄ =


j

σ̄ j, (30)

where each term σ̄ j can be calculated through the microscopic

formula [31,32]

σ̄ j =
1

T



m,n



T

0

dt W j
mnpn ln

W
j
mnpn

W
j
nmpm

. (31)

Due to periodicity of the steady-state, the integral


T

0
dt



m,nW
j
mnpn ln(pn/pm) is strictly zero and Eq. (31)

then reduces to

σ̄ j =
1

T



m,n



T

0

dt W j
mnpn ln

W
j
mn

W
j
nm

. (32)

Since the ratio between W
j
mn and W

j
nm is given by the local

detailed balance condition, we can derive an expression for

σ̄ j in terms of thermodynamic variables,

σ̄ j = −
1

T



m



T

0

dt



m(t )− μ j (t )nm

Tj (t )



ṗ j
m

= −
1

T



T

0

dt
Q̇ j (t )

Tj (t )
, (33)

in agreement with the classical thermodynamic denition of

entropy production [33].

By inserting the expressions for heat and temperature from

Eqs. (7) and (20), we have that

σ̄ = −


j

1

T



T

0

dt


m

[m(t )− μ j (t )nm]ṗ
j
m(t )

×



1

T0
+ FTj

gTj
(t )



. (34)

This suggests the introduction of a new thermodynamic ux,

JTj
= −

1

T



T

0

dt gTj
(t )



m,n

γTj ,mW
j
mn(t )pn(t ), (35)

which allows us to rewrite the stochastic thermodynamics

formula for entropy production to a bilinear function of
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thermodynamic forces and uxes given by

σ̄ =


j

(F j J j + Fμ j
Jμ j

+ FTj
JTj

) (36)

with F j = F . This is in agreement with classical non-

equilibrium thermodynamics [1].

It is worth noting that the structure of Eq. (35) clearly

mimics that of the work and chemical uxes, Eqs. (28) and

(26). In fact one can easily verify that all three types of

thermodynamic uxes are of the form

Jα j
= −

1

T



T

0

dt gα j
(t )



m,n

γ α
mW

j
mn(t )pn(t ) (37)

with α = T, ,μ.

IV. ONSAGER COEFFICIENTS

As the thermodynamic uxes vanish in the absence of

thermodynamic forces, one expects that they depend linearly

on the thermodynamic forces Fβ near equilibrium, which

implies the following form for a ux Jα:

Jα =


β

Lα,βFβ , (38)

where Lα,β are the so-called Onsager coefcients. From

Eq. (36), the entropy production rate σ̄ is depicted as a

quadratic function of the thermodynamic forces,

σ̄ =


α,β

FαLα,βFβ . (39)

In the absence of odd parity variables (such as magnetic

elds), the Onsager coefcients of steady-state systems gen-

erally satisfy the Onsager reciprocal relations, Lα,β = Lβ,α .

This is no longer the case for systems with time-dependent

driving, since the driving breaks the time-reversal symmetry.

In this instance, Onsager symmetry is replaced by the weaker

Onsager-Casimir symmetry, which relates the Onsager coef-

cients under time-forward driving to the cross-coefcient of

time-inverted driving,

Lα,β = L̃β,α, (40)

where the tilde stands for time inverted driving, g̃α (t ) =

gα (−t ).

Our aim here is to evaluate the Onsager coefcients and

to prove the Onsager-Casimir reciprocal relations for a pe-

riodically driven system in contact with multiple reservoirs.

By expanding Eq. (37) up to rst order in the thermodynamic

forces, we verify that Jα has two terms, one associated with

the rst order expansion of the transition matrix W
j
mn [from

Eqs. (11) and (12)] and the other with the expansion of the

probability distribution pn(t ) [from Eq. (17)]. The total ux

then reads Jα j
= J (1)α j

+ J (2)α j
with

J (1)α j
= −



β



1

T



T

0

dt gα j
(t )gβ j

(t )


m,n

γ α
mW

eq, j
mn γ β

n peqn



Fβ j
,

(41)

and

J (2)α j
= −



β, j

⎡

⎣

1

T



T

0

dt

 ∞

0

dτ gα j
(t )gβ j (t − τ )

×


k,l,m,n

γ α
mW

eq, j
mn (eW

eqτ )nkW
eq, j

kl
γ
β

l
p
eq

l

⎤

⎦Fβ j , (42)

respectively. One can easily see that the rst ux depends

solely on the thermodynamic forces associated with the same

reservoir, while the second ux is dependent on all thermody-

namic forces. Using the linearized expressions, one can now

associate an Onsager matrix with each of those uxes, J (1)α j
=



β L
(1)
α j ,β j

Fβ j
and J (2)α j

=


β, j L
(2)
α j ,β j

Fβ j , where the Onsager

coefcients are given by

L
(1)
α j ,β j

= −
1

T



T

0

dt gα j
(t )gβ j

(t )


m,n

γ α
mW

eq, j
mn γ β

n peqn (43)

and

L
(2)
α j ,β j

= −
1

T



T

0

dt

 ∞

0

dτ gα j
(t )gβ j (t − τ )

×


k,l,m,n

γ α
mW

eq, j
mn (eW

eqτ )nkW
eq, j

kl
γ
β

l
p
eq

l
(44)

with L
(1)
α j ,β j

= 0 for j = j. The total Onsager matrix is the

sum of these two matrices, Lα j ,β j = L
(1)
α j ,β j

+ L
(2)
α j ,β j

. This

structure for the Onsager coefcients resembles the one found

for a class of quantum mechanical systems studied in [16].

We are now ready to study the reciprocal relations for

L
(1)
α j ,β j

and L
(2)
α j ,β j

. Remarkably, both Onsager matrices will

satisfy an Onsager-Casimir relation separately, which implies

that the total Onsager matrix will satisfy the same Onsager-

Casimir symmetry. We rst look at L
(1)
α j ,β j

. One can easily

verify that these coefcients are invariant under time-reversal

by replacing gα (t ) and gβ (t ) by gα (−t ) and gβ (−t ) and doing

a change of integration variable to t  = −t . Subsequently, tak-

ing into account the detailed balance condition, one can show

that


m,n γ
β
n W

eq, j
nm γ α

m p
eq
m =



m,n γ
α
mW

eq, j
mn γ β

n p
eq
n and hence

the right-hand side of Eq. (43) becomes

L
(1)
α j ,β j

= −
1

T



T

0

dt g̃β j
(t )g̃α j

(t )


m,n

γ β
n W

eq, j
nm γ α

m peqm

= L̃
(1)
β j ,α j

, (45)

which proves the Onsager-Casimir symmetry for L
(1)
α j ,β j

.

The proof of the second term can be done in a similar

way. We start by taking the time transformation −t = t  − τ

in Eq. (44),

L
(2)
α j ,β j

=

⎡

⎣

1

T

 ∞

0

dτ

 −T +τ

τ

dt  gα j
(−t  + τ )gβ j (−t )

×


k,l,m,n

γ α
mW

eq, j
mn (eW

eqτ )nkW
eq, j

kl
γ
β

l
p
eq

l

⎤

⎦. (46)

022141-4



GENERAL LINEAR THERMODYNAMICS FOR … PHYSICAL REVIEW E 100, 022141 (2019)

Due to the periodicity of the drivings, the rst integral can be

shifted by T − τ , allowing us to rewrite it as

L
(2)
α j ,β j

= −

⎡

⎣

1

T



T

0

dt 
 ∞

0

dτ g̃α j
(t  − τ )g̃β j (t

)

×


k,l,m,n

γ α
mW

eq, j
mn (eW

eqτ )nkW
eq, j

kl
γ
β

l
p
eq

l

⎤

⎦. (47)

By once again appealing to the detailed balance condition, one

can show that


k,l,m,n

γ α
mW

eq, j
mn (eW

eqτ )nkW
eq, j

kl
γ
β

l
p
eq

l

=


k,l,m,n

γ
β

l
W

eq, j

lk
(eW

eqτ )knW
eq, j
nm γ α

m peqm , (48)

and hence L
(2)
α j ,β j

becomes

L
(2)
α j ,β j

= −

⎡

⎣

1

T



T

0

dt 
 ∞

0

dτ g̃β j (t
)g̃α j

(t  − τ )

×


k,l,m,n

γ
β

l
W

eq, j

lk
(eW

eqτ )knW
eq, j
nm γ α

m peqm

⎤

⎦. (49)

The right-hand side of Eq. (49) is just the Onsager coefcient

L̃
(2)
β
j
 ,α j

. This completes the proof of the Onsager-Casimir sym-

metry. We note that this symmetry relation can alternatively

be proven using the uctuation theorem [34].

These results also implies an Onsager-Casimir relation for

any combination of Jα,i’s. For example, we dene

J i =


α, j

Ai;α, jJα, j, (50)

for some matrix A, where we assume A to be invertible. The

associated thermodynamic forces are given by

F 
i =



α, j

(A−1)α, j;iJα, j, (51)

as the entropy production rate σ =


i F

i J


i is independent of

the choice of J’s. The new Onsager matrix L is of the form

L = ALA†, (52)

and one can straightforwardly verify that this matrix should

satisfy the same Onsager-Casimir relations as the original

matrix L. This statement can be extended for matrices A that

are not invertible, as was shown in [7,35]. In particular, we can

conclude that Onsager-Casimir symmetry is also valid when

one only looks at the total uxes J , Jμ, and JT .

V. TWO LEVEL SYSTEMS

As an example, we consider a quantum dot, with one

active energy level, in contact with two electron reservoirs

at temperatures T1(t ) and T2(t ) and chemical potentials μ1(t )

and μ2(t ), respectively. The quantum dot can be empty or

occupied by a single electron with probabilities p0(t ) and

p1(t ) = 1− p0(t ), respectively. The temperature and chemi-

cal of the electron reservoirs as well as the energy of the quan-

tum dot are modulated according to Eqs. (7)–(9), respectively.

The total transition matrix W (t ) is the sum of both reservoir

contributionsW (t ) =W 1(t )+W (2)(t ) withW j (t ) given by

W j (t ) =



− jy(t )  j (1− y(t ))

 jy(t ) − j (1− y(t ))



,

where  j describes the interaction between the quantum dot

and the j-th reservoir and y(t ) is the Fermi-Dirac distribution

y(t ) = [1+ exp(((t )− μ(t ))/T (t ))]−1.

For simplicity, we set Fμ j
= 0, implying that the chemical

potentials of both reservoirs are the same and thereby ˙̄Wchem =

0. The thermodynamic variables are modulated via the driving

functions g (t ) =
√
2 sin(ωt + φ) and gTj

(t ) =
√
2 sin(ωt ),

respectively, where we have assumed that both reservoirs and

the electron level are all driven with the same frequency ω =

2π/T , but with a phase-difference φ between the driving of

the energy and the and temperature drivings.

The lowest order expressions for the energy and temper-

ature uxes J and JTj
and for the entropy production rate σ̄

can now be calculated using the expressions from the previous

section and are given by

J =
2π p

eq

0 p
eq

1

T (4π2 + χ̃2)
[2πFχ̃ + (0 − μ0)(χ̃ sin φ + 2π cosφ)](FT1χ1 + FT2χ2)], (53)

JT1 =
p
eq

0 p
eq

1 (0 − μ0)χ1

T (4π2 + χ̃2)
[F (4π

2 cosφ − 2πχ̃ sin φ)+ (0 − μ0)χ̃χ2(FT1 − FT2 )+ 4π2(0 − μ0)FT1 ], (54)

σ̄ =
4π2p

eq

0 p
eq

1

T (4π2+χ̃2)



F 2
 χ̃+(0 − μ0)

2


F 2
T1
χ1+F 2

T2
χ2



+ 2(0 − μ0) cosφF (FT1χ1 + FT2χ2)+
(0 − μ0)

2

4π2
χ1χ2χ̃ (FT1 − FT2 )

2



,

(55)

respectively, where χ j =  jT and χ̃ = (1 + 2)T . For

the special case, FT1 = FT2 and 1 = 2, the above ex-

pressions reduce to the single reservoir case up to

a factor 2 [24]. JT2 has a similar expression as JT1
with T1 and T2, F1 and F2 interchanged. One can

easily verify that these expressions satisfy Onsager-Casimir

symmetry.

These results can be used to optimize the amount of direct

work, ˙̄Wd = T0FJ that can be done by the system. In partic-

ular, an optimization with respect to F yields the following

022141-5



KAREL PROESMANS AND CARLOS E. FIORE PHYSICAL REVIEW E 100, 022141 (2019)

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0 0.5 1
0

50

100

150

200

250

300

0 0.5 1
0

10

20

30

40

0 0.5 1
0

5

10

15

20

25

χ
1
=0.01, χ

2
=2χ

1

χ
1
=10

2
, χ

2
=2χ

1

χ
1
=10, χ

2
=2χ

1

χ
1
=10

−2
, χ

2
=10

φ/π

(a) (b)

(c) (d)

FIG. 1. Reduced dissipated power− ˙̄WT /(T0p
eq

0 p
eq

1 F
2
T1
) (contin-

uous lines) and entropy production σ̄T /(p
eq

0 p
eq

1 F
2
T1
) (dashed lines)

versus φ for distinct values of couplings χ1 and χ2. In all cases we

considered FT2 = 2FT1 .

relation for the maximum direct power:

− ˙̄Wd;max =
p
eq

0 p
eq

1 T0(0 − μ0)
2(FT1χ1 + FT2χ2)

2

4χ̃T (4π2 + χ̃2)

× (χ̃ sin φ + 2π cosφ)2. (56)

Figure 1 depicts the behavior of σ and ˙̄W versus φ for distinct

couplings χ1 and χ2 with F given by its optimal value. In

the limit of low (large) “effective” couplings, χ̃  1 (χ̃ 
1), the work output is maximal (minimum) when the driving

of the work source is in phase with that of the heat sources,

φ = 0 and minimum (maximum) when the driving is out of

phase, φ = π/2, in accordance with Eq. (56). Conversely, for

the above choice of F , the positions of maxima and minima

of the entropy production fulll the above relation

tan φ =



−
χ̃2 + 12π2 ±



χ̃4 + 40χ̃2π2 + 144π4

4πχ̃



, (57)

where +(−) denote to the maximum (minimum). They ap-

proach π/2 (maximum) and φ = 0 (minimum) for χ̃  1

and χ̃  1, respectively and deviate from these limits for

intermediate coupling sets.

Similar analytic optimizations for other thermodynamic

uxes can also be performed. For instance, by optimizing
˙̄W with respect to both F and the phase-difference φ, the

expression for ˙̄Wmax becomes

− ˙̄Wd;max =
p
eq

0 p
eq

1 T0(0 − μ0)
2(FT1χ1 + FT2χ2)

2

4χ̃T
, (58)

where the optimal phase-difference and amplitude are given

by

tan φ =



χ̃

2π



, (59)

F = −
(0 − μ0)

4πχ̃



4π2 + χ̃2(FT1χ1 + FT2χ2). (60)

VI. CONCLUSIONS

In this paper, we have derived a general linear description

for the thermodynamics of Markov systems in contact to

multiple reservoirs, using the framework of stochastic ther-

modynamics. We have shown that the thermodynamic uxes

such as direct and chemical work and heat, can be written in a

general form, as functions of the driving and the equilibrium

properties of the system. The entropy production is obtained

as a bilinear function of thermodynamic forces and associated

uxes. Furthermore, we calculated all Onsager coefcients

and showed that they satisfy a generalized Onsager-Casimir

relation.

Finally, we mention some interesting directions for fur-

ther research. Firstly, it would be interesting to extend our

analysis to higher order response coefcients and to study

the resulting constraints on heat engines [36,37]. Secondly,

it would be very interesting to see if our results can be

extended to quantum mechanical systems and systems with

strong coupling [38,39]. Finally, it should be no problem to

test our predictions, such as the generalized Onsager-Casimir

relation, with state-of-the-art experimental setups [40,41].
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