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Abstract

Stochastic thermodynamics as reviewed here systematically provides a framework for

extending the notions of classical thermodynamics such as work, heat and entropy production

to the level of individual trajectories of well-dened non-equilibrium ensembles. It applies

whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant

temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps,

polymers in external ow, enzymes and molecular motors in single molecule assays, small

biochemical networks and thermoelectric devices involving single electron transport. For such

systems, a rst-law like energy balance can be identied along uctuating trajectories. For a

basic Markovian dynamics implemented either on the continuum level with Langevin

equations or on a discrete set of states as a master equation, thermodynamic consistency

imposes a local-detailed balance constraint on noise and rates, respectively. Various integral

and detailed uctuation theorems, which are derived here in a unifying approach from one

master theorem, constrain the probability distributions for work, heat and entropy production

depending on the nature of the system and the choice of non-equilibrium conditions. For

non-equilibrium steady states, particularly strong results hold like a generalized

uctuation–dissipation theorem involving entropy production. Ramications and applications

of these concepts include optimal driving between specied states in nite time, the role of

measurement-based feedback processes and the relation between dissipation and

irreversibility. Efciency and, in particular, efciency at maximum power can be discussed

systematically beyond the linear response regime for two classes of molecular machines,

isothermal ones such as molecular motors, and heat engines such as thermoelectric devices,

using a common framework based on a cycle decomposition of entropy production.

(Some gures may appear in colour only in the online journal)

This article was invited by Erwin Frey.
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1. Introduction

1.1. From classical to stochastic thermodynamics

Classical thermodynamics, at its heart, deals with general

laws governing the transformations of a system, in particular,

those involving the exchange of heat, work and matter with

an environment. As a central result, total entropy production

is identied that in any such process never decreases,

leading, inter alia, to fundamental limits on the efciency

of heat engines and refrigerators. The thermodynamic

characterization of systems in equilibrium gets its microscopic

justication from equilibrium statistical mechanics which

states that for a system in contact with a heat bath the

probability to nd it in any specic microstate is given by

the Boltzmann factor. For small deviations from equilibrium,

linear response theory allows one to express transport

properties caused by small external elds through equilibrium

correlation functions. On a more phenomenological level,

linear irreversible thermodynamics provides a relation between

such transport coefcients and entropy production in terms of

forces and uxes. Beyond this linear response regime, for a

long time, no universal exact results were available.

Over the last 20 years fresh approaches have revealed

general laws applicable to non-equilibrium system thus

pushing the range of validity of exact thermodynamic

statements beyond the realm of linear response deep into

the genuine non-equilibrium region. These exact results,

which become particularly relevant for small systems with

appreciable (typically non-Gaussian) uctuations, generically

refer to distribution functions of thermodynamic quantities

such as exchanged heat, applied work or entropy production.

First, for a thermostatted shear-driven uid in contact

with a heat bath, a remarkable symmetry of the probability

distribution of entropy production in the steady state was

discovered numerically and justied heuristically by Evans

et al [1]. Now known as the (steady-state) uctuation theorem

(FT), it was rst proven for a large class of systems using

concepts from chaotic dynamics by Gallavotti and Cohen [2],

later for driven Langevin dynamics by Kurchan [3] and for

driven diffusive dynamics by Lebowitz and Spohn [4]. As

a variant, a transient uctuation theorem valid for relaxation

toward the steady state was found by Evans and Searles [5].

Second, Jarzynski proved a remarkable relation which

allows one to express the free energy difference between

two equilibrium states by a non-linear average over the work

required to drive the system in a non-equilibrium process

from one state to the other [6, 7]. By comparing probability

distributions for the work spent in the original process with

the time-reversed one, Crooks found a ‘renement’ of the

Jarzynski relation (JR), now called the Crooks uctuation

theorem [8, 9]. Both this relation and another renement

of the JR, the Hummer–Szabo relation (HSR) [10], became

particularly useful for determining free energy differences and

landscapes of biomolecules. These relations are the most

prominent ones within a class of exact results (some of which
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were found even earlier [11, 12] and then rediscovered) valid

for non-equilibrium systems driven by time-dependent forces.

A close analogy to the JR, which relates different equilibrium

states, is the Hatano–Sasa relation that applies to transitions

between two different non-equilibrium steady states [13].

Third, for drivenBrownianmotion, Sekimoto realized that

two central concepts of classical thermodynamics, namely the

exchanged heat and the applied work, can be meaningfully

dened on the level of individual trajectories [14, 15]. These

quantities entering the rst law become uctuating ones giving

birth to what he called stochastic energetics as described in

his monograph [16]. Fourth, Maes emphasized that entropy

production in themedium is related to that part of the stochastic

action which determines the weight of trajectories that is odd

under time reversal [17, 18].

Finally, building systematically on a concept briey

noticed previously [8, 19], a unifying perspective on these

developments emerged by realizing that in addition to the

uctuations of the entropy production in the heat bath one

should similarly assign a uctuating, or ‘stochastic’, entropy

to the system proper [20]. Once this is carried out, the key

quantities known from classical thermodynamics are dened

along individual trajectories where they become accessible to

experimental or numerical measurements. This approach of

taking both energy conservation, i.e. the rst law, and entropy

production seriously on this mesoscopic level has been called

stochastic thermodynamics [21], thus revitalizing a notion

originally introduced by the Brussels school in the mid-1980s

where it was used on the ensemble level for chemical non-

equilibrium systems [22, 23].

1.2. Main features of stochastic thermodynamics

Stochastic thermodynamics as understood here applies to

(small) systems such as colloidal particles, (bio)polymers

(such as DNA, RNA and proteins), enzymes and molecular

motors. All these systems are embedded in an aqueous

solution. Three types of non-equilibrium situations can be

distinguished for these systems. First, one could prepare

the system in a non-equilibrium initial state and study the

relaxation toward equilibrium. Second, genuine driving can

be caused by the action of time-dependent external forces,

elds, ows or unbalanced chemical reactions. Third, if the

external driving is time-independent the system will reach

a non-equilibrium steady state (NESS). For this latter class,

particularly strong exact results exist. In all cases, even

under such non-equilibrium conditions, the temperature of

the system, which is the same as that of the embedding

solution, remains well-dened. This property together

with the related necessary time-scale separation between the

observable, typically slow, degrees of freedom of the system

and the unobservable fast ones made up by the thermal bath

(and, in the case of biopolymers, by fast internal ones of the

system) allows for a consistent thermodynamic description.

The collection of the relevant slow degrees of freedom

makes up the state of the system. Since this state changes

either due to the driving or due to the ever present uctuations,

it leads to a trajectory of the system. Such trajectories belong

to an ensemble which is fully characterized by the distribution

of the initial state, by the properties of the thermal noise acting

on the system and by specifying the (possibly time-dependent)

external driving. The thermodynamic quantities dened along

the trajectory like appliedwork and exchanged heat thus follow

a distribution which can be measured experimentally or be

determined in numerical simulations.

Theoretically, the time-scale separation implies that the

dynamics becomes Markovian, i.e. the future state of the

system depends only on the present one with nomemory of the

past. If the states are made up by continuous variables (such

as position), the dynamics follows a Langevin equation for an

individual system and a Fokker–Planck equation for the whole

ensemble. Sometimes it is more convenient to identify discrete

states with transition rates governing the dynamics which, on

the ensemble level, leads to a master equation.

Within such a stochastic dynamics, the exact results

quoted above for the distribution functions of certain

thermodynamic quantities follow universally for any system

from rather unsophisticated mathematics. It is sufcient to

invoke a ‘conjugate’ dynamics, typically, but not exclusively,

time reversal, to derive these theorems in a few lines.

Essentially, they lead to universal constraints on these

distributions. One inevitable consequence of these theorems

is the occurrence of trajectories with negative total entropy

production. Such events have occasionally been called

(transient) violations of the second law. In fairness to classical

thermodynamics, however, one should emphasize that this

classical theory ignores uctuations. If the second law is

understood as referring to the mean entropy production, it

is indeed conrmed by these more recent exact relations.

Moreover, they show that the probability for such events

becomes typically exponentially small in the relevant system

size which means that one has to sample exponentially many

trajectories in order to observe these ‘violations’.

Since these constraints on the distributions are so

universal, one might suspect that they are useless for

uncovering system-specic properties. Quite to the contrary,

some of them offer a surprising relation between equilibrium

and non-equilibrium properties with the JR as the most

prominent and useful example. Moreover, such constraints can

be used as an obvious check whether the assumptions of the

model apply to any particular system. Finally, studying non-

universal features of these distribution functions and trying to

nd further common aspects in these has become an important

part of the activities in this eld.

Going beyond the thermodynamic framework, it turns

out that many of the FTs hold formally true for any kind

of Markovian stochastic dynamics. The thermodynamic

interpretation of the involved quantities as heat and work is

not mandatory to derive such a priori surprising relationships

between functionals dened along dynamic trajectories.

1.3. Hamiltonian, thermostatted and open quantum dynamics

Even though I will focus in the main part of this review on

systems described by a stochastic dynamics, it is appropriate

to mention briey alternative approaches as some of the FTs

have originally been derived using a deterministic framework.
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Hamiltonian dynamics works, in principle, if the external

driving is modeled by a time-dependent potential arising, e.g.,

from a movable piston, tip of an atomic force microscope,

or optical tweezer. Conceptually, one typically requires

thermalized initial conditions, then cuts off the system from

the heat bath leading to the deterministic motion and nally

one has to reconnect the heat bath again. In a second variant,

the heat bath is considered to be part of the system but one

then has to follow all degrees of freedom. One disadvantage

of Hamiltonian dynamics is that it cannot deal with a genuine

NESS, which is driven by a time-independent external eld or

ow, since such a setting inevitably heats up the system.

Thermostatted dynamics can deal with NESSs. Here,

one keeps deterministic equations of motion and introduces

a friction term making sure that on average the relevant

energy (kinetic or total, depending on the scheme) does not

change [24].

Even though a deterministic dynamics is sometimes

considered to be more fundamental than a stochastic one,

the latter has at least three advantages from the perspective

held in this review. First, from a practical point of view,

in soft matter and biophysics a description focusing on the

relevant (and measurable) degrees of freedom and ignoring

water molecules from the outset has a certain economical

appeal. Second, stochastic dynamics can describe transitions

between discrete states as in (bio)chemical reactions with

essentially the same conceptual framework used for systems

with continuous degrees of freedom. Third, the mathematics

required for deriving the exact relations and for stating their

range of validity is surprisingly simple compared with what is

required for dealing with NESSs in the deterministic setting.

Open quantum systems will not be discussed explicitly in

this review. Some of the FTs can indeed be formulated for

these systems, sometimes at the cost of requiring somewhat

unrealisticmeasurements at the beginning and end of a process,

as reviewed in [25, 26]. The results derived anddiscussed in the

following, however, are directly applicable to open quantum

systems whenever coherences, i.e. the role of non-diagonal

elements in the density matrix, can be ignored. The dynamics

of the driven or open quantum system is then equivalent to a

classical stochastic one. For the validity of the exact relations

in these cases, the quantum-mechanical origin of the transition

rates is inconsequential.

1.4. Scope and organization of this review

In writing this review, apart from focusing entirely on systems

governed by Markovian stochastic dynamics, I have been

guided by the following principles concerning format and

content.

First, I have tried to present the eld in a systematic order

(and notation) rather than to follow the historical development

which has been briey alluded to in the introductory section

above. Such an approach leads to a more concise and coherent

presentation. Moreover, I have tried to keep most of the more

technical parts (some ofwhich are original) still self-contained.

Both features should help those using this material as a basis

for courses such as those which I have given several times at

the University of Stuttgart and at summer schools in Beijing,

Boulder and Jülich.

Second, as a consequence of the more systematic

presentation, experimental, analytical and numerical case

studies of specic systems are mostly grouped together and

typically placed after the general theory where they t best.

Third, for the exact results the notions ‘theorem’,

‘equality’ and ‘relation’ are used here in no particular

hierarchy. I rather try to follow the practice established in

the eld so far. In particular, it is not implied that a result

called here ‘theorem’ is in any sense deeper than another one

called ‘relation’.

This review starts in section 2 by introducing a paradigm

for this eld which is a colloidal particle driven by a

time-dependent force as it has been realized in several

experiments. Using this system, the main concepts of

stochastic thermodynamics, such as work, heat and entropy

changes along individual trajectories, will be introduced. At

the end of this section, simple generalizations of driven

one-dimensional motion such as three-dimensional motion,

coupled degrees of freedom and motion in external ow are

discussed.

A general classication and a physical discussion of the

major FTs dealing with work and the various contributions to

entropy production follows in section 3. In section 4, I present

a unifying perspective on basically all knownFTs for stochastic

dynamics using the concept of a conjugate dynamics. It

is shown explicitly how these FTs follow from one master

theorem. Section 5 contains an overview of experimental,

analytical or numerical studies of Langevin-type dynamics in

specic systems. Section 6 deals with Markovian dynamics

on a discrete set of states for which FTs hold even without

assuming a thermodynamic structure.

The second part of the review deals with ramications,

consequences and applications of these concepts. In section 7,

the optimal driving of such processes is discussed and the

relation between irreversibility and the amount of dissipation

derived. Both concepts can then be used to discuss the role

of measurements and (optimal) feedback in these systems.

Section 8 deals with generalizations of the well-known

uctuation–dissipation theorem (FDT) to NESSs where it is

shown that stochastic entropy plays a crucial role.

As one paradigm formore complex systems, biomolecular

systems are discussed in section 9 where special emphasis

is given to the role of time-scale separation between the fast

(unobservable) degrees of freedom making up a well-dened

heat bath for the non-equilibrium processes and the slow

variables caused bymechanical or chemical imbalances. From

a conceptual point of view the second essential new aspect

of these systems is that each of the states is composed of

many microstates which leads to the crucial notion of intrinsic

entropy that enters some of the exact relations in a non-

trivial way.

Coming back to the issues that stood at the origin of

thermodynamics, the nal two sections discuss the efciency

and optimization of nano- and micro-engines and devices

where it is useful to distinguish isothermal engines such as

molecular motors discussed in section 10 from heat engines

4
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such as thermoelectric devices treated in section 11. A brief

summary and a few perspectives are sketched in section 12.

1.5. Complementary reviews

A selection of further reviews dealingwith the topics discussed

in therst part of this paper can roughly be grouped as follows.1

The inuential essay [27] had an introductory character.

More recent non-technical accounts have been given by

Jarzynski [28] and van den Broeck [29] who both emphasize

the relation of the FTs with irreversibility and time’s arrow.

Other brief reviews by some of the main proponents include

[17, 30–32] and the contributions in the collection [33]. Ritort

has written a review on the role of non-equilibrium uctuations

in small systems with special emphasis on the applications to

biomolecular systems [34]. A review focusing on experimental

work by one of the main groups working on FTs is [35].

For stochastic dynamics based on the master equation,

a comprehensive derivation of FTs has been given by Harris

and Schütz [36]. The FT in the context of thermostatted

dynamics has been systematically reviewed by Evans and

Searles [37]. From the perspective of chaotic dynamics it

is treated in Gallavotti’s monograph [38]. The links between

different approaches and rigorousmathematical statements are

surveyed in [39–42].

Stochastic thermodynamics focuses on a description of

individual trajectories as does an alternative approach by

Attard introducing a ‘second entropy’ [43]. On a more coarse-

grained level, phenomenological thermodynamic theories of

non-equilibrium systems have been developed inter alia under

the label of ‘extended irreversible thermodynamics’ [44],

‘GENERIC’ [45], ‘mesoscopic dynamics of thermodynamic

systems’ [46] and ‘steady-state thermodynamics’ [47, 48].

Nice reviews covering related recent topics in non-

equilibrium physics are [49, 50].

2. Colloidal particle as paradigm

The main concepts of stochastic thermodynamics can be

introduced using as a simple model system a colloidal particle

conned to one spatial dimension, which can arguably serve

as the paradigm for the eld.

2.1. Stochastic dynamics

The overdamped motion x(τ ) of a colloidal particle (or any

other system with a single continuous degree of freedom)

can be described using three equivalent but complementary

descriptions of stochastic dynamics, the Langevin equation,

the path integral and the Fokker–Planck equation.

The Langevin equation reads

ẋ = µF(x, λ) + ζ = µ(−∂xV (x, λ) + f (x, λ)) + ζ. (1)

The systematic force F(x, λ) can arise from a conservative

potential V (x, λ) and/or be applied to the particle directly as

1 Relevant reviews for the more specic topics treated in the second part of

this review will be mentioned in the respective sections.

f (x, λ). In one dimension, a force f (x, λ) can always be

written as the gradient of a global potential except for the

important case of motion on a ring which imposes periodic

boundary conditions. Still, from a physical point of view

the two contributions to the total mechanical force should be

distinguished as will become clear when discussing the rst

law below. Moreover, in two or more dimensions, there are

forces which cannot even locally be written as a gradient. Both

contributions to the force may be time-dependent through an

external control parameter λ(τ ) varied from λ(0) ≡ λ0 to

λ(t) ≡ λt according to some prescribed protocol.

The thermal noise is Gaussian with correlations

ζ(τ )ζ(τ ) = 2Dδ(τ − τ ). (2)

In equilibrium, D becomes the diffusion constant, which is

related to the mobility µ by the Einstein relation

D = T µ (3)

where T is the temperature of the surrounding medium with

Boltzmann’s constant kB set to unity throughout this review to

make entropy dimensionless. In stochastic thermodynamics,

one assumes that the strength of the noise as given by D still

obeys the Einstein relation (3) and is thus not affected by the

presence of a time-dependent force. The range of validity

of this crucial assumption can be tested experimentally or in

simulations by comparing with theoretical results derived on

the basis of this assumption.

The Langevin dynamics generates trajectories x(τ )

starting at x(0) ≡ x0 with a weight

p[x(τ )|x0] = N exp[−A([x(τ ), λ(τ )])] (4)

where

A([x(τ ), λ(τ )]) ≡

 t

0

dτ [(ẋ − µF)2/4D + µ∂xF/2] (5)

is the ‘action’ associated with the trajectory. The last term

arises from the Stratonovich convention for the discretization

in the Jacobian when the weight for a noise history [ζ(τ )]

is expressed by [x(τ )]. This symmetric discretization is used

implicitly throughout this review. Path-dependent observables

[x(τ )] can then be averaged using this weight in a path

integral which requires a path-independent normalization N

such that summing the weight equations (4), (5) over all paths

is 1. Throughout the review averages using this weight and a

given initial distribution p0(x) will be denoted by . . . as in

[x(τ )] ≡



dx0



d[x(τ )][x(τ )]p[x(τ )|x0]p0(x0) (6)

for any functional [x(τ )].

Equivalently, the Fokker–Planck equation for the

probability p(x, τ ) to nd the particle at x at time τ is

∂τp(x, τ ) = − ∂xj (x, τ )

= − ∂x (µF(x, λ)p(x, τ )−D∂xp(x, τ )) , (7)

where j (x, τ ) is the probability current. This partial differen-

tial equation must be augmented by a normalized initial distri-

bution p(x, 0) ≡ p0(x). For further calculations, it is useful

to dene a (time-dependent) mean local velocity

ν(x, τ ) ≡ j (x, τ )/p(x, τ ). (8)

5
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Figure 1. Colloidal particle driven along a periodic potential
V (x, λ) by a non-conservative force f (λ). In a NESS, the external
parameter λ is independent of time.

More technical background concerning these three

equivalent descriptions of Markovian stochastics dynamics of

a continuous degree of freedom is provided in the monographs

[51–54].

2.2. Non-equilibrium steady states

For a time-independent control parameter λ, any initial

distribution will nally reach a stationary state ps(x, λ). For

f = 0, this stationary state is the thermal equilibrium2,

peq(x, λ) = exp[−(V (x, λ)− F(λ))/T ], (9)

with the free energy

F(λ) ≡ −T ln



dx exp[−V (x, λ)/T ]. (10)

A non-conservative force acting on a ring as shown in

gure 1 generates a paradigm for a genuine NESS with a

stationary distribution

ps(x, λ) ≡ exp[−φ(x, λ)], (11)

where φ(x, λ) is the ‘non-equilibrium’ potential. In one

dimension, ps(x, λ) can be obtained explicitly by quadratures

[52] or by an intriguing mapping to an equilibrium problem

[55]. Characteristic for such a NESS is a steady current

j s(x) = µF(x)ps(x)−D∂xp
s(x) ≡ νs(x)ps(x) (12)

with the stationary mean local velocity νs(x). Even for time-

dependent driving, one can express the total mechanical force

F(x, λ) = [νs(x, λ)−D∂xφ(x, λ)]/µ (13)

through quantities refering to the corresponding stationary

state which is sometimes helpful.

Occasionally, we will use . . .eq and . . .s to emphasize

when averages or correlation functions are taken in genuine

equilibrium and in a NESS, respectively.

2 Strictly speaking, one has to exclude the case where boundary conditions

on a nite interval for x impose a stationary current.

2.3. Stochastic energetics

2.3.1. The rst law. Sekimoto suggested to endow the

Langevin dynamics with a thermodynamic interpretation by

applying the notions appearing in the rst law

d̄w = dE +d̄q (14)

to an individual uctuating trajectory [14, 15]. Throughout the

paper, we use the convention that work applied to the particle

(or more generally system) is positive as is heat transferred or

dissipated into the environment.

It is instructive rst to identify the rst law for a particle

in equilibrium, i.e. for f = 0 and constant λ. In this

case, no work is applied to the system and hence an increase

in internal energy, dened by the position in the potential,

dE = dV = (∂xV ) dx = − d̄q, must be associated with

heat taken up from the reservoir.

Applying work to the particle either requires a time-

dependent potential V (x, λ(τ )) and (or) an external force

f (x, λ(τ )). The increment in work applied to the particle then

reads

d̄w = (∂V/∂λ) dλ + f dx, (15)

where the rst term arises from changing the potential at xed

particle position. Consequently, the heat dissipated into the

medium must be identied with

d̄q = d̄w − dV = F dx. (16)

This relation makes physical sense since in an overdamped

system the total mechanical force times the displacement

corresponds to dissipation. Integrated over a time interval t ,

one obtains the expressions

w[x(τ )] =

 t

0

[(∂V/∂λ)λ̇ + f ẋ] dτ (17)

and

q[x(τ )] =

 t

0

dτ q̇ =

 t

0

F ẋ dτ (18)

and the integrated rst law

w[x(τ )] = q[x(τ )] +V = q[x(τ )] + V (xt , λt )− V (x0, λ0)

(19)

on the level of an individual trajectory.

The expression for the heat requires a prescription of how

to evaluateF ẋ. As above in the path integral, one has to use the

mid-point, i.e. Stratonovich rule for which the ordinary rules

of calculus for differentials and integrals apply.

The expression for the heat dissipated along the trajectory

x(τ ) can also be written in the form

q[x(τ )] = −T (A([x(τ ), λ(τ )])−A([x(t − τ ), λ(t − τ )])

= T ln
p[x(τ ), λ(τ )]

p[x̃(τ ), λ̃(τ )]
(20)

as a ratio involving the weight (5) for this trajectory given

its initial point x0 compared with the weight of the time-

reversed trajectory x̃(τ ) ≡ x(t−τ ) under the reversed protocol

λ̃(τ ) ≡ λ(t−τ ) for x̃0 = x(t) ≡ xt . This formulation points to

the deep relation between dissipation and time reversal which

repeatedly shows up in this eld.
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2.3.2. Housekeeping and ‘excess’ heat. Motivated by

steady-state thermodynamics, it will be convenient to split the

dissipated heat into two contributions [13, 47]

q ≡ qhk + qex. (21)

The housekeeping heat is the heat inevitably dissipated

in maintaining the corresponding NESS. For a Langevin

dynamics, it reads

qhk ≡

 t

0

dτ ẋ(τ )µ−1νs(x(τ ), λ(τ )). (22)

The ‘excess’ heat

qex = − (D/µ)

 t

0

dτ ẋ(τ )∂xφ(x, λ)

= T [−φ +

 t

0

dτ λ̇∂λφ] (23)

is the heat associated with changing the external control

parameter where we have used (13) and (18).

2.3.3. Heat and strong coupling. This interpretation of

the rst law and, in particular, of heat relies on the implicit

assumption that the unavoidable coupling between particle

(or, more generally, system) described by the slow variable

x and the degrees of freedom making up the heat bath neither

depends crucially on x nor on the control parameter λ. Such

an idealization may well apply to a colloidal particle in a

laser trap but will certainly fail for more complex systems like

biomolecules. In the following, we rst continue with this

simple assumption. In section 9.2, we discuss the general case

and point out which of the results derived in the following will

require a ramication. Roughly speaking, most of the FTs hold

true with minor modications whereas inferring heat correctly

indeed requires one more term compared with (16).

2.3.4. Alternative identication of work. The denition of

work (15) has been criticized for supposedly being in conict

with a more conventional view that work should be given by

force times displacement, see [56] and, for rebuttals, [57–59].

In principle, such a view could be integrated into the present

scheme by splitting the potential into two contributions,

V (x, λ) = V 0(x, λ0) + V ext(x, λ), (24)

the rst being an intrinsic time-independent potential, and

the second one a time-dependent external potential used to

transmit the external force. If one denes work as

d̄wext ≡ (−∂xV
ext(x, λ) + f ) dx, (25)

it is trivial to check that the rst law then holds in the form

d̄wext = dEext +d̄q (26)

with the corresponding change in internal energy dEext ≡

dV 0 = ∂xV
0 dx and the identication of heat (16) unchanged.

Clearly, within such a framework, it would be appropriate

to identify the internal energy with changes in the intrinsic

potential only. Integrated over a trajectory, this denition

of work differs from the previous one by a boundary term,

w = wext +V ext.

It is crucial to appreciate that exchanged heat as a physical

concept is, and should be, independent of the convention

regarding how it is split into work and changes in internal

energy. The latter freedom is inconsequential as long as

one stays within one scheme. A clear disadvantage of this

alternative scheme, however, is that changes in the free energy

of a system are no longer given by the quasi-static work

relating two states. In this review, we will keep the denitions

as introduced in section 2.3.1 and only occasionally quote

results for the alternative expression for work introduced in

this section.

2.4. Stochastic entropy

Having expressed the rst law along an individual trajectory, it

seems natural to ask whether entropy can be identied on this

level as well. For a simple colloidal particle, the corresponding

quantity turns out to have two contributions. First, the heat

dissipated into the environment should obviously be identied

with an increase in entropy of the medium

sm[x(τ )] ≡ q[x(τ )]/T . (27)

Second, one identies as a stochastic or trajectory dependent

entropy of the system the quantity [20]

s(τ ) ≡ − lnp(x(τ ), τ ) (28)

where the probability p(x, τ ) obtained by rst solving the

Fokker–Planck equation is evaluated along the stochastic

trajectory x(τ ). Thus, the stochastic entropy depends not only

on the individual trajectory but also on the ensemble. If the

same trajectory x(τ ) is taken from an ensemble generated by

another initial conditionp(x, 0), it will lead to a different value

for s(τ ).

In equilibrium, i.e. for f ≡ 0 and constant λ, the

stochastic entropy s(τ ) just dened obeys the well-known

thermodynamic relation, T S = E − F , between entropy,

internal energy and free energy in the form

T s(τ ) = V (x(τ ), λ)− F(λ), (29)

now along the uctuating trajectory at any time with the free

energy dened in (10) above.

Using the Fokker–Planck equation the rate of change of

the entropy of the system (28) follows as [20]

ṡ(τ ) = −
∂τp(x, τ )

p(x, τ )

∣

∣

∣

∣

x(τ )

+



j (x, τ )

Dp(x, τ )
−

µF(x, λ)

D



x(τ )

ẋ.

(30)

Since the very last term can be related to the rate of heat

dissipation in the medium (18), using D = T µ, one obtains

a balance equation for the trajectory-dependent total entropy

production as

ṡ tot(t) ≡ ṡm(t) + ṡ(τ ) = −
∂τp(x, τ )

p(x, τ )

∣

∣

∣

∣

x(τ )

+
j (x, τ )

Dp(x, τ )

∣

∣

∣

∣

x(τ )

ẋ.

(31)

7



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

The rst term on the right-hand side (rhs) signies a change in

p(x, τ )which can be due to a time-dependent λ(τ ) or, even for

a constant λ0, due to relaxation from a non-stationary initial

state p0(x) = ps(x, λ0).

As a variant on the trajectory level, occasionallyφ(x, λ) =

− lnps(x, λ) has been suggested as a denition of system

entropy. Such a choice is physically questionable as the

following example shows. Consider diffusive relaxation of

a localized initial distribution p0(x) in a nite region 0 6 x 6

L. Since ps(x) = 1/L, φ(x) will not change during this

process. On the other hand, such a diffusive relaxation should

clearly lead to an entropy increase. Only in cases where one

starts in a NESS and waits for nal relaxation, the change in

system entropy can also be expressed by a change in the non-

equilibrium potential according to s = φ.

2.5. Ensemble averages

Upon averaging, the expressions for the thermodynamic

quantities along the individual trajectory should become

the ensemble quantities of non-equilibrium thermodynamics

derived previously for such Fokker–Planck systems, see,

e.g., [19].

Averages for quantities involving the position x(τ ) of

the particle are most easily performed using the probability

p(x, τ ). Somewhat more delicate are averages over quantities

such as heat that involve products of the velocity ẋ and a

function g(x). These can be performed in two steps. First, one

can evaluate the average ẋ|x, τ  conditioned on the position

x in the spirit of the Stratonovich discretization as

ẋ|x, τ  ≡ lim
τ→0

(x(τ +τ )− x(τ )|x(τ ) = x

+ x(τ )− x(τ −τ )|x(τ ) = x) /(2τ ). (32)

The averages in the brackets on the rhs can be evaluated by

discretizing the path integral (equations (4) and (5)) for one

step. The rst term straightforwardly yields µF(x, τ )τ . In

the second one, the end-point conditioning is crucial which

leads to an additional contribution if the distribution is not

uniform3. The nal result is [20]

ẋ|x(τ ) = x = µF(x, τ )−D∂x lnp(x, τ ) ≡ ν(x, τ ). (33)

Any subsequent average over position is now trivial leading to

g(x)ẋ = g(x)ν(x, τ ) =



dxg(x)j (x, τ ). (34)

With these relations, one obtains, e.g., for the averaged

total entropy production rate from (31) the expression

Ṡ tot(τ ) ≡ ṡ tot(τ ) =



dx
j (x, τ )2

Dp(x, τ )
= ν(x, τ )2/D > 0,

(35)

3 Specically, using Bayes’ theorem, with

p[x(τ −τ ) = x − y | x(τ ) = x)] = p[x(τ ) = x | x(τ −τ ) = x − y]

×p(x − y, τ −τ )/p(x, τ )

≈ p[x(τ ) = x | x(τ −τ ) = x − y]

×(1− y∂x lnp(x, τ )−τ∂τ lnp(x, τ )),

the conditioned probability becomes an ordinary forward term. The

conditioned mean value of the increment y = x(τ )− x(τ −τ ) now follows

easily as y|x(τ ) = x = [µF(x, τ )− 2D∂x lnp(x, τ )]τ +O(τ 2).

where equality holds in equilibrium only. In a NESS,

ν(x, τ ) = νs(x) which thus determines the mean dissipation

rate. Averaging the increase in entropy of the medium along

similar lines leads to

Ṡm(τ ) ≡ ṡm(t) =



dxF(x, τ )j (x, τ )/T . (36)

Hence upon averaging, the increase in entropy of the system

proper becomes Ṡ(τ ) ≡ ṡ(τ ) = Ṡ tot(τ ) − Ṡm(τ ). On

the ensemble level, this balance equation for the averaged

quantities can also be derived directly from the ensemble

denition of the system entropy

S(τ ) ≡ −



dx p(x, τ ) lnp(x, τ ) = s(τ ) (37)

using the Fokker–Planck equation (7).

2.6. Generalizations

2.6.1. Underdamped motion. For some systems, it is

necessary to keep the inertial term which leads with mass m

and damping constant γ to the Langevin equation

mẍ + γ ẋ = −∂xV (x, λ) + f (λ) + ξ (38)

with the noise correlations ξ(τ )ξ(τ ) = 2γT δ(τ − τ ).

The internal energy now must include the kinetic energy,

dE = dV + mv dv, with v ≡ ẋ. Since the identication of

work (15) remains valid, the rst law becomes

d̄q = d̄w − dE = F dx −mv dv. (39)

Evaluating the stochastic entropy

s(τ ) ≡ − lnp(x(τ ), v(τ ), τ ) (40)

now requires a solution of the corresponding Fokker–Planck

equation

∂τp = −∂x(vp)− ∂v[[(−γ v +F)/m]− T (γ /m2)∂v]p (41)

for p = p(x, v, τ ) with an appropriate initial condition

p0(x, v).

2.6.2. Interacting degrees of freedom. The framework

introduced for a single degree of freedom can easily be

generalized to several degrees of freedom x obeying the

coupled Langevin equations

ẋ = µ[−∇V (x, λ) + f(x, λ)] + ζ, (42)

where V (x, λ) is a potential and f(x, λ) a non-conservative

force. The noise correlations

ζ(τ ) : ζ(τ ) = 2T µδ(τ − τ ), (43)

where : denotes a dyadic product, involve themobility tensorµ.

Simple examples of such system comprise a colloidal particle

in three dimensions, several interacting colloidal particles, or

a polymer where x labels the positions of monomers. If

8
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hydrodynamic interactions are relevant, the mobility tensor
will depend on the coordinates x.

The corresponding Fokker–Planck equation becomes

∂τp(x, τ ) = −∇j = −∇(µ(−∇V + f)p − T µ∇p) (44)

with the local (probability) current j.
In particular for a NESS, there are two major formal

differences comparedwith the one-dimensional case. First, the
stationary current js(x) becomesx dependent and, second, the
stationary distribution ps(x) ≡ exp[−φ(x)] or, equivalently,
the non-equilibrium potential is not known analytically except
for the trivial case that the total forces are linear in x.

The path integral for such a multivariate process has
been pioneered by Onsager and Machlup for linear processes
[60, 61] and by Graham for non-linear processes including a
spatially dependent diffusion constant [62, 63]. On a formal
level, all expressions discussed above for the simple colloidal
particle can easily be generalized to this multidimensional case
by replacing scalar operations by the corresponding vector or
matrix ones.

2.6.3. Systems in external ow. So far, we have assumed that
there is no overall hydrodynamic ow imposed on the system.
For colloids, however, external ow is a common situation.
Likewise, as we will see, colloids in moving traps can also
be described in a co-moving frame as being subject to some
ow. We therefore recall the modications required for the
basic notions of stochastic thermodynamics in the presence of
an external ow eld u(r) [64].

The Langevin equations for k = 1, . . . , N coupled
particles at positions rk reads

ṙk = u(rk) +


l

µ
kl
(−∇lV + fl) + ζk (45)

with the usual noise correlations

ζk(τ ) : ζ l(τ
) = 2T µ

kl
δ(τ − τ ). (46)

In such a system, the increments in external work and
dissipated heat are given by

d̄w ≡ ([∂τ + u(rk)∇k]V + fk[ṙk − u(rk)]) dt (47)

and

d̄q =d̄w − dV = ([ṙk − u(rk)][−∇kV + fk]) dt, (48)

respectively. Compared with the case without ow, the two
modications involve replacing the partial derivative by the
convective one and measuring the velocity relative to the
external ow velocity. These expressions guarantee frame
invariance of stochastic thermodynamics [64].

For the experimentally studied case of one-dimensional
colloid motion in a ow of constant velocity u discussed in
section 5.2.2, the Langevin equation simplies to

ẋ = u + µ(−∂xV + f ) + ζ (49)

and the ingredients of the rst law become

d̄w = (∂τV + u∂xV ) dt + f (ẋ − u) dt (50)

and
d̄q = (ẋ − u)[−∂xV + f ] dt. (51)

2.6.4. Inhomogeneous temperature. So far, it has been

assumed that the temperature of the surrounding heat bath is

uniform. The present formalism can be extended to a system

embedded in an externally imposed stationary temperature

gradient. In this case, the quantity T in (43) must be evaluated

at the instantaneous position of the corresponding particle.4

The same ramication has to be applied to all relations linking

exchanged heat with entropy changes of the medium. For

studying heat transport, similar models for particles on a lattice

coupled at the boundaries to heat baths of different temperature

using Langevin equations have been investigated as reviewed

in [65].

Thermophoresis of particles and thermodiffusion of

molecules (Soret effect) as reviewed in [66, 67] are further

effects of an inhomogeneous temperature. These phenomena

require a direct microscopic interaction between the molecule

or colloidal particle and the solvent which give rise to an

effective force that needs to be included in the Langevin or

Fokker–Planck description since in the absence of external

forces and interactions, a temperature gradient is not sufcient

to generate biased diffusion, i.e. a non-uniform distribution.

Finally, an even more subtle case is the phenomenon of

‘hot Brownian motion’ where a diffusing particle heated by

a laser acts as a local heat source [68–71]. The resulting

temperature eld is now coupled to the motion of the particle.

It will be interesting to see whether and how the concepts of

stochastic thermodynamics and the FTs to be discussed next

can be adapted to this type of system.

3. Fluctuation theorems

Fluctuation theorems express universal properties of the

probability distribution p() for functionals [x(τ )],

like work, heat or entropy change, evaluated along the

uctuating trajectories taken from ensembles with well-

specied initial distributions p0(x0). In this section, we give

a phenomenological classication into three classes according

to their mathematical appearance and point out some general

mathematical consequences. The most prominent ones will

then be discussed in physical terms with references to their

original derivation. For proofs of these relations within

stochastic dynamics from the present perspective, we provide

in section 4 the unifying one for all FTs that also shows that

there is essentially an innity of such relations.

3.1. Phenomenological classication

3.1.1. Integral uctuation theorems. A non-dimensionalized

functional[x(τ )] with probability distribution functionp()

obeys an integral uctuation theorem (IFT) if

exp(−) ≡



d p() exp(−) = 1. (52)

The convexity of the exponential functions then implies the

inequality

 > 0 (53)

4 Obviously, a complication occurs if hydrodynamically induced non-local

interactions between the particles are included since then it is not clear at

which of the two positions the temperature should be evaluated.
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which often represents a well-known thermodynamic

inequality related to the second law. With the exception of

the degenerate case, p() = δ(), the IFT implies that

there are trajectories for which  is negative. Such events

have sometimes then been characterized as ‘violating’ the

second law. Such a formulation is controversial since classical

thermodynamics, which ignores uctuations from the very

beginning, is silent on issues beyond its range of applicability.

The probability of such events quickly diminishes for negative

. Using (52), it is easy to derive for ω > 0 [72]

prob[ < −ω] 6

 −ω

−∞

d p() e−ω−
6 e−ω. (54)

This estimate shows that relevant ‘violations’ occur for  of

order 1. Restoring the dimensions in a system withN relevant

degrees of freedom,  will typically be of order NkBT which

implies that in a large system such events are exponentially

small, i.e. occur exponentially rarely. This observation

essentially reconciles the effective validity of thermodynamics

at themacro-scalewith the still correctmathematical statement

that even for large systems, in principle, such events must

occur.

An IFT represents one constraint on the probability

distribution p(). If it is somehow known that p() is a

Gaussian, the IFT implies the relation

(− )2 = 2 (55)

between variance and mean of .

3.1.2. Detailed uctuation theorems. A detailed uctuation

theorem (DFT) corresponds to the stronger relation

p(−)/p() = exp(−) (56)

for the pdf p(). Such a symmetry constrains ‘one half’ of

the pdf which means, e.g., that the even moments of  can be

expressed by the odd ones and vice versa. A DFT implies the

corresponding IFT trivially. Further statistical properties of

p() following from the validity of the DFT (and some from

the IFT) are derived in [73].

Depending on the physical situation, a variable obeying

the DFT has often been called to obey either a TFT or a steady-

state FT (SSFT). These notions will be explained below for the

specic cases.

3.1.3. (Generalized) Crooks uctuation theorems. These

relations compare the pdf p() of the original process one is

interested in with the pdf p†() of the same physical quantity

for a ‘conjugate’ (mostly the time-reversed) process. The

general statement then is that

p†(−) = p()e− (57)

which implies the IFT (but not the DFT) for  since p† is

normalized.

3.2. Non-equilibrium work theorems

These relations deal with the probability distribution p(w) for

work spent in driving the system from a (mostly equilibrium)

initial state to another (not necessarily equilibrium) state. They

require only a notion of work dened along the trajectory but

not yet the concept of stochastic entropy.

3.2.1. Jarzynski relation. In 1997, Jarzynski showed that the

work spent in driving the system from an initial equilibrium

state at λ0 via a time-dependent potential V (x, λ(τ )) for a time

t obeys [6]

exp(−w/T ) = exp(−F/T ), (58)

where F ≡ F(λt ) − F(λ0) is the free energy difference

between the equilibrium state corresponding to the nal value

λt of the control parameter and the initial state. In the

classication scheme proposed here, it can technically be seen

as the IFT for the (scaled) dissipated work

wd ≡ (w −F)/T . (59)

The paramount relevance of this relation—and its

originally so surprising feature—is that it allows one to

determine the free energy difference, which is a genuine

equilibrium property, from non-equilibriummeasurements (or

simulations). It represents a strengthening of the familiar

second law w > F which follows as the corresponding

inequality. It was originally derived using a Hamiltonian

dynamics but was soon shown to hold for stochastic dynamics

as well [7–9]. Its validity requires that one starts in the

equilibrium distribution but not that the system has relaxed at

time t into the new equilibrium. In fact, the actual distribution

at the end will be p(x, t) but any further relaxation at constant

λ would not contribute to the work anyway.

Within stochastic dynamics, the validity of the JR (as of

any other FT with a thermodynamic interpretation) essentially

rests on assuming that the noise in the Langevin equation (1)

is not affected by the driving. A related issue arises in the

Hamiltonian derivation of the JR which requires some care in

identifying the proper role of the heat bath during the process,

and, for the strongly coupled case, an appropriately dened

free energy [74, 75].

The JR has been studied for many systems analytically,

numerically and experimentally. Specic case studies for

stochastic dynamics will be classied and quoted in section 5.

As an important application, based on a generalization

introduced by Hummer and Szabo [10], the JR can be used

to reconstruct the free energy landscape of a biomolecule as

discussed in section 9.3.

3.2.2. Bochkov–Kuzovlev relation. The JR should be

distinguished from an earlier relation derived by Bochkov

and Kuzovlev [11, 12]. For a system initially in equilibrium

in a time-independent potential V0(x), which is for 0 6

τ 6 t subject to an additional space and time-dependent

force (possibly arising from an additional potential), the work

10
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(25) integrated over a trajectory obeys the Bochkov–Kuzovlev

relation (BKR)

exp[−wext/T ] = 1. (60)

In contrast to some claims, the BKR is different from the

JR since they apply a priori to somewhat different situations

[21, 76, 77]. The JR as discussed above applies to processes

in a time-dependent potential, whereas the BKR applies to a

process in a constant potential with some additional force. If,

however, in the latter case, this explicit force arises from a

potential as well, both the BKR and the JR (58) hold for the

respective forms of work.

3.2.3. Crooks uctuation theorem. In theCrooks relation, the

pdf for work p(w) spent in the original (the ‘forward’) process

is related to the pdf for work p̃(w) applied in the reversed

process where the control parameter is driven according to

λ̃(τ ) = λ(t − τ ) and one starts in the equilibrium distribution

corresponding to λ̃0 = λt . These two pdfs obey [8, 9]

p̃(−w)/p(w) = exp[−(w −F)/T ]. (61)

Hence, F can be obtained by locating the crossing of the

two pdfs which for biomolecular applications turned out to be

a more reliable method than using the JR. Clearly, the Crooks

relation implies the JR since p̃(w) is normalized. Technically,

the Crooks relation is of the type (57) for  = wd with the

conjugate process being the reversed one.

3.2.4. Further general results on p(w). Beyond the JR

and the CFT, further exact results on p(w) are scarce. For

systems with linear equations of motion, the pdf for work

(but not for heat) is a Gaussian for arbitrary time-dependent

driving [78, 79]. For slow driving, i.e. for trel/t  1 where

trel is the typical relaxation time of the system at xed λ and t

the duration of the process, an expansion based on this time-

scale separation yields a Gaussian for any potential [80]. Such

a result has previously been expected [81, 82] or justied by

invoking arguments based on the central limit theorem [83].

Two observations show, however, that such an expansion is

somewhat delicate. First, even in simple examples there occur

terms that are non-analytic in trel/t [80]. Second, for the

special case of a ‘breathing parabola’, V (x, λ) = λ(τ )x2/2,

any protocol with λ̇ > 0 leads to p(w) ≡ 0 for w < 0 which

is obviously violated by a Gaussian. How the latter effectively

emerges in the limit of slow driving is investigated in [84].

From another perspective, Engel [85, 86] investigated the

asymptotic behavior of p(w) for small T using a saddle point

analysis. The value of this approach is that it can provide

exact results for the tail of the distribution. Specic examples

show an exponential decay. Saha et al [87] suggest that the

work distribution for quite different systems can be mapped to

a class of universal distributions.

3.3. FTs for entropy production

3.3.1. Integral uctuation theorem. The total entropy

production along a trajectory as given by

s tot ≡ sm +s, (62)

with

s ≡ − lnp(xt , λt ) + lnp(x0, λ0) (63)

and sm dened in (27), obeys the IFT [20]

exp(−s tot) = 1 (64)

for arbitrary initial distribution p(x, 0), arbitrary time-

dependent driving λ(τ ) and an arbitrary length t of the process.

Formally, this IFT can be considered as a renement of

the second law, s tot > 0, which is the corresponding

inequality. Physically, however, it must be stressed that by

using the Langevin equation a fundamental irreversibility has

been implemented from the very beginning. Thus, this IFT

should denitely not be considered to constitute a fundamental

proof of the second law.

3.3.2. Steady-stateuctuation theorem. In aNESSwithxed

λ, the total entropy production obeys the stronger SSFT

p(−s tot)/p(s tot) = exp(−s tot) (65)

again for arbitrary length t . This relation corresponds to the

genuine ‘uctuation theorem’. It was rst found in simulations

of two-dimensional sheared uids [1] and then proven by

Gallavotti and Cohen [2] using assumptions about chaotic

dynamics. For stochastic diffusive dynamics as considered

specically in this review, it has been proven by Kurchan [3]

and Lebowitz and Spohn [4]. Strictly speaking, in these early

works the relation holds only asymptotically in the long-time

limit since entropy production had been associatedwithwhat is

here called entropy production in the medium. If one includes

the entropy change of the system (63), the SSFT holds even

for nite times in the steady state [20].

3.3.3. Transient uctuation theorem. The TFT pioneered by

Evans and Searles applies to relaxation toward a steady state

[5, 37, 88]. The ‘dissipation function’ t , which as dened

more precisely in section 4.4.5 is related to, but, in general,

different from total entropy production s tot, obeys

p(−t )/p(t ) = exp(−t ) (66)

for any length of trajectories t .

3.3.4. Hatano–Sasa relation. The Hatano–Sasa relation ap-

plies to systems with steady states ps(x, λ) = exp[−φ(x, λ)].

With the splitting of the dissipated heat into a housekeeping

and excess one (21), the IFT [13]

exp[−(φ + qex/T )] = 1 (67)

holds for any length of trajectory with φ ≡ φ(xt , λt ) −

φ(x0, λ0). The corresponding inequality

φ > −qex/T (68)

allows an interesting thermodynamic interpretation. The

left-hand side (lhs) can be seen as the ensemble entropy

change of the system in a transition from one steady state

11
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to another. Within the framework discussed in this review,

this interpretation is literally true provided one waits for nal

relaxation at constant λt since then s = φ. A recent

generalization of the HS relation leads to a variational scheme

for approximating the stationary state [89].

With the interpretation of the lhs as entropy change

in the system, the inequality (68) provides for transitions

between NESSs what the famous Clausius inequality does for

transitions between equilibrium states. The entropy change in

the system is at least as big as the excess heat owing into the

system. For transitions between NESSs, the inequality (68)

is sharper than the Clausius one (which still applies in this

case and becomes just s > −q/T ) since q scales with

the transition time whereas qex can remain bounded and can

actually approach equality in (68) for quasi-static transitions.

Experimentally, the Hatano–Sasa relation has been

veried for a colloidal particle pulled through a viscous liquid

at different velocities which corresponds to different steady

states [90].

3.3.5. IFT for housekeeping heat. Finally, it should be noted

that the second contribution to heat, the housekeeping heat,

also obeys an IFT [91]

exp[−qhk/T ] = 1 (69)

for arbitrary initial state, driving and length of trajectories.

4. Unication of FTs

Originally, the FTs have been found and derived on a case by

case approach. However, it has soon become clear that within

stochastic dynamics a unifying strategy is to investigate the

behavior of the system under time reversal. Subsequently, it

turned out that comparing the dynamics with its ‘dual’ one

[13, 92, 93], eventually also in connection with time reversal,

allows a further unication. In this section, we outline this

general approach and show how the prominent FTs discussed

above (and a few further ones mentioned below) t into, or

derive from, this framework. Even though this section is

inevitably somewhat technical and dense, it is self-contained.

It could be skipped by readers not interested in the proofs or

systematics of the FTs. For related mathematically rigorous

approaches to derive FTs for diffusive dynamics, see [94–97].

4.1. Conjugate dynamics

FTs for the original process with trajectories x(τ ), 0 6

τ 6 t , an initial distribution p0(x0) and a conditional weight

p[x(τ )|x0] are most generally derived by formally invoking

a ‘conjugate’ dynamics for trajectories x†(τ ). These are

supposed to obey a Langevin equation

ẋ† = µ†F †(x†, λ†) + ζ † (70)

with ζ †(τ )ζ †(τ ) = 2µ†T †δ(τ − τ ). The trajectories with

weight p†[x†(τ )|x†0 ] run over a time t and start with an initial

distribution p†(x
†
0). Averages of the conjugate dynamics will

be denoted by . . .†.

This conjugate dynamics is related to the original process

by a one-to-one mapping

{x(τ ), λ(τ ), F, µ, T } → {x†(τ ), λ†(τ ), F †, µ†, T †} (71)

which allows one to express all quantities occurring in the

conjugate dynamics in terms of the original ones.

The crucial quantity leading to the FTs is a master

functional given by the log-ratio of the unconditioned path

weights

R[x(τ )] ≡ ln
p[x(τ )]

p†[x†(τ )]

= ln
p0(x0)

p
†
0(x

†
0)

+ ln
p[x(τ )|x0]

p†[x†(τ )|x†0 ]
≡ R0 + R1 (72)

that consists of a ‘boundary’ term R0 coming from the two

initial distributions and a ‘bulk’ term R1.

Three choices for the conjugate dynamics and the

associated mapping have been considered so far. In all

cases, neither the temperature nor the functional form of the

mobilities have been changed for the conjugate dynamics, i.e.

T † = T and µ† = µ.

(i) Reversed dynamics: this choice corresponds to ‘time

reversal’. The mapping reads

x†(τ ) ≡ x(t−τ ) and λ†(τ ) ≡ λ(t−τ ) (73)

with no changes at the functional dependence of the force

from its arguments, i.e. F †(x†, λ†) = F(x†, λ†).

The weight of the conjugate trajectories is easily

calculated using the mapping (73) in the weight

(equations (4), (5)) leading to

R1 = A([x†(τ ), λ†(τ )])−A([x(τ ), λ(τ )])]

= sm = q/T , (74)

which is the part of the action A([x(τ ), λ(τ )]) that is odd

under time reversal.

This relation allows a deep physical interpretation. For

given initial point x0 and nal point xt , the log-ratio

between the probability to observe a certain forward

trajectory and the probability to observe the time-reversed

trajectory is given by the heat dissipated along the forward

trajectory.

(ii) Dual dynamics: this choice alters the equations of motion

for the x†(τ ) trajectories such that (i) the stationary

distribution remains the same for both processes and that

(ii) the stationary current for the dual dynamics is minus

the original one. Specically, this mapping reads [92]

F †(x†, λ†) = F(x†, λ†)− 2νs(x†, λ†)/µ (75)

which enters the conjugate Langevin equation (70) and

no modication for x and λ, i.e. x†(τ ) ≡ x(τ ) and

λ†(τ ) ≡ λ(τ ).

Calculating the action for the dual dynamics (70), the

functional R1 becomes

R1 = qhk/T ≡ shk. (76)
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(iii) Dual-reversed dynamics: for this choice, the dual

dynamics is driven with the time-reversed protocol, i.e.

the mapping of the force (75) is combined with the time

reversal (73). In this case, the functionalR1 becomes [92]

R1 = qex/T ≡ sex. (77)

In summary, depending on the form of the conjugate

dynamics, different parts of the dissipated heat form the

functional R1. For later reference, we have introduced in the

last two equations for the scaled contributions to the dissipated

heat the corresponding entropies.

4.2. The master FT

4.2.1. Functionals with denite parity. The FTs apply to

functionals Sα[x(τ )] of the original dynamics that map with a

denite parity α = ±1 to the conjugate dynamics according to

S†
α

(

[x†(τ )], λ†, F †
)

= αSα ([x(τ )], λ, F ) (78)

such that S†
α[x

†(τ )] represents the same physical quantity for

the conjugate dynamics as Sα[x(τ )] does for the original one.

Examples for such functionals are work and heat that both

are odd (α = −1) for the reversed dynamics. For dual

or dual-reversed dynamics, however, these two functionals

have no denite parity since both cases involve a different

dynamics. Explicitly, the heat behaves under time reversal as

q† ≡
∫ t

0
dτ ẋ†F † = −

∫ t

0
dτ ẋF = −q. For dual dynamics, the

heat transforms as q† ≡
∫ t

0
dτ ẋ†F † =

∫ t

0
dτ ẋ(F − 2νs/µ) =

q−2qhk which has, in general, no denite parity. On the other

hand, the housekeeping heat is odd for the dual dynamics and

even for both the reversed and the dual-reversed dynamics.

The stochastic entropy s, in general, has no denite

parity under time reversal since s(τ ) is dened through the

solution p(x, τ ) of the Fokker–Planck equation which is not

odd under time reversal. In particular, p(x, t − τ ) does

not solve the Fokker–Planck equation for the time-reversed

process even if one starts the reversed process with the nal

distribution p(x, t) of the original process. The change in

the non-equilibrium potentialφ, however, is odd under time

reversal. This difference betweens andφ implies thatφ

occurs more frequently in FTs.

4.2.2. Proof. With these preparations, one can easily derive

the master FT

g({α S†
α[x

†(τ )]})†

=



dx†0



d[x†(τ )]p†
0(x

†
0)p[x

†(τ )|x
†
0 ]g({αS

†
α})

=



dx†0



d[x†(τ )]p0(x0)p[x(τ )|x0] exp[−R]g({Sα})

=



dx0



d[x(τ )]p0(x0)p[x(τ )|x0] exp[−R]g({Sα})

= g({Sα[x(τ )]}) exp(−R[x(τ )]) (79)

for any function g depending on an arbitrary number of such

functionals Sα . For the second equality, we use the denitions

(72) and the parity relation (78); for the third we recognize

that summing over all daggered trajectories is equivalent to

summing over all original ones both for x†(τ ) = x(τ ) and

x†(τ ) = x(t − τ ). With the choice g ≡ 1, this FT leads to the

most general IFT e−R = 1 from which all known IFT-like

relations follow, as shown in section 4.3.

By choosing for g the characteristic function, one obtains

a generalized FT for joint probabilities in the form

p†({S†
α = αsα})

p({Sα = sα})
=  exp(−R)|{Sα} = {sα} (80)

that relates the pdf for the conjugate process to the pdf of the

original one and a conditional average. Basically all known

DFTs for stochastic dynamics follow as special cases of this

general theorem as shown in section 4.4. The key point is to (i)

select the appropriate conjugate process for which the quantity

of interest  has a unique parity, which is most often just the

reversed dynamics, (ii) identify for the generally free initial

distribution p
†
0(x) an appropriate function and (iii) express

the functional R using physical quantities, preferentially the

quantity of interest .

4.3. General IFTs

The simplest choice for the function g in (79) is the identity,

g = 1, leading to the IFT e−R = 1. Explicitly, one obtains

for the three types of conjugate dynamics.

(i) By choosing the reversed dynamics (73) and with (74),

the class of IFTs



p1(xt )

p0(x0)
exp[−sm]



= 1 (81)

follows for any initial condition p0(x0), any length of

trajectories t , and any normalized function p1(xt ) =

p
†
0(xt ) [20]. By specializing the latter to the solution of

the Fokker–Planck equation for τ = t one obtains the IFT

for total entropy production (64).

For a system in a time-dependent potential V (x, λ)

and by starting in an initial distribution given

by the corresponding Boltzmann factor, p0(x) =

exp[−(V (x, λ0) − F(λ0))/T ], one obtains the JR (58)

for the choice p1(xt ) = exp[−(V (x, λt ) − F(λt ))/T ]

corresponding to the Boltzmann distribution for the nal

value of the control parameter.

A variety of ‘end-point’ relations can be generated

from (81) as follows. By choosing p1(x) =

p(x, t)g(x)/g(xt ), one obtains

g(xt ) exp[−s tot] = g(xt ) (82)

for any function g(x) [98]. Likewise, for f ≡ 0 and

V (x, λ(τ )), by choosing p1(x) = g(x) exp[−(V (x, λt )−

F(λt ))/T ]/g(x)
eq
λt
, one obtains

g(xt ) exp[−(w −F)/T ] = g(x)
eq
λt

(83)

which has been rst derived by Crooks [9]. Here, the

average on the rhs is the equilibrium average at the nal
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value of the control parameter. In the same fashion, one

can derive

g(xt ) exp[−wext/T ] = g(x)
eq
λ0

(84)

by choosing p1(x) = g(x) exp[−(V (x, λ0) − F(λ0)))/

T ]/g(x)
eq
λ0

for a time-independent potential and

arbitrary force f (x, τ ) which is the end-point relation

corresponding to theBKR (60). The latter follows trivially

by choosing g(x) = 1.

For processes with feedback control as discussed in

section 7.3, it will be convenient to exploit the end-point

conditioned average



1

p0(x0)
exp[−sm]

∣

∣xt = x



p(x, t) = 1 (85)

valid for any x which follows from (81) by choosing

p1(xt ) = δ(xt − x). Equivalently, by choosing p1(xt ) =

p(x, t),


dx0exp[−sm]p(xt , t)|x0 = 1 (86)

holds for summing over the initial point conditioned

average.

(ii) Using the dual dynamics with p
†
0(x0) = p0(x0), the IFT

for the housekeeping heat [91]

exp[−qhk/T ] = 1 (87)

valid for any initial distribution follows.

(iii) For the dual-reversed dynamics, one obtains the class of

IFTs from


p1(xt )

p0(x0)
exp[−qex/T ]



= 1 (88)

valid for any initial distributionp0(x0) and any normalized

function p1(xt ). By choosing p0(x0) = exp[−φ(x0, λ0)]

and p1(xt ) = exp[−φ(xt , λt )], one obtains the Hatano–

Sasa relation (67). Similarly, another class of end-point

relations could be generated starting from (88).

Finally, since the IFTs, exp[−] = 1, do not explicitly

involve the conjugate process, one might wonder whether they

can be derived in an alternative way. Indeed, some of them

can be obtained by deriving an appropriate Fokker–Planck-

type equation for the joint pdf p(, x, τ ) and then showing

∂τ e
− = ∂τ

∫

d
∫

dx e−p(, x, τ ) = 0 directly, see for

the JR [7], for the housekeeping heat [91], and for another large

class of IFTs [92]. Both the JR and (82) can also be derived

by a Feynman–Kac approach [10].

4.4. FTs derived from time reversal

In this section, the FTs following from using time reversal

as conjugate dynamics are derived systematically from (80)

by specializing to the various scenarios concerning initial

conditions and type of driving. More or less reversing the

chronological development, we start with the more general

cases and end with the more specic ones, for which the

strongest constraints on these pdfs follow.

4.4.1. CFTs involving reversed dynamics. By starting

original and reversed dynamics in the respective stationary

state, the functional R becomes

R = φ +sm. (89)

Hence, one obtains from (80) the FT

p†({S†
α = αsα})

p({Sα = sα})
=  e−(φ+sm)|{Sα} = {sα}. (90)

For the special case that
∑

α Sα = φ + sm, this relation

has rst been derived by Garcia-Garcia et al [99]. Note that in

general the change in stochastic entropys is not an admissible

choice for Sα since it lacks denite parity under time reversal.

By choosing for Sα the work w, one obtains

p†(−w) = p(w)e−(φ+sm)|w. (91)

From this relation, the Crooks FT (57) follows for a time-

dependent V (x, λ(τ )) and f = 0, if one samples both

processes from the respective initial equilibria, since then

φ = (V − F)/T and hence R = (w −F)/T .

Likewise, by choosing Sα = wχA(x0)χb(xt ), where

χA,B ≡ 1(0) if x ∈ (/∈)A,B are the characteristic functions

of two regions A and B, one obtains the variants derived and

discussed in [100, 101] which allow one to extend the CFT to

‘partially equilibrated’ initial and nal states. These variants

have become useful in recovering free energy branches in

single molecule experiments.

As another variant, by choosing for Sα the work wext and

by starting the reverse process in the initial equilibrium, one

obtains with φ = V 0 and R = (V 0 + q)/T = wext the

Crooks relation for wext [77]

p†(−wext)/p(wext) = exp[−wext/T ]. (92)

4.4.2. DFTs for symmetric and periodic driving. For

symmetric driving, λ(τ ) = λ(t−τ ), and for p†
0(x

†
0) = p0(x0),

the reversed dynamics becomes the original one. Hence, the

FTs (90,91) derived in the previous subsection remain valid in

this case if one replaces p† on the lhs with p. In this case,

as in those in the following subsections, the FTs no longer

involve the conjugate dynamics explicitly which thus has

become ameremathematical tool to derive these relationsmost

efciently. In particular, for starting in the initial equilibrium,

R = w/T and one obtains for the pdf of work [102, 103]

p(−w)/p(w) = exp[−w/T ]. (93)

Likewise, for a periodically driven system with an integer

number of symmetric periods of length tp, i.e. λ(tp − τ ) =

λ(τ ), the reversed dynamics is the original one. If the

distribution has settled into a periodic stationary state, one has

the DFT-like relation for total entropy production [104, 105].

Note that it is crucial to choose not only a periodic but also a

symmetric protocol since otherwise the reversed dynamics is

not the original one.
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4.4.3. SSFTs for NESSs. For a NESS, i.e. for time-

independent driving and starting in the stationary state, the

reversed dynamics becomes the original one and thus R =

s tot. Then (80) implies the generalized SSFT for joint

probabilities in the form

p({Sα = αsα})

p({Sα = sα})
= e−stot |{Sα} = {sα}. (94)

For this case, system entropy is indeed odd, and hence one also

has, in particular, by choosing Sα = s tot the genuine SSFT

(65) for total entropy production and arbitrary length t . As

variants, illustrating the potency of the general theorem, one

easily gets from (94)

p(−s) = p(s)e−se−sm |s (95)

and

p(−sm) = p(sm)e−sm e−s |sm (96)

involving conditional averages. Such relations seem not to

have been explored in specic systems yet.

4.4.4. Expression for the NESS distribution. Using an initial

and end-point conditioned variant of (80), Komatsu et al

manage to express the stationary distribution ps(x) in a NESS

by non-linear averages over the difference in ‘excess’ heat

required either to reach x from the steady state or to reach the

NESS starting in x [106–108] which leads to Clausius-type

relations for NESSs [109]. For a related expression for ps(x)

in terms of an expansion around a corresponding equilibrium

state, see [110] which contains a valuable introduction into the

history of such approaches. Following similar lines an exact

non-equilibrium extension of the Clausius heat theorem has

been derived in [111].

4.4.5. TFT. This relation applies to time-independent driving

and arbitrary initial conditionp0(x0). If the reversed dynamics

is sampled using the same initial condition, p†
0(x

†
0) = p0(x0),

then the functional R becomes

R = − ln[p0(xt )/p0(x0)] + q/T ≡ t (97)

which has been called dissipation functional by Evans and

Searles [37]. Under these conditions, it is related via

t = s tot − ln[p0(xt )/p(xt , t)] (98)

to total entropy production. Physically, t corresponds to

the log-ratio between the probability to observe the original

trajectory and the one for observing the time-reversed one.

Since under these conditions t is odd and the reversed

dynamics is equivalent to the original one, one has from (80)

the TFT (66) valid for any length t and initial condition.

Specically, if the system is originally equilibrated in a

potential V0(x) and then suddenly subject to a force f (x) the

dissipation functional becomest = w/T which implies that

in this case the TFT holds for work.

4.5. FTs for variants

4.5.1. FTs for underdamped motion. For underdamped

motion as introduced in section 2.6.1, the functionalR1 dened

in (72) under time reversal is still given by the dissipated

heat, i.e., by (39) integrated over the trajectory [112]. This

fact follows by directly evaluating the action for the path

integral corresponding to the underdamped Langevin equation

(38). Hence, FTs based on time reversal hold true also for

underdamped dynamics with the obvious modication that

initial (and daggered) distributions now depend on x and v.

4.5.2. FTs in the presence of external ow. In the presence

of ow, one has to specify how the ow changes in the

conjugate dynamics. For genuine time reversal, the physically

appropriate choice is u(r)† = −u(r) which leads with the

denitions of work and heat (equations (47), (48)) to an odd

parity for these two functionals. Consequently, the FTs then

hold as in the case without ow. Formally, however, one could

also keep the ow unchanged for the conjugate dynamics,

u(r)† = u(r), which would lead to another class of FTs. For

a specic example illustrating this freedom, see the discussion

in [64] for a dumbbell in shear ow rst investigated in [113].

4.5.3. FT with magnetic eld. In the presence of a (possibly

time-dependent) magnetic eld, the FTs hold true essentially

unchanged as proven in great generality for the JR and the CFT

for interacting particles on a curved surface [114]. This work

generalized earlier case studies on the validity of the JR for

specic situations involving a magnetic eld as mentioned in

section 5.2. A second motivation for this work was to refute

earlier claims based on simulations that the Bohr–van-Leeuven

theorem stating the absence of classical diamagnetism could

fail for a closed topology [115].

4.5.4. Further ‘detailed theorems’. Esposito and van den

Broeck have derived what they call DFTs for s tot,shk,

(called ‘adiabatic’ entropy change sad) and for the ‘non-

adiabatic’ entropy changesna ≡ sex +s under even more

general conditions [116–118]. Their relations are beyond the

realm of the present systematics since they compare the pdf for

different physical quantities for the original and the conjugate

process whereas we always compare the pdfs of the same

physical quantities5. A unication of FTs within this broader

sense involving joint distributions of these decompositions of

entropy production is achieved in [93] and a generalization of

the Hatano–Sasa relation in [119]. The crucial role of odd

variables in such a scheme is emphasized in [120, 121].

4.6. FTs for athermal systems

4.6.1. General Langevin systems. The derivation of the

master FT in section 4.2 shows that for obtaining these

mathematical relations the main requirement is the existence

of a conjugate dynamics such as time reversal. Therefore,

imposing a relation between the strength of the noise and the

5 The IFT exp[−sna] = 1, however, follows directly from (88) by

choosing p1(xt ) = p(x, t).
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mobility as carried out in section 2.1 for colloidal particles

is not really necessary. Neither is it necessary to interpret

the Langevin equation using concepts of work and heat. We

therefore sketch in this section the general FT for a system of

Langevin equations

ẋ = K(x, λ) + ζ (99)

with arbitrary ‘force’ K and noise correlations

ζ(τ ) : ζ(τ ) = 2Dδ(τ − τ ). (100)

The corresponding Fokker–Planck equation becomes

∂τp(x, τ ) = −∇j = −∇(Kp −D∇p) (101)

and the local (probability) current j(x, λ). For constant λ, one

has the local mean velocity

νs(x, λ) ≡ js(x, λ)/ps(x, λ) = K(x, λ)−D∇ lnps.

(102)

For time reversal as conjugate dynamics, by evaluating

the corresponding weight one obtains for the master

functional (74)

R1 =

 t

0

dτ ẋD−1K ≡ sm (103)

where the identication withsm is now purely formal. If one

adds the stochastic entropy change along a trajectory

s ≡ − ln[p(xt , λt )/p(x0, λ0)] (104)

one obtains the total entropy production s tot. Likewise, in

analogy to the colloidal case, sm can be split into

shk ≡

 t

0

dτ ẋD−1νs (105)

and

sex ≡ sm−shk =

 t

0

dτ ẋ∇ lnps = −φ+

 t

0

dτ λ̇∂λφ.

(106)

With these identications all FTs involving the various forms

of entropy production derived and discussed in sections 3.3

and 4 hold true for such Langevin systems as well.

The identication of a generalized workmakes immediate

sense only if K = −(D/T )∇V (x, λ) with some potential

V (x, λ) and effective temperature T in which case one is

back to the thermal model with interacting degrees of freedom

introduced in section 2.6.2. If K cannot be derived in this

way from a gradient eld there seems to be no gain by trying

to impose a genuine thermodynamic interpretation without

further physical input.

4.6.2. Stochastic elds. The generalization of the results

in the previous section for coupled Langevin equations to

stochastic eld equations is trivially possible [21]. Consider a

scalar eld (r, τ ) that obeys

∂τ(r, τ ) = K[(r, τ ), λ(τ )] + ζ(r, τ ) (107)

with some functional K[(r, τ ), λ(τ )] and

ζ(r, τ )ζ(r, τ ) = 2D(r − r)δ(τ − τ ) (108)

with arbitrary spatial correlation D(r − r). The expressions

for the entropy terms can easily be inferred; e.g. the analogy

of the entropy change in the medium becomes

sm ≡

 t

0

dτ



dr



dr∂τ(r, τ )D−1(r − r)

×K[(r, τ ), λ(τ )]. (109)

By now, it should be obvious how to derive the corresponding

FTs and how to generalize all these also to the case when

(r, τ ) is a multi-component eld. Likewise, it would be a

trivial task to specialize all this to driven or relaxing ‘thermal’

eld theories for which K includes the derivative of some

Landau–Ginzburg type free energy and where the noise obeys

an FDT [122].

An interesting application concerns enstrophy dissipation

in two-dimensional turbulence [123]. Field-theoretic

techniques are used in [124] to derive generalized JRs and

to explore the role of supersymmetry in this context. Quite

generally, it will be interesting to investigate stochastic

versions of the eld equations of active matter [125] from this

perspective.

4.6.3. FTs in evolutionary dynamics. The framework of

FTs has recently been applied to the stochastic evolution of

molecular biological systemswhere it leads to an IFT fortness

ux [126].

5. Experimental, analytical and numerical work for
specic systems with continuous degrees of freedom

5.1. Principal aspects

The various relations derived and discussed above have the

status of mathematically exact statements. As such they

require neither a ‘test’ nor a ‘verication’. The justication for,

and the value of, the large body of experimental and numerical

work that has appeared in this eld over the last decade rather

arises from the following considerations.

First, experimental and numerical measurements of the

distributions p() entering the theorems provide non-trivial

information about the specic system under consideration.

Integral and detailed theorems give only one constraint on,

and constrain only one half of, the distribution, respectively.

Beyond the constraints imposed by the exact relations, the

distributions are non-universal in particular for short times.

Second, the theorems involve non-linear averages. The

necessarily limited number of data entering experimental or

numerical estimates can cause deviations from the predicted

exact behavior. It is important to get experience of how large

such statistical errors are. Systematic theoretical investigations

concerning the error due to nite sampling are mentioned in

section 9.3.

Third, the thermodynamic interpretation of the mathemat-

ical relations in terms of work, heat and entropy rests on the

16



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

crucial assumption that the noise in the Langevin equation is

not affected by the driving. While this condition can trivially

be guaranteed in simulations, it could be violated in exper-

iments. A statistically signicant deviation of experimental

results from a theoretical prediction could be rooted in the vi-

olation of this assumption.

These remarks apply to systemswhere one expects at least

in principle that a stochastic description of the relevant degrees

of freedom well-separated in time-scale from an equilibrated

heat bath is applicable. There are, however, systems that

a priori do not belong to this class like sheared molecular

uids, shaken granular matter and alike. The proof of FTs

given above will not apply to such systems. Still, FTs have

been proved for other types of dynamics and experimentally

investigated in such systems.

In the following we rst focus on a review of experimental

and numerical work of the rst category and then briey

mention systems for which it is less clear whether they comply

with the assumptions of a stochastic dynamics. When referring

to the experiments and the numerical work, we will use the

notions and notations established in this review, which may

occasionally differ from those given by the original authors.

5.2. Overdamped motion: colloidal particles and other

systems

5.2.1. Equilibrium pdf for heat. Even in equilibrium, explicit

calculations of the pdf for heat are typically non-trivial. In

the long time t → ∞, low temperature T → 0 limit, it

has been calculated for an arbitrary potential with multiple

minima [127]. For a harmonic potential and any t and T , it is

given by an expression involving a Bessel function [128]. It

has also been derived analytically in the presence of amagnetic

eld [129].

5.2.2. Moving harmonic traps and electric circuits. Wang

et al [130] measured the distribution of what amounts to work

(calledt in their equation (2)) for a colloidal particle initially

in equilibrium in a harmonic trap which was then displaced

with constant velocity. The authors found that the pdf obeys

a relation corresponding to the TFT which is strictly speaking

the correct interpretation only within the co-moving frame.

Interpreted in the lab frame, the driving is time-dependent.

However, since for linear forces the work distribution is a

Gaussian which moreover has to obey the JR withF = 0, it

is clear that such a Gaussian also obeys the TFT formally.

In a sequel, Wang et al [131] considered the same set-

up for a quasi-steady-state situation at constant velocity. The

authors showed in particular that a quantity (t (r) as dened

in their equation (19)) which is equal to s tot obeys the DFT

also for short times as it should since this set-up seen in the

co-moving frame corresponds to a genuine NESS.

For traps moving with constant velocity, explicit

expressions for the Gaussian work distribution, i.e. for its

mean and variance, have been calculated in [78, 132]. In all

cases, the DFT type relation is fullled. In contrast, the pdf

for the dissipated heat is non-Gaussian with exponential tails.

An explicit expression is not available, but its characteristic

function and in consequence its large deviation form can be

determined analytically [133, 134]. The pdf for work in a

moving trap (and the pdf for heat in a stationary trap) was also

measured and compared with theoretical results by Imparato

et al [135]. For a harmonically bound particle subject to

a time-dependent force, Saha et al calculated pdfs for total

entropy production, in particular, for non-equilibrated initial

conditions [136].

For a chargedparticle in a harmonic trap, workuctuations

and the JR have been studied theoretically for a time-

independent magnetic eld and a moving trap or time-

dependent electriceld in [137–141], and for a time-dependent

magnetic eld in [142], respectively.

Trepagnier et al [90] studied experimentally the transition

fromoneNESS to another by changing the speed of themoving

trap. If interpreted in the co-moving frame, their experiment

constituted the rst experimental verication of the Hatano–

Sasa relation (67).

Simple electric circuits can formally be mapped to the

dragged colloidal particle. Corresponding FTs and pdfs have

been investigated by Ciliberto and co-workers [143–145], by

Falcon and Falcon [146] and by Bonaldi et al [147] for actively

cooled resonators used in a gravitational wave detector. A

similar mapping was used by Berg to study the JR applied to

gene expression dynamics [148].

5.2.3. Harmonic traps with changing stiffness. Carberry

et al [149] investigated the motion of a colloidal particle in

a harmonic trap whose stiffness is suddenly changed from

one value to another thus verifying the TFT (66). For

strongly localized initial conditions, this TFT has been veried

experimentally in [150]. Gomez-Solano et al inferred the

uctuations of the heat exchanged between a colloidal particle

and an aging gel which bears some similarity to a time-

dependent stiffness [151].

5.2.4. Non-linear potentials. Blickle et al [152] measured

the work distribution for a colloidal particle pushed

periodically by a laser toward a repulsive substrate. This

experimental set-up was the rst one for colloidal particles that

used effectively non-harmonic potentials. The pdf for work

is distinctly non-Gaussian but still in good agreement with

theoretical predictions based on solving the Fokker–Planck

equation. This agreement justies a posteriori the crucial

assumption that the noise correlations are not affected by the

time-dependent driving. Moreover, a DFT for p(w) (93) was

checked for this periodic driving with a symmetric protocol.

Sun determines p(w) for a potential that switches between a

single well and a double well [153].

5.2.5. Stochastic resonance. For a colloidal particle in

a double-well potential that is additionally subject to a

modulated linear potential to generate conditions of stochastic

resonance [154], distributions for work, heat and entropy were

measured and calculated in [155, 156]. Other numerical work

using the concepts of stochastic thermodynamics to investigate

stochastic resonance includes [157–159].
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Figure 2. Distribution of entropy production p(s tot) for a colloidal
particle driven along a periodic potential for two different values
of external force f . The insets show the total potential V(x)− f x.
The different histograms refer to different trajectory lengths.
Reproduced with permission from [160]. Copyright 2007 European
Physical Society.

5.2.6. NESS in a periodic potential. In an experiment for this

paradigmatic geometry shown in gure 1which corresponds to

the Langevin equation (1), the pdf for total entropy production

has been measured and compared with theoretical predictions

[160], see gure 2. Characteristically, for short times, this

pdf exhibits several peaks corresponding to the number of

barriers the particle has surmounted. Examples for the pdf

for entropy production have also been calculated in [161]. For

long times, the asymptotic behavior of this pdf in the form

of a large deviation function has been calculated numerically

in [162] where an interesting kink-like singularity was found.

The same quantity has also been derived using a variational

principle [163].

5.3. Underdamped motion

5.3.1. Torsion pendulum as experimental realization. A

driven torsion pendulum differs fundamentally from colloidal

particles since here the inertia term becomes accessible. In

a series of experiments reviewed in [35], Ciliberto and co-

workers have investigated the pdf for various quantities with

the aim of checking which ones obey FT-like relationships.

In [164, 165], the JR and the Crooks relation were used to

determine the ‘free energy difference’ for the torsion pendulum

for linear and periodic forcing. In [166], pdfs for the external

work were determined for three different types of protocols

for the time-dependent force in (38). (i) For a linearly ramped

force, the pdf for starting in equilibrium was found to obey

a TFT relation even for short times. Since a linear ramp

corresponds to a time-dependent driving, one would, in fact,

not expect a TFT. It is found here only because the work

distribution for this linear system is Gaussian and should obey

the JR which constrains mean and variance such that the TFT

is valid. Alternatively, an explicit calculation of the pdf shows

the same result. (ii) Starting in a quasi-steady state of the linear

ramp, the pdf for wext no longer obeys the TFT for short times

as expected. (iii) Likewise, for periodic driving, a DFT type

for the work distribution is found only in the long-time limit as

expected. For the latter two cases, the nite time corrections

have been calculated.

The same group investigated the pdf for the heat for

similar protocols [167]. In agreement with both the general

theoretical expectations and their explicit calculations the pdf

for heat neither obeys a TFT for short times nor even the DFT

asymptotically for long times since the internal energy is not

bounded for a harmonic oscillator.

The pdf for changes in the stochastic entropy and the total

one were reported for periodic driving of this system in [145].

Once the system has settled in the periodic steady state, for

an integer multiple of the period the functional R becomes

the total entropy change which thus fullls a DFT as found

experimentally.

5.3.2. General theoretical results. Using path integral

techniques, Farago determined the statistics of the power

injected by the thermal forces into an underdamped particle

and found it to be independent of an underlying conning

potential [168].

In a series of papers for a moving trap, Taniguchi and

Cohen investigated pdfs for work and heat as well as various

FTs using the path integral representation [169–172]. They

also point out the ambiguity (or freedom) to dene time reversal

in this particular system.

For both a moving and a breathing trap, Minh et al

calculated work weighted propagators for underdamped

motion [173]. FTs for underdamped Brownian motion

were studied by Lev and Kiselev by transforming from the

momentum to the energy variable [174], by Fingerle for the

relativistic version [175] and by Iso et al for motion near black

holes [176]. Sabhapandit determined the work uctuations of

a randomly driven harmonic oscillator [177]whichwas studied

experimentally in [178].

5.3.3. Heat transport. Underdamped Langevin equations

have been used to study heat transport through harmonic chains

or lattices coupled at the end to heat reservoirs of different

temperatures [65]. Relevant in our context is work concerning

not only the average heat current but also the distribution

of exchanged heat and the corresponding FT. These issues

have been studied for a single particle attached to two heat

baths in [179–181], for two coupled particles attached to two

different baths in [182], for harmonic chains in [183–185] and

an anharmonic lattice in [186].

5.4. Other systems

Ever since the DFT for entropy production was formulated,

there have been attempts to show whether it is fullled in a
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specic system both numerically and experimentally. Beyond

the ‘clean’ cases discussed above for which the dynamics of

the relevant degrees of freedom is clearly compatible with

a stochastic Markovian dynamics, there are a number of

studies for other systems where a theoretical understanding

is more challenging. Such studies include an early theoretical

work with three simple dissipative deterministic models [187],

experimental [188–192] and numerical [193–200] work for

granular matter or dense colloids, experimental work for

turbulence [201–203], numerical work for a shell model

in turbulence [204] and one on the role of hydrodynamic

interactions [205], and experimental work for liquid crystals

[206, 207], a vibrating plate [208] and self-propelled particles

[209]. Characteristically for the experimental systems just

mentioned, one cannot necessarily expect that these can

be described by a stochastic Markovian dynamics for the

relevant variables. Similarly, in the numerical works either

the equations of motion are not of the Langevin type (or

deterministic thermostatted ones) or, if they are, not all

variables are monitored which effectively amounts to some

coarse graining. Since for these cases, the FTs have not been

proven, such tests give valuable hints on possible extensions

beyond their established realm of validity.

Two general aspects for putting results of such case studies

in perspective are the following ones. First, the putative

validity of a DFT for the quantity R is typically cast in

the form of checking for a constant slope of the quantity

limt→∞[ln[p(ρt )/p(−ρt )]/t where ρt is the time averaged

rate corresponding to the quantity R = tρt for which we

have formulated the FT. Since such a plot is necessarily

antisymmetric in ρt [194], for a non-trivial statement the

contribution of higher order terms such as ρ3
t must be shown

to be negligible which requires a large enough range of

studied ρt -values. Moreover, a large enough t is necessary.

Second, in bulk systems often only ‘local’ quantities can

be investigated which would require local forms of the FTs.

From the perspective of a stochastic dynamics, this amounts

to integrating out other slow degrees of freedom or some type

of coarse graining under which one cannot expect the FTs to

hold necessarily. We will come back to this issue at the very

end of this review.

6. Dynamics on a discrete set of states

6.1. Master equation dynamics

The derivation of the FTs in section 4 is based on the behavior

of the weight for a stochastic trajectory under time reversal

or the other operations generating the conjugate dynamics.

Therefore, they hold for any kind of stochastic dynamics, in

particular, for a master equation type of dynamics [210, 211]

on a discrete set of states {n}, see gure 3.

Examples of such systems include random walks and,

more generally, diffusive processes on a lattice, birth–death

processes, growth processes on a lattice, conformational

changes between discrete states of a biomolecule or chemical

reaction networks. The latter two classes of systems differ

from the previous ones since they typically occur in a well-

dened thermal environment. This feature imposes additional

Figure 3. Network with ve states comprising three cycles (1245),
(234), and (12345) and the corresponding transition rates. Without
the state 3, this network would be a unicyclic one.

constraints on the dynamics as discussed in section 9. In this

section, we focus on the stochastic dynamics with arbitrary

transition rates.

6.1.1. Transition rates and probability currents. Transitions

from a statem to a state n occur with a ratewmn(λ)which may

be time-dependent according to the external protocol λ(τ ).

For ease of notation, we will write wmn(τ ) or wmn(λ) for the

more explicit wmn(λ(τ )). In principle, one could distinguish

different transitions or ‘channels’ connecting the same two

states from which we refrain here for notational simplicity.

The probability pn(τ ) to nd the system at time τ in state

n evolves according to the master equation

∂τpn(τ ) =


m=n

[pm(τ )wmn(τ )− pn(τ )wnm(τ )] (110)

given an initial distribution pn(0). To each link (mn) one can

associate a (directed) probability current

jmn(τ ) = pm(τ )wmn(τ )− pn(τ )wnm(τ ) = −jnm(τ ). (111)

6.1.2. Two classes of steady states. For time-independent

λ, the system eventually reaches a steady state provided the

network is ‘ergodic’, i.e. any two states are connected through

a series of links aswewill always assume in the following. The

time-independent stationary probabilities can be written as

ps
n(λ) ≡ exp[−φn(λ)] (112)

which denes the analog of the non-equilibrium potential.

For small networks, there is an elegant graphical method to

determine ps
n from given rates [211, 212].

Steady states fall into two classes depending on whether

or not the detailed balance condition (DBC),

ps
n(λ)wnm(λ) = ps

m(λ)wmn(λ), (113)

is fullled. The rst case corresponds to genuine equilibrium,

the second one to a NESS. In the latter case, there are non-

vanishing steady-state probability currents

j smn ≡ ps
mwmn − ps

nwnm = −j snm. (114)

Since knowingps
n is not sufcient to distinguish a genuine

equilibrium from a NESS, Zia and Schmittmann [213, 214]
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Figure 4. Trajectory n(τ ) of total length t jumping at discrete times
{τj } between states.

suggested to characterize a NESS by its stationary distribution

ps
n and its stationary currents j

s
mn. Then the same NESS could

be generated by a whole equivalence class of possible rates

wmn since any two sets of rates with

ps
m(wmn − w

mn) = ps
n(wnm − w

nm) (115)

would lead to the same NESS, i.e. the same stationary

distribution and currents. In the following, we will adapt the

view that a system is characterized by a denite set of rates

wmn(λ) and a protocol λ(τ ) from which all other quantities

can, in principle, be derived.6

A ‘distance’ from equilibrium quantifying the amount

of violation of the DBC has been introduced in [220]. A

Lyapunov function for relaxation toward a NESS is discussed

in [221]. Master equation dynamics as a gauge theory is

formulated in [222]. A mapping to a dynamics in the dual

space of cycles is discussed in [223].

6.1.3. Path weight and dynamical action. We rst

characterize the uctuating trajectories. A trajectory n(τ )with

0 6 τ 6 t starts at n0 and jumps at times τj from n−j to n+j
ending up at state nt after J jumps, see gure 4. Dening for

each state the instantaneous total exit rate

rn(τ ) ≡


m=n

wnm(τ ) (116)

the conditional weight for a trajectory exhibiting no jump at

all is given by

p[n(τ ) = n0|n0] = exp[−

 t

0

dτ rn0(τ )]. (117)

The weight for a trajectory with J > 1 jumps at times {τj } is

given by

p[n(τ )|n0] = exp[−

 τ1

0

dτ rn0(τ )]

×

J
∏

j=1

wn−j n
+
j
(τj ) exp

[

−

 τj+1

τj

dτ rn+j (τ )

]

(118)

with τJ+1 ≡ t . Averages with these weights will be denoted

by . . . in the following.

6 For completeness, we mention a complementary approach where rates are

derived by imposing mean currents as constraints [215–218]. For a relation to

the minimum entropy production principle, see [219] and references therein.

In analogy with the continuous case (5), these expressions

dene an ‘action’

A[n(τ )] ≡ − lnp[n(τ )|n0] =

 τ1

0

dτ rn0(τ )

−

J


j=1

[

lnwn−j n
+
j
(τj )−

 τj+1

τj

dτ rn+j (τ )

]

. (119)

6.2. Entropy production

6.2.1. Stochastic entropy. The concept of stochastic entropy

can be transferred immediately from the Langevin case to the

discrete one as [20]

s(τ ) ≡ − lnpn(τ )(τ ). (120)

It is obtained by rst solving the master equation (110) for

pn(τ ) with a given initial distribution and then plugging into

it the specic trajectory n(τ ) taken from this ensemble.

The equation of motion for stochastic entropy becomes

ṡ(τ ) = −
∂τpn(τ )

pn(τ )

∣

∣

∣

∣

n(τ )

−


j

δ(τ − τj ) ln
pnj +(τj )

pnj−(τj )
. (121)

The rst term shows that even if the system remains in the same

state, stochastic entropy will change whenever the ensemble

is time-dependent either due to a non-equilibrated initial state

or due to time-dependent rates. The second term shows the

contributions from each transition. The change in stochastic

entropy during time t is given by

s =

 t

0

dτ ṡ(τ ) = − lnpnt (t) + lnpn0(0). (122)

6.2.2. Time reversal. Time reversal as a choice for the

conjugate dynamics works analogously to the Langevin case

with n†(τ ) = n(t − τ ) and λ†(τ ) = λ(t − τ ). Using the

weights (equations (117) and (118)), it is trivial to check that

R1 ≡ ln
p[n(τ )|n0]

p†[n†(τ )|n†0]
=



j

ln
wn−j n

+
j
(τj )

wn+j n
−
j
(τj )

≡ sm. (123)

There are two justications for identifying R1 with the

entropy change of the surrounding medium sm. The rst is

the analogy to the Langevin case, where this term turned out to

be the dissipated heat (divided by temperature). In the absence

of a rst law for the master equation dynamics, which would

require further physical input not available at this general stage,

this identication is by analogy only. Second, it turns out that

the sum of the system entropy change as dened in (122) and

the so identied medium entropy,

s tot ≡ s +sm, (124)

will obey the same FTs as discussed above for the Langevin

dynamics. In fact, for sm Lebowitz and Spohn had derived

the SSFT in the long-time limit [4].
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From the expression (123) an instantaneous entropy

production rate in the medium can be identied as

ṡm(τ ) =


j

δ(τ − τj ) ln
wn−j n

+
j
(τj )

wn+j n
−
j
(τj )

(125)

that makes the contributions from the individual jumps

obvious. Combining this relation with (121), one obtains

ṡ tot(τ ) = −
∂τpn(τ )

pn(τ )

∣

∣

∣

∣

n(τ )

+


j

δ(τ − τj ) ln
pnj−(τj )wn−j n

+
j
(τj )

pnj +(τj )wn+j n
−
j
(τj )

. (126)

6.2.3. Ensemble level. By averaging these trajectory-

dependent contributions for entropy production, one obtains

expressions derivedmuch earlierwithin the ensemble approach

[23, 211, 212, 224]. On a technical level, using




j

δ(τ − τj )dnj−nj +(τ )



=


mn

pm(τ )wmn(τ )dmn(τ ) (127)

valid for any set of quantities {dmn}, one obtains

Ṡ tot(τ ) ≡ ṡ tot =


mn

pm(τ )wmn(τ ) ln
pm(τ )wmn(τ )

pn(τ )wnm(τ )
, (128)

and

Ṡm(τ ) ≡ ṡm =


mn

pm(τ )wmn(τ ) ln
wmn(τ )

wnm(τ )
(129)

which should be compared with (35) and (36), respectively.

6.2.4. Splitting entropy production. Following the Langevin

case, we can split the entropy production in the medium (123)

into two contributions

sm = shk +sex (130)

with

shk ≡


j

ln
ps

n−j
(λj )wn−j n

+
j
(λj )

ps
n+j
(λj )wn+j n

−
j
(λj )

(131)

where λj ≡ λ(τj ) and

sex ≡ −


j

ln
ps

n−j
(λj )

ps
n+j
(λj )

(132)

characterizing the entropy change associated with maintaining

the corresponding steady state and the one associated with

time-dependent driving, respectively. It is simple to rewrite

sex as the discretized version of −φ + ∂λφ as in (23). This

excess entropy production has a nice geometrical interpretation

along a path in the parameter space analogous to the Berry

phase in quantum mechanics [225].

A somewhat different splitting of total entropy production

on the trajectory level was introduced in [116–118] writing

s tot = sad +sna (133)

with the adiabatic entropy change sad ≡ shk and the non-

adiabatic one sna ≡ sex +s.

6.2.5. Dual dynamics. The dual dynamics is dened by rates

w†
mn(λ) ≡ wnm(λ)p

s
n(λ)/p

s
m(λ). (134)

These rates lead to the same stationary state as the original

dynamics, p†s

m = ps
m. However, the stationary currents are

reversed according to

j †
s

mn(λ) = −j snm(λ). (135)

In complete analogy to the Langevin case, by comparing the

weights for the original with the dual and the dual-reversed

dynamics, one obtains

R1 = shk and R1 = sex, (136)

respectively.

6.3. FTs for entropy production and ‘work’

6.3.1. General validity. With these identications, all FTs

from sections 3.3 and 4 involving the various forms of entropy

changes apply under exactly the same conditions as stated there

provided the occasional x (and x0, xt ) is trivially replaced by

n (and n0, nt ).

The only variable not dened yet is the analog of work.

For networks that at constant λ fulll the DBC (113), one

can identify a (dimensionless) internal energy as φn(λ) ≡

− lnps
n(λ) that plays the role of the potential V (x, λ)/T in

the Langevin case with a free energy identical to zero. At this

stage, there is indeed no point in identifying a non-trivial λ-

dependent free energy. Consequently, work along a trajectory

corresponds to dissipatedwork and can be identied in analogy

to (15) with

w ≡

 t

0

dτ∂λφn(λ)|n(τ )λ̇. (137)

With this identication of work, the FTs from sections 3.2 and

4 involving work hold for this master equation dynamics as

well (setting there T = 1). It should be stressed, however,

that without a more physical microscopic understanding of

the network, this concept of work (and heat, if one wanted to

promotesm to this status) is a purely formal one without real

physical meaning.

For networks that do not fulll the DBC (113), there

is no unique way of assigning internal energy to a state

without further physical input, and, hence, no sensible way

of identifying work even formally. Naively keeping (137), as

sometimes suggested [226], fails as the counter-example of a

discretized version of the driven overdamped motion on a at

ring easily shows, since φn = const implies w = 0.

The statistics of rare events contributing to these FTs can

also be studied through a ‘mapping’ of the master equation to

a Schrödinger equation and then analyzing the corresponding

path integral [227, 228]. Finally, a somewhat formal general

IFT was derived in [229].
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Figure 5. Probability distribution for the ‘work’ (137), denoted
here R, in a driven two-level system for two different lengths of
trajectories. The histogram shows experimental data, the full curve a
theoretical calculation; for more details, see [102]. Reproduced with
permission from [102]. Copyright 2005 American Physical Society.

6.3.2. Experimental case studies. Experimental work

measuring the distributions of these quantities with the

perspective of ‘testing’ the FTs is yet scarce. The arguably

simplest non-trivial network is a two-state system with time-

dependent rates. Any such two-state system necessarily

obeys the DB condition. Such a two-state system was

realized experimentally by driving an optical defect center

into diamond with two lasers. The distributions for work

(137) and for the entropy change of system, medium and total,

were measured and compared with the theoretical predictions

[102, 104]. Characteristically, for comparably short times

these distributions show quite intricate, distinctively non-

Gaussian, features, see gure 5.

6.3.3. Analytical and numerical case studies. Entropy

production and the FT for the simplest discrete systemwhich is

in essence a random walk biased in one direction by applying

an external eld was studied quite generally in [230], in

the context of a ratchet model in [231], for a rotary motor

in [232, 233] and for transport through a membrane channel

in [234]. Simple three and four state systemswere investigated

in [235, 236]. The statistics of dissipated heat for a driven

two-level system modeling single electron transport has been

calculated in [237].

Entropy production on a lattice model both for a simple

reaction–diffusion scheme and for transport was investigated

in [238]with an attempt to clarify the occurrence of a kink in the

rate function at zero entropy production. In another variant of

the reaction–diffusion scheme, the violation of an FT caused

by breaking microscopic reversibility in the sense that some

backward transitions are forbidden were studied in [239, 240].

Entropy production for a model of cyclic population dynamics

was investigated in [241] and for effusion of a relativistic ideal

gas in [242]. FTs in the presence of local heating have been

studied in [243].

The analog of work distributions for a spin system in time-

dependent magnetic elds was investigated in [244, 245] and

for time-dependent coupling constants in [246]. The surface

tension in the three-dimensional Ising model is determined

through simulations using the analogy of the JR in [247].

The interplay between a non-equilibrium phase transition

and singularities in the entropy production has been

investigated for a majority vote model [248], for driven

lattice gases [249, 250], for wetting [251] and for kinetically

constrained lattice models [252]. For the latter, the FT was

investigated in [253, 254].

6.4. FT for currents

For a network in a NESS, currents obey an FT as

derived by Gaspard and Andrieux [255–258] exploiting the

decomposition of such a network in cycles as introduced by

Schnakenberg [211] and using concepts from large deviation

theory [259]. For a concise derivation of the current FT using

the formalismdeveloped in section 4, wewrite the total entropy

production along a trajectory in the form

s tot =


a

naSa +sr . (138)

Here, na is the number of times a cycle a has been completed

in clockwise (na > 0) or anti-clockwise (na < 0) direction

during this trajectory leading to auctuating current J a ≡ na/t

for each cycle, see gure 3 for an example of cycles in a

network. The entropy production associated with each cycle

Sa =


(mn)∈a

ln
wmn

wnm

(139)

is also called the afnity of this cycle. The remainder sr
collects the contributions arising from those parts of the

trajectory that do not contribute to a full cycle. Clearly, the

current J a is odd under time reversal and hence qualies as a

possible variable Sα with α = −1 for the general SSFT (94)

which thus becomes

p({−J a})

p({J a})
= exp[−t



a

SaJ a]e
−sr |{J a}. (140)

For large t , sr and hence the second factor remains of order

1. It can thus be ignored when taking the logarithm in the

long-time limit leading to the current FT

lim
t→∞

1

t
ln

p({J a})

p({−J a})
=



a

SaJ a. (141)

For a network coupled to different reservoirs at different

temperatures or chemical potentials, the cycle afnities Sa
arise fromexternally imposed afnitiesFk as discussed inmore

detail in section 10.2. These afnities give rise to mesoscopic

currents

J k =


a

J ad
k
a (142)

where dk
a are a generalized distance counting how much each

cycle contributes to the respective current. Expressed in these

currents, the FT reads

lim
t→∞

1

t
ln

p({J k})

p({−J k})
=



k

FkJ k. (143)

In this derivation, it is crucial that all currents that contribute

to the entropy production (either on the cycle or on the

mesoscopic level) are included.
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Generalizations of such an FT have been derived for just

one current in [260], for networks with multiple transitions

between states in [261], to currents not related to entropy

production in [262–264]. Geometrical and topologial aspects

were studied in [265–268]. Periodically driven systems were

investigated in [269] and a relation to supersymmetry is made

in [270]. In another extension, Hurtado et al have derived an

‘isometric uctuation relation’ that compares pdfs for currents

with different orientations [271].

The FT for entropy production has been discussed for

various chemical reaction networks in the papers by Gaspard

and Andrieux quoted above, and, more recently, has been

applied to transport in mesoscopic devices which, despite their

quantum character, can often still be described by a master

equation whenever coherences can be, or are, ignored. For a

few recent examples, see, e.g., [227, 228, 272–282].

There is a large literature arising from the recent progress

of understanding current uctuations in NESSs in general, not

necessarily related to the FT, for which the review by Derrida

could serve as a point of departure [283].

7. Optimization, irreversibility, information and
feedback

7.1. Optimal protocols

7.1.1. General aspects. The IFTs such as the JR hold

for any external protocol λ(τ ) and any time interval t . An

optimal protocol λ∗(τ ) is the one that extremizes the mean

of a functional of the trajectory like work or heat for given

initial value λi ≡ λ(0) and nal value λf ≡ λ(t) of a control

parameter and a xed total time t allocated to this process.

Mean work and total entropy production as objective

functions are arguably the most relevant cases. For t → ∞,

the minimal mean work required for a transition is given by

the free energy difference F ≡ F(λf ) − F(λi ). For any

nite time t , the mean work should be larger and the question

for the optimal protocol becomes non-trivial. Understanding

this problem will allow one to extract the maximum amount of

work from a given free energy difference in nite time.

Formulated as a variational problem, the optimal protocol

obeys a quite complicated Euler–Lagrange equation which is

non-local in time since changing the control parameter at time

t1 affects the work increment at all later times t2. Crucial

insight into general features of the solution, however, has

been obtained by investigating case studies involving harmonic

potentials [284]. As a general feature, jumps of the optimal

protocol were found that are absent in a linear response

treatment [285].

A second motivation for minimizing the work could be

an attempt to improve convergence of the Jarzynski estimate

to obtain free energy differences since one might expect that

a small mean work may also to lead to a smaller variance.

Due to the non-linearity of exp[−w/T ], however, one should

rather nd the optimal protocol forminimizing exp[−2w/T ]

which turns out to have jumps as well [286].

7.1.2. Overdamped dynamics. The generic jumps in the
optimal protocol were rst found in case studies involving
harmonic potentials [284]. The simplest case is a process
where the center of a harmonic potentialV (x, λ) = (x−λ)2/2
is shifted from λi = 0 to λf in a nite time t . Such a shift does
not involve any free energy difference. Hence, the mean work
required for this task will approach 0 for t → ∞. For a nite
time, the optimal protocol can be calculated analytically by
expressing the mean work as a functional of the mean position
of the particle which renders the problem local in time. The
optimal protocol (in dimensionless units for time)

λ(τ ) = λf (τ + 1)/(t + 2) (144)

involves two jumps

λ ≡ λ(0+)− λ0 = λf − λ(t−) = λf /(t + 2) (145)

at the beginning and the end of the process. The physical
reason for, e.g., the rst jump is the fact that with this jump the
dissipation rate is constant throughout the process. If the trap
moved with constant speed without initial jump, the friction
would slowly build up at the beginning of the process which
ultimatelywould imply stronger dissipation. The size of the, in
this case, symmetric jumps at the beginning and end vanishes
as t → ∞.

Similar jumps have also been found in a second case
study where the stiffness of a harmonic potential V (λ, x) =

λx2/2 is changed in nite time from an initial value λi
to λf [284]. For overdamped motion of a dipole in a
magnetic eld that switches the orientation, the optimal
protocol can even show a degeneracy [287]. Further examples
for optimal protocols involving non-linear potentials were
studied numerically in [286].

An intriguing mapping of this optimization problem to
deterministic optimal transport likemass transport by aBurgers
velocity eld has been discussed in [288, 289]. For total
entropy production as objective function, turning an earlier
scaling argument [290] into a mathematical proof, a general
bound can thus be derived,S tot > C/t valid for any t , where
C depends on the given initial and nal distributions [291].
The key point is that this optimization takes place in the space
of all probability distributions rather than in a restricted space
of driving potentials with a few variational parameters. In the
latter case, the ∼ 1/t behavior will hold only for long times.

7.1.3. Underdamped dynamics. For underdamped
dynamics, the optimal protocol involves even stronger
singularities at the beginning and end of the process given
by additional δ-peaks in the protocol [292]. Physically, these
terms guarantee that the particle at the beginning acquires,
and at the end loses, a nite mean momentum instantaneously
which minimizes total dissipation.

7.1.4. Discrete dynamics. Optimal protocols can also be
investigated for master equation dynamics on a discrete set of
states. A simple case has been studied as amodel for a quantum
dot with a single energy level E connected to a reservoir with
chemical potential µ ≡ E − (τ ). The optimal protocol for
an externally controllable gap (τ ) and given (0) and (t)

minimizing the mean work W ≡
∫ t

0
dτp(τ )̇(τ ), where p(τ )
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is the probability that the energy level is occupied, shows jumps
in the optimal ∗(τ ) at beginning and end which are nicely
explained in physical terms in [293]. Amore general approach
to the optimal protocol connecting arbitrary given initial and
nal distributions is given in [294].

7.2. Quantifying irreversibility

The concepts developed for deriving the FTs can also lead
to a more quantitative understanding of irreversibility. In
section 4, the time-reversed process was introduced as a mere
tool for deriving the FTs. By considering such a time-reversed
process seriously and comparing it with the original time-
forward process, one can indeed derive an interesting relation
between dissipation and irreversibility. An essential tool in this
analysis is the relative entropy or Kullback–Leibler distance

D[p||q] ≡



dyp(y) ln[p(y)/q(y)] > 0 (146)

between two distributions p(y) and q(y). Essentially, this
quantity measures how distinct the two distributions are [295].

We present here the stochastic version of the basic idea
rst introduced using Hamiltonian dynamics [296, 297]. For a
process with a time-dependent potential V (x, λ) and its time
reversal, which start and end in the respective equilibrium
states, the quantity R in the generalized FT (80) becomes
R = w −F . This FT thus implies

exp[−(w −F)]|sα = p†(αsα)/p(sα) (147)

where the average is conditioned on the value sα of an arbitrary
functional Sα[x(τ )] along the trajectory with a denite parity
α under time reversal. By choosing Sα = w−F , averaging
the logarithm of (147) yields

w −F = D[p(w −F)||p†(−(w −F)]. (148)

This relation, which can be seen as a consequence of the CFT
(61), shows that the dissipated work determines how different
the distributions for this quantity along the forward and the
backward paths are. Likewise, a large difference of these two
distributions implies a substantial dissipated work.

By choosing Sα = x(t1) = x†(t − t1), i.e. the state of the
system at any intermediate time t1, one obtains from (147) the
lower bound

w −F > D[p(x(t1))||p
†(x†(t1))] (149)

on the dissipated work. In contrast to this stochastic case, for a
Hamiltonian dynamics, one obtains an equality in (149) due to
Liouville’s theorem [296]. For both types of dynamics, further
coarse graining, i.e. looking at the distributions for a variable
y = y(x(t1)), leads to a lower bound on the dissipated work
since relative entropy decreases under coarse graining [295] as
nicely illustrated in the present context in [298].

Similarly, by choosing t1 = t , one immediately obtains
the inequality

w −F > D[p(x(t))||peq(x(t))] (150)

which bounds dissipation by the distinguishability of the
instantaneous distribution with the corresponding equilibrium
distribution as derived and discussed in [299].

It is trivial to derive similar relations for processes

involving genuine steady states that at constant control

parameters reach a NESS rather than equilibrium as pointed

out in [300]. Essentially, in (147)–(150), one has to replace

both w−F by sm +φwhere φ is the non-equilibrium

potential (11) and peq by ps .

Related inequalities have been discussed for transitions

between specied initial and nal states [301]. Relations

between other information-theoretic measures and non-

linear averages of work and entropy along non-equilibrium

trajectories have been derived in [302–304]. An intriguing

relation between generating information and dissipation has

been made for DNA replication in [305] with a corresponding

pedagogical introduction in [306] and an analysis in terms of

a thermodynamic machine in [307].

7.3. Measurement and feedback

7.3.1. Feedback and the second law. According to

the Kelvin–Planck formulation of the second law, one

cannot extract work from an equilibrated system at constant

temperature without leaving any traces of this process

somewhere else. The situation becomes apparently different

if information about the state of the system during this

process becomes available through a measurement as the

classical example of Maxwell’s demon and the Szilard engine

reviewed in [308, 309] demonstrate.7 Based on the result of a

measurement, one can choose a particular protocol for a control

parameter which will indeed allow either to extract work in a

cyclic process or, in a non-cyclic process, to extract more work

than the corresponding free energy difference of initial and

nal equilibrium state. These statements are still compatible

with the second law since erasing the information acquiredwill

cost free energy according to Landauer’s principle. Taking

this additional effect into account, the ordinary second law

is restored. Typically, for discussing these processes within

stochastic thermodynamics the cost of measurement and

erasure process is rst ignored in the problem of how to convert

the acquired information into work (most efciently) as it also

will be ignored in the following discussion of the main concept

where we use an approach based on FTs. Related earlier work

will be briey mentioned in section 7.3.5.

7.3.2. Measurement and information. For a quantitative

description, we assume a system evolving according to a

master equation as introduced in section 6. If the system

at time t1 is in state n1 = n(t1), a measurement at this

time yields a result y1 with the probability p(y1, t1|n1) =

p(n1, t1|y1)p(y1, t1)/p(n1, t1). Here, p(n, t) is the ordinary

solution of the master equation for the given initial condition

and p(y1, t1) the probability for obtaining the result y1
irrespective of n1. The (trajectory-dependent) information

acquired in this measurement is [311]

I(n1, y1) ≡ ln[p(n1, t1|y1)/p(n1, t1)]

= ln[p(y1, t1|n1)/p(y1, t1)]. (151)

7 For an instructive criticism of one of the assumptions of the Szilard engine,

see [310].
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Upon averagingwithp(y1|n1), this trajectory-dependent infor-

mation becomes the relative entropyD[p(n1, t1|y1)||p(n1, t1)]

which still depends on the result y1 of the measurement. Fur-

ther averaging over y1 leads to the mutual information

I ≡



dy1p(y1, t1)D[p(n1, t1|y1)||p(n1, t1)] (152)

=



dy1



dn1p(n1, y1, t1)I(n1, y1). (153)

7.3.3. Sagawa–Ueda equality and a generalization. After

a measurement, the control parameter λ(τ, y1) for the

subsequent evolution t1 6 τ 6 t is assumed to depend

uniquely on the outcome y1 leading to the probability

distribution p1(n, τ |y1). For a system with a time-dependent

potential V (n, λ), i.e. a system that at any xed λ reaches a

genuine equilibrium state, Sagawa and Ueda have generalized

the JR (58) to this feedback-driven process in the form

[311, 312]

exp[−(w −F + I)] = 1 (154)

which implies for the maximal mean extractable workW out ≡

−w the bound

W out
6 −F + I (155)

with I ≡ I. Thus, acquiring information through a

measurement allows one to extract more work than what one

would get from a process without feedback.

The original formulation of the SUE requires the notion

of a free energy difference for initial and nal state. For

transitions involving genuine non-equilibrium states, i.e.

those that at constant control parameters reach a NESS, the

analogous relation

exp[−(s tot + I)] = 1 (156)

with the inequality

s tot > −I (157)

holds true as well.8

A concise proof of (156), which will be valid with a

minor modication for (154) as well9, not requiring explicit

time reversal follows from exploiting the IFTs (equations (85)

and (86)) [313]. Using s tot = s + sm, splitting the

last term into the two contributions associated with the two

time intervals i = (0 6 τ < t1) and ii = (t1 6 τ 6 t),

making the total entropy change of the system explicit with

s = − lnp(nt , t |y)+lnp0(n0, 0), and the specic expression

for the information (151), the lhs of (156) can be written as


1

p0(n0)
e−smi

p(n1, t1)

p1(n1, t1|y1)
e−smii p1(nt , t |y1)



=


m1



1

p0(n0)
e−smi |n1 = m1



i

p(n1, t1)

×
〈

e−sexii p1(nt , t |y1)|n1
〉

ii
= 1. (158)

Introducing conditioned averages on the two intervals i and ii

eliminates the explicit factor 1/p1(n1, t1|y1). The underlined

8 Note that even for detailed balanced systems, the equalities (154) and (156)

are different since, in general w −F = stot .
9 For proving the SUE (154), one only needs to replace p1(nt , t |y1) by

peq(nt , t |y1) in (158).

term is 1 for any m1 due to (85). Likewise, the subsequent

summation over m1 is 1 due to (86). The SUE thus holds

for trajectory-averages still conditioned on the results y1. Of

course, further averaging over all possible outcomes y1 is

allowed. This proof (as the original one) is easily extended

to multiple measurements. Thus, the Sagawa–Ueda equality

(SUE) and its variant (156) with the corresponding inequalities

hold for any number of measurements [312–316].

For processes involving genuine non-equilibrium states,

the generalization of the Hatano–Sasa relation (67) to

processes with feedback in the form [313]

exp[−(s tot −shk + I)] = 1 (159)

with the inequality

s tot > shk − I (160)

follows as easily starting with conditioned variants of (88).

The bound (160) is much stronger than (157) since shk

will typically scale with the total time t . For systems that at

constant λ exhibit detailed balance, shk = 0, in which case

(159) and (160) become (156) and (157).

7.3.4. Efciency of Brownian information machines.

For a cyclically operating information machine, where

measurements are repeated at regular intervals separated by

tm [317], the inequality (157) implies that one can extract at

most a mean power Ẇ out bounded by

Ẇ out
6 İ, (161)

where İ is the rate with which information is acquired.

Likewise, for processes involving transitions between genuine

non-equilibrium states, the inequality (160) implies

Ẇ out
6 Ẇ in − q̇hk + İ. (162)

If the rate of acquiring information is large enough, i.e. if İ >

q̇hk, the extracted power can exceed the power Ẇ in required

to sustain these non-equilibrium steady states as demonstrated

explicitly with a simple example in [313]. Characteristically,

the power extracted from such a machine becomes larger, the

smaller the intervals tm between the measurements are.

A quite natural denition for the efciency [317, 318] of

such a Brownian information machines obeying 0 6 η 6 1 is

in the rst case

η ≡ Ẇ out/İ (163)

and, analogously,

η ≡ Ẇ out/[Ẇ in − q̇hk + İ] (164)

for the second case.

7.3.5. Further theoretical work and case studies. Several

theoretical studies have investigated various aspects of such

feedback-driven processes for stochastic dynamics. Kim and

Qian have considered an underdamped particle controlled by

a velocity-dependent force [319, 320]. This problem has been
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analyzed from the perspective of total entropy production

in [321]. Suzuki and Fujitani investigate Brownian motion

both under a time-dependent force [322] and for linear systems

more generally [323]. Similarly, Sagawa and Ueda illustrated

their concept using a particle that is transported in a movable

harmonic trap and can still extract work from the surrounding

heat bath [311]. Feedback-driven transport for ratchet-type

systems has been optimized in [324–326]. Maximum power

for such a model has been studied in [327]. Information-

theoretic and thermodynamic concepts have been combined in

[318, 328–331]. The thermodynamic cost of a measurement

has been modeled in [332]. Recent reviews on the relation

between information and feedback control are [333, 334].

The optimal protocol for extracting the maximal work

from cyclic processes for particles in harmonic traps with

adjustable center and stiffness based on imperfect positional

measurements has been calculated in [335] where it was shown

that the bound (155) cannot be saturated if only the center

of the trap is under control. Only by additionally adjusting

the stiffness can all the information be recovered provided an

innite time is allocated to the process. For such a machine,

the efciency at nite cycle time has been calculated in [317].

The issue of saturating this bound has been investigated in

more depth introducing the notion of ‘reversible’ feedback by

Horowitz and Parrondo [336, 337]. A model for the cost of

erasing information using a Brownian particle in a double-well

potential was discussed in [338].

7.3.6. Experimental illustrations. Experimentally, the SUE

has been demonstrated using an ingenious set-up involving

electric elds that upon measuring the position of a colloidal

particle on a ‘stair’ prevent that the particle slides down a

step that it has just climbed by thermal excitation [339]. In

another experiment, Landauer’s principle has been illustrated

using a colloidal particle trapped in a modulated double-well

potential. The mean dissipated heat indeed saturates at the

Landauer bound in the limit of long erasure cycles [340].

7.3.7. Hamiltonian dynamics for microcanonical initial

conditions. Deviating from the restriction to stochastic

dynamics as applied generally in this review, I mention a few

recent studies that use Hamiltonian dynamics and feedback

since they provide an additional perspective on what has

just been described. The Kelvin–Planck statement of the

second law does not hold for microcanonical initial conditions

which indeed allow one to extract work, i.e. to decrease the

mean energy from a Hamiltonian system by manipulating an

external control parameter [341]. Specic examples have

been given for a harmonic oscillator [342], for a particle

between movable walls [343] and for motion in a double-

well potential [344]. While for such microcanonical initial

conditions no measurement is necessary, these results could be

applied to an initially canonical ensemble if the energy of the

system is measured with subsequent adaptation of the protocol

of the control parameter in a feedback process. As shown

explicitly in [344], the full analysis including the cost of erasing

information exorcizes this ‘demon’ and restores the ordinary

second law.

8. FDT in a NESS

8.1. Overview

8.1.1. FDT in equilibrium. Equilibrium systems react

to small perturbations in a quite predictable way formally

expressed by the FDT, see, e.g., [345]. The response of an

observable A at time τ2 to a perturbation h applied at time

τ1 can be written in the form of an equilibrium correlation

function as

T δA(τ2)/δh(τ1)|h=0 ≡ T R
eq
A (τ2−τ1) = ∂τ1A(τ2)B(τ1)

eq,

(165)

where the conjugate variable

B = −∂hE (166)

follows from the energy E(h) of the system. Here it is

assumed that for any small xed h the energy of the system

is still well-dened. This FDT is the formalization and

generalization of Onsager’s regression hypothesis that states

that the decay of an excitation is independent of whether

it has been generated externally by a force (or eld) h or

by a thermal uctuation. This theorem is of great practical

signicance since it allows one to predict the response to a

perturbation without ever applying one just by sampling the

corresponding equilibrium uctuations either in experiments

or in simulations. Characteristically, the same B holds for any

A and any time difference τ2 − τ1.

8.1.2. FDT in a NESS. Whether a similarly universal

relation exists for NESSs has been addressed using various

approaches since the seventies. For an underlying stochastic

dynamics, Agarwal has expressed the response function

by a correlation function involving the typically unknown

stationary distribution [346]. Bochkov and Kuzovlev [12, 347,

348] and Hänggi and Thomas [349] have derived a variety of

formal expressions for stochastic processes. A comprehensive

review of the general relation between uctuations and

response including, in particular, deterministic chaotic systems

is given in [350].

More recently, taking up a theme introduced earlier [351],

Harada and Sasa derived a relation where the ‘violation’ of the

equilibrium FDT in a NESS was related to the rate of energy

dissipation for a Langevin system [352, 353] later generalized

to a description in terms of a density eld [354]. For the special

case of a driven colloidal particle it was shown in [355] that the

FDT in the NESS could be obtained from the equilibrium FDT

(165) by subtracting from the rhs a second correlation function

involving the local mean velocity. This result suggested that in

the locally co-moving frame the Onsager hypothesis could be

restoredwhichwas later extended to sheared systems [356] and

proven for general diffusive dynamics in [357, 358]. Thus, for

these systems, the decay of an excitation around a local NESS

is still the same whether generated externally or by the thermal

uctuations still present in the NESS.

A concise formal derivation and discussion of the general

FDT in a NESS has been given by Baiesi et al [359–361].

The response of particular observables was treated at the same
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time by Prost et al [362]. In [363], it was then shown that the

latter result holds indeed for any observable and that the FDT

for a NESS becomes particularly transparent when using the

concept of stochastic entropy with its splitting into a total and

a medium one. In this latter work, the apparent multitude of

FDTs in a NESS was rationalized in terms of an equivalence

relation holding for observables inNESS correlation functions.

An elegant synthesis using mathematically somewhat

more demanding concepts has just been given in [364]. An

extension of these concepts to obtain an FDT around non-

stationary non-equilibrium states is derived in [365]. A

connection with gauge elds is made in the geometrical

approach of [366]. For a nice review on the FDT for NESSs,

see the recent [367].

8.1.3. Effective temperature. The derivation of recent exact

versions of the FDT for a NESS which as a result typically

express the response function by a sum of two correlation

functions should be distinguished from the phenomenological

concept of an effective temperature that has been reviewed

in [368]. Originally introduced in the context of aging systems,

it can be formulated also for a NESS. Simply stated, guided

by the equilibrium form (165) an effective temperature is

dened as

T eff(A, τ2 − τ1) ≡ ∂τ1A(τ2)B(τ1)
s/RA(τ2 − τ1), (167)

where RA is now taken in the NESS. In general, T eff will

depend on both the observableA and the time difference τ2−τ1
which upon Fourier transformation corresponds to frequency

ω. Obviously, this concept can become meaningful only if

these dependences are not very pronounced.

From a theoretical point of view, a strictly observable and

frequency-independent T eff follows for a Langevin system

like (42) with f = 0 if the non-equilibrium conditions are

caused by an additional ‘active’ noise η with correlations

η(τ2)η(τ1) = 2(T eff − T )µδ(τ2 − τ1). For a linear system

and active noise correlated on a scale τ ac, T eff will depend

on frequency. For ωτ ac  1, one obtains the ordinary

temperature, whereas for ωτ ac  1 the enhanced uctuations

lead to a larger T eff .

On the other hand, if the non-equilibrium is generated by

a non-conservative force or eld, such a simple reasoning is

no longer possible. Still, in interacting systems one often nds

numerically good agreement with the concept of an effective

temperature as briey mentioned in section 8.4 below for

sheared suspensions. A fundamental understanding of when

and why this is the case in general seems still to be missing.

For insight into the frequency and observable dependence

for specic models and systems, see, e.g., [369, 370] for a

binary Lennard-Jones mixture in a simple shear ow, [371]

for a glassy model system, [372–375] for simple interacting

model systems, [376–378] for simple Langevin systems, and

[379] for eld-theoretical models. For the phenomenon of

‘hot Brownian motion’ mentioned in section 2.6.3, various

‘effective temperatures’ were determined in simulations [380].

Examples of investigating biophysical systems using

an effective temperature include [381] for hair bundle

oscillations, [382, 383] for the cytoskeleton, [384, 385] for

lament oscillations in an active medium, [386] for self-

propelled particles, [387] for vesicle and [388, 389] for red-

blood-cell uctuations. If the response of such a system acts

effectively ‘against’ the perturbation, the effective temperature

becomes negative as occasionally found in these studies. Such

an observation shows that this concept should not be taken very

literally.

8.2. Derivation and discussion

In this section, we sketch the derivation of the various forms

of the FDT in a NESS from a unifying perspective for a

general Markovian dynamics on a discrete set of states. Since

overdamped Langevin systems can always be discretized, this

case is a very general one. We follow the concepts introduced

in [359, 363] which were briey reviewed in their continuum

version in [390]. Earlier related work for a Markovian

dynamics on a discrete set of states making somewhat more

explicit assumptions on observable and rates for spin models

include [391–398] and for aging in supercooled liquids [399].

8.2.1. Equivalent correlation functions in a NESS. We

consider a class of NESSs with rates wmn(h) that depend on

a perturbation h. The stationary distribution of the master

equation dynamics (110) obeys


n

Lmn(h)p
s
n(h) = 0 (168)

with the generator

Lmn(h) ≡ wnm(h)− δmn



k

wmk(h). (169)

For xed h, any dynamic information is fully contained in the

propagator

Gkl(τ ) ≡ p[n(τ ) = k|n(0) = l] (170)

for which the master equation (110) implies the evolution

∂τGkl(τ ) =


m

LkmGml(τ ) =


m

Gkm(τ )Lml. (171)

In a NESS, denoted in the following with . . .s , two-point

correlation functions for state variables of the form A(τ ) =
∑

m Amδn(τ )m are given by

A(τ2)B(τ1)
s =



mn

AmGmn(τ2 − τ1)Bnp
s
n (172)

if τ2 > τ1. Using (169) and (171), a time derivative with

respect to the earlier time can thus be written as an ordinary

two-point correlation function

∂τ1A(τ2)B(τ1)
s = A(τ2)C(τ1)

s (173)

with

Cn = Bn



m

wnm −


m

Bmwmnp
s
m/p

s
n

=


m

(Bn − Bm)p
s
mwmn/p

s
n. (174)
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In addition to state variables as observables we will also

need current variables of the type

D(τ ) ≡


j

δ(τ − τj )dnj−nj + (175)

that yield dnj−nj + whenever a corresponding transition takes

place. Their NESS average is given by D(τ )s =
∑

mn p
s
mwmndmn. If D(τ ) shows up in a correlation function

at the earlier time τ1, we obtain

A(τ2)D(τ1)
s =



mkl

AmGml(τ2 − τ1)p
s
kwkldkl (176)

= A(τ2)E(τ1)
s (177)

with

En =


k

ps
kwkndkn/p

s
n. (178)

These relations imply, in particular, that the formal current

variable

Ḃ(τ ) ≡


j

δ(τ − τj )(Bnj + − Bnj−) (179)

obeys

A(τ2)Ḃ(τ1)
s = ∂τ1A(τ2)B(τ1)

s (180)

which demonstrates, quite expectedly, that even in this discrete

case time derivatives can be pulled in and out of a NESS

correlation function straightforwardly.

The fact that NESS correlation functions can have the

same value if the variable at the earlier time is written

differently gives rise to an equivalence relation denoted by

O(1)(τ ) ∼= O(2)(τ ) (181)

if

A(τ2)O
(1)(τ1)

s = A(τ2)O
(2)(τ1)

s (182)

holds for all A and times τ1 < τ2 [363]. For the variables

dened above we obviously have

D(τ ) ∼= E(τ ) and Ḃ(τ ) ∼= C(τ ) (183)

which summarizes how current variables and time derivatives

can be replaced by state variables in NESS correlation

functions. This freedom will explain why apparently so

different looking FDTs can be derived for a NESS.

8.2.2. Equivalent forms of the FDT. The apparent plethora of

FDTs can be rationalized by starting with an expression for the

response function using the path weight (119). In the presence

of a time-dependent perturbation h(τ ), the mean value of the

observable A(τ ) is given by [359, 363]

A(τ ) =


n(τ )

A(τ )p[n(τ );h(τ )|n0]p
s
n0

=


n(τ )

A(τ )
p[n(τ );h(τ )|n0]

p[n(τ )|n0]
p[n(τ )|n0]p

s
n0
.

(184)

The response function

RA(τ2 − τ1) ≡ δA(τ2)/δh(τ1)|h=0 ≡ A(τ2)B
p(τ1)

s

(185)

can be expressed by a two-point correlation function in the

unperturbedNESS by evaluating (184) with the action (119) as

Bp(τ1) = − δA[n(τ );h(τ )]/δh(τ1)|h=0 (186)

= −


k

wn(τ )kαn(τ )k +


j

δ(t − τj )αn−j n
+
j

(187)

where

αmn ≡ ∂h lnwmn(h)|h=0. (188)

This form of the conjugate variable (with the superscript

p alluding to the derivation through the path weight) is

convenient since it allows one to determine the response

function by measuring a correlation function that requires

only knowledge about how the rates depend on the control

parameter which is easily available in simulations. The more

formal aspect that the rst term in (187) arises from the time-

symmetric part of the action and the second one from its

time-antisymmetric one is emphasized and further exploited

in [359–361].

A second equivalent representation of the conjugate

variable is obtained by replacing (by following the scheme

(175)–(178)) the second (current) part in Bp by its equivalent

state variable form which leads to Bp ∼= Ba with

Ba
n = −



k

wnkαnk +


k

wknαknp
s
k/p

s
n (189)

=


k

∂hLnk(h)|h=0 p
s
k/p

s
n. (190)

The last equality follows from expanding (169) in h and

the denition (188). This expression for the conjugate

variable involving only state variables can also be derived

by straightforward time-dependent perturbation theory of the

Fokker–Planck equation as originally derived by Agarwal

(hence, the superscript a) [346]. Using this expression,

however, requires knowledge of the stationary distribution

which for interacting systems with many degrees of freedom

is not easily available in either simulations or experiments.

Finally, as a third, arguably physically most transparent

form of the conjugate variable, it is easy to check explicitly that

−∂hṡ ∼= Ba by expanding (168) in h and following the recipe

of how to pull a time derivative into a correlation function given

in the previous subsection. Consequently, one has [363]

RA(τ2 − τ1) = − A(τ2)∂hṡ(τ1)
s (191)

= A(τ2)∂hṡ
m(τ1)

s − A(τ2)∂hṡ
tot(τ1)

s . (192)

The rst form expresses the response function as a time

derivative of a correlation function where the observableA(τ2)

is correlated with the h-derivative of the stochastic entropy at

τ1. This form of the conjugate variable is actually unique if

one wants to write the response function as a time derivative

of a correlation function. Moreover, it allows a physically

transparent interpretation by splitting it into the sumofmedium

and total entropy production as shown in the second line.
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8.2.3. Comparison with equilibrium FDT. For a comparison

with the equilibrium FDT, assume that the steady state is a

genuine equilibrium state for h = 0. In fact, two classes of

such systems should be distinguished.

First, if the system is not only in equilibrium at h = 0

but also at small h, the stationary distribution is given by the

Boltzmann distribution

peq
n (h) = exp{−[En(h)− F(h)]/T }, (193)

where En(h) is the internal energy and F(h) the h-dependent

free energy of the system. The stochastic entropy obeys

sn(h) = − lnp
eq
n (h) = [En(h) − F(h)]/T . Along an

individual trajectory, F(h) is constant and hence we have

T ∂hṡn(h)|h=0 = ∂hĖn(h)|h=0. (194)

Inserting this equivalence into (191), the FDT acquires itswell-

known equilibrium form (equations (165) and (166)) involving

the observable conjugated to h with respect to energy.

Second, a system may be in equilibrium at h = 0 but

driven into a NESS even at constant small h. The paradigmatic

example is a perturbation through shear ow for which there

is no corresponding E(h) for any h = 0. For such systems,

the equilibrium FDT can still be written in the form (191) but

also in the pure state form with Ba from (equations (189) and

(190)).

8.2.4. Systems with local-detailed balance. A further

comparison between the equilibrium and the NESS-FDT is

instructive for systems for which the perturbation enters the

ratio of the rates in the form of a local-DBC

wmn(h)

wnm(h)
=

wmn(0)

wnm(0)
exp[hdmn/T ], (195)

where dmn = −dnm is the distance conjugate to the eld

covered by the transition m → n. For h = 0, the system is

supposed to be in genuine equilibrium with averages denoted

by . . .eq; for h = h0 = 0 a genuine NESS denoted by

. . .s is reached. In equilibrium, using the global DBC

(113), one easily veries ∂hṡ
m ∼= Ba and hence one has the

equilibrium FDT

T R
eq
A (τ2 − τ1) = A(τ2)B

a(τ1)
eq = A(τ2)∂hṡ

m(τ1)
eq.

(196)

On the other hand, the NESS-FDT in the form (192) always

holds. Since for such systems

∂hṡ
m =



j

δ(τ − τj )dnj−,nj +/T (197)

is independent of h, the recipe for getting the FDT in a

NESS from the equilibrium FDT is to keep as a rst term

the observables showing up in the correlation function but to

evaluate the latter under NESS conditions and to subtract an

expression involving the total entropy production [363].

8.2.5. Generalized Green–Kubo relations. In equilibrium,
the Green–Kubo relations express transport coefcients like
conductivity or viscosity by time-integrals over equilibrium
correlation functions of the corresponding currents. Based on
the FDT derived above, it is possible to derive similar relations
between transport coefcients in a NESS and appropriate
current–current correlation functions [400] as illustrated for a
simple model of molecular motors in [401]. This approach of
studying the linear response of aNESS should be distinguished
from extensions of the Onsager symmetry relations to the non-
linear response coefcients of an equilibrium system [402].

8.3. Colloidal particle on a ring as paradigm

The overdamped particle driven along a periodic potential, see
gure 1, as discussed in section 2.2 can serve as paradigm for
illustrating the different versions of the FDT [363].

8.3.1. Equivalent correlation functions. The equivalence
relation introduced in section 8.2.1 for variables occurring in
correlation functions in a NESS exists for continuous variables
as well. For a discretized position variable, jump rates can
easily be derived from discretizing the path integral. Going
then through the steps as in section 8.2.2 shows that the
equivalence

ẋ ∼= 2νs(x)− µF(x) (198)

can be used in aNESS correlation function at the earlier time.10

The mean local velocity νs(x) has been introduced in (12).
Sometimes, the generalization

g(x)ẋ ∼= g(x)[2νs(x)− µF(x)]− µT ∂xg(x) (199)

is useful which can be derived similarly11.

8.3.2. Three equivalent forms. First, consider a NESS
generated by a force f0 which is further perturbed by an
additional delta-like force impulse acting at time τ1. The
response function can be written as a correlation function in
the three equivalent forms

T RA(τ2 − τ1)|f0 =0 = A(τ2)[ẋ − µF(x)]|τ1/2
s (200)

= A(τ2)[ν
s(x)− µF(x)]|τ1

s (201)

= A(τ2)[ẋ − νs(x)]|τ1
s . (202)

The rst form follows from applying perturbation theory to
the path integral expression. The advantage of this expression
is that it does not require explicit knowledge of the stationary
distribution. By replacing the velocity with the corresponding
state variable as shown in (198) one obtains the second
form. This expression can also easily be obtained from
perturbation theory of the Fokker–Planck equation as in the
original derivation [346]. Finally, a simple linear combination
of the rst two lines leads to the third form originally rst
derived in [355]. In this form, both the additive correction to
the equilibrium form T RA(τ2 − τ1) = A(τ2)ẋ(τ1)

eq and the
signicance of a locally co-moving frame become apparent.

10 In equilibrium, this equivalence becomes ẋ ∼= µ∂xV (x) where the crucial

sign difference compared with naively ignoring the noise in the Langevin

equation (1) should be noted.
11 Applied to a NESS correlation function with A(τ2) = 1, this relation leads

to g(x)ẋs = g(x)[2νs (x) − µF(x)]s − µT ∂xg(x)
s = g(x)νs (x)s

which corresponds to (34) applied to a NESS.
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8.3.3. Generalized Einstein relation. The Einstein relation

(3) connecting the bare mobility µ of a particle embedded

in a viscous uid with its diffusion constant D has arguably

been the rst form of an FDT which was based on a

microscopic understanding of thermal motion. This relation

has many manifestations in more complex soft matter systems

as reviewed in [49]. If such a particle is in a periodic potential

V (x), the diffusion coefcient

D[V (x)] = lim
t→∞

[x2(t) − x(t)2]/2t (203)

and the effective mobility

µ[V (x)] = ∂f ẋ|f=0 (204)

still obey D[V (x)] = T µ[V (x)] even though both terms are

exponentially suppressed if the barriers exceed the thermal

energy.

In the presence of a non-zero base force, an effective

diffusion constantD[V (x), f ] and amobilityµ[V (x), f ] as in

(203) and (204) evaluated at a nite force, respectively, are still

dened. The effective mobility is the time-integrated response

function. Hence, the generalized Einstein relation between

D[V (x), f ] and µ[V (x), f ] follows from integrating (202)

from τ2 = τ1 to τ2 = ∞ as [355]

T µ[V (x), f ] = D[V (x), f ]

+

 ∞

0

dτ [ẋ(τ )− ẋ][νs(x(0))− ẋs] (205)

which shows how the ‘violation’ of the usual Einstein relation

can be expressed as an integral over velocity correlation

functions. This relation is a simple example of a Green–Kubo

relation generalized to a NESS [400]. Another form of this

generalized Einstein relation has been studied in [403] for two-

dimensional motion in the presence of a magnetic eld and

for a discrete model showing anomalous diffusion in [404],

respectively.

8.3.4. Experiments. The generalized Einstein relation (205)

has been measured experimentally in [405]. Signicantly,

in this experiment, the extra integral term in (205) can be

about four times as big as T µ[V (x), f ] which shows clearly

that this experiment probes a genuine NESS far from any

linear response regime of an equilibrium system. Still, the

description of the colloidal motion by a Markovian Brownian

motion with unaltered thermal noise and a drift obviously

remains a faithful representation. The very fact that around

a critical force f  max|∂xV (x)| the diffusion coefcient

becomes quite large is known as giant diffusion [406, 407].

The time-resolved version of this FDT has been studied

experimentally in [408] where it was shown that even though

the different correlation functions (equations (200)–(202))

are theoretically equivalent their statistics can be vastly

different. Not surprisingly, the variant (201) involving only

state functions shows better convergence properties than the

ones requiring ẋ. The response not to a force but to a

change in the amplitude of the periodic potential was studied

experimentally in [409, 410].

8.4. Sheared suspensions

For studying the relation between uctuations and response in

interacting non-equilibrium systems, a colloidal suspension in

shearowprovides a paradigmatic case. Such a system follows

a dynamics as introduced in section 2.6.3 with u(r) = γ̇ yex
(or the corresponding underdamped version) and some pair

interaction V .

One obvious question is to investigate the generalized

Einstein relation between the self-diffusion coefcientDij (γ̇ )

and themobilityµij (γ̇ ) of a tagged particlewhich both become

tensorial quantities in such an anisotropic system. Szamel

[411] studied these quantities analytically using the memory-

function formalism. Krüger and Fuchs [412] have studied this

relation analytically and numerically near the glass transition.

Our numerical study in the uid phase [413] revealed that for

moderate densities the results can surpringly well be expressed

as an effective temperature since the ratios Dii(γ̇ )/µii(γ̇ )

of the diagonal elements become isotropic with a roughly

quadratic increase with shear rate. This effective temperature

which turns out to be the kinetic one can be rationalized

by comparing this interacting system with a harmonically

bound single particle in shear ow [414]. The response to

a perturbation in the shear rate has been investigated in [356]

and the one to a static external long wave-length perturbation

in [415, 416].

Further studies of the general FDT for sheared suspensions

include the integration through transient formalism [417, 418].

One advantage of this approach is that all quantities can

be expressed in terms of (albeit complicated) equilibrium

correlation functions. The response to a time-dependent

additional shear strain has been studied numerically in [356]

using essentially the form (191) that makes the excess

compared with the equilibrium case explicit. The relation

between the violation of the equilibrium FDT and energy

dissipation using eld variables has been addressed in [354].

9. Biomolecular systems

9.1. Overview

Singlemolecules and (small) biomolecular networks constitute

a paradigmatic class of systems to which the concepts of

stochastic thermodynamics can be applied. Conformational

changes of single molecules have become observable through

a variety of methods often summarized as single molecule

techniques [419–421]. There are essentially two ways

of exposing such a molecule that is embedded in an

aqueous solution of well-dened temperature containing

different solutes at specied concentrations to non-equilibrium

conditions. First, one can apply a (possibly time-dependent)

mechanical force if one end is connected via polymeric spacers

to the tip of an AFM or to beads in an optical tweezer. This

set-up allows one to study, e.g., force-induced unfolding of

proteins. Another source of non-equilibrium are unbalanced

chemical reactions catalyzed by the enzyme under study. In

combination with a mechanical force, this set-up allows one

in particular to resolve individual steps of a molecular motor
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and to measure force–velocity curves of such a molecular

machine [422, 423].

The uctuating conformations of biomolecules in non-

equilibrium can be described in twoways [34, 424, 425]. First,

one can model the observable degrees of freedom like the

end to end-distance of a protein by a continuous degree of

freedom subject to a Langevin equation. Such an approach

is particularly appropriate for studying force-induced un- and

refolding of biopolymers, in particular, with the perspective of

recovering free energy differences and even landscapes from

non-equilibrium experiments as reviewed in section 9.3.

Second, one can identify discrete, distinguishable states

between which (sudden) transitions take place as has often

been carried out to model molecular motors [426–442]. In

most of these works the focus has been put on elucidating

the cycles involved in the action of the motor and on deriving

force–velocity curves and their dependence on ATP and ADP

concentrations. A combination of both types of models has

been used for describing molecular motors by a Langevin

dynamics in a ratchet potential that depends explicitly on the

current chemical state of the motor as reviewed in [443–446].

From the perspective of stochastic thermodynamics, one

would like to formulate a rst law, discuss entropy production

and derive the corresponding uctuation theorems on the

single molecule level. Within a discrete state description,

a rst law along an individual trajectory has been discussed

for single enzymes in [98, 232, 447], for molecular motors in

[430, 434–439], and for small biochemical reaction networks

in [255, 448, 449]. Fluctuation theorems without explicit

reference to a rst law were discussed for such systems in

[431, 440, 450–456].

From a theoretical point of view, there are essentially

two new aspects that enter the stochastic thermodynamics

of biomolecular systems beyond a naive combination of

the stochastic thermodynamics of colloids as developed in

section 2 and the discrete dynamics as introduced in section 6.

First, the rates are not arbitrary as in section 6 but are rather

constrained by thermodynamic consistency [211, 212, 457]

as discussed in detail below. Second, each of the states

visited along a stochastic trajectory containsmanymicrostates.

Transitions between these (unobserved) microstates are fast

so that thermal equilibrium is reached within each state.

Transitions between the states, however, are slower, observable

and can be driven by external forces, ows or chemical

gradients. As a consequence, each of the states described by

stochastic thermodynamics carries an intrinsic entropy arising

from the coupling to the fast polymeric degrees of freedom and

to those of the heat bath. This effect must be taken into account

in any consistent identication of heat on the single trajectory

level [98, 438, 458, 459]. Some of the earlier studies quoted

above missed this contribution and, hence, failed to identify

the dissipated heat correctly.

How these systems can be described from the perspective

of a thermodynamic engine will be pursued in section 10.

9.2. Role of fast hidden degrees of freedom

In this section, we show how for a system with a separation

of time-scales the rst law and entropy production along a

trajectory as well as the FTs can be formulated by extending

to this case the formalism developed for systems without

relevant internal degrees of freedom like the colloidal particle

of section 2. Whether for any specic system such as the

paradigmatic biomolecule used here as illustration such a

separation is a realistic assumption would have to be studied

on a case by case basis by investigating its specic molecular

dynamics. We rst use a description with continuous degrees

of freedom and address the discrete case in section 9.4.

9.2.1. Thermodynamic states from a microscopic model. A

biopolymer contains a large number of coupled microscopic

degrees of freedom most of which will not be accessible in

experiments. Still, these microscopic degrees of freedom

affect processes on a larger scale that are described by

stochastic thermodynamics. The microscopic congurational

degrees of freedom collectively denoted by ξ are subject

to a microscopic potential energy (ξ, λ) containing the

interactionswithin themolecule (and possiblywith some of the

surrounding solvent and solute molecules). The dependence

on λ allows for an external potential arising from anAFMor an

optical tweezer whose positions can be controlled through λ.

Under non-equilibrium conditions, an external force

(or eld or ow) is applied to the molecule leading to

conformational changes apparent through, e.g., a changing

end-to-end distance. Such a quantity is an example of a meso-

scale description that involves a certain number of variables

denoted by x. Each such state effectively comprises many

microstates. Formally, one can split all microstates {ξ} in

classes Cx such that each ξ belongs to exactly one Cx. The

dynamics of x is supposed to be slow and observable whereas

equilibration among the microstates making up one state

x is fast. Under this crucial assumption, the conditioned

probability p(ξ |x, λ) that a microstate is occupied is given by

p(ξ |x, λ) = exp[−((ξ, λ)− F(x, λ))/T ] (206)

with the constrained free energy

F(x, λ) ≡ E(x, λ)− T S(x, λ)

≡ −T ln


ξ∈Cx

exp[−(ξ, λ)/T ], (207)

the constrained intrinsic entropy

S(x, λ) ≡ −∂T F (x, λ) = −


ξ∈Cx

p(ξ |x, λ) lnp(ξ |x, λ)

(208)

and constrained internal energy

E(x, λ) =


ξ∈Cx

(ξ, λ)p(ξ |x, λ). (209)

This model includes but is more general than a more

conventional description of the congurational potential in the

additive form

(x, ξ, λ) = 0(x, λ) +int(x, ξ, λ) +med(ξ, λ) (210)

made up, respectively, by a system, a coupling (of arbitrary

strength) and a potential for the degrees of freedom of the
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Figure 6. Schematic view of a protein stretched by a bead in a laser
trap. In a meso-scale description, the conguration is characterized
by the positions x = {x1, x2, x3, x4, x5, x)} where x is the position
of the bead. The control parameter λ denotes the center of the trap.

medium, which allmay depend on the control parameter. Here,

all degrees of freedom are split into those of the system x and

those of the heat bath ξ . By replacing (ξ, λ) in (206) and

(207) with(x, ξ, λ) and summing without constraint over all

ξ , the relations (206)–(209) remain true for the potential (210).

9.2.2. First law. For a time-dependent λ(τ ), representing,

e.g., the center of a moving laser trap, the increment in applied

work reads

d̄w =


ξ∈Cx

∂λ(ξ, λ)p(ξ |x, λ) dλ (211)

= ∂λF(x, λ) dλ = dF(x, λ)−∇F(x, λ) dx. (212)

In the rst equality, for a changing external parameter the work

arising from the microscopic interaction (x, λ) is expressed

as an average over all microstates contributing to the state with

(xed) x. The second equality follows with (206). Compared

with the expression in the colloidal case (15), the essential

difference here is that F(x, λ) is a free energy rather than a

bare potential, i.e. internal energy. Consequently, the rst law

that, of course, should involve internal energies becomes

d̄w = dE(x, λ) +d̄q = dF(x, λ) + T dS(x, λ) +d̄q. (213)

This relation together with (212) implies for the increment in

heat

d̄q = −∇F(x, λ) dx− T dS(x, λ), (214)

which makes the contribution to heat that arises from the

intrinsic entropy S(x, λ) clear.

For a practical evaluation of the work, one would have

to know F(x, λ), which, in general, has a complicated λ-

dependence if the microscopic potential (ξ, λ) is genuinely

λ-dependent. However, if the external potential couples only

to the slow degrees of freedom x as typically assumed, see

gure 6, a signicant simplication occurs. In this case, one

can write

F(x, λ) = F 0(x) + V (x, λ) = E0(x)− T S0(x) + V (x, λ),

(215)

where the quantities with superscript 0 are the thermodynamic

potentials (207)–(209) of the molecule for constrained slow

variables x in the absence of the external potential. As a

consequence

d̄w = ∂λV (x, λ)dλ, (216)

which becomes trivial for the typical case of a harmonic

potential V (x, λ) = k(xi − λ)2/2, with xi the relevant

coordinate for the coupling and k the effective stiffness of the

AFM tip or optical trap centered at λ(τ ).

9.2.3. Dynamics. For the dynamics of the slow degrees of

freedom one has the Langevin equation

ẋ = µ[−∇F(x, λ)] + ζ (217)

with the noise correlations as in (43). Likewise, the Fokker–

Planck equation reads

∂τp(x, τ ) = ∇(µ∇F(x, λ)p(x, τ )+ T µ∇p(x, τ )). (218)

Compared with the discussion in section 2.6.2 the key

point here is that whenever states carry intrinsic entropy, the

gradient of the free energy (rather than of internal energy) has

to show up in the Langevin and Fokker–Planck equations since

for any xed λ, the system has to reach equilibrium with the

Boltzmann factor

peq(x, λ) = exp[−(F (x, λ)− F(λ)/T ] (219)

with the λ-dependent free energy

F(λ) ≡ −T ln



dx exp[−F(x, λ)/T ]. (220)

9.2.4. Entropy production. The stochastic entropy along the

trajectory x(τ ) becomes

s(τ ) ≡ − lnp(x(τ ), τ ) (221)

where p(x, τ ) follows from solving the Fokker–Planck

equation (218) with an appropriate initial condition. For such

a system with intrinsic entropy, the total entropy production

along a trajectory during time t

s tot ≡

 t

0

dτ ṡ tot =

 t

0

dτ [ṡ(τ ) + Ṡ(x, λ) + q̇/T ] (222)

contains three contributions rather than two as in the case

without relevant intrinsic degrees of freedom.

9.2.5. Fluctuation theorems. In principle, the FT hold true

in the presence of intrinsic entropy as well provided the latter

is taken into account properly. The crucial point is that the

master functional R1 dened in (72) when using as conjugate

process the time-reversed one becomes

R1 = s int + q/T (223)

where

s int ≡ S(xt , λt )− S(x0, λ0) (224)

is the change in intrinsic entropy along the forward trajectory.

This result follows fromevaluating the action in the pathweight
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corresponding to the Langevin equation (217) and using the

rst law (213) integrated along the trajectory.

As a consequence, the FTs involving entropy production

discussed in sections 3.3 and 4 essentially hold true with the

replacement

sm → sm +s int. (225)

All FTs involving total entropy production hold true

unmodied.

The FTs involving work as dened in (212) hold true as

well. In particular, the JR stands with F = F(λt ) − F(λ0)

where the free energies have been dened in (220). The

reason why the intrinsic entropy does not spoil these relations

is the fact that both the work and the force in the Langevin

equation are determined by the free energy F(x, λ) very much

in the same way as the bare potential V (x, λ) determines

the corresponding quantities in the colloidal case. Loosely

speaking, the results of the simpler case hold true provided one

replaces the potential V (x, λ) by the free energy (i.e. potential

of mean force) F(x, λ).

In the presence of intrinsic entropy, the FDT (192) must

be modied accordingly by replacing ṡm by ṡm + ṡ int.

9.3. Free energy recovery from non-equilibrium data

9.3.1. HSR and variants. From a practical perspective,

arguably the most relevant FT for biomolecules is the HSR

[10, 460]. As a kind of JR resolved along a reaction coordinate,

it allows one to determine the free energy landscape F 0(x)

from non-equilibriumwork measurements through an external

potential V (x, λ) conditioned on a xed value of x. It reads

exp[−F 0(x)/T ] = exp[(V (x, λt )− F(λ0))/T ]

×exp[−w/T ]δ(xt − x). (226)

The rhs is evaluated by measuring the accumulated work w as

a function of position xt irrespective of the particular t .

A concise derivation [21] of the HSR starts with the

IFT (81). With the necessary replacement (225), the initial

equilibrium distribution p0(x, λ0) = exp[−(F (x0, λ0) −

F(λ0)/T ], the free choice p1(xt ) = δ(xt − x), the rst law

(213) and the assumption (215), it follows within a couple of

lines.

A variant of theHSR not requiring the position histograms

in (226) can be derived for a harmonic coupling V (x, λt )

[461]. Moreover, similarly as the CFT generalizes the JR

by including information from the time-reversed process,

bidirectional variants of the HSR have been derived and tested

in model calculations [462, 463].

9.3.2. Experiments. The rst experimental application of the

JR to biomolecules was the determination of the free energy

involved in partially unfolding RNA hairpins [464]. The CFT

was rst applied in another experiment measuring the free

energies inRNAhairpins andRNA three-helix junctions [465].

In a series of experiments, Ritort and co-workers have used

the CFT to determine the free energy involved in unfolding

DNA hairpins [101, 466–468]. The free energy involved in

unfolding the multidomain protein, titin, has been measured

in [469] using a simplied variant of the JR leading to some

criticism [470, 471]. The CFT has been used to determine free

energy changes induced bymechanically unfolding coiled-coil

structures [472, 473] and different topological variants of a

protein [474]. Axis-dependent anisotropy in protein unfolding

was investigated using the HSR in [475]. The free energy

landscape derived from the HSR has been compared with

equilibrium measurements in [476].

9.3.3. Numerical work. As relatively scarce as real

experimental studies using the FTs still are, as large is

the number of ‘numerical’ experiments illustrating the use

of the HSR and its variants for recovering free energy

landscapes. The following brief list is necessarily incomplete.

Model calculations for a single coordinate deal with the

advantage of applying a periodic force protocol [477], with

random forcing [478], comparison with ‘inherent structures’

[479], with motion in a periodic potential [480], and with

recovering an unknown spatially dependent mobility [481].

Multidimensional landscapes were reconstructed in [482].

Monte-Carlo or molecular dynamic simulations were used for

an off-latticemodel protein [483], for a protein domain in [484]

and for a membrane protein in [485].

An important line of research in this context is to nd

methods for dealing with the error caused by having only nite

(and even noisy) data for evaluating the non-linear averages

involved in the JR and the HSR. Some of the papers dealing

with this issue are [100, 153, 486–512].

9.4. Enzymes and molecular motors with discrete states

In this section, we show how the general framework for a

Markovian dynamics on a discrete set of states can be adapted

to describe the stochastic thermodynamics of enzymes and

molecular motors in a thermal environment starting again from

amicroscopic model. Apart from keeping track of the intrinsic

entropy of the states the essential point is to incorporate the

enzymatic reactions involving solute molecules consistently.

9.4.1. Thermodynamic states. The enzyme is in an

aqueous solution which consists of molecules of type i with

concentrations {ci} and chemical potentials {µi} enclosed in

a volume V at a temperature T . It exhibits a set of states

such that equilibration amongmicrostates corresponding to the

same state is fast whereas transitions between these states are

assumed to be slower and observable. Under these conditions,

one can assign to each state n of the enzyme a free energy

F enz
n , an internal energyEenz

n , and an intrinsic entropy Senz
n . As

explicitly discussed in [459], these quantities follow from any

microscopic model that species the energy of the microstates

of enzyme and solution. They obey the usual thermodynamic

relation

F enz
n = Eenz

n − T Senz
n (227)

despite the fact that the enzyme is small. Moreover, there is

no need to assume that the interaction between enzyme and

solution is somehow weak. In general, these thermodynamic

variables of the enzyme depend on the concentrations of the

various solutes.
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9.4.2. First law. In this section, we discuss the rst law

for the three classes of (i) pure conformational changes, (ii)

enzymatic reactions including binding and release of solutes

and (iii) motor proteins.

(i) Conformational changes: if the enzyme jumps from state

m to state n, the change in internal energy

Eenz ≡ Eenz
n − Eenz

m = −q (228)

must be identied with an amount q of heat being released

into (or, if negative, being taken up from) the surrounding

heat bath since there is no external work involved.

(ii) Enzymatic reactions: the more interesting case are

enzymatic transitions that involve binding of solute

molecules Ai , their transformation while bound, and

nally their release from the enzyme. Quite generally,

one considers transitions written as

n−ρ +


i

r
ρ

i Ai ≠ n+ρ +


i

s
ρ

i Ai (229)

where 1 6 ρ 6 Nρ labels the possible transitions. Here,

n−ρ and n+ρ denote the states of the enzyme before and

after the reaction, respectively. For s
ρ

i = 0, this scheme

describes pure binding of solutes, and for r
ρ

i = 0 release

of bound solutes. A transformation (such as bound ATP

to bound ADP + Pi) can also be described by the above

scheme with r
ρ

i = s
ρ

i = 0 and the understanding that the

enzyme states contain the bound solutes, see [459] for a

more detailed discussion.

The free energy difference involved in such a transition

Fρ = Eρ − TSρ ≡ F enz
ρ +F sol

ρ (230)

has two contributions where

F enz
ρ = Eenz

ρ − TSenz
ρ ≡ F enz

n+ρ
− F enz

n−ρ
(231)

denotes the free energy change of the enzyme and

F sol
ρ = Esol

ρ − TSsol
ρ ≡



i

(s
ρ

i − r
ρ

i )µi ≡ µρ

(232)

denotes the free energy change attributed to the solution

in this reaction. Both free energy contributions can as

usually be split into internal energy and intrinsic entropy.

As in the case of pure conformational changes, one assigns

a rst law type energy balance to each reaction of type

ρ (229). Once an initial state is prepared, in the closed

system (enzymeplus solution) there is obviously no source

of external work. Neither does the system perform any

work. Hence, the heat released in this transition is given

by minus the change of internal energy of the combined

system [459]

qρ = −Eρ = −Eenz
ρ −µρ − TSsol

ρ . (233)

This relation shows that the enzyme and the solution are

treated on the same footing since only their combined

change in internal energy enters. Since the heat is

released into the solution acting as a thermal bath, the

congurational change of the enzyme as well as binding

and releasing solutemolecules contribute to the same bath.

(iii) Molecularmotors: essentially the same formalism applies

to an enzyme acting as a molecular motor often described

by such discrete states. Most generally, if the motor

undergoes a forward transition of type ρ as in (229) it may

advance a distance dρ in the direction of the applied force

f (or, if f < 0, opposite to it). The special cases dρ = 0

(pure chemical step) or s
ρ

i = r
ρ

i = 0 (pure mechanical

step) are allowed. For dρ = 0, the mechanical work

wmech
ρ ≡ f dρ (234)

is applied to (or, if negative, delivered by) the motor.

The motor operates in an environment where the

concentration of molecules such as ATP, ADP or Pi are

essentially xed. The rst law for a single transition of type ρ

becomes [459]

qρ = wmech
ρ −Eρ = f dρ−Eenz

ρ −µρ−TSsol
ρ . (235)

9.4.3. Role of chemiostats: genuine NESS conditions.

The more recent form (235) of the rst law differs from

an expression discussed previously for molecular motors

[430, 434–438]. There, in the present notation and sign

convention, the rst law for a step like in (229) reads

q̄ρ = wmech
ρ −Eenz

ρ −µρ . (236)

The difference between the two expressions for the heat

q̄ρ − qρ = TSsol
ρ (237)

involves the entropy change in the solution resulting from the

reaction.

The physical origin of the two different forms arises from

the fact that in the older work the enzyme is thought to be

coupled to ‘chemiostats’ providing and accepting molecules at

an energetic cost (or benet) given by their chemical potential.

Introducing the notion of a ‘chemical work’

wchem
ρ ≡ −µρ (238)

the rst law is then written in the form

wmech
ρ + wchem

ρ = Eenz
ρ + q̄ρ . (239)

The concept of chemiostats is supposed to guarantee

that the concentration of solute molecules remains strictly

constant. Physically, it could be implemented by an ATP

buffer of ATP-regeneration scheme that involves additional

enzymes. From the perspective of stochastic thermodynamics

as long as one focuses on single transitions, however, it would

be more appropriate to treat these additional enzymes and

the chemical reactions they catalyze in the same way as the

reaction involving the motor protein. It turns out that if

these additional reactions operate quasistatically, then q̄ρ is the

dissipated heat that under steady-state conditions would enter

an ensemble average [459]. Therefore, choosing the heat q̄ρ
is appropriate whenever one deals with strict NESS conditions

while not wanting to consider the heat involved in enforcing

these conditions explicitly as an extra contribution. On the

trajectory level for a single motor protein, there seems to be

no sensible way for assigning q̄ρ instead of qρ to an individual

transition.

34



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

9.4.4. Stochastic trajectory and ensemble. A trajectory of the

enzyme can be characterized by the sequence of jump times

{τj } and the sequence of reactions {ρ
σj
j } where ρj denotes the

corresponding reactions (229) and σj = ± characterizes the

direction in which the reaction takes place.

An ensemble is dened by specifying (i) the initial

probability pn(0) for nding the enzyme in state n and (ii)

the set of rates w±
ρ with which the reactions (229) take place

in either direction. Both inputs will then determine the

probability pn(τ ) to nd the enzyme in state n at time τ .

9.4.5. Rates and local-detailed balance. An identication

of entropy production along the trajectory requires some input

from the rates determining the transitions. For the simple case

of pure conformational changes, m ≠ n, choosing rates that

obey
wmn

wnm

= exp[−(F enz
n − F enz

m )/T ] (240)

is required by thermodynamic consistency. Indeed, only this

choice guarantees that irrespectively of the initial conditions

the ensemble will eventually reach thermal equilibrium,

pn(τ ) → peq
n ≡ exp[−(F enz

n − F enz)/T ], (241)

with the free energy of the enzyme

F enz ≡ −T ln


n

exp[−F enz
n /T ]. (242)

Fixing the ratio of the rates still leaves one free parameter per

pair of states which can only be determined from knowing the

dynamics of the underlying more microscopic model.

The corresponding relation for transitions that involve

enzymatic reactions (229),

w+
ρ

w−
ρ

= exp[−Fρ/T ] = exp[−(F enz
ρ +µρ)/T ], (243)

and for transitions of molecular motors,

w+
ρ

w−
ρ

= exp[−(F enz
ρ +µρ − wmech

ρ )/T ], (244)

are somewhat less obvious. Essentially, three types of

justications for choosing such ratios can be given.

First, even though microreversibility is often invoked it

seems unclear how to obtain these ratios rigorously using this

concept if chemical reactions are involved.

Second, one can derive (243) using the following

argument. For any enzymatic reaction there will be

concentrations {c
eq
i } of the solutes such that the enzyme

will reach equilibrium. For these particular equilibrium

concentrations, a choice of rates respecting (243) is mandatory

as in the case of pure conformational changes. If one now

assumes that (i) the reaction rates obey the mass action law

and that (ii) the concentrations and the chemical potentials

are related by the ideal solution expression, µi(ci) = µ
eq
i +

T ln(ci/c
eq
i ), then the form (243) follows.

Third, more recently it has been shown that by requiring

a consistent stochastic thermodynamic description on the

trajectory level, one can indeed derive these conditions on the

rates using rather mild assumptions [459].

In all cases by invoking the respective rst laws

(equations (228), (233), (235)), the ratio of the rates can also

be written in the form

w+
ρ

w−
ρ

= exp[Sρ + qρ/T ] (245)

showing that this ratio is determined by the change of intrinsic

andmedium entropy involved in this transition. This important

relation should be compared with (20) in the colloidal case

where the continuum version of such a ratio involves only

the dissipated heat since there is no relevant intrinsic entropy

change given here by Sρ . Similarly, for a biopolymer

within a continuum description, the relation (223) shows the

contribution of intrinsic entropy.

9.4.6. Entropy production and FTs. The total entropy

production involved in one forward transition ρ at time τ can

be derived from the general expression (126) and using the

ratio of the rates (245) as

s totρ (τ ) = ln
pn−ρ

(τ )w+
ρ

pn+ρ
(τ )w−

ρ

= sρ +Sρ + qρ/T . (246)

It consists of three contributions. The rst is the change in

stochastic entropy,

sρ(τ ) = − ln[pn+ρ
(τ )/pn−ρ

(τ )]. (247)

The second denotes the change in the intrinsic entropy (230)

of the system which consists here of enzyme and surrounding

solution. The third term arises from the dissipated heat

(equations (233) and (235)).

Summing over all reactions taking place up to time t

and adding the concomitant change in stochastic entropy,

s = − lnpnt (t) + lnpn0(0), one obtains the total entropy

production along a trajectory

s tot = s +


j

σj [Sρj (τj ) + qρj (τj )/T ], (248)

where σj = ±1 denotes the direction in which the transition

ρj takes place at time τj .

The arguably most relevant situation for an enzyme

modeled by discrete states is a NESS generated by non-

equilibrated solute concentrations and/or an applied external

force in the case of a motor protein. In such a NESS, one

has the SSFT (65) for the total entropy production as dened

in (248).

9.4.7. Time-dependent rates and work. So far, it was

implicitly assumed that the rates are time-independent. Time-

dependent rates could arise either since the concentrations of

the solutes are externally modulated (or, in a nite system,

depleted due to the action of the enzymes) or since the forces

applied to motor proteins are time-dependent. The ratio of the

rates is then still constrained by equations (243) and (244).
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However, under such time-dependent external conditions

characterized by a parameter λ(τ ), the thermodynamic state

variables En, Sn and Fn can become time-dependent as well.

In consequence, there are contributions to the rst law and to

entropy production even if the enzyme remains in the same

state. Specically, if the enzyme remains in state n, in analogy

to (212) the rst law becomes

d̄wn = ∂λFn dλ = (∂λEn − T ∂λSn) dλ = ∂λEn dλ +d̄qn.

(249)

Hence, there is exchanged heat, d̄qn = −T dSn, even if

the system remains in the same state whenever the intrinsic

entropy depends on a changing external parameter (such as

the concentration of the solutes).

These expressions of heat and work resemble those of

quasi-static processes as they should since it is implicitly

assumed that the distribution of microstates that contribute

to the state n adapts (almost) instantaneously to thermal

equilibrium. Consequently, these contributions to work and

heat enter the FTs trivially.

9.4.8. Experiments: F1-ATPase. Apart from free energy

reconstructions described above, experimental work using the

concepts of stochastic thermodynamics is still scarce. For the

F1-ATPase, two groups have published work pointing in this

direction. In an intriguing example of exploiting the SSFT, the

torque exerted by the F1-ATPase on a bead in an optical trap

could be measured without knowing the friction constant of

the bead [513]. The implicit assumption, however, with this

type of analysis is that no further dissipative mechanisms exist.

In another study of this molecule [514, 515], it was inferred

that this motor transfers almost the full free energy from ATP

hydrolysis into loading the elastic element connecting the

motor with the bead.

9.4.9. Biochemical reaction networks. The formalism

described above for a single enzyme can easily be extended

to networks involving several types of (different) enzymes

[98] or ordinary chemical reaction networks using chemical

master equations [255, 449]. Specic examples for which

the distribution of entropy production has been calculated are

[516–518].

10. Autonomous isothermal machines

10.1. General aspects

Enzymes and molecular motors as described in section 9

from the stochastic thermodynamics perspective provide a

paradigm for isothermal machines. In contrast to heat

engines, which in their classical form are the archetypical

thermodynamicmachines andwhich in their stochastic version

will be described in section 11, isothermal machines do not

transform heat but rather chemical energy into mechanical

work (or vice versa) while the temperature of the surrounding

medium remains constant. For an overall scheme introducing

the classications relevant to the content of the next two

sections, see gure 7.

Figure 7. This scheme shows two pairs of classication (isothermal
versus heat engines and autonomous versus cyclically driven), a few
key notions (power, efciency and efciency at maximum power
(EMP)) and a possible approximation (linear response) applicable to
machines. The overlap of the white boxes with these alternatives
indicates which case will be relevant to the respective sections.

An important classication is whether or not a machine

operates autonomously. In the stochastic setting, an

autonomous machine will typically correspond to a NESS

generated by externally imposed time-independent boundary

conditions. Any molecular motor is a typical example

of such an autonomous isothermal machine, since single

molecule assays typically provide conditions of constant non-

equilibrium concentrations of ‘fuel’ molecules such as ATP.

For a non-autonomousmachine, some time-dependent external

control is required that ‘leads’ the machine through its cycle.

Building reliable articial molecular motors in the lab still

constitutes a major challenge as reviewed in [519–524].

In this section, we present a systematic theory for

isothermal autonomous machines in the discrete state version

based on the representation of the NESS in terms of cycles

of the underlying network as introduced in section 6.4. As

a main ingredient, a local-DBC as introduced in (195) and

(245) is imposedon the rates thus guaranteeing thermodynamic

consistency. Even though we focus on the discrete case,

this approach includes earlier models based on continuous

coordinates diffusing in a ratchet potential that depends on

the chemical state of the motor since any continuum model

can be discretized.

An important quantity for any type of machine is

its efciency dened as the ratio between the power

delivered by the machine and the rate of ‘fuel’ consumption.

Thermodynamics constrains this efciency by 1 for isothermal

machines and by the Carnot efciency for thermal heat

engines operatingbetweenheat baths of different temperatures.

In both cases working at the highest possible efciency

comes at the cost of zero delivered power since reaching the

thermodynamic bound requires a quasi-static, i.e. innitely

slow operation. A practically more relevant question then is

about efciency at maximum power (EMP). We will see that
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Table 1. Afnities and generalized distance for isothermal
machines.

Process Afnity Fk Gen. distance dk

Linear motion Force f/T Linear distance d
Rotation Torque N/T Angle φ

Particle transport −µ/T (typically) 1
Chemical reaction −µ/T (typically) 1

in this thermodynamic framework rather general expressions

for power, efciency and EMP emerge.

It would be interesting to pursue these issues also

for periodically driven machines, which are one step more

complex than the autonomous ones. While there is a vast

literature on how to generate transport by periodic modulation

of system parameters as reviewed in [445, 525–527] the

problem of efciency and EMP, however, seems not to have

been addressed systematically for such stochastic machines.

One reason is that even making explicit statements about the

periodic steady state is much harder than for the NESS engine

at constant external parameters.

10.2. General framework for autonomous machines: Cycle

representation and entropy production

An autonomously operating device ormachine can bemodeled

as aMarkov process on a network in a steady state. Transitions

between different states in this NESS depend on rates that

reect both the coupling of the machine to reservoirs with

different chemical potentials for solutes or particles and

external forces or loads. These non-equilibrium conditions

can be expressed by generalized thermodynamic forces or

‘afnities’ Fk as listed in table 1.

For a systematic presentation it is useful rst to recall the

representation of a NESS in terms of cycle currents [211, 212],

see gure 3. Rather than summing over the individual

transitions (mn) or reactions ρ as we have carried out so far, in

a NESS probability currents can be expressed by a sum over

directed cycle currents

ja ≡ j+a −j−a = j+a (1−j−a /j
+
a ) = j+a (1−

∏

ρ∈a

w−
ρ /w

+
ρ) (250)

where a labels the cycles and j+a and j−a denote the inverse

mean times required for completing the cycle in forward

and backward directions, respectively12. These forward

and backward (probability) currents can be expressed in a

diagrammatic way by the transition rates of the whole network

(not just those of the respective cycle). However, the ratio

j−a /j
+
a , is given by the ratio between the product of all backward

rates and the product of all forward rates contributing to the

cycle a.

Thermodynamic consistency as formulated in (139) or

(245) allows one to express this ratio

∏

ρ∈a

w−
ρ /w

+
ρ = exp(−Sa) (251)

12 The directed cycle current ja ≡ J a is the mean of the uctuating current

J a introduced in section 6.4.

by the sum

Sa ≡


ρ∈a

(

qρ/T +Sρ
)

≡ qa/T +


ρ∈a

Sρ = q̄a/T

(252)

of the entropy changes in the reservoirs and heat baths

associated with this cycle. The last equality recalls the

denition of heat under strict steady-state conditions which

includes the quasi-static relling of the reservoirs as discussed

in section 9.4.3. With the rst law (239) summed along a cycle,

this entropy change can also be written as

Sa = (wmech
a + wchem

a )/T . (253)

This representation alluding to the denition of a ‘chemical

work’ introduced in section 9.4.3 becomes convenient when

discussing the efciency.

Alternatively, expressed in terms of afnities, the entropy

change associated with a cycle becomes

Sa =


k

dk
aFk, (254)

where dk
a is a generalized distance conjugate to the force Fk

as listed in table 1. To each afnity Fk , there corresponds a

conjugate ux or current

Jk ≡


a

(j+a − j−a )d
k
a =



a

j+a [1− exp(−Sa)]d
k
a (255)

describing the rate with which the respective quantity is

‘processed’ by the machine.

The mean entropy production rate can be written as

σ =


a

(j+a − j−a )Sa (256)

=


a

j+a [1− exp(−Sa)]Sa =


k

JkFk. (257)

These expressions are exact and do not imply any linear

response assumption as the nal bilinear form may suggest.

10.3. Power and efciency

10.3.1. Input and output power. A device or machine is

supposed to deliver some output from consuming some input.

Characteristically for nano-machines, the role of output and

input can easily be reversed as it depends on the signs of the

corresponding afnities. Input has to be offered to themachine

with a positive afnity Fi > 0 whereas output is associated

with a current or ux that is opposite to an applied afnity

Fo < 0.

Quite generally, for an isothermal machine in a NESS,

the total rate of production of output and input, Po and

Pi , respectively, is given by the product between a pair of

corresponding ux and afnity according to

Po,i = o,iJo,i(TFo,i) (258)

= o,i


a

j+a [1− exp(−Sa)]d
o,i
a (TFo,i) (259)

where o ≡ −1 and i ≡ 1 reect the fact that the output is

delivered against an external load Fo < 0. Expressed in terms
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of a cycle-specic work input

wi,a ≡ Fid
i
a (260)

and work output

wo,a ≡ −Fod
o
a , (261)

the power can also be written as [528]

Po,i =


a

j+a [1− exp(wo,a − wi,a)]Tw{o,i}a. (262)

In the contribution of each cycle, the expressions (259) and

(262) separate a system-specic kinetic prefactor, j+a =

j+a ({Fk}), from the remaining thermodynamic quantities.

10.3.2. Efciency and EMP. The efciency of a machine is

dened as the ratio

η ≡ Po/Pi. (263)

It has occasionally been argued that the traditional denition

of efciency (263) should be modied for molecular motors

pulling cargo in order to include the ‘work’ required for

overcoming Stokes friction even in the absence of an external

force [529, 530]. More recently, a ‘sustainable’ efciency has

been suggested as an alternative concept [531, 532]. In this

review, we keep the traditional expression (263).

For the paradigmatic case of just two non-zero afnities,

the entropy production rate (257) becomes

σ = (Pi − Po)/T > 0 (264)

implying that efciency of isothermal machines is bounded

by 0 6 η 6 1. Working at the highest possible efciency

comes at the cost of zero delivered power since reaching the

thermodynamic bound requires a quasi-static, i.e. innitely

slow operation. A practically more relevant question then is

about EMP.

The notion of EMP requires one or several parameters {λi}

with respect to the variation of which Po can becomemaximal,

i.e. P ∗
o ≡ max{λi } Po ≡ Po({λ

∗
i }). EMP is then given by

η∗ ≡ P ∗
o /Pi({λ

∗
i }). (265)

In general, the result for EMP will depend strongly both on

the choice and the allowed range of the variational parameters

{λi} [528, 533] which is a fact occasionally ignored when

statements about the EMP are made. In particular, one

should distinguish variation with respect to the externally

imposed afnities from those with respect to structural or

intrinsic parameters of the machine. Examples for the latter

are the topology of the network and common prefactors for

forward and backward rates that leave their ratio and thus the

thermodynamics invariant.

10.4. Linear response: relation to phenomenological

irreversible thermodynamics

At this point, it is instructive to consider a machine operating

close to equilibrium and to cast the results into the framework

of linear irreversible thermodynamics [534, 535]. This theory

truncates an expansion of the uxes in the rst order of the

afnities, i.e. assumes that

Jk =


l

LklFl (266)

with the Onsager coefcients Lkl . By expanding (255) for

small afnities and using (254), we obtain for the Onsager

coefcients the cycle representation

Lkl =


a

j+eqa dk
ad

l
a. (267)

Here, j
+eq
a ≡ j+a ({Fk} = 0) is the equilibrium forward current

of a cycle a. In this approach, theOnsager symmetryLkl = Llk

is satised automatically. Similarly, the rate of total entropy

production (257) becomes

σ ≈


a

j+a (Sa)
2 =



kl

LklFkFl . (268)

In this lowest order, power input and output (259) become

Po,i = o,iJo,i(TFo,i) = o,iT


k

L{o,i}kFkFo,i. (269)

In the paradigmatic case of two afnities, for xed input

afnity Fi > 0 and choosing the output afnity as variational

parameter Fo , maximum power is reached for

F∗
o = −LoiFi/2Loo (270)

leading to an EMP of [536]

η∗ = L2
oi/[4LooLii − 2LoiLio] 6 1/2. (271)

The upper bound imposed by the positivity of entropy

production is realized for a degenerate matrix of Onsager

coefcients,

LooLii = LoiLio, (272)

which implies that Jo ∼ Ji. Possible realizations of this

structural condition are (i) all unicyclic machines and (ii)

tightly coupled multicyclic machines. These two classes and

the third one of weakly coupled multicyclic machines will be

dened and discussed in the next sections.

10.5. Unicyclic machines

Unicyclic machines consist of only one cycle which allows

one to drop the cycle index a in this section, see gure 3 for

an example. In general, the power delivered and used by a

unicyclic motor becomes with (262)

Po,i = Tj+[1− ewo−wi ]wo,i. (273)

Its efciency η ≡ wo/wi depends thus trivially only on the

externally imposed afnities Fk and the intrinsic properties

do,i but is independent of the detailed kinetics. In the regime

0 < wo < wi, the motor will work as intended. For wo = wi,

the motor has optimal efciency η = 1 but does not deliver

any power since it then cycles as often in the forward as in the

backward direction.
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The concept of EMP requires one to identify the
admissible variational parameters. A simple and physically
transparent choice is to x the input wi and vary the output
wo, e.g., by changing the applied force or torque in the case of
a molecular motor. The condition dPo/dwo = 0 leads to the
implicit relation [528]

wi = w∗
o + ln[1 + w∗

o/(1 + xow
∗
o)] (274)

for the optimal output w∗
o at xed input wi with

xo ≡ d ln j+/dwo ≈ xeqo +O(wi, wo). (275)

These expressions can easily be evaluated for any unicyclic
machine with specied rates which determine the non-
universal j+.

The linear response regime is dened by the condition
wo < wi  1. By expanding (274), one obtains

η∗ = w∗
o/wi ≈ 1/2 + (xeqo + 1/2)wi/8 +O(w2

i ) (276)

which shows how system-specic features like the coefcient
x
eq
o enter EMP beyond the universal value 1/2. This expression

proves that, depending on the value of the non-universal
parameter x

eq
o , EMP may well rise beyond the linear response

regime as found rst in a case study of molecular motors [537].
These results seem to be at variance with another study along
similar lines where a universal bound of 1/2 was found for
EMP [531]. The difference, however, is that the latter authors
constrain the optimization to a parameter space that leaves the
stationary distribution invariant which seems to be a somewhat
articial condition. Further analytical andnumerical results for
EMP of unicyclic machines using wo or both, wi and wo, as
variation parameters can be found in [528]. Bounds on EMP
on simple unicyclic machines have been derived in [538].

10.6. Multicyclic machines: strong versus weak coupling

A discussion of multicylic machines along similar lines does
not require much additional conceptual effort [528]. The
crucial distinction becomes the one between ‘strong’ (or tight)
and ‘weak’ (or loose) coupling rst introduced within the
phenomenological linear response treatment in [536] and later
stressed by van den Broeck and co-workers mostly in the
context of heat engines as reviewed in the next section. In a
strongly coupled multicylic machine, any cycle containing the
input transition also contains the output transition (assuming
for simplicity that input and output affect only one transition
each). For such strongly coupled machines exactly the same
formalism as for unicyclic machines applies with the only
caveat that j+ appearing there is now given by j+ ≡

∑

a j
+
a

where the sum runs over all cycles that include input and output
transitions and the j+a are the corresponding forward cycle
currents. Thus, such strongly coupledmachines obey the same
relations for efciency and EMP as unicyclic machines.

In the weak coupling case, there are cycles containing
the input but not the output transition. Running through such
a cycle the machine ‘burns’ the input without delivering any
output which clearly decreases the efciency. In particular,
it turns out that in the linear response regime, EMP is less
than 1/2, but may still rise when moving deeper into the non-
equilibrium regime [528].

10.7. Efciency and EMP of molecular motors

One important class of potential applications of the theory

just described are molecular motors that transform chemical

energy into mechanical energy (or vice versa). Traditionally,

efciency of molecular motors has been studied within ratchet

models where the motor undergoes a continuous motion in a

periodic potential that depends on the current chemical state

of the motor [443–446, 539, 540]. Dissipation then involves

both the continuous degree of freedomwhich should be treated

along the lines discussed in section 2 and the discrete switching

of the potential due to an enzymatic event. Model systems of

this type have been investigated in [433, 541–544]. For a recent

study of EMP in such a continuum description, see [545].

There is a second motivation for studying such models

combining discrete with continuous dynamics. In the typical

experimental set-up formeasuring the efciency of amolecular

motor under load, an external force or torque is applied to

a micrometer-sized bead that is connected to the molecular

motor like in the recent example of the rotary motor F1-

ATPase [514, 515, 546]. The discrete nano-sized steps of the

motor become visible only through monitoring the biased

Brownian motion of the bead which clearly is continuous. For

a comprehensive description, both dissipation in the discrete

steps of the motor and the one associated with the continuous

motion of the bead should be combined [547].

For dynamics on a discrete set of states, efciency (rather

than EMP) has been investigated recently for various models

[548, 549]. Genuine EMP has been studied for both the

simplest unicyclic and a simple multicycle network in [537].

It would be interesting to do so for more intricate models such

as the one introduced in [435], but also for articial swimmers

such as the one discussed in [550].

11. Efciency of stochastic heat engines

11.1. Carnot, Curzon–Ahlborn and beyond

In classical thermodynamics, a heat engine, delivering work

−W by extracting heat−Q1 from a hot bath at temperature T1
and releasing heat Q2 into a cold bath at temperature T2, has

an efciency

η ≡ |W |/|Q1| 6 ηC ≡ 1− T2/T1 (277)

limited by the Carnot efciency ηC which provides a universal

bound that follows fromcombining therst and the second law.

Reaching the upper bound comes at the price of zero power

since this condition requires a quasi-static, i.e. innitely slow

operation. A practically more relevant efciency is the one

at maximum power (EMP), η∗, which becomes well-dened

only if the parameter space available for the maximization is

specied. For macroscopic thermodynamics, introducing this

problem is often attributed to Curzon and Ahlborn [551] even

though their result has been described earlier, see [552] and

the comment made in reference [1] of [533]. Subsequent work

for macroscopic engines pursued under the label of nite-time

thermodynamics is reviewed in [553–556].

Curzon and Ahlborn (CA) assume ordinary heat

conduction between the baths and the engine that is supposed
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to operate without further internal losses. By optimizing the

power with respect to the temperature difference responsible

for the heat exchange between the baths and the machine, or,

equivalently in their set-up, the duration of the two isothermal

steps (while xing a constant ratio between the time allocated

to isothermal and adiabatic steps) they obtain for EMP the

expression

ηCA ≡ 1− (T2/T1)
1/2 ≈ ηC/2 + η2C/8 +O(η3C), (278)

which is independent of the thermal conductivities between

baths and engine.

Whether or not the CA result can claim more universality

than under the original ‘endoreversible’ assumptions, or is even

a bound on EMP, is a subtle, if not even ill-dened, issue

since maximum power depends crucially on the admissible

parameter space. Beyond the original assumption there are

conditions like for a cascade of intermediate engines [557, 558]

and for ‘weak symmetric dissipation’ [559] where CA can be

shown to hold for a rather reasonable choice of variational

conditions. Numerical simulations ofnite-timeCarnot cycles

for a weakly interacting gas have been analyzed for efciency

and EMP in [560–562].

A related question is the range of universal validity of

the expansion in (278) for EMP. For tightly coupled machines

dened by an output work ux that is proportional to the

heat ux taken from the hot reservoir, the leading term, ηC/2,

follows from simple linear irreversible thermodynamics for

xed input and variable output [536]. Such a result will hold

both for macroscopic as for small engines.

The question of efciency and EMP is indeed as relevant

and applicable to small engines or devices as to macroscopic

ones. The new aspect concerns the role of uctuations not in

the sense that a uctuating efciency is dened which might

lead to ill-dened results given the fact that sometimes the

heat taken from the hot bath would be zero or even negative.

One rather keeps the denition (277) but now W and Q

are mean values that are determined by averaging over the

uctuations13. A main advantage of a stochastic approach

compared with the macroscopic phenomenological one is the

fact that a thermodynamically consistent kinetics valid beyond

the linear response regime can easily be imposed.

Whether the CA result has any relevance to these small

thermal engines has been one of themain issues in theeld esp-

ecially since the coefcient 1/8 in the second term of an expan-

sion of efciency at maximum power in ηC was found in quite

different systems [290, 564]. For an autonomous machine, i.e.

in the steady-state regime, the 1/8 is indeed universal if the

system possesses an additional (left-right) symmetry [565]. It

should be stressed, however, that getting this coefcient req-

uires a second (intrinsic or structural) variational parameter

beyond the output control required for getting the 1/2. For

such steady-state machines, beyond the second term in the

expansion (278), the full CA result is irrelevant.

On the other hand, for small cyclic machines, which can

be treated formally in a spirit closer to CA’s original approach,

13 The inequality (277) is a trivial consequence of the IFT for total entropy

production, if the latter quantities are expressed by uctuating work and heat

contributions [563].

Figure 8. In a BL ratchet, a particle preferentially climbs a potential
barrier with height E over a distance d1 while in contact with a heat
bath at T1. It slides down a distance d2 on the cold side with
T2 = T1 −T . This temperature-difference driven motion to the
right persists for a small enough force f < 0 pulling to the left.

obtaining the factor 1/8 requires a symmetry in the exchange

with the hot and cold baths [565]. Moreover, for such a

machine it is possible to obtain the CA result over the full

temperature range for certain conditions [290, 565].

In the following, we describe paradigmatically how small

heat engines or devices t into the stochastic framework from

which these and further results for both autonomous (steady

state) and periodically driven machines can easily be derived.

We focus on both the formal similarities and differences with

the isothermal machines and the issue of EMP14. Even though

we restrict the following discussion to heat engines, similar

concepts can be applied to refrigerators, see, e.g., [567, 568].

11.2. Autonomous heat engines

For understanding both the general issues and the necessary

ramications of the comparably simpler framework introduced

in section 10 for the isothermal case, it is helpful to have a few

specic examples in mind.

11.2.1. Büttiker–Landauer and Feynman ratchet. Transport

of a colloidal particle in a periodic potential can be induced

by an external force at constant temperature as discussed in

section 2. As an alternative, in the absence of an external

force, a spatially periodic temperature prole (out of phase

with the potential) will also lead to net motion as discussed

by Büttiker [569], van Kampen [570] and Landauer [571].

This set-up is one example of noise-induced transport which

is comprehensively reviewed by Reimann [445]. From a

more thermodynamic perspective, and in the presence of an

additional opposing external force, such a Büttiker–Landauer

(BL) ratchet is a simple example for a stochastic heat engine

that transforms heat into mechanical work. One can then

ask for the efciency of such a device which is a subtle

question especially when using the overdamped limit for

a discontinuous temperature prole [14, 572–576]. The

optimization of such a device for maximal power has been

studied both for variation of the external force [577, 578] and

for variation of the intrinsic potential [579, 580]. These issues

become technically simpler in discretized versions [564, 581–

584] as in the simple model sketched and described in gure 8.

This system can also be seen as a simplied (one degree of

14 Universality of the efciency if other quantities are optimized has been

studied in [566].
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Figure 9. In a thermoelectric device, simplied here as a quantum
dot with a single relevant energy level E, electrons are transported
on average from a hot reservoir with µ1 and T1 to a cold reservoir
with µ2 = µ1 +µ > µ1 and T2 = T1 −T using heat from the
hot reservoir.

freedom) version of the famous Feynman ratchet [585] that

as a paradigm for rectication of thermal noise has its own

conceptual subtleties [14, 586]. The Feynman ratchet has

inspired variousmodel systemswhich have been analyzed both

analytically and in numerical simulations [587, 588]. A model

system using two continuous degrees of freedom coupled

anisotropically to two heat baths of different temperatures thus

generating a systematic torque has been investigated in [589].

From an experimental perspective, realizing such ratchets

in aqueous solution is not straightforward since one needs

signicant temperature differences on rather small length

scales as realized in single particle studies of thermophoresis,

see, e.g., [590].

11.2.2. Electronic devices. In electronic devices,

temperature differences can be more easily imposed as it is

carried out, e.g., in thermoelectrics where they are exploited

to transport electrons against an electro-chemical potential.

For such systems, thermodynamic considerations have been

emphasized byLinke and co-workerswhopointed out that such

machines can indeed operate at the Carnot limit [591, 592].

More recent studies based on simple models for quantum dots

have addressed in particular the issue of EMP [593–595]. The

simple paradigm discussed in [593] is sketched in gure 9.

A particularly intriguing aspect of such devices is the

observation that in the presence of a magnetic eld the

Onsager–Casimir symmetry relations, in principle, seem to

allow Carnot efciency at nite power [596]. This issue

deserves further study through the analysis of microscopic

models such as the one suggested in [597].

Likewise, any photo-electric device is also coupled to a

reservoir of rather high temperature since the photons being

absorbed from the sun come with the black-body distribution

of the sun’s temperature. Therefore, photo-electric devices

are amenable to a thermodynamic description focusing of

efciency and EMP, see, e.g., [598].

11.2.3. General theory. For any discrete autonomous heat

engines in contact with heat baths of at least two different

temperatures, it must be specied for each transition at which

temperature it takes place, i.e. with which heat bath the

machine is in contact at this particular transition. As in

the isothermal case, the assumption of local-detailed balance

Figure 10. Common three-state diagram for the simplied BL
ratchet (gure 8) and the thermo-electric device (gure 9). For the
BL-ratchet L and R refer to the particle sitting in the minimum and
E corresponds to the particle being on the barrier top. For the
electronic device, L and R refer to the electron being in the left or
right reservoir. E corresponds to the electron sitting on the quantum
dot. In both cases, the state R should be identied with L after the
electron or particle has been transported from left to right thus
completing the cycle. The log-ratio of the transition rates is given in
table 2.

Table 2. Ratio of rates for the devices shown in gures 8 and 9 with
their network representation gure 10.

lnw+
1/w

−
1 lnw+

2/w
−
2

BL ratchet −(E + |f |d1)/T1 (E − |f |d2)/T2
Thermo-electric device (µ1 − E)/T1 (E − µ2)/T2

implies thermodynamic constraints on the ratios of forward

and backward rates as given in gure 10 and table 2 for the

two examples introduced above.

The thermodynamic constraints imply that the total

entropy production along a cycle still fullls (251). For

the representation (254), one needs the afnities with the

corresponding conjugate distances entering the conjugate

uxes given for the two examples in table 3. The general

differences compared with the isothermal case arise from the

presence of (at least) two different temperatures. First, there

is a new afnity associated with the two heat baths with

energy ow as the corresponding ux. Second, if matter is

transported between baths of different chemical potentials and

different temperatures, the corresponding afnity involves the

two temperatures. As a consequence, in linear response, the

latter afnity carries both a µ and a T term. Finally, a

force applied to a particle in a thermal ratchet subject to two

different temperatures requires to introduce even two afnities

with this force. As in the isothermal case, for an autonomous

heat engine the total entropy production rate can be expressed

by afnities and conjugate uxes according to (257).

On the cycle level, the total entropy change becomes

Sa = q̄(1)
a /T1 + q̄(2)

a /T2, (279)

where we use the heat as appropriate under NESS conditions.

This heat fullls rst laws of the type

wmech
a

(1,2)
+ wchem

a

(1,2)
= q̄(1,2)

a +E(1,2)
a (280)

where E(1)
a = −E(2)

a is the change in internal energy

of the system arising from the transitions associated with

the respective heat baths labeled by superscripts. With this

relation, the total entropy change along a cycle (279) can also

41



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

Table 3. Characteristic quantities for the two examples of unicyclic heat engines shown in gures 8 and 9.

Relevant afnities Fk in Conjugate Input Output
Fk linear response distance dk −q̄(1) = T2wi T2wo

BL 1/T2 − 1/T1 T/T 2
2 E E + |f |d1

ratchet f/T1, f/T2 f/T2, f/T2 d1, d2 |f |(d1 + d2)

Thermoelectric 1/T2 − 1/T1 T/T 2
2 E E − µ1

device µ1/T1 − µ2/T2 −(µ/T2 + µ1T/T 2
2 ) 1 µ2 − µ1

be expressed by the heat extracted from the hot reservoir as

Sa = −q̄(1)
a ηC/T2 + (wmech

a + wchem
a )/T2 ≡ wi,aηC − wo,a,

(281)

where thework terms refer to the sum of the contributions from

the respective bath contacts. The denition of dimensionless

input wi,a is motivated by the fact that for a heat engine the

input is the heat extracted from the hotter bath. Dimensionless

output denoted by wo,a is mechanical and/or chemical work

delivered by the machine.

The power of the machine can now be expressed

analogously to the isothermal case as

Po,i = o,i


a

j+a [1− exp(−wi,aηC + wo,a)]T2w{o,i}a (282)

where the occurrence of the Carnot efciency ηC in the

exponent compared with the isothermal case (262) is crucial.

In the afnity representation, the difference to the isothermal

case is even more drastic since output and input powers can no

longer be written as simple products of a pair of conjugate

ux Jo,i and afnity TFo,i as in (259). One could have

anticipated this complication since with two baths it is not

obvious which temperature should be chosen in (259) when

trying to generalize to the non-isothermal case.

11.2.4. EMP for unicyclic machines. For unicyclicmachines

(and hence dropping the cycle index a), maximizing the power

Po with respect to the output wo, which would physically

correspond to varying the external force or chemical potentials,

leads to the analog of (274) in the form

wi = (w∗
o + ln[1 + w∗

o/(1 + xow
∗
o)])/ηC. (283)

This relation implies immediately the universal η∗ ≡ w∗
o/wi ≈

ηC/2 + O(η2C) in the linear response regime which can

also easily be obtained from a phenomenological treatment

analogously to the one presented in section 10.4 [557].

Maximizing the power with respect to the input variable

wi leads to

w∗
i = [w∗

o + ln(1− ηC/xi)]/ηC (284)

with

xi ≡ d ln j+/dwi ≈ x
eq
i +O(ηC, wo). (285)

As the respective column in table 3 shows, wi involves an

intrinsic parameter of the machine like the relevant energy

level. Combining relations (283) and (284) and varying both

wo and wi leads to the EMP

η∗∗ = ηC/[1− (xo + xi/ηC) ln(1− ηC/xi)] (286)

≈ ηC/2− [(2xeqo + 1)/x
eq
i ]η2C/8 +O(η3C) (287)

which shows that the second order coefcient is system

specic.

It can be checked that for a unicyclic device with spatial

symmetry, for which the current j reverses sign when the

afnities Fk change sign, the square-bracket prefactor of the

second term is indeed −1 thus recovering the overall 1/8

as previously derived by extending the phenomenological

irreversible thermodynamics approach to second order [565].

For an explicit evaluation of the EMP (286) one needs

the specic form of xo,i = xo,i(wo, wi) which requires

assumptions on the specic rates beyond the constraints

imposed by thermodynamics exploited so far. For the

mechanical BL ratchet, it is interesting to note that even for

d1 = d2, an explicit calculation for w+
2 = w−

1 = 1 (and the

other rates as given in table 2) recovers the coefcient 1/8

despite the obvious breaking of the left-right symmetry. The

case d2 = 0 is discussed for the full temperature range in [564],

where, not surprisingly, deviations from the CA result are

found. The thermoelectric device is treated in [565, 593]. For

a photo-electric device, explicit results can be found in [598],

where also the role of non-radiative transition is discussed.

Further examples of EMP in three and ve state networks have

been discussed in [533].

11.3. Periodically driven heat engines

The autonomous machines just discussed reach a NESS since

they are permanently connected to both heat baths. For a

periodically driven heat engine, contact with either one bath

or, in an adiabatic step, with none, is periodically enforced

externally.

11.3.1. Brownian heat engine. Within stochastic

thermodynamics such a model was introduced in [290] for a

Brownian particle in a time-dependent potential, see gure 11.

Optimizing for both, the potential and the time interval spent in

the isothermal transitions, EMP for xed T1,2 was shown to be

η∗ = ηC/(2− αηC) ≈ ηC + (α/4)η2C +O(η3C) (288)

where

α ≡ 1/[1 + (µ(T1)/µ(T2))
1/2] (289)

is a system-specic coefcient given by the temperature-

dependence of the mobility µ(T ). If the latter is independent

of temperature, one recovers the coefcient 1/8. Since

0 6 α 6 1, expression (288) implies the bounds

ηC/2 6 η∗ 6 ηC/(2− ηC) (290)
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Figure 11. Paradigm for a stochastic heat engine based on a
colloidal particle in a time-dependent harmonic laser trap in
consecutive contact with a hot (Th) and cold (Tc) bath. The steps 1
and 3 are isothermal; the steps 2 and 4 are instantaneous and
adiabatic during which the distributions are pb and pa , respectively.
Reproduced with permission from [290]. Copyright 2008 European
Physical Society.

on EMP later also derived under the assumption of ‘weak’
dissipationwhich leads to a quite similar formalism [559, 599].
Further ramications and classications of such bounds have
been discussed by Wang and Tu [600, 601] and in [602, 603].
The Onsager coefcients for a linear response treatment of this
heat engine have been dened and calculated in [604].

A micrometer-sized heat engine based on the Stirling
version of the scheme shown in gure 11 has been realized
experimentally [605]. The colloidal particle as ‘working uid’
in a laser trap acting as the analog of a piston can be heated
locally thereby realizing the contactwith a hot bath. Byvarying
the cycle time both a maximum in the power at nite time and
the approach to the maximal efciency in the quasi-static limit
could be demonstrated. For further interesting comments on
this experiment, see [606].

11.3.2. Quantum dot. A similar analysis can be applied
to a nite-time Carnot cycle of a quantum dot that can be
connected to two different reservoirs similar as the set-up
shown in gure 9 [607]. For a cyclic engine, the energy
level E(τ ) is controlled in both the isothermal steps when
the dot is connected to either one bath and in the adiabatic
steps when it is disconnected. Optimizing for the protocol
E(τ ) as well as for the duration of isothermal and adiabatic
steps, one nds for EMP an expression similar to (288). In
the limit of weak dissipation, i.e. for small deviations from
the respective thermal population of the energy level, and
symmetric conditions, the coefcient α turns out to be α =

ηCA/ηC and hence one can here recover the CA result over the
full temperature range. The distributions of work and heat for
such a simple two-state engine have been calculated in [608].

12. Concluding perspective

After this long exposition it may be appropriate to recall the
basic assumption of this approach, to summarize the main
achievements and to raise a few open general issues.

12.1. Summary

Stochastic thermodynamics applies to systems where a few

observable degrees of freedom such as the positions of

colloidal particles or the gross conformations of biomolecules

are in non-equilibrium due to the action of possibly time-

dependent external forces,elds,owsor unbalanced chemical

reactants. The unobserved degrees of freedom such as those

making up the aqueous solution, however, are assumed to be

fast and thus always in the constrained equilibrium imposed

by the instantaneous values of the observed slow degrees of

freedom. Then internal energy, intrinsic entropy and free

energy are well-dened and, if a microscopic Hamiltonian was

given, in principle, computable for xed values of the slow

variables. This assumption is sufcient to identify a rst-law

like energy balance along any uctuating trajectory recording

the changing state of the slow variables.

Entropy change along such a trajectory consists of three

parts: heat exchanged with the bath, intrinsic entropy of the

states and stochastic entropy. The latter requires in addition

an ensemble from which this trajectory is taken. If the same

trajectory is taken from a different ensemble it leads to a

different stochastic entropy. Thermodynamic consistency of

the Markovian dynamics generating the trajectory imposes a

local-detailed balance condition constraining either the noise in

a Langevin-type continuum dynamics or the ratio of transition

rates in a discrete dynamics.

At their core, the uctuation theorems are mathematical

identities derived from properties of the weight of stochastic

paths under time reversal or other transformations. They

acquire physical meaning by associating the mathematical

ingredients with the thermodynamic quantities identied

within stochastic thermodynamics. The detailed uctuation

theorems then express a symmetry of the distribution function

for thermodynamic quantities. Anopenquestion iswhether the

probability distributions of work, heat and entropy production

can be grouped into ‘universality classes’ characterized, e.g.,

by the asymptotics of such distributions, and, if yes, which

specic features of a system determine this class. The more

generally applicable integral theorems often can be expressed

as renements of the second law for transitions between certain

states. Still, these integral uctuation theorems should not be

considered a ‘proof’ of the second law since irreversibility

has been implemented consistently from the beginning by

choosing a stochastic dynamics including the local-detailed

balance condition.

Conceptually, a major step has been to include feedback

schemes based on perfect or imperfect measurements into this

framework which requires surprisingly little additional effort

due to the strong formal similarity of stochastic entropy with

information. Achieving a full integration of measurement

apparatus and the erasure process into the thermodynamic

balance of the efciency for specic information machines

remains an important issue [609].

The crucial ingredient for the developments summarized

so far is the notion of an individual trajectory and the

concomitant concept of distributions for thermodynamic

quantities which represents themain difference comparedwith

classical thermodynamics.
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New insights, however, have emerged from this approach

even when focusing on averages and correlation functions as

we have carried out in the second part of the review. The

general uctuation–dissipation theorem for non-equilibrium

steady states shows how the response of any observable to

a perturbation can be expressed as a sum of two correlation

functions involving entropy production. In which cases this

additive relation between response and correlation can be

reformulated as a multiplicative one using the concept of

an effective temperature is still not understood despite some

insights gained from specic case studies.

Our discussionofmolecularmotors, machines anddevices

has been centered on the notion of efciency and efciency at

maximum power. Despite the fundamental difference between

isothermal engines operating at one temperature as do all

cellular ones and genuine heat engines such as thermoelectric

devices involving two baths of different temperatures, a

common framework exists based on the representation of

entropy production in terms of cycles of the underlying

network of states. Clearly, more realistic networks need to

be studied in the future, in particular, for applications and

for modeling of specic biophysical systems but the basic

concepts seem to be identied. One particularly intriguing

perspective comes from the recent analysis of the energetic

cost of sensory adaptation using the concepts of stochastic

thermodynamics [610].

12.2. Beyond a Markovian dynamics: memory effects and

coarse graining

The identication of states, of work and of internal energy,

i.e. of the ingredients entering the rst law on the level of

trajectories, is logically independent of the assumption of a

Markovian dynamics connecting these states. The crucial step

is the splitting of all degrees of freedom into slow and fast ones,

the latter always being in a constrained equilibrium imposed

by the instantaneous values of the slow ones. Likewise, the

identication of entropy production only requires the notion

of an ensemble which determines stochastic entropy along an

individual trajectory. Anydynamics guaranteeing that forxed

external parameters compatible with genuine equilibrium, this

equilibrium will be reached for an arbitrary initial distribution

of the slow variables could qualify as a thermodynamically

consistent one.

12.2.1. Continuous states. A popular choice for a non-

Markovian dynamics obeying these constraints is Langevin

dynamics with a memory kernel that, for thermodynamics

consistency, determines the correlations of the colored

noise15. Under this assumption, the notions of stochastic

thermodynamics are well-dened and the various uctuation

theorems hold true as shown quite generally in [378, 615–619].

Some of these papers contain illustrations for model systems

as do the references [620–622]. One specic motivation to

15 Stochastic thermodynamics for a non-Markovian dynamics not obeying

such a constraint has been explored for generalized Langevin equations in

[378, 611], for delayed Langevin systems in [612], for Poissonian shot noise

in [613], and for non-Gaussian white noise in [614].

explore such a dynamics arises from the recent fascinating

experimental data that show how hydrodynamic effects lead to

a frequency dependent mobility for colloidal motion [623].

A somewhat different and more subtle situation occurs if

not all slow variables are accessible in the experiment or the

simulation. The effective dynamics for the observable ones

will then no longer be Markovian and its specic form in the

case on non-harmonic interactions between the slow ones is

typically not accessible. The proper identication of, e.g.,

entropy production is then difcult if not impossible. Still,

one might be inclined to infer an apparent entropy production

by applying the rules for Markovian dynamics and to check

whether this quantity obeys the FT. In a recent study using two

coupled driven colloidal particles it turned out that the apparent

entropy production based on the observation of just one particle

shows an FT-like symmetry but with a different prefactor for a

surprisingly large range of parameter values. However, there

are also clear cases for which not even an effective FT can be

identied [624]. This type of coarse graining in the context of

the FDT for a NESS has been explored in [625].

12.2.2. Discrete states. For an underlying dynamics on a

discrete set of states following a Markovian master equation,

oneoption for coarse graining is to group several states into new

‘meso-states’ or aggregated states. Typically, the dynamics

between these meso-states is then no longer Markovian.

One question is whether one can then distinguish genuine

equilibrium from a NESS if only the coarse-grained trajectory

is accessible. For a three-state system coarse-grained into a

two-state system, this issue has been addressed in [626, 627]

and, for more general cases, in [628, 629].

Coarse graining of a discrete network becomes

systematically possible if states among which the transitions

are much faster are grouped together. From the perspective

of stochastic thermodynamics, entropy production and

uctuation theorems this approach has been followed in

[630–637].

12.3. Coupling of non-equilibrium steady states: a zeroth

law?

In addition to the rst and the second law, classical

thermodynamics is founded on a zeroth law stating that the

notion of temperature and chemical potential for equilibrium

systems is transitive, i.e. if a systemA is in separate equilibrium

with system B and system C, then upon contact of B and C

neither heat nor particle ow will occur between these two

systems. A natural question is whether a similar equilibration

also occurs for non-equilibrium systems brought into contact

such that they can exchange energy or particles. Do then

quantities exist resembling temperature or chemical potential

that govern ‘equilibration’ between such steady states? On

a phenomenological level this question has been introduced

within the context of steady-state thermodynamics by Oono

and Paniconi [47] and further rened by Sasa and Tasaki [48].

For simple one-dimensional model systems such as zero-range

processes in contact a non-equilibrium chemical potential is

indeed well-dened [638]. For two-dimensional driven lattice

gases in contact, numerical work has revealed that in a large
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parameter range such a putative zeroth law and a corresponding

thermodynamic structure is approximately valid [639, 640].

12.4. Final remark

From its very beginnings, thermodynamics has fascinated

scientists by posing deep conceptual issues that needed

to be resolved for understanding and optimizing quite

practical matters such as the design of heat engines.

With the experimentally realizedmicrometer-sized heat engine

[605] discussed in one of the last sections of this review,

these latest developments have brought us back to the

very origins of classical thermodynamics albeit on quite

different time and length scales and, quite importantly, with

a much rened view on individual trajectories. Indeed,

without the spectacular advances in experimental techniques

concerning tracking and manipulation of single particles

and molecules, stochastic thermodynamics could still have

been conceived as a theoretical framework but would have

not reached the broader appeal that it has gained over the

last fteen years. Whether the next decade of research in

the eld will be dominated by specic applications, most

likely for biomolecular networks and devices facilitating

transport of all sorts, or by further conceptual work exploring

the ultimate limits of a thermodynamic approach to non-

equilibrium beyond the Markovian paradigm into feedback-

driven, information-processing, strongly interacting systems

remains to be seen.
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and Pérez-Madrid A 2001 Giant acceleration of free
diffusion by use of tilted periodic potentials Phys. Rev.
Lett. 87 010602

[407] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J M
and Perez-Madrid A 2002 Diffusion in tilted periodic
potentials: enhancement, universality, and scaling Phys.
Rev. E 65 031104

[408] Mehl J, Blickle V, Seifert U and Bechinger C 2010
Experimental accessibility of generalized
uctuation–dissipation relations for nonequilibrium steady
states Phys. Rev. E 82 032401

[409] Gomez-Solano J R, Petrosyan A, Ciliberto S, Chetrite R and
Gawedzki K 2009 Experimental verication of a modied
uctuation–dissipation relation for a micron-sized particle
in a nonequilibrium steady state Phys. Rev. Lett.
103 040601

[410] Gomez-Solano J R, Petrosyan A, Ciliberto S and
Maes C 2011 Fluctuations and response in a
non-equilibrium micron-sized system J. Stat. Mech.
P01008

53



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

[411] Szamel G 2004 Self-diffusion in sheared colloidal
suspensions: violation of uctuation–dissipation relation
Phys. Rev. Lett. 93 178301
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Irbäck A 2009 Changing the mechanical unfolding
pathway of FnIII 10 by tuning the pulling strength
Biophys. J. 96 429–41

[485] Preiner J, Janovjak H, Rankl C, Knaus H, Cisneros D A,
Kedrov A, Kienberger F, Muller D J and Hinterdorfer P
2007 Free energy of membrane protein unfolding derived
from single-molecule force measurements Biophys. J.
93 930–7

[486] Hummer G 2001 Fast-growth thermodynamic integration:
error and efciency analysis J. Chem. Phys. 114 7330

[487] Zuckerman D M and Woolf T B 2002 Theory of a systematic
computational error in free energy differences Phys. Rev.
Lett. 89 180602

[488] Park S, Khalili-Araghi F, Tajkhorshid E and Schulten K 2003
Free energy calculation from steered molecular dynamics
simulations using Jarzynski’s equality J. Chem. Phys.
119 3559

[489] Gore J, Ritort F and Bustamante C 2003 Bias and error in
estimates of equilibrium free-energy differences from
nonequilibrium measurements Proc. Natl Acad. Sci. USA
100 12564

[490] Zuckerman D M and Woolf T B 2004 Systematic
nite-sampling inaccuracy in free energy differences
and other nonlinear quantities J. Stat. Phys. 114 1303–23

[491] Park S and Schulten K 2004 Calculating potentials of mean
force from steered molecular dynamics simulations
J. Chem. Phys. 120 5946

[492] Ytreberg F M and Zuckerman D M 2004 Single-ensemble
nonequilibrium path-sampling estimates of free energy
differences J. Chem. Phys. 120 10876

[493] Oberhofer H, Dellago C and Geissler P L 2005 Biased
sampling of nonequilibrium trajectories: Can fast
switching simulations outperform conventional free
energy calculation methods? J. Phys. Chem. B 109 6902

[494] Jarzynski C 2006 Rare events and the convergence of
exponentially averaged work values Phys. Rev. E
73 046105

[495] Maragakis P, Spichty M and Karplus M 2006 Optimal
estimates of free energies from multistate nonequilibrium
work data Phys. Rev. Lett. 96 100602

[496] Presse S and Silbey R 2006 Ordering of limits in the
Jarzynski equality J. Chem. Phys. 124 054117

[497] West D K, Olmsted P D and Paci E 2006 Free energy for
protein folding from nonequilibrium simulations using the
Jarzynski equality J. Chem. Phys. 125 204910

[498] Lechner W and Dellago C 2007 On the efciency of path
sampling methods for the calculation of free energies from
non-equilibrium simulations J. Stat. Mech. P04001

[499] Vaikuntanathan S and Jarzynski C 2008 Escorted free energy
simulations: Improving convergence by reducing
dissipation Phys. Rev. Lett. 100 190601

[500] Hahn A M and Then H 2009 Using bijective maps to improve
free energy estimates Phys. Rev. E 79 011113

[501] Nicolini P and Chelli R 2009 Improving fast-switching free
energy estimates by dynamical freezing Phys. Rev. E
80 041124

55



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

[502] Oberhofer H and Dellago C 2009 Efcient extraction of free
energy proles from nonequilibrium experiments
J. Comput. Chem. 30 1726

[503] Goette M and Grubmüller H 2009 Accuracy and convergence
of free energy differences calculated from nonequilibrium
switching processes J. Comput. Chem. 30 447–56

[504] Lindberg G E, Berkelbach T C and Feng W 2009 Optimizing
the switching function for nonequilibrium free-energy
calculations: an on-the-y approach J. Chem. Phys.
130 174705

[505] Zimanyi E N and Silbey R J 2009 The work-Hamiltonian
connection and the usefulness of the Jarzynski equality for
free energy calculations J. Chem. Phys. 130 171102

[506] Pohorille A, Jarzynski C and Chipot C 2010 Good
practices in free-energy calculations J. Phys. Chem. B
114 10235–53

[507] Minh D D L and Chodera J D 2011 Estimating equilibrium
ensemble averages using multiple time slices from driven
nonequilibrium processes: theory and application to free
energies, moments, and thermodynamic length in
single-molecule pulling experiments J. Chem. Phys.
134 024111

[508] Minh D D L and Vaikuntanathan S 2011 Density-dependent
analysis of nonequilibrium paths improves free energy
estimates: II. A Feynman–Kac formalism J. Chem. Phys.
134 034117

[509] Vaikuntanathan S and Jarzynski C 2011 Escorted free energy
simulations J. Chem. Phys. 134 054107

[510] Davydov A 2011 Inequalities for non-equilibrium
uctuations of work J. Stat. Phys. 142 394–402

[511] Palassini M and Ritort F 2011 Improving free-energy
estimates from unidirectional work Phys. Rev. Lett.
107 060601

[512] Kundu A, Sabhapandit S and Dhar A 2011 Application of
importance sampling to the computation of large
deviations in nonequilibrium processes Phys. Rev. E
83 031119

[513] Hayashi K, Ueno H, Iino R and Noji H 2010 Fluctuation
theorem applied to F1-ATPase Phys. Rev. Lett. 104 218103

[514] Toyabe S, Okamoto T, Watanabe-Nakayama T, Taketani H,
Kudo S and Muneyuki E 2010 Nonequilibrium energetics
of a single F1-ATPase molecule Phys. Rev. Lett.
104 198103

[515] Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S and
Muneyuki E 2011 Thermodynamic efciency and
mechanochemical coupling of F1-ATPase Proc. Natl
Acad. Sci. USA 108 17951–6

[516] Xiao T J, Hou Z H and Xin H W 2008 Entropy production
and uctuation theorem along a stochastic limit cycle
J. Chem. Phys. 129 114506

[517] Xiao T J, Hou Z H and Xin H W 2009 Stochastic
thermodynamics in mesoscopic chemical oscillation
systems J. Phys. Chem. B 113 9316

[518] Rao T, Xiao T and Hou Z 2011 Entropy production in a
mesoscopic chemical reaction system with oscillatory and
excitable dynamics J. Chem. Phys. 134 214112

[519] Browne W R and Feringa B L 2006 Making molecular
machines work Nature Nanotechnol. 1 25–35

[520] Kay E R, Leigh D A and Zerbetto F 2007 Synthetic
molecular motors and mechanical machines Angew. Chem.
Int. Edn 46 72–191

[521] Bath J and Turbereld A J 2007 DNA nanomachines Nature
Nanotechnol. 2 275–84

[522] van den Heuvel M G L and Dekker C 2007 Motor proteins at
work for nanotechnology Science 317 333–6

[523] Balzani V, Credi A and Venturi M 2009 Light powered
molecular machines Chem. Soc. Rev. 38 1542–50

[524] Coskun A, Banaszak M, Astumian R D, Stoddart J F and
Grzybowski B A 2012 Great expectations: can articial

molecular machines deliver on their promise? Chem. Soc.
Rev. 41 19–30

[525] Hänggi P and Marchesoni F 2009 Articial Brownian
motors: controlling transport on the nanoscale Rev. Mod.
Phys 81 387–442

[526] Sinitsyn N A 2009 The stochastic pump effect and geometric
phases in dissipative and stochastic systems J. Phys. A:
Math. Theor. 42 193001

[527] Astumian R D 2011 Stochastic conformational pumping: a
mechanism for free-energy transduction by molecules
Annu. Rev. Biophys. 40 289–313

[528] Seifert U 2011 Efciency of autonomous soft
nano-machines at maximum power Phys. Rev. Lett.
106 020601

[529] Derenyi I, Bier M and Astumian R D 1999 Generalized
efciency and its application to microscopic engines Phys.
Rev. Lett. 83 903

[530] Wang H and Oster G F 2002 The Stokes efciency for
molecular motors and its applications Europhys. Lett.
57 134

[531] Gaveau B, Moreau M and Schulman L S 2010 Stochastic
thermodynamics and sustainable efciency in work
production Phys. Rev. Lett. 105 060601

[532] Moreau M, Gaveau B and Schulman L S 2011 Stochastic
dynamics, efciency and sustainable power production
Eur. Phys. J. D 62 67–71

[533] Gaveau B, Moreau M and Schulman L S 2010 Constrained
maximal power in small engines Phys. Rev. E 82 051109

[534] de Groot S R and Mazur P 1962 Non-equilibrium
Thermodynamics (Amsterdam: North-Holland)

[535] Pottier N 2009 Nonequilibrium Statistical Physics: Linear
Irreversible Processes (New York: Oxford University
Press)

[536] Kedem O and Caplan S R 1965 Degree of coupling and its
relation to efciency of energy conversion Trans. Faraday
Soc. 61 1897

[537] Schmiedl T and Seifert U 2008 Efciency of molecular
motors at maximum power Europhys. Lett. 83 30005

[538] van den Broeck C, Kumar N and Lindenberg K 2012
Efciency of isothermal molecular machines at maximum
power Phys. Rev. Lett. 108 210602

[539] Magnasco M O 1994 Molecular combustion motors Phys.
Rev. Lett. 72 2656–9
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