oscilador harmônico amortecido (Mha)

* MHS \rightarrow conserraep de energia.
* Na protica Ra' disie paces de energia.
* A revitiñar de um flaido (ar, lírudo) e'prparcional à velocidade pare veloridades pepuenas \Rightarrow peprenas orilaices, Famntecimento $\alpha-v=-\dot{x}=-\frac{d x}{d t}$

$$
m \ddot{x}=-k x-\underbrace{\rho \dot{x}} \quad \rho \equiv \text { corficiente de atrit riscoso. }
$$

Force de amortecimento $=-\rho \dot{x} \quad \mathrm{~cm} \rho>0$ * Visconidade atuandó \Rightarrow A amplitude deensee com otempo.

$$
\begin{aligned}
& \ddot{x}+\frac{k}{m} x+\frac{\rho}{m} \dot{x}=0 \quad \frac{k}{m}=\omega_{0}^{2} \text { e } \frac{\rho}{m}=\gamma \\
& \ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=0 \text { (1) }
\end{aligned}
$$

* Caso(1) $x(t)=f(t) A \cos (\omega t+\varphi)$

$$
\begin{aligned}
& \dot{x}=\dot{f} A \cos (\omega t+\varphi)+f(-\omega) A \operatorname{sen}(\omega t+\varphi) \\
& \ddot{x}=\ddot{f} A \cos (\omega t+\varphi)+f(-\omega) A \operatorname{sen}(\omega t+\varphi)+\dot{f}(-\omega) A \operatorname{sen}(\omega t+\varphi)+ \\
& +f(-\omega) A(\omega) \cos (\omega t+\varphi) \\
& \text { "̈ } A \cos (\omega t+\varphi)+\dot{f}(-\omega) A \sec (\omega t+\varphi)+\dot{f}(-\omega) A \sec (\omega t+\varphi)+f(-\omega) A \omega \omega \cos (\omega t+\varphi) \text {. } \\
& +\gamma f A \cos (\omega t+\varphi)-\gamma f \omega A \operatorname{sen}(\omega t+\varphi)+\omega_{0}^{2} f A \cos (\omega t+\varphi)=0 \\
& \left(\dot{f}-f \omega^{2}+\gamma \dot{f}+\omega_{0}^{2} f\right) A \cos (\omega t+\varphi)-(2 f \omega+\gamma f \omega) \text { A sul }(\omega t+\varphi)=0 \\
& \text { ignal a zero } \\
& \omega \neq 0 \Rightarrow 2 f+\gamma f=0 \\
& \begin{array}{l}
f=\frac{\gamma}{2} f \Rightarrow f(t)=F_{0} e^{-\frac{\gamma}{2} t} \quad e \ddot{f}=\left(\frac{\gamma}{2}\right)^{2} f, f
\end{array}
\end{aligned}
$$

* No primuiroterno:

$$
\begin{aligned}
& \left(\frac{\gamma}{2}\right)^{2} f-\omega^{2} f-\frac{\gamma^{2}}{2}+\omega_{0}^{2} f=0 \\
& \left(\frac{\gamma^{2}}{4}-\omega^{2}-\frac{\gamma^{2}}{2}+\omega_{0}^{2}\right) f=0, \text { cmof} \neq 0 \\
& -\frac{\gamma^{2}}{4}-\omega^{2}+\omega_{0}^{2}=0 \Rightarrow \underbrace{\omega_{0}}_{\omega^{2}=\omega_{0}^{2}-\frac{\gamma^{2}}{4}} \underbrace{\omega_{0}^{2}-\left(\frac{\gamma}{2}\right)^{2}} \quad \underbrace{\text { Soluep real }}>\frac{\gamma}{2}
\end{aligned}
$$

Amriticiments pub-critico

* $\operatorname{Caso}(2) \quad x(t)=a e^{p t}$

$$
\begin{aligned}
& \dot{x}=p a e^{p t} \\
& \dot{x}=p^{2} a e^{p t}
\end{aligned}
$$

Na equape de minmento: $\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=0$

$$
\begin{aligned}
& p^{2} a e^{p t}+\gamma p a e^{p t}+\omega_{0}^{2} a c^{p t}=0 \\
& (\underbrace{\left.p^{2}+\gamma p+\omega_{0}^{2}\right) a e^{p t}=0}_{\text {mulo }} \\
& p=-\frac{\gamma \pm \sqrt{\sigma^{2}-4 a_{0}^{2}}}{2}=-\frac{\gamma}{2} \pm \sqrt{\left(\frac{\gamma}{2}\right)^{2}-\omega_{0}^{2}} \\
& p+=-\frac{r}{2}+\sqrt{\left(\frac{\gamma}{2}\right)^{2}-\omega_{0}^{2}} \\
& p_{-}=-\frac{\gamma}{2}-\sqrt{\left(\frac{1}{2}\right)^{2}-\omega_{0}^{2}} \\
& x(t)=a e^{-\left(\frac{r}{2}-\beta\right) t}+b e^{-\left(\frac{\gamma}{2}+\beta\right) t}
\end{aligned}
$$

Amotecimente supotcrítico

* Qual seria a polucas geral pre abrangeria as duas Arlucón acima (caro 1 e caso 2)?

$$
\sqrt{-1}=i \Rightarrow i^{2}=-1
$$

$$
\begin{aligned}
\overrightarrow{O P}=\vec{r} & =a \hat{x}+b \hat{y} \\
& =a \hat{\imath}+b \hat{\jmath}
\end{aligned}
$$

$$
\hat{x}=1
$$

$$
\hat{y}=i
$$

$$
{\underset{-a}{\pi / 2} \hat{a}_{a}^{i} \pi / 2}_{i}^{i} \Rightarrow a \rightarrow-a
$$

$\left\{\begin{array}{l}\text { Número complexo } \\ z=a+i b \\ b=\text { rotacis de } \frac{\pi}{2} \text { no sentido } \\ \text { axte-horário }\end{array}\right.$

$$
i^{2}=-1
$$

pare $a=1$ e $b=1$

$$
z=1+i
$$

* Equacío :

$$
A \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}+C x=F(F=0 \Rightarrow \text { homogerea })
$$

$$
A \ddot{x}+B \dot{x}+C x=0
$$

Han'ams obtid. :

$$
\begin{aligned}
& p=-\frac{\gamma}{2} \pm \sqrt{\frac{\gamma^{2}}{4}-\omega_{0}^{2}}=-\frac{\gamma}{2} \pm \sqrt{i^{2} \underbrace{\left.\omega_{0}^{2}-\frac{\gamma^{2}}{4}\right)}} \\
& p=-\frac{r}{2} \pm i \sqrt{\underbrace{\omega_{0}^{2}-\frac{\gamma^{2}}{4}}} \underbrace{}_{>0(\text { subcuitico) }} \quad \text { <o(sub-critico })
\end{aligned}
$$

$$
p=-\frac{r}{2} \pm i \omega \Rightarrow \text { subitilui en } x(t)
$$

$$
x(t)=a e^{\left[\left(-\frac{r}{2}+i \omega\right) t\right]}+b e^{\left[\left(-\frac{r}{2}-i \omega\right) t\right]}
$$

$$
\begin{aligned}
& x(t)=a e^{-\frac{r t}{2}} e^{i \omega t}+b e^{-\frac{r t}{2}} e^{-i \omega t} \Rightarrow x(t)=e^{-\frac{r}{2} t}\left(a e^{i \omega t}+b e^{-i \omega t}\right) \\
& x(t)=a e^{-i \varphi} \\
& a=A e^{i \varphi}
\end{aligned}
$$

ae b prdem ser ruimeros complexps $\Rightarrow \begin{aligned} & a=A e^{i \varphi} \\ & b=B e^{-i \varphi}\end{aligned}$

Apêudice: A foimule de Euler

$$
f(x)=e^{\lambda x} \frac{d f(x)}{d x}=\lambda e^{\lambda x}=\lambda f(x) \operatorname{crm} f(0)=1
$$

* Vams escrever $f(x)=\cos x$ e $f(x)=\operatorname{sen} x$

$$
\frac{d}{d x}(\underbrace{\cos x+i \operatorname{sen} x}_{f(x)})=-\operatorname{sen} x+i \cos x=\underbrace{i}_{\lambda}(\underbrace{\cos x+i \operatorname{sen} x}_{i x})
$$

$$
\therefore \quad \cos x+i \operatorname{sen} x=e^{i x}
$$

* Expantar em série de Taylix:

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \operatorname{sen} x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& e^{i x}=1+(i x)+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}= \\
& =(\underbrace{\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\right)}_{\cos x}+i\left(x-\frac{x-x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)
\end{aligned}
$$

* Re-eserercudo.

$$
\begin{aligned}
&- \text { esererudo } \\
& x(t)= e^{-\frac{r}{2} t}\left[A e^{[((\omega t+\varphi)]}+B e^{[-i(\omega t+\varphi)]}\right] \\
& x(t)= e^{-\frac{r}{2} t}[A \cos (\omega t+\varphi)+i A \operatorname{pen}(\omega t+\varphi)+ \\
&+B \cos (\omega t+\varphi)-i B \operatorname{sen}(\omega t+\varphi)], 0 \text { (imafinário!') } \\
& x(t)= e^{-\frac{\gamma}{2} t}[(A+B) \cos (\omega t+\varphi)+i(A-B) \operatorname{sen}(\omega t+\varphi)] \\
& x(t)=e^{-\frac{\lambda t}{2} C} C \cos (\omega t+\varphi)
\end{aligned}
$$

* Aplicar as caso MHS

$$
\begin{aligned}
& \ddot{x}+w_{0}^{2} x=0 \quad x=e^{\text {pt }} \\
& \dot{x}=p e^{p t} \\
& \ddot{x}=p^{2} e^{p t} \\
& \left(p^{2}+w_{0}^{2}\right) x=0 \Rightarrow p^{2}=-w_{0}^{2} \Rightarrow p= \pm i \omega_{0} \\
& x(t)=a e^{i \omega_{0} t}+b e^{-i \omega_{0} t}=A e^{i\left(\omega_{0} t+\varphi\right)}+B e^{-i\left(\omega_{0} t+\varphi\right)} \\
& \mathrm{Ae}^{\text {ei }} \quad \text { Be } e^{-i \varphi} \\
& x(t)=(A+B) \cos ^{\left(\omega_{0} t+\varphi\right)+i(A-B) \operatorname{sen}\left(\omega_{0} t+\varphi\right) \mid} \\
& \text { imafina'rio! }
\end{aligned}
$$

Partereal: $x(t)=C \cos \left(\omega_{0} t+\varphi\right)$
mesmo resultado.

* Osciladr Harmốxico Amortecido soluce: $x(t)=e^{\text {pt }}$

$$
\begin{aligned}
& \ddot{x}+\gamma \dot{x}+w_{0}^{2} x=0 \\
& p^{2} e^{p t}+\gamma p e^{p t}+w_{0}^{2} e^{p t}=0 \Rightarrow p^{2}+\gamma p+w_{0}^{2}=0 \\
& p=-\frac{\gamma}{2} \pm \sqrt{\left(\frac{r}{2}\right)^{2}-\omega_{0}^{2}}
\end{aligned}
$$

1) $\operatorname{Se} \omega_{0}>\frac{r}{2} \Rightarrow p=-\frac{r}{2} \pm i \omega$ inde $\omega=\sqrt{\omega_{0}^{2}-\frac{r^{2}}{4}}$,

$$
\left[\begin{array}{c}
x(t)=c e^{-\frac{\gamma}{2} t} \cos (\omega t+4) \\
\text { Amsiticimento sub-critiol }
\end{array}\right.
$$

Amotecimento sub-critico]

2) Se $w_{0}<\frac{r}{2}$ orilitiona
$\cos (\omega t+p)$
[Amistecimento supercrético]

$$
\begin{align*}
& x(t)=e^{-\frac{\gamma t}{2}}\left(a e^{\beta t}+b e^{-\rho t}\right) \tag{18}\\
& \operatorname{com} \beta=\sqrt{\frac{\gamma^{2}}{4}-w_{0}^{2}} \quad \text { pio } w_{0} \alpha \frac{\gamma}{2} \\
& x(t)=a e^{-\left(\frac{\gamma}{2}-\beta\right) t} \underbrace{}_{>0}+b e^{-\left(\frac{\gamma}{2}+\beta\right) t} \underbrace{}_{>0}]
\end{align*}
$$

 pare tenupos main longn $e^{-\frac{I}{z}+\beta}$ dimise
duas expotmeviais decrescenter
3) $w_{0}=\frac{\gamma}{2} \Rightarrow w=0$
[Amritecimento crítico] $\Rightarrow \beta=0$

$$
\ddot{x}+\gamma \dot{x}+w_{0}^{2} x=0 \quad \Rightarrow \quad \ddot{x}+2 w_{0} \dot{x}+w_{0}^{2} x=0
$$

Solucus geral: $x(t)=f(t) e^{-\frac{\gamma}{2} t}=f(t) e^{-\omega_{0} t}$

$$
\begin{aligned}
& \dot{x}=\dot{f} e^{-\omega_{0} t}-\omega_{0} f e^{-\omega_{0} t} \\
& \ddot{x}=f e^{-\omega_{0} t}-\omega_{0} \dot{f} e^{-\omega_{0} t}-\omega_{0} f e^{-\omega_{0} t}+\omega_{0}^{2} f e^{-\omega_{0} t} \\
& \left(\ddot{f}-2 \omega_{0} \dot{f}+\omega_{0}^{2} f\right) e^{-\omega_{0} t}+2 \omega_{0}\left(\dot{f}-\omega_{0} f\right) e^{-\omega_{0} t}+\omega_{0}^{2} f e^{-\omega_{0} t}=0
\end{aligned}
$$

$C_{\text {tro }} e^{-\omega_{0} t} \neq 0$ pare sper t

$$
\begin{aligned}
& \ddot{f}=0 \Rightarrow \dot{f}=a \quad e \quad f=a t+b \\
& \therefore x(t)=(a t+b) e^{-\omega_{0} t} \\
& x(t)=(a t+b) e^{-\frac{r}{2} t}
\end{aligned}
$$ $\beta \neq 0$ retarda o amntecimento $\beta=0$ mairs amntelido.

Quiste des Condicaer iniviais

$$
\begin{aligned}
x(t)= & A e^{-\frac{r}{2} t} \cos (\omega t+\varphi) \\
\dot{x}(t)= & -\frac{r}{2} A e^{-\frac{r}{2} t} \cos (\omega t+\varphi)+A e^{-\frac{r}{2} t}(-\omega) \operatorname{sen}(\omega t+\varphi) \\
& x_{0} e v_{0} \text { sd dodos }
\end{aligned}
$$

$$
\begin{align*}
& x_{0}=A \cos \varphi \tag{1}\\
& \dot{x}(0)=v_{0}=-\frac{\gamma}{2} \underbrace{A \cos \varphi}_{x_{0}}-\underbrace{A \omega \operatorname{sen} \varphi}_{\hat{L}} A=\frac{x_{0}}{\cos \varphi} \\
& v_{0}=-\frac{\gamma}{2} x_{0}-x_{0} \omega \operatorname{tg} \varphi \Rightarrow \frac{v_{0}}{x_{0}}=-\frac{\gamma}{2}-\omega \operatorname{tg} \varphi \\
& \omega \operatorname{tg} \varphi=-\left(\frac{\sqrt{0}}{x_{0}}+\frac{\gamma}{2}\right) \Rightarrow \operatorname{tg} \varphi=-\frac{\left(\sqrt{0} / x_{0}+\gamma / 2\right)}{\omega} \\
& \varphi=\operatorname{arctg}\left[-\frac{-\left(\sqrt{0} / x_{0}+\gamma / 2\right)}{\omega}\right] \\
& \text { Para } \varphi=0 \Rightarrow x(t)=A e^{-\frac{x}{2} t} c_{0}(\omega t) \\
& x_{0}=A \\
& v_{0}=-\frac{\gamma}{2} A=-\frac{\gamma}{2} x_{0}
\end{align*}
$$

Amplitrde $A e^{-\frac{\gamma t}{2}}$ devai no timpo $\left(x_{\text {máx }}=A\right)$
Para $\varphi \neq 0$ (caso particular do resultado antenor) e

$$
\begin{aligned}
\left.v_{0}=0 \Rightarrow \begin{array}{ll}
x_{0}=A \cos \varphi \Rightarrow & \frac{-\gamma}{2} A \cos \varphi=A \omega \operatorname{su\varphi } \varphi \\
v_{0}=0 & \\
& \operatorname{tg} \varphi=\frac{-\gamma / 2}{\omega} \Rightarrow \varphi \Rightarrow \cos \varphi \\
& A=\frac{x_{0}}{\cos \varphi}(\text { detumixa }-\mu A)
\end{array}\right)
\end{aligned}
$$

* A energia do Oriladox Harmônico Amntecido (MHA)

$$
E(t)=\frac{1}{2} m \underbrace{m \dot{x}^{2}}_{v(t)}+\frac{1}{2} k x^{2}
$$

háo émais contervade, a dissipracal converte a energia em outras formas de energia.

Como varia no tempo?

$$
\begin{aligned}
& \frac{d E(t)}{d t}=\frac{1}{2} m p \dot{x} \ddot{x}+\frac{1}{2} k d x \dot{x} \\
& \frac{d E(t)}{d t}=\dot{x}(m \ddot{x}+k x) \\
& \frac{d E}{d t}=-\begin{array}{r}
m \ddot{x}+k x+\rho \dot{x}=0 \\
m \ddot{x}+k x=-\rho \dot{x}
\end{array} \\
& \underbrace{}_{\text {fnce deatuito }}=-\dot{x}^{2}=-\rho \dot{x} \cdot \dot{x}
\end{aligned}
$$

varia com o quahrado
da relridade e ≤ 0
Crmo $\frac{f}{m}=\gamma \Rightarrow \frac{d E}{d t}=-m \gamma \dot{x}^{2}(t)$
Pare amorteciment fraco: $\gamma \ll w_{0}$ (sub-critico)

$$
E(t)=\frac{1}{2} m A^{2} e^{-\gamma t}[f(w, t)]
$$

$e^{-\gamma t}$ varia muito ponco en 1 pevódo \therefore inturta o velox médio da energia instantânea durante 1 peńodo 6.

$$
6=\frac{2 \pi}{\omega}
$$

$$
\begin{aligned}
& E(t)=\frac{1}{\zeta} \int_{t}^{t+\zeta} E\left(t^{\prime}\right) d t^{\prime} \\
& E(t)=\frac{1}{2} \underbrace{m \omega_{0}^{2} A^{2} e^{-\gamma t} \quad \text { H.H. Mustengraj, Vol2) }}_{k} \\
& \bar{E}(t)=\underbrace{\frac{1}{2} k A^{2} e^{-\gamma t}}_{\text {maximo }}=\bar{E}(0) e^{-\gamma t}\left(\gamma \alpha<\omega_{0}\right)
\end{aligned}
$$

* Into mostre pre para amoitecimento freco (sub-crítio) a eneyíc nédià do oseilador decai expinercialmente am o tempo.

 $\bar{E}(t)$ a eneyia midia caide $\frac{1}{e}$.

$$
\begin{aligned}
& \bar{\sigma}_{d} \\
& \bar{E}(t)= \frac{t}{\bar{E}(0)} \\
& e\left.\overline{E_{(0}}\right) e^{-\gamma \sigma_{d}} \\
& e^{-1}=e^{-\gamma \sigma_{d}} \Rightarrow \sigma_{d}=\frac{1}{\gamma} \\
& \frac{d \bar{E}}{d t}=-\underbrace{-\gamma \bar{E}}\left(\gamma \alpha L \omega_{0}\right) \text { poin } \bar{E}=\bar{E}(0) e^{-\gamma t}
\end{aligned}
$$

taxa de deuésíno relatuo da eneyia médie poruridade de tempo.

* Fator de merito on Fatore Q (qualidade)

$$
Q=\frac{2 \pi}{1}\left(\frac{\text { eneria armannede no otciladr }}{\text { energià distiporde por ciclo }}\right)
$$

$$
\therefore Q=2 \pi \frac{\bar{E}}{\Delta \overline{\Delta E}} \quad \begin{aligned}
& \text { emeyria disripade } \\
& \begin{array}{l}
\text { ent } \\
\text { por ciclo }
\end{array}
\end{aligned}
$$

$$
\therefore Q=\frac{2 \pi \bar{E}}{\gamma \bar{E} \zeta}=\frac{\frac{2 \pi}{\zeta}\left(\frac{1}{\gamma}\right) \approx \frac{\omega_{0} \approx \omega}{\gamma}}{\substack{\omega \\ \\ \\ \approx \omega_{0}}}
$$

Qutre forma de iscrever:

$$
\theta=\frac{2 \pi}{6} \sigma_{d}
$$

Se $\omega_{0} \Rightarrow \omega \Rightarrow Q \gg$ amostecimento fraco
maivix $Q \Rightarrow$ menox amoitecinouto por osei lacep

