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Global Optimization

Practical applications of optimization deal with one or more of the following

challenges:

• non-diferentiable functions and/or constraints

• non-convex feasible space

• discrete feasible space

• mixed variables

• dimension

• multiple local minima

• multiple objectives
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Global Optimization

An interesting example:

How to solve this problem?

• Multiple point restarts of gradient (local) based optimizer

• Systematically search the design space

• Use gradient-free optimizers
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Global Optimization

Derivative-based algorithms

Advantages

• global convergence to stationary points of the problem (P) under mild

assumptions on the problem class;

• fast local convergence for Newton-like variants.

• can solve large-scale problems for n large ( order 103 ) efficiently, even when (P)

has nonlinear constraints.

Limitations

• only guaranteed to provide local solutions of the problem (P) when (P) is

nonconvex.

• requires accurate or exact first, and sometimes even second, derivatives of the

objective f and constraints to be available.
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Global Optimization

Gradient-based optimizers:

• are efficient at finding local minima for high-dimensional, nonlinearly constrained,

convex problems;

• have problems dealing with noisy and discontinuous functions

• not designed to handle multi-modal problems or discrete and mixed

discrete-continuous design variables.

• A local optimization algorithm ’gets trapped’ at local minimizers and cannot

further advance towards the global solution.

• Suppose f non convex and bounded below.

• How to compute a global minimizer in the presence of local minimizers?

• How to compute a global minimizer in the presence of high oscillations and sometimes

noise?
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Direct search methods

• Direct search methods are best known as unconstrained optimization techniques

that do not explicitly use derivatives

• Direct search methods attempt to find the optimal solution of optimization

problems without explicitly using derivatives

• The term derivative-free optimization has been used with some frequency in the

nonlinear programming literature to mean a number of methods that rely on

derivative-free local models of the objective and constraints. These models are

derivative-free in the sense that they are not Taylor’s series models constructed

using analytical or accurate finite-difference estimates of derivatives. Instead, the

models are constructed via least-squares fits or interpolation techniques.
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Direct search methods

Derivative-Free Optimization (DFO)

• derivatives are unavailable, even if the problem is smooth;

• use only function values to construct iterates that approach a (local) min.

Why and when to use Derivative-Free Optimization?

• Exact first derivatives of f are unavailable: f (x) given by a black-box code,

proprietary code or a simulation package.

• Computing f(x) for any given x is expensive: f (x) given by a time-consuming

numerical simulation or lab experiments.

• The values of f(x) are noisy: the evaluation of f(x) is inaccurate, depends on

discretization, sampling, uncertain data; gradient information is meaningless.
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Global Optimization

Derivative-Free Optimization (DFO)

• use only objective function values to construct iterates.

• do not essentially compute an approximate gradient. instead, form sample of

points ;

• use associated function values to generate xk+1 so as to ensure descent;

• must also control geometry of sample sets.

However...

• a derivative-free method typically limits the performance in terms of accuracy,

expense or problem size relative to what one might expect from gradient-based

optimization methods

• there is no agreed-upon dfinition of what constitutes a direct-search method.
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Derivative-Free Optimization (DFO)

Direct Search Algorithms - Main idea

A broad family of algorithms built on a simple idea: given a point x̄ and a finite set of

directions D (x̄) such that

∃ d ∈ D (x̄) , d
′
∇f (x̄) ≤ 0

then there exists an α > 0 small enough such that

f (x̄ − αd) < f (x̄)
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Derivative-Free Optimization (DFO)

Direct Search Algorithms - Main idea

• How to define D

• how to select α

• how to deal with constraints

Celma de Oliveira Ribeiro



Derivative-Free Optimization (DFO)

Simplex method

The Simplex method (Nelder Mead) considers a collection of n + 1 the vertices of a

simplex in Rn. A simplex is a structure in n-dimensional space formed by n+1 points

that are not in the same plane.

Figure 1: A simplex for n = 2

The Nelder-Mead algorithm performs four main operations to the simplex: reflection,

expansion, outside contraction, inside contraction and shrinking.
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The simplex method

• The operations enable the Nelder-Mead simplex method to distort the simplex in

order to account for possible curvature present in the objective function.

• Each operation generates a new point and the sequence of operations performed

in one iteration depends on the value of the objective at the new point relative to

the other key points.

• These operations enable the Nelder-Mead simplex method to distort the simplex

in order to account for possible curvature present in the objective function.

Celma de Oliveira Ribeiro



The simplex method

• The operations enable the Nelder-Mead simplex method to distort the simplex in

order to account for possible curvature present in the objective function.

• Each operation generates a new point and the sequence of operations performed

in one iteration depends on the value of the objective at the new point relative to

the other key points.

• These operations enable the Nelder-Mead simplex method to distort the simplex

in order to account for possible curvature present in the objective function.

Celma de Oliveira Ribeiro



The simplex method

• The operations enable the Nelder-Mead simplex method to distort the simplex in

order to account for possible curvature present in the objective function.

• Each operation generates a new point and the sequence of operations performed

in one iteration depends on the value of the objective at the new point relative to

the other key points.

• These operations enable the Nelder-Mead simplex method to distort the simplex

in order to account for possible curvature present in the objective function.

Celma de Oliveira Ribeiro



The simplex method

Let xw , xl and xb denote the worst, the second worst (or lousy) and best points,

respectively, among all n + 1 points of the simplex.
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Derivative-Free Optimization (DFO)

Nelder-Mead
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The simplex method

Consider xw , xl and xb the worst, the second worst and best points.

Calculate

xa =
1

n

n+1∑
i=1,i ̸=w

xi

The line from xw to xa is a descent direction

Reflection

A new point is found on this line by reflection, given by

xr = xa + α(xa − xw )
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The simplex method

Expansion

If the value of the function at this reflected point is better than the best point, then

the reflection has been especially successful and we step further in the same direction

by performing an expansion

xe = xr + γ(xr − xa)

Usually γ = 1 .
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The simplex method

Contraction

If the reflected point is worse than the worst point, we assume that a better point

exists between xw and xa and perform an inside contraction

xc = xa + β(xa − xw )

Usually the contraction factor β = 0.5 .

If the reflected point is not worse than the worst but is still worse than the lousy point,

then an outside contraction is performed

xo = xa + β(xa − xw )

After the expansion, we accept the new point if the value of the objective function is

better than the best point. Otherwise, we just accept the previous reflected point.
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The simplex method

Shrinking

If reflection, expansion, and contraction fail, we resort to a shrinking operation. This

operation retains the best point and shrinks the simplex, that is, for all point of the

simplex except the best one, we compute a new position

xi = xb + ρ(xi − xb)

Usually the scaling parameter ρ = 0.5
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The simplex method
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The simplex method

Figure 2: Flow chart
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The simplex method

Convergence criterion:

• The size of simplex, i.e.,
n∑

i=1

∥xi − xn+1∥ ≤ ϵ

• Standard deviation √∑n+1
i=1 (fi − f̄ )

n + 1
≤ ϵ
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The simplex method

Minimization of a Function Using Nelder-Mead

Figure 3: sequence of simplices that results when minimizing a function
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The simplex method

Example Função sombrero Entregar - aula
Para a função

f (x , y) = 10
sin

√
x2 + y2√

x2 + y2

• Esboce o gráfico da função

• faça 4 iterações do método de Nelder Mead e apresente os pontos e os simplexos

obtidos. Começe com pontos iniciais distintos (explique a escolha dos pontos e

sua expectativa em relação ao comportamento do algoritmo )
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The simplex method

Minimization of a Function Using Nelder-Mead

Figure 4: sequence of simplices that results when minimizing a function
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The simplex method

Minimization of the Rosenbrock Function Using Nelder-Mead

Figure 5: sequence of simplices that results when minimizing the Rosenbrock function

The initial simplex: on the upper left ( equilateral). First iteration: inside contraction.

Second: reflection, another inside contraction and then an expansion. The simplices

then reduce dramatically in size and follow the Rosenbrock valley, slowly converging to

the minimum.
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Random search

Enumeration or exaustive search

• Most natural approach in global optimization: evaluate all points in the domain

• When global optimization involves continuous variables, complete enumeration is

impossible.

• Commom approach: discretizing the domain Grid search

• Create a equally spaced grid of points over the feasible region

• Evaluate the objective function at each point

• The number of function evaluations to achieve an accuracy ϵ is exponencial in the

dimension n
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Random search

Enumeration or exaustive search

Pure random search

• Stochastic version of grid search

• Samples repeatedly from the feasible region S, tipically according to a uniform

sampling distribution. Although the points are not evenly spaced, they are

uniformly scattered over the feasible solution

• It sacrifices the guarantee of determining the optimal solution within ϵ. However,

it can be shown that pure random search converges to the global optimum with

probability one.
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Random search

Random search algorithms

Random search algorithms (Also called Monte Carlo methods or stochastic algorithms)

refer to algorithms that use some kind of randomness or probability (typically in the

form of a pseudo-random number generator) in the definition of the method.

Generic random search algorithm is:

• A sequence of iterates {Xk} on iteration k = 0, 1, ... which may depend on

previous points and algorithmic parameters.

• The current iterate Xk may represent a single point, or a collection of points, to

include population based algorithms

Random search can use derivatives!
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Random search

Generic Random Search Algorithm

Step 0 Initialize algorithm parameters Θ0, initial points X0 ∈ S, k ← 0

Step 1 Generate a collection of candidate points Vk+1 ∈ S according to a specific

generator and associated sampling distribution.

Step 2 Update Xk+1 based on the candidate points Vk+1, previous iterates and

algorithmic parameters.Θk+1

Step 3 If a stopping criterion is met, stop. Otherwise increment k and return to Step 1.

This generic random search algorithm depends on two basic procedures, the generator

in Step 1 that produces candidate points, and the update procedure in Step 2.
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Random search

Single-point Generators

• Maintain and generate a single point at each iteration.

• For these single-point generators, the candidate point Vk+1 is generated based on

a combination of the current point and previous points.

• Usual approach: Step 1 expressed by Vk+1 = Xk+1 + δkDk (step size algorithms)

In continuous problems, the direction of movement Dk may be motivated by gradient

information, and the step length may be the result of a line search δk . Quasi-Newton

methods take advantage of an approximation of the Hessian to provide a search

direction.
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Random search

Pure random search

Step 0 Initialize X0 ∈ S, according to a probability measure δ on S 1

k ← 0 . Ybest = Y0 = f (X0)

Step 1 Generate Xk+1 ∈ S according to probability measure δ. Set Yk+1 = f (Xk+1).

Update the best point so far, Ybest = min {Ybest ,Yk+1}

Step 2 If a stopping criterion is met, stop. Otherwise increment k and return to Step 1.
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Random search

Pure adaptative random search

Step 0 Initialize X0 ∈ S, according to a uniform distribution on S

k ← 0 . W0 = f (X0)

Step 1 Generate Xk+1 ∈ S according to a uniform distribution on the improving set

Sk = {x : x ∈ S and f (x) < Wk} Set Wk+1 = f (Xk+1).

Step 2 If a stopping criterion is met, stop. Otherwise increment k and return to Step 1.

The method adapts the current level set by restricting its search domain to improving

points
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Random search

Multiple points Generators

• Population-based random search algorithms use a collection of current points to

generate another collection of candidate points.

• Many of these algorithms are motivated by biological processes, and include

genetic algorithms, evolutionary programming, particle swarm optimization and

ant colony optimization.
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Random search

Update Procedure

After a candidate point is generated, Step 2 of the generic random search algorithm

specifies a procedure to update the current point and algorithm parameters.

Strictly improving algorithms: update the current point only if the candidate point is

improving,

Xk+1 =

{
Vk+1 if f (Vk+1) < f (Xk)

Xk otherwise

This type of improving algorithm may get trapped in a local optimum if the

neighborhood, or procedure for generating candidate points is too restricted.

A possibility is to accept non-improving points, as in simulated annealing.
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Random search

Update Procedure Simulated annealing

In simulated annealing, the update procedure is often called the Metropolis criterion,

and the candidate point is accepted with a probability,

Xk+1 =

{
Vk+1 with probability min

{
1,

f (Xk )−f (Vk+1)
Tk

}
Xk otherwise

• Tk is a cooling parameter.

• Improving points are accepted with probability one, and the probability of

accepting a worse point decreases as the temperature parameter cools, i.e.

decreases to zero.
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