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Start by doing what’s necessary, then do what’s possible, and
suddenly you are doing the impossible.

Saint Francis of Assisi 1
Introduction

Chapter Overview

T������������������an introduction to computational shape analysis.
Starting with some considerations about computer vision and 2D

shapes, it proceeds by illustrating some typical applications and discussing
the main problems normally involved in shape analysis, and concludes by
presenting the organization of the related topics in the book chapters.

1.1 Introduction to Shape Analysis
There is little doubt that one of the most stimulating research fields, from both
the scientific and technological perspectives, are those related to the main human
sense: vision. The acquisition and analysis of the visual information produced
by the interaction between light and the world objects have represented powerful
means through which humans and animals can quickly and e�ciently learn about
their surrounding environments. The advantages of this ability for survival can be
immediately recognized, accounting for all e↵orts nature has taken in developing
such flexible visual systems. As far as humans are concerned, more than 50%
of their brains are somehow involved in visual information analysis, a task that
underlies the majority of human daily activities. In fact, it is hard to identify which
of these activities do not involve, either directly or indirectly, vision. Therefore,
whenever necessary to automate (e.g., in case of dangerous or tedious situations)
or to improve (e.g., to increase precision and repetition) human activities, e↵ective
computer vision systems become essential.

The origin of computer vision is intimately intertwined with computer history,
having been motivated by a wide spectrum of important applications such as in
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2 SHAPE ANALYSIS AND CLASSIFICATION

robotics, biology, medicine, industry, security and physics, to name but a few. Such
a great deal of applications is not surprising if we consider the aforementioned im-
portance of the human vision sense. Nevertheless, though "seeing" seems to us
to be simple, natural and straightforward, in practice the design of versatile and
robust computational vision systems has proven to be di�cult, and most of the
flexible computer vision systems created thus far have met with limited success. In
fact, vision requires real-time processing of a very large and heterogeneous data set
(including shape, spatial orientation, color, texture, motion, etc.) as well as interac-
tions with other equally important cognitive abilities, such as memory, feelings and
language. Additional di�culties with the analysis of visual information derive from
noise, occlusion and distortions, as well as from the fact that image formation in-
volves mapping from a three-dimensional space (the scene) onto a two-dimensional
support (the retina or the image plane in a camera, for instance), thus implying in-
formation to be lost. Notwithstanding these di�culties, there is no doubt that ro-
bust vision systems are viable, for nature has created highly adapted and e�cient
vision systems in so many animals. In this context, vision science has developed
as an interdisciplinary research field, frequently involving concepts and tools from
computer science, image processing, mathematics, physics, artificial intelligence,
machine learning, pattern recognition, computer graphics, biology, medicine, neu-
roscience, neurophysiology, psychology and cognitive sciences. Although not al-
ways recognized, such areas have already provided computer vision with important
insights. For instance, several important imaging concepts and techniques can be
closely related to biologic principles, including the edge detection approach de-
scribed in [Marr, 1982], the two-dimensional (2D) Gabor filter models developed
in [Daugman, 1980], the artificial neural networks introduced by McCullogh and
Pitts [Anderson, 1995], and the importance of high curvature points in shape per-
ception described in [Attneave, 1954], to name but a few.

To probe further: Shape Theories in Biology and Psychology

A related and interesting study topic are the theories of human shape perception.
The reader is referred to [Biederman, 1985; Edelman, 1999; Hubel & Wiesel, 2005;
Leyton, 1988, 1992; Perret & Oram, 1993; Poggio & Edelman, 1990; Rosin, 1993;
Siddiqi & Kimia, 1995; Zeki, 2000] for further reading on this issue.

Among all di↵erent aspects underlying visual information, the shape of the ob-
jects certainly plays a special role, a fact that can be experienced while reading the
characters on this page, which are essentially characterized by their shapes. In a
sense, shapes can be thought as being the words of the visual language. Indeed,
the prominent role of vision and shape (or its synonymous form) to humans has
implied several visually-related terms to be incorporated into the common vocabu-
lary, including the words transformation, insight and imagination, and expressions
such as lick into shape, take shape, shape up, and in any shape or form. As far
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CHAPTER 1. INTRODUCTION 3

Figure 1.1: Image containing a 3D object (a cat) and respective represen-
tation in terms of its 2D silhouette.

as the pictorial information is concerned, the particular issue of 2D shapes, i.e.,
shapes defined on the plane, is of paramount importance. As mentioned above,
image formation often involves mapping objects from the three-dimensional (3D)
space onto 2D structures, such as a retina or a CCD. It is worth noting that even the
2D-object silhouette often conveys enough information allowing the recognition of
the original object, as illustrated in Figure 1.1.

This fact indicates that the 2D shape analysis methods described in this book
can often be applied for the analysis of 3D objects. While there are many ap-
proaches for obtaining the full 3D representation of objects in computer vision, be
it by reconstruction (from stereo, from motion, from shading, etc.) or by using spe-
cial devices (e.g., 3D scanners), dealing with 3D models still is computationally ex-
pensive, frequently to a prohibitive degree, hence the importance of 2D approaches
for treating such situations. Of course, there are several objects, such as charac-
ters, which are defined in terms of 2D shapes and should therefore be represented,
characterized and processed as such.

In a more general situation, 2D shapes are often the archetypes of objects be-
longing to the same pattern class, which is illustrated in Figure 1.2.

In spite of the lack of additional important pictorial information, such as color,
texture, depth and motion, the objects represented by each of the silhouettes in
this image can be promptly recognized. Some of these 2D shapes are abstractions
of complex 3D objects, which are represented by simple connected sets of black
points on the plane (see Chapter 4 for additional discussion on the issue of shapes).

This book is precisely about obtaining, processing and analyzing shape images
in automated, or at least semi-automated, fashion by using digital computers. In a
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4 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.2: Some typical and easily recognizable 2D shapes.

typical application, the image of a shape is digitized, yielding a digital shape that
can be pre-processed, analyzed and (eventually) classified. As mentioned above,
these techniques have been successfully applied to a wide range of practical prob-
lems, some of which are exemplified in the following table. In order to gain a
deeper insight about computational shape analysis, two representative applications
illustrating typical situations in practical shape analysis are outlined and discussed
in the next section. An introductory overview of the several tasks involved in shape
analysis is presented in the remainder of this chapter.

Research Field Examples of Applications

Neuroscience

Morphological taxonomy of neural cells, investiga-
tions about the interplay between form and function,
comparisons between cells of di↵erent cortical areas
and between cells of di↵erent species, modeling of
biologically realistic cells, and simulation of neural
structures.

Document
analysis

WWW, OCR (optical character recognition), multi-
media databases, and historical documents.

Visual arts
Video restoration, special e↵ects, video tracking,
games, computer graphics, visualizations, and image
synthesis.

Internet Content-based information retrieval, watermarking,
graphic design, and usability.

Continued on next page.
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CHAPTER 1. INTRODUCTION 5

Continuation.
Research Field Examples of Applications

Medicine

Tumor recognition, quantification of change and/or
deformation of anatomical structures (e.g., endo-
cardial contour of left ventricle of heart, corpus cal-
losum), morphometric analysis for diagnosis (e.g.,
multiple sclerosis and Alzheimer’s disease), numer-
ical analysis of chromosomes, identification of ge-
netic pathologies, laparoscopy, and genetic studies of
dentofacial morphology.

Biology

Morphometric-based evolution comparison, taxon-
omy, interplay between form and function, compar-
ative anatomy, cytology, identification and counting
of cells (e.g., white blood cells), characterization of
cells and nuclear shapes, growth and shape modi-
fications, analysis of human gait, analysis of elec-
trophoretic gels, and microscopy.

Physics
Analysis of particle trajectories, crystal growth, poly-
mers, characterization of star clusters in astronomy,
and several types of microscopy.

Engineering

Semiconductors, quality control, danger detection,
machine interpretation of line drawings, computer-
aided design of mechanical parts and buildings, au-
tomation, robotics, remote sensing, image and video
format standards, and spatial exploration.

Security Fingerprint/face/iris detection, biometrics, human
gait, and signature verification.

Agriculture Harvest control, seed counting and quality control,
species identification, and fruit maturation analysis.

To probe further: Shape Analysis

The multidisciplinarity of image analysis, with respect to both techniques and ap-
plications, has motivated a rich and impressive set of information resources rep-
resented by conferences, books, WWW URLs and journals. Some of the more
important of these are listed in the book Web page at: http://www.ime.usp.br/
~cesar/shape_crc/chap1.html.
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6 SHAPE ANALYSIS AND CLASSIFICATION

1.2 Case Studies

1.2.1 Case Study: Morphology of Plant Leaves
A special problem where shape analysis usually comes into play is the classification
of biological entities based on respective morphological information, as illustrated
in the following (see [Bruno et al., 2008a]). Figure 1.3 shows a series of 12 images
of leaves obtained from four di↵erent species of plants.

Figure 1.3: Set of plant leaves belonging to four classes.

Observe that in this situation the classes of leaves are clearly defined in terms
of the respective plant species. Now, suppose that we want to classify an unknown
leaf, i.e., to assign it to one of the four plant classes presented in Figure 1.3. A
typical pattern recognition approach to solve this problem is to measure a series of
features, or attributes, from each leaf image in Figure 1.3, say a feature related to
the brightness distribution of each leaf and a feature related to its size or extension.
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CHAPTER 1. INTRODUCTION 7

Figure 1.4: Feature space obtained for plant leaves of the types shown in
Figure 1.3.

An example of the former feature type is the histogram entropy, denoted by f1,
which can be informally understood as a number indicating the degree of disorder
of the gray levels inside each leaf (see Chapter 3 for additional discussion). The
other feature could be characterized by the perimeter of each leaf, denoted by f2.
Therefore, each leaf is represented in terms of a pair ( f1, f2), known as the feature
vector associated with each pattern. The feature space of our pattern recognition
problem, which is shown in Figure 1.4, is the 2D space defined by f1 ⇥ f2 for all
initially considered leaves.

In Figure 1.4, each point is labeled with its class number, i.e., 1, 2, 3 or 4,
to the leaf classes of Figure 1.3. It is interesting to note that each pattern class has
defined a respective cluster (informally speaking, a localized and separated cloud of
points) in the feature space. Back to the initial problem of classifying an unknown
leaf based on its image, it would be useful to have a pattern classifier that could
produce the correct class for each supplied feature vector ( f1, f2) corresponding to
a new leaf not in the original database. For instance, in case the measured features
( f1, f2) is that indicated by a “?” in Figure 1.4, then it would be reasonable to
assume that the unknown leaf belongs to class 3, for the feature vector is much
closer to that cluster than to all other remaining clusters in the feature space. This
simple approach to automated classification is called, for obvious reasons, nearest
neighbor.

To probe further: Applications in Agriculture

The page www.ee.surrey.ac.uk/Research/VSSP/demos/leaf/index.html
presents an interesting application of the leaf classification problem to agriculture.
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8 SHAPE ANALYSIS AND CLASSIFICATION

(a) (b)

Figure 1.5: Two morphological classes of prototypical cat ganglion cells:
↵-cells (a) and �-cells (b). The cells have been artificially
generated by using formal grammars [Costa et al., 1999].

1.2.2 Example: Morphometric Classification of Ganglion Cells

The second example of a practical shape analysis application concerns the morpho-
logical analysis of neural cells. The morphology of neurons has been recognized
to be an extremely important property of such cells since the pioneering work of
the neuroscientist [Ramon y Cajal, 1989]. The morphology has been often related
to specific physiological properties of the cell (e.g., [Costa, 2005; Costa & Velte,
1999]). A specific example of this situation is defined by the two morphological
classes of retinal ganglion cells in the cat, i.e., the ↵- and �-cells. Several studies
by neuroscientists over decades have produced results clearly indicating an inter-
esting relationship between the form and function of these cells. The morpholog-
ical classes for ↵- and �-cells have been defined by taking into account especially
the neural dendritic branching pattern, with ↵-cells presenting dendrites spread
throughout a larger area, while the �-cells are more concentrated. Figures 1.5 (a)
and (b) present two sets of ↵- and �-cell prototypes, respectively, clearly illustrating
their shape di↵erences.

Many are the motivations for developing objective morphological classifica-
tion schemes for such neural cells. First, such objective parameters would help the
creation of taxonomic classification with respect to neural morphology, as well as
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CHAPTER 1. INTRODUCTION 9

to review previously proposed classes typically developed in a subjective fashion
(i.e., through human inspection). Furthermore, such studies can lead to advances
regarding the characterization of the relationship between neural form and func-
tion, which is a particularly important problem in neuroscience. In addition, objec-
tive parameters about neural morphology are essential for paving the way towards
more realistic models and computer simulations of neural structures [Ahnert &
Costa, 2008; Costa et al., 1999]. Research has been carried out in order to develop
quantitative measures about the geometry of neural cells (a research area called
neuromorphology) that could properly reflect the di↵erences between the di↵erent
types of neural cells.

In this context, neuroscientists have started applying mathematical tools, such
as the fractal dimension and the bending energy, in order to devise automatic tools
allowing the e↵ective classification of neurons with respect to their morphology.
Nevertheless, the development of such features has met interesting and di�cult
problems that must be resolved by the researchers. For instance, there is no agree-
ment among neuroscientists with respect to the number of morphological classes of
neurons. In fact, the morphological classes can be defined and redefined by neuro-
scientists as new methods are developed. Therefore, an interesting shape analysis
problem arises involving the following di�cult questions:

¨ How many morphological classes of neurons are there?

≠ How can we assign cells to morphological classes?

Æ What features (not only morphological, but also characterizing the respective
neural activity) should we adopt in order to characterize the neural cells?

Ø How reliable are the shape features and the classification?

∞ What classification methods should we use in order to classify the neural cells
with respect to the adopted features?

It is worth emphasizing that these questions are by no means restricted to the
problem of morphological characterization of neural cells. In fact, many di↵erent
practical situations in a wide diversity of fields face similar doubts. They are repre-
sentative of both supervised and unsupervised classification schemes, as will soon
become clear, and pattern recognition theory provides a set of mathematical tools
that help scientists in answering (at least partially) the above questions.

1.3 Computational Shape Analysis
There are many problems usually addressed in the context of shape analysis and
recognition by using computers, upon which this book is organized. In fact, com-
putational shape analysis involves several important tasks, from image acquisition
to shape classification. Figure 1.6 illustrates the shape processing tasks frequently
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10 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.6: Typical shape analysis tasks and their organization into three
main classes.

required for shape analysis, which can be broadly divided into three classes, namely
shape preprocessing, shape transformations and shape classification.

The following sections address each of these classes of shape analysis opera-
tion:

1.3.1 Shape Pre-Processing

The first step toward the computational morphological analysis of a given object in-
volves acquiring and storing an image of it and separating the object of interest from
other non-important image structures. Furthermore, digital images are usually cor-
rupted by noise and other undesirable e↵ects (such as occlusion and distortions),
therefore requiring the application of special procedures. The following subsec-
tions present a brief introduction to each of these problems, which are grouped
together into the shape pre-processing category. The issues of shape acquisition
and pre-processing are addressed in more detail in Chapter 3.
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CHAPTER 1. INTRODUCTION 11

Figure 1.7: Illustrative scheme of shape acquisition to be processed by a
computer.

Shape Acquisition

Shape acquisition involves acquiring an image (e.g., photograph) and digitizing it,
so that it can be properly processed by a computer (Figure 1.7).

The type of image acquisition framework and devices to be used depend heavily
on the application, e.g., a camera attached to a microscope can be used in histolog-
ical applications, while a scanner can be used to acquire images of leaves, such as
in the example in Section 1.2.1.

Shape Detection

One of the first steps generally required in shape analysis is to detect the shape,
which involves locating the object of interest in the image so that it can be subse-
quently treated. For instance, Figure 1.8 shows an image including several shapes:
in order to analyze them, it is necessary to locate each shape, which can have dif-
ferent visual properties (e.g., color and texture).

The most basic approach to shape detection is through image segmentation
(e.g., by thresholding). When the image can be properly segmented so that the ob-
ject of interest can be successfully isolated from other non-important image struc-
tures (including the background), then shape detection is a reasonably straightfor-
ward task. An interactive approach can also be adopted in a number of impor-
tant practical situations. For instance, the object of interest can be detected by
requesting a human operator to click inside the object of interest, which would be
followed by a region-growing algorithm (see Chapter 3) in such a way that the re-
sulting grown region corresponds to the detected shape. This procedure is usually
implemented in most o↵-the-shelf image processing software, as it might have al-
ready been tried by the reader, which is usually represented as a magic wand that
allows the selection of irregular image regions. However, there are many alterna-
tive approaches for object detection in digital images. For example, if the object of
interest can be generally represented by a template, template-matching techniques
could be applied in order to locate the object instances in the image. On the other
hand, if the problem to be solved involves shape analysis in video sequences, then
motion-based techniques can be used for detecting and locating the object in the im-
age. Nevertheless, it is worth emphasizing that image segmentation can frequently
become a di�cult problem, mainly if the image acquisition conditions (such as
illumination, camera position, focus, etc.) cannot be properly controlled.
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12 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.8: Shape detection involves locating the objects of interest in the
image. The shapes can present di↵erent visual properties, such
as color and texture.

Noise Filtering

Digital image processing systems generally have to cope with noisy images in
nearly all practical situations, and shape analysis is by no means an exception:
noisy shapes occur ordinarily, independently of the application (see Figure 1.9).

It is worth noting that, besides the perturbations inherent to digital images (con-
sequences of the spatial and intensity quantizations involved in acquiring digital
images), noise in shapes can also arise from the imaging operations that are typi-
cally applied in order to detect the shape of interest. Frequently the shape detection
process is preceded by a series of image processing procedures, such as diverse fil-
tering operations, data fusion and segmentation, which can introduce perturbations
at nearly every processing stage. Furthermore, shape quantization and sampling,
which are necessary for obtaining digital shapes, are usually a source of critical
noise. All these noisy alterations are generally reflected as small modifications on
the obtained shape, which can a↵ect subsequent shape analysis procedures. Con-
sequently, approaches to shape representation and description often attempt to be
robust to noise or to incorporate some noise filtering mechanism. For instance,
multiscale techniques such as curvature estimation (Chapter 7) adopt filtering as
an inherent means to reduce or to eliminate quantization and other types of noise.
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CHAPTER 1. INTRODUCTION 13

Figure 1.9: If noise is present in the image, proper noise filtering proce-
dures should be applied before and/or during shape analysis.

Noise filtering is discussed in Chapter 3 and related techniques, such as multiscale
curvature estimation, are discussed in Chapters 6 and 7.

Shape Operations

There are many important operations that can be applied to shapes. For instance, if
the problem to be solved involves comparing two or more shapes, then they should
be normalized so that the comparison makes sense (Figure 1.10).

Normalization processes usually involve parameters such as scale, rotation and
translation. Shape warping, registration and morphing are also examples of shape
operations that can be applied to normalization and comparison. Typically, such
operations are based on defining a mapping between a set of points (landmarks)
along two or more shapes, which allows the generation, by interpolating, of a se-
ries of intermediate shapes that would possibly be obtained while transforming
one of the shapes into the other. Shape manipulation/handling can also include
interactive edition (e.g., elimination of portions of the shape) and operations aid-
ing visualization, as well as operations involving more than one shape (e.g., shape
addition and intersection). The most important shape operations are discussed in
Chapter 4.
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14 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.10: Shape operations can be involved while normalizing some
visual properties, e.g., before comparing shapes. It is im-
portant to note that, in some applications, the di↵erences
in size are actually an important shape parameter, which
would make size normalization inadequate in such situations.
Similar comments apply to other visual properties, such as
orientation and translation normalization.

1.3.2 Shape Transformations
Once the shape of interest has been acquired and processed (for instance, noise has
been substantially reduced), a set of techniques can be applied in order to extract in-
formation from the shape, so that it can be analyzed. Such information is normally
extracted by applying suitable shape transformations. Such transformations are
mappings that allow both representation of the shape in a more appropriate manner
(with respect to a specific task) and extraction of measures that are used by clas-
sification schemes. The concept of shape transformation is covered in Chapter 4,
while Chapters 5, 6, and 7 present computational techniques for feature extraction.

Shape Evolution

It is often important to study the properties of a sequence of shapes corresponding
to an object that has evolved along a certain time period (an example is shown in
Figure 1.11).

For instance, it is important to establish the correspondences between di↵erent
points of the ventricular contour as the heart beats or to analyze development of
neurons and other cells as they grow. All these problems can be treated in terms of
shape transformations as shape evolution.
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CHAPTER 1. INTRODUCTION 15

Figure 1.11: Shape evolution involves analyzing an object that has modi-
fied its shape along a certain time period. This is often car-
ried out by observing a series of shapes that the object has
assumed during the period.

Shape Representation

Once the object of interest has been located in the image (through shape detection
and segmentation, see Section 1.3.1), its shape is understood as being formed by
the set of points found to belong to that object. In this sense, the first representation
of the object shape is the set of points identified in the original image. It is often
the case that such representation, though naturally produced by the shape detection
procedure, is not particularly useful, being even considered cumbersome for some
purposes because of the high number of data that is required (i.e., all the points of
the segmented shape have to be somehow stored). Therefore, the next problem to
be tackled is how to properly represent the shape, implying a suitable shape rep-
resentation scheme to be defined with basis on specific tasks. Such schemes may
or may not allow the reconstruction of the original shape. In fact, this criterion
seems to have been first suggested by [Pavlidis, 1977] with respect to information
preserving (allow the reconstruction of the original shape) and information non-
preserving techniques (do not allow the reconstruction of the original shape). It
is worth emphasizing that information preserving representations are particularly
important due to the fact that di↵erent shapes are mapped onto di↵erent represen-
tations, whereas nonpreserving techniques can produce equal representations for
di↵erent shapes (which is called a degenerated or non-inverting mapping, as dis-
cussed with respect to functions in Chapter 2). Such nonpreserving techniques are
nevertheless usually adopted as shape measures that are useful for shape characteri-
zation and classification, as discussed in Chapter 4. Indeed, both approaches, which
have their advantages and shortcomings, are frequently applied to shape analysis
problems. In addition, it should be observed that some techniques only allow partial
reconstruction of the shape.

A more fundamental criterion for characterizing shape representation techniques
involves their classification as boundary-based and region-based. Boundary-based
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16 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.12: Boundary-based (a) and region-based (b) shape representa-
tions.

Figure 1.13: Important di↵erence implied by the boundary-based (a) and
the region-based (b) shape representations.

(also known as contour-based) techniques represent the shape by its outline, while
region-based techniques treat the shape in terms of its respective 2D region (see
Figure 1.12).

By representing planar regions in terms of one-dimensional signals, contour-
based methods allow a simplified one-dimensional approach, while region-based
techniques involve 2D signals. This di↵erence frequently implies that contour-
based methods are less computationally expensive than region-based methods,
though exceptions occur from time to time. Another important di↵erence between
these two approaches can be better appreciated through the example in Figure 1.13.

In the contour-based approach, assuming that the contour is traversed counter-
clockwise, the distance between the points A and B along the contour, indicated
as d in Figure 1.13 (a), is larger than the distance in the region-based approach,
indicated as d in Figure 1.13 (b). Roughly speaking, if a contour-based local anal-
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CHAPTER 1. INTRODUCTION 17

ysis is applied to point A, then point B does not imply a strong influence over the
processing performed at A. The opposite situation is verified for the region-based
approach, i.e., the point B can significantly a↵ect processing done around A.

Shape Description or Characterization

Some of the most important problems involving shape analysis techniques require
extracting information about objects in the real world. For example, one might want
to investigate physical properties of biological entities by analyzing their shape,
such as when studying spatial coverage, a concept that is also related to shape
complexity. Such spatial coverage properties, particularly important in branching
structures, can be related to the capacity of an object to interact with its surround-
ing environment, such as the capacity of roots of trees to extract water and food
from the soil or of neural cells to interact with the extracellular medium, includ-
ing other cells. In situations where relevant shape information is to be extracted,
shape description or characterization techniques have to be applied (description
and characterization are used as synonyms in this sense). Moreover, additional and
equally important situations where shape description techniques are fundamental
arise in shape recognition and shape classification. It should be observed that fre-
quently some shape aspects are more important than others, depending on the task
to be solved by the shape analysis system. For instance, many object recognition
problems can be solved by first detecting some dominant points that usually occur
in the shape (e.g., corners in polygonal figures). Clearly, the type of feature that
should be detected depends on each specific problem as well as on the involved
shapes, though some features have achieved special importance and popularity in
shape analysis. For example, some of the most important aspects of a shape can be
detected by analyzing the curvature of the shape boundary, especially in terms of
corners and regions of constant curvature, such as circle segments (constant, non-
null curvature) or straight lines (constant, null curvature). Furthermore, some shape
features are also studied and usually considered as a consequence of biological facts
(e.g., psychophysical results indicate that corners play a particularly important role
in human shape analysis, see [Attneave, 1954]). To any extent, there are di↵er-
ent approaches for extracting information about shapes, which can be classified as
follows:

Shape measurements: One of the most common ways of describing shapes in-
volves defining and measuring specific characteristics such as area, perime-
ter, number of corners, number of holes, curvature-based measures, preferen-
tial orientation of contour points, and so on (see Figure 1.14). The underlying
idea of the description of a shape by a set of measures (i.e., numbers) is that
the obtained measures are su�cient to reasonably represent the relevant in-
formation about that shape.

Shape transforms (signal processing-based): Transform techniques are popular
in many di↵erent areas, from signal processing and telecommunications to
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18 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.14: Many important approaches to shape analysis are
based on measuring meaningful properties from the
shape.

Figure 1.15: Shape description by using its Fourier transform.
Observe that the complete Fourier transform also
includes phase information, in addition to the magni-
tude shown in this figure.

optics and numerical solution of partial di↵erential equations, also playing
an important role in shape analysis. A signal transform is a mathematical
tool that expresses the original signal in an alternative way, which is fre-
quently more suitable for a specific task than the original one. For instance,
the number two can be alternatively expressed in decimal Arabic (“2”) or in
Roman (“II”). While features can be obtained by measuring shape properties
directly in their 2D or 3D space, a powerful and widely adopted alternative
to such an approach consists in deriving features from transformed shapes.
A simple example of obtaining a shape descriptor by using a transform tech-
nique is to calculate its Fourier transform (Figure 1.15) and to select some
predefined coe�cients (e.g., “select the first 5 Fourier coe�cients”). There
are many di↵erent transforms that can be used, though Fourier is one of the
most popular. As a matter of fact, the Fourier transform is one of the most
powerful and versatile linear transforms. Some other examples of important
transforms are the wavelet, the Gabor and the Karhunen-Loève transform.
It should be observed that invertible transforms could also be understood
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CHAPTER 1. INTRODUCTION 19

Figure 1.16: Original shape contour (solid line) and a possible
representation by polygonal approximation (dashed
line).

as means for representation of shape. For instance, the original shape can be
fully recovered from its Fourier transform representation by using the inverse
Fourier transform (see Section 2.7).

Shape decomposition: The third class of shape description techniques presented
herein is based on decomposing the shape into simpler parts, which are some-
times called primitives, as typically done in the context of structural and syn-
tactical pattern recognition [Fu, 1982]. Since the meaning of “simpler parts”
can vary widely in terms of each specific application and types of shapes,
knowledge about the problem is usually decisive in this case. Nevertheless,
there are some approaches that are versatile enough to be generally consid-
ered, being suitable for the most diverse applications. For instance, one of
the most important problems in contour analysis involves fitting geometric
primitives to contour portions, and the so-called polygonal approximation
is an excellent example of this approach (Figure 1.16). In the polygonal
approximation problem, also known as piecewise linear approximation, the
original contour must be represented by a set of straight line segments, each
line segment representing a portion of the original contour. It is important
to note that such a representation can also be used to implement shape pro-
cessing such as noise filtering (local noisy perturbations occurring in con-
tour portions are eliminated when these portions are represented by line seg-
ments) and data compression (e.g., a digital straight contour segment involv-
ing hundreds of points can be almost exactly represented in terms of its two
extremities). Other examples of shape decompositions are those based on
circle segments and 2D polygonal regions, the latter being applied in region-
based techniques. Proceeding a step further, the syntactic approach to pattern
recognition problems associates abstract symbols to each geometric primi-
tive in such a way that each shape can be represented by a sequence of such
symbols. The subsequent shape recognition therefore involves parsing pro-
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20 SHAPE ANALYSIS AND CLASSIFICATION

cedures operating over such symbol sequences (or strings; see Chapter 9).

Shape description through data structures: Several problems can be solved by
representing aspects underlying the shape in terms of data structures. An
illustrative example is the problem of representation of neural dendrites by
the so-called dendrograms (typically binary trees), which suit several impor-
tant applications in neurosciences [Cesar-Jr. & Costa, 1999; Costa et al.,
2000] (see Figure 1.17). In addition to presenting a clear representation of

Figure 1.17: A neural cell is presented in (a) while a dendrogram of
one of its dendrites (that with terminations and branch
points indicated) is shown in (b).

the branching pattern, such hierarchical data structures can incorporate im-
portant additional shape measures such as size, width, local bending energy
and angles in a particularly compact way. As a matter of fact, dendrograms
have become important in neuroscience because they can be easily stored
and handled by computer programs, thus allowing the standardization re-
quired for exchanging data among di↵erent laboratories, scientists and other
professionals. It should be borne in mind that dendrograms are not only im-
portant in neuroscience, but also provide valuable descriptions of virtually
any other branched structure, such as rivers, trees, vascular systems, etc.

Shape Visualization

Scientific visualization techniques are mainly concerned with the suitable presenta-
tion of large amounts of data to humans. As such, this area is particularly important
both for supporting the development of shape analysis tools and as an aid for shape
inspection by human operators. In the former situation, shape visualization can be
used to e↵ectively present the obtained results (e.g., features to be tested, interme-
diate results, filtered images), which can involve the superposition of such results
over the original shapes or relating the several obtained data, in order to provide in-
sights about the assets and shortcomings of the considered techniques. On the other
hand, shape visualization is also important to aid human experts to solve specific
problems, e.g., to help a physician decide how a broken bone should be treated.
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CHAPTER 1. INTRODUCTION 21

Figure 1.18: An example of shape compression: the shape in (a) can be
represented by its outline (b), which can then be represented
by its corners (c). Therefore, the shape in (a), which could
require hundreds or thousands of points in order to be prop-
erly represented in a discrete space, can now be conveniently
represented by only the 4 points shown in (c).

Shape Compression

Digital image applications generally involve processing a large amount of data,
which can become prohibitive depending on the application, especially when real-
time processing is required. Data compression is an issue often present in imaging
applications, including shape analysis problems. For instance, applications that de-
pend on large image databases (e.g., fingerprint recognition) usually require storing
and computing very large sets of images. Some shape analysis approaches natu-
rally o↵er good data compression solutions, e.g., contour-based approaches, which
represent 2D shapes by 1D structures (Figure 1.18). Very high compression rates
can be obtained by further compressing such contours. In fact, there are some ap-
proaches for image and video coding (for data compression) which make extensive
use of contour shape representations (e.g., [Buhan et al., 1997]).

1.3.3 Shape Classification
Finally, after shape processing, representation and characterization (often involving
feature extraction), classification algorithms are usually applied in order to assign
each considered shape to a category. There are two particularly important aspects
related to shape classification. The first is the problem of, given an input shape,
deciding whether it belongs to some specific predefined class. This can also be
thought of as a shape recognition problem, usually known as supervised classifica-
tion. The second equally important aspect of shape classification is how to define or
identify the involved classes in a population of previously unclassified shapes. This
represents a di�cult task, and expert knowledge acquisition problems are usually
involved. The latter situation is known as unsupervised classification or cluster-
ing. Both supervised and unsupervised classification involve comparing shapes,
i.e., deciding how similar two shapes are, which is done, in many situations, by
matching specially important corresponding points of them (typically landmarks or
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22 SHAPE ANALYSIS AND CLASSIFICATION

Figure 1.19: In an unsupervised shape classification problem, the algo-
rithm should discover shape classes from a given set of un-
classified shapes.

saliences). These four topics are outlined in the following sections. General shape
classification algorithms are covered in Chapter 8.

Unsupervised Shape Classification

As further explained in Chapter 8, classifying a shape can be understood as the
problem of assigning some class to it. Nevertheless, in many cases defining the
shape classes is itself a di�cult problem. Therefore, it is important to devise meth-
ods that attempt to find shape classes based only on the unclassified pattern data,
an approach that is commonly known as unsupervised learning. The identification
of data clusters in the data sets is an ordinary way of defining shape classes, which
is carried out by clustering algorithms. For instance, for a given set of geometri-
cal shapes, such as those shown in Figure 1.19, the expected output of a clustering
algorithm would be the three sets indicated by the dashed lines in that figure.

Supervised Shape Classification

When the shape classes are predefined, or examples are available for each class, it is
often desirable to create algorithms that take a shape as input and assign it to one of
the classes, i.e., that it recognizes the input shape (see Figure 1.20). For instance, an
important problem in medical imaging involves the recognition of mammographic
calcifications in order to verify the presence of tumors, the shapes of which are
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CHAPTER 1. INTRODUCTION 23

Figure 1.20: Supervised shape classification: given a set of shape classes
A, B and C, and an unknown shape, to which class does the
unknown shape belong?

related to the tumors being malignant or not. Observe that the terms shape recog-
nition and supervised shape classification are often used interchangeably.

Shape Similarity

Shape similarity refers to establishing criteria that allow objective measures of how
much two shapes are similar (or di↵erent) to each other, including issues such as
when a given shape A can be considered more similar to another shape B than to
C. An example is shown in Figure 1.21. It is worth observing that shape similarity
criteria, which are fundamental to classifying shapes, are generally dependent on
each specific problem. For instance, in a situation where size is an important pa-
rameter, two shapes with similar areas can be more similar to each other than two
shapes with significantly di↵erent areas. Clearly, the shape features adopted for
their characterization play a central role with respect to defining how similar two
shapes are. Shape similarity is particularly important when trying to match two or
more shapes.

Shape Matching

Shape matching is the process through which two or more shapes are associated,
generally in a point-by-point fashion. There are many di↵erent applications for
such techniques. For instance, images of the same region of the human body can
be obtained using di↵erent acquisition modalities, such as tomography and mag-
netic resonance, and an important task in such situations is to register or align
each image, in order to create a correspondence map between the several repre-
sentations (see Figure 1.22). This task is a particular example of a more general
problem known as image registration. One approach that can solve this problem

© 2009 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (U
SP

) (
C

R
U

ES
P)

], 
[R

ob
er

to
 C

es
ar

] a
t 0

9:
34

 0
4 

A
ug

us
t 2

01
6 



i
i

“shapeanalysis” — 2009/2/26 — 15:55 — page 24 — #50 i
i

i
i

i
i

24

Figure 1.21: Shape similarity: which shape is more similar? How can
similarity be objectively measured?

Figure 1.22: Shape matching can involve finding the correct correspond-
ing points between a given shape A and a target shape B.
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CHAPTER 1. INTRODUCTION 25

involves the detection of instances of homologous structures in both images. In
addition, shape matching is important to di↵erent problems in data fusion and 3D
reconstruction. In the former application, information about the same object is
obtained by using di↵erent sensors, and the respective representations have to be
merged. On the other hand, the latter involves establishing a correspondence be-
tween two-dimensional shapes obtained as slices of a three-dimensional structure:
this correspondence allows reconstructing an approximation of the original 3D ob-
ject. The reader interested in sensor fusion, image registration and shape matching
is referred to [Bloch & Maître, 1997; Burr, 1981; Davis, 1979; Milios, 1989; Viola
& Wells, 1997].

1.4 Additional Material
The book now includes a special box section called Additional material, which
includes links to useful online material. In particular, the authors keep some open-
source software projects online which are directly related to the theory and methods
introduced in the book. The reader is invited to visit the projects’ homepages,
use the software and help to develop it in a open-source collaboration. The main
projects, which are also referred in appropriated places in the book, are listed as an
example in the box below.

Additional resources: Slides, videos, software

• Interactive image segmentation: http://segmentacao.incubadora.fapesp.
br/portal

• Vessel segmentation: http://retina.incubadora.fapesp.br/portal

• Dimensionality reduction: http://dimreduction.incubadora.fapesp.br/
portal

• Shape analysis: http://code.google.com/p/imagerecognitionsystem/

Also, slides to help in courses based on the book are now available at the book
homepage: http://www.ime.usp.br/~cesar/shape/
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