Lista 12 - Autovalores, Autovetores e Diagonalização

Exercício 1. Encontrar os autovalores e autovetores de $T \in \mathcal{L}(V)$ nos seguintes casos:

- (a) $V = \mathbb{R}^2$, $T: V \to V$, dada por T(x, y) = (x + y, x y), para $(x, y) \in \mathbb{R}^2$.
- **(b)** $V = \mathbb{R}^3$, T(1,0,0) = (2,0,0), T(0,1,0) = (2,1,2) e T(0,0,1) = (3,2,1).
- (c) $V = \mathbb{R}^4 \in [T]_{\mathcal{B}} = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$, onde \mathcal{B} é base canônica de \mathbb{R}^4 .

Exercício 2.

- (a) Seja $A \in M_n(\mathbb{R})$ uma matriz triangular (superior ou inferior), isto é, $A = (a_{ij})$, onde $a_{ij} = 0$, sempre que i > j (ou sempre que i < j). Qual o polinômio característico associado a matriz A?
- (b) Sejam $A, B \in M_n(\mathbb{R})$ matrizes triangulares que tenham a mesma diagonal principal. Existe alguma relação entre seus polinômios característicos? Qual?
- (c) Mostre que se $\lambda \in \mathbb{C}$ é autovalor de $T \in \mathcal{L}(V)$, então λ^n é um autovalor do operador linear T^n .
- (d) Mostre que se p = p(t) é um polinômio e $\lambda \in \mathbb{C}$ é autovalor de $T \in \mathcal{L}(V)$, então $p(\lambda)$ será um autovalor do operador linear p(T), onde

$$p(T) = a_0 \cdot I + a_1 \cdot T + \dots + a_n \cdot T^n$$
, para $T \in \mathcal{L}(V)$,

onde $I: V \to V$ é operador identidade e $p(t) = a_o + a_1 t + \cdots + a_n t^n$, para $t \in \mathbb{R}$.

Exercício 3. Achar os autovalores e autovetores do operador linear T de \mathbb{R}^2 , de modo que:

- (a) T(x,y) = (-x, -y), para $(x,y) \in \mathbb{R}^2$.
- **(b)** T(1,0) = (0,-1) e T(0,1) = (1,0).

Exercício 4. Achar os autovalores e autovetores do operador linear T de \mathbb{R}^3 , de modo que: T(1,0,0) = (0,0,0), T(0,1,0) = (0,0,0) e T(0,0,1) = (5,-1,2).

Exercício 5. Seja $[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ a matriz de um operador linear T de \mathbb{R}^2 , em relação à base canônica \mathcal{B} . Encontre todos os autovalores do operador linear T. Existem, neste caso, dois autovetores L.I.?

Exercício 6. Considere o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, dado por

$$T(x,y) = (-y,x), \text{ para } (x,y) \in \mathbb{R}^2.$$

Mostre que operador linear T não admite autovetores (isto é, autovetores no espaço vetorial real $(\mathbb{R}^2, +, \cdot)$).

Exercício 7. Considere o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, cuja matriz em relação à base canônica é dada por $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$.

- (a) Calcule os autovetores e os respectivos subespaços próprios (auto-espaços) associados ao operador linear T.
- (b) Existe uma base $\mathcal B$ do espaço vetorial real $(\mathbb R^3\,,+\,,\cdot)$ de modo que a matriz $[T]_{\mathcal B}$ seja diagonal?

Exercício 8. Suponha que $T: \mathscr{P}_2(\mathbb{R}) \to \mathscr{P}_2(\mathbb{R})$ é o operador linear dado por:

$$T(p) = q$$
, para $p \in \mathscr{P}_2(\mathbb{R})$,

onde

$$p(t) = a_o + a_1 t + a_2 t^2$$
, e $q(t) = (5 a_o + 6 a_1 + 2 a_2) - (a_1 + 8 a_2) t + (a_o - 2 a_2) t^2$, para $t \in \mathbb{R}$.

- (a) Achar todos os autovalores do operador linear T.
- (b) Achar os respectivos autovetores do operador linear T.
- (c) Determinar a dimensão e uma base de cada um dos auto-espaços associados ao operador linear T.
- (d) O operador T é diagonalizável? Justifique sua resposta.

Exercício 9. Seja $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ o operador linear dado por:

$$T\left(\begin{array}{cc} a & b \\ c & b \end{array}\right) = \left(\begin{array}{cc} 2\,c & a+c \\ b-2\,c & d \end{array}\right)\,, \quad \text{para} \quad \left(\begin{array}{cc} a & b \\ c & b \end{array}\right) \in M_2(\mathbb{R})\,.$$

- (a) Achar todos os autovalores e os autovetores associados do operador linear T.
- (b) T é diagonalizável? Justifique sua resposta.

Exercício 10. Definimos o $\underline{\text{traço}}$ de uma matriz quadrada A como sendo a soma dos elementos da sua diagonal principal.

Mostre que a equação característica associada a uma matriz 2×2 é dada por

$$\lambda^2 - \operatorname{tr}(A) \lambda + \det(A) = 0,$$

onde tr(A) denota o traço da matriz $A \in M_2(\mathbb{R})$.

Exercício 11. Seja $A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$ a matriz de um operador linear $T : \mathbb{R}^3 \to \mathbb{R}^3$ em relação à base canônica. Pergunta-se: o operador linear T é diagonalizável?

Exercício 12. A matriz $A = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{pmatrix}$ é diagonalizável? Caso afirmativo encontre a

matriz inversível M que realiza à diagonalização.

Exercício 13. A matriz $A = \begin{pmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix}$ é diagonalizável? Caso afirmativo encontre a matriz inversível M que realiza a diagonalização.

Exercício 14. Determinar uma matriz inversível $M \in M_2(\mathbb{R})$, se existir, de modo que a matriz $M^{-1}AM$ seja uma matriz diagonal, em cada um dos seguintes casos:

(a)
$$A = \begin{pmatrix} 2 & 4 \\ 3 & 13 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 3 & -2 \\ 2 & 1 \end{pmatrix}$.

Exercício 15. Verificar, em cada um dos itens abaixo, se o operador $T \in \mathcal{L}(\mathbb{R}^3)$, dado pela sua matriz em relação à base canônica \mathcal{B} , é diagonalizável.

(a)
$$[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$
 (b) $[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ m & 2 & 0 \\ n & 0 & 2 \end{pmatrix}$, para quaisquer $m, n \in \mathbb{R}$.

Exercício 16. Verificar em cada um dos itens abaixo se o operador $T \in \mathcal{L}(\mathbb{R}^4)$, dado pela sua matriz com relação à base canônica \mathcal{B} , é diagonalizável.

Exercício 17. Mostre que a matriz $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ não é semelhante a uma matriz diagonal se $a \neq 0$.

Exercício 18. Encontre uma matriz diagonal semelhante a matriz $\begin{pmatrix} 3 & -1 & -1 \\ -6 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$.