
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277670164

History of Logic Programming

Chapter · January 2014

CITATIONS

10
READS

1,452

1 author:

Some of the authors of this publication are also working on these related projects:

Logical English View project

Non-modal deontic logic View project

Robert Kowalski

Imperial College London

157 PUBLICATIONS 14,925 CITATIONS

SEE PROFILE

All content following this page was uploaded by Robert Kowalski on 04 June 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/277670164_History_of_Logic_Programming?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/277670164_History_of_Logic_Programming?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Logical-English?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Non-modal-deontic-logic?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Kowalski-2?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Kowalski-2?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial-College-London?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Kowalski-2?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Kowalski-2?enrichId=rgreq-90369e1084f5eb4c0dc09ff213e316d4-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY3MDE2NDtBUzoyMzY1ODc3NzQ2NDAxMjhAMTQzMzQxODMyOTQzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

LOGIC PROGRAMMING

Robert Kowalski

1 INTRODUCTION

The driving force behind logic programming is the idea that a single formalism
suffices for both logic and computation, and that logic subsumes computation.
But logic, as this series of volumes proves, is a broad church, with many denomi-
nations and communities, coexisting in varying degrees of harmony. Computing is,
similarly, made up of many competing approaches and divided into largely disjoint
areas, such as programming, databases, and artificial intelligence.

On the surface, it might seem that both logic and computing suffer from a similar
lack of cohesion. But logic is in better shape, with well-understood relationships
between different formalisms. For example, first-order logic extends propositional
logic, higher-order logic extends first-order logic, and modal logic extends classical
logic. In contrast, in Computing, there is hardly any relationship between, for
example, Turing machines as a model of computation and relational algebra as a
model of database queries. Logic programming aims to remedy this deficiency and
to unify different areas of computing by exploiting the greater generality of logic.
It does so by building upon and extending one of the simplest, yet most powerful
logics imaginable, namely the logic of Horn clauses.

In this paper, which extends a shorter history of logic programming (LP) in the
1970s [Kowalski, 2013], I present a personal view of the history of LP, focusing
on logical, rather than on technological issues. I assume that the reader has some
background in logic, but not necessarily in LP. As a consequence, this paper might
also serve a secondary function, as a survey of some of the main developments in
the logic of LP.

Inevitably, a history of this restricted length has to omit a number of important
topics. In this case, the topics omitted include meta LP, high-order LP, concurrent
LP, disjunctive LP and complexity. Other histories and surveys that cover some
of these topics and give other perspectives include [Apt and Bol, 1994; Brewka et
al., 2011; Bry et al. 2007; Ceri et al., 1990; Cohen, 1988; Colmerauer and Roussel,
1996; Costantini, 2002; Dantsin et al., 1997; Eiter et al., 2009; Elcock, 1990; van
Emden, 2006; Hewitt, 2009; Minker, 1996; Ramakrishnan and Ullman, 1993].

Perhaps more significantly and more regrettably, in omitting coverage of techno-
logical issues, I may be giving a misleading impression of their significance. With-
out Colmerauer’s practical insights [Colmerauer et al., 1973], Boyer and Moore’s

2 Robert Kowalski

[1972] structure sharing implementation of resolution [Robinson, 1965a], and War-
ren’s abstract machine and Prolog compiler [Warren, 1978, 1983; Warren et al.,
1977], logic programming would have had far less impact in the field of Computing,
and this history would not be worth writing.

1.1 The Horn clause basis of logic programming

Horn clauses are named after the logician Alfred Horn, who studied some of their
mathematical properties. A Horn clause logic program is a set of sentences (or
clauses) each of which can be written in the form:

A0 ← A1 ∧ . . . ∧An where n ≥ 0.

Each Ai is an atomic formula of the form p(t1, ..., tm), where p is a predicate
symbol and the ti are terms. Each term is either a constant symbol, variable, or
composite term of the form f(t1, ..., tm), where f is a function symbol and the ti
are terms. Every variable occurring in a clause is universally quantified, and its
scope is the clause in which the variable occurs. The backward arrow← is read as
“if”, and ∧ as “and”. The atom A0 is called the conclusion (or head) of the clause,
and the conjunction A1 ∧ ... ∧ An is the body of the clause. The atoms A1, ..., An

in the body are called conditions. If n = 0, then the body is equivalent to true,
and the clause A0 ← true is abbreviated to A0 and is called a fact. Otherwise if
n ̸= 0, the clause is called a rule.

It is also useful to allow the head A0 of a clause to be false, in which case, the
clause is abbreviated to ← A1 ∧ ... ∧ An and is called a goal clause. Intuitively, a
goal clause can be understood as denying that the goal A1∧ ...∧An has a solution,
thereby issuing a challenge to refute the denial by finding a solution.

Predicate symbols represent the relations that are defined (or computed) by a
program, and functions are treated as a special case of relations, as in relational
databases. Thus the mother function, exemplified by mother(john) = mary, is
represented by a fact such as mother(john, mary). The definition of maternal
grandmother, which in functional notion is written as an equation:

maternal-grandmother(X) = mother(mother(X))

is written as a rule in relational notation:

maternal-grandmother(X)← mother(X,Z) ∧mother(Z, Y)1

Although all variables in a rule are universally quantified, it is often more natural
to read variables in the conditions that are not in the conclusion as existentially
quantified with the body of the rule as their scope. For example, the following two
sentences are equivalent:

1In this paper, I use the Prolog notation for clauses: Predicate symbols, function symbols and
constants start with a lower case letter, and variables start with an upper case letter. Numbers
can be treated as constants.

Logic Programming 3

∀XY Z [maternal-grandmother(X)← mother(X,Z) ∧mother(Z, Y)]
∀XY [maternal-grandmother(X)← ∃Z [mother(X,Z) ∧mother(Z, Y)]]

Function symbols are not used for function definitions, but are used to construct
composite data structures. For example, the composite term cons(s, t) can be
used to construct a list with first element s followed by the list t. Thus the term
cons(john, cons(mary, nil)) represents the list [john,mary], where nil represents
the empty list.

Terms can contain variables, and logic programs can compute input-output
relations containing variables. However, for the semantics, it is convenient to
regard terms that do not contain variables, called ground terms, as the basic data
structures of logic programs. Similarly, a clause or other expression is said to be
ground, if it does not contain any variables.

Logic programs that do not contain function symbols are also called Datalog
programs. Datalog is more expressive than relational databases, but is also de-
cidable. Horn clause programs with function symbols have the expressive power
of Turing machines, and consequently are undecidable. Horn clauses are sufficient

Figure 1. An and-or tree and corresponding propositional Horn clause program.

for many applications in artificial intelligence. For example, and-or trees can be
represented by ground Horn clauses.2 See figure 1.

2And-or trees were employed in many early artificial intelligence programs, including the
geometry theorem proving machine of Gelernter [1963]. Search strategies for and-or trees were
investigated by Nils Nilsson [1968], and in a theorem-proving context by Kowalski [1970].

4 Robert Kowalski

1.2 Logic programs with negation

Although Horn clauses are the underlying basis of LP and are theoretically suf-
ficient for all programming and database applications, they are not adequate for
artificial intelligence, most importantly because they fail to capture non-monotonic
reasoning. For non-monotonic reasoning, it is necessary to extend Horn clauses to
clauses of the form:

A0 ← A1 ∧ ... ∧An ∧ not B1 ∧ ... ∧ not Bm where n ≥ 0 and m ≥ 0.

Each Ai and Bi is an atomic formula, and “not” is read as not. Atomic formulas
and their negations are also called literals. Here the Ai are positive literals, and
the not Bi are negative literals. Sets of clauses in this form are called normal logic
programs, or just logic programs for short.

Normal logic programs, with appropriate semantics for negation, are sufficient
to solve the frame problem in artificial intelligence. Here is a solution using an LP
representation of the situation calculus [McCarthy and Hayes, 1969]:

holds(F, do(A,S))← poss(A,S) ∧ initiates(A,F, S)
holds(F, do(A,S))← poss(A,S) ∧ holds(F, S) ∧ not terminates(A,F, S)

Here holds(F, S) expresses that a fact F (also called a fluent) holds in a state (or
situation) S; poss(A,S) that the action A is possible in state S; initiates(A,F, S)
that the action A performed in state S initiates F in the resulting state do(A,S);
and terminates(A,F, S) that A terminates F . Together, the two clauses assert
that a fact holds in a state either if it is initiated by an action or if it held in the
previous state and was not terminated by an action.

This representation of the situation calculus also illustrates meta-logic program-
ming, because the predicates holds, poss, initiates and terminates can be under-
stood as meta-predicates, where the variable F ranges over names of sentences.
Alternatively, they can be interpreted as second-order predicates, where F ranges
over first-order predicates.

1.3 Logic programming issues

In this article, I will discuss the development of LP and its extensions, their se-
mantics, and their proof theories. We will see that lurking beneath the deceptively
simple syntax of logic programs are profound issues concerning semantics, proof
theory and knowledge representation.

For example, what does it mean for a logic program P to solve a goal G? Does
it mean that P logically implies G, in the sense that G is true in all models of
P? Does it mean that some larger theory than P , which includes assumptions
implicit in P , logically implies G? Or does it mean that G is true in some natural,
intended model of P?

And how should G be solved? Top-down by using the clauses in P as goal-
reduction procedures, to reduce goals that match the conclusions of clauses to

Logic Programming 5

sub-goals that correspond to their conditions? Or bottom-up to generate new
conclusions from conditions, until the generated conclusions include all the infor-
mation needed to solve the goal G in one step?

We will see that these two issues — what it means to solve a goal G, and
whether to solve G top-down or bottom-up — are related. In particular, bottom-
up reasoning can be interpreted as generating a model in which G is true.

These issues are hard enough for Horn clause programs. But they are much
harder for logic programs with negative conditions. In some semantics, a negative
condition not B has the same meaning as classical negation ¬B, and solving a
negative goal not B is interpreted as reasoning with ¬B. But in most proof
theories, not B is interpreted as some form of negation as failure:

not B holds if all attempts to show B fail.

In addition to these purely logical problems concerning semantics and proof theory,
LP has been plagued by controversies concerning declarative versus procedural
representations. Declarative representations are naturally supported by bottom-
up model generation. But both declarative and procedural representations can
be supported by top-down execution. For many advocates of purely declarative
representations, such exploitation of procedural representations undermines the
logic programming ideal.

These issues of semantics, proof theory and knowledge representation have been
a recurring theme in the history of LP, and they continue to be relevant today.
They are reflected, in particular, by the growing divergence between Prolog-style
systems that employ top-down execution and answer set programming and Datalog
systems that employ bottom-up model generation.

2 THE HISTORICAL BACKGROUND

The discovery of the top-down method for executing logic programs occurred in
the summer of 1972, as the result of my collaboration with Alain Colmerauer in
Marseille. Colmerauer was developing natural language question-answering sys-
tems, and I was developing resolution theorem-provers, and trying to reconcile
them with procedural representations of knowledge in artificial intelligence.

2.1 Resolution

Resolution was developed by John Alan Robinson [1965a] as a technique for au-
tomated theorem-proving, with a view to mechanising mathematical proofs. It
consists of a single inference rule for proving that a set of assumptions P logically
implies a theorem G. The resolution method is a refutation procedure, which does
so by reductio ad absurdum, converting P and the negation ¬G of the theorem
into a set of clauses and deriving the empty clause, which represents falsity.

Clauses are disjunctions of literals. In Robinson’s original definition, clauses
were represented as sets. In the propositional case:

6 Robert Kowalski

given two clauses {A} ∪ F and {¬A} ∪G
the resolvent is the clause F ∪ G.

The two clauses {A}∪F and {¬A}∪G are said to be the parents of the resolvent,
and the literals A and ¬A are said to be the literals resolved upon. If F and G are
both empty, then the resolvent of {A} and {¬A} is the empty clause, representing
a contradiction or falsity.

In the first-order case, in which all variables are universally quantified with
scope the clause in which they occur, it is necessary to unify sets of literals to
make them complementary:

given two clauses K ∪ F and L ∪G
the resolvent is the clause Fθ ∪ Gθ.

where θ is a most general substitution of terms for variables that unifies the atoms
in K and L, in the sense that Kθ = {A} and Lθ = {¬A}. It is an important
property of resolution, which greatly contributes to its efficiency, that if there is
any substitution that unifies K and L, then there is a most general such unifying
substitution, which is unique up to renaming of variables.

The set representation of clauses (and sets of clauses) builds in the inference
rules of commutativity, associativity and idempotency of disjunction (and con-
junction). The resolution rule itself generalises modus ponens, modus tollens, dis-
junctive syllogism, and many other separate inference rules of classical logic. The
use of the most general unifier, moreover, subsumes in one operation, the infinitely
many inferences of the form “derive P (t) from ∀XP (X)” that are possible with
the inference rule of universal instantiation. Other inference rules are eliminated
(or used) in the conversion of sentences of standard first-order logic into clausal
form.

Set notation for clauses is not user-friendly. It is more common to write clauses
{A1, . . . , An,¬B1, . . . ,¬Bm} as disjunctions A1∨ . . .∨An∨¬B1∨ . . .∨¬Bm. How-
ever, sets of clauses, representing conjunctions of clauses, are commonly written
simply as sets. Clauses can also be represented as conditionals in the form:

A1 ∨ . . . ∨An ← B1 ∧ . . . ∧Bm.

where ← is material implication → (or ⊃) written backwards.
The discovery of resolution revolutionised research on automated theorem prov-

ing, as many researchers turned their hands towards developing refinements of the
resolution rule. It also inspired other applications of logic in artificial intelligence,
most notably to the development of question-answering systems, which represent
data or knowledge in logical form, and query that knowledge using logical in-
ference. One of the most successful and most influential such system was QA3,
developed by Cordell Green [1969].

In QA3, given a knowledge base and goal to be solved, both expressed in
clausal form, an extra literal answer(X) is added to the clause or clauses rep-
resenting the negation of the goal, where the variables X represent some value

Logic Programming 7

of interest in the goal. For example, to find the capital of the usa, the goal
∃Xcapital(X,usa) is negated and the answer literal is added, turning it into the
clause ¬capital(X,usa)∨answer(X). The goal is solved by deriving a clause con-
sisting only of answer literals. The substitutions of terms for variables used in the
derivation determine values for the variables X. In this example, if the knowledge
base contains the clause capital(washington, usa), the answer answer(washington)
is obtained in one resolution step.

Green also showed that resolution has many other problem-solving applications,
including robot plan formation. Moreover, he showed how resolution could be
used to automatically generate a program written in a conventional programming
language, such as LISP, from a specification of its input-output relation written in
the clausal form of logic. As he put it:

“In general, our approach to using a theorem prover to solve program-
ming problems in LISP requires that we give the theorem prover two
sets of initial axioms:

1. Axioms defining the functions and constructs of the subset of LISP
to be used

2. Axioms defining an input-output relation such as the relation
R(x, y), which is to be true if and only if x is any input of the ap-
propriate form for some LISP program and y is the corresponding
output to be produced by such a program.”

Green also seems to have anticipated the possibility of dispensing with (1) and
using only the representation (2) of the relation R(x, y), writing:

“The theorem prover may be considered an ‘interpreter’ for a high-level
assertional or declarative language — logic. As is the case with most
high-level programming languages the user may be somewhat distant
from the efficiency of ‘logic’ programs unless he knows something about
the strategies of the system.”

“I believe that in some problem solving applications the ‘high-level
language’ of logic along with a theorem-proving program can be a
quick programming method for testing ideas.”

However, he does not seem to have pursued these ideas much further. Moreover,
there was an additional problem, namely that the resolution strategies of that time
behaved unintuitively and were very redundant and inefficient. For example, given
a clause of the form L1 ∨ . . . ∨ Ln, and n clauses of the form ¬Li ∨ Ci, resolution
would derive the same clause C1 ∨ . . . ∨ Cn redundantly in n! different ways.

2.2 Procedural representations of knowledge

Green’s ideas fired the enthusiasm of researchers working in contact with him at
Stanford and Edinburgh, but they also attracted fire from MIT, where researchers

8 Robert Kowalski

were advocating procedural representations of knowledge. Terry Winograd’s PhD
thesis gave the most compelling and most influential voice to this opposition.
Winograd [1971] argued (page 232):

“Our heads don’t contain neat sets of logical axioms from which we
can deduce everything through a ‘proof procedure’. Instead we have a
large set of heuristics and procedures for solving problems at different
levels of generality.”

He quoted (pages 232-3) Green’s own admission of some of the difficulties:

“It might be possible to add strategy information to a predicate calcu-
lus theorem prover, but with current systems such as QA3, ‘To change
strategies in the current version, the user must know about set-of-
support and other program parameters such as level bound and term
depth. To radically change the strategy, the user presently has to know
the LISP language and must be able to modify certain strategy sections
of the program.’ (<Green 1969>p. 236).”3

Winograd’s procedural alternative to purely “uniform” logical representations was
based on Carl Hewitt’s language Planner. Winograd [1971] describes Planner in
the following terms (page 238):

“The language is designed so that if we want, we can write theorems
in a form which is almost identical to the predicate calculus, so we
have the benefits of a uniform system. On the other hand, we have the
capability to add as much subject-dependent knowledge as we want,
telling theorems about other theorems and proof procedures. The sys-
tem has an automatic goal-tree backup system, so that even when we
are specifying a particular order in which to do things, we may not
know how the system will go about doing them. It will be able to
follow our suggestions and try many different theorems to establish a
goal, backing up and trying another automatically if one of them leads
to a failure (see section 3.3).”

In contrast (page 215):

“Most ‘theorem-proving’ systems do not have any way to include this
additional intelligence. Instead, they are limited to a kind of ‘working
in the dark’. A uniform proof procedure gropes its way through the
collection of theorems and assertions, according to some general proce-
dure which does not depend on the subject matter. It tries to combine
facts which might be relevant, working from the bottom-up.”

3We will see later that the set-of-support strategy was critical, because it allowed QA3 to
incorporate a form of backward reasoning from the theorem to be proved.

Logic Programming 9

Winograd’s PhD thesis presented a natural language understanding system that
was a great advance at the time, and its advocacy of Planner was enormously
influential. Even Stanford and Edinburgh were affected by these ideas.

Pat Hayes and I had been working in Edinburgh on a book [Hayes and Kowal-
ski, 1971] about resolution theorem-proving, when he returned from a second visit
to Stanford (after the first visit, during which he and John McCarthy wrote the
famous situation calculus paper [McCarthy and Hayes, 1968]). He was greatly im-
pressed by Planner, and wanted to rewrite the book to take Planner into account.
I was not enthusiastic, and we spent many hours discussing and arguing about
the relationship between Planner and resolution theorem proving. Eventually, we
abandoned the book, unable to agree.

2.3 Resolution, part two

At the time that QA3 and Planner were being developed, resolution was not
well understood. In particular, it was not understood that a proof procedure, in
general, is composed of an inference system that defines the space of all proofs and
a search strategy that explores the proof space looking for a solution of a goal. We
can represent this combination as an equation:

proof procedure = proof space + search strategy

A typical proof space has the structure of an and-or tree turned upside down.
Typical search strategies include breadth-first search, depth-first search and some
form of best-first or heuristic search.

In the case of the resolution systems at the time, the proof spaces were horren-
dously redundant, and most search strategies used breadth-first search. Attempts
to improve efficiency focussed on restricting (or refining) the resolution rule with-
out losing completeness, to reduce the size of the proof space. The best known
refinements were hyper-resolution and set of support.

Hyper-resolution [Robinson, 1965b] is a generalised form of bottom-up (or for-
ward) reasoning. In the propositional case, given an input clause:

D0 ∨ ¬B1 ∨ . . . ∨ ¬Bm

and m input or derived positive clauses:

B1 ∨D1, . . . , Bm ∨Dm

where each Bi is an atom and each Di is a disjunction of atoms, hyper-resolution
derives the positive clause:

D0 ∨D1 ∨ . . . ∨Dm.

Bottom-up reasoning with Horn clauses is the special case in which D0 is a single
atom and each other Di is an empty disjunction, equivalent to false. In this special

10 Robert Kowalski

case, rewriting disjunctions as conditionals, hyper-resolution derives B0 from the
input clause:

B0 ← B1 ∧ . . . ∧Bm

and the input or derived facts, B1, . . . , Bm.
The problem with hyper-resolution, as Winograd observed, is that it derives

new clauses from the input clauses, without paying attention to the problem to
be solved. It is “uniform” in the sense that, given a theorem to be proved, it
uniformly performs the same inferences bottom-up from the axioms, ignoring the
theorem until it generates it, as if by accident.

In contrast with hyper-resolution, the set of support strategy [Wos et al., 1965]
focuses on a subset of clauses that are relevant to the problem at hand:

A subset S′ of an input set S of clauses is a set of support for S iff
S − S′ is satisfiable. The set of support strategy restricts resolution
so that at least one parent clause belongs to the set of support or is
derived by the set of support restriction.

If the satisfiable set of clauses S − S′ represents a set of axioms, and the set of
support S′ represents the negation of a theorem, then the set of support strategy
implements an approximation of top-down reasoning by reductio ad absurdum. It
also ensures that any input clauses (or axioms) used in a derivation are relevant
to the theorem, in the spirit of relevance logics [Anderson and Belnap, 1962].4

The set of support strategy only approximates top-down reasoning. A better ap-
proximation is obtained by linear resolution, which was discovered independently
by Loveland [1970], Luckham [1970] and Zamov and Sharonov [1969]. Linear res-
olution addresses the problem of relevance by focusing on a top clause C0, which
could represent an initial goal:

Let S be a set of clauses. A linear derivation of a clause Cn from a top
clause C0 ∈ S is a sequence of clauses C0, ..., Cn such that every clause
Ci+1 is a resolvent of Ci with some input clause in S or with some
ancestor clause Cj where j < i. (It was later realised that ancestor
resolution is unnecessary if S is a set of Horn clauses.)

The top clause C0 in a linear derivation can be restricted to one belonging to a set
of support. The resulting space of all linear derivations from a given top clause
C0 has the structure of a proof tree whose nodes are clauses and whose branches
are linear derivations. Using linear resolution to extend the derivation of a clause
Ci to the derivation of a clause Ci+1 generates the derived node Ci+1 as a child of

4Another important case is the one in which S−S′ represents a database (or knowledge base)
together with a set of integrity constraints that are satisfied by the database, and S′ represents
a set of updates to be added to the database. The set of support restriction then implements
a form of bottom-up reasoning from the updates, to check that the updated database continues
to satisfy the integrity constraints. Moreover, it builds in the assumption that the database
satisfied the integrity constraints prior to the updates, and therefore if there is an inconsistency,
the update must be “relevant” to the inconsistency.

Logic Programming 11

the node Ci. The same node Ci can have different children Ci+1, corresponding
to different linear resolutions.

In retrospect, the relationship with Planner is obvious. If the top clause C0

represents an initial goal, then the tree of all linear derivations is a goal tree, and
generating the tree top-down is a form of goal-reduction. The tree can be explored
using different search strategies. Depth-first search, in particular, can be informed
by Planner-like strategies that both specify “a particular order in which to do
things”, but also “back up” automatically in the case of failure.

The relationship with Planner was not obvious at the time. Even as recently
as 2005, Paul Thagard in Mind: Introduction to Cognitive Science, compares logic
unfavourably with production systems, stating on page 45:

“In logic-based systems, the fundamental operation of thinking is log-
ical deduction, but from the perspective of rule-based systems, the
fundamental operation of thinking is search.”5

But it wasn’t just this lack of foresight that stood in the way of understanding
the relationship with Planner: there was still the n! redundant ways of resolving
upon n literals in the clauses Ci. This redundancy was recognized and eliminated
without the loss of completeness by Loveland [1972], Reiter [1971], and Kowalski
and Kuehner [1971], independently at about the same time. The obvious solution
was simply to resolve upon the literals in the clauses Ci in a single order. This
order can be determined statically, by ordering the literals in the input clauses, and
imposing the same order on the resolvents. Or it could be determined dynamically,
as in selected linear (SL) resolution [Kowalski and Kuehner, 1971], by selecting a
single literal to resolve upon in a clause Ci when the clause is chosen for resolution.
Both methods eliminate redundancy, but dynamic selection can lead to smaller
search spaces.6

Ironically, both Loveland [1972] and Kowalski and Kuehner [1971] also noted
that linear resolution with an ordering restriction is equivalent to Loveland’s [1968]
earlier model elimination proof procedure. The original model elimination proce-
dure was presented so differently that it took years even for its author to recognise
the equivalence. The SL resolution paper also pointed out that the set of all SL
derivations forms a search space, and described a heuristic search strategy for
finding simplest proofs. In the conclusions, with implicit reference to Planner, it
claimed:

5This claim makes more sense if Thagard, like Winograd before him, associates logic exclu-
sively with forward reasoning. As Sherlock Holmes explained to Dr. Watson, in A Study in
Scarlet : “In solving a problem of this sort, the grand thing is to be able to reason backward.
That is a very useful accomplishment, and a very easy one, but people do not practise it much.
In the everyday affairs of life it is more useful to reason forward, and so the other comes to be
neglected. There are fifty who can reason synthetically for one who can reason analytically.”

6Dynamic selection is useful, for example, to solve goals with different input-output arguments.
For example, given the clause p(X,Y)← q(X,Z)∧ r(Z, Y) and the goal p(a, Y), then the subgoal
q(a, Z) should be selected before r(Z, Y). But given the goal p(X, b), the subgoal r(Z, b) should
be selected before q(X,Z).

12 Robert Kowalski

“Moreover, the amenability of SL-resolution to the application of heuris-
tic methods suggests that, on these grounds alone, it is at least compet-
itive with theorem-proving procedures designed solely from heuristic
considerations.”

3 THE PROCEDURAL INTERPRETATION OF HORN CLAUSES

The development of various forms of linear resolution with set of support and
ordering restrictions brought resolution systems closer to Planner-like theorem-
provers. But these resolution systems did not yet have an explicit procedural
interpretation.

3.1 The representation of grammars in logical form

Among the various confusions that prevented a better understanding of the rela-
tionship between logical and procedural representations was the fact that Wino-
grad’s thesis, which so advanced the Planner cause, employed a different proce-
dural language Programmar, for natural language grammars. Moreover, Wino-
grad’s natural language understanding system was implemented in a combination
of micro-Planner (a subset of Planner), Programmar and LISP. So it wasn’t obvi-
ous whether Planner was supposed to be a general-purpose programming language,
or a special purpose language for proving theorems, for writing plans or for some
other purpose.

In the theorem-proving group in Edinburgh, where I was working at the time,
much of the debate surrounding Planner focused on whether “uniform”, resolution
proof procedures are adequate for proving theorems, or whether they need to be
augmented with Planner-like, domain-specific control information. In particular,
I was puzzled by the relationship between Planner and Programmar, and began
to investigate whether grammars could be written in a logical form. This was
auspicious, because in the summer of 1971 Alain Colmerauer invited me for a
short visit to Marseille.

Colmerauer knew everything there was to know about formal grammars and
their application to programming language compilers. During 1967–1970 at the
University of Montreal, he developed Q-systems [1969] as a rule-based formalism
for processing natural language. Q-systems were later used on a daily basis from
1982 to 2001 to translate English weather forecasts into French for Environment
Canada. Since 1970, he had been in Marseille, building up a team working on
natural language question-answering, investigating SL-resolution for the question-
answering component.

I arrived in Marseille, anxious to get Colmerauer’s feedback on my preliminary
ideas about representing grammars in logical form. My representation used a
function symbol to concatenate words into strings of words, and axioms to express
that concatenation is associative. It was obvious that reasoning with such asso-
ciativity axioms was inefficient. Colmerauer immediately saw how to avoid the

Logic Programming 13

axioms of associativity, in a representation that later came to be known as meta-
morphosis grammars [Colmerauer, 1975] (or definite clause grammars [Pereira and
Warren, 1980]). We saw that different kinds of resolution applied to the resulting
grammars give rise to different kinds of parsers. For example, forward reasoning
with hyper-resolution performs bottom-up parsing, while backward reasoning with
SL-resolution performs top-down parsing.7

3.2 Horn clauses and SLD-resolution

It was during my second visit to Marseille in April and May of 1972 that the idea
of using SL-resolution to execute Horn clause programs emerged. By the end of
the summer, Colmerauer’s group had developed the first version of Prolog, and
used it to implement a natural language question-answering system [Colmerauer
et al., 1973]. I reported an abstract of my own findings at the MFCS conference
in Poland in August 1972 [Kowalski, 1972].8

The first Prolog system was an implementation of SL-resolution for the full
clausal form of first-order logic, including ancestor resolution. But the idea that
Horn clauses were an interesting case was already in the air. Donald Kuehner
[1969], in particular, had already been working on bi-directional strategies for
Horn clauses. However, the first explicit reference to the procedural interpretation
of Horn clauses appeared in [Kowalski, 1974]. The abstract begins:

“The interpretation of predicate logic as a programming language is
based upon the interpretation of implications: B if A1 and. . . and An

as procedure declarations, where B is the procedure name and A1

and . . . and An is the set of procedure calls constituting the procedure
body.”

The theorem-prover described in the paper is a variant of SL-resolution, to which
Maarten van Emden later attached the name SLD-resolution, standing for “se-
lected linear resolution with definite clauses”:

A definite clause is a Horn clause of the form B ← B1 ∧ . . . ∧Bn.

A goal clause is a Horn clause of the form ← A1 ∧ . . . ∧An.

Given a goal clause ← A1 ∧ . . . ∧ Ai−1 ∧ Ai ∧ Ai+1 ∧ . . . ∧ An with
selected atom Ai and a definite clause B ← B1∧ . . .∧Bm, where θ is a
most general substitution that unifies Ai and B, the SLD-resolvent is
the goal clause ← (A1 ∧ . . .∧Ai−1 ∧B1 ∧ . . .∧Bm ∧Ai+1 ∧ . . .∧An)θ.

Given a set of definite clauses S and an initial goal clause C0, an SLD-
derivation of a goal clause Cn is a sequence of goal clauses C0, . . . , Cn

7However, Colmerauer [1991] remembers coming up with the alternative representation of
grammars, not during my visit in 1971, but after my visit in 1972.

8In the abstract, I used a predicate val(f(X), Y) instead of a predicate f(X,Y), using Phillip
Roussel’s idea of val as “formal equality”. Roussel was Colmerauer’s PhD student and the main
implementer of the first Prolog system.

14 Robert Kowalski

such that every Ci+1 is the SLD-resolvent of Ci with some input clause
in S.

An SLD-refutation is an SLD-derivation of the empty clause.

SLD-resolution is more flexible than SL-resolution restricted to Horn clauses.9

In SL-resolution the atoms Ai must be selected last-in-first-out, but in SLD-
resolution, there is no restriction on their selection. Both refinements of linear
resolution avoid the redundancy of unrestricted linear resolution, and both are
complete, in the sense that if a set of Horn clauses is unsatisfiable, then there
exists both an SL-resolution refutation and an SLD-resolution refutation in their
respective search spaces. In both cases, different selection strategies give rise to
different, complete search spaces. But the more flexible selection strategy of SLD-
resolution means that search spaces can be smaller, and therefore more efficient
to search.

In SLD resolution, goal clauses have a dual interpretation. In the strictly logic
interpretation, the symbol← in a goal clause← A1∧ . . .∧An is equivalent to clas-
sical negation; the empty clause is equivalent to falsity; and a refutation indicates
that the top clause is inconsistent with the initial set of clauses S.

However, in a problem-solving context, it is natural to think of the symbol ←
in a goal clause ← A1 ∧ . . . ∧ An as a question mark ? or command !, and the
conjunction A1 ∧ . . .∧An as a set of subgoals, whose variables are all existentially
quantified. The empty clause represents an empty set of subgoals, and a “refuta-
tion” indicates that the top clause has been solved. The solution is represented by
the substitutions of terms for variables in the top clause, generated by the most
general unifiers used in the refutation — similar to, but without the answer literals
of QA3.

As in the case of linear resolution more generally, the space of all SLD-derivations
with a given top clause has the structure of a goal tree, which can be explored
using different search strategies. From a logical point of view, it is desirable that
the search strategy be complete, so that the proof procedure is guaranteed to find
a solution if there is one in the search space. Complete search strategies include
breadth-first search and various kinds of best-first and heuristic search. Depth-
first search is incomplete in the general case, but it takes up much less space than
the alternatives. Moreover, it is complete if the search space is finite, or if there
is only one infinite branch that is explored after all of the others.

Notice that there are two different, but related notions of completeness: one
for search spaces, and the other for search strategies. A search space is complete
if it contains a solution whenever the semantics dictates that there is a solution;
and a search strategy is complete if it finds a solution whenever there is one in the
search space. For a proof procedure to be complete, both its search space and its
search strategy need to be complete.

9If SL-resolution is applied to Horn clauses, with a goal clause as top clause, then ancestor
resolution is not possible, because all clauses in the same SL-derivation are then goal clauses,
which cannot be resolved with one another.

Logic Programming 15

The different options for selecting atoms to resolve upon in SLD-resolution and
for searching the space of SLD-derivations were left open in [Kowalski, 1974],
but were pinned down in the Marseille Prolog interpreter. In Prolog, subgoals
are selected last-in-first-out in the order in which the subgoals are written, and
branches of the search space are explored depth-first in the order in which the
clauses are written. By choosing the order in which subgoals and clauses are
written, a Prolog programmer can exercise considerable control over the efficiency
of a program.

3.3 Logic + Control

In those days, it was widely believed that logic alone is inadequate for problem-
solving, and that some way of controlling the theorem-prover is needed for effi-
ciency. Planner combined logic and control in a procedural representation that
made it difficult to identify the logical component. Logic programs with SLD-
resolution also combine logic and control, but make it possible to read the same
program both logically and procedurally. I later expressed this as Algorithm =
Logic + Control (A = L + C) [Kowalski, 1979a], influenced by Pat Hayes′ [1973]
Computation = Controlled Deduction.

The most direct implication of the equation is that, given a fixed logical rep-
resentation L, different algorithms can be obtained by applying different control
strategies, i.e. A1 = L + C1 and A2 = L + C2. Pat Hayes [1973], in particu-
lar, argued that logic and control should be expressed in separate languages, with
the logic component L providing a pure, declarative specification of the problem,
and the control component C supplying the problem solving strategies needed
for an efficient algorithm A. Moreover, he argued against the idea, expressed by
A1 = L1 + C and A2 = L2 + C, of using a fixed control strategy C, as in Prolog,
and formulating the logic Li of the problem to obtain a desired algorithm Ai.

This idea of combining logic and control in separate object and meta-level lan-
guages has been a recurring theme in the theorem-proving and AI literature. It
was a major influence, for example, on the development of PRESS, which solved
equations by expressing the rules of algebra in an object language, and the rules for
controlling the search for solutions in a meta-language. According to its authors,
Alan Bundy and Bob Welham [1981]:

“PRESS consists of a collection of predicate calculus clauses which to-
gether constitute a Prolog program. As well as the procedural meaning
attached to these clauses, which defines the behaviour of the PRESS
program, they also have a declarative meaning - that is, they can be
regarded as axioms in a logical theory.”

In retrospect, PRESS was an early example of a now common use of Prolog to
write meta-interpreters.

But most applications do not need such an elaborate combination of logic and
control. For example, the meta-level control program in PRESS does not need a

16 Robert Kowalski

meta-meta-level control program. In fact, for some applications, even the modest
control available to the Prolog programmer is unnecessary For these applications,
it suffices for the programmer to specify only the logic of the problem, and to leave
it to Prolog to solve the problem without any help

But often, leaving it to Prolog alone can result, not only in unacceptable inef-
ficiency, but even in non-terminating failure to find a solution. Here is a simple
example, written in Prolog notation, where :- stands for ← and every clause ends
in a full stop:

likes(bob,X) : − likes(X, logic)
likes(bob, logic)
: − likes(bob,X).

Prolog fails to find the solution X = bob, because it explores the infinite branch
generated by repeatedly using the first clause, without getting a chance to explore
the branch generated by the second clause. If the order of the two clauses is re-
versed, Prolog finds the solution. If only one solution is desired then it terminates.
But if all solutions are desired, then it encounters the infinite branch, and goes
into the same infinite loop. Perhaps the easiest way to avoid such infinite loops in
ordinary Prolog is to write a meta-interpreter, as in PRESS. 10

Problems and inefficiencies with the Prolog control strategy led to numerous
proposals for LP languages incorporating enhanced control features. Some of them,
such as Colmerauer’s [1982] Prolog II, which allowed insufficiently instantiated
subgoals to be suspended, were developed as extensions of Prolog. Other proposals
that departed more dramatically from ordinary Prolog included the use of co-
routining in IC-Prolog [Clark et al., 1972] selective backtracking [Bruynooghe and
Pereira, 1984] and meta-level control for logic programs [Gallaire and Lasserre,
1982; Pereira, 1984]

IC-Prolog, in particular, led to the development by Clark and Gregory [1983,
1986] of the concurrent logic programming language Parlog, which led in turn to
numerous variants of concurrent LP languages, one of which KL1, developed by
Kazunori Ueda [1986], was adopted as the basis for the systems software of the
Fifth Generation Computer Systems (FGCS) Project in Japan.

The FGCS Project was a ten year project beginning in 1982, sponsored by
Japan’s Ministry of International Trade and Industry and involving all the major
Japanese computer manufacturers. Its main objective was to develop a new gen-
eration of computers employing massive parallelism and oriented towards artificial
intelligence applications. From the start of the project, logic programming was
identified as the preferred software technology.

10In other cases, much simpler solutions are often possible. For example, to avoid infinite loops
with the program path(X,X) and path(X,Y) ← link(X,Z) ∧ path(Z, Y), it suffices to add an
extra argument to the path predicate to record the list of nodes visited so far, and to add an extra
condition to the second clause to check that the node Z in link(X,Z) is not in this path. For
some advocates of declarative programming this is considered cheating. For others, it illustrates
a practical application of A = L1 + C1 = L2 + C2.

Logic Programming 17

The FGCS project did not achieve its objectives, and all three of its main areas
of research — parallel hardware, logic programming software, and AI applications
— suffered a world-wide decline.

These days, however, there is growing evidence that the FGCS project was
ahead of its time. In the case of logic programming, in particular, SLD-resolution
extended with tabling [Tamaki and Sato, 1986; Sagonas et al., 1994; Chen and
Warren, 1996; Telke and Liu, 2011] avoids many infinite loops, like the one in the
example above. Moreover, there also exist alternative techniques for executing
logic programs that do not rely upon the procedural interpretation, including the
model generation methods of Answer Set programming (ASP) and the bottom-up
execution strategies of Datalog.

ASP and Datalog have greatly advanced the ideal of purely declarative rep-
resentations, relegating procedural representations to the domain of imperative
languages and other formalisms of dubious character. However, not everyone is
convinced that purely declarative knowledge representation is adequate either for
practical computing or for modelling human reasoning.

Thagard [2005], for example, claims that the following, useful procedure cannot
easily be expressed in logical terms (page 45):

If you want to go home and you have the bus fare, then you can catch a bus.

On the contrary, the sentence can be expressed literally in the logical form:

can(you, catch-bus)← want(you, go-home) ∧ have(you, bus-fare)

But this rendering requires the use of modal operators or modal predicates for
want and can. More importantly, it misses the real logic of the procedure:

go(you, home)← have(you, bus-fare) ∧ catch(you, bus).

Top-down reasoning applied to this logic generates the procedure, without sacri-
ficing either the procedure or the declarative belief that justifies it

4 THE SEMANTICS OF HORN CLAUSE PROGRAMS

The earliest influences on the development of logic programming had come primar-
ily from automated theorem-proving and artificial intelligence. But researchers in
the School of AI in Edinburgh also had strong interests in the theory of compu-
tation, and there was a lot of excitement about Dana Scott’s [1970] recent fixed
point semantics for programming languages. Maarten van Emden suggested that
we investigate the application of Scott’s ideas to Horn clause programs and that
we compare the fixed point semantics with the logical semantics.

4.1 What is the meaning of a program?

But first we needed to establish a common ground for the comparison. If we
identify the data structures of a logic program P with the set of all ground terms

18 Robert Kowalski

constructible from the vocabulary of P , also called the Herbrand universe of P ,
then we can view the “meaning” (or denotation) of P as the set of all ground
atoms A that can be derived from P 11, which is expressed by:

P ⊢ A.

Here ⊢ can represent any derivability relation. Viewed in programming terms, this
is analogous to the operational semantics of a programming language. But viewed
in logical terms, this is a proof-theoretic definition, which is not a semantics at all.
In logical terms, it is more natural to understand the semantics of P as given by
the set of all ground atoms A that are logically implied by P , written:

P � A

The operational and model-theoretic semantics are equivalent for any sound and
complete notion of derivation – the most important kinds being top-down and
bottom-up.

Top-down derivations include model-elimination, SL-resolution and SLD-resolution.
Model-elimination and SL-resolution are sound and complete for arbitrary clauses.
So they are sound and complete for Horn clauses in particular. Moreover, ancestor
resolution is impossible for Horn clauses. So model-elimination and SL-resolution
without ancestor resolution are sound and complete for Horn clause programs.

The selection rule in both SL-resolution and SLD-resolution constructs a linear
representation of an and-tree proof. In SL-resolution the linear representation
is obtained by traversing the and-tree depth-first. In SLD-resolution the linear
representation can be obtained by traversing the and-tree in any order.12 The
completeness of SLD-resolution was first proved by Robert Hill [1974].

Bottom-up derivations are a special case of hyper-resolution, which is also sound
and complete for arbitrary clauses, and therefore for Horn clauses as well. More-
over, as we soon discovered, they are equivalent to the fixed point semantics.

4.2 Fixed point semantics

In Dana Scott’s [1970] fixed point semantics, the denotation of a recursive func-
tion is given by its input-output relation. The denotation is constructed by ap-
proximation, starting with the empty relation, repeatedly plugging the current
approximation of the denotation into the definition of the function, transforming
the approximation into a better one, until the complete denotation is obtained in
the limit, as the least fixed point.

11Notice that this excludes programs which represent perpetual processes. Moreover, it ignores
the fact that, in practice, logic programs can compute input-output relations containing variables.
This is sometimes referred to as the “power of the logical variable”.

12Note that and-or trees suggest other strategies for executing logic programs, for example by
decomposing goals into subgoals top-down, searching for solutions of subgoals in parallel, then
collecting and combining the solutions bottom-up. This is like the MapReduce programming
model used in Google [Dean and Ghemawat, 2008].

Logic Programming 19

Applying the same approach to a Horn clause program P , the fixed point seman-
tics uses a similar transformation TP , called the immediate consequence operator,
to map a set I of ground atoms representing an approximation of the input-output
relations of P into a more complete approximation TP (I):

TP (I) = {A0 | A0 ← A1 ∧ . . . ∧An ∈ ground(P) and {A1, . . . , An} ⊆ I}.

Here ground(P) is the set of all ground instances of the clauses in P over the
Herbrand universe of P . The application of TP to I is equivalent to applying one
step of hyper-resolution to the clauses in ground(P) ∪ I.

Not only does every Horn clause program P have a fixed point I such that
TP (I) = I, but it has a least fixed point, lfp(TP), which is the denotation of P
according to the fixed point semantics. The least fixed point is also the smallest
set of ground atoms I closed under TP , i.e. the smallest set I such that TP (I) ⊆ I.
This alternative characterisation provides a link with the minimal model semantics,
as we will see below.

The least fixed point can be constructed, as in Scott’s semantics, by starting
with the empty set {} and repeatedly applying TP :

If T 0
P = {} and T i+1

P = TP (T
i
P), then lfp(TP) = ∪0≤iT

i
P .

The result of the construction is equivalent to the set of all ground atoms that can
be derived by applying any number of steps of hyper-resolution to the clauses in
ground(P).

The equality lfp(TP) = ∪0≤iT
i
P is usually proved in fixed point theory by ap-

pealing to the Tarski-Knaster theorem. However, in [van Emden and Kowalski,
1976], we showed that the equivalence follows from the completeness of hyper-
resolution and the relationship between least fixed points and minimal models.
Here is a sketch of the argument:

A ∈ lfp(TP) iff A ∈ min(P)
i.e. least fixed points and minimal models coincide.

A ∈ min(P) iff P � A
i.e. truth in the minimal model and all models coincide.

P � A iff A ∈ ∪0≤iT
i
P

i.e. hyper-resolution is complete.

4.3 Minimal model semantics

The minimal model semantics was inspired by the fixed point semantics, but it
was based on the notion of Herbrand interpretation. The key idea of Herbrand
interpretations is to identify an interpretation of a set of sentences with the set of
all ground atomic sentences that are true in the interpretation.

In a Herbrand interpretation, the domain of individuals is the set of ground
terms in the Herbrand universe of the language. A Herbrand interpretation is any

20 Robert Kowalski

subset of the Herbrand base, which is the set of all ground atoms of the language.
The most important property of Herbrand interpretations is that, in first-order
logic, a set of sentences has a model if and only if it has a Herbrand model. This
property is a form of the Skolem-Löwenheim-Herbrand theorem.13

Thus the model-theoretic denotation of a Horn clause program:

M(P) = {A | A is a ground atom and P � A}

is actually a Herbrand interpretation of P in its own right. Moreover, it is easy
to show that M(P) is also a Herbrand model of P . In fact, it is the smallest
Herbrand model min(P) of P . Therefore:

A ∈ min(P) iff P � A.

It is also easy to show that the Herbrand models of P coincide with the Herbrand
interpretations that are closed under the operator TP , i.e.:

I is a Herbrand model of P iff TP (I) ⊆ I.

This is because the immediate consequence operator mimics, not only hyper-
resolution, but also the definition of truth for Horn clauses: A set of Horn clauses
P is true in a Herbrand interpretation I if and only if, for every ground instance
A0 ← A1 ∧ . . . ∧An of a clause in P , A0 is true in I if A1, . . . , An are true in I.

It follows that the least fixed point and the minimal model are identical:

lfp(TP) = min(P).

4.4 Computability

The logicians Andréka and Németi visited Edinburgh in 1975, and wrote a report,
published in [Andréka and Németi, 1978], proving the Turing completeness of Horn
clause logic. Sten-Åke Tärnlund [1977] obtained a similar result independently. It
was a great shock, therefore, to learn that Raymond Smullyan [1956] had already
published an equivalent result. Here is the complete abstract:

A new approach to recursive enumerability is considered based on the
notion of “minimal models”. A formula of the lower functional calculus
of the form F1 · F2 · · ·Fn−1· ⊃ ·Fn (or F1 alone, if n = 1) in which
each Fi is atomic, and Fn contains no predicate constants, is termed
regular. Let A be a finite set of regular formulae; Σ a collection of

13The property can be proved in two steps: First, convert S into clausal form by using “Skolem”
functions to eliminate existential quantifiers. Although the resulting set S′ of clauses and S are
not equivalent, S has a model iff S′ has a model. A set of clauses S′ has a model iff S′ has a
Herbrand model M , constructed using the Herbrand universe of S′. Therefore S has a model if
and only if it has a Herbrand model M . (Contrary claims in the literature that S may have a
model, but no Herbrand model, are based on the assumption that the Herbrand interpretations
of S are constructed using the Herbrand universe of S.)

Logic Programming 21

sets and relations, on some universe U ; I an interpretation of the
predicate constants (occurring in A) as elements of Σ. The ordered
triple L viz. (A,U, I) is a recursive logic over Σ. A model of L is an
interpretation of the predicate variables Pi in which each formula of A
is valid. Let P ∗

i be the intersection of all attributes assignable to Pi in
some model; these P ∗

i are called definable in L. If each Pi is interpreted
as P ∗

i , it can be proved that there is a model — this is the minimal
model. Sets definable in some L over Σ are termed recursively definable
from Σ. It is proved: (1) the recursively enumerable sets are precisely
those which are recursively definable from the successor relation and
the unit set {0}; (2) Post’s canonical sets in an alphabet a1 · · · an, are
those recursively definable from the concatenation relation and the unit
sets {a1} · · · {an}.

Smullyan seems not to have published the details of his proofs. But he investigated
the relationship between derivability and computability in his book on the Theory
of Formal Systems [Smullyan, 1961]. These formal systems are variants of the
canonical systems of Post, with strong similarities to Horn clause programs.

4.5 Logic and databases

The question-answering systems of the 1960s and 1970s represented information in
logical form, and used theorem-provers to answer questions represented in logical
form. It was the application of SL-resolution to such deductive question-answering
that led to Colmerauer’s work on Prolog. In the meanwhile, Ted Codd [1970] pub-
lished his relational model, which represented data as relations in logical form, but
used the “non-deductive” algebraic operations of selection, projection, Cartesian
product, set union and set difference, to specify database queries. However, he also
showed [Codd, 1972] that the relational algebra is equivalent to a more declarative
relational calculus, in which relations are defined in first-order logic.

I first learned about relational databases in 1974 at a course on the foundations
of computer science at the Mathematics Centre in Amsterdam. I was giving a
short course of lectures on logic for problem solving, using a set of notes, which I
later expanded into my 1979 book [Kowalski, 1979b]. Erich Neuhold was giving a
course about formal properties of databases, with a focus on the relational model.
It was immediately obvious that the relational model and logic programming had
much in common.

I organised a five day workshop at Imperial College London in May 1976, using
the term “logic programming” to describe the topic of the workshop. A full day
was devoted to presentations about logic and databases. Hervé Gallaire and Jean-
Marie Nicholas presented the work they were doing in Toulouse, and Keith Clark
talked about his work on negation as failure.

Jack Minker visited Gallaire and Nicholas in 1976, and together they organised
the first workshop on logic and databases in Toulouse in 1977. The proceedings of

22 Robert Kowalski

the workshop, published in 1978, included Clark’s results on negation as failure,
and Reiter’s paper on closed world databases.

5 NEGATION AS FAILURE — PART 1

The practical value of extending Horn clause programs to normal logic programs
with negative conditions was recognized from the earliest days of logic program-
ming, as was the obvious way to reason with them — by negation as failure
(abbreviated as NAF): to prove not p, show that all attempts to prove p fail. Intu-
itively, NAF is justified by the assumption that the program contains a complete
definition of its predicates. The assumption is very useful in practice, but was
neglected in formal logic. The problem was to give this proof-theoretic notion a
logical semantics.

Ray Reiter [1978] investigated NAF in the context of a first-order database D,
interpreting it as the closed world assumption (CWA) that the negation not p of
a ground atom p holds in D if there is no proof of p from D. He showed that
the CWA can lead to inconsistencies in the general case — for example, given the
database D = {p∨ q}, it implies not p, and not q; but for Horn data bases no such
inconsistencies can arise.

However, Keith Clark was the first to investigate NAF in the context of logic
programs with negative conditions.

5.1 The Clark completion

Clark’s solution was to interpret logic programs as short hand for definitions in
if-and-only-if form, as illustrated for the propositional program in figure 2.

Figure 2. The logic program of figure 1, and its completion.

In the non-ground case, the logic program needs to be augmented with an
equality theory, which mimics the unification algorithm, and which essentially

Logic Programming 23

specifies that ground terms are equal if and only if they are syntactically identical.
An example with a fragment of the necessary equality theory, is given in figure
3. Together with the equality theory, the if-and-only-if form of a logic program
P is called the completion of P , written comp(P). It is also sometimes called the
predicate completion or the Clark completion.

Figure 3. A proof of not likes(logic, logic) using negation as failure and back-
ward reasoning compared with an upside down proof of ¬likes(logic, logic) using
classical logic. Notice that the use of classical negation turns the disjunction of
alternatives into a logical conjunction.

As figure 3 illustrates, negation as failure correctly simulates reasoning with the
completion in classical logic.

Although NAF is sound with respect to the completion semantics, it is not
complete. For example, if P is the program:

p← q
p← ¬q
q ← q

then comp(P) implies p. But given the goal ← p, NAF goes into an infinite loop
trying, but failing to show q. The completion semantics does not recognise such
infinite failure, because proofs in classical logic are finite. For this reason, the
completion semantics is also called the semantics of negation as finite failure.

In contrast with the completion semantics, the CWA formalises negation as
potentially infinite failure, inferring ¬q from the Horn clause database q ← q.
Similarly, the minimal model semantics of Horn clauses concludes that ¬q is true
in the minimal model of the program q ← q.

Clark did not investigate the relationship between the completion semantics
and the various alternative semantics of Horn clauses. Probably the first such

24 Robert Kowalski

investigation was by Apt and van Emden [1982], who showed, among other things,
that if P is a Horn clause program then:

I is a Herbrand model of comp(P) iff TP (I) = I.

Compare this with the property that I is a Herbrand model of P iff TP (I) ⊆ I.

5.2 The analogy with arithmetic

Clark’s 1978 paper was not the first to propose the completion semantics. [Clark
and Tärnlund, 1977] proposed using the completion together with induction schemas
on the structure of terms to prove program properties, by analogy with the use of
induction in first-order Peano arithmetic.

Consider the Horn clause definition of append(X,Y, Z), which holds when the
list Z is the concatenation of the list X followed by the list Y :

append(nil,X,X)
append(cons(U,X), Y, cons(U,Z))← append(X,Y, Z)

This is analogous to the definition of plus(X,Y, Z), which holds when X+Y = Z:

plus(0, X,X)
plus(s(X), Y, s(Z))← plus(X,Y, Z)

Here the successor function s(X) represents X + 1, as in Peano arithmetic.
These definitions alone are adequate for computing their denotations. More

generally, they are adequate for solving any goal clause (which is an existentially
quantified conjunction of atoms). However, to prove program properties expressed
in the full syntax of first-order logic, the definitions need to be augmented with
their completions and induction axioms. For example, the completion and induc-
tion over the natural numbers are both needed to show that the plus relation
defined above is functional:

∀XY UV [plus(X,Y, U) ∧ plus(X,Y, V)→ U = V]

Similarly, to show that append is associative, the definition of append needs to be
augmented both with the completion and induction over lists.

Because many program properties can be expressed in the logic programming
sublanguage of first-order logic, it can be hard to distinguish between clauses
that are needed for computation, and clauses that are emergent properties. A
similar problem arises with deductive databases. As Nicolas and Gallaire [1978]
observed, it can be hard to distinguish between clauses that define data, and
integrity constraints that restrict data.

For real applications, these distinctions are essential. For example, without
making these distinctions, a programmer can easily write a program that includes
both the definition of append and the property that append is associative. The
resulting logic program would be impossibly inefficient.

Logic Programming 25

The analogy with arithmetic helps to clarify the relationships between the dif-
ferent semantics of logic programs: It suggests that the completion augmented
with induction schemas is like the first-order axioms for Peano arithmetic, and
the minimal model is like the standard model of arithmetic. The fact that both
notions of arithmetic have a place in mathematics suggests that both kinds of
“semantics” also have a place in logic programming.

Interestingly, the analogy also works in the other direction. The fact that min-
imal models are the denotations of logic programs shows that the standard model
of arithmetic has a syntactic core, which consists of the Horn clauses that de-
fine addition and multiplication. Martin Davis [1980] makes a similar point, but
his core is essentially the Horn clause definitions of addition and multiplication
augmented with the Clark Equality Theory:

∃x.Z(x)
∀xy.[Z(x) ∧ Z(y) ⊃ x = y]
∀x.∃y.S(x, y)
∀xy.[S(x, y) ⊃ ¬Z(y)]
∀xy.[Z(y) ⊃ A(x, y, x)]
∀xyzuv.[A(x, y, z) ∧ S(y, u) ∧ S(z, v) ⊃ A(x, u, v)]
∀xy.[Z(y) ⊃ P (x, y, y)]
∀xyzuv.[P (x, y, z) ∧ S(y, u) ∧A(z, x, v) ⊃ P (x, u, v)]

Here Z(x) stands for “x is zero”, S(x, y) for “y is the successor of x”, A(x, y, z)
for “x+ y = z” and P (x, y, z) for “xy = z”.

Arguably, the syntactic core of the standard model of arithmetic explains how
we can understand what it means for a sentence to be true, even if we cannot
prove that the sentence is true.

5.3 Database semantics

In the same workshop in which Clark presented his work, Nicolas and Gallaire
[1978] considered related issues from a database perspective. They characterised
the relational database approach as viewing databases as model-theoretic struc-
tures (or interpretations), and the deductive database approach as viewing databases
as theories. They argued that, in relational databases, both query evaluation and
integrity constraint satisfaction are understood as evaluating the truth value of a
sentence in an interpretation. But in deductive databases, they are understood as
determining whether the sentence is a theorem, logically implied by the database
viewed as a theory. Hence the term “deductive”. In retrospect, it is now clear that
both kinds of databases, whether relational or “deductive”, can be viewed either
as an interpretation or as a theory.

A more fundamental issue at the time of the 1978 workshop was the inability
of the relational calculus and relational algebra to define recursive relations, such
as the transitive closure of a binary relation. Aho and Ullman [1979] proposed to
remedy this by extending the relational algebra with fixed point operators. This

26 Robert Kowalski

proposal was pursued by Chandra and Harel [1982], who classified and analysed the
complexity of the resulting hierarchy of query languages. Previously, Harel [1980]
had published a harsh review of the logic and databases workshop proceedings
[Gallaire and Minker, 1979], criticising it for claiming that deductive databases
define relations in first-order logic despite the fact that transitive closure cannot
be defined in first-order logic.

During the 1980s, the deductive database community, with roots mainly in ar-
tificial intelligence, became assimilated into a new Datalog community, influenced
by logic programming, but with its roots firmly in the database field. In keeping
with its database perspective, Datalog excludes function symbols. So all Herbrand
models are finite, and are computable bottom-up. But pure bottom-up compu-
tation, whether viewed as model generation or as theorem-proving, ignores the
query until it derives it as though by accident. To make model generation relevant
to the query, Datalog uses transformations such as Magic Sets [Bancilhon, et al
1985] to incorporate the query into the transformed database rules.

As a consequence of its model generation approach, Datalog ignores the com-
pletion semantics in favour of the minimal model and fixed point semantics. For
example, the surveys by Ceri, Gottlob and Tanca [1989], and Ramakrishnan and
Ullman [1993], and even the more general survey of the complexity and expres-
sive power of logic programming by Dantsin, Eiter, Gottlob and Voronkov [2001]
mention the completion only in passing.

Minker’s [1996] retrospective on Logic and Databases acknowledges the distinc-
tive character of Datalog, but also includes the completion semantics. In partic-
ular, the completion semantics contributed to investigations of the semantics of
integrity constraints, which was an important topic in deductive databases, before
the field of Datalog fully emerged.

6 NEGATION AS FAILURE — PART 2

Theoretical investigations of the completion semantics continued, and were high-
lighted in John Lloyd’s [1985, 1987] influential Foundations of Logic Programming
book, which included results from Keith Clark’s [1980] unpublished PhD thesis.
Especially important among the later results were the three-valued completion
semantics of Fitting [1985] and Kunen [1987], which gives, for example, the truth
value undefined to p in the program p ← not p, whose completion is inconsistent
in two-valued logic. This and other work on the completion semantics are pre-
sented in Shepherdson’s [1988] survey. Much of this work concerns the correctness
and completeness of SLDNF resolution (SLD resolution extended with negation
as finite failure), relative to the completion semantics.

6.1 Stratification

The most significant next step in the investigation of negation was the study of
stratified negation in database queries by Chandra and Harel [1985] and Naqvi

Logic Programming 27

[1986].
The simplest example of a stratified logic program is that of a deductive database

E ∪ I whose predicates are partitioned into extensional predicates, defined by
facts E, and intensional predicates, defined in terms of the extensional predicates
by facts and rules I. Consider, for example, a network of nodes, some of whose links
at any given time may be broken14. This can be represented by an extensional
database, say:

E: link(a, b) link(a, c) link(b, c) broken(a, c)

Two nodes in the network are connected if there is a path of unbroken links. This
can be represented intensionally by the clauses:

I: connected(X,Y)← link(X,Y) ∧ not broken(X,Y)
connected(X,Y)← connected(X,Z) ∧ connected(Z, Y)

The conditions of the first clause in I are completely defined by E. So they can
be evaluated independently of I. The use of E to evaluate these conditions results
in a set of Horn clauses I ′, which intuitively has the same meaning as I in the
context of E:

I ′: connected(a, b) connected(b, c)
connected(X,Y)← connected(X,Z) ∧ connected(Z, Y)

The natural, intended model of the original deductive database E ∪ I is the
minimal model M of the resulting set of Horn clauses E ∪ I ′:

M : link(a, b) link(a, c) link(b, c) broken(a, c)
connected(a, b) connected(b, c) connected(a, c)

This construction can be iterated if the intensional part of the database is also par-
titioned into layers (or strata). The further generalisation from databases to logic
programs with function symbols was investigated independently by van Gelder
[1989] and by Apt, Blair and Walker [1988].

Let P be a logic program, and let Pred = Pred0 ∪ . . . ∪ Predn be a partition-
ing and ordering of the predicate symbols of P . If A is an atomic formula, let
stratum(A) = i if and only if the predicate symbol of A is in Pred i. Then P is
stratified (with respect to this stratification of the predicate symbols), if and only
if for every clause head ← body in P and for every condition C in body :

if C is an atomic condition, then stratum(C) ≤ stratum(head)
if C is a negative condition notA, then stratum(A)<stratum(head).

14This example is inspired by the following quote from Hellerstein [2010]: “Classic discus-
sions of Datalog start with examples of transitive closure on family trees: the dreaded anc and
desc relations that afflicted a generation of graduate students. My group’s work with Datalog
began with the observation that more interesting examples were becoming hot topics: Web in-
frastructure such as webcrawlers and PageRank computation were essentially transitive closure
computations, and recursive queries should simplify their implementation.”

28 Robert Kowalski

The stratification Pred = Pred0 ∪ . . . ∪ Predn of the predicate symbols of P
induces a corresponding stratification of the program P = P0 ∪ . . . ∪ Pn where
head ← body in Pi if and only if stratum(head) = i.

The perfect model of a stratified program P is constructed by starting from the
minimal model M0 of the Horn clause program P0 and iteratively extending the
perfect model Mi−1 of P0 ∪ ... ∪ Pi−1 to the perfect model Mi of P0 ∪ ... ∪ Pi.
Assuming that the perfect model Mi−1 has already been constructed, then Mi

is constructed by using Mi−1 to evaluate the conditions in Pi that are already
defined in P0 ∪ ...∪Pi−1 obtaining a set of Horn clauses P ′

i , and generating Mi as
the minimal model of the Horn clauses P ′

i ∪ Mi−1. Constructed in this way, Mn

is the perfect model of P .
For example, suppose we want to extend the logic program above by a clause

that says a pair of nodes is unconnected if it is not connected:

unconnected(X,Y)← not connected(X,Y)

The resulting program is stratified, with its predicates partitioned into the strata
Pred0 = {link, broken}, Pred1 = {connected}, Pred2 = {unconnected}. The per-
fect model M2 of the program is constructed as follows:

M0 = {link(a, b), link(a, c), link(b, c), broken(a, c)}
M1 = M0 ∪ {connected(a, b), connected(b, c), connected(a, c)}
M2 = M1 ∪ {unconnected(a, a), unconnected(b, b), unconnected(c, c),

unconnected(b, a), unconnected(c, b), unconnected(c, a)}

It is useful to express the construction of perfect models using the notion of reduct,
which relates it to the later construction of stable models by Gelfond and Lifschitz:
Given a set of ground atoms E and a logic program P , the reduct of P by E, written
reduct(P,E) is the set of Horn clauses obtained from P by using E to evaluate the
negative literals in P and using classical logic to simplify the resulting program.
This construction is equivalent to deleting all clauses containing a condition not B
that is false in E and deleting all conditions not B that are true in E. Intuitively,
if E defines all of the non-atomic conditions in P , then reduct(P,E) has the same
meaning as P in the context of E. With this notion of reduct, the definition of
perfect model can be expressed more concisely:

Given a stratified logic program P = P0 ∪ . . . ∪ Pn, the perfect model
of P is Mn where:

M0 = min(P0)
Mi = min(reduct(Pi,Mi−1) ∪Mi−1)

Interestingly, this definition exploits the ambiguity of sets of atomic sentences,
which can be viewed both as theories and as Herbrand interpretations. In its
first occurrence in min(reduct(Pi,Mi−1) ∪Mi−1), Mi−1 is treated as a Herbrand
interpretation. In its second occurrence, Mi−1 is treated as part of a Horn clause
program.

Logic Programming 29

6.2 Local stratification

Przymusinski [1988] extended the notion of stratification from predicate symbols
to ground atoms. In effect, this replaces a program P by the program ground(P).
In ground(P), different atoms with the same predicate symbol are treated as dis-
tinct 0-ary predicates, which can be assigned to different strata. Because of func-
tion symbols, ground(P) can be countably infinite. Here is possibly the simplest
sensible example that illustrates this:

Even : even(0) even(s(X))← not even(X))

The program ground(Even) can be partitioned into a countably infinite number
of subprograms ground(Even) = ∪i<ω Eveni where:

Even0 : even(0)
Eveni : even(si(0))← not even(si−1(0)) for i > 0

The perfect model is the limit ∪i<ωMi = {even(0), even(s(s(0))), . . .} where:

M0 = min(Even0) = {even(0)}
M1 = min(reduct(Even1,M0) ∪M0) = min({} ∪ M0) = M0

M2 = min(reduct(Even2,M1) ∪M1) = min({even(s(s(0)))} ∪ M0)
= {even(0), even(s(s(0)))}

. . . etc.

In general, let P be a logic program, and let H = ∪i<αHi be a partitioning and
ordering of the Herbrand base H of P , where α is a countable, possibly transfinite
ordinal. If A ∈ H, let stratum(A) = i if and only if A ∈ Hi. Then P is locally
stratified (with respect to this stratification of H) if and only if for every clause
head ← body in ground(P) and for every condition C in body :

if C is an atomic condition, then stratum(C) ≤ stratum(head)
if C is a negative condition notA, then stratum(A)<stratum(head).

The stratification ∪i<αHi ofH induces a corresponding stratification of ground(P) =
∪i<αPi where head ← body is in Pi if and only if stratum(head) = i. The perfect
model of P is Mα where:

M0 = min(P0)
Mi = min(reduct(Pi,Mi−1) ∪Mi−1)
Mβ = ∪i<βMi if β is a limit ordinal.

Unfortunately, although this construction gives the intended model for many nat-
ural programs, like Even above, it can fail even for minor syntactic variants of
those programs. For example:

successor(X, s(X))
even(0)
even(Y)← successor(X,Y) ∧ not even(X)

30 Robert Kowalski

This program cannot be locally stratified, because its ground instances contain
such unstratifiable clauses as even(0)← successor(0, 0) ∧ not even(0).

Having recognised the problem, a number of authors proposed further refine-
ments of stratification. However, it now seems to be generally agreed that these
refinements are superseded by the well-founded semantics of [Van Gelder, Ross and
Schlipf 1991]. In particular, [Denecker et al., 2001] argues that the well-founded
semantics “provides a more general and more robust formalization of the principle
of iterated inductive definition that applies beyond the stratified case.”

6.3 Well-founded semantics

[Denecker et al., 2001] presents a simplified definition of the well-founded semantics
in terms of candidate proofs. Here is a further simplification, in which candidate
proofs are viewed as arguments supported by sets ∆ of assumptions that are
negative literals:

Given a ground normal program P, an argument for an atom p supported by
assumptions ∆ is a finite tree T labelled with literals such that:

• p is the root of T.

• Each non-leaf node q of T is the head of some clause q ← B in P , and its
children are the literals in the body B of the clause. If q is a fact, with an
empty body B, then it has a single child labelled by true.

• Each leaf is either the label true or a negative literal contained in ∆.

Arguments can be used to construct a three-valued Herbrand model M of P ,
represented by the set of all ground literals that are true in M . In general a three-
valued Herbrand interpretation I = Ipos ∪ Ineg is a set of ground literals, such
that every atom A in Ipos is true in I, and every atom A whose negation not A
is in Ineg is false in I. No atom A is both true and false, and an atom A that is
neither true nor false is undefined.

The well-founded model can be generated bottom-up, starting with the empty
set {} and repeatedly applying a three-valued consequence operator ConP , which
extends a partial three-valued interpretation I of P to a more complete three-
valued interpretation:

ConP (I) = {p | there exists an argument for p supported by Ineg} ∪
{not p | every argument for p has a leaf not q with q ∈ Ipos}

The well-founded model of P is the smallest three-valued interpretation
I such that ConP (I) ⊆ I.

The well-founded model can also be queried top-down using SLG resolution [Chen
andWarren, 1996], which is a variant of SLDNF with tabling. We will see later that
the well-founded semantics also has an intuitive argumentation-theoretic interpre-
tation, in which the negative literals not p in ConP (I) are all the assumptions
defended by I.

Logic Programming 31

[Denecker, 1998] argued that the well-founded semantics formalizes the informal
notion of inductive definition. In particular, the survey by [Denecker et al., 2001]
of theories of inductive definitions in mathematical logic identifies two main ap-
proaches: inflationary inductive definitions and iterated inductive definitions. The
abstract version of inflationary induction was investigated by Moschovakis [1974],
and iterated induction was introduced by Kreisel [1963] and studied by Feferman
[1970] and others.

Van Gelder [1993] observed that even simple concepts can be difficult to ex-
press using inflationary induction. For example, the complement of the transitive
closure of a graph can be defined simply by a stratified logic program (as in the def-
inition of unconnected in terms of connected). But it was considered a significant
achievement when a solution was found using inflationary induction. [Denecker et
al., 2001] argued that, in contrast, the well-founded semantics builds on the same
principle as iterated inductive definitions, but is “more general and more robust”.

6.4 Stable model semantics

Whereas the development of the well-founded semantics was influenced by strat-
ification in deductive databases, the development of the stable model semantics
[Gelfond and Lifschitz, 1988] was influenced by the problem of formalising default
reasoning.

The earliest attempts to formalise default reasoning in artificial intelligence
employed non-logical, object-oriented representations, such as semantic networks
and frames [Minsky, 1975]. The first workshop dealing with logic-based approaches
was held at Stanford in November 1978. A special issue of the Artificial Intelli-
gence journal on non-monotonic reasoning, based on the workshop, was published
in 1980. It contained papers by John McCarthy [1980] on circumscription, Ray
Reiter [1980] on default logic, and Drew McDermott and Jon Doyle [1980] on non-
monotonic modal logic. It was later shown that circumscription and default logic
have interesting relationships with the semantics of negation in logic programming.

Robert Moore [1985] developed a simple and elegant reconstruction of non-
monotonic modal logic, which was used later by Michael Gelfond [1987] to give an
autoepistemic interpretation to normal logic programs. In Gelfond’s translation,
a logic program of the form p ← q ∧ not r, for example, is translated into the
sentence p ← q ∧ ¬ Lr of autoepistemic logic, where Lr means r is believed.
Gelfond and Lifschitz [1988] further simplified this translation in the stable model
semantics, interpreting a negative literal not p as meaning that p is not believed,
in effect because the assumption that p is not believed correctly leads to the
conclusion that p is not believed.

In general, given a normal logic program P :

a Herbrand interpretation M of P is a stable model of P iff
M = min(reduct(ground(P),M)).

For example, given P = {q, p ← q ∧ not r} , and the Herbrand interpretation

32 Robert Kowalski

M = {p, q}, the condition not r is true in M , and therefore the set of Horn clauses
reduct(P,M) = {q, p← q} has the same meaning as P in the context of M . This
meaning is the minimal model of reduct(P,M), which is identical to M . Therefore
M is a stable model of P . Moreover, it is the only stable model of P .

A program can have one, many or no stable models. For example the program
{p ← not p} has no stable models, but {p ← not q, q ← not p} has two stable
models, {p} and {q}.

The stable model semantics is non-monotonic, because adding clauses to a pro-
gram can non-monotonically decrease the consequences of the program. For ex-
ample, adding r to the program {q, p ← q ∧ not r} changes the minimal model
from {p, q} to {q}.

The stable model semantics has been extended to programs of the form:

D1 ∨ . . . ∨Dl ← A1 ∧ . . . ∧An ∧ not B1 ∧ . . . ∧ not Bm

where l ≥ 0, n ≥ 0 and m ≥ 0. Here each Di, Ai and Bi is an atomic formula or
the “explicit” negation ¬A of an atomic formula A. If l = 0, then the conclusion
is equivalent to false.

The use of explicit negation (also called strong, or even classical negation)
enables more natural knowledge representation, including the representation of
rules and exceptions. For example:

canfly(X)← bird(X) ∧ not ¬canfly(X)
¬canfly(X)← penguin(X)

In the extended stable model semantics, explicit negations ¬A are treated as
syntactic sugar for “contrary” positive atoms, say A∗. For example, the literal
¬canfly(X) can be renamed as a positive atom, say abnormal(X). With this re-
naming and the addition of clauses ← A ∧ A∗ for every pair of contrary atoms,
the stable models of a program with explicit negation are isomorphic to the stable
models of the same program without explicit negation.

Arguably, the extension to disjunctive conclusions is more problematic, because
it creates the need to decide between alternative representations, for example
between the two representations:

p← not q
p ∨ not q

In the general case, different representations have different stable models.
In any case, the extension of the stable model semantics to include disjunctive

conclusions clearly distances it from the stratified and well-founded semantics,
which are naturally understood as the semantics of inductive definitions. The
primer by Eiter et al., [2009], which presents a comprehensive survey of the stable
model semantics and its associated Answer Set Programming paradigm, refers to
the difference between these two kinds of semantics as the Great Logic Program-
ming Schism.

Logic Programming 33

It might be more appropriate to call this the Second Great Schism, with the
First Great Schism being between two different views of what it means for a logic
program P to solve a goal G. In the theorem-proving view, solving G means
showing that P (or comp(P)) logically implies G. But both in the stratified/well-
founded semantics and in the stable model semantics, solving G means showing
that G is true in some canonical model of P .

6.5 Answer set programming

In the stratified/well-founded semantics, the intended model M of a program is
unique, the goal G typically contains (existentially quantified) variables, and a
solution of G is a substitution σ of terms for variables such that Gσ is true in M .
In the paper that introduced the stable model semantics, Gelfond and Lifschitz
[1988] similarly viewed the purpose of the stable model semantics as identifying a
unique (or canonical) model of a program, writing:

“The stable model semantics is defined for a logic program Π, if Π
has exactly one stable model, and it declares that model to be the
canonical model of Π.”

According to this view, programs that have multiple stable models do not have a
semantics at all.

The answer set programming (ASP) paradigm, proposed independently by Ilkka
Niemelä [1999] and by Victor Marek and Miroslaw Truszczyński [1999] turns this
point of view upside down. In ASP, the program itself is the problem to be solved,
a stable model of the program is a solution, and different stable models are different
solutions.

One of the simplest and most typical ASP examples is the map colouring prob-
lem. Given a map with countries X represented by the predicate country(X) and
adjacent countries X and Y represented by adjacent(X,Y), the problem is to find
a colouring red, yellow or green for each country, such that no two adjacent coun-
tries have the same colour. Here, ignoring the constraint that no country should
have two different colours, is a simple representation:

colour(X, red) ∨ colour(X, yellow) ∨ colour(X, green)← country(X)
← colour(X,C) ∧ colour(Y,C) ∧ adjacent(X,Y)

Clearly, the first clause can be rewritten as three normal clauses with negative
conditions, in this case without affecting the stable models of the program. The
second clause, which implicitly has the conclusion false, is a constraint, which
excludes models that satisfy the conditions of the clause.

ASP is almost certainly the most active area of research in logic programming
today. Because, for practical applications, solutions (and therefore stable models)
need to be finite, it is common to restrict programs P to ones whose grounding
ground(P) is finite. To ensure finite groundings, ASP programs are often restricted
to ones without function symbols, as in Datalog. For this reason, and because ASP

34 Robert Kowalski

and Datalog both employ bottom-up problem solving methods, the two areas have
much in common.

7 ABDUCTIVE LOGIC PROGRAMMING

ASP also overlaps with constraint logic programming (CLP) and abductive logic
programming (ALP). In a recent ASP programming competition [Denecker et al.,
2009], competitors included one CLP system and three ALP systems. The top
two systems were both ASP solvers, but an ALP-like solver achieved a respectable
third place.

7.1 Abduction

Abduction was identified by the logician and philosopher Charles Sanders Peirce
(1839–1914) as a form of logical reasoning, comparable to, but distinct from, de-
duction and induction. Whereas deduction derives conclusions from assumptions
(e.g. p(a) from p(X)← q(X) and q(a)), and induction derives general rules from
facts (e.g. p(X) ← q(X) from p(a), p(b) and q(a)), abduction derives assump-
tions from rules and conclusions (e.g. q(a) from p(X) ← q(X) and p(a)). As the
last example shows, abduction is closely related to top-down reasoning in logic
programming.

Peirce’s notion of abduction has had a big influence on epistemology and the
philosophy of science, and inspired numerous applications in artificial intelligence.
In my case, it was one of the inspirations of the concluding chapter of my 1979
book. It also inspired the development of Theorist [Poole et al., 1987] and the
application of abduction to default reasoning.

In Poole [1988], abduction is used to extend a first-order clausal theory T with
assumptions ∆ from a set of candidate hypotheses A, restricted by a set of first-
order constraints I:

Given T , A, I and observations G, an abductive explanation of G is a
subset ∆ of A, such that

T ∪∆ � G

T ∪∆ ∪ I is consistent.

The implementation of Theorist used a combination of linear resolution to generate
candidate ∆, by reasoning backwards from G, and a refutation proof procedure to
show that T ∪∆∪ I is consistent, by failing to refute T ∪∆∪ I. Although such a
procedure is not even semi-decidable in theory, it is often sufficient in practice.

7.2 Horn clause ALP and the relationship with stable models

[Eshghi, 1988] and [Eshghi and Kowalski, 1989] reformulated Theorist in a logic
programming setting, defining an abductive framework as a triple ⟨P, I,A⟩, where

Logic Programming 35

P is a Horn clause program, I is a set of integrity constraints, and A is a set of
ground atoms (whose predicates are called abducible):

Given an abductive framework ⟨P, I,A⟩ and a set G of goal clauses, an
abductive solution (or explanation) of G is a subset ∆ of A, such that

P ∪∆ solves G

P ∪∆ satisfies I.

The requirement that P ∪ ∆ solves G was defined as in Theorist, namely as
P ∪ ∆ � G. But because P ∪∆ is a set of Horn clauses, it can also be defined
as G being true in the minimal model of P ∪∆. For integrity constraints I in the
form of denials ← A1 ∧ . . . ∧ An, the requirement that P ∪∆ satisfies I was also
defined as in Theorist, namely as P ∪∆ ∪ I is consistent.

Whereas Poole [1988] investigated a translation of default logic into Theorist,
Eshghi and Kowalski [1989] investigated a translation of the stable model semantics
into ALP. The translation treats the set of all ground negative literals as a set Neg
of abducible atoms. In doing so, it treats a normal logic programP with negative
conditions as a Horn clause program P ∗. It uses integrity constraints I to ensure
that ordinary atoms a and their abducible negations not a are complementary.
This translates P into an ALP program ⟨P ∗, I,Neg⟩. The correspondence is given
by the relationship:

Let H be the Herbrand base of a normal logic program P .
Let M ⊆ H and ∆ ⊆ Neg.
Then M is a stable model of P if and only if P ∗ ∪∆ satisfies I.

The integrity constraints I needed for this correspondence include both all the
denials← a ∧ not a and all the disjunctions a ∨ not a. But at the time, we did not
realise that the disjunctive constraints could be represented so simply. Instead, we
represented them in a meta-logical form, in the spirit of Reiter’s [1988] epistemic,
modal representation of integrity constraints. I will come back to this problem of
representing disjunctive constraints in the next subsection, 7.3.

Although [Eshghi and Kowalski, 1989] showed how to translate stable mod-
els into ALP, many ASP programs can be represented in ALP directly without
the translation. For example, the map colouring program of section 6.5 can be
represented by the ALP framework ⟨P, I,A⟩ where:

P contains the definitions of the predicates country and adjacent.
A is the predicate colour.
I is the denial and disjunctive clause of the ASP program.

[Satoh and Iwayama, 1991] showed that the correspondence between stable models
and ALP also works in the opposite direction: Let ⟨P, I,A⟩ be an ALP framework
with denial integrity constraints I. For every a ∈ A, let not-a be a distinct atom
not occurring in P . Let A∗ be the set of all clauses:

36 Robert Kowalski

a(X)← not not-a(X)
not-a(X) ← not a(X)

Then M is a stable model of P ∪ I ∪A∗ if and only if P ∪∆ � I

7.3 The ALP tower of Babel

The definition of an ALP framework ⟨P, I,A⟩ given in section 7.2 can be general-
ized so that P is a normal logic program with negation. But then the requirements
that P ∪ ∆ solves G and P ∪ ∆ satisfies I have even more interpretations than
before. In particular, the requirement that P ∪ ∆ solves G can be interpreted
either as comp(P ∪∆) � G, or as G is true in some appropriate canonical model
of P ∪∆.

The requirement that P ∪∆ satisfies I is even more problematic. The problem
was already the subject of extensive debate in the 1980s in the context of deductive
databases D. The alternatives included the interpretation that the constraints I
are consistent with D [Kowalski, 1978], that they are consistent with comp(D)
[Sadri and Kowalski, 1988], that they are logically implied by comp(D) [Reiter,
1984; 1988; Lloyd and Topor, 1985], and that they are epistemic sentences that
are true in D [Reiter, 1988].

In the context of ALP, the different interpretations of solving a goal are multi-
plied by the different interpretations of satisfying integrity constraints. Compared
with the stable model semantics and ASP, where everyone speaks with one voice,
in ALP everyone argues in a different language. So is there any prospect of clearing
up the confusion?

We can start by eliminating the semantic distinction between goals and in-
tegrity constraints. Arguably, the distinction is mainly a pragmatic one between
goals G that are one off (or ad hoc) and goals I that are persistent and need
to be maintained. As a consequence, the definition of abductive solution can be
simplified:

Given an abductive framework ⟨P, I,A⟩ and a set G of goal clauses, an
abductive solution is a subset ∆ of A, such that P ∪∆ satisfies G ∪ I.

The hard part of the problem remains: How to understand integrity satisfaction?
Having been involved in the early debates about the semantics of integrity con-
straints, and contributed to proof procedures for both integrity checking [Sadri and
Kowalski, 1988] and ALP [Fung and Kowalski, 1997], I am now convinced that the
requirement that P ∪∆ satisfies G∪ I is best understood as G∪ I is true in some
appropriate model M of P ∪∆. This interpretation has the added attraction that,
no matter how M is defined, G ∪ I can include arbitrary first-order sentences. In
particular, I can include the disjunctive constraints a ∨ not a, needed to simulate
the stable model semantics, as was shown by Kakas and Mancarella [1990].

It remains to identify the nature of the model M . In the case of Horn clause
programs P , it is obvious that M should be the minimal model of P ∪∆. Similarly,
in the case of locally stratified programs, M should be the perfect model of P ∪∆.

Logic Programming 37

But if P is an arbitrary normal logic program, then it is not immediately obvious
whether M should be a stable model or some canonical model, such as the well-
founded model.

However, the correspondence between the stable model semantics and abduction
shows that stable models and abduction are different ways of achieving the same
functionality. Allowing M to be any stable model would be double counting.
This leaves only one sensible alternative, namely restricting M to some canonical
model, with the well-founded model being the strongest candidate. The resulting
combination of logic programs P ∪ ∆ defining well-founded models M in which
first-order sentences G ∪ I are true is closely related to the combination of first-
order logic with inductive definitions developed by Marc Denecker [1998] and his
colleagues [Denecker et al., 2001]. The argument for understanding abduction
in terms of the well-founded semantics was also made, from the viewpoint of
representing default and hypothetical reasoning, by [Pereira et al., 1991].

8 CONSTRAINT LOGIC PROGRAMMING

Proof procedures for ALP and Constraint Logic Programming (CLP) have much
in common: Both generate a set (or conjunction) C of conditions (abducible or
constraint formulas) such that C solves the initial goal G and C is satisfiable. In
both cases, they do so by reasoning top-down, backwards from G, incrementally
generating C and testing C for satisfiability.

Constraints were first introduced into LP by Colmerauer [1982] in Prolog II.
Their introduction was motivated mainly by the inefficiency of the “occur check”
need to ensure that a term, such as f(X), does not unify with a subterm, such as
X. Clark [1978] had shown that unification with the occur check implements the
identity relation for the domain D of Herbrand interpretations, in which ground
terms can be viewed as finite trees. Colmerauer [1982] showed that unification
without the occur check implements the identity relation for the domain D in
which terms can be viewed as possibly infinite, rational trees.

Jaffar and Lassez [1987] introduced the CLP Scheme, which generalized the
domain D to an arbitrary model-theoretic structure defining the semantics of con-
straint predicates. The resulting programs are sets of Horn clauses whose bodies
contain both user-defined predicates and constraint predicates, but whose heads
contain only user-defined predicates. The most important new instance of the
scheme was CLP(R) [Jaffar et al., 1992], in which the constraint domain is the set
of real numbers with addition, multiplication, identity and inequality.

The semantics of a CLP program [Jaffar et al., 1998] is given both by a structure
D and a theory T , which is a first-order axiomatization of D. The relationship
between D and T is analogous to the relationship between the standard model of
arithmetic and first-order Peano arithmetic.

The “algebraic” semantics is defined in terms of truth in the minimal model
of P ∪ D, where D is the set of all ground constraint atoms that are true in D.

38 Robert Kowalski

According to the algebraic semantics, given a constraint logic program P , goal
clause G and constraint formula C:

G is satisfiable iff G is true in the minimal model of P ∪D.
C solves G iff C and C → G are true in the minimal model of P ∪D.

According to the “logical” semantics:

G is satisfiable iff P ∪ T � G.
C solves G iff P ∪ T � C → G and C is consistent with P ∪ T .

According to the operational semantics:

C solves G iff C can be generated by reasoning backwards from G, and
C is satisfiable, where satisfiability is determined by a constraint solver
solve(C), which may also simplify C.

There is an obvious parallel here, not only with proof procedures for ALP, but
also with the two main alternative ways of defining the semantics of ALP.

The “algebraic” and “logical” semantics of the CLP Scheme coincide for Horn
clause programs and theories T that satisfy certain natural completeness condi-
tions. But, in the case of CLP programs with negation, the relationship between
the two kinds of semantics is much more problematic, but seems to have received
relatively little attention.

If all these problems and confusions about the semantics of negation are not
enough, there is one more twist to the story.

9 ARGUMENTATION

The proof procedure in the [Eshghi and Kowalski, 1989] paper was intended to
compute the stable model semantics, but failed to implement the disjunctive in-
tegrity constraint in its totality. Phan Minh Dung [1991] showed that it imple-
mented instead a localized form of the disjunctive constraint, to which he and
[Kakas et al., 1992] gave an argumentation interpretation. Dung [1993, 1995]
generalized this interpretation and developed an abstract argumentation theory,
which has wide-ranging applications beyond logic programming.

In the case of logic programming, given a ground normal program P, an argu-
ment for a claim p supported by assumptions ∆ ⊆ Neg is a finite tree T labelled
with literals such that:

• p is the root of T.

• Each non-leaf node q of T is the head of some clause q ← B in P , and its
children are the literals in the body B of the clause. If q is a fact, with an
empty body B, then it has a single child labelled by true.

• Each leaf is either the label true or an assumption in ∆.

Logic Programming 39

Viewed abstractly, it is the set ∆ of assumptions supporting an argument that
determines whether the argument and its claim are acceptable, and this depends,
in turn, on whether or not ∆ is able to defend itself against attack. Given a ground
normal program P :

∆1 ⊆ Neg attacks ∆2 ⊆ Neg iff there exist an argument for a claim p
supported by ∆1 and an assumption not p ∈ ∆2.

∆1 ⊆ Neg defends ∆2 ⊆ Neg iff
∆1 attacks every ∆3 ⊆ Neg that attacks ∆2.

The notions of argument, assumption, attack and defence are sufficient to recon-
struct not only most logic programming semantics, but also most semantics for
non-monotonic reasoning [Bondarenko et al., 1997]. In the case of logic program-
ming, sets ∆ ⊆ Neg of assumptions that do not attack themselves correspond
to three-valued Herbrand interpretations M = Mpos ∪Mneg whose true atoms
Mpos are supported by their false atoms Mneg = ∆. If ∆ also contains all the as-
sumptions that it defends, then the corresponding interpretation is a three-valued
stable model, as defined by Przymusinski [1990] and shown by [Wu et al., 2009],
and therefore a partial stable model, as defined by Sacca and Zaniolo [1990, 1991].

Sets ∆ that not only contain all the assumptions that they defend, but also
attack all the assumptions that they do not contain, correspond to two-valued,
stable models:

Given a ground logic program P :

If ∆ ⊆ Neg does not attack ∆, and ∆ attacks Neg−∆, then
M = {p | ∆ supports an argument for p} is a stable model of P .

If M is a stable model of P , then
∆ = {not p ∈ Neg | p /∈M} does not attack ∆, and ∆ attacks Neg−∆.

From an argumentation point of view, the stable model semantics is all-out warfare:
For a set of assumptions ∆ to correspond to a stable model, every assumption not
p has to take a side: Either not p is in ∆, or ∆ attacks {notp}.

Dung [1993; 1995] argued that the stable model semantics is too extreme: It is
sufficient for a set of assumptions to defend itself against all attacks:

∆ ⊆ Neg is admissible iff ∆ defends ∆, and ∆ does not attack ∆.

Dung [1991] showed that the proof procedure of [Eshghi and Kowalski, 1989] is
sound with respect to the admissibility semantics.

Dung also gave an abductive interpretation of the well-founded semantics in
[Dung, 1991] and an argumentation interpretation in [Dung, 1995]. Whereas in
the admissibility and stable semantics an assumption can be used in its own self-
defense, in the well-founded semantics an assumption has to be defended by other
assumptions:

A set ∆ of assumptions is well-founded iff ∆ is the smallest set of
assumptions that contains all the assumptions that it defends.

40 Robert Kowalski

This is similar to Przymusinski’s [1990] characterization of the well-founded se-
mantics in terms of three-valued stable models.

The well-founded set can be constructed bottom-up by starting with the empty
set {} of assumptions and repeatedly adding new assumptions defended by the
previously added set of assumptions, until no further assumptions can be added.
This bottom-up construction is similar to van Gelder’s [1993] alternating fixed
point characterisation of the well-founded semantics.

10 CONCLUSIONS

This history covers some of the highlights of the development of logic programming
from the late 1960s into the 21st century. It focuses on a number of issues that
are still relevant today, in particular on:

• the difference between solving a goal by theorem-proving and solving it by
model generation,

• the difference between solving a goal top-down and solving it bottom-up.

• the relationship between declarative and procedural representations.

Perhaps the biggest change over the years has been the move away from viewing
computation as deduction to viewing it as model generation. The seeds of this
change were planted with the minimal model semantics of Horn clauses in 1976,
but really got going only in the 1980s, when it was applied to the semantics of
negation as failure. As a consequence, except perhaps in the context of CLP, the
completion semantics of negation has been overshadowed by the model-theoretic
approach.

The recent revival of Datalog [Huang et al., 2011] suggests that the old promise
that logic programming can unify programming and databases may have new
prospects. However, the query evaluation strategies of Datalog are mainly bottom-
up with magic set transformations used to simulate top-down execution. Is this
simulation of top-down execution really necessary? Or might some more direct
combination of top-down and bottom-up execution be more useful.

Recent years have also seen a shift away from reconciling declarative and pro-
cedural representations to a more purely declarative approach. In the meanwhile,
imperative languages dominate the world of practical computing. Does this mean
that logic programming is destined to become a niche technology concerned exclu-
sively with declarative representations, based on ASP and Datalog? Or will it split
into separate declarative and procedural camps, with procedural representations
being relegated to the domain of Prolog? Or might it still be possible to recon-
cile declarative and procedural representations, perhaps by combining Prolog-like
top-down execution with tabling?

Logic Programming 41

ACKNOWLEDGEMENTS

Many thanks to Maurice Bruynooghe, Keith Clark, Marc Denecker, Phan Minh
Dung, Maarten van Emden, Michael Gelfond, Tony Kakas, Vladimir Lifschitz,
Luis Pereira, Alan Robinson, John Schlipf, Jörg Siekmann, Allen Van Gelder and
David Scott Warren for their helpful comments on the paper. Special thanks to
Luis and Maarten for acting as official readers of the paper.

It is important to stress that, in this case more than in most, the author alone
is fully responsible for any errors of fact or judgement.

BIBLIOGRAPHY

[Anderson and Belnap, 1962] A. R. Anderson and N. D. Belnap. The pure calculus of entail-
ment.Journal of Symbolic Logic, 19-52, 1962.

[Andréka and Németi, 1978] H. Andréka and I. Németi. The Generalized Completeness of Horn
Predicate Logic as a Programming Language. Acta Cybernetica, 4:3–10, 1978. (This is the
publish version of a 1975 report entitled “General Completeness of Prolog” Department of
Artificial Intelligence, University of Edinburgh).

[Apt and Bol, 1994] K. R. Apt and R. Bol. Logic programming and negation: a survey. Journal
of Logic Programming 19-20, 9–71, 1994.

[Apt et al., 1988] K. R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowl-
edge. In: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufman, Los Altos, CA, 1988.

[Apt and van Emden, 1982] K. R. Apt and M. van Emden. Contributions to the Theory of Logic
Programming. Journal of the ACM 29, 3, 841–862, 1982.

[Bancilhon et al., 1985] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and
other strange ways to implement logic programs. In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems (pp. 1-15). ACM, 1985.

[Bondarenko et al., 1997] A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An Abstract
Argumentation-theoretic Approach to Default Reasoning. Journal of Artificial Intelligence 93
(1-2), 63-101, 1997.

[Boyer and Moore, 1972] R. S. Boyer and J. S. Moore. The sharing of structure in theorem-
proving programs. Machine Intelligence, 7, 101–116, 1972.

[Brewka et al., 2011] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a
glance. Communications of the ACM, 54 (12), 92-103, 2011.

[Bruynooghe and Pereira, 1984] M. Bruynooghe and L. M. Pereira. Deduction revision through
intelligent backtracking. In J. Campbell, ed., “Issues in Prolog Implementation”. Ellis Hor-
wood, 1984.

[Bry et al., 2007] F. Bry, N. Eisinger, T. Eiter, T. Furche, G. Gottlob, C. Ley, and F. Wei
Foundations of rule-based query answering. In Proceedings of the Third international summer
school conference on Reasoning Web (pp. 1-153). Springer-Verlag, 2007.

[Bundy and Welham, 1981] A. Bundy and B. Welham. Using meta-level inference for selec-
tive application of multiple rewrite rule sets in algebraic manipulation. Artificial Intelli-
gence, 16 (2), 189-211, 1981.

[Ceri et al., 1990] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Surveys
in Computer Science. Springer-Verlag, 1990.

[Chandra and Harel, 1982] A. K. Chandra and D. Harel. Structure and complexity of relational
queries. Journal of Computer and System Sciences 25, 1 (Aug.), 99–128, 1982.

[Chandra and Harel, 1985] A. K. Chandra and D. Harel. Horn clause queries and generaliza-
tions. Journal of Logic Programming 2, 1 (April), 1–15, 1985. A preliminary version of this
paper, “Horn Clauses and the Fixpoint Query Hierarchy,” appeared in the ACM Symp. on
Principles of Database Systems, 1982.

[Chen and Warren, 1996] W. Chen and D. Warren. Tabled Evaluation with Delaying for General
Logic Programs. JACM 43, 20–74, 1996.

42 Robert Kowalski

[Clark, 1978] K. L. Clark/ Negation by failure. In Gallaire, H. and Minker, J. [eds], Logic and
Databases, Plenum Press, 293-322, 1978.

[Clark, 1980] K. L. Clark. Predicate logic as a computational formalism (Doctoral dissertation,
Queen Mary, University of London), 1980.

[Clark and Gregory, 1983] K. L. Clark and S. Gregory). Parlog: A parallel logic programming
language. Imperial College of Science and Technology Department of Computing, 1983.

[Clark and Gregory, 1986] K. L. Clark and S. Gregory. Parlog: Parallel programming in
logic. ACM Transactions on Programming Languages and Systems (TOPLAS), 8 (1), 1-49,
1986.

[Clark et al., 1982] K. L. Clark, F. G. McCabe, and S. Gregory. IC-Prolog language features,
Logic programming, ed. Clark/Tarnlund, 254-266, 1982.

[Clark and Tärnlund, 1978] K. L. Clark and S.-A. Tärnlund. A first-order theory of data and
programs. In Proceedings of the IFIP Congress 77, 939-944, 1978.

[Codd, 1970] E. F. Codd. Relational Completeness of Data Base Sublanguages. Database Sys-
tems: 65–98, 1970.

[Codd, 1972] E. F. Codd. Relational completeness of data base sublanguages (pp. 65-98). IBM
Corporation, 1972.

[Cohen, 1988] J. Cohen. A View of the Origins and Development of Prolog, Communications
ACM, vol 31, pp 26-36, 1988.

[Colmerauer, 1969] A. Colmerauer. Les systèmes Q ou un formalisme pour analyser et
synthétiser des phrases sur ordinateur. Mimeo, Montréal, 1969.

[Colmerauer, 1970] A. Colmerauer. Total Precedence Relations, Journal ACM 1970, vol 17, pp
14-30, 1970.

[Colmerauer, 1975] A. Colmerauer. Les grammaires de metamorphose, Groupe d’Intelligence
Artificielle, University de Marseille-Luminy (November 1975). Appears as ‘Metamorphosis
Grammars” in: L. Bolc (Ed.), Natural Language Communication with Computers, (Springer,
1978).

[Colmerauer, 1982] A. Colmerauer. Prolog II: Reference manual and theoretical model. Groupe
D’intelligence Artificielle, Faculté Des Sciences De Luminy, Marseille, 1982.

[Colmerauer et al., 1973] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système
de communication homme-machine en français. Research report, Groupe d’Intelligence Arti-
ficielle, Université d’Aix-Marseille II, Luminy, 1973.

[Colmerauer and Roussel, 1996] A. Colmerauer and P. Roussel. The birth of Prolog. In History
of programming languages—II (pp. 331-367). ACM, 1996.

[Console et al., 1991] L. Console, D. Theseider Dupre, and P. Torasso. On the relationship be-
tween abduction and deduction. Journal of Logic and Computation 2(5) 661-690, 1991.

[Costantini, 2002] S. Costantini. Meta-reasoning: A Survey. In Kakas, A.C., Sadri, F. (Eds.):
Computational Logic: Logic Programming and Beyond. Springer Verlag. Vol. 2. 253-288, 2002.

[Chen and Warren, 1996] W. Chen and D. Warren. Tabled evaluation with delaying for general
logic programs. JACM 43, 1 (January), 20–74, 1996.

[Dantsin et al., 1997] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and ex-
pressive power of logic programming. In Proceedings of the Twelfth Annual IEEE Conference
on Computational Complexity, June 24–27, 1997, Ulm, Germany, pp. 82–101. IEEE Computer
Society Press, 1997.

[Davis, 1980] M. Davis. The mathematics of non-monotonic reasoning. Artificial Intelligence,
13 (1), 73-80, 1980.

[Dean and Ghemawat, 2008] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51 (1), 107-113, 2008.

[Denecker, 1998] M. Denecker. The well-founded semantics is the principle of inductive defini-
tion. In Logics in Artificial Intelligence, J. Dix, L. Farinas del Cerro, and U. Furbach, Eds.
Lecture Notes in Artificial Intelligence, vol. 1489. Springer-Verlag, 1–16, 1998.

[Denecker et al., 2001] M. Denecker, M. Bruynooghe, and V. Marek. Logic programming re-
visited: logic programs as inductive definitions. ACM Transactions on Computational
Logic, 2 (4), 623-654, 2001.

[Denecker and Kakas, 2002] M. Denecker and A. Kakas. Abduction in logic programming. In
Computational Logic: Logic Programming and Beyond (pp. 402-436). Springer Berlin Heidel-
berg, 2002.

Logic Programming 43

[Denecker et al., 2009] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczynski.
The second Answer Set Programming competition. In LPNMR, E. Erdem, F. Lin, and T.
Schaub, Eds. LNCS, vol. 5753. Springer, 637-654, 2009.

[Dung, 1991] P. M. Dung. Negation as hypothesis: an abductive foundation for logic program-
ming. Proc. 8th International Conference on Logic Programming. MIT Press, 1991.

[Dung, 1993] P. M. Dung. On the acceptability of arguments and its fundamental roles in non-
monotonic reasoning and logic programming, Proceedings of IJCAI 1993, pp. 852-857, Morgan
Kaufmann, 1993.

[Dung, 1995] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial intelligence, 77 (2),
321-357, 1995.

[Eiter et al., 2009] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer.
In Reasoning Web. Semantic Technologies for Information Systems (pp. 40-110). Springer
Berlin Heidelberg, 2009.

[Elcock, 1990] E. W. Elcock. Absys: The First Logic Programming Language—a Retrospective
and a Commentary. Journal of Logic Programming, 9(1), 1-17, 1990.

[van Emden, 2006] M. van Emden. The Early Days of Logic Programming: A Personal Per-
spective. The Association of Logic Programming Newsletter, Vol. 19 n. 3, August 2006.
http://www.cs.kuleuven.ac.be/\textasciitildedtai/projects/ALP/newsletter/aug06/

[van Emden and Kowalski, 1976] M. van Emden and R. Kowalski. The Semantics of Predicate
Logic as a Programming Language JACM , Vol. 23, No. 4, 733-742. 1976. Earlier version
DCL Memo. School of Artificial Intelligence, University of Edinburgh (1974)

[Eshghi and Kowalski, 1989] K. Eshghi and R. Kowalski. Abduction Compared with Negation
by Failure. In Sixth International Conference on Logic Programming, (eds. G. Levi and M.
Martelli) MIT Press, 234-254, 1989.

[Feferman, 1970] S. Feferman. Formal theories for transfinite iterations of generalised inductive
definitions and some subsystems of analysis. In Intuitionism and Proof theory, A. Kino, J.
Myhill, and R. Vesley, Eds. North Holland, 303–326, 1970.

[Fitting, 1985] M. Fitting. A Kripke-Kleene semantics for logic programs*. The Journal of Logic
Programming, 2 (4), 295-312, 1985.

[Fung and Kowalski, 1997] T. H. Fung and R. Kowalski. The IFF Proof Procedure for Abductive
Logic Programming. Journal of Logic Programming, 1997.

[Gallaire and Minker, 1978] H. Gallaire and J. Minker. Logic and Data Bases. Plenum Press,
New York, 1978.

[Gallaire and Lasserre, 1982] H. Gallaire and C. Lasserre. Metalevel control for logic pro-
grams.Logic Programming, 173-185, 1982.

[Gelernter, 1963] H. Gelernter. Machine generated problem solving graphs. In Proc. Symp,
Math. Theory of Automata (pp. 179-203), 1963.

[Gelfond, 1987] M. Gelfond. On Stratified Autoepistemic Theories. In Proc. of AAAI87. Morgan
Kaufman, 207–211, 1987.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In: Proceedings of the Fifth International Conference on Logic Programming
(ICLP), 1070-1080, 1988.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing 9, 3–4, 365–386, 1991.

[Green, 1969] C. Green. Application of theorem proving to problem solving. Proceedings of
the 1st International Joint Conference on Artificial Intelligence. Morgan Kaufmann. 219-239,
1996.

[Harel, 1980] D. Harel. Review on Logic and Data Bases, Computing Reviews #36,671 (Aug
1980), 367-369.

[Hayes, 1973] P. J. Hayes. Computation as Deduction, Proceedings 2nd MFCS Symposium,
Czechoslovakia Academy of Sciences, Prague, Czechoslovakia, 1973.

[Hayes and Kowalski, 1971] P. J. Hayes and R. A. Kowalski. Lecture Notes on Automatic
Theorem-Proving. DCL Memo 40. School of Artificial Intelligence, University of Edinburgh,
1971.

[Hellerstein, 2010] J. M. Hellerstein. The Declarative Imperative: Experiences and Conjectures
in Distributed Logic, SIGMOD Record 39(1), 2010.

[Hewitt, 1971] C. Hewitt. Procedural Embedding of Knowledge In Planner. Proceedings of the
2nd International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1971.

44 Robert Kowalski

[Hewitt, 2009] C. Hewitt. Middle History of Logic Programming: Resolution, Planner, Edin-
burgh LCF, Prolog, Simula, and the Japanese Fifth Generation Project, 2009. arXiv preprint
arXiv:0904.3036

[Hill, 1974] R. Hill. LUSH Resolution and its Completeness. DCL Memo 78. School of Artificial
Intelligence, University of Edinburgh, 1974.

[Huang et al., 2011] S. S. Huang, T. J. Green, and B. T. Loo. Datalog and Emerging Ap-
plications: an Interactive Tutorial. Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data pp. 1213-1216, 2011.

[Jaffar and Lassez, 1987] J. Jaffar and J. L. Lassez. Constraint logic programming. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages (pp. 111-119). ACM, 1987.

[Jaffar et al., 1998] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint
logic programs1. The Journal of Logic Programming, 37 (1-3), 1-46, 1998.

[Jaffar et al., 1992] J. Jaffar, S. Michaylov, P. Stuckey, and R. H. Yap The CLP(R) language
and system. ACM Transactions on Programming Languages and Systems (TOPLAS), 14 (3),
339-395, 1992.

[Kakas and Mancarella, 1990] A. C. Kakas and P. Mancarella. Generalized Stable Models: A
Semantics for Abduction. In ECAI (Vol. 90, pp. 385-391), 1990.

[Kakas et al., 1992] A. C. Kakas, R. Kowalski, and F. Toni. Abductive logic program-
ming.Journal of Logic and Computation, 2 (6), 719-770, 1992.

[Kakas et al., 1998] A. C. Kakas, R. Kowalski, and F. Toni. The Role of Logic Programming in
Abduction, Handbook of Logic in Artificial Intelligence and Programming 5, Oxford Univer-
sity Press, 235-324, 1998.

[Kowalski, 1970] R. Kowalski. Search strategies for theorem proving. Machine Intelligence, 5,
181-201, 1970.

[Kowalski, 1972] R. Kowalski. The Predicate Calculus as a Programming Language (abstract).
Procedings of the First MFCS Symposium, Jablonna, Poland, 1972.

[Kowalski, 1974] R. Kowalski. Predicate logic as a programming language. In Proceedings of
IFIP 1974 [Stockholm, Sweden). North-Holland, Amsterdam, 1974, 569-574. This is the pub-
lished version of DCL Memo 70, School of Artificial Intelligence, Univ. of Edinburgh, U.K.,
Nov. 1973.

[Kowalski, 1978] R. Kowalski. Logic for data description, in: H. Gallaire and J. Minker (eds.),
Logic and Data Bases, Plenum Press, New York, pp. 77-103, 1978.

[Kowalski, 1979a] R. Kowalski. Algorithm = Logic+ Control. CACM, 22(7), 424-436, 1979.
[Kowalski, 1979b] R. Kowalski. Logic for Problem Solving. North Holland Elsevier, 1979. This is

an expanded version of DCL Memo 75, Department of Artificial Intelligence, U. of Edinburgh
(1974). Also http://www.doc.ic.ac.uk/\textasciitilderak/.

[Kowalski, 2011] R. Kowalski. Computational Logic and Human Thinking: How to be Artifi-
cially Intelligent, Cambridge University Press, 2011.

[Kowalski, 2013] R. Kowalski. Logic Programming in the 1970s. In: P. Cabalar and T.C. Son
(eds.) LPNMR 2013. Springer Verlag, 2013.

[Kowalski and Kuehner, 1971] R. Kowalski and D. Kuehner. Linear Resolution with selection
function, Artificial Intelligence, vol 2, 1971, 227-260, 1971.

[Kreisel, 1963] G. Kreisel. Generalized inductive definitions. Tech. rep., Stanford University,
1963.

[Kuehner, 1969] D. Kuehner. Bi-directional search with Horn clauses. Edinburgh University,
1969.

[Kunen, 1987] K. Kunen. Negation in logic programming. The Journal of Logic Program-
ming, 4 (4), 289-308, 1987.

[Lifschitz, 1988] V. Lifschitz. On the Declarative Semantics of Logic Programs with Negation,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 177-192.

[Lloyd, 1985/1987] J. W. Lloyd. Foundations of Logic Programming. New York: Springer Verlag
(1985 and 1987)

[Lloyd and Torpor, 1985] J. W. Lloyd and R. W. Topor. A Basis for Deductive Database Sys-
tems. J. Logic Programming 2: 93–109, 1985.

[Loveland, 1968] D. W. Loveland. Mechanical theorem-proving by model elimination. Journal
of the ACM, 15, 236-251, 1968.

Logic Programming 45

[Loveland, 1970] D. W. Loveland. A Linear Format for Resolution. In Symposium on Automatic
Demonstra-tion, pp. 147-162. Springer, Berlin Heidelberg, 1970.

[Loveland, 1972] D. W. Loveland. A Unifying View of Some Linear Herbrand Procedures.
JACM, 19(2), 366-384, 1972.

[Luckham, 1970] D. Luckham. Refinement Theorems in Resolution Theory. In Symposium on
Automatic Demonstration (pp. 163-190). Springer, Berlin Heidelberg, 1970.

[Mariën et al., 2004] M. Mariën, D. Gilis, & M. Denecker. On the relation between ID-logic and
answer set programming. In Logics in Artificial Intelligence (pp. 108-120). Springer Berlin
Heidelberg, 2004.

[Marek and Truszczyński, 1999] V. W. Marek and M. Truszczyński Stable models and an al-
ternative logic programming paradigm. In The Logic Programming Paradigm (pp. 375-398).
Springer Berlin Heidelberg, 1999.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In Meltzer, B. and Michie, D. and Swann, M. (eds.)
Machine intelligence 4, Edinburgh University Press (pp. 463-502), 1969.

[McCarthy, 1980] J. McCarthy. Circumscription— a form of non-monotonic reasoning.Artificial
intelligence, 13 (1), 27-39, 1980.

[McDermott and Doyle, 1980] D. McDermott and J. Doyle. Non-monotonic logic I. Artificial
intelligence,13 (1), 41-72, 1980.

[Minker, 1996] J. Minker. Logic and databases: A 20 year retrospective (pp. 1-57). Springer
Berlin Heidelberg, 1996.

[Minsky, 1975] M. Minsky. A framework for representing knowledge. In Winston, P. H. (ed.)
The psychology of Computer Vistino. McGraw-Hill, New York, 211-277, 1975.

[Moore, 1985] R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial intelli-
gence, 25 (1), 75-94, 1985.

[Naqvi, 1988] S. A. Naqvi. A Logic for Negation in Database Systems, in: J. Minker (ed.),
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos,
CA, 1988, pp. 378-387.

[Nicolas and Gallaire, 1978] J. M. Nicolas and H. Gallaire. Database: Theory vs. Interpretation.
In: Gallaire, H., Minker, J. (eds.), Logic and Databases, Plenum, New York, 1978.

[Niemelä, 1999] I. Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25 (3-4), 241-273,
1999.

[Nilsson, 1968] N. J. Nilsson. Searching problem-solving and game-playing trees for minimal
cost solutions. In IFIP Congress (2) (pp. 1556-1562, 1968).

[Peirce, 1931] C. S. Peirce. Collected Papers. C. Hartshorn & P. Weiss (eds.) Cambridge, MA:
Harvard University Press, 1931.

[Pereira, 1984] L. M. Pereira. Logic Control with Logic, in: Implementations of Prolog, pp.
177-193, J. Campbell (ed.), Ellis Horwood, 1984.

[Pereira et al., 1991] L. M. Pereira, J. N. Apaŕıcio, and J. J. Alferes. Hypothetical Reasoning
with Well Founded Semantics. In SCAI (pp. 289-300), 1991.

[Pereira and Warren, 1980] F. C. Pereira and D. H. Warren. Definite clause grammars for lan-
guage analysis—a survey of the formalism and a comparison with augmented transition net-
works. Artificial intelligence, 13 (3), 231-278, 1980.

[Poole, 1988] D. Poole. A logical framework for default reasoning. Artificial intelligence, 36 (1),
27-47, 1988.

[Poole et al., 1987] D. Poole, R. Goebel, and R. Aleliunas. Theorist: a logical reasoning system
for defaults and diagnosis. In N. Cercone and G. McCalla (Eds.) The Knowledge Frontier:
Essays in the Representation of Knowledge, Springer Verlag, New York, 331-352, 1987.

[Przymusinski, 1988] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases
and Logic Programs, In: J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 193-216.

[Przymusinski, 1990] T. C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundamenta Informaticae, 13(4):445–463, 1990.

[Ramakrishnan and Ullman, 1995] R. Ramakrishnan and J. D. Ullman. A survey of deductive
database systems. The journal of logic programming, 23 (2), 125-149, 1995.

[Reiter, 1971] R. Reiter. Two Results on Ordering for Resolution with Merging and Linear
Format. JACM 18(4), 630-646, 1971.

46 Robert Kowalski

[Reiter, 1978] R. Reiter. On Closed World Data Bases. In: Gallaire H. and Minker J. (eds.),
Logic and Data Bases, Plenum Press, New York, pp. 55-76, 1978.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Artificial intelligence, 13 (1), 81-132, 1980.
[Reiter, 1988] R. Reiter. On Integrity Constraints. In: 2nd Conference on Theoretical Aspects

of Reasoning about Knowledge, 97—111, 1988.
[Robinson, 1965a] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.

JACM, 12(1) 23–41, 1965.
[Robinson, 1965b] J. A. Robinson. Automatic deduction with hyper-resolution, International J.

Computer Math. 1, 3. 227-234, 1965.
[Sacca and Zaniolo, 1990] D. Sacca and C. Zaniolo. Stable models and non-determinism in logic

programs with negation. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ACM, 205-217, 1990.

[Sacca and Zaniolo, 1991] D. Sacca and C. Zaniolo. Partial Models and Three-Valued Models
in Logic Programs with Negation. In LPNMR, 87-101, 1991.

[Sadri and Kowalski, 1988] F. Sadri and R. Kowalski. A Theorem-Proving Approach to
Database Integrity. In: Minker, J. [ed.], Foundations of Deductive Databases and Logic Pro-
gramming, Morgan Kaufmann, 313-362, 1988.

[Sagonas et al., 1994] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive
Database Engine. Pro-ceedings of the ACM SIGMOD International Conference on the Man-
agement of Data pp. 442-453, 1994.

[Satoh and Iwayama, 1992] K. Satoh and N. Iwayama. Computing abduction using the TMS.
Proceedings of ICLP. MIT Press 505-518, 1992.

[Scott, 1970] D. Scott. Outline of a mathematical theory of computation. Proc. of the Fourth
Annual Princeton Conference on Information 5ciences and Systems, pp. 169-176, 1970.

[Shepherdson, 1988] J. Shepherdson. Negation in Logic Programming. In: Minker, J. [ed.], Foun-
dations of Deductive Databases and Logic Programming, Morgan Kaufmann, 19-88, 1988.

[Smullyan, 1956] R. M. Smullyan. On definability by recursion (Abstract 782t). Bulletin AMS
62, 601, 1956.

[Smullyan, 1961] R. M. Smullyan. Theory of Formal Systems. Annals of Mathematical Studies
Vol 47. Princeton University Press, Princeton, New Jersey, 1961.

[Tamaki and Sato, 1986] H. Tamaki and T. Sato. OLD Resolution with Tabulation. Third In-
ternational Conference on Logic Programming pp. 84-98. Springer, Berlin, Heidelberg, 1986.

[Tekle and Liu, 2011] K. T. Tekle and Y. A. Liu. More Efficient Datalog Queries: Subsumptive
Tabling beats Magic Sets. In Proceedings of SIGMOD International Conference on Manage-
ment of Data 661-672, 2011.

[Thagard, 2005] P. Thagard. Mind: Introduction to Cognitive Science. Second edition. MIT
Press, 2005.

[Ueda, 1986] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with the
Concept of a Guard. ICOT Technical Report TR-208, Institute for New Generation Computer
Technology (ICOT), Tokyo, 1986. Revised version in Programming of Future Generation
Computers, Nivat, M. and Fuchi, K. (eds.), North-Holland, Amsterdam, pp.441-456, 1988.

[Van Gelder, 1989] A. Van Gelder. Negation as failure using tight derivations for general logic
programs, The Journal of Logic Programming, Volume 6, Issues 1–2, Pages 109-133, 1989.

[Van Gelder, 1993] A. Van Gelder. The alternating fixpoint of logic programs with negation,
Journal of Computer and System Sciences, Volume 47, Issue 1, Pages 185-221, 1993.

[Van Gelder et al., 1991] A. Van Gelder, K. A. Ross, and J. Schlipf. The Well-Founded Seman-
tics for General Logic Programs. JACM 38, 3, 620–650, 1991.

[Warren, 1978] D. H. Warren. Applied logic: its use and implementation as a programming tool.
Ph.D. thesis. University of Edinburgh. Also Technical Note 290, AI Center, SRI International,
1978.

[Warren, 1983] D. H. Warren). An abstract Prolog instruction set (Vol. 309). Menlo Park, Cal-
ifornia: SRI International, 1983.

[Warren et al., 1977] D. H. Warren, L. M. Pereira, and F. Pereira. Prolog − the language and
its implementation compared with Lisp. In ACM SIGPLAN Notices (Vol. 12, No. 8, pp.
109-115). ACM. page 48. Warren et al.,. 1977.

[Winograd, 1971] T. Winograd. Procedures as a Representation for Data in a Computer Pro-
gram for Under-standing Natural Language. MIT AI TR-235 (1971) Also: Understanding
Natural Language. Academic Press, New York, 1972.

Logic Programming 47

[Wos et al., 1965] L. Wos, G. A . Robinson, and D. F. Carson. Efficiency and completeness of
the set of support strategy in theorem proving. Journal of the ACM (JACM), 12 (4), 536-541,
1965.

[Wu et al., 2009] Y. Wu, M. Caminada, and D. M. Gabbay. Complete extensions in argumenta-
tion coincide with 3-valued stable models in logic programming.Studia logica, 93 (2-3), 383-403,
2009.

[Zamov and Sharonov, 1969] N. K. Zamov and V. I. Sharonov. On a Class of Strategies for the
Resolution Method. Zapiski Nauchnykh Seminarov POMI, 16, 54-64, 1969.

View publication statsView publication stats

https://www.researchgate.net/publication/277670164

