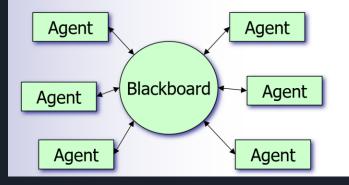
Engineering Multi-Agent Systems I

PCS-5045

Escola Politécnica da USP I – Laboratório de Técnicas Inteligentes

Agenda


- Agent Communication
- MAS as Distributed Systems
- Programming MAS

Agent Communication

- communication
 - □ the basis for any interaction
 - "effected through signals"

Indirect communication

- information available for all
- no direct communication
- simple architecture

Message passing

- direct exchange
- common language
- conversation sequences of messages

Agent communication

- message passing
 - some of the challenges
 - distributed systems
 - brokering, naming services, discovery, ...
 - "infrastructure" for sending messages
 - heterogeneous entities
 - o language, developer, execution environment, ...
 - multi-agent systems

Agent Communication

MAS with cognitive of practical reasoning agents

- focus on mental states
- "messages must have a <u>meaning</u> to other agents"

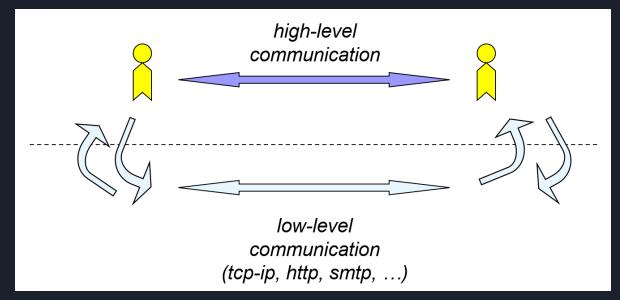
e.g. "agent 1 sends message to agent 2: doSomething(x)"

- what does this mean to agent 2? how should/could he respond?
 - agent 1 asks agent 2 to do x ? part of negotiation protocol ... ?
 - agent 1 tells agent 2 to do x ? assuming a commitment … ?
 - agent 1 relies on the fact that agent 2 will do x ?

– part of task allocation ... ?

- agent 1 will do x ?
- does agent 2 think agent 1 is waiting for a reply ?
- what is x ? a task ? a question ? the name of an agent ?
- does agent 1 asks agent 2 to perform task itself, or just make sure the result is achieved
- what must agent 2 do with the result ?
- must be semantically clear
 - □ heterogeneity, openness, ...
- consequence
 - agents must be endowed with capabilities to understand and reason upon the meaning and content of messages"

Agent Communication


- ability to exchange information requires
 - 1. ability to "physically" exchange information
 - 2. common understanding
 - 3. common language
 - 4. interaction strategies / protocols

•

Agent Communication

- ability to exchange information requires
 - 1. ability to "physically" exchange information

Agent Communication

- ability to exchange information requires
 - 1. ability to "physically" exchange information
 - 2. common understanding
 - □ exchanging knowledge requires mutual understanding
 → 2 keys
 - translation between languages
 - sharing semantic content
 - each agent has implicit assumptions on its own semantics
 - translation must preserve semantics!
 - □ to share knowledge, we must have a common semantics
 - can be shared via "common ontologies"

Agent Communication

- ability to exchange information requires
 - 1. ability to "physically" exchange information
 - 2. common understanding
 - 3. common language

incorporates two types of languages

- content language
- communication language

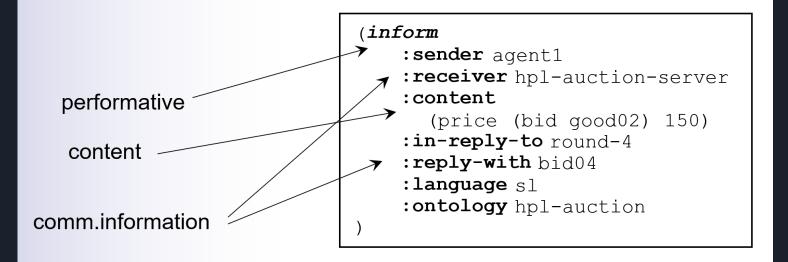
Agent Communication Language

Agent Communication Languages (ACL)

- Agents are typically defined at a "high" level
- an ACL should support intentional communication
 - the intentional descriptions use concepts such as: beliefs, goals, intentions, commitment
- the language should not define protocols such as
 - transport protocols
 - high level coordination protocols
 - constraints on valid exchanges

ACLS: FIPA ACL

- Foundation for Intelligent Physical Agents http://www.fipa.org/
 - 1995
 - since 2005: IEEE Computer Society standards organization
 - "promotes agent-based technology and the interoperability of its standards with other technologies"



ACLS: FIPA ACL

- standardisation of agent-related issues
 - FIPA-OS
 - FIPA infrastructure architecture
 - ...
 - FIPA-ACL
 - similar to KQML
 - consists of a set of message types and the description of their pragmatics
 that is, the effects on the mental attitudes of the sender and receiver agents.
 - describes every communicative act with both a narrative form and a formal semantics based on modal logic.
 - separates the outer language (the intended meaning of the message) from the inner language (content language).

ACL Message

FIPA ACL: performatives

performative	passing	requesting	negotiation	performing	error
	info	info		actions	handling
accept-proposal			х		
agree				х	
cancel		х		х	
cfp			х		
confirm	х				
disconfirm	х				
failure					х
inform	х				
inform-if	х				
inform-ref	х				
not-understood					х
propose			х		
query-if		х			
query-ref		х			
refuse				х	
reject-proposal			х		
request				х	
request-when				х	
request-whenever				х	
subscribe		х			

FIPA ACL: semantics in SL "the Semantic Language"

- SL (Semantic Language)
 - can represent propositions, objects, and actions ٠
- formal semantics

٠

< message ; precondition ; rational effect >

- the content of the message message
- precondition on the "situation" (mental state) of the sender
- rational effect ٠

intended effect on mental state of receiver

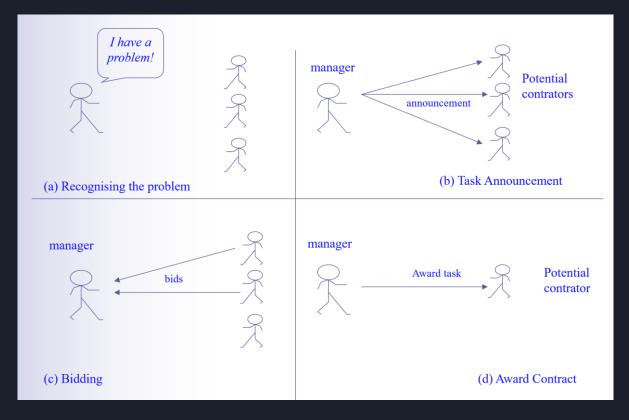
ACLs: KQML

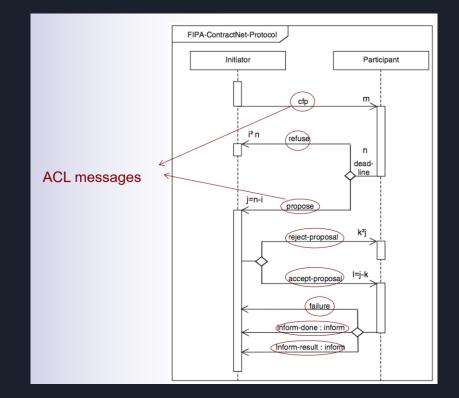
- Knowledge Query Manipulation Language (KQML)
 - content ignored by KQML messages
 - message
 - determines interaction types
 - supplies performative & content
 - may describe ontology, etc.
 - communication
 - low level communication parameters
 - sender, receiver, unique message ID

Negotiation protocols

Basic protocols:

- contract-net protocol
- auction protocols




Negotiation protocols

- ... iterative communication among a group of agents in order to reach a mutually accepted agreement on something.....
- every day approach in resolving conflicts
- needed:
 - a set of options
 - a utility function
 - every option has a price and benefit
 - this function evaluates the worth of an option to an agent.
 - a negotiation protocol
 - multiple stages or steps in the negotiation process
 - eventually the process must either terminate or converge to a solution

- a manager
 - breaks the problem into several interacting sub-problems
 - looks for a contractor
 - selects the suitable contractor
 - assigns a sub-problem
 - monitors the progress of the overall solution
- a contractor
 - 'bids' for work
 - accepts a task
 - it has a binding agreement to complete the task according to the agreed terms and completes the task undertaken.
 - recursively, the contractor can be a manager for the task it has undertaken.

- Basic assumptions:
 - the problem has a well defined structure for decomposing
 - coarse-grain decomposition is possible
 - there are enough contractors waiting to do the announced tasks

Applicability of Contract Net

The Contract Net is:

- a high-level communication protocol
- a way of distributing tasks dynamically
- decentralized / situated
- a means of self-organization for a group of agents

...but:

- limited (mostly for well-defined hierarchies of tasks)
- not scalable
- re-allocation ?

MAS as Distributed Systems

- Agents
 - Autonomous: independently acting
 - Heterogeneous: independently designed
- Agents communicate with each other
 - Protocols define how the agents ought to communicate with one another
 - A protocol is a modular, potentially reusable specification of the interactions between two or more entities
 - Defining a protocol helps ensure interoperability, i.e., being able to work together

Traditional Distributed Computing

- Ignore autonomy and heterogeneity
- Specify interaction in low-level operational terms via message order and occurrence
- Specify interoperation in low-level terms
- A system may be fragile because of its interoperation depending upon low-level details that can easily change when one of the parties modifies its internals

Autonomy

- Each agent is free to act as it pleases
 - We must design protocols so that they do not over-constrain an agent's interactions
 - Intelligence is irrelevant in a protocol: must design a protocol whose correctness does not depend upon the agents' internal reasoning

Autonomy

- The agents are the logical units of distribution
 - Physical distribution is based on considerations such as geographical distribution, throughput, redundancy
 - Cannot treat two or more agents as a single operating system process, even though that's how they may be realized, e.g., within the same virtual machine in an agent platform

Heterogeneity

- In traditional systems, it is enough that protocols specify the
 - Schemas of the messages exchanged
 - Legal flows, that is, their ordering and occurrence
- In multiagent systems, protocols must specify the meaning of the messages
 - Logically, agents interoperate on the basis of meanings of their communications
 - Since the meanings determine their social state, i.e., state of their interaction

Heterogeneity

- Whatever is in the protocol
 - Becomes the standard to which agents are implemented
 - Defines the level of heterogeneity: the agents can be heterogeneous with regard to everything else
 - Giving prominence to low-level concerns (such as ordering and occurrence of messages) couples the agent designs at the corresponding low level
 - Even though such concerns are appropriate for lower levels of the implementation

Distributed Systems and MAS:

- Similar concepts and concerns
- Similar objectives
- Similar problems: communication, coherence, results

• "Distributed" - refers to the system architecture

 "Multiagent" - refers to the problem solving method

When is a multiagent system also a distributed system?

Architectural organization

- Centralized
- Decentralized

Architectural styles

- Layered
- Object-based
- Resource-centered (Web: SOA)
- Event-based (Web: publisher-subscriber)

MAS-specific architectural properties

- Deliberative
- <u>Reactive</u>
- Hybrid

Distributed Systems Communication models

- Remote procedure calls
- Message-oriented communication
- Multicast communication

MAS-specific communication properties

- Agents engage in conversations (social aspect)
- Messages structured according to an Agent Communication Language (ACL)

Tools, technologies, frameworks

- MAS: specialized frameworks, protocols, languages
- Distributed Systems: modular frameworks and tools

When implementing a MAS:

- Specialized frameworks include ACLs and multiple agent-specific considerations
- Specialized agent knowledge is necessary
- Frameworks are not really modular

Case study: JaCaMo^[http://jacamo.sourceforge.net/]

- Jason: an interpreter for AgentSpeak
- CArtAgO: a Java-based framework for environments in agent-oriented applications
- Moise: an organisational platform based on notions like roles, groups, and missions

Building a MAS with JaCaMo: Jason

• AgentSpeak: an agent programming language

```
// Agent bob in project greeting.mas2j
+hello[source(A)]
 <- .print("I received a 'hello' from ",A);
    .send(A,tell,hello).</pre>
```


Building a MAS with JaCaMo: CArtAgO

- An environment is composed of workspaces
- A workspace contains a basic set of predefined artifacts
- All agent's actions are <u>determined</u> by the set of artifacts available/usable in the workspace

Building a MAS with JaCaMo: CArtAgO

- Communication between agents in the same workspace is handled internally (blackboard/RMI)
- Observable properties and events are mapped into beliefs
- Translation rules between Jason and CArtAgO

Building a MAS with JaCaMo: CArtAgO

• A domain-specific language is used

```
MAS hello_world {
    environment:
    c4jason.CartagoEnvironment
    agents:
    hello_agent agentArchClass c4jason.CAgentArch;
    classpath: "../../../lib/cartago.jar";
        "../../../lib/c4jason.jar";
}
```


Building a MAS with JaCaMo: Moise

- It enables an MAS to have an explicit specification of its organisation
- Structured in three levels: (i) individual agent tasks, (ii) agent structures and (iii) agent societies
- Uses the concepts of roles and missions

Building a MAS with JaCaMo: Moise

- Schemes (goals and plans) and missions follow a specific XML schema
- Normative specifications (also XML) states both the required roles for missions and missions obligations for roles

Building a MAS with JaCaMo: Moise

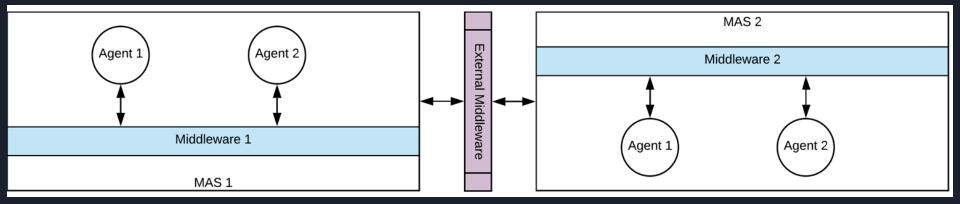
• Domain-specific language also in place

Building a MAS with other frameworks

- Similar restrictions and conditions
- Agent-specific capabilities and models are supported in a framework-by-framework basis
- Equivalent models and capabilities are not interoperable between frameworks (closed box)

Building a MAS with <u>any</u> framework, in general:

- Absence of agent standards leads to local models and implementations
- Multiple agent-oriented programming languages


Building a MAS with <u>any</u> framework, in general:

- Agent-to-agent communication happens within the framework (blackboard, etc.)
 - Each framework has its own internal middleware

Building a MAS with <u>any</u> framework, in general:

• Communication MAS-to-MAS:

Programming MAS

Different MAS frameworks and tools

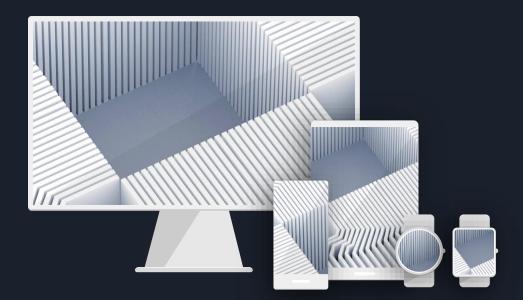
https://mas-unige.github.io/fantastic_mass/frameworks.html

Programming MAS

Case study: SPADE

- Multi-agent platform based on <u>XMPP</u>
- Presence notification allows the system to know the current state of the agents in real-time
- Python >=3.8
- Asyncio-based
- Agent model based on behaviors
- Supports FIPA metadata using XMPP Data Forms (XEP-0004: Data Forms)
- Web-based interface
- Use any XMPP server

Practical Activity


Getting started with MAS programming: SPADE

- Go to: <u>https://spade-mas.readthedocs.io</u>
- Install SPADE
- Read/Run: From "Quick Start" to "Extending SPADE with plugins"
- Create a message ring between 3 agents (see: e-disciplinas)
- Write a report on the task
- Deadline: 01/08/2023

Thank you!

anarosa.brandao@usp.br

arthur.casals@usp.br

References

- 1. Michael Wooldridge. An introduction to multiagent systems. Baffins Lane, John Wiley and Sons, 2009 2nd ed.
- 2. Gerhard Weiss (Ed). Multiagent systems. Cambridge, 2nd edition MIT Press, 2013.