
Engineering Multi-
Agent Systems I

PCS-5045

Escola Politécnica da USP
LTI – Laboratório de Técnicas Inteligentes

Agenda

● Agent Communication

● MAS as Distributed Systems

● Programming MAS

Agent Communication

Agent communication

● message passing
• some of the challenges

■ distributed systems

● brokering, naming services, discovery, …

● “infrastructure” for sending messages

● heterogeneous entities

○ language, developer, execution environment, …

■ multi-agent systems

Agent Communication

Agent Communication

● ability to exchange information requires

• 1. ability to “physically” exchange information

• 2. common understanding

• 3. common language

• 4. interaction strategies / protocols

Agent Communication

● ability to exchange information requires
• 1. ability to “physically” exchange information

•

Agent Communication

● ability to exchange information requires

• 1. ability to “physically” exchange information

• 2. common understanding

Agent Communication

● ability to exchange information requires

• 1. ability to “physically” exchange information

• 2. common understanding

• 3. common language

Agent Communication
Languages (ACL)

● Agents are typically defined at a “high” level

● an ACL should support intentional communication
• the intentional descriptions use concepts such as: beliefs,

 goals, intentions, commitment

● the language should not define protocols such as

• transport protocols

• high level coordination protocols

• constraints on valid exchanges

ACLs: FIPA ACL

● Foundation for Intelligent Physical Agents -

http://www.fipa.org/
• 1995

• since 2005: IEEE Computer Society standards organization

• “promotes agent-based technology and the interoperability of its

standards with other technologies”

ACLs: FIPA ACL

● standardisation of agent-related issues
■ FIPA-OS

■ FIPA infrastructure architecture

■ ...

■ FIPA-ACL

● similar to KQML

● consists of a set of message types and the description of their pragmatics

— that is, the effects on the mental attitudes of the sender and receiver

agents.

● describes every communicative act with both a narrative form and a formal

semantics based on modal logic.

● separates the outer language (the intended meaning of the message) from

the inner language (content language).

ACL Message

FIPA ACL: performatives

FIPA ACL: semantics in SL
“the Semantic Language”

● SL (Semantic Language)
• can represent propositions, objects, and actions

● formal semantics

• message the content of the message

• precondition on the “situation” (mental state) of the sender

• rational effect intended effect on mental state of receiver

ACLs: KQML

● Knowledge Query Manipulation Language (KQML)
• content - ignored by KQML messages

• message

■ determines interaction types

■ supplies performative & content

■ may describe ontology, etc.

• communication

■ low level communication parameters

■ sender, receiver, unique message ID

Negotiation protocols

Basic protocols:

● contract-net protocol

● auction protocols

Negotiation protocols

● … iterative communication among a group of agents in

order to reach a mutually accepted agreement on

something…..

● every day approach in resolving conflicts

● needed:
■ a set of options

■ a utility function

● every option has a price and benefit

● this function evaluates the worth of an option to an agent.

■ a negotiation protocol

● multiple stages or steps in the negotiation process

● eventually the process must either terminate or converge to a solution

The Contract Net Protocol

• a manager

■ breaks the problem into several interacting sub-problems

■ looks for a contractor

■ selects the suitable contractor

■ assigns a sub-problem

■ monitors the progress of the overall solution

• a contractor

■ ‘bids’ for work

■ accepts a task

■ it has a binding agreement to complete the task according to the agreed

terms and completes the task undertaken.

■ recursively, the contractor can be a manager for the task it has undertaken.

The Contract Net Protocol

● Basic assumptions:
• the problem has a well defined structure for decomposing

• coarse-grain decomposition is possible

• there are enough contractors waiting to do the announced tasks

The Contract Net Protocol

The Contract Net Protocol

Applicability of Contract Net

The Contract Net is:

● a high-level communication protocol

● a way of distributing tasks dynamically

● decentralized / situated

● a means of self-organization for a group of agents

…but:

● limited (mostly for well-defined hierarchies of tasks)

● not scalable

● re-allocation ?

MAS as Distributed Systems

● Agents

• Autonomous: independently acting

• Heterogeneous: independently designed

● Agents communicate with each other

• Protocols define how the agents ought to communicate with one another

■ A protocol is a modular, potentially reusable specification of the interactions

between two or more entities

■ Defining a protocol helps ensure interoperability, i.e., being able to work together

Traditional Distributed
Computing

● Ignore autonomy and heterogeneity

● Specify interaction in low-level operational terms via

message order and occurrence

● Specify interoperation in low-level terms

● A system may be fragile because of its interoperation

depending upon low-level details that can easily change

when one of the parties modifies its internals

Autonomy

● Each agent is free to act as it pleases
• We must design protocols so that they do not over-constrain an

agent’s interactions

• Intelligence is irrelevant in a protocol: must design a protocol

whose correctness does not depend upon the agents’ internal

reasoning

Autonomy

● The agents are the logical units of distribution
• Physical distribution is based on considerations such as

geographical distribution, throughput, redundancy

• Cannot treat two or more agents as a single operating system

process, even though that’s how they may be realized, e.g.,

within the same virtual machine in an agent platform

Heterogeneity

● In traditional systems, it is enough that protocols specify

the
• Schemas of the messages exchanged

• Legal flows, that is, their ordering and occurrence

● In multiagent systems, protocols must specify the

meaning of the messages
• Logically, agents interoperate on the basis of meanings of their

communications

■ Since the meanings determine their social state, i.e., state of their

interaction

Heterogeneity

● Whatever is in the protocol
• Becomes the standard to which agents are implemented

• Defines the level of heterogeneity: the agents can be

heterogeneous with regard to everything else

• Giving prominence to low-level concerns (such as ordering and

occurrence of messages) couples the agent designs at the

corresponding low level

■ Even though such concerns are appropriate for lower levels of the

implementation

Distributed and Multiagent Systems

Distributed Systems and MAS:

● Similar concepts and concerns

● Similar objectives

● Similar problems: communication, coherence,

results

Distributed and Multiagent Systems

● “Distributed” - refers to the system architecture

● “Multiagent” - refers to the problem solving

method

When is a multiagent system also a distributed

system?

Distributed and Multiagent Systems

Architectural organization

● Centralized

● Decentralized

Distributed and Multiagent Systems

Architectural styles

● Layered

● Object-based

● Resource-centered (Web: SOA)

● Event-based (Web: publisher-subscriber)

Distributed and Multiagent Systems

MAS-specific architectural properties

● Deliberative

● Reactive

● Hybrid

Distributed and Multiagent Systems

Distributed Systems Communication models

● Remote procedure calls

● Message-oriented communication

● Multicast communication

Distributed and Multiagent Systems

MAS-specific communication properties

● Agents engage in conversations (social aspect)

● Messages structured according to an Agent

Communication Language (ACL)

Distributed and Multiagent Systems

Tools, technologies, frameworks

● MAS: specialized frameworks, protocols,

languages

● Distributed Systems: modular frameworks and

tools

Distributed and Multiagent Systems

When implementing a MAS:

● Specialized frameworks include ACLs and

multiple agent-specific considerations

● Specialized agent knowledge is necessary

● Frameworks are not really modular

Distributed and Multiagent Systems

Case study: JaCaMo[http://jacamo.sourceforge.net/]

● Jason: an interpreter for AgentSpeak

● CArtAgO: a Java-based framework for

environments in agent-oriented applications

● Moise: an organisational platform based on

notions like roles, groups, and missions

Distributed and Multiagent Systems

Building a MAS with JaCaMo: Jason

● AgentSpeak: an agent programming language

Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● An environment is composed of workspaces

● A workspace contains a basic set of predefined

artifacts

● All agent’s actions are determined by the set of

artifacts available/usable in the workspace

Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● Communication between agents in the same

workspace is handled internally

(blackboard/RMI)

● Observable properties and events are mapped

into beliefs

● Translation rules between Jason and CArtAgO

Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● A domain-specific language is used

Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● It enables an MAS to have an explicit

specification of its organisation

● Structured in three levels: (i) individual agent

tasks, (ii) agent structures and (iii) agent

societies

● Uses the concepts of roles and missions

Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● Schemes (goals and plans) and missions follow

a specific XML schema

● Normative specifications (also XML) states both

the required roles for missions and missions

obligations for roles

Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● Domain-specific language also in place

Distributed and Multiagent Systems

Building a MAS with other frameworks

● Similar restrictions and conditions

● Agent-specific capabilities and models are

supported in a framework-by-framework basis

● Equivalent models and capabilities are not

interoperable between frameworks (closed box)

Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Absence of agent standards leads to local

models and implementations

● Multiple agent-oriented programming languages

Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Agent-to-agent communication happens within

the framework (blackboard, etc.)

○ Each framework has its own internal

middleware

Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Communication MAS-to-MAS:

Programming MAS

Different MAS frameworks and tools

● https://mas-unige.github.io/fantastic_mass/frameworks.html

Programming MAS

Case study: SPADE
• Multi-agent platform based on XMPP

• Presence notification allows the system to know the current state of the agents in

real-time

• Python >=3.8

• Asyncio-based

• Agent model based on behaviors

• Supports FIPA metadata using XMPP Data Forms (XEP-0004: Data Forms)

• Web-based interface

• Use any XMPP server

http://www.xmpp.org/
https://xmpp.org/extensions/xep-0004.html

Practical Activity

Getting started with MAS programming: SPADE

● Go to: https://spade-mas.readthedocs.io

● Install SPADE

● Read/Run: From “Quick Start” to “Extending SPADE with plugins”

● Create a message ring between 3 agents (see: e-disciplinas)

● Write a report on the task

● Deadline: 01/08/2023

https://spade-mas.readthedocs.io/

Thank you!

anarosa.brandao@usp.br

arthur.casals@usp.br

References

1. Michael Wooldridge. An introduction to multiagent systems. Baffins Lane, John Wiley and Sons, 2009

2nd ed.

2. Gerhard Weiss (Ed). Multiagent systems. Cambridge, 2nd edition MIT Press, 2013.

	Slide 1: Engineering Multi-Agent Systems I
	Slide 2: Agenda
	Slide 3: Agent Communication
	Slide 4: Agent communication
	Slide 5: Agent Communication
	Slide 6: Agent Communication
	Slide 7: Agent Communication
	Slide 8: Agent Communication
	Slide 9: Agent Communication
	Slide 10: Agent Communication Languages (ACL)
	Slide 11: ACLs: FIPA ACL
	Slide 12: ACLs: FIPA ACL
	Slide 13: ACL Message
	Slide 14: FIPA ACL: performatives
	Slide 15: FIPA ACL: semantics in SL “the Semantic Language”
	Slide 16: ACLs: KQML
	Slide 17: Negotiation protocols
	Slide 18: Negotiation protocols
	Slide 19: The Contract Net Protocol
	Slide 20: The Contract Net Protocol
	Slide 21: The Contract Net Protocol
	Slide 22: The Contract Net Protocol
	Slide 23: Applicability of Contract Net
	Slide 24: MAS as Distributed Systems
	Slide 25: Traditional Distributed Computing
	Slide 26: Autonomy
	Slide 27: Autonomy
	Slide 28: Heterogeneity
	Slide 29: Heterogeneity
	Slide 30: Distributed and Multiagent Systems
	Slide 31: Distributed and Multiagent Systems
	Slide 32: Distributed and Multiagent Systems
	Slide 33: Distributed and Multiagent Systems
	Slide 34: Distributed and Multiagent Systems
	Slide 35: Distributed and Multiagent Systems
	Slide 36: Distributed and Multiagent Systems
	Slide 37: Distributed and Multiagent Systems
	Slide 38: Distributed and Multiagent Systems
	Slide 39: Distributed and Multiagent Systems
	Slide 40: Distributed and Multiagent Systems
	Slide 41: Distributed and Multiagent Systems
	Slide 42: Distributed and Multiagent Systems
	Slide 43: Distributed and Multiagent Systems
	Slide 44: Distributed and Multiagent Systems
	Slide 45: Distributed and Multiagent Systems
	Slide 46: Distributed and Multiagent Systems
	Slide 47: Distributed and Multiagent Systems
	Slide 48: Distributed and Multiagent Systems
	Slide 49: Distributed and Multiagent Systems
	Slide 50: Distributed and Multiagent Systems
	Slide 51: Programming MAS
	Slide 52: Programming MAS
	Slide 53: Practical Activity
	Slide 54: Thank you!
	Slide 55: References

