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● Agent Communication

● MAS as Distributed Systems

● Programming MAS



Agent Communication



Agent communication

● message passing
• some of the challenges

■ distributed systems

● brokering, naming services, discovery, …

● “infrastructure” for sending messages

● heterogeneous entities

○ language, developer, execution environment, …

■ multi-agent systems



Agent Communication



Agent Communication

● ability to exchange information requires

•   1.  ability to “physically” exchange information

•   2.  common understanding

•   3.  common language

•   4.  interaction strategies / protocols
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Agent Communication 
Languages (ACL)

● Agents are typically defined at a “high” level

● an ACL should support intentional communication
• the intentional descriptions use concepts such as: beliefs,

 goals, intentions, commitment

● the language should not define protocols such as

• transport protocols

• high level coordination protocols

• constraints on valid exchanges



ACLs: FIPA ACL

● Foundation for Intelligent Physical Agents -

http://www.fipa.org/
• 1995

• since 2005: IEEE Computer Society standards organization

• “promotes agent-based technology and the interoperability of its 

standards with other technologies”



ACLs: FIPA ACL

● standardisation of agent-related issues
■ FIPA-OS

■ FIPA infrastructure architecture

■ ...

■ FIPA-ACL

● similar to KQML

● consists of a set of message types and the description of their pragmatics 

— that is, the effects on the mental attitudes of the sender and receiver 

agents. 

● describes every communicative act with both a narrative form and a formal 

semantics based on modal logic.

● separates the outer language (the intended meaning of the message) from 

the inner language (content language).



ACL Message



FIPA ACL: performatives



FIPA ACL: semantics in SL
“the Semantic Language”

● SL (Semantic Language)
• can represent propositions, objects, and actions

● formal semantics

• message the content of the message

• precondition on the “situation” (mental state) of the sender

• rational effect intended effect on mental state of receiver



ACLs: KQML

● Knowledge Query Manipulation Language (KQML)
• content - ignored by KQML messages

• message

■ determines interaction types

■ supplies performative & content

■ may describe ontology, etc.

• communication

■ low level communication parameters

■ sender, receiver, unique message ID



Negotiation protocols

Basic protocols:

● contract-net protocol

● auction protocols



Negotiation protocols

● … iterative communication among a group of agents in 

order to reach a mutually accepted agreement on 

something…..

● every day approach in resolving conflicts

● needed:
■ a set of options

■ a utility function

● every option has a price and benefit

● this function evaluates the worth of an option to an agent.

■ a negotiation protocol

● multiple stages or steps in the negotiation process

● eventually the process must either terminate or converge to a solution



The Contract Net Protocol

• a manager

■ breaks the problem into several interacting sub-problems

■ looks for a contractor

■ selects the suitable contractor

■ assigns a sub-problem

■ monitors the progress of the overall solution

• a contractor

■ ‘bids’ for work

■ accepts a task

■ it has a binding agreement to complete the task according to the agreed 

terms and completes the task undertaken.

■ recursively, the contractor can be a manager for the task it has undertaken.



The Contract Net Protocol

● Basic assumptions:
• the problem has a well defined structure for decomposing

• coarse-grain decomposition is possible

• there are enough contractors waiting to do the announced tasks



The Contract Net Protocol



The Contract Net Protocol



Applicability of Contract Net

The Contract Net is:

● a high-level communication protocol

● a way of distributing tasks dynamically

● decentralized / situated

● a means of self-organization for a group of agents

…but:

● limited (mostly for well-defined hierarchies of tasks)

● not scalable

● re-allocation ?



MAS as Distributed Systems

● Agents

• Autonomous: independently acting

• Heterogeneous: independently designed

● Agents communicate with each other

• Protocols define how the agents ought to communicate with one  another

■ A protocol is a modular, potentially reusable specification of the  interactions 

between two or more entities

■ Defining a protocol helps ensure interoperability, i.e., being able to  work together



Traditional Distributed 
Computing

● Ignore autonomy and heterogeneity

● Specify interaction in low-level operational terms via 

message order  and occurrence

● Specify interoperation in low-level terms

● A system may be fragile because of its interoperation 

depending upon  low-level details that can easily change 

when one of the parties  modifies its internals



Autonomy

● Each agent is free to act as it pleases
• We must design protocols so that they do not over-constrain an  

agent’s interactions

• Intelligence is irrelevant in a protocol: must design a protocol 

whose  correctness does not depend upon the agents’ internal 

reasoning



Autonomy

● The agents are the logical units of distribution
• Physical distribution is based on considerations such as 

geographical  distribution, throughput, redundancy

• Cannot treat two or more agents as a single operating system 

process,  even though that’s how they may be realized, e.g., 

within the same virtual machine in an agent platform



Heterogeneity

● In traditional systems, it is enough that protocols specify 

the
• Schemas of the messages exchanged

• Legal flows, that is, their ordering and occurrence

● In multiagent systems, protocols must specify the 

meaning of the  messages
• Logically, agents interoperate on the basis of meanings of their  

communications

■ Since the meanings determine their social state, i.e., state of their  

interaction



Heterogeneity

● Whatever is in the protocol
• Becomes the standard to which agents are implemented

• Defines the level of heterogeneity: the agents can be 

heterogeneous  with regard to everything else

• Giving prominence to low-level concerns (such as ordering and 

occurrence of messages) couples the agent designs at the  

corresponding low level

■ Even though such concerns are appropriate for lower levels of the  

implementation



Distributed and Multiagent Systems

Distributed Systems and MAS:

● Similar concepts and concerns

● Similar objectives

● Similar problems: communication, coherence, 

results



Distributed and Multiagent Systems

● “Distributed” - refers to the system architecture

● “Multiagent” - refers to the problem solving 

method

When is a multiagent system also a distributed 

system?



Distributed and Multiagent Systems

Architectural organization

● Centralized

● Decentralized



Distributed and Multiagent Systems

Architectural styles

● Layered

● Object-based

● Resource-centered (Web: SOA)

● Event-based (Web: publisher-subscriber)



Distributed and Multiagent Systems

MAS-specific architectural properties

● Deliberative

● Reactive

● Hybrid



Distributed and Multiagent Systems

Distributed Systems Communication models

● Remote procedure calls

● Message-oriented communication

● Multicast communication



Distributed and Multiagent Systems

MAS-specific communication properties

● Agents engage in conversations (social aspect)

● Messages structured according to an Agent 

Communication Language (ACL)



Distributed and Multiagent Systems

Tools, technologies, frameworks

● MAS: specialized frameworks, protocols, 

languages

● Distributed Systems: modular frameworks and 

tools



Distributed and Multiagent Systems

When implementing a MAS:

● Specialized frameworks include ACLs and 

multiple agent-specific considerations

● Specialized agent knowledge is necessary

● Frameworks are not really modular



Distributed and Multiagent Systems

Case study: JaCaMo[http://jacamo.sourceforge.net/]

● Jason: an interpreter for AgentSpeak 

● CArtAgO: a Java-based framework for 

environments in agent-oriented applications

● Moise: an organisational platform based on 

notions like roles, groups, and missions



Distributed and Multiagent Systems

Building a MAS with JaCaMo: Jason

● AgentSpeak: an agent programming language



Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● An environment is composed of workspaces

● A workspace contains a basic set of predefined 

artifacts 

● All agent’s actions are determined by the set of 

artifacts available/usable in the workspace



Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● Communication between agents in the same 

workspace is handled internally 

(blackboard/RMI)

● Observable properties and events are mapped 

into beliefs

● Translation rules between Jason and CArtAgO



Distributed and Multiagent Systems

Building a MAS with JaCaMo: CArtAgO

● A domain-specific language is used



Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● It enables an MAS to have an explicit 

specification of its organisation

● Structured in three levels: (i) individual agent 

tasks, (ii) agent structures and (iii) agent 

societies

● Uses the concepts of roles and missions



Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● Schemes (goals and plans) and missions follow 

a specific XML schema

● Normative specifications (also XML) states both 

the required roles for missions and missions 

obligations for roles



Distributed and Multiagent Systems

Building a MAS with JaCaMo: Moise

● Domain-specific language also in place



Distributed and Multiagent Systems

Building a MAS with other frameworks

● Similar restrictions and conditions

● Agent-specific capabilities and models are 

supported in a framework-by-framework basis

● Equivalent models and capabilities are not 

interoperable between frameworks (closed box)



Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Absence of agent standards leads to local 

models and implementations

● Multiple agent-oriented programming languages



Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Agent-to-agent communication happens within

the framework (blackboard, etc.)

○ Each framework has its own internal 

middleware



Distributed and Multiagent Systems

Building a MAS with any framework, in general:

● Communication MAS-to-MAS:



Programming MAS

Different MAS frameworks and tools

● https://mas-unige.github.io/fantastic_mass/frameworks.html



Programming MAS

Case study: SPADE
• Multi-agent platform based on XMPP

• Presence notification allows the system to know the current state of the agents in 

real-time

• Python >=3.8

• Asyncio-based

• Agent model based on behaviors

• Supports FIPA metadata using XMPP Data Forms (XEP-0004: Data Forms)

• Web-based interface

• Use any XMPP server

http://www.xmpp.org/
https://xmpp.org/extensions/xep-0004.html


Practical Activity

Getting started with MAS programming: SPADE

● Go to: https://spade-mas.readthedocs.io

● Install SPADE 

● Read/Run: From “Quick Start” to “Extending SPADE with plugins”

● Create a message ring between 3 agents (see: e-disciplinas)

● Write a report on the task

● Deadline: 01/08/2023

https://spade-mas.readthedocs.io/


Thank you!

anarosa.brandao@usp.br

arthur.casals@usp.br 
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