
PMR5251 - Assessment of Mechanical Behavior of
Materials using Machine Learning Approach

ARTIFICIAL NEURAL
NETWORKS (ANNS)

Izabel F. Machado

Larissa Driemeier

OUR PROBLEM
Structural bars

3PMR5251

10-BARS TRUSS STRUCTURE

Property Value

Density Τ𝑡𝑜𝑛 𝑚𝑚3 2.768 10−9

Poisson − 0.35

Young Modulus 𝑀𝑃𝑎 68950

Seunghye Lee, Jingwan Ha, Mehriniso Zokhirova, Hyeonjoon

Moon, Background Information of Deep Learning for

Structural Engineering, July 2017, Archives of

Computational Methods in Engineering

4PMR5251

INPUT DATA GENERATION

Cross sectional
areas randomly
choosen.

Values varying
from 0.6 𝑐𝑚2 to
225.8 𝑐𝑚2

5PMR5251

AREA GENERATION

The Python script for generating areas is called gera_areas_10.py and it is
available in the Moodle.

In the script 520 datasets are generated, with 10 random areas each, using
the command:

num = random.random()*(225.8-.6)+0.6

The data is written to a csv file, which will be imported by Notebook.

However, if you do not want to generate the areas with the code in Python, the
file is already available in Moodle with the name areas.csv

6PMR5251

OUTPUT DATA GENERATION

To generate the output data, you need the following files:
1. areas.csv

2. 10-BarStructure.py

3. BasicInput.inp

The file 1 contain 520 area combinations.

The file 2 is the script in Pyhton used to run Abaqus.

The file 3 is a template Abaqus file, which contains geometry, material
and loading data. The areas will be modified by the script (file 2), which
will also do the analysis and store the results.

7PMR5251

File FinalResult.csv

This step is finished.

It was your homework ...

8PMR5251

We are ready to go to the Notebook to

work with the neural network, as we have:

Input files – areas.csv, which has all

combinations of areas

Output file – FinalResult.csv, with areas

(yes, again...), displacements of all nodes

and stresses of all bars.

ANN
Machine learning tools

10PMR5251

REDE NEURAL ARTIFICIAL

Virtually no one develops its own code to implement and
train an ANN since there are numerous development
tools, already tested, that do most of this work and are
widely used.

The great advantage of using one of these tools comes
from the fact that we only need to define the
configuration (architecture) of the ANN, that is, to define
how forward propagation is performed. When forward
propagation is defined, the back propagation, which is
in fact the most difficult part of coding an ANN, is
automatically generated using symbolic manipulation.

Forward

propagation

Back

propagation

11PMR5251

Keras was developed by the MIT and is the most used deep

learning framework among top-5 winning teams on Kaggle.

It is, nowadays, TensorFlow's high-level API.

NOTEBOOK
PMR5251_C03_2023.ipynb

13PMR5251

KERAS

In Keras there are two ways to define an ANN…

import tensorflow as tf

from tensorflow import keras

14PMR5251

SEQUENTIAL API MODE

It is the simplest model and
it comprises a linear pile

of layers that allows you to
configure models layer-by-

layer for most problems.
The sequential model is

very simple to use,
however, it is limited in its

topology. The limitation
comes from the fact that

you are not able to
configure models with
shared layers or have

multiple inputs or outputs.

15PMR5251

FUNCTIONAL API MODE

It is ideal for creating complex
models, that require extended

flexibility. It allows you to define
models that feature layers connect
to more than just the previous and

next layers. With this model
becomes possible to create

complex networks such as siamese
networks, residual networks, multi-

input/multi-output models and
models with shared layers.

16PMR5251

OUR JOB TODAY...

18PMR5251

IMPORT LIBRARIES

import numpy as np

import pandas as pd

Pandas is the most widely used open source Python package

for data analysis and machine learning. It is built on top of

another package called Numpy (see that it was imported

before Pandas in our code), which provides support for

matrix analysis.

import tensorflow as tf

from tensorflow import keras

Throughout this notebook the new version 2.12 of Tersorflow was used, with

built-in keras support, which has been recently released to the public.

19PMR5251

UPLOAD YOUR FILE INITIAL
FINALRESULT.CSV

20PMR5251

DATASET

df = pd.read_csv('FinalResult.csv', index_col=0)

train.head()

21PMR5251

TRAIN AND TEST DATASET
SPLIT DATASET INTO TRAIN AND TEST

from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2, random_state=42)

x_train = train.loc[:,'area1':'area10'].values

y_train = train[['d4']].values

x_val = test.loc[:,'area1':'area10'].values

y_val = test[['d4']].values

print(x_train.shape, y_train.shape)

print(x_val.shape, y_val.shape)

(416, 10)

(416, 1)

(104, 10)

(104, 1)

22PMR5251

SCALING

Most of times different features in the data
might be have varying magnitudes. For
example, a dataset containing two
resources, displacement which ranges from
0-1) and stresses, about 100-1000 times
greater than displacement. So, these two
features are at very different ranges with
high values dominating those with small
values. The reason is that many of the
machine learning algorithms use euclidean
distance between data point in their
computation. In this case, machine learning
model treats those with small values as if
they don't exist.

23PMR5251

SCALING
NORMALIZATION VS STANDARDIZATION

Normalization

ҧ𝑥𝑖 =
𝑥𝑖 −min𝒙

max 𝒙 −min 𝒙

Also known as min-max scaling or min-
max normalization, it is the simplest
method and consists of rescaling the
range of features to scale the range in
[0, 1].

Normalization is good to use when the
distribution of data does not follow a
Gaussian distribution.

Standardization

ҧ𝑥𝑖 =
𝑥𝑖 − 𝜇(𝑖)

𝜎(𝑖)

Feature standardization makes the values of
each feature in the data have zero mean and
unit variance.

Standardization can be helpful in cases where
the data follows a Gaussian distribution.

24PMR5251

COST FUNCTION

Raw data 𝑥1 ≫ 𝑥2 Normalization Standardization

𝜔1

𝜔
2

𝜔
2

𝜔
2

𝜔1

25PMR5251

NORMALIZING DATASET

from sklearn.preprocessing import MinMaxScaler

Scaling the input data using the MinMaxScaler from scikit-learn

scaler_x = MinMaxScaler().fit(x_train)

x_train_sca = scaler_x.transform(x_train)

x_val_sca = scaler_x.transform(x_val)

Normalizing the output data using the normalizer from scikit-learn

normalizer_y = MinMaxScaler(feature_range = (-1.,0.)).fit(y_train)#StandardScaler,MaxAbsScaler

y_train_sca = normalizer_y.transform(y_train)

y_val_sca = normalizer_y.transform(y_val)

Min and Max in input

min_x_train = np.min(x_train_sca)

min_x_val = np.min(x_val_sca)

max_x_train = np.max(x_train_sca)

max_x_val = np.max(x_val_sca)

Mean and Standard Deviation in Output

min_y_train = np.min(y_train_sca)#mean

min_y_val = np.min(y_val_sca)

max_y_train = np.max(y_train_sca)#std

max_y_val = np.max(y_val_sca)

26PMR5251

SCALING RESULT

For the input training set, the min is 0.0 and the max is 1.0

For the input validation set, the min is -0.0023858525432659487 and the max is 1.008195327650636

For the output train set, the min is -1.0 and the max is 5.551115123125783e-17

For the output validation set, the min is -1.3732910962953015 and the max is -0.006101485466849105

print(f'For the input training set, the min is {min_x_train} and the max is {max_x_train}')

print(f'For the input validation set, the min is {min_x_val} and the max is {max_x_val}')

print(f'For the output train set, the min is {min_y_train} and the max is {max_y_train}')

print(f'For the output validation set, the min is {min_y_val} and the max is {max_y_val}')

27PMR5251

28PMR5251

OUR SEQUENCIAL NN WITH KERAS

We will start with the simplest way to create an RNA in Keras, which is the
sequential model. Creating, training and testing an ANN with Keras is
done in the following steps:

I. Definition of training and test data;

II. ANN configuration, which consists of defining the layers to map the inputs to the
desired outputs;

III. Compilation of the ANN, which also includes configuring the training process by
choosing the cost function, the optimizer and the metric to evaluate performance;

IV. ANN training;

V. ANN performance evaluation.

29PMR5251

FIRST NEURAL NETWORK MODEL

from keras import models

from keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The hidden layer is of the dense

type (fully connected), it has 20

neurons
its activation

function is sigmoid

30PMR5251

FIRST NEURAL NETWORK MODEL

from keras import models

from keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

Input data for each training

example is a 1-D vector (10)

the dimension of the second axis of the input

tensor is not included in the ʻinput_shape’

argument, because at that moment the number of

examples that will be used in training is unknown

31PMR5251

FIRST NEURAL NETWORK MODEL

from tensorflow.keras import models

from tensorflow.keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The hidden layer is of the dense

type (fully connected), it has 20

neurons
its activation

function is sigmoid

32PMR5251

FIRST NEURAL NETWORK MODEL

from tensorflow.keras import models

from tensorflow.keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The output layer is dense (fully connected), has

one neuron and its activation function is linear.

presents a summary of the main

characteristics of the network

33PMR5251

Model: "sequential"

Layer (type) Output Shape Param #

===

dense (Dense) (None, 20) 220

activation (Activation) (None, 20) 0

dense_1 (Dense) (None, 1) 21

===

Total params: 241

Trainable params: 241

Non-trainable params: 0

34PMR5251

Connection

between

neurons

and input

data

Bias

Input layer

35PMR5251

from keras.utils import plot_model

import pydot

plot_model(model, to_file = '/content/model.png', show_shapes = True)

36PMR5251

SAME THING, DIFFERENT WAY...

from keras import models

from keras import layers

##Second definition

model = models.Sequential()

model.add(layers.Dense(20, activation='sigmoid', input_shape=(10,)))

model.add(layers.Dense(1))

model.summary()

37PMR5251

FUNCTION

def build_model(data_shape=(10,)):

model = models.Sequential()

model.add(layers.Dense(units=20, activation='sigmoid', input_shape=data_shape))

model.add(layers.Dense(units=1))

return model

model = build_model()

38PMR5251

COMPILATION

The generation of the ANN is performed in the compilation stage,
where the loss function, the training method and the metrics for the
ANN evaluation are defined and configurated:

▪The loss function mean_squared_error — How the network will be able to
measure its performance on the training data, and thus how it will be able to
steer itself in the right direction.

▪The optimizer sgd — The mechanism through which the network will update
itself based on the data it sees and its loss function.

▪Metrics to monitor during training and testing mean_absolute_error,
mean_absolute_percentage_error.

39PMR5251

LOSS FUNCTION: MEAN SQUARED ERROR

40PMR5251

SGD

SGD is the same as gradient descent, except that it is used to split the
data into batches. The parameter is called mini-batch size.

Faster optimizers are available in the literature to speed up the training
step. We will apply the SGD + Momentum (known as SGD), but, be
aware that are other popular Optimizer approaches such as Nesterov
Accelerated Gradient, AdaGrad, RMSProp, Adam (ADAptive Moment
estimation), and Nadam optimization.

The best optimizer, according to the literature, is Adam.

The SGD optimizer has a learning rate of 0.001 and momentum of 0.9.

41PMR5251

Source: https://imgur.com/a/Hqolp#NKsFHJb

https://imgur.com/a/Hqolp#NKsFHJb

42PMR5251

Batch Gradient Descent, BGD: the gradient is calculated using the entire
training dataset in each iteration, to update the parameters.

But if the number of training examples is large, then batch gradient descent is
computationally very expensive! Imagine if you have 10000 data, each data
with 10 features, there are 100 thousand values to compute at each
iteration...

VARIAÇÕES DO GRADIENTE DESCENDENTE

43PMR5251

VARIAÇÕES DO GRADIENTE DESCENDENTE

Stochastic Gradient Descent, SGD: the gradient is calculated using 𝒃 = 𝟏 random training data per

iteration, to update the parameters. The SGD converges faster for larger data sets. However, as in SGD

we only use one example at a time, we cannot use vectorized implementation. This can slow down the

calculations.

Batch Gradient Descent, BGD: the gradient is calculated using the entire
training dataset in each iteration, to update the parameters.

But if the number of training examples is large, then batch gradient descent is
computationally very expensive! Imagine if you have 10000 data, each data
with 10 features, there are 100 thousand values to compute at each
iteration...

Mini-batch Gradient Descent, MBGD: This is a type of gradient descent that works

faster. The gradient is calculated using 𝒃 < 𝒎 data from the dataset in each iteration,

to update the parameters.

44PMR5251

45PMR5251

EPOCH

Batch Gradient Descent (BGD) We take
the average of the gradients from all the
training examples and use this average
gradient to update our parameters.

Stochastic Gradient Descending (SGD)
We take a training example for gradient
calculation and use its gradient to update
our parameters.

Mini Batch Gradient Descent (MBGD)The
mini lot tries to find a balance between
BGD and SGD.

For each epoch:

1. Use the training data: BGD,
SGD ou MBGD

2. Calculate the gradient

3. Use the calculated gradient in
to update the weights

4. Repeat steps 1 through 3 for
all examples in the training
dataset for the total number
of epochs.

46PMR5251

METRICS

Mean Absolute Error

Mean squared error

Mean Absolute Percentage Error

47PMR5251

FINALLY...

from keras import optimizers

sgd = optimizers.SGD(lr=0.001, momentum=0.9)

model.compile(optimizer=sgd,

loss='mean_squared_error',

metrics=['mean_absolute_error', 'mean_absolute_percentage_error'])

48PMR5251

49PMR5251

50PMR5251

51PMR5251

PERFORMANCE ANALYSIS
y_prev = model.predict(x_test)

pred_sca_train = model.predict(x_train_sca)

pred_sca_val = model.predict(x_val_sca)

print(pred_sca_val.shape,pred_sca_train.shape)

y_new_train = normalizer_y.inverse_transform(pred_sca_train)

y_new_val = normalizer_y.inverse_transform(pred_sca_val)

52PMR5251

Hmmmmmm... the results

are not so bad, for this

simple network we

made....

53PMR5251

FOLLOW THE NOTEBOOK FOR THE NEXT STEPS

Changing number of neurons in the second intermediate;

Changing the activation function;

Changing optimizer.

Optimizers:
•SGD
•AdaGrad
•Adadelta
•RMSprop
•Adam

Activation functions:
•sigmoid
•tanh
•softplus
•ReLU

54PMR5251

Creates a model with the specific number of neurons num_neurons and specific activation g

def make_model(num_neurons=20, g = 'sigmoid'):

model = models.Sequential()

model.add(layers.Dense(units=num_neurons, activation=g, input_shape=(10,)))

model.add(layers.Dense(1))

model.compile(optimizer=sgd,

loss='mean_squared_error',

metrics=['mean_absolute_error', 'mean_absolute_percentage_error'])

return model

model_10_neurons = make_model(num_neurons=10)

model_20_neurons = make_model(num_neurons=20)

model_30_neurons = make_model(num_neurons=30)

model_40_neurons = make_model(num_neurons=40)

model_50_neurons = make_model(num_neurons=50)

55PMR5251

56PMR5251

57PMR5251

sigmoid_model = make_model(g = 'sigmoid')

relu_model = make_model(g = 'relu')

tanh_model = make_model(g = 'tanh')

softplus_model = make_model(g = 'softplus')

Training the models

print('Sigmoid')

sigmoid_history = sigmoid_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('ReLU')

relu_history = relu_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Tanh')

tanh_history = tanh_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Softplus')

softplus_history = softplus_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Done!!!')

Sigmoid

ReLU

Tanh

Softplus

Done!!!

58PMR5251

59PMR5251

i = 0

for optimizer in model_s.keys():

for activation in activation_s:

print(f'Combination {i}: {optimizer} with {activation}')

model = make_model_2(activation, optimizer)

hist = model.fit(x_train_sca, y_train_sca, epochs=500, verbose=0)

train_loss = hist.history['loss']

val_loss = model.evaluate(x_val_sca, y_val_sca, verbose=0)

model_s[optimizer][activation] = {'model': model, 'train': train_loss,

'val': val_loss, 'hist': hist}

i += 1

model_s = {'SGD': {}, 'AdaGrad': {}, 'Adadelta': {}, 'RMSprop': {}, 'Adam': {}}

activation_s = ['sigmoid', 'tanh', 'softplus', 'relu']

60PMR5251

Your job
Review the Notebook.

Do the proposed
homework.

Moodle, until 4/07, 23:59.

61PMR5251

CROSS VALIDATION

“Have the courage to follow your heart and intuition.
They somehow already know what you truly want to
become. Everything else is secondary.”
― Steve Jobs

THE END

	Slide 1: Artificial Neural networks (ANNs)
	Slide 2: Our Problem
	Slide 3: 10-bars truss structure
	Slide 4: Input data generation
	Slide 5: AREA GENERATION
	Slide 6: OUTPUT DATA GENERATION
	Slide 7
	Slide 8
	Slide 9: ANN
	Slide 10: Rede Neural Artificial
	Slide 11
	Slide 12: Notebook
	Slide 13: Keras
	Slide 14: Sequential API Mode
	Slide 15: Functional API MODE
	Slide 16
	Slide 17: Our job today...
	Slide 18: import libraries
	Slide 19: Upload your file initial FinalResult.csv
	Slide 20: dataset
	Slide 21: Train and test dataset Split dataset into train and test
	Slide 22: Scaling
	Slide 23: Scaling normalization vs Standardization
	Slide 24: Cost function
	Slide 25: Normalizing Dataset
	Slide 26: Scaling result
	Slide 27
	Slide 28: OUR sequencial NN with keras
	Slide 29: First neural network model
	Slide 30: First neural network model
	Slide 31: First neural network model
	Slide 32: First neural network model
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Same thing, difFerent way...
	Slide 37: function
	Slide 38: Compilation
	Slide 39: Loss function: Mean squared error
	Slide 40: SGD
	Slide 41
	Slide 42: Variações do Gradiente descendente
	Slide 43: Variações do Gradiente descendente
	Slide 44
	Slide 45: EPOCH
	Slide 46: metrics
	Slide 47: Finally...
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Performance analysis y_prev = model.predict(x_test)
	Slide 52
	Slide 53: Follow the notebook for the next steps
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Cross Validation
	Slide 62: The end

