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OUR PROBLEM
Structural bars
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10-BARS TRUSS STRUCTURE

Property Value

Density Τ𝑡𝑜𝑛 𝑚𝑚3 2.768 10−9

Poisson − 0.35

Young Modulus 𝑀𝑃𝑎 68950

Seunghye Lee, Jingwan Ha, Mehriniso Zokhirova, Hyeonjoon 

Moon, Background Information of Deep Learning for 

Structural Engineering, July 2017, Archives of 

Computational Methods in Engineering
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INPUT DATA GENERATION

Cross sectional
areas randomly
choosen.

Values varying
from 0.6 𝑐𝑚2 to 
225.8 𝑐𝑚2
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AREA GENERATION

The Python script for generating areas is called gera_areas_10.py and it is
available in the Moodle.

In the script 520 datasets are generated, with 10 random areas each, using
the command:

num = random.random()*(225.8-.6)+0.6

The data is written to a csv file, which will be imported by Notebook.

However, if you do not want to generate the areas with the code in Python, the 
file is already available in Moodle with the name areas.csv
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OUTPUT DATA GENERATION

To generate the output data, you need the following files:
1. areas.csv

2. 10-BarStructure.py

3. BasicInput.inp

The file 1 contain 520 area combinations.

The file 2 is the script in Pyhton used to run Abaqus. 

The file 3 is a template Abaqus file, which contains geometry, material 
and loading data. The areas will be modified by the script (file 2), which 
will also do the analysis and store the results.
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File FinalResult.csv

This step is finished. 

It was your homework ...
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We are ready to go to the Notebook to 

work with the neural network, as we have:

Input files – areas.csv, which has all 

combinations of areas

Output file – FinalResult.csv, with areas 

(yes, again...), displacements of all nodes 

and stresses of all bars.



ANN
Machine learning tools
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REDE NEURAL ARTIFICIAL

Virtually no one develops its own code to implement and 
train an ANN since there are numerous development 
tools, already tested, that do most of this work and are 
widely used.

The great advantage of using one of these tools comes 
from the fact that we only need to define the 
configuration (architecture) of the ANN, that is, to define 
how forward propagation is performed. When forward 
propagation is defined, the back propagation, which is 
in fact the most difficult part of coding an ANN, is 
automatically generated using symbolic manipulation.

Forward

propagation

Back 

propagation
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Keras was developed by the MIT and is the most used deep 

learning framework among top-5 winning teams on Kaggle. 

It is, nowadays, TensorFlow's high-level API.



NOTEBOOK
PMR5251_C03_2023.ipynb 
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KERAS

In Keras there are two ways to define an ANN…

import tensorflow as tf

from tensorflow import keras
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SEQUENTIAL API MODE

It is the simplest model and 
it comprises a linear pile 

of layers that allows you to 
configure models layer-by-

layer for most problems. 
The sequential model is 

very simple to use, 
however, it is limited in its 

topology. The limitation 
comes from the fact that 

you are not able to 
configure models with 
shared layers or have 

multiple inputs or outputs.
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FUNCTIONAL API MODE

It is ideal for creating complex 
models, that require extended 

flexibility. It allows you to define 
models that feature layers connect 
to more than just the previous and 

next layers. With this model 
becomes possible to create 

complex networks such as siamese 
networks, residual networks, multi-

input/multi-output models and 
models with shared layers. 
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OUR JOB TODAY...
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IMPORT LIBRARIES

import numpy as np

import pandas as pd

Pandas is the most widely used open source Python package

for data analysis and machine learning. It is built on top of

another package called Numpy (see that it was imported

before Pandas in our code), which provides support for 

matrix analysis.

import tensorflow as tf

from tensorflow import keras

Throughout this notebook the new version 2.12 of Tersorflow was used, with 

built-in keras support, which has been recently released to the public.
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UPLOAD YOUR FILE INITIAL
FINALRESULT.CSV 
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DATASET

df = pd.read_csv('FinalResult.csv', index_col=0)

train.head()
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TRAIN AND TEST DATASET
SPLIT DATASET INTO TRAIN AND TEST

from sklearn.model_selection import train_test_split

train, test = train_test_split(df, test_size=0.2, random_state=42)

x_train = train.loc[:,'area1':'area10'].values

y_train = train[['d4']].values

x_val = test.loc[:,'area1':'area10'].values

y_val = test[['d4']].values

print(x_train.shape, y_train.shape)

print(x_val.shape, y_val.shape)

(416, 10) 

(416, 1) 

(104, 10) 

(104, 1)



22PMR5251

SCALING

Most of times different features in the data 
might be have varying magnitudes. For 
example, a dataset containing two 
resources, displacement which ranges from 
0-1) and stresses, about 100-1000 times 
greater than displacement. So, these two 
features are at very different ranges with 
high values dominating those with small 
values. The reason is that many of the 
machine learning algorithms use euclidean 
distance between data point in their 
computation. In this case, machine learning 
model treats those with small values as if 
they don't exist.
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SCALING
NORMALIZATION VS STANDARDIZATION

Normalization

ҧ𝑥𝑖 =
𝑥𝑖 −min𝒙

max 𝒙 −min 𝒙

Also known as min-max scaling or min-
max normalization, it is the simplest 
method and consists of rescaling the 
range of features to scale the range in 
[0, 1].

Normalization is good to use when the 
distribution of data does not follow a 
Gaussian distribution.

Standardization

ҧ𝑥𝑖 =
𝑥𝑖 − 𝜇(𝑖)

𝜎(𝑖)

Feature standardization makes the values of 
each feature in the data have zero mean and 
unit variance.

Standardization can be helpful in cases where 
the data follows a Gaussian distribution.
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COST FUNCTION

Raw data 𝑥1 ≫ 𝑥2 Normalization Standardization

𝜔1

𝜔
2

𝜔
2

𝜔
2

𝜔1
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NORMALIZING DATASET

from sklearn.preprocessing import MinMaxScaler

# Scaling the input data using the MinMaxScaler from scikit-learn

scaler_x = MinMaxScaler().fit(x_train)

x_train_sca = scaler_x.transform(x_train)

x_val_sca = scaler_x.transform(x_val)

# Normalizing the output data using the normalizer from scikit-learn

normalizer_y = MinMaxScaler(feature_range = (-1.,0.)).fit(y_train)#StandardScaler,MaxAbsScaler

y_train_sca = normalizer_y.transform(y_train)

y_val_sca = normalizer_y.transform(y_val)

# Min and Max in input

min_x_train = np.min(x_train_sca)

min_x_val = np.min(x_val_sca)

max_x_train = np.max(x_train_sca)

max_x_val = np.max(x_val_sca)

# Mean and Standard Deviation in Output

min_y_train = np.min(y_train_sca)#mean

min_y_val = np.min(y_val_sca)

max_y_train = np.max(y_train_sca)#std

max_y_val = np.max(y_val_sca)
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SCALING RESULT

For the input training set, the min is 0.0 and the max is 1.0 

For the input validation set, the min is -0.0023858525432659487 and the max is 1.008195327650636 

For the output train set, the min is -1.0 and the max is 5.551115123125783e-17 

For the output validation set, the min is -1.3732910962953015 and the max is -0.006101485466849105

print(f'For the input training set, the min is {min_x_train} and the max is {max_x_train}')

print(f'For the input validation set, the min is {min_x_val} and the max is {max_x_val}')

print(f'For the output train set, the min is {min_y_train} and the max is {max_y_train}')

print(f'For the output validation set, the min is {min_y_val} and the max is {max_y_val}')
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OUR SEQUENCIAL NN WITH KERAS

We will start with the simplest way to create an RNA in Keras, which is the 
sequential model. Creating, training and testing an ANN with Keras is 
done in the following steps:

I. Definition of training and test data;

II. ANN configuration, which consists of defining the layers to map the inputs to the 
desired outputs;

III. Compilation of the ANN, which also includes configuring the training process by 
choosing the cost function, the optimizer and the metric to evaluate performance;

IV. ANN training;

V. ANN performance evaluation.
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FIRST NEURAL NETWORK MODEL

from keras import models

from keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The hidden layer is of the dense 

type (fully connected), it has 20 

neurons
its activation 

function is sigmoid
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FIRST NEURAL NETWORK MODEL

from keras import models

from keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

Input data for each training 

example is a 1-D vector (10)

the dimension of the second axis of the input 

tensor is not included in the ʻinput_shape’ 

argument, because at that moment the number of 

examples that will be used in training is unknown
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FIRST NEURAL NETWORK MODEL

from tensorflow.keras import models

from tensorflow.keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The hidden layer is of the dense 

type (fully connected), it has 20 

neurons
its activation 

function is sigmoid
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FIRST NEURAL NETWORK MODEL

from tensorflow.keras import models

from tensorflow.keras.layers import Dense, Activation

##First definition

model = models.Sequential([

Dense(20, input_shape=(10,)),

Activation('sigmoid'),

Dense(1)

])

model.summary()

The output layer is dense (fully connected), has 

one neuron and its activation function is linear.

presents a summary of the main 

characteristics of the network
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Model: "sequential" 

_________________________________________________________________ 

Layer (type)              Output Shape               Param # 

=================================================================

dense (Dense)               (None, 20)               220 

activation (Activation)     (None, 20)                0 

dense_1 (Dense)             (None, 1)                 21 

================================================================= 

Total params: 241 

Trainable params: 241 

Non-trainable params: 0 

_________________________________________________________________
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Connection 

between 

neurons 

and input 

data

Bias

Input layer
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from keras.utils import plot_model

import pydot

plot_model(model, to_file = '/content/model.png', show_shapes = True)
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SAME THING, DIFFERENT WAY...

from keras import models

from keras import layers

##Second definition

model = models.Sequential()

model.add(layers.Dense(20, activation='sigmoid', input_shape=(10,)))

model.add(layers.Dense(1))

model.summary()
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FUNCTION

def build_model(data_shape=(10,)):

model = models.Sequential()

model.add(layers.Dense(units=20, activation='sigmoid', input_shape=data_shape))

model.add(layers.Dense(units=1))

return model

model = build_model()
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COMPILATION

The generation of the ANN is performed in the compilation stage, 
where the loss function, the training method and the metrics for the 
ANN evaluation are defined and configurated:

▪The loss function mean_squared_error — How the network will be able to 
measure its performance on the training data, and thus how it will be able to 
steer itself in the right direction.

▪The optimizer sgd — The mechanism through which the network will update 
itself based on the data it sees and its loss function.

▪Metrics to monitor during training and testing mean_absolute_error, 
mean_absolute_percentage_error.
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LOSS FUNCTION: MEAN SQUARED ERROR
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SGD

SGD is the same as gradient descent, except that it is used to split the 
data into batches. The parameter is called mini-batch size.

Faster optimizers are available in the literature to speed up the training 
step. We will apply the SGD + Momentum (known as SGD), but, be 
aware that are other popular Optimizer approaches such as Nesterov 
Accelerated Gradient, AdaGrad, RMSProp, Adam (ADAptive Moment 
estimation), and Nadam optimization.

The best optimizer, according to the literature, is Adam.

The SGD optimizer has a learning rate of 0.001 and momentum of 0.9.
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Source: https://imgur.com/a/Hqolp#NKsFHJb

https://imgur.com/a/Hqolp#NKsFHJb
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Batch Gradient Descent, BGD: the gradient is calculated using the entire 
training dataset in each iteration, to update the parameters.

But if the number of training examples is large, then batch gradient descent is 
computationally very expensive! Imagine if you have 10000 data, each data 
with 10 features, there are 100 thousand values to compute at each 
iteration...

VARIAÇÕES DO GRADIENTE DESCENDENTE
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VARIAÇÕES DO GRADIENTE DESCENDENTE

Stochastic Gradient Descent, SGD: the gradient is calculated using 𝒃 = 𝟏 random training data per 

iteration, to update the parameters. The SGD converges faster for larger data sets. However, as in SGD 

we only use one example at a time, we cannot use vectorized implementation. This can slow down the 

calculations. 

Batch Gradient Descent, BGD: the gradient is calculated using the entire 
training dataset in each iteration, to update the parameters.

But if the number of training examples is large, then batch gradient descent is 
computationally very expensive! Imagine if you have 10000 data, each data 
with 10 features, there are 100 thousand values to compute at each 
iteration...

Mini-batch Gradient Descent, MBGD: This is a type of gradient descent that works 

faster. The gradient is calculated using 𝒃 < 𝒎 data from the dataset in each iteration, 

to update the parameters. 
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EPOCH

Batch Gradient Descent (BGD) We take 
the average of the gradients from all the 
training examples and use this average 
gradient to update our parameters.

Stochastic Gradient Descending (SGD) 
We take a training example for gradient 
calculation and use its gradient to update 
our parameters.

Mini Batch Gradient Descent (MBGD)The 
mini lot tries to find a balance between 
BGD and SGD.

For each epoch:

1. Use the training data: BGD, 
SGD ou MBGD

2. Calculate the gradient

3. Use the calculated gradient in 
to update the weights

4. Repeat steps 1 through 3 for 
all examples in the training 
dataset for the total number 
of epochs.



46PMR5251

METRICS

Mean Absolute Error

Mean squared error

Mean Absolute Percentage Error
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FINALLY...

from keras import optimizers

sgd = optimizers.SGD(lr=0.001, momentum=0.9)

model.compile(optimizer=sgd,

loss='mean_squared_error',

metrics=['mean_absolute_error', 'mean_absolute_percentage_error'])
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PERFORMANCE ANALYSIS
y_prev = model.predict(x_test)

pred_sca_train = model.predict(x_train_sca)

pred_sca_val = model.predict(x_val_sca)

print(pred_sca_val.shape,pred_sca_train.shape)

y_new_train = normalizer_y.inverse_transform(pred_sca_train)

y_new_val = normalizer_y.inverse_transform(pred_sca_val)
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Hmmmmmm... the results 

are not so bad, for this 

simple network we 

made....
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FOLLOW THE NOTEBOOK FOR THE NEXT STEPS

Changing number of neurons in the second intermediate;

Changing the activation function;

Changing optimizer.

Optimizers:
•SGD
•AdaGrad
•Adadelta
•RMSprop
•Adam

Activation functions:
•sigmoid
•tanh
•softplus
•ReLU
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# Creates a model with the specific number of neurons num_neurons and specific activation g

def make_model(num_neurons=20, g = 'sigmoid'):

model = models.Sequential()

model.add(layers.Dense(units=num_neurons, activation=g, input_shape=(10,)))

model.add(layers.Dense(1))

model.compile(optimizer=sgd,

loss='mean_squared_error',

metrics=['mean_absolute_error', 'mean_absolute_percentage_error'])

return model

model_10_neurons = make_model(num_neurons=10)

model_20_neurons = make_model(num_neurons=20)

model_30_neurons = make_model(num_neurons=30)

model_40_neurons = make_model(num_neurons=40)

model_50_neurons = make_model(num_neurons=50)
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sigmoid_model = make_model(g = 'sigmoid')

relu_model = make_model(g = 'relu')

tanh_model = make_model(g = 'tanh')

softplus_model = make_model(g = 'softplus')

# Training the models

print('Sigmoid')

sigmoid_history = sigmoid_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('ReLU')

relu_history = relu_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Tanh')

tanh_history = tanh_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Softplus')

softplus_history = softplus_model.fit(x_train_sca, y_train_sca, epochs=500, batch_size=32, verbose = 0)

print('Done!!!')

Sigmoid

ReLU

Tanh

Softplus

Done!!!
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i = 0

for optimizer in model_s.keys():

for activation in activation_s:

print(f'Combination {i}: {optimizer} with {activation}')

model = make_model_2(activation, optimizer)

hist = model.fit(x_train_sca, y_train_sca, epochs=500, verbose=0)

train_loss = hist.history['loss']

val_loss = model.evaluate(x_val_sca, y_val_sca, verbose=0)

model_s[optimizer][activation] = {'model': model, 'train': train_loss,

'val': val_loss, 'hist': hist}

i += 1

model_s = {'SGD': {}, 'AdaGrad': {}, 'Adadelta': {}, 'RMSprop': {}, 'Adam': {}}

activation_s = ['sigmoid', 'tanh', 'softplus', 'relu']
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Your job
Review the Notebook.

Do the proposed 
homework.

Moodle, until 4/07, 23:59. 
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CROSS VALIDATION



“Have the courage to follow your heart and intuition. 
They somehow already know what you truly want to 
become. Everything else is secondary.”
― Steve Jobs

THE END
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