+0/1/60+

Nome: No. USP

Questão	Resposta	Valor	Questão	Resposta	Valor
1	(a) (b) (c) (d) (e)		6	(a) (b) (c) (d) (e)	
2	(a) (b) (c) (d) (e)		7	(a) (b) (c) (d) (e)	
3	(a) (b) (c) (d) (e)		8	(a) (b) (c) (d) (e)	
4	(a) (b) (c) (d) (e)		9	(a) (b) (c) (d) (e)	
5	(a) (b) (c) (d) (e)		10	(a) (b) (c) (d) (e)	

+0/2/59+

Nome: No. USP

Questão 1. O volume do sólido gerado por

 $A = \{(x, y) \ tal \ que \ -1 \le x \le 1, \quad 0 \le y \le |x| + 1\}$

na rotação em torno do eixo x é :

 $\boxed{A} \quad \frac{7}{3}\pi.$

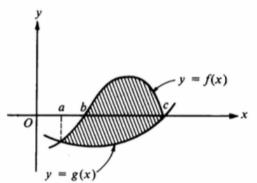
 $\boxed{\mathrm{B}} \frac{7}{2}\pi.$

 $\boxed{\text{C}} \frac{18}{3}\pi$

 $\boxed{\text{D}} \frac{11}{2} \pi.$

 $\boxed{\mathrm{E}} \frac{\bar{14}}{3}\pi$

Questão 2. A área da região hachurada na figura é representada por qual das seguintes integrais?



$$\boxed{\textbf{A}} \int_a^b (g(x) - f(x)) dx + \int_b^c (f(x) - g(x)) dx$$

$$\boxed{\mathbf{B}} \int_{a}^{c} (|f(x)| - |g(x)|) dx$$

$$\boxed{\mathbf{D}} \int_{a}^{c} (|g(x)| - |f(x)|) dx$$

$$\boxed{\mathbf{E}} \int_{a}^{c} (g(x) - f(x)) dx$$

Questão 3. Quadrados iguais são cortados dos cantos de uma folha de papelão retangular medindo 30 cm de largura e 50 cm de comprimento. As abas que sobram são então dobradas para cima de modo a formar uma caixa sem tampa. Quanto deve ser a medida x, em cm, dos lados dos quadrados retirados, para que o volume da caixa seja o maior possível?

A $\frac{40+5\sqrt{19}}{3}$

 $\frac{40-5\sqrt{19}}{3}$

 $C \frac{40-5\sqrt{17}}{3}$

D nenhuma das outras alternativas.

 $E = \frac{40+5\sqrt{17}}{3}$

Questão 4. Seja b um número positivo. O valor do limite $\lim_{x\to +\infty} x^2 (e^{\frac{b}{x}}-1)$ é:

A 0

 $B + \infty$

C 1

D b

 $oxed{\mathrm{E}} e^b$

Questão 5. Suponha que a população da espécie A no tempo $t\geq 1$ é dada pela função $A(t)=\ln(t)+10+\cos(t)$ e a população da espécie B no tempo $t\geq 1$ é dada pela função $B(t)=t^3+2t+1$. Então

- A Quando o tempo t é muito grande temos que a população da espécie B será muito maior que a população da espécie A.
- B Quando o tempo t é muito grande temos que a população da espécie A será muito maior que a população da espécie B.
- \fbox{C} As duas populações tendem a zero quando t tende à $+\infty$.
- D nada podemos dizer.
- $oxed{\mathbb{E}}$ Apenas uma populações tende a zero quando t tende à $+\infty$.

Questão 6. Encontre f''(x) se $f(x) = x \operatorname{sen}(x) + x^2 \cos(x)$.

 $\boxed{\mathbf{A}} \quad f''(x) = \operatorname{sen}(x) + 2\cos(x)$

 $\boxed{\mathbf{B}} f''(x) = -\operatorname{sen}(x) - 2\cos(x)$

C $f''(x) = x^2 \cos(x) + 5x \sin(x) + 4\cos(x)$

D $f''(x) = -x^2 \cos(x) + 4\cos(x) - 5x \sin(x)$

E Nenhuma das outras alternativas.

Questão 7. Seja $f: \mathbb{R} \to (0, +\infty)$ uma função derivável e considere $g(x) = \ln(f(x))$. Então

 $\boxed{\mathbf{A}} \ g'(x) = \frac{f'(x)}{f(x)}$

 $\boxed{\mathbf{B}} \ g'(x) = \frac{1}{f(x)}$

 $\boxed{\mathbf{C}} \ g'(x) = \frac{f'(x)}{x}$

 $\boxed{\mathbf{D}} \ g'(x) = \frac{1}{f(x)f'(x)}$

 $\boxed{\mathbf{E}} \ g'(x) = \frac{1}{xf'(x)}$

 Questão 8. Seja $f\colon \mathbb{R} \to \mathbb{R}$ uma função limitada. Com respeito ao limite

$$\lim_{x\to +\infty} x(\cos(\frac{2}{x}) - 1 + \frac{f(x)}{x^2})$$

podemos dizer que

- A Este limite não existe.
- B Nenhuma das outras alternativas.
- Este limite existe e está entre 1 e 4.
- Este limite existe e está entre 5 e 10.
- E Este limite existe e está entre -1 e 1.

Questão 9. Seja $F:\mathbb{R}\to\mathbb{R}$ definida como $F(x)=\int_{\frac{\pi}{2}}^x e^{t^2}dt$. Então $F^{''}(x)$ é igual a

- $\boxed{\mathbf{A}} \ 2xe^{x^2}$
- $\boxed{\text{B}} 2xe^{x^2} + \frac{1}{7}$
- $\begin{bmatrix} \mathbf{C} \end{bmatrix}$ xe^x
- $D e^{x^2} + \frac{1}{2}$
- E F não é duas vezes diferenciável.

Questão 10. Qual alternativa é uma afirmação correta sobre $\int_2^{+\infty} \frac{1}{\ln(x)} dx$?

- A Convergente, pois para $x \ge 2$ temos $0 < \frac{1}{\ln(x)} \le \frac{1}{x^2}$ e $\int_2^{+\infty} \frac{1}{x^2} dx$ converge.

- D Convergente, pois para $x \ge 2$ temos $0 < \frac{1}{x} <$ $\frac{1}{\ln(x)}$ e $\int_{2}^{+\infty} \frac{1}{x} dx$ converge.
- $\boxed{\mathbf{E}} \;\; \text{Divergente, pois para} \; x \geq 2 \text{ temos} \; 0 < \frac{1}{x} < \frac{1}{\ln(x)}$ e $\int_{2}^{+\infty} \frac{1}{x} dx$ diverge.