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Infantile Amnesia: A Critical Period of Learning to Learn
and Remember
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Infantile amnesia, the inability of adults to recollect early episodic memories, is associated with the rapid forgetting that occurs in
childhood. It has been suggested that infantile amnesia is due to the underdevelopment of the infant brain, which would preclude memory
consolidation, or to deficits in memory retrieval. Although early memories are inaccessible to adults, early-life events, such as neglect or
aversive experiences, can greatly impact adult behavior and may predispose individuals to various psychopathologies. It remains unclear
how a brain that rapidly forgets, or is not yet able to form long-term memories, can exert such a long-lasting and important influence.
Here, with a particular focus on the hippocampal memory system, we review the literature and discuss new evidence obtained in rats that
illuminates the paradox of infantile amnesia. We propose that infantile amnesia reflects a developmental critical period during which the
learning system is learning how to learn and remember.

The long-lasting influence of episodic infantile experiences
and the paradox of infantile amnesia
How do we develop our abilities to learn and remember facts,
people, things, relationships, and places? These memories define
our identities; they store autobiographical episodes that can be
consciously declared, and are therefore termed declarative mem-
ories. Declarative memories include both the experience of spe-
cific things, people, and events of a given time and place (episodic
memories), and general knowledge about the world (semantic
memories). They are also known as explicit memories because
they require conscious recollection (Graf and Schacter, 1985).
These are the memories that are lost in Alzheimer’s disease or
aging-related memory impairment. Parallels of these memories
exist in nonhuman animals and include contextual, spatial, and
episodic memories (Ergorul and Eichenbaum, 2004). Collec-
tively, such memories store information about “who, what, when
and where,” and are therefore termed “wwww” memories. In
both humans and nonhuman mammals, wwww memories are
processed by the hippocampus-dependent (or medial temporal
lobe-dependent) learning and memory system (Eichenbaum,
2006; Squire and Wixted, 2011; Lavenex and Banta Lavenex,
2013; Albani et al., 2014).

A large body of clinical and behavioral evidence has demon-
strated the critical importance of infantile episodic experiences
for brain function throughout life. However, little is known
about the biological mechanisms underlying the development
of the hippocampus-dependent learning and memory system.
Many studies have shown that hippocampus-dependent memo-

ries (also referred to as hippocampal memories) are severely
compromised by challenges occurring early in life. These chal-
lenges may be either psychological (e.g., trauma, neglect, or de-
privation of social experience) or biological (e.g., the impact of
genetic mutations on development). All of these events can pre-
dispose individuals to psychopathologies, such as post-traumatic
stress disorder, borderline personality disorder, or autism (Heim
and Nemeroff, 2001; Pryce et al., 2005; Zeanah et al., 2009; Bale et
al., 2010; Perry and Sullivan, 2014).

Neglect during early development can produce severe psycho-
pathologies, such as depression and anxiety, as well as learning
and cognitive disabilities (Rutter, 1998; Lyons-Ruth et al., 2006;
Nelson et al., 2007; Bos et al., 2010; Pollak, 2015; Fisher, 2016;
Teicher and Samson, 2016). One well-studied example of se-
verely impoverished experience during early development in-
volves a group of children in Bucharest who were abandoned and
institutionalized around the time of birth. According to the Bu-
charest Early Intervention Project, which has followed these cases
for up to 20 years, the children experienced very little interaction,
support, or care from the very early years of life. This deprivation
resulted in high rates of mortality and developmental disabilities.
Institutionalization during the first 4 –5 years of life caused defi-
cits and delays in cognitive (i.e., intelligence quotient [IQ]) and
socio-emotional behaviors (i.e., attachment), and greatly in-
creased the incidence of psychiatric disorders. These children also
exhibited significant differences in brain electrical activity. For
the children who were transferred to foster care, general develop-
ment improved; however, improvements in brain activity (EEG),
language, cognition, and social-emotional functioning were lim-
ited to very early-life sensitive periods: the earlier the children
were transferred to foster care, the better was the recovery. More-
over, the sensitive period for recovery varied by functional do-
main; and if foster care did not start by the age of 2 years, most
functions remained permanently compromised: only a few
functions recovered fully, whereas others, such as attachment,
emotional responsiveness, and IQ, continued to be impaired
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(Bos et al., 2010). These data suggest that several learning and
cognitive functions, most of which are processed by the medial
temporal lobe, are extremely sensitive to the types of experiences
encountered during the early developmental period.

Developmental cognitive impairments throughout the life-
time are not limited to extreme cases, such as institutionalized
children with poor resources. Poverty, a much more widespread
condition, has been extensively documented to lead to severe and
permanent learning deficits (Bos et al., 2010). Consequently,
addressing poverty may resolve many health and economic chal-
lenges and would greatly improve life skills, psychosocial condi-
tions, and productivity, and hence the standard of living, in all
societies.

Although these clinical and psychological data highlight the
importance of a critical temporal window in which early inter-
vention can repair the effects of childhood adversity, the under-
lying mechanisms remain poorly understood. Recent studies
suggested that poor cognitive and academic performance among
children living in poverty is, at least in part, due to reduction in
the size of the hippocampus and frontal and temporal lobes (Hair
et al., 2015). Similarly, reduced volume of the hippocampal
subregions CA3 or dentate gyrus correlates with childhood mal-
treatment and abuse (Teicher and Samson, 2016). It has been
proposed that most of these deficits are the result of the effects of
stress (Bale et al., 2010) because many studies have focused their
attention on determining the effects of severe or chronic stress on
development (Meaney and Szyf, 2005; Blair and Raver, 2016).

Experiments in animal models led to similar conclusions (i.e.,
stressful early-life experiences predispose to cognitive dysfunc-
tions) (Meaney et al., 1988; Brunson et al., 2005; Poulos et al.,
2014), and are accompanied by precocious maturation of the
hippocampus, as revealed by accelerated development of inhibi-
tory circuitry, switching of NMDAR subunit expression, and my-
elin maturation (Bath et al., 2016). Early-life stress also decreases
adult performance in inhibitory, spatial, and recognition learn-
ing and memory (Lehmann and Feldon, 2000; Chocyk et al.,
2013; Reincke and Hanganu-Opatz, 2017).

However, as discussed below, we believe that severe stress and
trauma may not be the only explanation for such defects. We
propose that lack of sufficient or balanced enrichment in episodic/
declarative experiences during the early phase of development
may also cause learning and cognitive disabilities with severe life-
long repercussions, such as depression, addiction, and obsessive-
compulsive disorder. This hypothesis is in agreement with the
outcomes of several clinical studies (Heim and Nemeroff, 2001;
Pryce et al., 2005; Spratt et al., 2012).

The long-term effects of early-life experiences present a para-
dox: hippocampal-dependent learning seems to develop rela-
tively late in childhood; and in both humans and other animals,
early episodic/declarative memories are rapidly forgotten. This
memory loss is thought to be associated with infantile or child-
hood amnesia, the inability of adults to recall early-life events
(Campbell and Spear, 1972; Hayne, 2004; Rovee-Collier and
Cuevas, 2009). How, then, can memories that are rapidly forgot-
ten, and of which there is virtually no recollection in adulthood,
exert a lifelong effect on the brain and cognitive function? To
date, the hypotheses proposed to explain this paradox have not
been fully satisfactory.

Recent studies from our laboratory suggest a novel explana-
tion for why experience deprivation or significant alteration of
hippocampal learning in early developmental phases, when the
hippocampal memory system is not yet functionally competent,
leads to profound and lasting deficits in cognitive functions, in-

cluding learning. Data that we obtained in rats indicate that the
hippocampal memory system, like sensory functions and lan-
guage, matures through experience and undergoes a develop-
mental critical period (Travaglia et al., 2016a). Our results imply
that optimal exposure to hippocampal learning during early life is
key to development of an efficient, well-organized hippocampal
learning system. On the other hand, deficient or deleterious ex-
perience during this critical period can predispose the individual
to lifelong dysfunctions.

In this Viewpoints article, we review the current knowledge on
the role of the hippocampal memory system during early devel-
opment, as well as the literature on infantile amnesia, in both
animal models and humans. In this context, we discuss our recent
findings and propose that critical-period mechanisms in the hip-
pocampus play fundamental roles in learning how to learn and
remember. We conclude by discussing the implications of this
novel model of early learning for the etiology of learning disabil-
ities and developmental psychopathology.

Hippocampus-dependent learning and its ontogeny
In both humans and nonhuman mammals (e.g., rodents), the
memories that store information about who, what, when, and
where (wwww memories) are processed by the hippocampus and
related structures of the medial temporal lobe (Eichenbaum,
2006; Squire and Wixted, 2011). For simplicity, we will refer to
these memories as hippocampus-dependent memories or hip-
pocampal memories.

The hippocampus does not process and store memories in
isolation, but instead cooperates with other medial temporal lobe
and cortical regions, which, as network ensembles, execute the
processes of encoding, stabilization (consolidation), mainte-
nance (storage), and retrieval of memories. Together, these struc-
tures comprise the hippocampus-dependent memory system
(Preston and Eichenbaum, 2013; Squire et al., 2015). Upon
learning, these network ensembles undergo long-lasting phys-
ical changes, which are referred to as memory traces or engrams.
These changes, which are necessary for memory consolidation
and storage, evolve over time. First, the hippocampus, along with
the primary, secondary, and association cortices, initiates mem-
ory consolidation, the process that stabilizes the new, fragile
memory trace. This initial phase of consolidation, known as cel-
lular/molecular consolidation, requires de novo gene expression
(Dudai, 2012). With time, the engram shifts from hippocampal-
cortical to primarily cortical areas, thus becoming hippocampus-
independent, a process known as system consolidation (Dudai,
2012). Notably, when memories maintain autobiographical de-
tails, they may remain dependent on the hippocampus for their
recall (Moscovitch et al., 2016).

The identification and characterization of the hippocampus-
dependent memory system and its functions emerged from anal-
yses of clinical cases in which the hippocampi and/or related
structures had been damaged or lost. One well-studied example is
the patient H.M., who underwent bilateral resection of the medial
temporal lobe for intractable epilepsy (Scoville and Milner, 1957).
After surgery, the patient experienced a dramatic improvement
in epileptic symptoms but developed severe anterograde and tem-
porally graded retrograde amnesia selective for autobiographical/
episodic and declarative memories. By contrast, his working
memory was intact, as were his intellectual abilities and motor
learning. Similar results have been obtained with hippocampal
lesions or inactivation in animal models (Kim and Fanselow,
1992; Bambah-Mukku et al., 2014). Hence, both human and an-
imal model studies have identified the hippocampus as a key
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player in the formation of long-term memories related to events
and their temporal and spatial bindings. These studies also dis-
tinguished the wwww memories from other types of memories,
which were spared in amnesic patients and animal models with
hippocampal lesions. The spared memories were classified as
nondeclarative or implicit, which, in contrast to declarative
memories, can be recalled automatically without conscious effort
(Tulving, 2005; Squire and Wixted, 2011).

If distinct memory systems (i.e., explicit and implicit) exist in
adult brains, how do they actually develop? More specifically,
how does the hippocampus-dependent memory system mature?

Memory system ontogeny has been extensively studied in hu-
man and animal models at the psychological and behavioral
levels. The results of these studies were initially controversial:
researchers disagreed about the criteria for classification of im-
plicit versus explicit learning and memory in early development,
as well as whether and when hippocampus-dependent memories
are formed in early life. Some authors argued that infants lack the
capacity for explicit/declarative long-term memory, and pointed
out that, because infants lack language ability, it is difficult to
establish whether they can experience conscious recollection of
tasks (Schacter and Moscovitch, 1984; Tulving, 2005). On the
other hand, other authors proposed that infants are perfectly
capable of expressing explicit memories under behavioral para-
digms appropriate to their developmental stage (Hayne, 2004;
Rovee-Collier and Cuevas, 2009).

Although this controversy remains only partially resolved,
most investigators involved in both human and animal studies
agree that infants can form long-lasting memories, but exhibit
faster rates of forgetting, and that the expression of different types
of memories in early development differs greatly from that in
adults. It is also well established that the implicit memory system
is functional starting from birth, whereas the explicit memory
system reaches functional maturity much later (Rovee-Collier
and Cuevas, 2009).

A consensus has also been reached that the maturation of
implicit and explicit memory systems progresses in phases that
are adapted to the available capacity. For example, for nipple
location and nursing, starting immediately after birth, rat pups
engage in somatosensory learning associated with the whisker
system (Landers and Sullivan, 1999). This learning likely involves
the sense of smell, which is functional in newborn rats (Alberts,
1984), whereas hearing and vision arise later, around postnatal
day (PN) 13–14 (Freeman et al., 1999; de Villers-Sidani et al.,
2007). As the complexity of somatosensory information process-
ing develops, different and more complex behavioral responses
emerge. Likewise, threatening experiences that occur very early in
life are processed very differently than in later developmental
phases and adulthood. If pups at PN10 or younger are presented
with aversive stimuli paired with a novel odor, they show a pref-
erence rather than aversion for the odor (Sullivan et al., 1986).
This approach response, which is not due to deficits in pain pro-
cessing, seems to be linked to immaturity of the threat learning
system. Indeed, the infantile experience appears to activate a very
different neural circuit in pups than in adults (Shionoya et al.,
2006). The adult-like fear response emerges at �PN12-PN15,
with the maturation of the amygdala, a region critical for threat
response processing (Bouwmeester et al., 2002; Moriceau and
Sullivan, 2006; Moriceau et al., 2006; Chareyron et al., 2012).

At a similar age (PN10-P12), however, the rat hippocampus
remains very immature, with consistent performance in spatial
and contextual learning only emerging much later. The ability to
perform most hippocampal-dependent tasks, including sponta-

neous alternation, spatial navigation, and contextual fear condi-
tioning, develops no earlier than PN17 (Campbell and Spear,
1972). Moreover, at this stage (PN17), spatial, contextual, and
episodic information can be learned and retained, but only for a
short period of time. These memories do not persist and are
apparently rapidly forgotten, a phenomenon that, as mentioned
above, parallels infantile amnesia (Campbell and Spear, 1972).
Hippocampal-type memories are observed more consistently
starting at �PN21 (Rudy et al., 1987; Kraemer and Randall, 1995;
Stanton, 2000; Blair et al., 2013), with adult-like performance
arising only after adolescence. For example, spatial learning and
memory, as investigated using the water maze task, is observed at
�PN20-P21 (Stanton, 2000; Akers and Hamilton, 2007), initially
appearing as directional learning and later as spatial learning at
�PN26-PN27 (Akers et al., 2009; Ainge and Langston, 2012).
Similarly, contextual memories, studied using contextual fear
conditioning, are observed at PN18 but rapidly decay, and their
retention comes to resemble that in adult rats starting at PN23
(Pugh and Rudy, 1996). Other hippocampal-type learning, such
as context pre-exposure facilitation, emerges at PN23-PN24
(Jablonski et al., 2012). Similar patterns are observed in the on-
togeny of trace fear conditioning, a type of associative learning in
which the animal learns to temporally separate the conditioned
stimulus (CS) from the unconditioned stimulus (US) by an ex-
tended interstimulus interval. Trace fear-conditioning manifests
according to the modal properties of the CS: it is detected at PN21
with an auditory CS, and at PN30 with a visual CS (Moye and
Rudy, 1987). PN30 rats are also proficient in trace eyeblink con-
ditioning (another behavior that is hippocampus-dependent in
adult animals), whereas PN19 rats have deficits in retaining such
memories (Ivkovich et al., 2000). Finally, PN24 rats can learn to
recognize novel objects but cannot yet express object location
learning, whereas PN30 rats successfully express both behaviors
(Ainge and Langston, 2012).

Together, these studies revealed that simple forms of hip-
pocampal contextual, object, and spatial memory are encoded by
rats starting at PN17; however, these memories are not expressed
over the long term. Only when memories are encoded starting at
PN23-P24 do the juveniles exhibit retention similar to that of
adult rats. Furthermore, more complex experiences, such as spa-
tial recognition, which are hippocampus-dependent in adult an-
imals, can only be expressed over the long term by more mature
animals. Hence temporal and complexity gradients accompany
the ontogeny of hippocampal learning and memory.

Based on the age of emergence of learning and cognitive func-
tions, Madsen and Kim (2016) proposed that rats at PN10-PN12
are approaching the end of infancy (equivalent to 12 months in
humans), and at PN12-PN21 are in the juvenile period (1–7 years
in humans). Consistent with this ordering, similar behavioral
temporal outcomes have been observed in human studies (e.g.,
memory retention becomes more persistent in older infants). For
example, at 6 months, infants recollect imitated actions for 24 h
(Meltzoff, 1988), at 9 months for up to 5 weeks, and at 10 months
for up to 3 months (Carver and Bauer, 2001; Mullally and Magu-
ire, 2014). Studies that investigated wwww memories in children,
such as the hide-and-seek paradigm (Hayne and Imuta, 2011) or
the identification of details related to where an event occurred
(Bauer et al., 2012), suggested that episodic memory skills appear
by the age of 3 years. The studies also revealed that it is the ability
to retain (as opposed to form) episodic memories that increases
with age: 3-year-old children have good short-term recollection
but do not maintain the memories for long periods of time (Scarf
et al., 2013).
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In summary, it has been widely documented in both humans
and rodents that hippocampal-type learning takes longer to de-
velop (up to 21 d in rats and �3 years in humans) than learning
processed by implicit memory systems. Importantly, during their
initial phase of development, explicit memories can be acquired
and expressed over the short term, but their retention decays
quite rapidly, a forgetting that is proposed to be associated to
infantile amnesia (Meltzoff, 1988; Carver and Bauer, 2001; Hayne
and Imuta, 2011; Bauer et al., 2012; Scarf et al., 2013; Callaghan et
al., 2014; Mullally and Maguire, 2014; Madsen and Kim, 2016).

Infantile amnesia and explanatory hypotheses proposed
to date
As mentioned before, infantile or childhood amnesia is the in-
ability of human adults to remember episodic experiences that
occurred during the first few years of life (generally 0 –3 years)
and the tendency to have sparse recollection of episodic experi-
ences that occurred before age 10 (Kihlstrom and Harackiewicz,
1982; Rubin, 2000; Newcombe et al., 2007). This phenomenon
occurs in the vast majority of cases. Very rare exceptions have
been reported, such as the case of Shereshevsky (or “S”), the
mnemonist studied by Alexander Luria (1968); however, S pro-
cessed memories in a very peculiar manner. Infantile amnesia was
first described by Caroline Miles in 1893 and Henri and Henri,
(1895). Sigmund Freud (1953) offered the first explanation of
this phenomenon: based on his psychoanalytic theory, he postu-
lated that early life events are repressed due to their inappropri-
ately sexual nature. Although this hypothesis of repression is
highly debated, the observation that early memories are “forgot-
ten,” or unable to be explicitly expressed, is supported by many
studies in humans (Davis and Rovee-Collier, 1983; Hayne, 2004;
Rovee-Collier and Cuevas, 2009). The lack of recollection of in-
fantile experiences by adults cannot be explained simply by the
passage of time or difference in encoding ability, suggesting that
processing and retention of hippocampus-dependent memories
differ over the course of development.

A phenomenon similar to human infantile amnesia has been
reported in animals, not only for hippocampus-dependent mem-
ories such as contextual and spatial memories, but also for
hippocampus-independent memories such as cued conditioning
and conditioned taste aversion (Schweitzer and Green, 1982).
Here, we will limit our discussion to hippocampus-dependent
memories. Early studies of rat pups conditioned to avoid a shock-
paired compartment showed that young animals forget much
faster than older ones (Campbell and Campbell, 1962). These
findings were subsequently replicated, using a range of learning
paradigms, in multiple species that undergo extensive postgesta-
tional development, suggesting that rapid forgetting that parallels
infantile amnesia is an evolutionarily conserved phenomenon
(Campbell and Jaynes, 1966; Feigley and Spear, 1970; Schulen-
burg et al., 1971; Steinert et al., 1980; Greco et al., 1986; Anderson
et al., 2004).

Why are early memories rapidly forgotten? Several hypotheses
have been proposed to address this question. Human and cogni-
tive psychologists have suggested that autobiographical memo-
ries fade rapidly because young children have not yet acquired
language abilities, and consequently lack the ability to encode and
express autobiographical events (Harley and Reese, 1999). Pro-
ponents of this hypothesis have also suggested that young chil-
dren have not yet developed a sense of “self” or a “theory of
mind,” and therefore cannot organize and store memories as
autobiographical experiences (Perner and Ruffman, 1995). How-
ever, these explanations cannot account for the rapid forgetting

observed in animals. Thus, although development and cognition
differ between animals and humans, the striking similarities in
rapid infantile forgetting between humans and other animals de-
mand neurobiological explanations.

Experimental evidence has shown that rapid infantile forget-
ting cannot be explained by insufficient learning: infant and
young animals learn similarly to, and in specific tasks even better
than, adult animals, but forget significantly more rapidly (Kirby,
1963; Feigley and Spear, 1970; Campbell and Spear, 1972; Greco
et al., 1986). What causes this rapid forgetting? Is it lack of mem-
ory consolidation, defective memory storage, or impaired mem-
ory retrieval?

One widely supported hypothesis, often referred to as the “de-
velopmental hypothesis,” posits that early wwww memories are
not stored over the long term because the hippocampus is imma-
ture and therefore unable to process, consolidate, and store con-
textual and episodic representations (Bauer, 2006; Newcombe et
al., 2007). In support of this hypothesis, excitatory synaptic trans-
mission in the rat hippocampus, which is necessary for adult-like
synaptic plasticity and memory, only begins to mature around
the third postnatal week (Albani et al., 2014). Moreover, at this
stage, the cortical regions involved in system consolidation re-
main immature. One of these regions is the mPFC, which com-
prises the prelimbic and infralimbic cortices. In both humans and
rodents, the mPFC develops slowly over an extended period and
continues to increase in synapse density and maturity until �PN24
(Huttenlocher, 1979; Van Eden and Uylings, 1985; Zhang, 2004).
Juvenile rats do not recruit the prelimbic cortex in fear memory
expression, whereas this region is absolutely critical in later stages,
from preadolescence onward (Kim et al., 2012). The results of
morphological studies of human brains are consistent with data
obtained in rodents: in both species, the prefrontal cortex and the
dentate gyrus of the hippocampus undergo extended postnatal
maturation. The human hippocampus reaches some degree of
functional maturity no earlier than 20 –24 months (Huttenlocher
and Dabholkar, 1997), and possibly later in some subcircuits, as
suggested by studies in monkeys (Lavenex and Banta Lavenex,
2013). The human hippocampus reaches full maturity around
the end of preschool (i.e., 3–5 years), an age that corresponds
with the offset of infantile amnesia, whereas the prefrontal cortex
does not reach full maturity until early adulthood (Goldman-
Rakic, 1987).

Also supporting the developmental hypothesis, recent studies
reported that neurogenesis of the subgranular zone of the dentate
gyrus, which occurs at a much higher rate early in development to
integrate neurons into the hippocampal circuit, may destabilize
memory representation, thereby contributing to the rapid forget-
ting of infantile memories (Akers et al., 2014).

In contrast to the developmental hypothesis, which argues
that memories are lost, an alternative hypothesis posits that in-
fantile memories are not gone, but are instead stored in some
form that cannot be expressed due to retrieval failure (Li et al.,
2014). This hypothesis, referred to as the retrieval hypothesis, is
motivated by observations in humans and animal models that
“reminders” (e.g., reencounters with parts of the original experi-
ence associated with the memory) can prevent rapid forgetting, as
demonstrated by expression of the memory for longer periods of
time. For example, in conditioned shock-avoidance, the presen-
tation of a shock (the US) at weekly intervals maintains or “rein-
states” a strong memory for several weeks (Campbell and Jaynes,
1966). The US reinstates the memory immediately after its pre-
sentation, suggesting that the amnesia is due to retrieval failure
(Spear and Parsons, 1976). Similar outcomes have been observed
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in Pavlovian fear conditioning in rats (Kim and Richardson,
2007) and 8-week-old babies (Rovee-Collier et al., 1980; Davis
and Rovee-Collier, 1983). Moreover, in both animal models and
humans, forgetting is alleviated if, during memory testing, the
subject re-experiences internal or external contextual cues simi-
lar to those presented at training (Rovee-Collier et al., 1980; Davis
and Rovee-Collier, 1983; Spear, 1984; Richardson et al., 1986). In
sum, numerous studies across species have supported the conclu-
sion that early developmental memories are not lost, but instead
suffer from retrieval impairments.

In support of the idea that infantile experiences are stored over
the long term, persistent relevant biological changes have been de-
tected in rat models. For example, one study examined NMDAR
dependence, a signature of new memory acquisition and absent in
relearning, in infant rats (Li and Richardson, 2013). Although
infantile memories were forgotten, the rats exhibited NMDAR-
independent relearning, suggesting that infantile learning produces
long-lasting biological changes, even though the associated memo-
ries are unavailable for expression (Chan et al., 2015).

If memories from early life are stored over the long term, what
mechanisms are involved in rescuing or promoting their retrieval
or expression? One explanation, proposed by Li et al. (2014),
involves modulation. Episodic memories are consolidated and
stored over the long term if the experience is salient; thus, an
internal state of arousal may be required for recall of an inacces-
sible memory. In other words, according to this view, expression
of the infantile experience is state-dependent. Consistent with
this idea, adrenaline or noradrenaline injected days after training
rescues memory loss in juvenile rats trained in passive avoidance
(Haroutunian and Riccio, 1977; Gold et al., 1982). The inhibitory
neurotransmitter GABA was also reported to modulate infantile
forgetting: specifically, GABA inverse agonists alleviate infantile
forgetting when administered early in development but have no
effect if given in adulthood, supporting the interpretation that
high GABA inhibition contributes to infantile amnesia (Kim et
al., 2006). Furthermore, stress hormone-mediated modulation

has been studied extensively because early
stressful experiences, such as maternal
separation, lead to the formation of more
persistent memories during infancy (Cal-
laghan and Richardson, 2012). This faster
maturation may be the result of more
rapid development of amygdala-mPFC
connectivity, which is mediated by corti-
sol, as demonstrated by recent studies in
humans (Gee et al., 2013); it may also be due
to more rapid maturation of the neuroen-
docrine response to fear (Ganella et al.,
2015).

The developmental and retrieval hy-
potheses disagree on the primary explana-
tion for infantile amnesia, and both models
leave several questions unanswered: how
does an immature hippocampal memory
system store memories that, although not
expressed, can still influence behavior in
adulthood?Moreover, is thehippocampus,al-
though immature, critically involved in the
encoding and consolidation of these non-
expressed memories, or are these memo-
ries in the immature brain processed by a
different system, without the involvement
of the hippocampus? Our recent findings

regarding the mechanisms underlying infantile hippocampal
learning provide new, plausible answers to these questions.

Mechanisms of infantile hippocampal learning
We recently investigated infantile amnesia in rats using a single
aversive event, a contextual experience associated with a foot-
shock. In this task, known as inhibitory avoidance (IA) or passive
avoidance, the animal learns to avoid a context in which a foot-
shock was previously experienced (Fig. 1). In adult animals, IA
training produces hippocampus-dependent long-term memory;
indeed, IA memory is disrupted by pharmacological or molecular
interference applied to the dorsal hippocampus within the first
day after training (Bambah-Mukku et al., 2014). IA and similar
learning tasks have been used extensively in rodents to study
infantile amnesia related to hippocampal memories (Campbell
and Campbell, 1962; Kirby, 1963; Klein and Spear, 1969; Feigley
and Spear, 1970; Schulenburg et al., 1971).

In agreement with the literature, we found that rats trained in
IA at PN17 acquired the task, as demonstrated by the fact that
they expressed a strong avoidance memory immediately after
training, but they forgot very rapidly: the IA memory was signif-
icantly reduced 30 min after training and completely gone after a
day (Travaglia et al., 2016a). On the other hand, rats trained at
PN24 were able to form a very robust and long-lasting IA mem-
ory. Although close in developmental age to PN17 rats, PN24 rats
are already competent to form and express long-term IA memo-
ries; accordingly, we used animals of this age as the reference
control group.

First, we asked whether the PN17 rat memory vanished or was
instead prevented from expression by some retrieval impairment.
Rats trained at PN17 never remembered IA when tested, even
repeatedly, days or weeks after the initial training (Fig. 2), indi-
cating that the re-exposures to the context in which the original
experience took place did not rescue the amnesia, even if they
were repeated several times. Similarly, the experience of the foot-
shock alone delivered in a distinct context (reminder shock) did

TestingTraining

Inhibitory Avoidance (IA)

Figure 1. Schematic representation of the IA task used in our studies. During the training session, the rat is placed in the lit (safe)
compartment of a two-chamber apparatus. After 10 s, the door separating the compartments is automatically opened, allowing
the rat access to the dark (shock) compartment. Because of their exploratory drive and nocturnal nature, the rats quickly enter the
dark compartment. The time the rat takes to enter the dark compartment is taken as acquisition latency. Upon entering, the door
is closed, and a mild electric footshock is delivered from the grid floor. A few seconds later, the rat is returned to the home cage.
During testing, the rat is placed back into the lit compartment, and the time the animal takes (latency) to enter the dark compart-
ment is measured (test). Under normal conditions, the animals develop a significant avoidance of the compartment that was
previously associated with the footshock. The latency score is used as a behavioral readout of the memory of the context that was
previously associated with experiencing a footshock.
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not reverse the amnesia, again, even if re-
peated several times. However, if a re-
minder shock was delivered days after a
context exposure, the rats were no longer
amnesic, but instead expressed a robust and
long-lasting IA memory (Fig. 2). This
memory reinstatement suggests that in-
formation about the original experience
encountered during the period of infan-
tile amnesia was indeed stored and that
later reminders of that experience could
bring back the memory. Moreover, the
expression of the memory after the con-
text � reminder shock is very likely the
result of reactivation of the original infan-
tile memory trace, and not of new learn-
ing; no memory was expressed in rats that
were exposed to the reminders but had
not undergone IA training at PN17, or in
rats that received a footshock not paired
with the IA context at PN17 (Fig. 2). Finally,
the reinstated memory was specific for the
training context: if the rats were tested
in distinct contexts (Context B), they
showed no avoidance, indicating that the
reinstated avoidance was not due to
context generalization or trauma general-
ization (Fig. 2). These results are more
consistent with the retrieval hypothesis
than the developmental hypothesis. How-
ever, as our subsequent mechanistic in-
vestigations revealed, this explanation of
impaired memory retrieval or expression
was not fully satisfactory.

We next asked whether the hippocam-
pus is involved in forming the memory,
which can then be reinstated by the re-
minders. We found that blocking either
the activity of the dorsal hippocampus
with muscimol, or its plasticity with anti-
bodies that block the function of the neu-
rotrophin BDNF, at the time of training
impeded memory reinstatement, indicat-
ing that the hippocampus is indeed neces-
sary to form and store the latent memory
trace. These finding were in disagreement
with the developmental hypothesis,
and also inconsistent with the idea that hippocampus-
dependent memories are lost in infancy because the hippocampus
is not yet “online,” and is therefore unable to process the mem-
ory. On the contrary, these data showed that the hippocampus is
critical for encoding a memory that is stored over the long term,
although not expressed. Because this memory lies dormant until
circumstances are suitable for its manifestation, we refer to it as
latent memory.

We then sought to identify the molecular mechanisms in the
dorsal hippocampus that are critical for formation and storage of
the latent memory trace. To this end, we performed biochemical
analyses to survey possible changes in long-term plasticity mech-
anisms, including proteins encoded by immediate-early genes,
neurotransmitter receptors, plasticity transcription factors, and
growth factors. In particular, we compared the levels of these
proteins in the dorsal hippocampi of rats that underwent learning

at PN17 or PN24 with those of littermate rats that did not un-
dergo learning or only received an unpaired footshock.

The results revealed an important molecular signature: asso-
ciative learning at PN17, but not at PN24, significantly changed
the expression of the NMDAR subunits GluN2B and GluN2A.
Specifically, training at PN17 led to a significant increase in the
GluN2A/2B ratio because the level of GluN2A increased more
than that of GluN2B in response to learning. This finding was
intriguing because similar switches had been previously identi-
fied during the developmental critical period of the visual system
in response to visual stimuli (Carmignoto and Vicini, 1992;
Quinlan et al., 1999) and in neonatal hippocampal slices follow-
ing LTP (Bellone and Nicoll, 2007). Furthermore, it is well estab-
lished that, during early development, GluN2B is the most highly
expressed of the GluN2 subunits. GluN2A expression increases
throughout the brain during the second postnatal week, during
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Figure 2. Latent infantile memories can be reinstated later in life following reminders. Experimental schedule is shown above
each panel. Memory retention is expressed as mean latency � SEM. Top, Rats trained at PN17 were given contextual reminders
(Test) repeatedly; in other words, the rats were re-exposed to the context in which the original experience took place. This protocol
did not elicit any significant avoidance beyond that induced by the initial acquisition, and thus did not reinstate the latent infantile
memory. Bottom, Rats trained at PN17 received a footshock in a different context (reminder shock) 2 d after the contextual
reminder (Test 2). This protocol reinstated a robust and long-lasting IA memory. When rats were tested in a different context
(Context B), they showed no avoidance, indicating that the reinstated memory was specific for the training context, rather than the
result of context generalization. Notably, littermates either left undisturbed in their home cage (naive group) or placed on a grid
and immediately exposed to a footshock (shock-only group) never showed significant avoidance latency beyond that induced by
the initial acquisition, excluding the possibility that the reinstatement following the reminder shock was the result of nonspecific
responses. Two-way ANOVA followed by Bonferroni post hoc test; ***p � 0.001.
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which it is dramatically upregulated. Thus, the ratio of the levels
of the two NMDAR subunits changes over the course of devel-
opment: GluN2B is predominant earlier, but subsequently the
brain is significantly more enriched in GluN2A (Ewald and
Cline, 2009).

Critical periods are temporal windows of development during
which the brain is particularly sensitive and responsive to expe-
rience. It is precisely through the developmental experiences oc-
curring during this period that the systems mature and become
functionally competent. Indeed, if the relevant stimuli are not
present during the critical period, functional competence is dra-
matically and persistently impaired. After the critical period ends,
the stimuli or lack of thereof have less influence.

The biological mechanisms of critical periods have been most
extensively studied in the visual system. Guided by this knowledge,
we explored the roles of some of these mechanisms, specifically the
function of BDNF and metabotropic glutamate receptor 5 (mGluR5),
which had been reported to affect the GluN2B-to-2A switch in
critical-period model systems and accelerate the closure of critical
periods (Huang et al., 1999; Matta et al., 2011). We found that
blocking the function of either BDNF or mGluR5 before training
at PN17 impeded memory reinstatement at later times and
blocked the learning-induced switch of GluN2B to 2A. Con-
versely, activation of mGluR5 with an agonist or administration
of BDNF at training induced the switch and promoted long-term
memory formation, accelerating the closure of the critical period
(Travaglia et al., 2016a).

The similarities between our findings regarding mechanisms
of hippocampal infantile learning and the mechanisms underly-
ing the visual system critical period led us to propose that the
hippocampal-dependent memory system undergoes a develop-
mental critical period, similar to those of sensory systems. Con-
sequently, during this period, the immature hippocampus must
be highly responsive to learning. Indeed, we observed that the
levels of activation and plasticity markers, such as c-Fos, Zif268,
activity-regulated cytoskeleton-associated protein (Arc), and
phosphorylated cAMP response element binding protein (phos-
phoCREB), are higher in PN17 than in PN24 or adult hippocam-
pus (Travaglia et al., 2016b).

On the basis of these data, we offer a new working model to
explain the ontogeny of hippocampus-dependent learning and
memory. The hippocampal system in its infantile, immature state
is highly responsive to stimuli and experience occurring during a
critical period, and it is through these early developmental re-
sponses that it matures, becoming functionally competent and
capable of storing information over the long-term in an expressible/
accessible fashion. In other words, we suggest that the exposure of
the immature hippocampal system during its developmental critical
period to a great deal of new learning, such as new episodes and
contextual, spatial, and social events, results in storage of this
information in an immature (and hence latent) form. This pro-
cessing promotes maturation of the system to functional compe-
tence. We believe that the IA experiments, by adding a new salient
experience during the critical period, allowed us to experi-
mentally capture the mechanisms underlying hippocampal
maturation. We also suggest that what is currently viewed as a
developmental switch of the NMDAR from predominantly 2B to
predominantly 2A does not occur by default but is actually an
experience-driven switch that occurs during critical periods.
Therefore, we believe that, during its critical period, the hip-
pocampus does not yet perform like the adult system because it is
in the process of learning how to learn and remember.

We also propose that retrievals and reminders contribute to
the activation and maturation of the hippocampal memory
system. As mentioned above, the hippocampus does not work
in isolation; hence, we believe that the entire hippocampus-
dependent memory system, as well as the functional cross talk
among the hippocampus, cortical regions, and amygdala, ma-
tures during the infantile critical period in response to experi-
ence. This intriguing model needs to be further interrogated at
the mechanistic level. Moreover, additional hypotheses may be
suggested by investigations of other critical period mechanisms,
most of which have thus far been identified and studied in sen-
sory systems.

Critical periods and their mechanisms
Critical periods have been identified in several types of learning
across species. For example, greylag goose chicks imprint on
moving visual objects only during a short, well-defined period
that peaks between 13 and 16 h after hatching (Lorenz, 1935). In
many bird species, hearing another bird can influence the indi-
vidual’s own vocal behavior only during a narrow time window in
juvenile development (Immelmann, 1969; Eales, 1985). In hu-
mans, language acquisition undergoes critical-period regulation:
infants and young children are better language learners com-
pared with adults, despite adults’ superior cognitive abilities
(Newport et al., 2001; Knudsen, 2004; Kuhl, 2004; Bruer, 2008).
Thus, several types of learning seem to undergo critical periods.
Hence, in light of our data, we propose that such a process also
exists for hippocampal learning. Although we have shown that
some mechanisms typical of critical period previously identified
in sensory systems are common to hippocampal learning during
development, several questions persist regarding the mechanisms
involved in hippocampal and other functional critical periods:
What is the nature of all biological mechanisms underlying crit-
ical periods? Are there common or specific mechanisms of critical
periods in different brain regions, and for the maturation of dif-
ferent functions? And finally, what are the mechanisms that
frame the temporal windows of critical periods?

Wiesel and Hubel (1963) discovered that, in cats, temporary
visual deprivation of one eye during early development, but not
in adulthood, impacts the ocular dominance of the visual cortex
and visual function. These findings paved the way to the neuro-
biological investigation of critical periods. Several studies sought
to identify the cellular and molecular mechanisms of critical
periods. One of these mechanisms was revealed to be synaptic
strengthening and weakening via NMDA receptors and regula-
tion of LTD versus LTP cell excitability and structural modifica-
tions. These changes have been observed not only in the visual
cortex, but also in song learning in birds (Aamodt et al., 1996;
Roberts et al., 2010) and in the barn owl’s auditory localization
system (Feldman and Knudsen, 1997; Takesian and Hensch,
2013). More specifically, a key mechanism associated with visual
impairment caused by monocular deprivation was shown to be
depression of excitatory thalamocortical synaptic transmission in
layer 4 of the visual cortex (Khibnik et al., 2010; Medini, 2011;
Cooke and Bear, 2014). In addition, the change in GluN2A/2B
ratio was identified as a critical signature for the induction of
NMDAR-dependent plasticity in the visual cortex, and mGluR5
is involved in upstream control of this plasticity (Sidorov et al.,
2015). Similar mechanisms were observed in hippocampal slices
obtained from juvenile rats upon induction of long-term plastic-
ity (Bellone and Nicoll, 2007; Matta et al., 2011), suggesting that
critical period mechanisms generalize to different brain regions
and functional systems. As discussed above, our finding that sim-
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ilar changes occur in the hippocampus of PN17 rats following IA
learning led us to suggest the existence of a critical period for
hippocampal learning.

Other important mechanisms in the visual system critical
period relate to the development of GABAergic inhibitory inner-
vation (Fagiolini and Hensch, 2000; Hensch, 2005). This inner-
vation is crucial for the onset of the visual critical period:
decreasing GABAergic function during development blocks the
occurrence of the critical period, whereas treatment with GABAA

receptor agonists restores it (Hensch et al., 1998). The regulation
of this inhibition involves parvalbumin-positive (PV�) neurons,
possibly working through the transsynaptic uptake of the tran-
scription factor orthodenticle homeobox 2 (OTX2) (Fagiolini et
al., 2004). The regulation of GABAergic inhibition is not selective
for the visual cortex critical period, and is also observed in the
critical periods for whisker trimming (Jiao et al., 2006) and early
hearing (Kotak et al., 2008; Takesian et al., 2010). Thus, although
the specific underlying electrophysiological mechanisms remain
to be elucidated (Takesian and Hensch, 2013), it has been pro-
posed that a fundamental mechanism underlying critical periods
of sensory systems is the shift in excitation/inhibition (E/I) me-
diated by regulation of GABAergic transmission (Hensch, 2005).
Given that several neuropsychiatric disorders, including autism
spectrum disorder and schizophrenia, have been linked to an
alteration in E/I balance (Rubenstein and Merzenich, 2003; Dani
et al., 2005; Chao et al., 2010), dysregulation of critical period
mechanisms may contribute to these diseases (LeBlanc and
Fagiolini, 2011; Meredith, 2015). Additionally, several known
plasticity mechanisms have been identified as key players in mod-
ulation of the E/I circuit balance, including calcium/CaMKII,
protein kinase A, ERK, TNF�, CREB, and microRNA (miR)-132
(Takesian and Hensch, 2013). A master regulator of these plas-
ticity mechanisms is BDNF, which can modulate the opening and
closure of the temporal windows of critical periods: transgenic
mice that overexpress BDNF have a precocious critical period,
possibly due to accelerated maturation of the inhibitory system
(Huang et al., 1999), whereas dark rearing downregulates BDNF
expression in the visual cortex. It will be interesting to learn
whether and how GABAergic inhibition and the E/I balance reg-
ulate the development of the hippocampal memory system.

The major role of BDNF in controlling the temporal limits of
critical periods raises the question of which physical substrates
have the ability to close the windows of critical periods. Some of
these substrates have been identified and shown to impose phys-
ical “brakes” that stabilize the changes shaped by experience.
Among these braking mechanisms are the extracellular macro-
molecular aggregates associated with chondroitin sulfate pro-
teoglycans forming perineuronal nets (PNNs) around neuronal
cell bodies and proximal dendrites. Removal of PNNs leads to
acceleration of ocular dominance plasticity (Di Cristo et al.,
2007). PNN organization is thought to correspond to the ends of
critical periods, possibly due to a change in the dynamics of PV�

neurons, and therefore of GABAergic inhibition, as shown to
occur in the visual cortex (Sur et al., 1988; Pizzorusso et al., 2002)
and barrel cortex (McRae et al., 2007). Interestingly, PNNs also
play a role in regulating fear memory plasticity in the amygdala.
The abundance of PNNs in the amygdala increases between PN16
and PN23, an interval that corresponds to the establishment of
fear memories that are resistant to extinction, and are therefore
more persistent (Gogolla et al., 2009). Recent studies reported
that PNNs are also present at excitatory synapses of CA2 pyrami-
dal neurons in the adult mouse hippocampus, where they con-
strain synaptic plasticity. Early-life enrichment increases the

abundance of PNNs around these neurons, implying that CA2
and its functions undergo a critical period (Carstens et al., 2016).
Some studies link PNN-related regulation of plasticity to OTX2
within PV cells (Beurdeley et al., 2012; Lee et al., 2017). OTX2 is
present in PV� cells across multiple brain regions outside of the
visual cortex, including prefrontal, auditory, and somatosensory
cortices, basolateral amygdala, and hippocampus, suggesting that
this factor is a general mechanism involved in PV� cell matura-
tion during critical periods (Spatazza et al., 2013).

Another mechanism that constrains critical periods is myelin-
related neurite outgrowth inhibitor (Nogo) receptor signaling (Mc-
Gee at al., 2005). Maturation of intracortical myelin and reduction of
the myelin-related inhibitors NogoA, myelin-associated glycopro-
tein, and oligodendrocyte-myelin glycoprotein, all of which bind to
the Nogo receptor, accompany the closure of critical periods (Ak-
bik et al., 2012). Notably, restriction of social learning (social
isolation) during PN21-PN35, but not during PN35-PN65, alters
mPFC oligodendrocyte morphology and myelination, resulting
in deficient working memory. This effect persists even after sub-
sequent exposure to social interaction (Makinodan et al., 2012).
These data are in agreement with our hypotheses that learning
during a critical period is necessary for the development of cog-
nitive abilities and their associated physical changes, including
changes in connectivity. Again, it would be interesting to learn
how infantile hippocampal learning regulates these myelination
mechanisms.

Future studies should attempt to characterize in greater detail
the common and differential mechanisms recruited during crit-
ical periods of various brain systems and functions. In this regard,
it will be important to identify possible common properties among
these molecules, and especially to identify approaches that can re-
open critical periods, such as targeting of PNNs (Gogolla et al.,
2009). This knowledge would expand our understanding of brain
development and infantile memories and provide insight into the
contribution of developmental dysregulation to disease. It also
would facilitate the identification of novel therapeutic tools that
may allow for recovery of functional deficits.

Implications of critical periods for developing learning
systems and psychopathologies
Based on the available literature and our recent studies showing
that hippocampal learning undergoes a critical period (Travaglia
et al., 2016a), we speculate that critical periods in learning do not
occur by developmental default but are the results of gradients of
experience-induced maturation and are therefore enabled by
functional achievement during previous critical periods. We sug-
gest that a series of critical periods are responsible for assembling
the functional complexity of the brain, which indeed emerges
sequentially over time through experience, building step-by-step
on previously established functional competence. We propose
that, as with sensory functions, sequences of critical periods for
learning and memory also build on each other, following the
maturation of sensory system critical periods. Our hypothesis is
supported by the observation that complex hippocampal learn-
ing takes place only after simple learning has matured. For exam-
ple, the ability to learn about a single cue or object seems to
mature earlier than episodic learning and memory, which require
the more complex function of binding together several objects,
sequences, and time (wwww learning). Thus, we speculate that
different types of hippocampal learning mature sequentially in
order of increasing complexity (Fig. 3). An analogous process of
sequential maturation has been described in sensory systems,
which influence one another during developmental critical peri-
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ods (Hensch, 2005). For example, visual experience influences
central auditory development, and atypical onset or delay of vi-
sual experience in premature infants can lead to dysfunctions in
sensory processing (Mowery et al., 2016).

Our conclusion regarding the existence of critical periods for
hippocampal learning provides an explanation for infantile am-
nesia and resolves several controversies. Furthermore, it has im-
plications for the ontogeny of the hippocampal learning system
and its psychopathology.

First, it reconciles some aspects of the disagreement between
the developmental and retrieval hypotheses. In agreement with
the developmental hypothesis, our model affirms that the hip-
pocampus is indeed immature in infancy. However, we propose
that, rather than being “offline,” the infantile hippocampus is
highly engaged and responsive to experience, a conclusion that is
also in agreement with the abundance of associative learning in
infants (Mullally and Maguire, 2014). Through these immature
but highly active mechanisms, the hippocampus stores latent in-
formation that can be retrieved under certain circumstances later
in life. These learning-dependent activations contribute to mat-
uration of the hippocampal system as it engages in the process of
learning to learn.

On the other hand, in agreement with the retrieval hypothesis,
our model indicates that infantile learning leads to (latent) long-
term storage. This explains how memory expression can be main-
tained through frequent recalls, or reinstated by modulation, as
shown by the studies cited above that support the retrieval hypoth-
esis. Memory decay may be prevented by frequent reactivation of the
memory trace, and internal states such as arousal or modulation may
affect memory retrieval or expression of the infantile latent memory
trace. We also suggest that, as in the adult brain, where memory
reactivation facilitates system consolidation (Inda et al., 2011), reac-
tivation or modulation during early development accelerates the
maturation of long-term memory storage.

Second, the existence of hippocampal critical periods explains
the differences in learning ability in infants and children versus
adults (Spear, 1984; Rovee-Collier and Cuevas, 2009). Our model
is in agreement with the fact that infantile and childhood learning
is appropriate to the age of the subject because it builds sequen-

tially on an ordered gradient of critical pe-
riods that lead to the maturation of
hippocampus-dependent functions of in-
creasing complexity. This model is also
consistent with the differential structural
and cellular maturation of distinct circuits
in the hippocampus during the early post-
natal years of life.

Third, our model of long-lasting memory
storage in early life explains the influence
of early experiences on lifelong behavior.
In addition, it implies that experiences in
childhood should be optimally enriched
and regulated to promote development of
healthy brain and mental functions. Fur-
thermore, it suggests that the types of
experience to which an individual is ex-
posed during development shape learn-
ing abilities, an important implication
that highlights the fundamental roles of
developmental environments (includ-
ing education).

Fourth, our model has intriguing im-
plications for the ontogeny of learning. If

maturation occurs through learning and memoryreactivation, then
the types of experiences and exposures will influence the quality of the
hippocampus-dependent functions that develop, and hence the sub-
ject’s individuality(Greenoughetal.,1987).Althoughthe mechanisms
underlying rapid forgetting during development remain un-
known, we speculate that this phenomenon may be due to differ-
ences in plasticity mechanisms in development versus adulthood
or the lack of stabilized connectivity in infant brains. One possi-
bility is that the connectivity between the hippocampus and the
cortical regions (e.g., mPFC and anterior cingulate cortex, ma-
tures as a result of experience). Formation of connectivity, par-
ticularly of cortical-cortical connectivity, may explain the
establishment of semantic memories.

Finally, several excellent reviews have described the hypothe-
sis that alterations in sensitive and critical periods may contribute
significantly to neurodevelopmental disorders (Ben-Ari, 2015;
Meredith, 2015); here, we will add our perspective. We suggest
that, if one specific critical period is dysregulated, the subsequent
chain of critical periods is likely to be altered, leading to develop-
mental disruption or delay of multiple functions. This hypothesis
explains why neuropsychiatric developmental disorders en-
compass many domains and functions, as well as why disparate
developmental disorders exhibit common cellular/molecular al-
terations, such as impaired synapse maturation and excitation/
inhibition imbalance. Neuropsychiatric developmental disorders
could be due to dysregulation of mechanisms of developmental
critical periods, which would disrupt or delay synapse and cir-
cuitry development. Consistent with this idea, mutations in a
single gene that is essential for some function during a critical
period could lead to several subsequent cellular defects and man-
ifest as multiple phenotypes. This model would also explain why
timing is critically important for interventions that rescue devel-
opmental dysfunctions (Gatto and Broadie, 2009; Manent et al.,
2009). In sum, a great wealth of knowledge about learning and
memory during development in both normal and abnormal con-
ditions, in animal models as well as in human studies, is consis-
tent with our suggestion of the existence of critical period(s) for
hippocampal learning.
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Figure 3. Critical windows of sensitivity for brain functions. Schematic representation of critical periods of brain functions. Solid
curve indicates the normal expression of a critical period, with distinct times of onset and closure as well as characteristic duration.
Hippocampal-dependent learning includes sequential waves of sensitivity, which enable acquisition of increasingly complex
functions.
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Conclusions and future directions
Based on our recent studies, we propose that the hippocampus
undergoes a developmental critical period similar to those
implicated in development of vision, hearing, language learn-
ing, song learning in birds, and familial imprinting. This new
view of experience-dependent functional maturation of the hip-
pocampal system resolves the paradoxical observation that early ex-
periences that are forgotten very rapidly can have long-lasting
influences on adult behavior, as well as predispose individuals to
disorders or psychopathologies. In contrast to previous hypoth-
eses suggesting that the hippocampus is deficient in early devel-
opment, and hence not functionally competent, our new model
of infantile learning proposes that the hippocampus and hip-
pocampal learning system are highly engaged in processing of
early experiences and storing infantile memories. Accordingly,
early learning during infancy is itself critical for shaping learning,
memory, and cognitive functions of adult brains. This view of the
ontogeny of the hippocampus-dependent learning system has
important implications for the developmental environment (e.g.,
family, education), as well as possible interventions aimed at pre-
venting psychopathologies. Future studies should continue to
identify the mechanisms underlying hippocampal critical peri-
ods, as well as their temporal regulation; determine their interac-
tion with other brain areas; and compile information about
individual learning. Cooperative studies in humans and nonhu-
man animals may help to define the best strategies for capitalizing
on the understanding of mechanisms and temporal windows of
critical periods in learning.
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