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Newton methods

Newton Search

Advantages:

• Excellent performance of Newton search close to the optimum

• Less sensitive to numerical errors than steepest descent search

Disadvantage:

• Very sensitive to starting point x0

• Can fail to converge when starting relatively far from a local optimum!

• Hessian matrix needed at each iteration, as well as solution of a linear system -

Very burdensome task, especially for large-scale systems!

Need to mitigate these deficiencies!
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Conjugate Direction Methods

The optimization methods considered usually find, at iteration k, a direction dk , such

that

xk+1 = xk + αkdk

For a given function f

• Steepest descent

dk = −∇f (xk )

• Newton

dk = −H(xk )
−1∇f (xk )
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Derivative-Based Methods (Benoit Chachuat- notes)

Deflection Matrices

Idea: Blend first- and second-order methods so as to conserve their respective

advantages:

• Use only first partial derivatives and guarantee convergence, as with steepest

descent search

• Speed-up convergence with some higher-order information, as with Newton search

Deflection Matrices Dk produce modified gradient search direction:

dk = −Dk∇f (xk )

Special cases of deflection matrices: Steepest Descent: Dk = I , Newton:

Dk = H(xk)
−1
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Quasi-Newton methods

Concepts

• For a general objective function, convergence from an arbitrary initial point to a

solution cannot be assured in Newton’s method

• Newton’s method locally approximates the objective function by a quadratic

function at every iteration.

• The point xk , the minimizer for the quadratic approximation, is used as the

starting point for the next iteration.

xk+1 = xk − H(xk)
−1∇f (xk)

• The descent direction is obtained through xk+1 = xk − αkH(xk )
−1∇f (xk),

choosing αk to assure f (xk+1) < f (xk)

• Minimize ϕ(α) = f (xk − αkH(xk)
−1∇f (xk )) may be difficult
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Quasi-Newton methods

The Quasi-Newton method (QNM) is one of the important developments in the field

of nonlinear optimization.

This method is used when Newton method is difficult to use or when computing

Hessian is too expensive per iteration

Newton’s method vs quasi-Newton

• Drawback of Newton’s method: iteratively evaluate H(xk)
−1 and solve the

equation H(xk)dk = −∇f (xk)

• The Quasi-Newton methods use an approximation to H(xk )
−1 to avoid the true

inverse calculation.

How to select Bk ≈ H(xk) and Dk ≈ H(xk)
−1for fast convergence of algorithms?
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Quasi-Newton methods

Quasi-Newton

• This method approximates Hessian by using only the gradient information.

• QNM can be applicable for both convex and nonconvex problems.

• The search directions are of the form dk = −Dk∇f (xk ) in lieu of H(xk )
−1∇f (xk )

• QNM iteration for minimizing the objective function, which is twice differentiable,

is

xk+1 = xk − αkDk∇f (xk )

where Dk is the symmetric positive definite approximation of H(xk )
−1

• Instead of updating each iteration by computing second-order derivative

computation, in QNM the sequence Dk is updated dynamically for each iteration
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Quasi-Newton methods

The method works?

1. Idea

• The Hessian H(xk ) reflects the rate of change in gradient ∇f (xk ),

∇f (xk+1) − ∇f (xk ) ≈ H(xk ) (xk+1 − xk )

• Deflection matrices Dk approximate the inverse Hessian matrix H(xk )
−1 by satisfying

the quasi-Newton condition:

Dk (∇f (xk+1) − ∇f (xk )) = (xk+1 − xk )

Since the Hessian H(xk ) ans H(xk )
−1 are symmetric, it is natural to require that Dk ,

the approximation to H(xk )
−1 , be symmetric. Thus,

Dk = (Dk )
t

(symmetric)

2. Robustness - Guarantee Directions Improve

• Consider xk+1 = xk − αkDk∇f (xk ) For dk to be improving (descent direction):

f (xk+1) − f (xk ) ≈ ∇f (xk )
t(xk+1 − xk ) = ∇f (xk )

tdk < 0

• With dk = −Dk∇f (xk ), one has: ∇f (xk )
tDk∇f (xk ) > 0

• Sufficient condition for direction improving is: Dk positive definite

We shall build Dk symmetric and positive definite.
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Quasi-Newton methods
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Quasi-Newton methods

Observe:

First order approximation

f (xk+1) = f (xk ) +∇f (xk ) (xk+1 − xk ) + O (∥ (xk+1 − xk ) ∥)︸ ︷︷ ︸
Error

As

xk+1 = xk − αDk∇f (xk )

it follows f (xk+1) = f (xk)− α∇f (xk)Dk∇f (xk) + O (∥ (xk+1 − xk ) ∥)

As α → 0, the second term dominates the third. To guarantee a decrease for

small, we shall have α∇f (xk)Dk∇f (xk ) > 0

To ensure this, consider Dk be positive definite.

Notation ∇fk = ∇f (xk)
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Quasi-Newton methods

Different QNM such as symmetric rank one (SR1), Davidon-Fletcher-Powell (DFP),

Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Broyden class computes Dk+1 from

Dk differently.

Symmetric rank one - SR1

Consider the possibility of defining a recursion of the form Dk+1 = Dk + akzkz
t
k

where ak is a constant and zk a vector

In case of SR1 update, Hessian approximation is obtained by

Bk+1 = Bk +
(yk − Bk sk)(yk − Bk sk)

t

(yk − Bk sk)tsk

with sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk )

We obtain the corresponding update formula for the inverse Hessian approximation :

Dk+1 = Dk +
(sk − Dkyk)(sk − Dkyk )

t

(sk − Dkyk )tyk

Even if Dk is positive definite, Dk+1 may not have the same property!
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Quasi-Newton methods

Symmetric rank one - SR1
There are some difficulties with this simple rank one procedure.

1. The main drawback of SR1 updating is that the denominator can vanish.

1.1 If (yk − Bk sk )
tsk ̸= 0 use SR1 update formula

1.2 If yk = Bk sk ⇒ Bk+1 = Bk

1.3 If (yk ̸= Bk sk ) and (yk − Bk sk )
tsk = 0 Skip the update in this case ⇒ Bk+1 = Bk

2. Second, the up- dating formula preserves positive definiteness only if

(yk − Bk sk)
tsk > 0 which cannot be guaranteed.

3. Also, even if (yk − Bk sk )
tsk is positive, it may be small, which can lead to

numerical difficulties.

Thus, although an excellent simple example of how information gathered during the

descent process can in principle be used to update an approximation to the inverse

Hessian, the rank one method possesses some limitations.
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Quasi-Newton methods

Davidon- Fletcher-Powell (DFP) Method

(Ref: Luemberger and Ye, 2016)

• Originally proposed by Davidon and later developed by Fletcher and Powell

• The earliest, and certainly one of the most clever schemes for constructing the

inverse Hessian

• It has the fascinating and desirable property that, for a quadratic objective, it

simultaneously generates the directions of the conjugate gradient method while

constructing the inverse Hessian.

• At each step the inverse Hessian is updated by the sum of two symmetric rank

one matrices, and this scheme is therefore often referred to as a rank two

correction procedure.

• The method is also often referred to as the variable metric method, the name

originally suggested by Davidon.

.
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Quasi-Newton methods

Davidon- Fletcher-Powell (DFP) Method

• Method falls into the class of quasi-Newton procedures

• The gradient direction is deflected by premultiplying by −Dk , where Dk is a n× n

positive definite symmetric matrix that approximates the inverse of the Hessian

• If the objective function is quadratic, the method yelds conjugate directions

dk = −Dk∇f (xk)

• If the objective function is quadratic, after one complete iteration (that is, after

search each of the conjugate directions created by the algorithm) the method

stops with an optimal point
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Quasi-Newton methods

Davidon- Fletcher-Powell (DFP) Method

1 Set ϵ > 0 k:= 0; Let x0 be the initial point. Select and a real symmetric positive

definite D0

2 if ∥∇fk∥ < ϵ stop; else dk = −Dk∇fk

3 Let αk > 0 be an optimal solution of minα≥0 f (xk + αdk )

4 xk+1 = xk + αkdk

5 Compute

• sk = xk+1 − xk = αkdk ,

• yk = ∇fk+1 − ∇fk

• Dk+1 = Dk +
sk s

′
k

s
′
k
yk

− Dk yk y
′
k Dk

y
′
k
Dk yk

5 Set k := k+1; go to step 2.

Celma de Oliveira Ribeiro



Quasi-Newton methods

Example 1 - DFP

Consider the following problem

min(x1 − 2)4 + (x1 − 2x2)
2

, Beginning with D1 = I , consider dj −−Dj∇f (yj ). The computations for DFP are

presented below:
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Quasi-Newton Methods

This example is from Bazaraa (Example 8.8.4). (λk in Bazaraa in αk in Nocedal)
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Quasi-Newton Methods
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Quasi-Newton Methods

Example 2 - DFP Entregar

Consider the quadratic function f (x) = 1
2
x
′
Ax − b

′
x with

A =

[
4 2

2 2

]
, b =

[
−1

1

]

Find the minimizer using the DFP algorithm. Starting point x0 =
[

0 0
]′

Assume D0 = I
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Quasi-Newton methods

Comments about DFP

• If f quadratic, after n steps Dn = H−1

• If D0 = I we have the Conjugate Gradient method.

• The DFP algorithm preserves the positive definiteness of the matrices.

• For larger nonquadratic problems the algorithm has the tendency of sometimes

getting stuck.

Lemma
Let x0 ∈ R and D1 be a positive definite symmetric matrix.

If ∇fk ̸= 0 ∀k, then D1,D2, . . . ,Dn are symmetric positive definite and d1, d2, . . . , dn
are descent directions
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Quasi-Newton Methods

BFGS Method
One of the most popular methods, known as the BFGS method. The name is an

acronym of the algorithm’s creators: Broyden, Fletcher, Goldfarb, and Shanno, who

each came up with the algorithm independently in 1970.
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Quasi-Newton Methods

BFGS Method
In this case BFGS update procedure is

Dk+1 =
(
I − ρk sky

t
k

)
Dk

(
I − ρkyk s

t
k

)
+ ρk sk s

t
k

with yk = ∇fk+1 −∇fk sk = xk+1 − xk ρk = 1
y t
k
sk

Dk is the approximation of the inverse of the Hessian
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Quasi-Newton Methods

BFGS Method

1 Set ϵ > 0 k:= 0; Let x0 be the initial point. Select an inverse Hessian

approximation D0

2 if ∥∇fk∥ < ϵ stop; else dk = −Dk∇fk

3 Let λk > 0 be an optimal solution of minλ≥0 f (xk + λdk )

4 xk+1 = xk + αkdk

5 Compute

• sk = xk+1 − xk ,

• yk = ∇fk+1 − ∇fk
• Dk+1 =

(
I − ρk sky

t
k

)
Dk

(
I − ρkyk s

t
k

)
+ ρk sk s

t
k with ρk = 1

yt
k
sk

5 Set k := k+1; go to step 2.

In the BFGS method, the positive definiteness (and thus nonsingularity) of all

Hessian approximations is guaranteed.
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Quasi-Newton Methods

Advantages and disdvantages of BFGS Method

1. BFGS update preserve positive definiteness under appropriate conditions and has

low computation cost.

2. BFGS update has local superlinear rate of convergence without the need to solve

linear systems.

3. Even when the Hessian matrix are sparse, updated inverse Hessian approximation

yields dense matrix. This problem restricts BFGS method to use for small scale

and midscale data set.
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Quasi-Newton Methods

Example 3 - BFGS Entregar

Consider the quadratic function f (x) = 1
2
x
′
Ax − b

′
x with

A =

[
4 2

2 2

]
, b =

[
−1

1

]

Find the minimizer using the DFP algorithm. Starting point x0 =
[

0 0
]′

Assume D0 = I
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Exercice (24/07, 23:59)

Use the four algorithms ( Conjugate gradient, SR1, DFP, BFGS) to find a minimum

for Rosenbrock’s Functions (in R2). Use the library

https://www.sfu.ca/˜ssurjano/optimization.html

Discuss the methods considering implementation, convergence, and efficiency
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