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1 INTRODUCTION

Benchmark Data Sets. The introduction of quantitative performance evaluation on standard
benchmark data sets, with well-defined ground truth, enabled precise comparisons among different
machine learning (ML) algorithms. Classic examples of such standard data sets include MNIST
[40] and CIFAR [41], which are fixed and fully annotated. They are equivalent to the mathematical
concept of universe in set theory, where only values in the universe are considered. A significant
part of ML research is concerned with optimizing ML classifiers and evaluating their performance
within fixed standard data sets.

Optimization within Fixed Data Sets. Etzioni [20] has characterized this classic ML approach
as “function approximation based on a sample.” The evaluation of classifiers restricted to fixed
universes has favored ML approaches (e.g., deep learning algorithms) that are optimized and spe-
cialized for the target data sets, e.g., LeCun’s achieving more than 99% accuracy on MNIST in 1998
[62] using convolutional neural networks. This optimization process also leads to a side effect,
called overfitting, where classifier performance degrades significantly when tested with new data
from outside the original universe.

Artificial Reality. Fixed data sets are the first examples of bounded environments we call artifi-

cial reality, universes populated by well-known ground truth. ML classifiers are trained, optimized,
and evaluated in artificial realities due to their need for ground truth for evaluation. We recog-
nize that in their own sub-domains, artificial realities are valid sub-models of the actual reality.
However, this recognition also creates the question of degree of validity of each artificial reality
as sub-model—specifically, how much of the actual reality is the artificial reality able to cover?
This coverage question becomes increasingly relevant as the actual reality continues to grow and
change as the real world evolves, while artificial realities are defined by the limited ground truth
available at their creation.

Evolving Actual Reality. In contrast to the static artificial reality, the explosive growth of big
data from the actual reality has been described as “90% of the data in the world today has been
created in the last 2 years” [31]. For example, smartphones became the first device to reach 1B
deployments in 2012, and they generate huge amounts of data through social media and sensors
such as cameras. Twitter reports 500M new tweets/day [29], and Facebook generates 4PB/day
of new content [28]. Another example consists of many millions of surveillance video cameras
in cities such as London and Beijing. While we recognize the validity and importance of fixed
knowledge, e.g., images of apples, the focus of this article is on the new knowledge continuously
being generated by the evolving actual reality.

Coverage of Artificial Reality. The recognition of artificial realities as sub-models of the actual
reality posits the question of how much of the actual reality a sub-model is able to capture. This
coverage question is illustrated by the 2018 fatal accident, when an Uber self-driving car struck
and killed a pedestrian. According to the NTSB preliminary report [6] released in November 2019,
the main issue was the software (ML sub-model) not considering jaywalkers (humans outside
of crosswalks) as high probability events. As the actual reality evolves over time, the initial gap
between fixed data sets and actual reality would be expected to widen.

Artificial Novelty. Under the methodological explanation that ground truth in fixed data sets
is necessary for precise evaluation, many ML studies have remapped important phenomena in
the actual reality into artificial reality, e.g., concept drift [72], which has been studied within
fixed data sets by cycling through subsets [73, 74]. The coverage question, i.e., whether classifiers
trained within an artificial reality would apply to actual reality, remains unanswered. More serious
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problems arise when the focus on precisely comparable evaluations result in the exclusion of work
on actual reality, which contains incomplete ground truth, as “lacking in evaluation rigor.”

True Novelty. It is our contention that artificial reality has served the ML research community
well and will continue to be very important, but it is high time to reincorporate actual reality into
the universe of ML research. This inclusion can start from the coverage question—specifically, the
widening gap between the evolving actual reality and the artificial reality, which is bounded by the
original ground truth. Borrowing from signal processing terminology, the gap is filled with both
signal and noise. A major research challenge is distinguishing the signal that we call true novelty

and the “big noise” that surrounds and obscures the true novelty, including random noise, misin-
formation, and disinformation in many live real data sources. Examples of big noise in Internet
applications and social media include: email spam (e.g., Reference [42]), web spam (e.g., Reference
[43]), Wikipedia vandalism (e.g., Reference [44]), and social media spam (e.g., References [45–47]).

Risks of Ignoring True Novelty. From a self-contained artificial reality point of view, true nov-
elty would be inconsequential, since it lies outside of the universe of artificial reality. For example,
k-fold validation has been considered an acceptable model for many kinds of novelty. We be-
lieve this disregard for true novelty and actual reality by extension could explain the failures of
AI systems when deployed in actual reality. All the attempted deployments, including the Uber
autonomous driving system [6], Microsoft Tay chatbot [8], and Google Flu Trends [1–5], have
demonstrated excellent performance within their own artificial reality, but failed when faced with
true novelty outside the original universe: pedestrian outside of crosswalk that caused the Uber
accident, racial slurs that caused Microsoft Tay inappropriate tweets, and new search terms that
caused Google Flu Trends to make more than 100% prediction error in just four years.

Live Knowledge. Just like the ever-changing actual reality containing it, true novelty is being con-
tinuously generated. We call live knowledge the continuously growing set of validated true novelty
to distinguish the long-term challenge from individual snapshots of actual reality. As an example,
the problem of finding specific cases of unseen items in retrospectively filtered data sets (which
become artificial novelty once the data set is fixed) would not be considered live knowledge due
to their disconnection from actual reality after creation. More concretely, just adding pedestrians
outside crosswalks would not make the Uber autonomous driving system accident-free. Similarly,
just adding racial slurs into Tay’s knowledge base would not prevent other kinds of unforeseen
inappropriate behavior. Live knowledge requires a methodical and automated approach to filter
big noise, find true novelty, and continuously incorporate the new knowledge into a system.

Focus on Event Detection. The issues raised by the recognition of fixed ground truth in artificial
reality, true novelty beyond artificial reality, and continuously growing live knowledge are very
broad. In this article, we focus on the specific case of factual event detection, with knowable ground
truth on the facts. With a concrete example of LITMUS landslide information system [14], we
show that live knowledge can be achieved through a judicious integration of complementary live
data sources. We hope that such successes can change the perception of necessity for artificial
reality into encouragement, or at least tolerance, for more research efforts on true novelty and live
knowledge.

The EBKA Approach. We introduce the evidence-based knowledge acquisition (EBKA) approach
to distinguish true novelty from big noise and continuously accumulate live knowledge. EBKA au-
tomates the process of recognizing true novelty by integrating complementary data sources using
several ML algorithms to handle big noise. The validated true novelty is continuously added to
live knowledge through classifier adaptation. The main idea of EBKA is the separation of data
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sources into three groups: (1) primary sources (social sensors with high coverage, and big noise),
(2) deterministic corroborative sources (high reliability, authoritative sources, with relatively low
coverage), and (3) probabilistic supporting sources (adding evidence to likely positive cases). By
judiciously integrating these different sources, EBKA is able to leverage their strengths to com-
pensate for their limitations.

Event Detection with True Novelty. We built the LITMUS landslide information system [14]
to illustrate the EBKA approach to find true novelty and accumulate live knowledge. The primary
sources of LITMUS consist of social sensors that include Twitter and Facebook, with corroborative
sources (e.g., newspapers) and supporting sources (e.g., NOAA [23]). When processed in real-time,
the social sensors present both big noise and true novelty challenges. Applying the EBKA ap-
proach, LITMUS integrates the corroborative and supporting sources through a teamed classifier
to meet the challenges and achieve high accuracy as well as coverage in the detection and tracking
of landslides.

The rest of the article is organized as follows: Section 2 summarizes the related work on the
various forms of artificial reality. Section 3 outlines the challenges of finding true novelty and live
knowledge. Section 4 highlights the LITMUS landslide information system as a live knowledge
real-world application. Section 5 describes the EBKA approach to address big noise and concept
drift challenges simultaneously, illustrated by LITMUS. Section 6 suggests future research and
development opportunities on live knowledge. Section 7 concludes the article.

2 RELATED WORK ON ARTIFICIAL REALITY

2.1 Fixed Data Sets That Constitute Artificial Reality

The performance of supervised ML algorithms depends critically on the quality of training data:
the purer the ground truth, the more accurate the classifier. Fixed data sets are considered to have
full ground truth, and thus they became idealized environments in which to test many ML al-
gorithms. There are several alternative ways to concentrate ground truth for evaluation, and we
summarize three major variants according to the assumption they make about data sources: Fixed
Data, Clustered Cata, and Continuity of sensor source.

Fixed Data Sets as Artificial Reality. We start from a recap of fixed data sets, popularized by
TREC [38] data sets for IR, MNIST [40] and CIFAR [41] for ML, and many more [39]. High-quality
ground truth data have favored deep learning (DL) algorithms, e.g., LeCun’s more than 99% accu-
racy on MNIST in 1998 [62]. Fixed data sets are the first group of valid testing environments that
form an artificial reality, with potentially widening gaps from the actual reality.

Retrospectively Clustered Data Sets. To apply ML algorithms to real-world data sets, an active
area of research focuses on retrospectively filtered data sets, e.g., from social media, usually clus-
tered on specific events [69] or a theme. For example, Sakaki et al. [63] studied Twitter reports
on earthquakes by filtering out the noise (irrelevant tweets). A survey on this class of studies [69]
mentions examples of noise, including meaningless messages, polluted content, and rumors, all
of which negatively affect the performance of ML classifiers. The filtering techniques include un-
supervised learning, k-means clustering [84], customized filters for tweets [63, 64], social media
analysis [65, 66], and cross-domain classification [88–90].

Clustered Data Sets Become Fixed. Although the clustered data sets typically started from real-
world data streams, once created they became fixed data sets. As a result, clustered data sets also
belong to artificial reality category. One possible explanation of this transformation is that the
majority of current ML algorithms require ground truth for quantitative evaluation. In addition
to retrospective clustering of event data (usually from social media), the transformation into fixed
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data sets also affects several initiatives aimed at real-world data streams, including never-ending
learning[18], lifelong learning [19], open set recognition [15], and open world recognition [16,
17]. Their analyses mainly used fixed data sets or retrospectively filtered clusters transformed into
fixed data, both in artificial reality.

Continuity in Data Streams. The area of data streaming [67, 68] usually refers to physical sen-
sor data processing, e.g., readings of temperature and atmospheric pressure. Physical sensors in
the real world produce time series data and data streaming work often assuming the data come
from the same sensors, with predictable variations bounded by physical models of the real world.
When the actual reality evolves beyond the known physical models, e.g., the appearance of un-
precedented ozone hole over Antarctica since 1979, the discovery was delayed to 1985 [7] due to
data assimilation algorithms that filtered out such “physically impossible” data from the Nimbus-7
satellite. Streaming data with filtering based on continuity assumptions from previous known mod-
els would fall into the artificial reality category when the actual reality evolves beyond the previous
models.

Ground Truth and True Novelty. The dependency of supervised ML algorithms on ground truth
(and the dependency of unsupervised algorithms on low noise levels) leads to a confined artificial
reality, with three representative groups outlined above: fixed data sets, retrospective clusters, and
continuity. While they are able to capture the knowledge within an artificial reality, the coverage
question illustrates the gap between an artificial reality and an (evolving) actual reality. This gap
will be called true novelty.

2.2 Terms Redefined in Artificial Reality

A major difficulty in true novelty and live knowledge consists of the double meaning of several
keywords when their original interpretation from the actual reality becomes restricted by a much
smaller artificial reality. An example of this double meaning happened to the term “real-time” in
the context of artificial reality, instead of the computer science normal meaning of “real-time.”
Concretely, “real-time event detection” is part of the title of a highly cited retrospective study [63]
in the context of clustered data sets (artificial reality). Their paper uses the term to refer to the
relative distance between the timestamp of an event and the timestamps of tweets that enabled
their classifier to decide on the event.

A second example is in the area of concept drift [72], which is a real-world problem due to
gradual changes in the real world (the actual reality). However, typical papers on concept drift [73,
74] study the drift problem and solutions based on adaptation within the artificial reality of fixed
data sets by rotating through subsets. Despite a significant number of papers on concept drift in
artificial reality, the gap between the artificial concept drift and the actual concept drift in the real
world (the coverage question) has yet to be addressed. Concept drift will be elaborated in more
detail in Section 3.2.

A similar redefinition happened with “novelty,” which has different meanings within artificial
reality compared to actual/true novelty. Some recent papers have focused on real-time novelty in
the actual reality, e.g., TwitterNews [77] and GeoBurst [79], using clustering algorithms related to
unsupervised learning. Unfortunately, their tweets appear to be lacking in corroboration, and thus
their systems would be vulnerable to disinformation such as fake news.

2.3 Related ML Approaches to Acquiring Knowledge

Some of the ML techniques have an explicit goal of acquiring knowledge. Without entering into the
discussion on artificial general intelligence, we mention four such ML techniques here to illustrate
their purpose and limitations.
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Reinforcement Learning. With the success of AlphaGo [92] and AlphaZero, reinforcement
learning [91] has demonstrated super-human capability in well-defined games such as Go. How-
ever, their ability to exceed human capability in depth does not address the coverage question.
In fact, game-playing programs represent stylized and limited artificial reality, with adaptation to
game rule changes as open research challenges. Using the Uber accident example, it is unclear how
reinforcement learning would handle unbounded true novelty beyond the specific case of human
crossing a road outside of crosswalks.

Transfer Learning. Although more of a knowledge amplification approach instead of new knowl-
edge acquisition, transfer learning (survey by Pan [70], with an update by Weiss [71]) aims at au-
tomating the creation of classifiers in the target domain by reusing (parts of) the classifier from
a source domain. However, knowledge transfer process based on functional mapping also trans-
fers/maps the limitations of the source. For example, consider a source domain classifier trained
within the artificial reality of a fixed data set, or retrospective clustered data, and therefore in-
capable of detecting true novelty. It is inevitable that the target classifier will inherit the same
limitations of the source classifier, within the confines of artificial reality.

Active Learning. In ML, human input has been considered the gold standard in the generation
of ground truth. Specifically, active learning [85] uses human experts or crowdsourcing to man-
ually label new training data. There are two general limiting factors of active learning: accuracy
problems and (human) resource scarcity. First, the accuracy of human labeling depends heavily
on the level of expertise and other human factors such as fatigue, and adding incentives does not
necessarily help [86]. Second, human resources remain extremely limited compared to the rapidly
growing big data being generated by physical and social sensors. ImageNet [94] illustrates both
the success and limitations of human labeling: It has achieved order-of-magnitude improvements
in labeled image collection size, but it is unlikely that it can be extended to capture true novelty
from exponentially growing new big data.

Automated Machine Learning (AutoML). The many steps involved in typical ML work have
spurred the efforts to automate the ML process (AutoML). As described in a recent book [93], the
automation has occurred in several areas, including hyperparameter optimization and learning
about the search process for the best classifiers, with useful software tools such as Auto-WEKA
and Hyperopt-Sklearn. Perhaps as expected, these areas of successful AutoML start from the as-
sumptions of artificial reality and well-defined ground truth, enabling the algorithmic optimization
of search process to find the best approximation function.

3 CHALLENGES IN FINDING AND MAINTAINING LIVE KNOWLEDGE

3.1 Finding and Validating True Novelty

The first step in the quest for live knowledge is the automated discovery of true novelty in the
midst of big noise that includes random data, misinformation, and disinformation. A traditional
way to avoid the big noise challenge is to remap the novelty discovery problem back into artificial
reality by making assumptions such as Fixed Data, Clustered Data, and Continuity (Section 2.1).
However, these assumptions also preclude true novelty. First, classifiers trained under Fixed Data
Sets have inherent difficulties with true novelty beyond the original fixed training data, as shown
by Microsoft Tay chatbot. Second, analyses on Clustered Data have difficulties when applied to
different clusters and indistinct clusters in true novelty, in addition to fixed data set constraints.
Third, algorithms relying on Continuity would disallow the outliers considered by their physical
model as noise. This would “throw out the baby with the bath water,” since true novelty often
appears (at least initially) as outliers.
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Live knowledge requires the detection of true novelty whether they arise suddenly or grow
gradually over a long period of time. There are similarities and differences in the handling of true
novelty over different time scales. This section outlines the problem of short-term true novelty
that arises suddenly. In the next section (3.2) the long-term growth of true novelty (a.k.a. concept
drift) will be described.

Meaningful Outliers. The first challenge in finding true novelty in social sensors is that the
discrete data items from millions of social media accounts are independent of each other. Therefore,
there is no Continuity in social channels. Furthermore, some standard statistical assumptions,
e.g., all noise being randomly generated with signals following well-behaved distributions such
as Gaussian, would discard all outliers as noise. Instead of making Continuity and such statistical
assumptions, true novelty detection on social sensor data need to carefully consider potentially
meaningful outliers (e.g., first posting of an event), which may become a trend.

Meaningful True Novelty. The excellent accuracy of deep learning (DL) algorithms on fixed
data sets reflects their being optimized approximation functions for fixed training data. This opti-
mization also introduces instabilities (e.g., overfitting), leading to DL classifiers considering unseen
new data irrelevant due to their being outside of training data. Instead of assuming Fixed Data, true
novelty detection on social sensor data needs to carefully consider new data beyond the original
training data.

Actionable Real-time Information. The “novelty” contained in retrospectively generated fixed
data sets reflects only the ground truth covered by artificial reality. When true novelty arises, e.g.,
in the Uber accident and Microsoft Tay chatbot, the classifiers trained within artificial reality have
reliability issues. To achieve actionable real-time information in actual reality, we need to find true
novelty outside the traditional assumptions of Fixed Data or Clustered Data.

3.2 Long-term True Novelty Challenge (Concept Drift)

According to a survey [69], reports on event detection from real social sensors typically have fol-
lowed the Clustered Data approach by analyzing retrospectively filtered data on large events [63].
This was feasible for events with many tweets (sometimes called bursts). The classifiers and mod-
els trained from large clusters on such events have been less successful when applied elsewhere,
probably due to the coverage question, and also the differences among the clusters from different
events, e.g., earthquake vs. hurricane. More fundamentally, the long-term contextual changes in
social media would have affected the accuracy of classifiers trained from fixed data sets.

The contextual changes have been called concept drift [72], defined as a change (over time) of
class conditional probability p (X ,y), where X is the set of input variables and y the target variable.
Technically, changes in data (both X and y) may change the prior probabilities of classes p(y),
the class conditional probabilities p (X/y), and posterior probabilities of classes p (y/X ), affecting
the prediction. Informally, concept drift is analogous to generation gap, where an “old” classifier
has difficulties understanding “young” social postings containing new social slang and jargon that
appeared after the older generation training data were created.

Concept Drift Challenge. Concept drift [72] describes the evolution of contextual content in
actual reality over a period of time, typically years. Examples include the language used in social
media and seasonal changes in scenery. Concept drift affects all ML classifiers trained by fixed
training data, but tested over real-world data sets that span a long time. An early example was
Google Flu Trends [1], which initially reported very high accuracy (more than 97% in 2009), when
predicting flu pandemic areas using (millions of) browser search items associated with the flu. By
2013, the original model’s predictions degraded by more than 100% due to changes in the search
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Fig. 1. Sample Screenshot of Landslides Reported by LITMUS.

terms that people used [2–5]. The LITMUS data we collected confirm serious concept drift (see
Figure 3). Concept drift represents a major difficulty for the reproducibility of ML classifier per-
formance on evolving social media: strong correlations today may—and almost invariably will—
become weaker tomorrow.

4 LIVE KNOWLEDGE ON ACTUAL EVENTS REPORTED IN SOCIAL MEDIA

4.1 Illustrative Application: Live Knowledge on Landslides

Natural disasters are important real events with significant social and economic impact (billions
of dollars per year) around the world. Some disasters have dedicated physical sensors for their de-
tection, e.g., earthquakes are measured accurately by USGS Global Seismographic Network (GSN
[21]). However, events such as landslides are more difficult to detect physically due to their local-
ized impact, and humans are often the first finders (and responders) of landslides. In recent years,
social sensors (e.g., Twitter) have become increasingly important and timely sources of landslide
reports, making them a good illustrative live knowledge application.

LITMUS Demo System. LITMUS landslide information system [13] demonstrates effectively the
Evidence-Based Knowledge Acquisition (EBKA) approach, described in more detail in Section 5.
Figure 1 shows a sample screenshot of the LITMUS demo system, with landslides reported during
the last month. Clicking on a pin brings up the “Details” tab, and clicking the Details tab opens a
list of relevant tweets (left side of Figure 2). Clicking an item on the list opens the posting itself
(right side of Figure 2). LITMUS integrates several primary social sources (Twitter, Facebook, and
YouTube), which contain significant noise. In addition, LITMUS utilizes EBKA integration of cor-
roborative sources (e.g., reputable newspapers) and supporting sources (e.g., NOAA [23]) to filter
big noise and find true novelty, achieving excellent accuracy and coverage [60, 61] (more details
of evaluation in Section 5.5).
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Fig. 2. Tweets found on Norway landslides and an example (2019-08-05).

Table 1. LITMUS Data Sets as Illustrative Example of Live Knowledge

LITMUS data 2014 (monthly) 2015 – 17 (monthly) 2018 (monthly)
Relevant Samples ∼5K to ∼50K ∼5K to ∼45K ∼5K to ∼50K
Landslides Found Hundreds Hundreds About a thousand
Positive Example [Aug. 22, 2016] Train derails in Tokyo after landslide (URL: photo of de-

railed train)

Negative
Example

[Aug. 2016] Tropical Strom #Chanthu dropped 47mm in Tokyo. Moving
north fast with landslide threat. @cnntoday @cnni (URL: radar image of

tropical storm Chanthu)

4.2 Challenges in Finding True Novelty in Social Media

Live Social Sensor Data. LITMUS illustrates well the technical challenges in acquiring live
knowledge from live social sensors, since the real-world social sensor data do not follow the com-
mon assumptions (discussed in Section 2):

1. No Continuity: Social postings come from millions of different accounts, not time series
from the same sensor;

2. Not Fixed: true novelty arrives continuously from growing social sensor channels;
3. Real-Time: New data must be processed in near real-time for early detection and tracking

of landslides of all sizes, not waiting for large events to unfold that enables clustering of
data.

Big Noise in LITMUS Data. In the LITMUS data set, 90+% of tweets containing the keywords
“landslides/mudslides” refer to non-disaster topics, e.g., landslide victories in elections and sports
matches and a popular rock song entitled “Landslide.” Table 1 shows the approximate size of LIT-
MUS collected relevant data sets from 2014 to 2018 (top two rows), plus a positive example of
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Fig. 3 . Degradation of Static Classifier Due to Concept Drift (from 2014 to 2018).

relevant tweet and a negative example (bottom two rows). Classic ML algorithms are able to handle
big noise adequately, without reliance on Continuity, Fixed Data, or Clustered Data assumptions.

Concept Drift in LITMUS Data. The LITMUS data set confirms a clear concept drift and long-
term true novelty, with data sets showing monthly oscillations in landslide data as well as true
drift on the scale of a few years [61]. The right side of Figure 3 shows the significant accuracy loss
of the same classifier (trained with a manually labeled subset of 2014 data) from 2014 (left column)
to 2018 (three columns on the right). The left side of Figure 3 shows a direct visualization of terms
often used in tweets on landslides. The graph is obtained by converting the tweets to numbers
using word2vec [33], followed by dimensional reduction through principal component analysis
(PCA) normalized to the interval [–1, +1]. In Figure 3, the light orange dots (upper left) represent
the 2014 data, and terms in 2018 have migrated towards the lower right (dark red, green, purple,
and blue dots) with a clearly visible drift.

In summary, LITMUS is a good real-world application with big noise and concept drift chal-
lenges that cannot be satisfied under artificial reality assumptions such as Fixed Data, Clustered
Data, and Continuity. To provide real-time, actionable landslide information, LITMUS needs live
knowledge from automated discovery, validation, and incorporation of true novelty. These require-
ments are achieved through the EBKA approach described in the next section.

5 FROM TRUE NOVELTY TO LIVE KNOWLEDGE THROUGH EBKA

In this article, a real event (e.g., a landslide) is characterized by a triple in the space-time continuum:
a label (e.g., landslide), a physical location (e.g., Oso, Washington State of USA), and a time window
(March 22, 2014). A real event has a meaningful topic label and may have varied (non-zero) sizes
in space and time. We are primarily interested in single events at human scales due to the social
media reporting. Events at microscopic or astronomical scales are left for future research topics.
Most natural disasters fall into the range of interest, including hurricanes and landslides.

5.1 Evidence-Based Knowledge Acquisition (EBKA)

EBKA Information Integration. The main idea of EBKA is to integrate diverse information
sources to address both the big noise challenge and the true novelty challenge simultaneously.
LITMUS has three kinds of sources. First, the primary sources (social sensors including Twitter,
Facebook, and YouTube) have wide coverage, but big noise problems. Second, deterministic cor-
roborative sources (e.g., reputable news reports [26, 27] on landslides) have high reliability, but low
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Fig. 4. Evidence-Based Knowledge Acquisition (EBKA) and LITMUS Data Integration.

coverage. Third, probabilistic supporting sources add likelihood estimations with physical sensor
data and models. For example, earthquakes (USGS GSN [21]) and rainfall (NASA TRMM [22])
increase the probability of landslides, and NOAA provides a risk model of landslides [23].

EBKA Data Flow and Filtering. Figure 4 illustrates the LITMUS implementation of EBKA. The
primary sources appear on the left, with corroborative sources and supporting sources on the top.
The social sensor data (with big noise) go through two filtering stages. The first stage consists of a
sequence of ML filters (marked as “social sensor filter pipeline” in the middle left of Figure 4) that
use classic ML classification algorithms (e.g., the WEKA toolkit [36]) to filter big noise adequately
[42, 48–59].

Capturing True Novelty. The second stage consists of a teamed classifier (to be elaborated in
following sections) that incorporates the knowledge acquired from the corroborative and support-
ing sources. The combination achieves high accuracy on detecting short-term true novelty. On the
2014 landslide data [59], which was improved by deep learning (DL) tools such as Keras [35] and
TensorFlow [34], LITMUS achieved about 98% precision and recall [60] for 2014 data. However, ad-
dressing the concept drift challenge (Figure 3) required teamed classifiers, elaborated in following
sections.

5.2 Teamed Classifiers for Live Knowledge

Teamed Classifier in LITMUS. To avoid confusion with the broad area of ensemble learning
[83], we adopt the term teamed classifier (also called committee classifier) to denote the LITMUS
classifier, which contains several sub-models for a variety of reasons, including location finding
(part of the social sensor filter pipeline) and EBKA (middle right of Figure 4). The function of sub-
models may differ for each source and their weights may vary for each posting. Specific sub-models
of interest (e.g., EBKA) will be described in Section 5.4.

Goals of Teamed Classifier Design. Teamed classifiers [67–81] have improved the management
of knowledge on complex classification problems such as IBM Watson [37] and restricted versions
of concept drift [67]. A simple example of concept drift is the change of scenery due to the four
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seasons (e.g., snow in winter and flowers in spring). Typically, each sub-model handles a narrow
case (e.g., a single season), achieving better decisions with high confidence while maintaining
relative simplicity through specialization. As we find validated true novelty, sub-models trained
by the new ground truth are added into the teamed classifier. A growing teamed classifier becomes
the repository of live knowledge, in addition to the data set. The LITMUS example is explained in
Section 5.4.

Optimizing Teamed Classifiers. A major technical challenge in teamed classifiers is the man-
agement and integration of specialized sub-models through one or more weight functions that
optimize the group decision, e.g., by minimizing the error in classification. As illustration, con-
sider Equation (1) with a multi-dimensional metric state space of real-world events, denoted by
evk and sub-model xi evaluating the likelihood of evk actually occurring; the potential classifica-
tion error is calculated as the distance between decisioni (sub-model’s estimate of xi ) and actual
event occurrence: erri (xi , evk ) = distk (decision(xi , evk ), actual (evk )), where actual (evk ) repre-
sents the ground truth on evk , and distk the amount of error made by sub-model xi . The objective
of the teamed classifier evaluation becomes the search for weight functionsweiдhti that minimize
(or approximate the minimal) total error over the entire team: totaler r i (xi ) =

∑
i erri (xi , evk )

Equation (1) Optimization Process to Find Best Weight Functions for Ensemble Classi-

fiers

min
sub−model

∑

i

erri (xi , evk )

= min
sub−model

∑

i

�
�
weiдhti ∗ �

�

n∑

k=1

distk (decision(xi , evk ), actual (evk ))�
�
�
�
.

An informal interpretation of Equation (1) is that the error minimization process will converge
by giving lower weiдhti to sub-models {xi } that make bigger mistakes (large erri (xi , evk ) on the
right side of equation).

Equation (1) shows both the strength and weaknesses of common ML assumptions (e.g., Fixed
Data Set and Clustered Data). On the positive side, given well-defined ground truth from these
assumptions, the optimization converges. However, the ground truth based on known past data
would ignore new events due to true novelty challenges (Figure 3). This is the problem to be
addressed by EBKA, which is capable of recognizing and acquiring true novelty reliably.

5.3 LITMUS Teamed Classifiers Using EBKA

Corroboration and Support. In the LITMUS teamed classifier, there is a dedicated sub-model
for each corroborative and supporting source. For example, there is a sub-model that maintains all
CNN.com reports on landslides. A landslide tweet that matches a corroborated location-time (e.g.,
in the CNN.com sub-model) is considered positively identified. In contrast, a supporting source
sub-model (e.g., coincidental heavy rain) only increases the probability of a co-located landslide.

Sources of New Knowledge. The high confidence placed on corroborative sources is due to
the publication requirements in reputable news organizations. A typical newspaper requirement
consists of confirmed corroboration from multiple independent sources. Newspapers such as The

New York Times and The Guardian have good reputations due to the very low error rates in their
articles. If they report an event, it is highly likely to have occurred. The main contribution of
corroborative sources to LITMUS (and EBKA more generally) consists of the new knowledge they
generate, which is used as ground truth in the selection of training data for new sub-models at
team-level adaptation (described in Section 5.4 and Figure 5).
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Fig. 5. EBKA Architecture (with LITMUS as Illustration).

Table 2. Improved F-score with EBKA under Imbalanced Learning

Static
(DL)

Adaptive
(DL)

Primary
Source
items

Corroborative
items

Percent of
Confirmed

Data

Improvement
on F-score

2014 Data 0.91 0.96 NA NA NA NA

Jul-2018 0.70 0.88 7205 189 2.62% 125.5%

Aug-2018 0.56 0.90 14245 106 0.74% 159.2%

Sep-2018 0.57 0.90 4867 193 3.97% 156.7%

Oct-2018 0.70 0.88 15847 249 1.57% 126.1%

Nov-2018 0.38 0.86 7084 885 12.49% 225.7%

Dec-2018 0.75 0.99 4873 223 4.58% 132.0%

Table 3. Improved Coverage (# landslides) with EBKA and Imbalanced Learning

LITMUS Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Static DL 480 644 365 501 508 149
Adaptive DL 480+398 644+681 365+513 501+646 508+772 149+370
Improved Coverage 82.92% 105.75% 140.55% 128.94% 151.97% 248.32%

Limitations of Corroborative Sources. Given their high reliability, a question that arises is
whether they can be used as sole sources. The answer is negative, due to delay and limited cover-
age. First, their requirement for independent corroboration causes some delay before publication
(usually hours to days). Second, typical newspapers only publish events of interest to a wide audi-
ence, ignoring small events of limited impact. Tables 2 and 3 show that corroborative sources only
publish a few percent of all landslides found (and verified) by LITMUS from social sensors.

LITMUS Teamed Classifier Output Categories. Through EBKA, LITMUS teamed classifier di-
vides social postings into one of four categories: (1) very low probability postings, considered
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definitely irrelevant and marked as HC Negatives (high confidence) in Figure 4; (2) very high prob-
ability events (HC Positives); (3) corroborated and confirmed landslides; and (4) uncertain postings
with intermediate probability (apparently serious tweets, but insufficient supporting evidence).

Accuracy of Teamed Classifier. The LITMUS teamed classifier is able to achieve high precision
and recall (Table 3 and Table 4) by recognizing the clearly irrelevant items (category 1) and clearly
relevant items (categories 2 and 3). At the same time, the boundary/uncertain cases (category 4)
are sent back to the teamed classifier for reconsideration. As more evidence and corroboration are
accumulated by the adaptive teamed classifier (see Section 5.4), a higher confidence decision can
be made with better knowledge.

5.4 Automated EBKA through Adaptive Teamed Classifier

Two-level Adaptation of Teamed Classifier. EBKA incorporates new knowledge from corrob-
orative sources at two levels. At the sub-model level, new events from corroborative sources are
added into their databases, which increase the number of confirmed events and new knowledge.
Similar adaptation happens with supporting sources. At the team level, new sub-models are cre-
ated with new training data and added to the team. The sub-model adaptation increases the real-
time landslide detection capability of LITMUS, and the team-level adaptation handles long-term
concept drift.

Sub-model-level Adaptation. In LITMUS, each corroborative sub-model maintains a database
of confirmed events, indexed by location-time. As new events are published, they are inserted into
the database, providing corroboration to all co-located landslide postings (that match the same
location-time). Similarly, each supporting sub-model (e.g., NOAA [23]) maintains a database of
landslide probability, indexed by location-time. When a location-time receives an updated prob-
ability, co-located landslide postings also update their probabilities. The sub-model adaptation is
particularly effective in immediately incorporating supporting evidence, e.g., a new earthquake
that occurred in Nepal would increase the probability of landslides occurring in that area during
that time.

Team-level Adaptation. To address the long-term concept drift challenge (shown on the left side
of Figure 3), EBKA incorporates new knowledge by introducing new sub-models into the teamed
classifier. In LITMUS, the social postings on the new confirmed landslides of each month are used
as positive training data set (with corresponding negative data) for creating new sub-models. The
weighting function is carefully tuned to optimize the impact of new sub-models. The team-level
adaptation process is illustrated in Figure 5. Although the corroborative sources only provide a
few percent of verified landslides (Table 3), they are sufficient for handling concept drift, as shown
on the right side of Figure 3.

EBKA Architecture. Taken together, Figure 4 (adaptive sub-models for classifying each social
posting) and Figure 5 (team-level adaptation) illustrate the EBKA architecture to detect new events
and capture true novelty. The two-level adaptation handles the different time scales of environ-
mental change: sub-model adaptation for discovering new events (new landslides, from hours to
days) and team-level adaptation for handling concept drift (social media language evolution, from
months to years).

Better Decisions. A distinctive feature of the EBKA approach consists of the fourth category of
output: uncertain postings with intermediary probability. Figure 4 shows that uncertain postings
are sent back to the classification process. This recycling make sense for adaptive classifiers, since
the decision may change (to better) when new information arrives at corroborative or supporting
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sources. For example, the first tweet on a new real landslide normally would be sent back for lack
of supporting evidence, and its probability would increase by subsequent tweets due to EBKA. The
tweets that are irrelevant to landslides would not receive additional support, and eventually they
get filtered out.

5.5 Evaluation of EBKA in LITMUS

Accuracy Achieved by LITMUS. We have very encouraging experimental evaluation results in
LITMUS that confirm the effectiveness of EBKA approach. Table 3 shows that a modest amount of
confirmed data (second column from the right, typically a few percent) is sufficient for improving
the F-score of Teamed Classifier by more than 100%. The largest improvement (more than 200% in
November 2018) appears to be correlated to the largest percent of confirmed data (12.5%), which
indicates more data as well as more research would be warranted.

Improved Coverage. In classic ML, improved accuracy often requires a trade-off in coverage.
By acquiring external evidence, the EBKA approach achieves significant improvements in F-score
(rightmost column in Table 3) while maintaining wide coverage. Table 4 shows that Adaptive DL
classifier achieves a strict superset of Static DL classifier. We believe that the EBKA approach is able
to bypass the classic ML trade-off between false positives (FP) and false negatives (FN), because of
the additional knowledge from corroborative and supporting sources.

6 FUTURE RESEARCH AND DEVELOPMENTS ON LIVE KNOWLEDGE

6.1 Smarter Applications Enabled by Live Knowledge

Smart Applications within Artificial Reality. Many of current smart (or intelligent) applica-
tions have made assumptions similar to those discussed in Section 2 (Continuity, Fixed Data, and
Clustered Data). For example, projects that built custom sensors [9] have developed applications
such as air monitoring, with both Continuity and Fixed Data assumptions. They work well in the
artificial reality of testbed environments but have difficulties with deployment in the open real-
world environment. The transition difficulties have often been attributed to scalability issues such
as cost or heterogeneity, but we believe that a more fundamental issue is the coverage question:
Algorithms that work well within artificial reality may be missing important knowledge about the
actual reality, as illustrated by the Uber accident.

Bridging the Gap. From the coverage question point of view, the growth of new big data from
the actual reality is much faster than the (mainly human-annotated) ground truth in the artificial
reality. While the work under the assumptions of Fixed Data, Clustered Data, and Continuity re-
main valid within artificial reality, their impact on the actual reality will be reduced by failures
arising from the widening gap. Although traditional approaches such as active learning have limi-
tations, we believe that an effective utilization of live knowledge through EBKA could reduce and
eventually bridge the gap between smart applications and live real data.

Real-time Incident Detection. Widespread video cameras offer real-time monitoring, but their
practical usage has been limited (mostly) to after-the-fact crime investigations and forensics. Sim-
ilarly, smart transportation (e.g., incident detection and assistance) has relied on NASA-style com-
mand centers (monitored by human operators). Effective acquisition of live knowledge would alle-
viate the current need for human intervention and enable the next generation of automated smart
applications. Examples of live real applications that can benefit substantially from automatically
acquired live knowledge include: responsive disaster management (e.g., accurate and timely detec-
tion of landslides and sudden rains), efficient transportation (e.g., real-time automated detection
of congestions and accidents), and proactive public safety (e.g., real-time crime detection).
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Video Event Detection and Tracking. Automated real-time object recognition and tracking
for applications such as smart transportation and proactive public safety can be enabled by live
knowledge from the live video data. We plan to apply EBKA with object tracking techniques [75–
82] on the live video data from USP [11]. An illustrative example of complex incident detection is
the case of a stolen vehicle that had its license plate replaced with another from a parked car. The
LPR capability would not be able to detect such changes by itself. However, adding the contextual
information (make and color of vehicle) to each license plate as live knowledge will enable the
real-time detection of a stolen vehicle despite plate switch.

Informative Guidance during Disasters. Navigation systems gained a significant new capabil-
ity with the launch of Google Maps Live View AR (Augmented Reality) on Pixel in March 2019 and
available for Android and iOS smartphones since August 2019. An example of guidance systems
during disasters [12] integrated 3D models, crowd behavior videos, and tweets from historical
events to show good escape paths from Osaka underground shopping malls that would be quickly
inundated by a tsunami caused by earthquake. One of the difficulties with traditional AR is their
static view of environment, which may be changed by a disaster, e.g., buildings may have been
toppled by an earthquake and roads covered by landslides. Live knowledge from uploaded videos
(supported by many social media channels) and public safety apps such as USP Campus [10, 11]
can provide fresh views of a changed landscape. Combined with AR navigation, live knowledge
can enable the generation of up-to-date or new escape routes during and after disasters.

6.2 Improving EBKA with More Evidence

Looking forward to wider acquisition of live knowledge, particularly research and practice through
EBKA, one of the important questions is the availability of reliable sources from which EBKA
extracts live knowledge. For example, the reputable news sources used by LITMUS for information
gathering on landslides can be reasonably expected to work well for the detection of many real
events as they unfold. In addition, there are quite a few more reliable sources that EBKA can draw
upon.

Authoritative Sources on Specific Areas. In many specific areas, there are mission-oriented
agencies in charge that publish authoritative information on their areas of expertise. In epidemics,
for example, the CDC (Centers for Disease Control and Prevention) publishes authoritative in-
formation (e.g., Ebola data [25]). For some areas of commercial interest, an increasing number
of online services have been improving their accuracy, reliability, and coverage. An example rele-
vant to live knowledge is accurate real-time micro-area weather forecasts with increasingly higher
quality service providers such as weather.com and accuweather.com.

Measures of Reputation and Trust. Generally, there are several kinds of measures of reputa-
tion, e.g., number of followers for a Twitter account, number of downloads for a YouTube video,
and Alexa’s top 500 global sites ranking [30], where popularity suggests trust from the crowd. Al-
though there are known threats to these measures (e.g., fake Twitter follower accounts), they may
contribute as supporting evidence. We believe the ongoing research efforts on trust and reputation
[87] will help us improve the distinction of reputable sources.

Local Sources for Local Events. As an example of interesting topics in the reputation and trust
area, local newspaper reporting of local events tends to have higher reliability [26, 27]. This kind
of specialization is supported by EBKA through careful weight assignment as a function of event
and source co-locality.

Human Input. Expert input in active learning [85] and general crowdsourcing (e.g., data entry
through mobile apps [10, 11]) can add more corroborative and supporting evidence. The EBKA
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approach can benefit from direct human input (e.g., from mobile apps), particularly since it would
not require real-time labeling, allowing for cross-checking and improvement of accuracy and
coverage.

6.3 Practical Issues with Live Knowledge Acquisition

EBKA is a principled and practical approach to acquiring live knowledge from real-world social
sensors. However, working with real-world sources means resolving some operational issues that
can impede access to live knowledge. We mention three examples to illustrate these non-trivial
technical issues that are stepping stones and building blocks towards live knowledge.

Instability of Real-world Data Sources. One of the limitations of sensor testbeds is their limited
lifespan: They often depreciate when their research budget ends. In contrast, a big advantage of
real-world sources such as social media is that they are maintained by other sources. However,
live production sources also evolve and change over time outside of our control. For example,
Instagram was one of the main sources for the original LITMUS, but an access policy change
in June 2016 disallowed public data collection. Another example is the USGS official listing of
landslides [24], which shut down in 2016. Flexible adaptation to changes in real data sources is an
integral part of live knowledge acquisition process, not just EBKA.

Location-time Determination. An event is defined by its topic and location-time. On the time
dimension, typical social sensor postings (e.g., tweets) are timestamped, and it is often reasonable
to assume close time proximity to the event reported. In contrast, few tweets contain the GPS
location of their origin, and few tweets are sent from the epicenter of an event. Fortunately, many
social postings that refer to a real event also include an identifying term on its location, which is
used by LITMUS to determine the location-time (primary key) of the event through tools such as
CoreNLP [32] and localized software libraries for each country.

Live Knowledge in Multiple Languages. Although this article focused on social sensors in
English, the knowledge of the world consists of the union of many languages. The integration
of knowledge from multiple languages would enable much better EBKA performance, but such
integration still requires significant research [57].

7 LIVE KNOWLEDGE VISION

Because “90% of the data in the world today has been created in the last 2 years” [31], un-
precedented opportunities are being created by new big data, including social media, e.g., 500M
tweets/day and millions of video cameras in many cities. However, the primary consumers of the
explosively growing new big data have been humans. In our view, the ML focus on artificial reality,
e.g., through Fixed Data, Clustered Data, and Continuity assumptions, caused the gap between the
artificial reality and the actual reality. While the artificial reality remains a valid research approach
on a subset of actual reality, the growing gap demands our attention, as shown by the Uber fatal
accident, the Microsoft Tay chatbot misbehavior, and Google Flu Trends shutdown.

Beyond artificial reality, we envision the research and development efforts on live knowledge,
which automatically acquire real-time, validated, and actionable information for smart applica-
tions that must work in the actual reality, including smart transportation and disaster response.
Live knowledge contains significant research challenges such as big noise and concept drift.
From the new data, we need to distinguish and validate true novelty from random noise, misinfor-
mation, and disinformation that derailed the Tay chatbot. For the long term, we need to accumulate
true novelty into live knowledge and keep incorporating it into smart applications that work in
the actual reality.
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To demonstrate the feasibility of achieving live knowledge, we describe the EBKA (evidence-
based knowledge acquisition) approach to integrate information and find true novelty in the LIT-
MUS landslide information system. LITMUS integrates three kinds of complementary data sources:
primary sources with wide coverage (e.g., tweets on landslides), corroborative sources with high
reliability (e.g., news reports), and probabilistic supporting sources (e.g., landslide likelihood model
from NOAA). Through EBKA, LITMUS distinguishes true novelty and acquires new knowledge on
landslides from this automated integration, and it is independent of the Fixed Data, Clustered Data,
and Continuity assumptions. LITMUS achieves both high accuracy and wide coverage through
four years of data, demonstrating the feasibility and promise of the EBKA approach towards live
knowledge.
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