Lista de Exercícios - Recuperação de Informação

Exercício 1

Considere a seguinte coleção com três documentos:

- 1. The old night keeper keeps the keep in the town.
- 2. In the big old house in the big old gown.
- 3. The house in the town had the big old keep.
- a. Construa a matriz de incidência termo-documento para a coleção.
- b. Construa o índice invertido para a coleção.
- c. Construa o índice posicional para a coleção. (Referência: Seção 2.4.2)

Exercício 2 (1.4)

For the queries below, can we still run through the intersection in time O(x+y), where x and y are the lengths of the postings lists for Brutus and Caesar? If not, what can we achieve?

- a. Brutus AND NOT Caesar
- b. Brutus OR NOT Caesar

Exercício 3 (1.10)

Write out a postings merge algorithm, in the style of Figure 1.6 (page 11), for an x OR y query.

Exercício 4 (1.11)

How should the Boolean query x AND NOT y be handled? Why is naive evaluation of this query normally very expensive? Write out a postings merge algorithm that evaluates this query efficiently.

Exercício 5 (6.9)

What is the idf of a term that occurs in every document? Compare this with the use of stop word lists.

Exercício 6 (6.10 adaptado)

Considere a tabela com a frequência dos termos nos documentos Doc1, Doc2 e Doc3 e o valor df para cada termo t.

Termos	Doc1	Doc2	Doc3	df_t
car	27	4	24	500
auto	3	33	0	300
insurance	0	33	29	100
best	14	0	17	800

Para uma coleção de documentos de tamanho N=1000, calcule os pesos tf-idf de cada termo para cada documento.

Exercício 7 (6.12)

How does the base of the logarithm in $idf_t = log \frac{N}{df_t}$ affect the score calculation in $Score(q, d) = \sum_{t \in q} tf\text{-}idf_{t,d}$? How does the base of the logarithm affect the relative scores of two documents on a given query?

Exercício 8 (6.15)

Recall the tf-idf weights computed in Exercise 6.10. Compute the Euclidean normalized document vectors for each of the documents, where each vector has four components, one for each of the four terms.

Exercício 9 (6.17)

With term weights as computed in Exercise 6.15, rank the three documents by computed score for the query *car insurance*, for each of the following cases of term weighting in the query:

- a. The weight of a term is 1 if present in the query, 0 otherwise.
- **b.** Euclidean normalized idf.

Exercício 10 (6.19)

Compute the vector space similarity between the query "digital cameras" and the document "digital cameras and video cameras" by filling out the empty columns in table. Assume N = 10,000,000, logarithmic term weighting (wf columns) for query and document, idf weighting for the query only and cosine normalization for the document only. Treat and as a stop word. Enter term counts in the tf columns. What is the final similarity score?

Word	tf	wf	df	idf	$q_i = \text{wf-idf}$	tf	wf	$d_i = \text{normalized wf}$	$q_i \cdot d_i$
digital			10.000						
video			10.000						
camera			50.000						