Introduction to

Introduction to Information Retrieval

Outline

1 - Introduction

2 — Text
3 — Index
4 — Ranking

5 — System

Introduction to Information Retrieval

Success of Google: “It is simple”

Google

Google Search I'm Feeling Lucky

Introduction to Information Retrieval

Complete search system

’ Parsing Luser query J
+ | :’\> Linguistics Jj, Results
Documents ﬂ Free text query parser "J\> page
—V
/! [
Document Indexers Spell correction| | Scoring and ranking ’
cache \Z/ i /\
4 &7 U
Metadata in | Inexact : : :
zone and top K Tler'e.d mv_erted k-gram Scoring
tiold indexes | retrieval positional index parameters
Indexes MLR

Introduction to Information Retrieval

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents)
of

an unstructured nature (usually text) that satisfies an information

need from within large collections (usually stored on computers).

Introduction to Information Retrieval

Boolean retrieval

* The Boolean model is arguably the simplest model to base
an information retrieval system on.

= Queries are Boolean expressions, e.g., CAESAR AND BRUTUS

= The seach engine returns all documents that satisfy the

= Boolean expression.

Does Google use the Boolean model?

Introduction to Information Retrieval

Unstructured data in 1650

= Which plays of Shakespeare contain the words BRUTUS AND
CAESAR, but not CALPURNIA?

" One could grep all of Shakespeare’s plays for BRUTUS and
CAESAR, then strip out lines containing CALPURNIA

= Why is grep not the solution?
= Slow (for large collections)
= grep is line-oriented, IR is document-oriented
" “NOT CALPURNIA” is non-trivial

= Other operations (e.g., find the word ROMANS near
COUNTRYMAN) not feasible

Introduction to Information Retrieval

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 1 1 0 0 0 1
BRUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius Caesar.
Entry is O if term doesn’t occur. Example: CALPURNIA
doesn’t occur in The tempest.

Introduction to Information Retrieval

Incidence vectors

= So we have a 0/1 vector for each term.

= To answer the query BRUTUS AND CAESAR AND NOT CALPURNIA:
= Take the vectors for BRUTUS, CAESAR AND NOT CALPURNIA
= Complement the vector of CALPURNIA

= Do a (bitwise) and on the three vectors
= 110100 AND 110111 AND 101111 =100100

Introduction to Information Retrieval

0/1 vector for BRUTUS

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 1 1 0 0 0 1
BRUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

result: 1 0 0 1 0 0

10

Introduction to Information Retrieval

Answers to query

Anthony and Cleopatra, Act lll, Scene ii

Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.
Hamlet, Act Ill, Scene ii

Lord Polonius: | did enact Julius Caesar: | was killed i’
the Capitol; Brutus killed me.

11

Introduction to Information Retrieval

Bigger collections

= Consider N = 10° documents, each with about 1000 tokens
= = total of 10° tokens

= On average 6 bytes per token, including spaces and
punctuation = size of document collection is about 6 = 10°
=6 GB

= Assume there are M = 500,000 distinct terms in the
collection

(Notice that we are making a term/token distinction.)

12

Introduction to Information Retrieval

Can’t build the incidence matrix

= M =500,000 x 10° = half a trillion Os and 1s.
= But the matrix has no more than one billion 1s.
= Matrix is extremely sparse.

= What is a better representations?

= We only record the 1s.

13

Introduction to Information Retrieval

Inverted Index

For each term t, we store a list of all documents that contain t.

BrutTuUsS —s | 1 2 4 11 | 31|45 | 173 | 174

CAESAR —s | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2| 31|54 | 101

\W—/ \—,—/
dictionary postings

14

Introduction to Information Retrieval

Inverted Index

For each term t, we store a list of all documents that contain t.

BrutTuUsS —s | 1 2 4 11 | 31|45 | 173 | 174

CAESAR —s | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2| 31|54 | 101

\W—/ \——
dictionary postings

15

Introduction to Information Retrieval

Inverted Index

For each term t, we store a list of all documents that contain t.

BrutTuUsS —s | 1 2 4 11 | 31|45 | 173 | 174

CAESAR —s | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2| 31|54 | 101

\W—/ \——/
dictionary postings

16

Introduction to Information Retrieval

Inverted index construction

@ Collect the documents to be indexed:

Friends, Romans, countrymen. || So let it be with Caesar]|...

@ Tokenize the text, turning each document into a list of tokens:

Friends ||Romans || countrymen ||So] ...

@ Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: |friend || roman

countryman ||sO|...

@ Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

17

Introduction to Information Retrieval

Tokenizing and preprocessing

Doc 1. | did enact Julius Caesar: |
was killed i' the Capitol; Brutus killed
me.

Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me

Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

18

Introduction to Information Retrieval

Generate posting

term doclD
i

did
enact
julius
caesar
i

was
killed
i

the
capitol
brutus
killed
me

<0

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

Doc 1. i did enact julius caesar i was
killed i' the capitol brutus killed me

Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

RO R R R R R R R R R R R R R e e e bt b d bt bt b ek ek bk ek e

19

Introduction to Information Retrieval

Sort postings

term doclD term doclD
i 1 ambiticus 2
did 1 be 2
enact 1 brutus 1
Julius 1 brutus 2
caesar 1 capitol 1
i 1 caesar 1
wias 1 caesar 2
killed 1 caesar 2
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 i 1
killed 1 i 1
me 1 —— i 1
S0 2 it 2
let 2 Julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
Caesar 2 me 1
the 2 noble 2
noble 2 S0 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 vias 1
was 2 was 2
ambitious 2 with 2

20

Introduction to Information Retrieval

Create postings lists, determine document frequency

term doclD

ambiticus 2
be 2 term doc. freq. — postings lists
brutus 1 ambitious | 1 - ?
brutus 2 e

. be | 1 — |2
capitol 1 — =
caesar 1 Drutus | 2 - L=
Caesar 2 - 4]
caesar 2 - A2
did 1 — 1]
enact 1 — T
hath 1 . ?
i 1 . [l
f ! - [
i 1 . ?
it 2 —_—
julius 1 - 4]
killed 1 a1
killed 1 - [2]
let 2 e
me 1 - 2]
noble 2 — |2
50 2 ~ 1l [2]
the 1 >
the 2 . %
told 2 B T >
you 2 N
vias 1 —
was 2
with 2

21

Introduction to Information Retrieval

Split the result into dictionary and postings file

BrutTuUsS —s | 1 2 4 11 | 31|45 | 173 | 174

CAESAR —s | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2| 31|54 | 101

\W—/ \—,—/
dictionary postings

22

Introduction to Information Retrieval

Simple conjunctive query (two terms)

= Consider the query: BRUTUS AND CALPURNIA
= To find all matching documents using inverted index:
@ Locate BRUTUS in the dictionary
@ Retrieve its postings list from the postings file
@) Locate CALPURNIA in the dictionary
O Retrieve its postings list from the postings file

© Intersect the two postings lists

O Return intersection to user

23

Introduction to Information Retrieval

Intersecting two posting lists

BrutTuUs —s |1=21=l41—|11|—|31 (=45 =173 |—|174

CALPURNIA — (231 }—=|54—|101

Intersection — |2}=]31

= This is linear in the length of the postings lists.
= Note: This only works if postings lists are sorted.

24

Introduction to Information Retrieval

Boolean queries

= The Boolean retrieval model can answer any query that is a
Boolean expression.

= Boolean queries are queries that use AND, OR and NOT to join
" query terms.

= Views each document as a set of terms.

= |s precise: Document matches condition or not.

" Primary commercial retrieval tool for 3 decades

= Many professional searchers (e.g., lawyers) still like Boolean
queries.

= You know exactly what you are getting.

= Many search systems you use are also Boolean: spotlight,

email, intranet etc.
25

Introduction to Information Retrieval

Does Google use the Boolean model?

= On Google, the default interpretation of a query [w, w, .. .w,]
isw; AND w, AND...AND w,

= Cases where you get hits that do not contain one of the wi :
= anchor text
= page contains variant of w; (morphology, spelling correction,
synonym)
= long queries (n large)
= boolean expression generates very few hits
= Simple Boolean vs. Ranking of result set
= Simple Boolean retrieval returns matching documents in no
particular order.
= Google (and most well designed Boolean engines) rank the result
set — they rank good hits (according to some estimator of
relevance) higher than bad hits.

26

Introduction to Information Retrieval

Review — Introduction

1 — Information Retrieval Problem

2 — Inverted index
Dictionary

Posts

3 — Boolean retrieval

27

Introduction to Information Retrieval

Outline

1 — Introduction

2 — Text
3 — Index
4 — Ranking

5 — System

28

Introduction to Information Retrieval

Parsing a document

* We need to deal with format and language of each document.
= What format is it in? pdf, word, excel, html etc.

= What language isitin?

= What character set is in use?

= Each of these is a classification problem

= Alternative: use heuristics

29

Introduction to Information Retrieval

Format/Language: Complications

= Asingle index usually contains terms of several languages.

= Sometimes a document or its components contain multiple
languages/formats.

* French email with Spanish pdf attachment
* What is the document unit for indexing?
= Afile?
= An email?
" An email with 5 attachments?
= A group of files (ppt or latex in HTML)?

= Upshot: Answering the question “what is a document?” is not
trivial and requires some design decisions.

= Also: XML

30

Introduction to Information Retrieval

Definitions

= Word — A delimited string of characters as it appears in the
text.

= Term — A “normalized” word (case, morphology, spelling etc);
an equivalence class of words.

= Token — An instance of a word or term occurring in a
document.

"= Type —The same as a term in most cases: an equivalence class
of tokens.

31

Introduction to Information Retrieval

Normalization

= Need to “normalize” terms in indexed text as well as query
terms into the same form.

= Example: We want to match U.S.A. and USA

* We most commonly implicitly define equivalence classes of
terms.

= Alternatively: do asymmetric expansion
= window - window, windows
= windows - Windows, windows
= Windows (no expansion)
= More powerful, but less efficient
* Why don’t you want to put window, Window, windows, and

Windows in the same equivalence class?

32

Introduction to Information Retrieval

Recall: Inverted index construction

= |Input:

Friends, Romans, countrymen. || So let it be with Caesar| ...

= Qutput:

friend |[roman || countryman ||so]|. ..

= Each token is a candidate for a postings entry.

= \What are valid tokens to emit?

33

introduction to Information Retrieval
Tokenization problems: One word or two? (or

several)

" Hewlett-Packard

= State-of-the-art

" co-education

* the hold-him-back-and-drag-him-away maneuver
= data base

= San Francisco

" Los Angeles-based company

= cheap San Francisco-Los Angeles fares

= York University vs. New York University

34

Introduction to Information Retrieval

Numbers

= 3/20/91

= 20/3/91

= Mar 20, 1991

= B-52

= 100.2.86.144

= (800) 234-2333

= 800.234.2333

= Older IR systems may not index numbers . ..

= ... butgenerallyit’s a useful feature.

35

Introduction to Information Retrieval

Chinese: No whitespace

Vo PR AEBAE I (EAE 52

*®

Ho EHIRX L, 7 hiipddEat

9 H, HLBREESS

£

o Kk 24
IR

R 6 5 T

ANAF

i 4 11

A

BT 1 8 %%k

36

Introduction to Information Retrieval

Ambiguous segmentation in Chinese

Hlin]

The two characters can be treated as one word meaning
‘monk’ or as a sequence of two words meaning ‘and’ and
{ 11?7
still’.

37

Introduction to Information Retrieval

Other cases of “no whitespace”

= Compounds in Dutch, German, Swedish

= Computerlinguistik > Computer + Linguistik

" Lebensversicherungsgesellschaftsangestellter

= - |leben + versicherung + gesellschaft + angestellter

" |nuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

= Many other languages with segmentation difficulties: Finnish,
Urduy, . ..

38

Introduction to Information Retrieval

Japanese

J—rI B BT E LA T T =2 L SR EFERETHED
AMOTTAINAILI F¥ v S—vp—Ik LT, AWt~
DNTAE EL D, bty FPEELUEST. BERA TS
ey PEUTEELCWAZ LR, FRicEODATLYE
V—FE28 0 OFND LRI ERD, fEATH, A 77X K
REFHRLZTIOAZONETIZEED A3, KESZEFTICN,
5 0 MY DT e T 2 o RIE Y S E T

4 different “alphabets”: Chinese characters, hiragana syllabary
for inflectional endings and functional words, katakana
syllabary for transcription of foreign words and other uses,
and latin. No spaces (as in Chinese). End user can express
query entirely in hiragana!

39

Introduction to Information Retrieval

Arabic script

L &« T ala d
unba tik
[kitabun/ ‘a book’

40

Introduction to Information Retrieval

Arabic script: Bidirectionality

e Al Y e Lle 132 2z 19622@‘2,5)3\).;“ S\ i
< - < - & START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.

41

Introduction to Information Retrieval

Accents and diacritics

= Accents: résumeé vs. resume (simple omission of accent)

= Umlauts: Universitat vs. Universitaet (substitution with special
letter sequence “ae”)

= Most important criterion: How are users likely to write their
queries for these words?

= Even in languages that standardly have accents, users often
do not type them. (Polish?)

42

Introduction to Information Retrieval

Case folding

= Reduce all letters to lower case

= Possible exceptions: capitalized words in mid-sentence
= MIT vs. mit

" Fed vs. fed

= |t’s often best to lowercase everything since users will use
lowercase regardless of correct capitalization.

43

Introduction to Information Retrieval

Stop words

= stop words = extremely common words which would appear
to be of little value in helping select documents matching a
user need

= Examples: a, an, and, are, as, at, be, by, for, from, has, he,
in, is, it, its, of, on, that, the, to, was, were, will, with

= Stop word elimination used to be standard in older IR
systems.

= But you need stop words for phrase queries, e.g. “King of
Denmark”

= Most web search engines index stop words.

44

Introduction to Information Retrieval

More equivalence classing

= Soundex: phonetic equivalence: Muller = Mueller
= Thesauri: semantic equivalence, car = automobile

45

Introduction to Information Retrieval

Lemmatization

= Reduce inflectional/variant forms to base form
" Example: am, are, is - be
= Example: car, cars, car’s, cars’ = car

= Example: the boy’s cars are different colors - the boy car be
different color

" Lemmatization implies doing “proper” reduction to
dictionary headword form (the lemma).

" Inflectional morphology (cutting - cut) vs. derivational
morphology (destruction - destroy)

46

Introduction to Information Retrieval

Stemming

= Definition of stemming: Crude heuristic process that chops
off the ends of words in the hope of achieving what
“principled” lemmatization attempts to do with a lot of
linguistic knowledge.

= Language dependent
= Often inflectional and derivational

= Example for derivational: automate, automatic, automation
all reduce to automat

47

Introduction to Information Retrieval

Porter algorithm

= Most common algorithm for stemming English

= Results suggest that it is at least as good as other stemming
options

= Conventions + 5 phases of reductions
= Phases are applied sequentially

= Each phase consists of a set of commands.

= Sample command: Delete final ement if what remains is
longer than 1 character

= replacement - replac
= cement - cement

= Sample convention: Of the rules in a compound command,

select the one that applies to the longest suffix.
43

Introduction to Information Retrieval

Porter stemmer: A few rules

Rule Example

SSES = SS caresses —> caress
IES = | ponies - poni

SS = SS caress —> caress

S > cats - cat

49

Introduction to Information Retrieval

Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easil
visible from the variations in the individual genes

and
can lead to a picture of expression that is more
biologically transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to
pictur of express that is more biolog transpar and
access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from

th vari in th individu gen and can lead to a pictur of

expres that is mor biolog transpar and acces to
interpres

Paice stemmer: such an analys can rev feat that are not easy vis from
the vary in the individ gen and can lead to a pict of
express that is mor biolog transp and access to interprét

Introduction to Information Retrieval

Exercise: What does Google do?

= Stop words

= Normalization

= Tokenization

= Lowercasing

= Stemming

= Non-latin alphabets
= Umlauts

= Compounds

= Numbers

51

Introduction to Information Retrieval

Phrase queries

= We want to answer a query such as [stanford university] — as
a phrase.

= Thus The inventor Stanford Ovshinsky never went to
university should not be a match.

= The concept of phrase query has proven easily understood by
users.

= About 10% of web queries are phrase queries.

= Consequence for inverted index: it no longer suffices to store
doclDs in postings lists.

= Two ways of extending the inverted index:
= biword index

= positional index
52

Introduction to Information Retrieval

Biword indexes

= |Index every consecutive pair of terms in the text as a phrase.

= For example, Friends, Romans, Countrymen would generate
two biwords: “friends romans” and “romans countrymen”

Each of these biwords is now a vocabulary term.

= Two-word phrases can now easily be answered.

53

Introduction to Information Retrieval

Issues with biword indexes

= Why are biword indexes rarely used?
= False positives, as noted above

= |Index blowup due to very large term vocabulary

54

Introduction to Information Retrieval

Positional indexes

= Positional indexes are a more efficient alternative to biword
indexes.

= Postings lists in a nonpositional index: each posting is just a
doclID

= Postings lists in a positional index: each posting is a docID and
a list of positions

55

Introduction to Information Retrieval

Positional indexes: Example

Query: “to, be, or; not, to. be,” 70, 993427
«1:<7,18, 33,72, 86, 231»;
2:<1,17,74, 222, 255);
4:¢8, 16, 190, 429, 433»;
5:¢363, 367>;
/:¢13, 23,191y, ...»
BE, 178239:
«1: <17, 25;
4:¢17, 191, 291, 430, 434;
5:<14, 19, 101»; ...> Document 4 is a match!

56

Introduction to Information Retrieval

Proximity search

= We just saw how to use a positional index for phrase
searches.

= We can also use it for proximity search.
= For example: employment /4 place

= Find all documents that contain EMPLOYMENT and PLACE within
4 words of each other.

= Employment agencies that place healthcare workers are
seeing growth is a hit.

= Employment agencies that have learned to adapt now place
healthcare workers is not a hit.

57

Introduction to Information Retrieval

Proximity search

= Use the positional index

= Simplest algorithm: look at cross-product of positions of (i)
EMPLOYMENT in document and (ii) PLACE in document

= Very inefficient for frequent words, especially stop words

= Note that we want to return the actual matching positions,
not just a list of documents.

= This is important for dynamic summaries etc.

58

Introduction to Information Retrieval

Combination scheme

= Biword indexes and positional indexes can be profitably
combined.

= Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc

= For these biwords, increased speed compared to positional
postings intersection is substantial.

= Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

= Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of

26% more space for index.
59

Introduction to Information Retrieval

III

“Positional” queries on Google

= For web search engines, positional queries are much more
expensive than regular Boolean queries.

= Let’s look at the example of phrase queries.
= Why are they more expensive than regular Boolean queries?

= Can you demonstrate on Google that phrase queries are
more expensive than Boolean queries?

60

Introduction to Information Retrieval

Review — Text

1 — Definitions
Document

Term
3 — Phrase queries
2 — Techniques Biword

Tokenization Positional

Case folding
Stop words

Lemmatization
Stemming

61

Introduction to Information Retrieval

Outline

1 — Introduction

2 — Text
3 — Index
4 — Ranking

5 — System

62

Introduction to Information Retrieval

Outline — Index

1 — BSBI algorithm
2 — SPIMI algorithm
3 — Distributed indexing

4 — Dynamic indexing

63

Introduction to Information Retrieval

Dictionary as array of fixed-width entries

term document pointer to
frequency postings list

a 656,265 —

aachen 65 —

zulu 221 o

space needed: 20 bytes 4 bytes 4 bytes

64

Introduction to Information Retrieval

B-tree for looking up entries in array

65

Introduction to Information Retrieval

Hardware basics

= Many design decisions in information retrieval are based on
hardware constraints.

= We begin by reviewing hardware basics that we’ll need in this
course.

66

Introduction to Information Retrieval

Hardware basics

= Access to data is much faster in memory than on disk.
(roughly a factor of 10)

= Disk seeks are “idle” time: No data is transferred from disk
while the disk head is being positioned.

" To optimize transfer time from disk to memory: one large
chunk is faster than many small chunks.

= Disk I/O is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks). Block sizes: 8KB to 256 KB

= Servers used in IR systems typically have several GB of main
memory, sometimes tens of GB, and TBs or 100s of GB of disk
space.

= Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine. .

Introduction to Information Retrieval

Some stats (ca. 2008)

symbol | statistic value

S average seek time 5ms=5x1073s

b transfer time per byte 0.02us=2x1072%s
processor’s clock rate 10° s71

P lowlevel operation (e.g., compare & swap a 0.01 us=10738s
word)
size of main memory several GB
size of disk space 1 TB or more

68

Introduction to Information Retrieval

Reuters RCV1 statistics

N documents 800,000

L tokens per document 200

M terms (= word types) 400,000
bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 4.5
bytes per term (= word type) 7.5

T non-positional postings 100,000,000

Exercise: Average frequency of a term (how many tokens)? 4.5

bytes per word token vs. 7.5 bytes per word type: why the
difference? How many positional postings?

69

Introduction to Information Retrieval

Goal: construct the inverted Index

BrutTuUsS —s | 1 2 4 11 | 31|45 | 173 | 174

CAESAR —s | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2| 31|54 | 101

\W—/ \——/
dictonary postings

70

Introduction to Information Retrieval

Index construction in lIR 1:
Sort postings in memory

term doclD term doclD
i 1 ambitious 2
did 1 be 2
enact 1 brutus 1
Julius 1 brutus 2
caesar 1 capitol 1
i 1 caesar 1
was 1 caesar 2
killed 1 caesar 2
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 i 1
killed 1 i 1
me 1 : i 1
S0 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 S0 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 vias 1
was 2 vias 2
ambitious 2 with 2

71

Introduction to Information Retrieval

Sort-based index construction

As we build index, we parse docs one at a time.
The final postings for any term are incomplete until the end.

Can we keep all postings in memory and then do the sort in-
memory at the end?

No, not for large collections

At 10-12 bytes per postings entry, we need a lot of space for
large collections.

T=100,000,000 in the case of RCV1: we can do this in
memory on a typical machine in 2010.

But in-memory index construction does not scale for large
collections.

Thus: We need to store intermediate results on disk.
72

Introduction to Information Retrieval

Same algorithm for disk?

= Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

= No: Sorting T=100,000,000 records on disk is too slow — too
many disk seeks.

= We need an external sorting algorithm.

73

Introduction to Information Retrieval

“External” sorting algorithm
(using few disk seeks)

= We must sort T =100,000,000 non-positional postings.

= Each posting has size 12 bytes (4+4+4: termID, docID,
document frequency).

= Define a block to consist of 10,000,000 such postings
= We can easily fit that many postings into memory.
= We will have 10 such blocks for RCV1.

= Basic idea of algorithm:

= For each block: (i) accumulate postings, (ii) sort in memory, (iii)
write to disk

= Then merge the blocks into one long sorted order.

74

Introduction to Information Retrieval

Merging two blocks

postings
to be merged brutus d2
brutus d3
Block 1 Block 2
brutus d3 brutus d2 caesar d1 d
merge
caesar d4 caesar dl — .leszr glll g
noble d3 julius d1 I postings
ith d4 killed d2 killed ™ d2
W ' noble d3
with d4

/

disk

75

Introduction to Information Retrieval

Blocked Sort-Based Indexing

BSBINDEXCONSTRUCTION()

1 n<0

2 while (all documents have not been processed)
3 don—n+1

4 block «— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, f,)

7 MERGEBLOCKS(f1, ..., fn; fmerged)

= Key decision: What is the size of one block?

76

Introduction to Information Retrieval

Problem with sort-based algorithm

= Qur assumption was: we can keep the dictionary in memory.

= We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

= Actually, we could work with term,docID postings instead of
termID,doclID postings . ..

= ...butthen intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)

77

Introduction to Information Retrieval

Outline — Index

1 — BSBI algorithm
2 — SPIMI algorithm
3 — Distributed indexing

4 — Dynamic indexing

78

Introduction to Information Retrieval

Single-pass in-memory indexing

= Abbreviation: SPIMI

= Key idea 1: Generate separate dictionaries for each block —
no need to maintain term-termID mapping across blocks.

= Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

= With these two ideas we can generate a complete inverted
index for each block.

= These separate indexes can then be merged into one big
index.

79

Introduction to Information Retrieval

SPIMI-Invert

SPIMI-INVERT(token_stream)

1

O ~NO Ol B W N

9
10
11
12
13

output_file < NEWFILE()
dictionary « NEWHASH()
while (free memory available)
do token « next(token_stream)
if term(token) ¢ dictionary
then postings_list < ADDTODICTIONARY(dictionary,term(token))
else postings_list <+ GETPOSTINGSLIST(dictionary,term(token))
if full(postingsJist)
then postings_list < DOUBLEPOSTINGSLIST(dictionary,term(token)
AppToPosTtiNGsLisT(postings_list,doclD(token))
sorted_terms « SORTTERMS(dictionary)
WRITEBLOCKTODISK(sorted _terms,dictionary,output_file)
return output_file

Merging of blocks is analogous to BSBI.

80

Introduction to Information Retrieval

Outline — Index

1 — BSBI algorithm
2 — SPIMI algorithm
3 — Distributed indexing

4 — Dynamic indexing

81

Introduction to Information Retrieval

Distributed indexing

= For web-scale indexing (don’t try this at home!): must use a
distributed computer cluster

= |ndividual machines are fault-prone.
= Can unpredictably slow down or fail.

= How do we exploit such a pool of machines?

82

Introduction to Information Retrieval

Distributed indexing

= Maintain a master machine directing the indexing job —
considered “safe”

= Break up indexing into sets of parallel tasks

= Master machine assigns each task to an idle machine from a
pool.

83

Introduction to Information Retrieval

Parallel tasks

= We will define two sets of parallel tasks and deploy two types
of machines to solve them:

= Parsers

" |nverters

= Break the input document collection into splits (corresponding
to blocks in BSBI/SPIMI)

= Each splitis a subset of documents.

84

Introduction to Information Retrieval

Parsers

= Master assigns a split to an idle parser machine.

= Parser reads a document at a time and emits (term,doclD)-
pairs.

= Parser writes pairs into j term-partitions.

Each for a range of terms’ first letters
= E.g., a-f, g-p, g-z (here:j = 3)

85

Introduction to Information Retrieval

Inverters

= Aninverter collects all (term,docID) pairs (= postings) for one
term-partition (e.g., for a-f).

= Sorts and writes to postings lists

86

Introduction to Information Retrieval

Data flow

splits

_parser /- -

assign | master)

/’__.

map
phase

\ (_ parser /-H‘a-f

/ N
\p ars er Y,

assign :
S postings
a-f/g-p|q-z //,\.mverter/ a-f
&-P|q-2 ‘,' . 1nverter " g-p
S ‘/_,__,'.--————- ~ >
: . Inverter j— q-z
atlgplas] S oz
s'egment reduce
files phase

87

Introduction to Information Retrieval

MapReduce

= The index construction algorithm we just described is an
instance of MapReduce.

= MapReduce is a robust and conceptually simple framework for
distributed computing . ..

= .. .without having to write code for the distribution part.

= The Google indexing system (ca. 2002) consisted of a number
of phases, each implemented in MapReduce.

= |ndex construction was just one phase.

= Another phase: transform term-partitioned into document-
partitioned index.

88

Introduction to Information Retrieval

Index construction in MapReduce

Schema of map and reduce functions
map: input — list(k. v)
reduce: (k. list(v)) — output

Instantiation of the schema for index construction
map: web collection —+ list(termID. doclD)
reduce: ({termlD,.list{docID)}), (termlD,. list(doclD)), ...) —+ (postingsJist,, postingsJisty, ...)

Example for index construction

map: dr - C DIED. d) : C camEe, C C'ED. — ((C, dy}, {DIED,d7), (C.dy), (CAME,d)), (C,dy), {C'ED,dy})
reduce: ({C, (dz,d,dy)),(DIED,(dz)).[CAME,(d))),{C'ED,(d1))) — ((C,(dh2,d>1)),(DIED,(dy:1)),(CAME,(d):1)),{C'ED,(d):1)})

89

Introduction to Information Retrieval

Exercise

= What information does the task description contain that the
master gives to a parser?

= What information does the parser report back to the master
upon completion of the task?

= What information does the task description contain that the
master gives to an inverter?

= What information does the inverter report back to the master
upon completion of the task?

90

Introduction to Information Retrieval

Outline — Index

1 — BSBI algorithm
2 — SPIMI algorithm
3 — Distributed indexing

4 — Dynamic indexing

91

Introduction to Information Retrieval

Dynamic indexing

= Up to now, we have assumed that collections are static.
= They rarely are: Documents are inserted, deleted and modified.

= This means that the dictionary and postings lists have to be
dynamically modified.

92

Introduction to Information Retrieval

Dynamic indexing: Simplest approach

= Maintain big main index on disk
= New docs go into small auxiliary index in memory.
= Search across both, merge results

= Periodically, merge auxiliary index into big index

Deletions:
= |nvalidation bit-vector for deleted docs

= Filter docs returned by index using this bit-vector

93

Introduction to Information Retrieval

Issue with auxiliary and main index

= Frequent merges
= Poor search performance during index merge

= Actually:

= Merging of the auxiliary index into the main index is not that
costly if we keep a separate file for each postings list.

= Merge is the same as a simple append.
= But then we would need a lot of files — inefficient.

= Assumption for the rest of the lecture: The index is one big file.

" |n reality: Use a scheme somewhere in between (e.g., split very
large postings lists into several files, collect small postings lists
in one file etc.)

94

Introduction to Information Retrieval

Logarithmic merge

= Logarithmic merging amortizes the cost of merging indexes
over time.

= —> Users see smaller effect on response times.

= Maintain a series of indexes, each twice as large as the
previous one.

= Keep smallest (Z,) in memory
= Largerones(/,, /I, ...)ondisk
= |If Z, gets too big (> n), write to disk as /,

= . ..ormerge with [(if /, already exists) and write merger to /,
etc.

95

Introduction to Information Retrieval

LMERGEADDTOKEN(indexes, Zy, token)
1 Zy < MERGE(Zp, {token})
2 if |Zo| =n
then for /i <+ 0 to o
do if /; € indexes
then Z;.; « MERGE(/l;, Z;)
(Zi+1 is a temporary index on disk.)
indexes <« indexes — {1}
else l; «— Z; (Z; becomes the permanent index I;.)
indexes <« indexes U {I;}
BREAK

w

—
O W o ~NNOo OHs

—

Zy —)

LOGARITHMICMERGE()

1 Zy«— 0 (2o is the in-memory index.)

2 indexes « ()

3 while true

4 do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

96

Introduction to Information Retrieval

Binary numbers: L51,1,1, = 23222120

= 0001
= 0010
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100

97

Introduction to Information Retrieval

Logarithmic merge

Number of indexes bounded by O(log T) (T is total number of
postings read so far)

So query processing requires the merging of O(log T) indexes
Time complexity of index construction is O(T log T).
... because each of T postings is merged O(log T) times.

Auxiliary index: index construction time is O(T?) as each posting
is touched in each merge.

= Suppose auxiliary index has size a
= at+2a+3a+4a+ ...+ na= aﬂ"z—*[12 = 0(n?)

So logarithmic merging is an order of magnitude more efficient.

98

Introduction to Information Retrieval

Dynamic indexing at large search engines

= Often a combination
" Frequent incremental changes
= Rotation of large parts of the index that can then be swapped in

= Occasional complete rebuild (becomes harder with increasing
size — not clear if Google can do a complete rebuild)

99

Introduction to Information Retrieval

Review — Index

= Two index construction algorithms: BSBI (simple) and SPIMI
(more realistic)

= Distributed index construction: MapReduce

= Dynamic index construction: how to keep the index up-to-
date as the collection changes

100

Introduction to Information Retrieval

Resources

= Apache: Lucene and Solr
= Resources at http://ifnlp.org/ir

= Original publication on MapReduce by Dean and Ghemawat
(2004)

= Original publication on SPIMI by Heinz and Zobel (2003)

" YouTube video: Google data centers

101

