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Abstract Comparing, or benchmarking, of optimization algorithms is a compli-

cated task that involves many subtle considerations to yield a fair and unbiased

evaluation. In this paper, we systematically review the benchmarking process of

optimization algorithms, and discuss the challenges of fair comparison. We provide

suggestions for each step of the comparison process and highlight the pitfalls to

avoid when evaluating the performance of optimization algorithms. We also discuss

various methods of reporting the benchmarking results. Finally, some suggestions

for future research are presented to improve the current benchmarking process.
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1 Introduction

As the number of optimization methods, and implementations of those methods, has

increased, researchers have pursued comparative studies to evaluate their perfor-

mance. When done well, such studies can be of great value in helping end-users

choose the most suitable optimization method for their problems. Such studies are

generally referred to as optimization benchmarking.

In the most general sense, benchmarking is the comparison of one or more

products to an industrial standard product over a series of performance metrics. In

the case of benchmarking optimization algorithms, the products are the specific

& Yves Lucet

yves.lucet@ubc.ca

1 Department of Computer Science, University of British Columbia, Kelowna, BC, Canada

2 Department of Mathematics, University of British Columbia, Kelowna, BC, Canada

123

Optim Eng (2017) 18:815–848

DOI 10.1007/s11081-017-9366-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-017-9366-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-017-9366-1&amp;domain=pdf


implementations of given algorithms, and the performance metrics are generated by

running the implementations on a series of test problems. This framework presents a

certain clarity in benchmarking optimization algorithms, as there is at least some

agreement on what constitutes ‘‘better’’. If one algorithm runs faster, uses less

memory, and returns a better final function value, on all possible problems, then it

can be considered better than the alternative. Of course, in practice such a clear

conclusion seldom arises. Thus, interpreting the conclusions of algorithmic

comparisons can be tricky.

Nonetheless, when done well, benchmarking optimization algorithms can have

great practical value. It can reveal both strengths and weaknesses of an algorithm,

which allows for better research focus. It can aid in determining if a new version of

optimization software is performing up to expectations. And, it can help guide end-

users in selecting a good choice of algorithm for a particular real-world problem.

However, when done poorly, benchmarking optimization algorithms can also be

misleading. It can hide algorithm’s weaknesses (or strengths), report improvements

that do not exist, or suggest the incorrect algorithmic choice for a given situation.

In optimization benchmarking many subjective choices are made, such as the test

set to solve, the computing environment to use, the performance criteria to measure,

etc. Our primary objective in this paper is to help researchers to design a proper

benchmarking approach that is more comprehensive, less biased, and less subject to

variations within a particular software or hardware environment. Our secondary

objective is to provide a comprehensive review of the benchmarking literature for

optimization algorithms.

In pursuing these objectives, we focus on single-objective optimization

algorithms that run in serial (i.e., that do not use parallel processing). Comparing

algorithms for multi-objective optimization, or optimization algorithms that use

parallel processing, introduces new levels of complexity to the benchmarking

process. While we provide some comments on the challenges for benchmarking

some algorithms in the conclusions, we consider these issues outside of the scope of

this paper.

We also note that much of the presentation within this paper discusses algorithms

as if the underlying optimization problem is a continuous unconstrained problem.

This is for ease of presentation, and in most cases translating the ideas to other styles

of optimization problems is clear. As such, we limit ourselves to discussing specific

styles of optimization problems only when the translation is not straightforward.

1.1 Historical overview of benchmarking in optimization

We begin with a brief historical overview of optimization benchmarking.

One of the very first studies in benchmarking of algorithms was given by

Hoffman et al. (1953), in which three different methods for linear programming

were compared. Although this computational experiment was performed early in the

development of computers, when there existed almost no compiler and program-

ming environment, the reported techniques have been used for a long time and can

be considered as the foundation of the current comparison techniques. They include

such ideas as using test sets to compare algorithms, employing performance
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measures (accuracy, CPU time, number of iterations, and convergence rate), and

paying attention to the impact of coding on the performance of algorithms.

Another early contribution to the field of benchmarking is Box’s work from 1966

(Box 1966). In this work, Box evaluates the performances of eight algorithms for

unconstrained optimization using a collection of 5 test problems with up to 20

variables. He considers the number of function evaluations, the importance of model

size and the generality of the optimization algorithms.

In the late 1960s, optimization benchmarking research began to expand rapidly.

Comparative studies have been performed throughout the optimization literature,

for example in unconstrained optimization (Tabak 1969; Huang and Levy 1970;

Moré et al. 1981), constrained optimization (Beltrami 1969; Schittkowski and Stoer

1978; Famularo et al. 2002) nonlinear least squares (Bard 1970; Ramsin and Wedin

1977; Vanderbei and Shanno 1999; McGeoch 2002), linear programming (Mulvey

1982; Baz et al. 2007; Berthold 2013), nonlinear programming (Colville 1968; Bard

1970; Asaadi 1973; Schittkowski 1980; Eason and Fenton 1974; Sandgren and

Ragsdell 1980a, b; Eason 1982; Bongartz et al. 1997; Vanderbei and Shanno 1999;

Benson et al. 2003, 2004; Hough et al. 2001; Yeniay 2005; Tedford and Martins

2010), geometric programming (Dembo 1978; Rijckaert and Martens 1978), global

optimization (Hansen et al. 1992; Pintér 2002; Bussieck et al. 2003; Khompatraporn

et al. 2005; Neumaier et al. 2005; Regis and Shoemaker 2007; Strongin and

Sergeyev 2000; Zhigljavsky and Žilinskas 2008; Kvasov and Mukhametzhanov

2016), derivative-free optimization (Hare and Wang 2010; Rios and Sahinidis 2013;

Zhang 2014; Sergeyev and Kvasov 2006; Paulavičius et al. 2014), and other areas

of optimization (Tabak 1969; Huang and Levy 1970; Miele et al. 1972; Houstis

et al. 1988; Mittelmann 2003; Opara and Arabas 2011; Parejo et al. 2012)—

amongst many more.

In addition, a few researchers have focused on improving the (optimization)

benchmarking process. Crowder et al. (1979) presented the first study that

attempted to provide standards and guidelines on how to benchmark mathematical

algorithms. It includes a detailed discussion of experimental design and notes the

necessity of a priori experimental design. The authors pay attention to repro-

ducibility of the results and provide a method for reporting the results. Similar

research conducted by Jackson et al. (1990) delivered an updated set of guidelines.

Dolan and Moré (2002) introduced performance profiles, which have rapidly

become a gold standard in benchmarking of optimization algorithms with more

recent work pointing out its limitations (Gould and Scott 2016). In this paper, we

attempt to provide a modern picture of best-practice in the optimization

benchmarking process.

1.2 Paper framework

We now provide a general framework for benchmarking optimization algorithms,

which we also use to structure discussion in the paper.
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1. Clarify the reason for benchmarking In Sect. 2, we discuss some of the

common reasons to compare optimization algorithms, and some of the pitfalls

that arise when the purpose of benchmarking is unclear.

2. Select the test set In Sect. 3, a review of test sets for various problem categories

is presented, the challenges related to test sets are discussed, and some

guidelines are provided for assembling an appropriate test set.

3. Perform the experiments In Sect. 4, we review and discuss various consider-

ations related to the critical task of designing experiments, including

performance measures, tuning parameters, repeatability of the experiments,

and ensuring comparable computational environments.

4. Analyze and report the results Section 5 contains a review of different reporting

methods for optimization algorithms, including tabular methods, trajectory

plots, and ratio-based plots (such as performance and data profiles).

In addition to the aforementioned sections, Sect. 6 contains a review of recent

advances in the field of automated benchmarking and Sect. 7 presents some

concluding thoughts.

2 Reason for benchmarking

Having a clear understanding of the purpose of a numerical comparison is a crucial

step that guides the rest of the benchmarking process. While seemingly self-evident,

it is surprisingly easy to neglect this step. Optimization benchmarking has been

motivated by a variety of objectives. For example:

1. To help select the best algorithm for working with a real-world problem.

2. To show the value of a novel algorithm, when compared to a more classical

method.

3. To compare a new version of optimization software with earlier releases.

4. To evaluate the performance of an optimization algorithm when different option

settings are used.

In a practical sense, all of these work towards gathering information in order to rank

optimization algorithms within a certain context. However, the context can, and

should, play a major role in guiding the rest of the benchmarking process.

For example, if the goal is to select the best algorithm for a particular real-world

application, then the test problems (Sect. 3) should come from examples of that

application.

Alternatively, if the goal is to show the value of a new optimization algorithm,

then it is valuable to think about exactly where the algorithm differs from previous

methods. Many new algorithms are actually improvements on how a classical

method deals with some aspect of an optimization problem. For example, in Hare

and Sagastizábal (2010) the authors develop a new method to deal with

nonconvexity when applying a proximal-bundle method to a nonsmooth optimiza-

tion problem. As such, to see the value of the method, the authors compare it against
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other proximal-bundle methods on a collection of nonconvex nonsmooth optimiza-

tion problems. If they had compared their method against a quasi-Newton method

on smooth convex optimization problems, then very little insight would have been

gained.

Regardless of the reason, another question researchers must consider is what

aspect of the algorithm is most important. Is a fast algorithm that returns infeasible

solutions acceptable? Is it more important that an algorithm solves every problem,

or that its average performance is very good? Is the goal to find a global minimizer,

or a highly accurate local minimizer? The answers to these questions should guide

the choice of performance metrics that need to be collected (Sect. 4) and how they

should be analyzed (Sect. 5). Answering these types of questions before running the

experiments is time well spent.

3 Test sets

A test problem contains a test function together with some further criteria such as

the constraint set, feasible domain, starting points. A test set is a collection of test

problems. Obviously, benchmarking yields meaningful results only when compet-

ing algorithms are evaluated on the same test set with the same performance

measures.

The selection of the appropriate test sets to benchmark the performance of

optimization algorithms is a widely noticed issue among researchers (Pintér 2007;

Dolan and Moré 2004; Jackson et al. 1990; Sergeyev et al. 2013; Zhigljavsky and

Žilinskas 2008). Generally, there are three sources for collecting test problems: real-

world problems, pre-generated problems, and randomly-generated problems. Real-

world problems can be found through instances of specific applications, and pre-

Table 1 Some test sets reported in the literature

Collection type Resources

Unconstrained

optimization problems

Ali et al. (2005), Moré et al. (1981), Andrei (2008) and Jamil and Yang

(2013)

Global optimization GAMS (Pintér 2007), COCONUT (Shcherbina et al. 2003), and other

collections (Floudas and Pardalos 1990; Floudas et al. 1999; Schoen

1993; Pintér and Kampas 2013; Addis and Locatelli 2007; Törn et al.

1999; Famularo et al. 2002)

Linear programming Netlib

Local optimization Floudas et al. (1999) and Floudas and Pardalos (1990)

Nonlinear optimization

problems

CUTEr (Buckley 1992; Bongartz et al. 1995), CUTEst (Gould et al. 2015),

COPS (Bondarenko et al. 1999; Dolan and Moré 2004), and collections

(Hock and Schittkowski 1981; Schittkowski 2008; Averick et al. 1991;

Dembo 1976; Dolan and Moré 2000)

Mixed integer linear

programming

MIPLIB (Romesis et al. 2003; Koch et al. 2011)
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generated problems exist in common test set libraries; see Table 1. Conversely,

randomly-generated test problems are often more ad hoc in nature, with researchers

creating methods to randomly generate test problems that are used in only a single

paper (see Nash and Nocedal 1991; Hare and Sagastizábal 2010; Hare and Planiden

2014, among many others). However, some researchers have gone to the effort to

study methods to randomly generate test problems for a given area; some examples

appear in Table 2.

While the real-world test sets provide specialized information about the

performance of the optimization algorithms within a specific application, the

results may be difficult to generalize. The difficulties lie in the facts that real-world

test sets are often small and the problems are often application-specific.

Nonetheless, if the goal is to determine the best algorithm to use for a particular

real-world application, then a real-world test set focused on that application is

usually the best option.

On the other hand, the artificial and randomly-generated test sets can provide

useful information about the algorithmic characteristics of optimization algorithms.

Artificial and randomly-generated test sets can be extremely large, thereby

providing an enormous amount of comparative data. However, it can be difficult

to rationalize their connection to the real-world performance of optimization

algorithms. If the goal is to compare a collection of algorithms across a very wide

spectrum, then artificial and randomly-generated test sets are usually the better

option.

When selecting a test set, it is always important to keep the particular goal of the

comparison in mind. Regardless of the goal, an appropriate test set should generally

seek to avoid the following deficiencies.

1. Too few problems Having more problems in the test set makes the experiment

more reliable and helps the results reveal more information about the strengths

or weaknesses of the evaluated algorithms.

2. Too little variety in problem difficulty A test set containing only simple

problems is not enough to identify the strengths and weaknesses of algorithms.

In contrast, a test set which has only problems that are so difficult that no

algorithm can solve them, clearly, does not provide useful information on the

relative performance of algorithms.

Table 2 Some test problem generators reported in the literature

Test problem generators

Network programming Elam and Klingman (1982)

Nonlinear optimization

problems

Schittkowski (1980) and Liu and Zhang (2000)

Combinatorial problems Grundel and Jeffcoat (2009) and Elam and Klingman (1982)

Quadratic programming Lenard and Minkoff (1984)

Global optimization Schoen (1993), Gaviano et al. (2003), Addis and Locatelli (2007) and Ng

and Li (2014)
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3. Problems with unknown solutions When possible, it is better to use test

problems where the solution is known. Depending on the analysis performed

(see Sect. 5), the ‘‘solution’’ could be interpreted as the minimum function

value, or the set of global minimizers. Having access to the solution greatly

improves the ability to evaluate the quality of the algorithmic output. However,

when the test set is comprised of real-world test problems, then a lack of known

solutions may need to be accepted as inevitable.

4. Biased starting points Allowing different algorithms to use different starting-

points will obviously bias the result. However, more subtle problems can also

exist. For example, if a starting point lies on the boundary of a constraint set,

then an interior point method will be severely disadvantaged. Another example

comes from considering the Beale test function, which has a global minimizer

at (3, 0.5) (Moré et al. 1981). If a compass search (see, e.g., Kolda et al. 2003)

with an initial step length of 1 is started at (0.5, 0.5), then it will converge to the

exact minimizer in just four iterations. However, if a starting point of (0.51,

0.51) is used, then the exact same algorithm will use 63 iterations to reach a

point within 10-2 of the global minimizer.1

5. Hidden structuresMany test sets have some structure that is not realistic in real-

world problems. For example, about 50% of the problems in the test set (Moré

et al. 1981) have solution points that occur at integer-valued coordinates. An

algorithm that employs some form of rounding may perform better than usual

on these problems.

Thus, when choosing test sets for the benchmarking task the following

considerations should be taken into account as much as possible.

1. If the test set contains only a few problems, then the experiment should be

referred to as a case study or a proof of concept, but not benchmarking. While

there is no fixed number that determines how many problems is enough to be

considered benchmarking, we recommend that in order to achieve a reliable

conclusion about the performance, an experiment should contain at least 20 test

problems (preferably more). In the specific case of comparing a new version of

an optimization algorithm with a previous version, the number of test problems

should be significantly greater—in the order of 100 or more. In all cases, the

more problems tested, the more reliable the conclusions.

2. When possible, a test set should include at least two groups of problems: an

easy group which consists of the problems that are easy to solve within a

reasonable time on a regular contemporary computer using all the optimization

algorithms tested, and a hard group that contains the problems which are

solvable but computationally expensive and may require a specific optimization

algorithm.

3. Whenever possible, ensure that at least a portion of the test set includes

problems with known solutions.

1 Note that this example is artificially constructed to emphasize the results; the recommended starting

point for the Beale test problem is (1, 1).
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4. For test sets that include starting points, new starting points can be generated by

introducing small (random) perturbations to the given starting points. For other

test sets, randomly-generated starting points can be created from scratch. In

either case, all starting points should be created for each problem, and then

every algorithm should be provided the same starting point for testing. This

approach can be further used to increase result reliability, by repeating tests on

the same function with a variety of starting points.

5. Examine the test set with a critical eye and try to determine any hidden

structure. Some structures can be removed through methods similar to the

random perturbation of starting points in (4). One quick test is to set an

algorithm to minimize f(x) starting at x0 and then set the algorithm to minimize

f̂ ðxÞ ¼ f ðx� pÞ starting from x̂0 ¼ x0 � p (where p is any random point).

Constraints can then be shifted in a similar manner, effectively shifting the

entire problem horizontally by the vector p. While it relocates the origin, and

moves any constraints away from special integer values, it has no theoretical

effect on the geometry of the problem. As such, the results of both tests should

be very close (theoretically they should be identical, but numerical errors may

cause some deviation). If the results differ, then perhaps some hidden structure

is being exploited by the algorithm, or perhaps hidden constraints are causing

issues. Regardless of the reason, the researcher should recognize the issue and

consider a wider test set.

Using suitable standard test sets is usually a good option when benchmarking

optimization algorithms. In particular, it is usually easier to compare results across

research groups when standard tests are employed, although even within a specific

research field there is generally no consensus on the appropriate test set to draw

specific conclusions. Many interesting and diverse test sets have been reported in

the literature; see Tables 1 and 2.

Producing random test sets using test problem generators has its own drawbacks.

Are the generated problems representative or difficult? Is there any hidden structure

in the problems? Some papers that use random test problem generators are listed in

Table 2.

Figure 1 shows a decision tree that summarizes the fundamental decisions

required for assembling an appropriate test set for benchmarking of optimization

algorithms.

4 Performing the experiments

The performance of algorithms is influenced by two general types of factors:

environmental factors and algorithmic factors.

Environmental factors refer to factors that are out of the algorithm scope and

usually beyond the control of the researcher. A common example is the computer

environment used to test the algorithms, which includes processor speed, operating

system, computer memory, etc. Environmental factors may also include the
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programmer’s skill and the programming language/compiler used. This is partic-

ularly evident when multiple pieces of software by a variety of programmers are

being compared. In essence, if the benchmarking process is repeated by another

researcher elsewhere, then environmental factors are unlikely to remain constant,

and so the benchmarking results are expected to change.

Algorithmic factors are related to the algorithm itself. These are factors that are

considered global across a variety of computing platforms. If the software is

programmed by the researcher, then it is assumed these factors are independent of

the implementation aspects of the algorithm.

Optimization benchmarking seeks to measure the algorithmic factors, and

proceeds under the key assumption that, while environmental factors are expected to

change the results, the algorithmic factors are sufficiently strong that the general

ranking of algorithms should remain constant under the specific ranges of

parameters under consideration.

To compare algorithms, it is necessary to collect data that measures the overall

performance of each algorithm. This is done by running each algorithm on the test

set (discussed in Sect. 3), and collecting data on the results. The data collection and

the selection of performance measures is based on the research questions motivating

the experimental study. In general, performance measures fall into three categories:

efficiency, reliability, and quality of algorithmic output. We discuss these

performance categories in Sects. 4.1, 4.2, and 4.3. Table 3 provides a classification

of the comparative measures for optimization algorithms based partly on the

guidelines provided by Hoffman and Jackson (1982).

Fig. 1 Test set decision tree
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In order to allow for maximal data analysis (and thereby the best understanding

of overall performance), it is recommended to collect at least some data from every

performance category.

4.1 Efficiency

The efficiency of an optimization algorithm refers to the computational effort

required to obtain a solution. In mathematical programming, there are two primary

measures of efficiency: the number of fundamental evaluations and the running

time. A third, less common, measure is memory usage.

4.1.1 Number of fundamental evaluations

The term fundamental evaluation is used to refer to any subroutine that is called by

the algorithm in order to gain fundamental information about the optimization

problem. The most obvious example is an objective function evaluation but the

evaluation may involve complex simulation algorithms. Other fundamental

evaluations could include gradient evaluations, Hessian evaluations, or constraint

function evaluations. The number of fundamental evaluations can be used as a

standard unit of time, and is often assumed to be platform independent. In many

situations, the number of fundamental evaluations is a particularly important

measure, as for real-world problems these evaluations often dominate the internal

workings of the algorithm (Hock and Schittkowski 1983; Crowder et al. 1979;

Dixon and Szegö 1978; Conn et al. 1996; Barton 1987; Nash and Nocedal 1991;

Vanden Berghen and Bersini 2005; Huang and Levy 1970; Miele et al. 1972;

Asaadi 1973; Shcherbina et al. 2003; Neumaier et al. 2005; Eason 1982; Audet

et al. 2014b; Evtushenko 1985; Paulavičius et al. 2014; Kvasov and Sergeyev

2015). Note however that this measure is unreasonable when fundamental

evaluations do not dominate the internal workings of the algorithm (Ali et al. 2005).

Table 3 Comparative measures
Performance category Example criteria

Efficiency 1. Number of fundamental evaluations

2. Running time

3. Memory usage

Reliability 1. Success rate

2. Number of constraint violations

3. Percentage of global solutions found

Quality of solution 1. Fixed-cost solution result

2. Fixed-target solve time

3. Computational accuracy
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4.1.2 Running time

Running time, as a measure for optimization benchmarking, is usually measured by

either CPU time or wall clock time.2 Wall clock time contains CPU time, and has

been argued to be more useful in real-world settings (McGeoch 2002). However,

wall clock time is not reproducible or verifiable since it is tied to a specific hardware

platform and software combination. CPU time is considerably more stable, as it is

independent of background operations of the computer. Moreover, CPU time is

more-or-less consistent for the same version of an operating system running on the

same computer architecture.

It should be noted that, due to the wide variety and complexity of modern

computing architectures, the number of situations in which time is dominated by

memory access costs is increasing, hence the precision of CPU timers has been

reduced. To improve the precision of CPU timers, tools such as cache and memory

access tracers can help obtaining a more accurate CPU time performance. For a

more detailed discussion of these techniques we refer to Knuth (1994) and LaMarca

and Ladner (1996).

Another issue with CPU time is the increasing prevalence of multi-core

machines. Thorough reporting would require indicating the number of cores and the

CPU time for each core, but also how efficiently the different levels of memory

were used and cache hits/misses. Since such measurements are not straightforward

to obtain for multi-core machines, the wall-clock time along with the hardware

specifications are usually reported. (Unless the new algorithm contribution focuses

specifically on optimizing computation for a multi-core architecture, in which case

more precise measures are warranted.) Eventually, the onus is on the researchers to

explain how simplified measurements support the conclusions drawn; this is

especially true for multi-core machines.

Regardless of whether wall clock time or CPU time is used, in order to maximize

the reliability of the data, it is important to ensure that any background operations of

the computer are kept to a minimum. Furthermore, any manuscript regarding the

benchmarking should clearly state which form of running time was collected.

4.1.3 Other measures

In addition to the categorization presented above, in some specific cases, there is

another issue that influences the choice of an appropriate measure for running time:

the type of algorithm. For example, to evaluate the running time for branch-and-

bound based algorithms, the number of branch-and-bound nodes is a common

criterion, while for simplex and interior point based algorithms, the number of

iterations is often used. Therefore, when deciding on the choice of a suitable ef-

ficiency measure, the type of algorithm to be evaluated should also be taken into

account.

2 Wall clock time refers to the amount of time the human tester has to wait to get an answer from the

computer. Conversely, CPU time is the amount of time the CPU spends on the algorithm, excluding

operating system tasks and other processes.

Best practices for comparing optimization algorithms 825

123



4.2 Reliability

The reliability and robustness of an optimization algorithm is defined as the ability

of the algorithm to ‘‘perform well’’ over a wide range of optimization problems

(Moré et al. 1981; Barr et al. 1995). The most common performance measure to

evaluate the reliability is success rate (Törn and Žilinskas 1989; Rijckaert and

Martens 1978; Eason 1982; Strongin and Sergeyev 2000). Success rate is gauged by

counting the number of test problems that are successfully solved within a pre-

selected tolerance. This can be done using objective function value, or distance of

the solution point from a minimizer. In convex optimization these two approaches

are largely, but not perfectly, interchangeable. However, if the objective function

has multiple local minimizers, then the researcher must decide whether good local

solutions are acceptable outcomes, or if the algorithm must converge to a global

minimizer (Schittkowski 1980; Ramsin and Wedin 1977). In addition to the success

rate, the average objective function values and the average constraint violation

values have also been reported to measure reliability (Schittkowski 1980).

When studying reliability, the researcher should consider whether the algorithms

are deterministic or non-deterministic, and repeat tests multiple times if the

algorithm is non-deterministic. Reliability can be based on a fixed starting point (if

one is given with the test set), but it is often better to use multiple starting points.

In deterministic optimization algorithms, reliability can be interpreted as the

number of problems in the given test set that are solved by the optimization

algorithm. When dealing with non-deterministic algorithms, it is important to repeat

each test multiple times, to make sure that reliability is measured in aggregate, and

not skewed by a single lucky (or unlucky) algorithmic run.

Using multiple repeats of each test raises the issue of how to aggregate the

results. One option is to consider each algorithmic run as a separate test problem and

then compare solvers across this expanded test set. This allows comparisons based

on worst-case or best-case scenarios. Another option is to use averaged data, for

example, average runtime, average solution accuracy, average reliability, etc. If

averaging is used, then it is important to also include standard deviations of the data.

In either case, data collection is best performed by considering each algorithmic run

as a separate test problem, as average values can easily be extracted from this data,

while reconstructing the full test data from averaged values is not possible.

It should be noted that in some cases multiple repeats of a non-deterministic

method is impractical due to the time it takes to solve a single problem.

4.2.1 Multiple starting points

As mentioned in Sect. 3, many academic test problems come with suggested

starting points. While algorithms should always be tested using these starting points,

it is often enlightening to test the algorithm using other starting points as well. Most

deterministic algorithms should show little change in performance if a starting point

is perturbed by a small random vector—provided the new starting point retains

whatever feasibility properties the algorithm requires in a starting point.
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Hillstrom (1977) was one of the first to consider testing optimization algorithms

at nonstandard starting points. He proposed using random starting points chosen from

a box surrounding the standard starting point. In another approach to this problem, in

Moré et al. (1981) the authors present a large collection of test functions along with

some procedures and starting points to assess the reliability and robustness of

unconstrained optimization algorithms. In some cases, prior knowledge is available

about the solution of a test problem. Some methods use such information to construct

a starting point close to the optimal solution (Nocedal and Wright 2006).

Regardless of how starting points are selected, fair benchmarking requires all the

algorithms to use the same starting point for each test. Therefore, starting points

should be generated and stored outside of the testing process.

4.3 Quality of algorithmic output

The quality of the algorithmic output is obviously important when comparing

optimization algorithms. Measuring quality falls into two easily separated

categories: a known solution is available, and no known solutions are available.

4.3.1 Known solution available

When the expected solution for a problem is available, two methods can be

employed to measure the quality of an algorithmic output: fixed-target and fixed-

cost (Fowler et al. 2008; Rardin and Uzsoy 2001; Rios and Sahinidis 2013).

In the fixed-target method, the required time (function calls, iterations, etc) to

find a solution at an accuracy target etarget is evaluated. The main problem with

fixed-target methods is that some algorithms may fail to solve a test problem.

Therefore, the termination criterion cannot rely only on accuracy, but should also

include some safety breaks such as the maximum computational budget. If the

algorithm successfully reaches the desired accuracy, then the time to achieve the

accuracy can be used to measure the quality of the algorithm on that test problem. If

the algorithm terminates before reaching the desired accuracy, then it should be

considered unsuccessful on that test problem.

Let x0 be the initial point from a test run, �x 2 Rn be the termination point

obtained from the test run, and x� 2 Rn be the known solution for the problem. In

the fixed-cost approach, the final optimization error f ð�xÞ � f ðx�Þ is checked after

running the algorithm for a certain period of time, number of function calls, number

of iterations, or some other fixed measurement of cost. Then, the smaller the final

optimization error is, the better the quality of the algorithmic output.

The fixed-target versus fixed-cost decision can be seen as a multiobjective

problem. It is analogous in engineering to minimizing cost, subject to constraints on

performance versus maximizing performance, subject to a constraint on cost.

If a fixed-cost approach is used, then there are many ways to quantify the

accuracy of the algorithmic output. We need to determine whether or not �x
approximates x�. For example, this can be done using the function value or the

distance from the solution:
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facc ¼ f ð�xÞ � f ðx�Þ; and xacc ¼ k�x� x�k respectively:

It is often valuable to ‘‘normalize’’ these quantities by dividing by the starting

accuracy:

f nacc ¼
f ð�xÞ � f ðx�Þ
f ðx0Þ � f ðx�Þ ; and xnacc ¼

k�x� x�k
kx0 � x�k :

Finally, to improve readability, and reduce floating point errors, many researchers

take a base-10 logarithm:

f lacc ¼ log10ðf ð�xÞ � f ðx�ÞÞ � log10ðf ðx0Þ � f ðx�ÞÞ; and

xlacc ¼ log10ðk�x� x�kÞ � log10ðkx0 � x�kÞ:

The values f lacc and xlacc can be loosely interpreted as the negative of the number of

new digits of accuracy obtained (measured on a continuous scale), thus making

these values very useful for discussion. Finally, to avoid exact solutions making an

algorithm look better than it is, one can select a ‘‘maximal improvement value’’

M (typically about 16) and set

c ¼
�f lacc; if � f lacc �M

M; � f lacc [M or f ð�xÞ � f ðx�Þ ¼ 0;

(
ð1Þ

or the analogous equation using xlacc. Note that we have multiplied f nacc by �1, so c
can be interpreted as the number of new digits of accuracy obtained up to a maximal

improvement value of M.

Similar measures can be used to quantify the amount of constraint violation for a

test run. Considering minff ðxÞ : giðxÞ� 0; i ¼ 1; 2; . . .;mg,
Xm
i¼1

maxf0; gið�xÞg gives the sum of violated constraints;

Xm
i¼1

ðmaxf0; gið�xÞgÞ2 gives the squared sum of violated constraints;

1

m

Xm
i¼1

maxf0; gið�xÞg gives the mean constraint violation, and

Q
i:gið�xÞ[ 0

gið�xÞ amounts to the geometric mean of the violated constraints:

The selection of the appropriate strategy among the variety of approaches

depends on the objectives of the experimental research, the problem structure, and

the type of optimization algorithm used. The researcher should also carefully select

the success criteria, e.g., how to fairly compare a solution that barely satisfies the

constraints versus a solution that barely violates the constraints but returns a much

lower objective function value.
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4.3.2 No known solution available

In many situations, the test set used will not have known solutions to all problems.

This is particularly true if the test set includes instances of real-world applications.

To evaluate the quality of an algorithmic output in this situation, some new

considerations are required (McGeoch 1996; Johnson et al. 1996).

First, it should be immediately obvious that, if no known solution is available,

then fixed-target approaches cannot be applied. Fixed-cost approaches are still

applicable, but since f ðx�Þ is not known, measuring the accuracy of the final

algorithmic output’s function value, f ð�xÞ, becomes difficult. Measuring the accuracy

of the final algorithmic output’s point, �x, becomes essentially impossible.

To measure the quality of the final algorithmic output’s function value f ð�xÞ, the
simplest approach is to replace f ðx�Þ with the best known value for the problem. For

any given test run, this guarantees that at least one algorithm gets the exact answer,

so it is important to select a reasonable maximal improvement value. Another

approach is to estimate the optimal solution using statistical techniques. For

example, in combinatorial optimization problems, some researchers (Dannenbring

1977; Derigs 1985) use a sample of algorithmic outputs to predict the location of the

solution. In Golden and Stewart (1985), such an approach is explained in an

evaluation of non-deterministic algorithms. Another strategy is to calculate a lower

bound on the cost of an optimal solution, and to compare the algorithmic output cost

with that lower bound. As an example, the total sum of the weight list in packing

problems can be considered as a lower bound on the total number of bins used in a

packing. Finally, one may abandon comparing the algorithmic output quality with

the optimal solution, and assess only the quality of the algorithmic output with

similar results published in the literature or other algorithms being tested.

4.4 Parameter tuning and stopping conditions

Additional parameters, such as stopping tolerances, population size, step sizes, or

initial penalty parameters, are required for most optimization algorithms.

Among such parameters, stopping conditions play a highly notable role, as

different stopping conditions can drastically change the output of an algorithm

(Strongin and Sergeyev 2000; Sergeyev et al. 2013; Zhigljavsky and Žilinskas

2008). Moreover, if stopping tests are internalized within a method, it may not be

possible to ensure all algorithms use the same stopping conditions (Strongin and

Sergeyev 2000; Sergeyev and Kvasov 2006). However, if a fixed-cost or fixed-target

approach (see Sect. 4.3) is employed, then other stopping conditions can be turned

off, thereby ensuring all algorithms use the same stopping conditions. If it is not

possible to ensure all algorithms use the same stopping conditions, then researchers

should recognize this potential source of error when drawing conclusions from the

results.

Other parameters, such as initial step length, can also have an impact on the

performance of an optimization algorithm. Such parameters often require tuning in

order to obtain better performance. If different choices of input parameters are

allowed in an algorithm, researchers should mention the parameter settings used and
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how they were selected. Different strategies used for tuning parameters affect the

benchmarking process. Choosing appropriate parameter settings for an optimization

algorithm is usually based on experiments and statistical analysis.

The tuning strategy should be chosen in conjunction with a specific algorithm

and in a replicable manner (Johnson et al. 1996). Any improvements obtained from

hand-tuning can of course be reported, but separately from more systematic

comparative experiments. In some studies, algorithmic methods are presented to

automate the tuning procedure of parameters (Audet and Orban 2006; Audet et al.

2014a; Baz et al. 2007; Hutter et al. 2009; Ridge 2007; Ridge and Kudenko 2010).

The major disadvantage of these tuning methods is that they require a considerable

computational investment because they usually try many possible settings to find an

appropriate one. Nonetheless, in recent years some studies have specifically focused

on the automatic tuning of parameters in optimization solvers. Examples of these

efforts include the machine learning based method proposed in Baz et al. (2007),

CPLEX automatic tuning tool (2014), use of derivative-free optimization (Audet

and Orban 2006), ParamILS (Hutter et al. 2009), and the procedure proposed in

Hutter et al. (2010) for mixed integer programming solvers. Similarly, some of the

tuning techniques for non-deterministic methods include sequential parameter

optimization (SPO) (Bartz-Beielstein et al. 2005; Bartz-Beielstein and Preuss 2014),

relevance and calibration approach (Nannen and Eiben 2006), and F-Race (Birattari

2009).

In view of the considerable research on the automatic tuning of optimization

solvers, amore accurate approach for benchmarking of optimization solvers requires a

pre-processing step in which an automatic tuning method is employed to find

suitable configuration settings for all the solvers (Hare andWang 2010). As this is not

always practical, it is important to emphasize that tuning parameters can have a major

impact on the performance of an algorithm, therefore it is not appropriate to tune the

parameters of some methods while leaving other methods at their default settings.

5 Analyzing and reporting the results

Many studies use basic statistics (e.g., average solving time) to report the

experimental results. Basic statistics are a reasonable starting point, but provide

little information about the overall performance of optimization methods. Reporting

methods can be loosely broken down into three categories: numerical tables,

graphics, and performance ratio methods (e.g., performance and data profiles).

5.1 Tables

Numerical tables provide the most complete method of reporting benchmarking

results, so for the sake of completeness, we recommend making full tables of results

readily available. However, such tables are cumbersome, so are often better

included in an appendix or in additional online material linked to an article.

As full tables of results can easily overwhelm a reader, researchers have

developed various techniques that provide easy-to-understand and compact methods
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for reporting the experimental results. Summary tables can be employed as a first

step (Sergeyev and Kvasov 2006). For example, in Billups et al. (1997)

optimization methods were rated by the percentage of problems for which a

method’s time is termed competitive or very competitive. The solving time of an

algorithm was called competitive if Ts � 2Tmin in which Ts is the solving time

obtained by an algorithm on a particular problem and Tmin is the minimum solving

time obtained among all the algorithms on that specific problem. Similarly, if

Ts � 4
3
Tmin, then they call that method very competitive. Tables such as these

provide good talking points for discussing benchmarking data, but fail to give a

complete picture of the results. One criticism of this particular approach is it does

not explore how much the table would change if, for example, the cut-off for very

competitive was changed from 4
3
Tmin to 5

4
Tmin.

Many other forms of summary tables are present throughout the optimization

benchmarking literature, however all suffer from the same fundamental problem—

to be readable, a summary table must distill the results down to a highly condensed

format, thereby eliminating much of the benchmarking information.

5.2 Graphics

Well-conceived graphics can provide more information than some other data

presentations. Simple graphical methods, such as histograms, box-plots, and

trajectory plots, provide a next step in the analysis, while more complete methods

include performance profiles, data profiles, and accuracy profiles. Depending on the

objectives of an experimental research, one or more of these techniques might be

useful to report the results. In Tukey (1977) and Tufte and Graves-Morris (1983),

different types of plots are introduced, which are useful for data representation in

general.

A more specialized plot for optimization algorithms is the trajectory plot (Fowler

et al. 2008; Regis and Shoemaker 2007; Sandgren and Ragsdell 1980b; Eason 1982;

Eason and Fenton 1974; Kortelainen et al. 2010; Strongin and Sergeyev 2000). In a

trajectory plot, the performance of an optimization algorithm on a given test

problem is visualized by plotting a path that connects the points generated by each

iteration of the algorithm. An example appears in Fig. 2, where the trajectories of

two algorithms attempting to minimize the Rosenbrock function are plotted. Both

algorithms begin at the point (3, 3), and the first iteration moves both algorithms to

the point (0.2, 3.5). Algorithm 1 (represented by the solid line) proceeds to (0.7,

-0.2) and continues in a zig-zag path towards the minimizer. Algorithm 2

(represented by the dashed line) proceeds to (1.1, 1.3) and then follows a fairly

straight path towards the minimizer, albeit with very small step sizes. While

trajectory plots are useful to build a better understanding of how each algorithm

behaves, they are not particularly good for benchmarking as they can only present

the results for one test problem at a time. They are also limited to plots of functions

of 2 or 3 variables, or to plotting projections onto subspaces for more than 3

variables.
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Another specialized plot for optimization benchmarking is the convergence plot.

In a convergence plot the performance of different optimization methods is

visualized by plotting the best function value found against some measure of

fundamental evaluation (Sect. 4.1). An example convergence plot is given in Fig. 3.

In Fig. 3 the results of four optimization methods are plotted for a given test

problem. In this example, method M1 starts well, but stalls after about 300 function

evaluations, while method M2 shows a steady decrease for about 800 function

evaluations before stalling. Method M3 initially decreases the fastest, but stalls after

about 350 function evaluations. Finally, method M4 starts very slowly, but

ultimately finds the lowest value. Like trajectory plots, convergence plots are useful

for discussing specific behavior of the algorithm, but are poor for benchmarking as

they can only be used to analyze one test problem at a time.

While trajectory and convergence plots are useful to visualize a method on one

problem, their main drawback is that they represent the results for a single problem

Fig. 2 A sample trajectory plot
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Fig. 3 A sample convergence plot
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per plot. So if the test set contains a large number of problems then it will be

difficult to evaluate the overall performance of these methods. Other types of plots

can be found in the literature, but generally have the same limitations as trajectory

and convergence plots (Benson et al. 2004; Regis and Shoemaker 2007).

For many optimization algorithms, researchers are interested in how the problem

scales with the size of the input (e.g., dimension of the problem). For such research

it can be valuable to produce a runtime plot. Runtime plots visualize the data by

plotting the time to solve across a series of problem instances with different sizes.

Runtime plots can suffer from similar issues to trajectory and convergence plots,

namely, they represent the results for a single series of problem instances. However,

this problem can be somewhat mitigated by aggregating data from a collection of

problems to create an ‘‘average runtime’’ plot.

5.3 Performance profiles

According to Sergeyev et al. (2016), the idea of creating graphical comparisons of

optimization methods dates back to at least the paper by Grishagin (1978).3 In 2000,

Strongin and Sergeyev presented the idea of operational characteristics for an

algorithm: a graphical method to visualize the probability that an algorithm solves a

problem within a set time-frame (Strongin and Sergeyev 2000). However, it was not

until the paper by Dolan and Moré (2002) that the idea of graphically presenting

benchmarking results became mainstream. Dolan and Moré (apparently unaware of

the work of Grishagin or Strongin and Sergeyev) called their proposed graphs

performance profiles.

Performance profiles provide interesting information such as efficiency, robust-

ness, and probability of success in a graphically compact form (Dolan and Moré

2002). Their use has grown rapidly in optimization benchmarking, and should

certainly be considered for any benchmarking optimization research.

Let P be a set of problems, S a set of optimization solvers, and T a convergence

test. Assume proper data has been collected. The performance profiles are now

defined in terms of a performance measure tp;s [ 0, obtained for each pair of

ðp; sÞ 2 P� S. This measure can be the computational time, the number of function

evaluations, etc. A larger value of tp;s indicates worse performance. For each

problem p and solver s, the performance ratio is defined as

rp;s ¼
tp;s

minftp;s : s 2 Sg if convergence test passed;

1 if convergence test failed:

8<
: ð2Þ

for a specific problem p and test s (the best solver has rp;s ¼ 1). The performance

profile of a solver s is defined as follows

3 We thank ‘‘Mathematics Referee #1’’ for pointing out that reference.
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qsðsÞ ¼
1

jPj size fp 2 P : rp;s � sg; ð3Þ

where jPj represents the cardinality of the test set P. Then, qsðsÞ is the portion of

the time that the performance ratio rp;s for solver s 2 S is within a factor s 2 R of

the best possible performance ratio.

Note that qsð1Þ represents the percentage of problems for which solver s 2 S has

the best performance among all the other solvers. And for s sufficiently large, qsðsÞ
is the percentage of the test set that can be solved by s 2 S. Solvers with

consistently high values for qsðsÞ are of interest.

Figure 4 shows a sample performance profile plot [created using data from

Beiranvand et al. (2015)] for logarithmic values of s. The logarithmic values are

employed to deal with smaller values for s. This will result in a more accurate plot

which shows the long-term behavior of the methods. To demonstrate the difference,

Fig. 5 shows the same performance profile using non-logarithmic values of s.
Depending on the data collected, logarithmic or non-logarithmic values of s may be

more appropriate. Researchers should create both profiles, but it may only be

necessary to provide one in the final manuscript.

The performance profile in Fig. 4 compares four different optimization methods

on a test set of 60 problems. The method M1 has the best performance (in terms of

CPU time) for almost 93% of the problems; meaning that M1 is able to solve 93%

of the problems as fast or faster than the other two approaches. M3 solves roughly

11% of the problems as fast or faster than the other approaches. On the other hand,

given enough time M1 solves about 92% of the problems, while M3 solves about

94% of the problems. The graphs of M1 and M3 cross at about log2ðsÞ � 3 (i.e.,

s � 8); the two methods solve the same number of problems if time to solve is

relaxed to be within a factor of 8.

Since performance profiles compare different methods versus the best method,

the interpretation of the results should be limited to comparison to the best method
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Fig. 4 An example performance profile using logarithmic values of s
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and no interpretation should be made between, e.g., the second best and third best

method since a switching phenomenon may occur (Gould and Scott 2016).4 To

compare the second and third best methods, a new performance profile should be

drawn without the first method; see the explicit examples provided in Gould and

Scott (2016).

Performance profile plots can be customized by substituting the standard

performance measure time. For example, in Ali et al. (2005), Audet et al. (2010),

and Vaz and Vicente (2007), the objective function value is used as the performance

measure to compare the profiles. In particular, tp;s is replaced with

mp;s ¼
f̂p;s ðafter k function evaluationsÞ � f �

ðfw � f �Þ ; ð4Þ

for problem p and solver s, where fw is the largest (worst) function value obtained

among all the algorithms, and f̂p;s is the estimated function value after k function

evaluations. In another example, Sergeyev and Kvasov (2015) create a performance

measure based on proximity to optimal points.

The primary advantage of performance profiles is that they implicitly include

both speed and success rate in the analysis. The value of qsðaÞ gives a sense of how
promising the algorithmic outputs are relative to the best solution found by all the

optimization algorithms that are compared together.

One criticism of performance profiles is that the researcher must select a

definition for the convergence test passing and failing. Changing this definition can

substantially change the performance profile (Hare et al. 2011). Also note that if a

fixed-cost approach is used to performing the benchmarking experiments, then

performance profiles become inappropriate, as all the algorithms will use the same

‘‘time’’. Another criticism is that the profile is only showing performance with

respect to the best method and does not allow one to compare other methods with
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Fig. 5 The performance profile from Fig. 4 using non-logarithmic values of s

4 We thank ‘‘Engineering Referee #3’’ for pointing out that reference.
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each other due to the appearance of a switching phenomenon (Gould and Scott

2016).

Nonetheless, performance profiles have become a gold-standard in modern

optimization benchmarking, and should be included in optimization benchmarking

analysis whenever possible with an appropriate interpretation.

5.4 Accuracy profiles

Similar to performance profiles, accuracy profiles provide a visualization of an

entire optimization benchmarking test set. However, accuracy profiles are designed

for fixed-cost data sets. They begin by defining, for each problem p 2 P and solver

s 2 S, an accuracy measure (similar to Eq. (1)):

cp;s ¼
�f p;sacc; if � f p;sacc �M

M; � f p;sacc [M or f p;sacc is undefined ;

�

where f p;sacc ¼ log10ðf ð�xp;sÞ � f ðx�pÞÞ � log10ðf ðx0pÞ � f ðx�pÞÞ, �xp;s is the candidate

solution point obtained by solver s on problem p, x�p is the optimal point for problem

p, and x0p is the initial point for problem p. The performance of the solver s 2 S on

the test set P is measured using the following function

RsðsÞ ¼
1

jPj size fcp;sjcp;s � s; p 2 Pg:

The accuracy profile RsðsÞ shows the proportion of problems such that the solver

s 2 S is able to obtain a solution within an accuracy of s of the best solution. An

example accuracy profile (using data from Hare and Sagastizábal 2006) appears in

Fig. 6.

In Fig. 6, we see four methods (M1, M2, M3, and M4) plotted against each other

in an accuracy profile format. Examining the profile, notice that method M1

achieves 5 digits of accuracy on almost all test problems, and 6 digits of accuracy

on about 75% of test problems. All other methods achieve this level of accuracy on
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Fig. 6 An example accuracy profile
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50% or less of test problems. Thus, if 5 or 6 digits is the desired level of accuracy,

then M1 is a clear winner. However, if the particular application requires much

higher accuracy, then M3 becomes a contender. Indeed, only M3 was able to

achieve 12 digits of accuracy on any reasonable portion of the test problems. (In this

particular test, accuracy was capped at 16 digits, but no method managed to achieve

this on a significant portion of the test problems.)

Accuracy profiles do not provide as much information as performance profiles,

but are suitable when fixed-cost data sets are collected. This is appropriate in cases

where the cost of obtaining the exact solution exceeds the budget, so the

optimization target is to find as good a solution as possible within a limited time.

5.5 Data profiles

Moré and Wild (2009) proposed data profiles as an adjustment to performance

profiles for derivative-free optimization algorithms. Data profiles try to answer the

question: what percentage of problems (for a given tolerance s) can be solved within
the budget of k function evaluations? They assume the required number of function

evaluations to satisfy the convergence test is likely to grow as the number of

variables increases. The data profile of an optimization algorithm s is defined using

(Moré and Wild 2009)

dsðkÞ ¼
1

jPj size p 2 P :
tp;s

np þ 1
� k

� �
; ð5Þ

in which tp;s shows the number of function evaluations required to satisfy the

convergence test, np is the number of variables in the problem p 2 P, and dsðkÞ is
the percentage of problems that can be solved with kðnp þ 1Þ function evaluations.

The value kðnp þ 1Þ is used since np þ 1 is the number of function evaluations

required to compute a ‘‘simplex gradient’’ (a one-sided finite-difference estimate of

the gradient).

It is worth noting that data profiles could easily be defined replacing
tp;s

npþ1
by any

other measure of fundamental evaluations used. Moreover, if
tp;s

npþ1
is replaced by

iterations, then data profiles become a slight variation of the operational charac-

teristics defined in Strongin and Sergeyev (2000).

Figure 7 shows a typical data profile. Suppose the user has a budget limit of 100

simplex gradients; according to Fig. 7, with this budget method M4 has the best

performance, solving roughly 22% of the problems; while M3 has the worst

performance among all the solvers since with this budget it does not solve any

problems.

Like performance profiles, data profiles are cumulative distribution functions,

and thus, monotone increasing step functions with a range in [0, 1]. Data profiles do

not provide the number of function evaluations required to solve a specific problem,

but instead provide a visualization of the aggregate data. Also note that the data

profile for a given solver s 2 S is independent of other solvers; this is not the case

for performance profiles.
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Although the data profiles are useful for benchmarking, they have not received

the same extensive attention as the performance profiles. This is partly because they

are newer, but perhaps also because they are primarily used with derivative-free

optimization algorithms. However, data profiles could be easily adjusted to a

broader class of algorithms by replacing tp;s with any measure of time, and np þ 1 by

any dimensional normalization factor. For example, for a subgradient based method,

dsðaÞ could be redefined as

dsðaÞ ¼
1

jPj size fp 2 P : gp;s � ag;

where gp;s is the number of subgradient evaluations. This might make them an

appropriate tool for benchmarking bundle methods (Hiriart-Urruty and Lemaréchal

1993, §XIV–XV).

Table 4 summarizes the reporting methods discussed in this section.

6 Automated benchmarking

As we have seen, the benchmarking process of optimization algorithms is a

complicated task that requires much effort, from data preparation and transforma-

tion to the analysis and visualization of benchmarking data. Accordingly, some

researchers have begun the development of software tools to facilitate and automate

developing test sets, solving the problems using a variety of optimization

algorithms, and carrying out performance analysis and visualization of benchmark-

ing data.

The PAVER server (Mittelmann and Pruessner 2006; Bussieck et al. 2014) is an

online server that provides some tools for the automated performance analysis,

visualization, and processing of benchmarking data. An optimization engine, either

a modeling environment such as AMPL (Fourer et al. 2002) or GAMS (Rosenthal
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2014), or a stand-alone solver, is required to obtain solution information such as

the objective function value, resource time, number of iterations, and the solver

status. Then, the benchmark data obtained by running several solvers over a set of

problems can be automatically analyzed via online submission to the PAVER

server. PAVER returns a performance analysis report through e-mail in HTML

format. The tools available in PAVER allow either direct comparisons between two

solvers or comparisons of more than two solvers simultaneously in terms of

efficiency, robustness, algorithmic output quality, or performance profiles.

The High-performance Algorithm Laboratory (Nell et al. 2011) (HAL) is a

computational environment designed to facilitate the empirical analysis and design

of algorithms. It supports conducting large computational experiments and uses a

database to handle data related to algorithms, test sets, and experimental results. It

also supports distributed computation on a cluster of computers. Its major advantage

over other tools is its aim to develop a general-purpose tool that can handle different

categories of problems, although the initial deployment of problems and algorithms

is tricky.

The Optimization Test Environment (Domes et al. 2014) is another tool that can

be used for benchmarking the performance of different optimization algorithms. It

provides some facilities to organize and solve large test sets, extract a specific subset

of test sets using predefined measures, and perform statistical analysis on the

benchmarking data. The results obtained by each optimization algorithm are verified

in terms of feasibility and correctness. A variety of information is reported such as

the number of global numerical solutions found (i.e., the best solution found among

all optimization algorithms), number of local solutions found, number of wrong

claims. For problem representation, it uses Directed Acyclic Graphs (DAGs) from

the Coconut Environment (Schichl and Markót 2012). This user-friendly

Table 4 Reporting methods summarization

Reporting

method

Evaluates Advantage Drawback Recommendation

Full data tables – Comprehensive Overwhelming Provide in appendix or

online data set

Summary

tables simple

graphs

Varies Brief Incomplete Provide as talking point,

but include other forms

of analysis

Trajectory plots

convergence

plots

Speed and

accuracy

efficiency

Clear precise Examines one

problem at a

time

Good for case-studies, but

should include other

forms of analysis for

larger data sets

Performance

profiles–

accuracy

profiles–data

profiles

Speed and

robustness

accuracy

speed and

robustness

Strong graphical

representation that

incorporates the

entire dataset

Cannot be

used for

fixed-cost

data sets

Include at least one of

these three profiles

whenever possible
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environment analyzes results and automatically summarizes them before reporting

them in an easy-to-use format such as LaTeX, JPEG, and PDF.

Other software tools for automating benchmarking process include EDACC

(Balint et al. 2010), LIBOPT (Gilbert and Jonsson 2009), CUTEr (Gould et al.

2003) and a testing environment reported in Billups et al. (1997).

Using automated performance analysis tools has the potential to facilitate the

benchmarking process. Moreover, the automation of the process may reduce the risk

of biased comparison, by taking some of the comparison decisions away from the

algorithm designer. However, automated benchmarking tools are not yet accepted

by the research community due to their shortcomings. The major drawback of these

tools is that the flexibility of a researcher to design experiments based on their

research objectives is restricted to the tools’ limitations and the way they view the

benchmarking process. Moreover, so far all of these tools operate in expert mode,

meaning that the usability aspect needs to be improved in terms of application and

design of experiments. In most cases preparation of an experiment beyond the scope

of default facilities of the benchmarking tools is nontrivial and involves some

customization, e.g., scripting. Further research in this direction will create valuable

tools for the optimization community, but the current status is not ready for

widespread use.

7 Conclusion

This article reviews the issue of benchmarking optimization algorithms. For the

sake of having a careful, less-biased, explicitly-stated, and comprehensive

evaluation of the optimization algorithms an a priori benchmarking design is

required. To develop an appropriate experimental design, the first task is to clarify

the questions that are to be answered by the experiment. This includes selecting a

suitable test set and suitable performance measures based on the objectives of the

research. The data must be analyzed and processed in a transparent, fair, and

complete manner. Within this paper we discuss each of these topics, and present a

review of the state-of-the-art for each of these steps. We include several tables and

figures that summarize the process, and provide key advice designed to lead to a fair

benchmarking process.

A final important point must be raised in regards to optimization benchmarking:

as in all scientific research, benchmarking optimization algorithms should be

reported in a manner that allows for reproducibility of the experiments.

When reporting results, be sure to describe algorithms, parameters, test problems,

the computational environment, and the statistical techniques employed with an

acceptable level of detail. It should be clarified that it is usually difficult to provide

enough information in a published paper to enable the reader to rerun the stated

experiments and replicate completely the reported results. Moreover, the pace of

computational development is so high that it is virtually impossible to entirely

reproduce a computational experiment, due to development and modifications in

operating systems, computer architecture, programming languages, etc. However,
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the minimum standard for replication of the experiments is that at least the authors

themselves should be able to replicate the experiments (Crowder et al. 1979).

Therefore, it is important that the researcher keep all the programs and data

necessary to redo all the computations and recreate all graphs. Such programs

should be made available whenever possible.

7.1 Some final insights and remarks from the referees

This paper provides a high-level view of the benchmarking of optimization

algorithms. While it does not aim to be all encompassing, it hopefully provides a

baseline for best practice when benchmarking optimization algorithms. Many

nuances exist when benchmarking specific genres of algorithms. We end with some

final discussion of some of these nuanced areas. Many of these final remarks were

provided through the insights of five excellent referees.

The state-of-the-art in optimization benchmarking currently has (at least) two

major voids that require further research: how to properly benchmark optimization

algorithms that make use of parallel processing, and how to properly benchmark

multi-objective optimization algorithms.

Evaluating the performance of parallel optimization algorithms is different from

traditional optimization methods in various aspects: performance measures such as

time, the appropriate test sets, the new measures of merit involved in parallel

processing such as the concept of speedup, efficiency. All of these concerns together

with the fast pace of technological advances in parallel computing motivate research

into the benchmarking of parallel optimization algorithms. A good start in this

regard is the research paper by Barr and Hickman (1993).

Benchmarking multi-objective optimization algorithms is similarly in its infancy.

Appropriate test sets and performance measures have yet to surface. Multi-objective

optimization is a rapidly advancing field, and research into proper benchmarking in

this discipline would be highly valuable.

A benchmarking challenge that we have not addressed is how to compare

optimization algorithms that are different in nature.5 For example, consider the

comparison of a deterministic and a non-deterministic method (Gillard and Kvasov

2017; Kvasov and Mukhametzhanov 2017). If the multiple repeats of the non-

deterministic method are considered, is it fair to compare the average quality to the

single run of the deterministic method. Some ideas on this, including a proposed

method for comparing deterministic and non-deterministic methods, can be found in

Sergeyev et al. (2016).

Another benchmarking challenge that has not been fully addressed is how to

compare algorithms that approach the same problem from fundamentally different

viewpoints.6 For example, when working with constrained optimization problems,

some researchers have explored infeasible point methods while others have focused

on interior point methods. Infeasible point methods typically take a two-phase

approach, where one phase aims for a decrease in the function value and the second

5 We thank ‘‘Mathematics Referee #1’’ for pointing out this challenge.
6 We thank ‘‘Engineering Referee #3’’ and ‘‘Mathematics Referee #2’’ for pointing out this challenge.
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phase aims to improve feasibility. Interior point methods assume a strictly feasible

starting point and use some form of penalty function to maintain the feasibility of

all trial points. Comparing these two styles of algorithms is very challenging, and

possibly meaningless, as one assumes an infeasible starting point and the other

assumes a feasible starting point. Other algorithms adopt a hybrid approach by

approximating the feasible set with some tolerance (Regis and Wild 2017); in that

case, the tolerance parameter could greatly influence the result of the comparison.

A source of debate in benchmarking global optimization algorithms is how to

deal with rescaling of the domain.7 Many global optimization algorithms are

designed with the baseline assumption that the optimization problem’s constrained

region is the unit hypercube ½0; 1	n. Of course, in practical applications this is not

always true. Some algorithms deal with this at the solver level, using the constraint

set’s diameter to select parameters like initial step lengths; while other algorithms

deal with this at the problem level, assuming that the end-user will rescale the

constraint set to be the unit hypercube (which is not always easy to do).

Comparisons of algorithms that place fundamentally different assumptions on the

problem structure may impact the selection of an appropriate test set and may limit

the conclusions one can draw from the numerical results.

Another potential limitation on what conclusions can be drawn from a numerical

study is the sensitivity analysis of the parameters.8 A robust study should investigate

a range of parameters and report on their impact on the validity of the conclusions.

We leave the complexity of how best to report such information to future research.

References

Addis B, Locatelli M (2007) A new class of test functions for global optimization. J Glob Optim

38(3):479–501

Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms

on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

Andrei N (2008) An unconstrained optimization test functions collection. Adv Model Optim

10(1):147–161

Asaadi J (1973) A computational comparison of some non-linear programs. Math Program 4(1):144–154

Audet C, Orban D (2006) Finding optimal algorithmic parameters using derivative-free optimization.

SIAM J Optim 17(3):642–664

Audet C, Dang CK, Orban D (2010) Algorithmic parameter optimization of the DFO method with the

OPAL framework. In: Ken N, Keita T, John C, Reiji S (eds) Software automatic tuning. Springer,

New York, pp 255–274

Audet C, Dang K-C, Orban D (2014a) Optimization of algorithms with OPAL. Math Program Comput

6(3):233–254

Audet C, Le Digabel S, Peyrega M (2014b) Linear equalities in blackbox optimization. Technical report,

Les Cahiers du GERAD
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