PRO 5970 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro

2023

Departamento de Engenharia de Produção
Universidade de São Paulo

Conjugate Direction Methods

Newton Search

Advantages:

- Excellent performance of Newton search close to the optimum
- Less sensitive to numerical errors than steepest descent search

Disadvantage:

- Very sensitive to starting point x_{0}
- Can fail to converge when starting relatively far from a local optimum!
- Hessian matrix needed at each iteration, as well as solution of a linear system Very burdensome task, especially for large-scale systems!

Need to mitigate these deficiencies!

Conjugate Direction Methods

Conjugate directions

- Conjugate direction methods: intermediate between the method of steepest descent and Newton's method.
- They typically perform better than the method of steepest descent, but not as well as Newton's method.

Properties of conjugate direction methods

- Solve quadratics of n variables in n steps
- Conjugate gradient algorithm requires no Hessian matrix evaluations
- No matrix inversion and no storage of $n \times n$ matrix are require

Conjugate Direction Methods

Search directions

The optimization methods considered usually find, at iteration k, a direction d_{k}, such that

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

For a given function f

- Steepest descent

$$
d_{k}=-\nabla f\left(x_{k}\right)
$$

- Newton

$$
d_{k}=-H\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)
$$

For quadratic function $f(x)=\frac{1}{2} x^{t} A x-b^{t} x$,

$$
\nabla f\left(x_{k}\right)=A x-b
$$

and

$$
H\left(x_{k}\right)=A
$$

Conjugate Direction Methods

For quadratic functions some nice results can be easily found
Consider a set of directions $\left\{d_{k}\right\}$ and the line search approach

Proposition 1 - Quadratic functions

Consider a quadratic function $f(x)=\frac{1}{2} x^{\prime} A x-b^{\prime} x$, with A symmetric positive definite, $d_{k} \in \mathbb{R}^{n}, d_{k} \neq 0$ and $\phi(\lambda)=f\left(x_{k}+\lambda d_{k}\right)$ (line search)

The optimal solution of $\min _{\lambda \in \mathbb{R}} \phi(\lambda)$ is

$$
\lambda^{*}=-\frac{\nabla f\left(x_{k}\right)^{t} d_{k}}{d_{k}^{t} A d_{k}}
$$

This result holds for any direction $d_{k} \neq 0$!!!!

> Numerical methods are not necessary

Conjugate Direction Methods

Exercice Entrega - aula

Verify that the proposition is valid for

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Conjugate Direction Methods

Proposition 2 - Quadratic functions

For the steepest descent, the solution for function f (quadratic) is is

$$
\lambda^{*}=\frac{\nabla f\left(x_{k}\right)^{t} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{t} A \nabla f\left(x_{k}\right)}
$$

See that this is a special case of the previous proposition!

Conjugate Direction Methods

Interpretation of the properties of conjugate directions.
Consider $\frac{1}{2} x^{t} A x-b^{t} x$
If the matrix A is diagonal, the contours of the function $\phi(x)$ are ellipses whose axes are aligned with the coordinate directions, as illustrated below. We can find the minimizer of this function by performing one-dimensional minimizations along the coordinate directions

Figure 1: Successive minimization along coordinate axes does not find the solution in n iterations, for a general convex quadratic.

Conjugate Direction Methods

Interpretation of the properties of conjugate directions.
When A is not diagonal, its contours are still elliptical, but they are usually no longer aligned with the coordinate directions. The strategy of successive minimization along these directions in turn no longer leads to the solution in n iterations (or even in a finite number of iterations).

Figure 2: successive minimizations along the coordinate directions find the minimizer of a quadratic with a diagonal Hessian in n iterations.

Conjugate Direction Methods

Conjugacy

A set of non zero vectors $\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}$ is said to be conjugate with respect to the symmetric positive definite matrix A if

$$
p_{i}^{t} A p_{j}=0 \quad \forall i \neq j
$$

Conjugate direction methods

Example 1
Let

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

i Show that A is positive definite
ii Considering $d_{0}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\prime}$ construct a set of A conjugate vectors, d_{0}, d_{1}, d_{2}

Conjugate Direction Methods

- Positive definite $\operatorname{det}\left(A_{1}\right)=3>0 \quad \operatorname{det}\left(A_{2}\right)=12>0 \quad \operatorname{det}\left(A_{3}\right)=20>0$

Conjugate Direction Methods

- Positive definite $\operatorname{det}\left(A_{1}\right)=3>0 \quad \operatorname{det}\left(A_{2}\right)=12>0 \quad \operatorname{det}\left(A_{3}\right)=20>0$
- $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}d_{11} \\ d_{21} \\ d_{31}\end{array}\right]=0 \Rightarrow 3 d_{11}+d_{31}=0$

Let $d_{1}=\left[\begin{array}{lll}1 & 0 & -3\end{array}\right]^{\prime}$

Conjugate Direction Methods

- Positive definite $\operatorname{det}\left(A_{1}\right)=3>0 \quad \operatorname{det}\left(A_{2}\right)=12>0 \quad \operatorname{det}\left(A_{3}\right)=20>0$
- $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}d_{11} \\ d_{21} \\ d_{31}\end{array}\right]=0 \Rightarrow 3 d_{11}+d_{31}=0$

Let $d_{1}=\left[\begin{array}{lll}1 & 0 & -3\end{array}\right]^{\prime}$

- d_{2} such that

$$
\begin{gathered}
d_{0}^{\prime} A d_{2}=0 \Rightarrow 3 d_{12}+d_{32}=0 \\
d_{1}^{\prime} A d_{2}=0 \Rightarrow-6 d_{22}-8 d_{32}=0
\end{gathered}
$$

$$
d_{2}=\left[\begin{array}{lll}
1 & 4 & -3
\end{array}\right]^{\prime}
$$

Conjugate Direction Methods

Conjugate direction methods

- The search direction d_{k} in iteration k is conjugate to previous ones $\left(d_{1}, d_{2}, \ldots, d_{k-1}\right)$.
- Between the method of steepest descent and Newton's method.
- Implementation requires no Hessian matrix evaluations, no inversions or storage.
- It performs better than Steepest Descent, but not as well as Newton's method.

Example 2

Entregar
Consider the quadratic function

$$
f(x)=-12 x_{2}+4 x_{1}^{2}+4 x_{2}^{2}+4 x_{1} x_{2}
$$

Hessian:

$$
\left[\begin{array}{rr}
8 & -4 \\
-4 & 8
\end{array}\right]
$$

Let $d_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\prime}$

- Find a conjugate direction

Conjugate Direction Methods

The Conjugate Direction Algorithm - Quadratic functions

Consider $\frac{1}{2} x^{t} A x-b^{t} x$, with with A symmetric positive definite, $x \in \mathbb{R}^{n}$
Because A is symmetric positive definite the function has a global minimizer that can be found by solving $A x=b$

Basic Conjugate Direction Algorithm.
Given a starting point $x(0)$ and and $n A$-conjugate directions $\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$.; for $k \geq 0$

$$
\begin{aligned}
& g_{k}=\nabla f\left(x_{k}\right)=A x_{k}-b \\
& \alpha_{k}=-\frac{g_{k}^{\prime} d_{k}}{d_{k}^{\prime} A d_{k}} \\
& x_{k+1}=x_{k}+\alpha_{k} d_{k}
\end{aligned}
$$

Theorem For any starting point x_{0}, the basic conjugate direction algorithm converges to the unique x^{*} (that solves $A x=b$) in n steps; that is, $x_{n}=x^{*}$.

Example

Find the minimizer of

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2} x^{t}\left[\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right] x-\left[\begin{array}{r}
-1 \\
1
\end{array}\right] x
$$

using the conjugate direction method with the initial point $x_{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{t}$ and Aconjugate direction $d_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{t}$ and $d_{1}=\left[\begin{array}{cc}-\frac{3}{8} & \frac{3}{4}\end{array}\right]^{t}$

Conjugate Direction Methods

First step

Conjugate Direction Methods

First step
In this case

$$
\begin{aligned}
& g_{0}=A x_{0}-b=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{t} \\
& \alpha_{0}=-\frac{g_{0}^{t} d_{k}}{d_{0}^{\prime} A d_{0}}=-\frac{1}{4} \\
& x_{1}=x_{0}+\alpha_{0} d_{0}=\left[\begin{array}{ll}
-\frac{1}{4} & 0
\end{array}\right]^{t}
\end{aligned}
$$

Second step

Conjugate Direction Methods

First step
In this case

$$
\begin{aligned}
& g_{0}=A x_{0}-b=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{t} \\
& \alpha_{0}=-\frac{g_{0}^{t} d_{k}}{d_{0}^{\prime} A d_{0}}=-\frac{1}{4} \\
& x_{1}=x_{0}+\alpha_{0} d_{0}=\left[\begin{array}{ll}
-\frac{1}{4} & 0
\end{array}\right]^{t}
\end{aligned}
$$

Second step

$$
\begin{aligned}
& g_{1}=A x_{1}-b=\left[\begin{array}{ll}
0 & -\frac{3}{2}
\end{array}\right]^{t} \\
& \alpha_{1}=-\frac{g_{1}^{t} d_{1}}{d_{1}^{\prime} A d_{1}}=2 \\
& x_{2}=x_{1}+\alpha_{1} d_{1}=\left[\begin{array}{ll}
-1 & \frac{3}{2}
\end{array}\right]^{t}
\end{aligned}
$$

Because f is quadratic and A is positive definite, $x_{2}=x^{*}$

Conjugate Direction Methods

First step
In this case

$$
\begin{aligned}
& g_{0}=A x_{0}-b=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{t} \\
& \alpha_{0}=-\frac{g_{0}^{t} d_{k}}{d_{0}^{\prime} A d_{0}}=-\frac{1}{4} \\
& x_{1}=x_{0}+\alpha_{0} d_{0}=\left[\begin{array}{ll}
-\frac{1}{4} & 0
\end{array}\right]^{t}
\end{aligned}
$$

Second step

$$
\begin{aligned}
& g_{1}=A x_{1}-b=\left[\begin{array}{ll}
0 & -\frac{3}{2}
\end{array}\right]^{t} \\
& \alpha_{1}=-\frac{g_{1}^{t} d_{1}}{d_{1}^{\prime} A d_{1}}=2 \\
& x_{2}=x_{1}+\alpha_{1} d_{1}=\left[\begin{array}{ll}
-1 & \frac{3}{2}
\end{array}\right]^{t}
\end{aligned}
$$

Because f is quadratic and A is positive definite, $x_{2}=x^{*}$

Conjugate Direction Methods

Exercice - Entrega

Repeat the previous exercise for
a. Two alternative initial points
b. The initial direction $\left[\begin{array}{cc}0 & 1\end{array}\right]^{t}$ (in this case find the conjugate direction and consider the two initial points proposed in a.)

Conjugate Gradient Methods

```
A special case of the Conjugate Direction Method
```

Ref Luenberger

- In the conjugate gradient method the directions are not specified beforehand, but rather are determined sequentially at each step of the iteration.
- At step k one evaluates the current negative gradient vector and adds to it a linear combination of the previous direction vectors to obtain a new conjugate direction vector along which to move.

Advantages

- is the especially simple formula that is used to determine the new direction vector. This simplicity makes the method only slightly more complicated than steepest descent.
- because the directions are based on the gradients, the process makes good uniform progress toward the solution at every step. This is in contrast to the situation for arbitrary sequences of conjugate directions in which progress may be slight until the final few steps
- Although for the pure quadratic problem uniform progress is of no great importance, it is important for generalizations to nonquadratic problems.

Conjugate Gradient Methods

A special case of the Conjugate Direction Method

Basic Properties

- The conjugate direction method is very effective. However, we need to specify the conjugate directions.
- The conjugate gradient algorithm does not use pre specified conjugate directions, but instead computes the directions as the algorithm proceeds.
- At each stage, the direction is calculated as a linear combination of the previous direction and the current gradient, in such as way that all the directions are mutually -conjugate.
- To generate the conjugate vectors, a new d_{k} is obtained by using only the previous vector d_{k-1} The new vector is automatically conjugate to all the previous elements

Conjugate Direction Methods

- The conjugate gradient method is an iterative method for solving a linear system of equations $A x=b$ where A is an $n \times n$ symmetric positive definite matrix.
- This problem can be stated equivalently as the following minimization problem:

$$
\min \phi(x)=\frac{1}{2} x^{\prime} A x-b^{\prime} x
$$

- One of the remarkable properties of the conjugate direction methods is its ability to generate, in a very economical fashion, a set of vectors with the property of conjugacy

Conjugate Gradient Methods

The algorithm (quadratic functions)
Given x_{0}; set $g_{0}=A x_{0}-b ; d_{0}=-g_{0} ; k \leftarrow 0$;
While $g_{k} \neq 0$

$$
\begin{aligned}
& \alpha_{k} \leftarrow-\frac{g_{k}^{\prime} d_{k}}{d_{k}^{\prime} A d_{k}} \\
& x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k} \\
& g_{k+1} \leftarrow A x_{k+1}-b \text { (This is the gradient at } x_{k+1} \text {) } \\
& \beta_{k+1} \leftarrow \frac{g_{k+1}^{\prime} A d_{k}}{d_{k}^{\prime} A d_{k}} \\
& d_{k+1} \leftarrow-g_{k+1}+\beta_{k+1} d_{k}
\end{aligned}
$$

The sequence $\left\{x_{k}\right\}$ converges to x^{*} in at most n steps.

It is possible to verify that the algorithm is a conjugate direction algorithm,

Conjugate Gradient Methods

Example 4

Entregar
Consider the quadratic function $f(x)=\frac{1}{2} x^{\prime} A x-b^{\prime} x$ with

$$
A=\left[\begin{array}{lll}
3 & 0 & 1 \\
0 & 4 & 2 \\
1 & 2 & 3
\end{array}\right], b=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

Find the minimizer using the conjugate gradient algorithm. Starting point $x_{0}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\prime}$

The Conjugate Gradient for Non quadratic Problems

- When applied to nonquadratic problems, conjugate gradient methods will not usually terminate within n steps. It is possible therefore simply to continue finding new directions according to the algorithm and terminate only when some termina- tion criterion is met.
- The algorithm can be extended to general nonlinear functions by interpreting $f(x)=\frac{1}{2} x^{\prime} A x-b^{\prime} x$ as a second-order Taylor series approximation of the objective function.
- For a quadratic function the Hessian is constant. However, for a general nonlinear function the Hessian is a matrix that has to be reevaluated at each iteration
- Observe that A appears only in the computation of the scalars α_{k} and β_{k}.
- Two simple changes in the preceding algorithm

The α_{k} is obtained through line search
Vector g_{k} is the gradient of the non linear function f

The Fletcher-Reeves Method

Fletcher-Reeves Algorithm

```
Given \(x_{0}\);
Set \(\nabla f_{0}=\nabla f\left(x_{0}\right) ; f_{0}=f\left(x_{0}\right) d_{0}=-\nabla f_{0} ; k \leftarrow 0\);
While \(\nabla f_{k} \neq 0\)
    Compute \(\alpha_{k}\), the optimal solution of \(\min _{\alpha \geq 0} f\left(x_{j}+\alpha d_{j}\right)\)
        \(x_{k+1} \leftarrow x_{k}+\alpha_{k} d_{k}\)
    Evaluate \(d_{k+1}=-\nabla f_{k+1}\)
    \(\beta_{k+1} \leftarrow \frac{\nabla f_{k+1}^{\prime} \nabla f_{k+1}}{\nabla f_{k}^{\prime} \nabla f_{k}}\)
    \(d_{k+1} \leftarrow-\nabla f_{k+1}+\beta_{k+1} d_{k}\)
end (while)
```

Usually a restarting procedure is included and after n steps the process is reestarted with a pure gradient step. Thus the following step is considered

Replace x_{0} by x_{n} and go back to Step 1 .

Non Linear Conjugate Gradient Methods

Example 8.8.7 Bazaraa. A few differences... Notation His $\lambda=$ our α. His α is our β $\min \left(x_{1}-2\right)^{4}+\left(x_{1}-2 x_{2}\right)^{2}$

Table 8.14 Summary of Computations for the Method of Fletcher and Reeves

Iteration k	$\begin{gathered} \mathbf{x}_{k} \\ f\left(\mathbf{x}_{k}\right) \end{gathered}$	j	$\begin{gathered} \mathbf{y}_{f} \\ f\left(\mathbf{y}_{j}\right) \end{gathered}$	$\nabla f\left(\mathbf{y}_{j}\right)$	$\left\\|\nabla f\left(\mathbf{y}_{j}\right)\right\\|$	α_{j-1}	dj	i_{j}	y_{j+1}
1	$\begin{gathered} (0.00,3.00) \\ 52.00 \end{gathered}$	1	$\begin{gathered} (0.00,3.00) \\ 52.00 \end{gathered}$	$(-44.00,24.00)$	50.12	-	(44.00, -24.00)	0.062	(2.70, 1.51)
		2	$\begin{gathered} (2.70,1.51) \\ 0.34 \end{gathered}$	(0.73, 1.28)	1.47	0.0009	$(-0.69,-1.30)$	0.23	(2.54, 1.21)
2	$\begin{gathered} (2.54,1.21) \\ 0.10 \end{gathered}$	1	$\begin{gathered} (2.54,1.21) \\ 0.10 \end{gathered}$	(0.87, -0.48)	0.99	-	$(-0.87,0.48)$	0.11	(2.44, 1.26)
		2	$\begin{gathered} (2.44,1.26) \\ 0.04 \end{gathered}$	(0.18, 0.32)	0.37	0.14	$(-0.30,-0.25)$	0.63	(2.25, 1.10)
3	$\begin{gathered} (2.25,1.10) \\ 0.008 \end{gathered}$	1	$\begin{gathered} (2.25,1.10) \\ 0.008 \end{gathered}$	$(0.16,-0.20)$	0.32	-	$(-0.16,0.20)$	0.10	(2.23, 1.12)
		2	$\begin{gathered} (2.23,1.12) \\ 0.003 \end{gathered}$	(0.03, 0.04)	0.05	0.04	$(-0.036,-0.032)$	1.02	(2.19, 1.09)
4	$\begin{gathered} (2.19,1.09) \\ 0.0017 \end{gathered}$	1	$\begin{gathered} (2.19,1.09) \\ 0.0017 \end{gathered}$	(0.05, -0.04)	0.06	-	$(-0.05,0.04)$	0.11	(2.185, 1.094)
		2	$\begin{gathered} (2.185,1.094) \\ 0.0012 \end{gathered}$	(0.002, 0.01)	0.02				

Non Linear Conjugate Gradient Methods

Non Linear Conjugate Gradient Methods

Comments on Non Linear Conjugate Gradient Methods

Advantages

- use relatively little memory for large-scale problems
- require no numerical linear algebra, so each step is quite fast.

Disadvantages

- Typically converge much more slowly than Newton or quasi-Newton methods.
- steps are typically poorly scaled for length, so the line search algorithm may require more iterations each time to find an acceptable step.

> Fletcher and Reeves can perform better if it is periodically restarted along the steepest descent direction

Conjugate Direction Methods

Interpretation of the properties of conjugate directions.

Figure 3: The contour plot of a function, with the steps of the steepest descent method in red

Figure 4: The contour plot of a function, with the steps of the steepest descent method in red and of the conjugate gradient method in green

Conjugate Direction Methods

Exercise - week (17/07, 23:59)
Consider the quadratic form $f(x)=c^{t} x+\frac{1}{2} x^{t} H x$ with H a symmetric $n \times n$ matrix. In many applications, it is desirable to obtain separability in the variables by eliminating the cross- product terms. This could be done by rotating the axes as follows. Let D be an $n \times n$ matrix whose columns $d_{1}, d_{2}, \ldots . d_{n}$ are H conjugate. Let $x=D y$.
a) Give an example of quadratic problem ($n \geq 2$, non-trivial) and build the H -conjugate directions
b) For the example, verify that with the rotation, the quadratic form is equivalent to

$$
\begin{aligned}
& \sum_{j=1}^{n} \alpha_{j} y_{j}+\frac{1}{2} \sum_{j=1}^{n} \beta_{j} y_{j}^{2}, \text { where } \beta_{j}=d_{j}^{t} H d_{j} \text { and }\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)=c^{t} D \text { for } \\
& j=1,2 \ldots n
\end{aligned}
$$

Translating and rotating the axes could be accomplished by the transformation $x=D y+z$, where z is any vector satisfying $H z+c=0$, that is, $\nabla f(x)=0$. In this case it can be shown that the quadratic form is equivalent to $=c^{t} x+\frac{1}{2} z^{t} H z+\frac{1}{2} \sum_{j=1}^{n} \beta_{j} y_{j}^{2}$
c) Use this result to draw accurate contours of the quadratic form

$$
2 x_{1}-4 x_{2}+x_{1}^{2}+2 X_{1} x_{2}+3 x_{2}^{2}
$$

Conjugate Gradient Methods

Exercice weekly Consider the quadratic form $\frac{3}{2} x_{1}^{2}+2 x_{2}^{2}+\frac{3}{2} x_{3}^{2}+x_{1} x_{3}+2 x_{2} x_{3}-3 x_{1}-x_{3}$
Find the minimizer using conjugate gradient algorithm with starting point $x_{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\prime}$

