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Conjugate Direction Methods

Newton Search

Advantages:

• Excellent performance of Newton search close to the optimum

• Less sensitive to numerical errors than steepest descent search

Disadvantage:

• Very sensitive to starting point x0

• Can fail to converge when starting relatively far from a local optimum!

• Hessian matrix needed at each iteration, as well as solution of a linear system -

Very burdensome task, especially for large-scale systems!

Need to mitigate these deficiencies!
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Conjugate Direction Methods

Conjugate directions

• Conjugate direction methods: intermediate between the method of steepest

descent and Newton’s method.

• They typically perform better than the method of steepest descent, but not as

well as Newton’s method.

Properties of conjugate direction methods

• Solve quadratics of n variables in n steps

• Conjugate gradient algorithm requires no Hessian matrix evaluations

• No matrix inversion and no storage of n × n matrix are require

Celma de Oliveira Ribeiro



Conjugate Direction Methods

Search directions

The optimization methods considered usually find, at iteration k, a direction dk , such

that

xk+1 = xk + αkdk

For a given function f

• Steepest descent

dk = −∇f (xk )

• Newton

dk = −H(xk )
−1∇f (xk )

For quadratic function f (x) = 1
2
x tAx − btx ,

∇f (xk ) = Ax − b

and

H(xk ) = A
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Conjugate Direction Methods

For quadratic functions some nice results can be easily found

Consider a set of directions {dk}and the line search approach

Proposition 1 - Quadratic functions

Consider a quadratic function f (x) = 1
2
x
′
Ax − b

′
x , with A symmetric positive

definite, dk ∈ Rn, dk ̸= 0 and ϕ(λ) = f (xk + λdk ) (line search)

The optimal solution of minλ∈R ϕ(λ) is

λ∗ = −
∇f (xk )tdk
d t
kAdk

This result holds for any direction dk ̸= 0 !!!!

Numerical methods are not necessary
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Conjugate Direction Methods

Exercice Entrega - aula

Verify that the proposition is valid for

A =

[
2 1

1 2

]
b =

[
0

0

]
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Conjugate Direction Methods

Proposition 2 - Quadratic functions

For the steepest descent, the solution for function f (quadratic) is is

λ∗ =
∇f (xk)t∇f (xk)
∇f (xk )tA∇f (xk )

See that this is a special case of the previous proposition!
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Conjugate Direction Methods

Interpretation of the properties of conjugate directions.

Consider 1
2
x tAx − btx

If the matrix A is diagonal, the contours of the function ϕ (x) are ellipses whose axes

are aligned with the coordinate directions, as illustrated below.We can find the

minimizer of this function by performing one-dimensional minimizations along the

coordinate directions

Figure 1: Successive minimization along coordinate axes does not find the solution in n iterations,
for a general convex quadratic.
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Conjugate Direction Methods

Interpretation of the properties of conjugate directions.

When A is not diagonal, its contours are still elliptical, but they are usually no longer

aligned with the coordinate directions. The strategy of successive minimization along

these directions in turn no longer leads to the solution in n iterations (or even in a

finite number of iterations).

Figure 2: successive minimizations along the coordinate directions find the minimizer of a
quadratic with a diagonal Hessian in n iterations.
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Conjugate Direction Methods

Conjugacy

A set of non zero vectors {p0, p1, . . . , pk} is said to be conjugate with respect to the

symmetric positive definite matrix A if

pti Apj = 0 ∀i ̸= j
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Conjugate direction methods

Example 1
Let

A =

 3 0 1

0 4 2

1 2 3


i Show that A is positive definite

ii Considering d0 =
[

1 0 0
]′

construct a set of A conjugate vectors, d0, d1, d2
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Conjugate Direction Methods

• Positive definite det(A1) = 3 > 0 det(A2) = 12 > 0 det(A3) = 20 > 0

•
[

1 0 0
] 3 0 1

0 4 2

1 2 3


 d11

d21
d31

 = 0 ⇒ 3d11 + d31 = 0

Let d1 =
[

1 0 −3
]′

• d2 such that

d
′
0Ad2 = 0⇒ 3d12 + d32 = 0

d
′
1Ad2 = 0⇒ −6d22 − 8d32 = 0

d2 =
[

1 4 −3
]′
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Conjugate Direction Methods
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Conjugate Direction Methods
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Conjugate Direction Methods

Conjugate direction methods

• The search direction dk in iteration k is conjugate to previous ones

(d1, d2, . . . , dk−1).

• Between the method of steepest descent and Newton’s method.

• Implementation requires no Hessian matrix evaluations, no inversions or storage.

• It performs better than Steepest Descent, but not as well as Newton’s method.
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Example 2
Entregar

Consider the quadratic function

f (x) = −12x2 + 4x21 + 4x22 + 4x1x2

Hessian: [
8 −4
−4 8

]

Let d1 =
[

1 0
]′

• Find a conjugate direction
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Conjugate Direction Methods

The Conjugate Direction Algorithm - Quadratic functions

Consider 1
2
x tAx − btx , with with A symmetric positive definite, x ∈ Rn

Because A is symmetric positive definite the function has a global minimizer that can

be found by solving Ax = b

Basic Conjugate Direction Algorithm.

Given a starting point x(0) and and n A-conjugate directions (d1, d2, . . . , dn−1).; for

k ≥ 0

gk = ∇f (xk ) = Axk − b

αk = − g
′
k dk

d
′
k
Adk

xk+1 = xk + αkdk

Theorem For any starting point x0 , the basic conjugate direction algorithm

converges to the unique x∗ (that solves Ax = b ) in n steps; that is, xn = x∗.
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Example
Find the minimizer of

f (x1, x2) =
1

2
x t

[
4 2

2 2

]
x −

[
−1
1

]
x

using the conjugate direction method with the initial point x0 =
[

0 0
]t

and A-

conjugate direction d0 =
[

1 0
]t

and d1 =
[
− 3

8
3
4

]t
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Conjugate Direction Methods

First step

In this case

g0 = Ax0 − b =
[

1 −1
]t

α0 = − g t0dk

d
′
0Ad0

= − 1
4

x1 = x0 + α0d0 =
[
− 1

4
0

]t
Second step

g1 = Ax1 − b =
[

0 − 3
2

]t
α1 = − g t1d1

d
′
1Ad1

= 2

x2 = x1 + α1d1 =
[
−1 3

2

]t
Because f is quadratic and A is positive definite, x2 = x∗
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Conjugate Direction Methods
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Conjugate Direction Methods

First step

In this case

g0 = Ax0 − b =
[

1 −1
]t

α0 = − g t0dk

d
′
0Ad0

= − 1
4

x1 = x0 + α0d0 =
[
− 1

4
0

]t
Second step

g1 = Ax1 − b =
[

0 − 3
2

]t
α1 = − g t1d1

d
′
1Ad1

= 2

x2 = x1 + α1d1 =
[
−1 3

2

]t
Because f is quadratic and A is positive definite, x2 = x∗

Celma de Oliveira Ribeiro



Conjugate Direction Methods

Exercice - Entrega

Repeat the previous exercise for

a. Two alternative initial points

b. The initial direction
[

0 1
]t

(in this case find the conjugate direction and

consider the two initial points proposed in a. )
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Conjugate Gradient Methods

A special case of the Conjugate Direction Method

Ref Luenberger

• In the conjugate gradient method the directions are not specified beforehand, but

rather are determined sequentially at each step of the iteration.

• At step k one evaluates the current negative gradient vector and adds to it a

linear combination of the previous direction vectors to obtain a new conjugate

direction vector along which to move.

Advantages

• is the especially simple formula that is used to determine the new direction

vector. This simplicity makes the method only slightly more complicated than

steepest descent.

• because the directions are based on the gradients, the process makes good

uniform progress toward the solution at every step. This is in contrast to the

situation for arbitrary sequences of conjugate directions in which progress may be

slight until the final few steps

• Although for the pure quadratic problem uniform progress is of no great

importance, it is important for generalizations to nonquadratic problems.
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Conjugate Gradient Methods

A special case of the Conjugate Direction Method

Basic Properties

• The conjugate direction method is very effective. However, we need to specify

the conjugate directions.

• The conjugate gradient algorithm does not use pre specified conjugate directions,

but instead computes the directions as the algorithm proceeds.

• At each stage , the direction is calculated as a linear combination of the previous

direction and the current gradient, in such as way that all the directions are

mutually -conjugate.

• To generate the conjugate vectors, a new dk is obtained by using only the

previous vector dk−1 The new vector is automatically conjugate to all the

previous elements
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Conjugate Direction Methods

• The conjugate gradient method is an iterative method for solving a linear system

of equations Ax = b where A is an n × n symmetric positive definite matrix.

• This problem can be stated equivalently as the following minimization problem:

minϕ(x) =
1

2
x
′
Ax − b

′
x

• One of the remarkable properties of the conjugate direction methods is its ability

to generate, in a very economical fashion, a set of vectors with the property of

conjugacy
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Conjugate Gradient Methods

The algorithm (quadratic functions)

Given x0; set g0 = Ax0 − b; d0 = −g0; k ← 0;

While gk ̸= 0

αk ← −
g
′
k dk

d
′
k
Adk

xk+1 ← xk + αkdk
gk+1 ← Axk+1 − b (This is the gradient at xk+1 )

βk+1 ←
g
′
k+1Adk

d
′
k
Adk

dk+1 ← −gk+1 + βk+1dk

end (while)

The sequence {xk}converges to x∗ in at most n steps.

It is possible to verify that the algorithm is a conjugate direction algorithm,
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Conjugate Gradient Methods

Example 4
Entregar

Consider the quadratic function f (x) = 1
2
x
′
Ax − b

′
x with

A =

 3 0 1

0 4 2

1 2 3

 , b =

 3

0

1


Find the minimizer using the conjugate gradient algorithm. Starting point

x0 =
[

0 0 0
]′
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The Conjugate Gradient for Non quadratic Problems

• When applied to nonquadratic problems, conjugate gradient methods will not

usually terminate within n steps. It is possible therefore simply to continue

finding new directions according to the algorithm and terminate only when some

termina- tion criterion is met.

• The algorithm can be extended to general nonlinear functions by interpreting

f (x) = 1
2
x
′
Ax − b

′
x as a second-order Taylor series approximation of the

objective function.

• For a quadratic function the Hessian is constant. However, for a general nonlinear

function the Hessian is a matrix that has to be reevaluated at each iteration

• Observe that A appears only in the computation of the scalars αk and βk .

• Two simple changes in the preceding algorithm

The αk is obtained through line search

Vector gk is the gradient of the non linear function f
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The Fletcher-Reeves Method

Fletcher-Reeves Algorithm

Given x0;

Set ∇f0 = ∇f (x0);f0 = f (x0) d0 = −∇f0; k ← 0;

While ∇fk ̸= 0

Compute αk , the optimal solution of minα≥0 f (xj + αdj )

xk+1 ← xk + αkdk
Evaluate dk+1 = −∇fk+1

βk+1 ←
∇f

′
k+1∇fk+1

∇f
′
k
∇fk

dk+1 ← −∇fk+1 + βk+1dk

end (while)

Usually a restarting procedure is included and after n steps the process is reestarted

with a pure gradient step. Thus the following step is considered

Replace x0 by xn and go back to Step 1.
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Non Linear Conjugate Gradient Methods

Example 8.8.7 Bazaraa. A few differences... Notation His λ = our α. His α is our β

min (x1 − 2)4 + (x1 − 2x2)
2
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Non Linear Conjugate Gradient Methods
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Non Linear Conjugate Gradient Methods

Comments on Non Linear Conjugate Gradient Methods

Advantages

- use relatively little memory for large-scale problems

- require no numerical linear algebra, so each step is quite fast.

Disadvantages

- Typically converge much more slowly than Newton or quasi-Newton methods.

- steps are typically poorly scaled for length, so the line search algorithm may require

more iterations each time to find an acceptable step.

Fletcher and Reeves can perform better if it is periodically

restarted along the steepest descent direction
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Conjugate Direction Methods

Interpretation of the properties of conjugate directions.

Figure 3: The contour plot of a function, with the steps of the steepest descent method in red

Figure 4: The contour plot of a function, with the steps of the steepest descent method in red and
of the conjugate gradient method in green
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Conjugate Direction Methods

Exercise - week (17/07, 23:59)

Consider the quadratic form f (x) = ctx + 1
2
x tHx with H a symmetric n× n matrix. In

many applications, it is desirable to obtain separability in the variables by eliminating

the cross- product terms.This could be done by rotating the axes as follows. Let D be

an n × n matrix whose columns d1, d2, ....dn are H conjugate. Let x = Dy .

a) Give an example of quadratic problem ( n ≥ 2, non-trivial) and build the

H-conjugate directions

b) For the example, verify that with the rotation, the quadratic form is equivalent to∑n
j=1 αjyj +

1
2

∑n
j=1 βjy

2
j , where βj = d t

j Hdj and (α1α2...αn) = ctD for

j = 1, 2...n

Translating and rotating the axes could be accomplished by the transformation

x = Dy + z, where z is any vector satisfying Hz + c = 0, that is, ∇f (x) = 0. In this

case it can be shown that the quadratic form is equivalent to

= ctx + 1
2
ztHz + 1

2

∑n
j=1 βjy

2
j

c) Use this result to draw accurate contours of the quadratic form

2x1 − 4x2 + x21 + 2X1x2 + 3x22
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Conjugate Gradient Methods

Exercice weekly Consider the quadratic form
3
2
x21 + 2x22 + 3

2
x23 + x1x3 + 2x2x3 − 3x1 − x3

Find the minimizer using conjugate gradient algorithm with starting point

x0 =
[

0 0
]′
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