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Background & aims: Milk consumption is a modifiable lifestyle factor that has been associated with
several cancer types in observational studies. Limited evidence exists regarding the causality of these
relationships. Using a genetic variant (rs4988235) near the lactase gene (LCT) locus that proxies milk
consumption, we conducted a comprehensive survey to assess potential causal relationships between
milk consumption and 12 types of cancer.
Methods: Our analyses were conducted using white British participants of the UK Biobank (n ¼ up to
255,196), the FinnGen cohort (up to 260,405), and available cancer consortia. We included cancers with
previous evidence of an association with milk consumption in observational studies, as well as cancers
common in both UK Biobank and FinnGen populations (>1000 cases). We evaluated phenotypic asso-
ciations of milk intake and cancer incidence in the UK Biobank, and then used a Mendelian random-
isation (MR) approach to assess causality in the UK Biobank, FinnGen consortium, and combined analyses
incorporating additional consortia data for five cancers. In MR meta-analyses, case numbers for cancers
of breast, ovary, uterus, cervix, prostate, bladder and urinary tract, colorectum, and lung ranged between
6000 and 148,000 cases, and between 780 and 1342 cases for cancers of the liver, mouth, stomach and
diffuse large B-cell lymphoma.
Results: In observational analyses, milk consumption was associated with higher risk of bladder and
urinary tract cancer (OR 1.23, 95% CI 1.03e1.47), but not with any other cancer. This association was not
confirmed in the MR analysis, and genetically predicted milk consumption showed a significant asso-
ciation only with lower risk of colorectal cancer (0.89, 0.81e0.98 per additional 50 g/day). In the MR
analyses conducted among individual cohorts, genetically predicted milk consumption provided evi-
dence for an association with lower colorectal cancer in the FinnGen cohort (0.85, 0.74e0.97), and in the
UK Biobank greater risk of female breast cancer (1.12, 1.03e1.23), and uterine cancer in pre-menopausal
females (3.98, 1.48e10.7).
Conclusion: In a comprehensive survey of milk-cancer associations, we confirm of a protective role of
milk consumption for colorectal cancer. Our analyses also provide some suggestion for higher risks of
breast cancer and premenopausal uterine cancer, warranting further investigation.

© 2022 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
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1. Introduction

The consumption of milk, an important dietary constituent for
nutrition, has been associated with the risk of several cancer types.
Since milk intake represents a lifestyle factor amenable to modifi-
cation, it is of wide public interest to ascertain whether milk
drinking has any beneficial or adverse causal effects on the risk of
cancer.

Recent umbrella reviews of observational studies have re-
ported an inverse association of milk consumptionwith the risk of
lism. All rights reserved.
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Abbreviations

BCAC Breast Cancer Association Consortium
BMI Body mass index
CI Confidence interval
DLBCL Diffuse large B-cell lymphoma
EPIC European Prospective Investigation into Cancer

and Nutrition
ER Oestrogen receptor
ICD International Classification of Diseases
ILCCO International Lung Cancer Consortium
LCT Lactase gene symbol
MR Mendelian randomisation
OCAC Ovarian Cancer Association Consortium
OR Odds ratio
PRACTICAL Prostate Cancer Association Group to Investigate

Cancer Associated Alterations in the Genome
SNP Single nucleotide polymorphism
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colorectal cancer [1e3] and a positive association with the risk of
prostate cancer [1,3]. However, for many cancers findings for an
association with milk intake are inconsistent, and problems
arising from variable study designs and in some cases, low
methodological quality, was noted in an overview of meta-
analyses and systematic reviews covering 14 different cancer
sites [4]. For example, while meta-analyses have provided some
evidence for association of milk consumption with a higher risk of
ovarian cancer [5], many studies have reported no association
[6e8] or milk type-dependent associations [9]. For bladder cancer,
the most recent meta-analyses have reported either an associa-
tion of milk consumption with a lower risk [10,11], no association
[12], or milk-type dependent associations [13]. Inconsistent
findings have also been reported for breast cancer [14e17]. Among
rarer types of cancer, meta-analyses have suggested an associa-
tion between milk consumption and a lower risk of oral and
oropharyngeal cancers [18], higher risk of gastric cancer [19] and
higher risk of the diffuse large B-cell lymphoma (DLBCL) subtype
of non-Hodgkin's lymphoma [20]. Milk intake has also shown an
association with higher liver cancer mortality [21].

Since observational studies are susceptible to unknown con-
founding and reverse causality, it is unclear whether many of the
reported associations reflect causal effects of milk consumption.
Mendelian randomisation (MR) is a technique that helps minimise
these undesirable influences by using germline genetic variant(s)
established at birth to proxy an exposure. Variation in the lactase
gene locus (LCT) encoding an enzyme that helps digest the milk
sugar, lactose, affects levels of milk intake and is used in epidemi-
ological studies as a proxy for this exposure. So far MR studies have
provided some evidence for a causal effect of milk consumption on
lower colorectal cancer risk, and increased risk of prostate cancer
[22], while for other types of cancer, evidence is either absent or
remains to be investigated.

In this study we used phenotypic and genetic data to evaluate
the observational and genetic relationships between milk intake
and several types of cancer. We conducted the analyses using data
from the UK Biobank, and for the MR analyses, also included in-
formation from the FinnGen study [23] and all available consortia
meta-analyses. We included cancers with more than 1000 cases in
both the UK Biobank and FinnGen cohort databases and also
investigated some rarer cancers where previous meta-analyses of
observational studies have suggested risk differences associated
with milk consumption.
2

2. Participants and methods

2.1. UK Biobank

The UK Biobank is a longitudinal cohort of around half a
million participants aged 37e73 years (99.5% between 40 and 69
years) at the recruitment between 2006 and 2010 [24]. Extensive
phenotypic and genetic data were collected, applying
touchscreen questionnaires, verbal interviews, physical mea-
surements, and sample collections (blood, urine and saliva), with
the data further enriched through linking to electronic health
records including cancer registries. The UK Biobank analyses
were restricted to unrelated white British participants that had
either no history of cancer or whose first ever diagnosed cancer
was one of the 12 cancer outcomes investigated in this study. For
observational analyses, we excluded all cases of cancer diagnosed
before the baseline survey (‘prevalent cases’), and the sample
population was restricted to those with complete milk intake and
covariate information, after which up to 249,418 participants
remained. For MR analyses we retained prevalent and incident
cancer cases, and used data on up to 255,196 individuals with
information for lactase persistence genetic variant rs4988235
(Supplementary Fig. 1). For female cancer analyses we stratified
by menopausal status using information from the UK Biobank
baseline assessment, classifying individuals based on the ques-
tion “Have you had your menopause (periods stopped)”,
including only those who answered “yes” or “no”. Participants
who had had a hysterectomy or who were not sure/did not
answer were excluded.

Information about the type of milk that was mainly consumed
by the UK Biobank participants was collected using touchscreen
questionnaire, with the responses categorised as “full cream”,
“semi-skimmed”, “skimmed”, “soya”, “other type of milk”, and
“never/rarely havemilk” [25]. Those who had consumed full cream,
semi-skimmed or skimmed milk were classified as dairy milk
drinkers while the remaining others were classed as non-dairymilk
drinkers, as previously described [26]. All participants provided
informed consent, and ethical approval for the UK Biobank was
granted by the National Information Governance Board for Health
and Social Care and North West Multicentre Research Ethics
Committee (11/NW/0382). We conducted the present study under
application 20,175.

2.2. Cancer diagnoses

We included as outcomes, seven sex unspecific cancers
including cancers of the bladder and urinary tract (referred to as
bladder cancer here, for simplicity), colorectum, liver, lung, mouth,
stomach, and DLBCL; four female cancers including those of the
breast, cervix, uterus, and ovary; and prostate cancer in men. For
the UK Biobank cohort, we identified cancer cases using cancer data
available until November 2020 (for England and Wales) and
October 2015 (for Scotland data) through linkage to the national
cancer registry, and additionally used self-reported and hospital-
inpatient data to define the controls. We first mapped the ICD
(International Classification of Diseases) codes to ‘phecodes’, rep-
resenting classifications that are more closely aligned with diseases
commonly cited in clinical practice and genomic studies [27].
Diagnostic information is presented in Supplementary Table 1. For
UK Biobank participants with multiple cancer diagnoses, we
included the first diagnosed cancer, based on the date of diagnosis.
For observational analyses, incident cancer cases were those re-
ported after the baseline assessment. As controls for observational
and MR analyses of the UK Biobank we used participants with no
report of any type of cancer based on self-report, cancer registry, or
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hospital inpatient data, or benign or in situ tumour from the cancer
registry.

2.3. Genotyping

We used the rs4988235 single nucleotide polymorphism (SNP)
near the lactase gene (LCT) for instrumenting milk consumption.
The variant has ‘C’/‘T’ alleles, and the ‘T’ allele is linked with lactase
persistence in European populations, with each additional ‘T’ allele
associating with 17.1 g/day (95% confidence interval (CI) 10.6, 23.6)
more milk consumption in a subsample (n ¼ 12,722) of the Euro-
pean Prospective Investigation into Cancer and Nutrition (EPIC)-
InterAct study [28]. The rs4988235 variant was extracted from the
third release genome-wide UK Biobank data, and coded as 0, 1, or 2,
as per the number of ‘T’ alleles.

2.4. FinnGen and consortia

For the MR analyses, we supplemented data with summary-
based information available from FinnGen, and different indepen-
dent genome-wide association consortia. The FinnGen project aims
to collect genomic and digital healthcare data from 500,000 in-
dividuals aged 18 years and above, and brings together almost all
Finnish biobanks, and different Finnish pharmaceutical and health
sectors [23]. Variant-disease association-based summary results
can be accessed from the FinnGen database, with the current
version (release 6, data release date: January 24, 2022) providing
summary results for 260,405 (147,061 female and 113,344 male)
participants, over 16 million variants, and nearly 2800 disease
endpoints [29]. We additionally used variant-based summary re-
sults from non-overlapping consortia where available from theMR-
Base database [30], which was possible for cancers of the breast
(from Breast Cancer Association Consortium (BCAC); 122,977 cases)
[31], endometrium (O'Mara et al. genome-wide association study;
12,906 cases) [32], ovary (Ovarian Cancer Association Consortium
(OCAC); 25,509 cases) [33], prostate (Prostate Cancer Association
Group to Investigate Cancer Associated Alterations in the Genome
(PRACTICAL) consortium; 79,148 cases) [34], and lung (Interna-
tional Lung Cancer Consortium (ILCCO); 11,348 cases) [35].

2.5. Statistical analysis

Observational analyses were conducted using the UK Biobank
using logistic regression to explore the association between dairy
milk intake and different cancer outcomes in a model adjusted for
basic confounders (age, sex, and assessment centre), socioeconomic
factors (education, Townsend deprivation index and employment),
lifestyle factors (physical activity, smoking, alcohol consumption,
and body mass index), long-standing illness, and general health
status (Supplementary Table 2). MR analyses were performed using
the rs4988235-milk consumption estimates (in g/day) from the
EPIC-InterAct study [36], and rs4988235-cancer outcomes esti-
mates from the UK Biobank, FinnGen cohort, and corresponding
cancer consortium where available, with the estimates from UK
Biobank being from logistic regression after adjusting for age, sex,
assessment centre, genotyping array, 40 principal components and
birth location. The causal estimates were calculated using ratio of
coefficients (rs4988235-cancer estimates/rs4988235-milk con-
sumption) MR method [37]. We combined causal estimates from
different sources (UK Biobank, FinnGen, and consortia) using a
random-effect meta-analysis method to compute the pooled causal
effect estimate for each cancer, and tested heterogeneity using the
I2 statistic [38]. In secondary analysis, we repeated the MR analyses
3

of female-specific cancer types among pre- and postmenopausal
females using data from the UK Biobank. In sensitivity analyses, we
assessed associations of genetically proxied milk consumptionwith
different oestrogen receptor subtypes of breast cancer (ER- or ERþ)
using summary data from BCAC [31]. All the analyses were con-
ducted using R version 3.6.1 and used the ‘TwoSampleMR’ package
[30] for applying the MR ratio method, and the ‘metafor’ package
[39] for performing the meta-analyses.

3. Results

3.1. Association of LCT gene variant with milk intake

For the genetic analyses our study population consisted of
255,196 participants of the UK Biobank, of which 53.4% were fe-
male. Population characteristics by lactase persistence genotypes
are shown in Table 1, with extended information in Supplementary
Table 3. As expected, lactase persistence was associated with
greater likelihood of being a dairymilk consumer. In addition, those
with lactase persistence tended to have a higher BMI, be frommore
deprived areas, and have achieved a lower level of education.
Lactase persistence did not differ by sex, age, employment status, or
long-standing illness.

3.2. Phenotypic associations with cancer types

Findings from observational analyses after full adjustment for
age, sex, assessment centre, socioeconomic and lifestyle factors, are
presented in Table 2. Dairy milk consumption was associated with
greater risk of cancer of the bladder (odds ratio (OR) 1.23, 95% CI
1.03e1.47). No other phenotypic associations were observed among
the other cancer types.

3.3. Association of the LCT variant with cancer types

We next used the MR approach to evaluate effects of genetically
proxied milk consumption on risk of the 12 cancer outcomes, using
the UK Biobank, FinnGen cohort, and cancer consortia (available for
breast (female), uterus, ovary, prostate, and lung cancers), and
combined population meta-analyses for each cancer type (Fig. 1).
Among individual cohorts, genetically predicted milk consumption
showed significant associations with lower colorectal cancer in the
FinnGen cohort (OR per 50 g highermilk intake per day: 0.85, 95% CI:
0.74e0.97), and higher breast cancer risk among women in the UK
Biobank (1.12, 1.03e1.23). There was some indication for an associ-
ation between milk intake and other cancers in individual cohorts,
including positive estimates for DLBCL (1.45, 1.00e2.11) and lung
cancer (1.21, 1.00e1.48) in the UK Biobank, and a negative estimate
for ovarian cancer in the FinnGen population (0.78, 0.60e1.01).

Low to moderate heterogeneity was detected across cohorts
included in the combined MR analyses for the tested cancer out-
comes (all I2<67.8%). In pooled analyses using a random-effects
model, genetically predicted milk consumption was associated
only with lower risk of colorectal cancer (0.89, 0.81e0.98). Evi-
dence was inconclusive with respect to an association between
milk intake and cancer of the mouth (0.75, 0.55e1.03) and with
cancers of the uterus (1.08, 0.99e1.18) and breast (1.04, 0.98e1.11)
in females.

For female cancers, whichmay be influenced by hormone levels,
we also performed MR analyses in pre- and postmenopausal
women in the UK Biobank cohort. This revealed an association of
genetically proxied milk consumption with higher risk of cancer of
the uterus among pre-menopausal females. For breast cancer, MR



Table 2
Phenotypic associations between dairy milk consumption and incidence of 12
cancers in the UK Biobank.

Cancer type Cases Controls Odds ratio (95% CI) P-value

Sex unspecific (females
and males)
Bladder 2270 246,031 1.23 (1.03e1.47) 0.02
Colorectal 3387 246,031 1.04 (0.91e1.18) 0.61
Diffuse large B-cell
lymphoma

449 246,031 1.12 (0.77e1.63) 0.56

Liver 306 246,031 1.12 (0.71e1.74) 0.63
Lung 2144 246,031 1.05 (0.89e1.24) 0.58
Mouth 355 246,031 0.81 (0.56e1.16) 0.25
Stomach 369 246,031 1.26 (0.81e1.96) 0.31

Sex-specific (females)
Breast 5799 131,639 0.98 (0.89e1.07) 0.62
Cervical 272 131,639 0.95 (0.64e1.42) 0.80
Ovarian 722 131,639 1.11 (0.85e1.45) 0.46
Uterine 797 131,639 1.23 (0.94e1.61) 0.13

Sex-specific (males)
Prostate 6451 114,392 1.05 (0.95e1.18) 0.33

Estimates are from logistic regression analyses and reflect comparisons between
dairy milk consumers vs. participants not using milk/consuming non-dairy milk.
Models were adjusted for basic covariates (age, sex, and assessment centre) socio-
economic factors (education, Townsend deprivation index and employment), life-
style factors (physical activity, smoking, alcohol consumption, and body mass
index), long-standing illness, and general health status. CI indicates confidence in-
terval. P < 0.05 shown in bold.

Table 1
UK Biobank participants' characteristics by lactase persistent genotype.

All n (%) Lactase persistent genotype

CC CT TT P-value

All 255,196 15,050 (24.8) 93,381 (34.4) 146,765 (40.8)
Age 0.9
39e49 years 63,348 (24.8) 3706 (5.9) 23,096 (36.5) 36,546 (57.7)
50e59 years 87,672 (34.4) 5163 (5.9) 32,117 (36.6) 50,392 (57.5)
60e73 years 104,176 (40.8) 6181 (5.9) 38,168 (36.6) 59,827 (57.4)

Sex 0.52
Female 136,166 (53.4) 8060 (5.9) 49,786 (36.6) 78,320 (57.5)
Male 119,030 (46.6) 6990 (5.9) 43,595 (36.6) 68,445 (57.5)

BMI 2.0E¡12
Underweight, < 18.5 kg/m2 1245 (0.5) 91 (7.3) 491 (39.4) 663 (53.2)
Normal, (�18.5 and <25) kg/m2 83,477 (32.7) 5160 (6.2) 30,948 (37.1) 47,369 (56.7)
Overweight, (�25 and <30) kg/m2 108,316 (42.4) 6235 (5.8) 39,613 (36.6) 62,468 (57.7)
Obese, � 30 kg/m2 61,332 (24.0) 3523 (5.7) 22,014 (35.9) 35,795 (58.4)
Missing 826 (0.3) 41 (5.0) 315 (38.1) 470 (56.9)

Education 1.4E¡07
None 41,053 (16.1) 2299 (5.6) 14,725 (35.9) 24,029 (58.5)
NVQ/CSE/A levels 91,501 (35.9) 5352 (5.8) 33,578 (36.7) 52,571 (57.5)
Degree/professional 120,567 (47.2) 7296 (6.0) 44,338 (36.8) 68,933 (57.2)
Missing 2075 (0.8) 103 (5.0) 740 (35.7) 1232 (59.4)

Townsend deprivation 9.3E¡04
Less deprived (below the median) 135,064 (52.9) 8083 (6.0) 49,701 (36.8) 77,280 (57.2)
More deprived (above the median) 119,808 (46.9) 6952 (5.8) 443,551 (36.4) 69,305 (57.8)
Missing 324 (0.1) 15 (4.6) 129 (39.8) 180 (55.6)

Dairy milk intake 6.90E¡08
No 19,993 (7.8) 1407 (7.0) 7303 (36.5) 11,283 (56.4)
Yes 235,077 (92.1) 13,629 (5.8) 86,033 (36.6) 135,415 (57.6)
Missing 126 (0.1) 14 (11.1) 45 (35.7) 67 (53.2)

P-value from likelihood ratio test from linear regression on lactase persistent genotypes (0, 1 and 2 T-alleles) against the characteristics with adjustment for age and sex. P-
value below Bonferroni-adjusted threshold of 4.5 � 10�3 shown in bold.
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showed association with higher risk in post-menopausal females,
with a directionally consistent estimate for premenopausal breast
cancer (Table 3). Having observed limited evidence of an adverse
effect on breast cancer, in sensitivity analyses we assessed associ-
ations of genetically proxied milk with different oestrogen receptor
(ER) subtypes of breast cancer (ER- or ERþ) using BCAC consortia
information. No association was observed for either breast cancer
type (Supplementary Table 4 in Supporting Information).
4

4. Discussion

In this large-scale study we evaluated relationships between
milk consumption and 12 cancer types that are either common or
whose risk has previously been associated with milk consumption.
We confirmed a protective association between genetically pre-
dicted milk consumption and lower risk of colorectal cancer, while
some evidence for a potentially adverse association was seen for
female breast cancer, and uterine cancer risk in premenopausal
females, warranting further investigation. We did not find
convincing evidence to support effects of milk consumption on risk
of the other types of cancer investigated.

There is strong evidence from observational studies of an in-
verse association between milk intake and colorectal cancer risk
[1e3,40], and our MR findings provide causal evidence for this
association, adding weight to another MR study [22] by inclusion of
a larger series of colorectal cancer cases. The inverse association of
milk (and other dairy) intake with colorectal cancer risk has been
attributed to its high calcium content, as dietary calcium intake is
also inversely related to risk of this cancer [2,40e45]. There are
several potential mechanisms by which calcium could be protec-
tive, including neutralisation of pro-carcinogenic effects of free
fatty acids and bile acids, inhibition of mucosal cell proliferation
and promotion of cell differentiation and apoptosis, suppression of
oxidative DNA damage, andmodulation of colorectal cancer-related
cell signalling pathways [46e48]. Milk also contains other poten-
tially chemoprotective agents such as conjugated linoleic acids,
short chain fatty acid butyric acid [46,49], and lactoferrin [50].
Consumption of iron supplements and iron-rich foods such as red
and processed meats are linked to higher risk of colorectal cancer,
with the pro-oxidative effects of iron likely contributing to DNA
damage [51,52]. Given that calcium [53e56] and certain milk pro-
teins [57] interfere with dietary iron absorption, they could
potentially be protective that way.



Fig. 1. Associations of higher genetically proxied milk consumption with 12 cancer types. Estimates are per (estimated) 50 g per day increase in milk consumption (1 milk
intake-increasing allele of rs4988235 equates to approximately 17.1 g per day). OR indicates odds ratio, and 95% CI indicates 95% confidence interval. Consortia include BCAC [31],
OCAC [33], PRACTICAL [34], and ILCCO [35] for cancers of the breast, ovary, prostate and lung, respectively, and a genome-wide association study cohort for cancer of the endo-
metrium (uterus) [32].
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Table 3
Associations of genetically predicted milk consumption and female cancers by
menopausal status in the UK Biobank.

Cases Controls Odds ratio (95% CI) P-value

Breast
Pre-menopause 1539 33,368 1.25 (0.97e1.60) 8.8 � 10�02

Postmenopause 9100 79,714 1.14 (1.03e1.27) 1.5 £ 10¡02

Cervix
Pre-menopause 1329 33,368 1.07 (0.82e1.40) 6.2 � 10�01

Post-menopause 2051 79,714 0.99 (0.80e1.23) 9.6 � 10�01

Ovary
Pre-menopause 170 33,368 0.90 (0.43e1.86) 7.7 � 10�01

Postmenopause 957 79,714 1.23 (0.90e1.68) 2.0 � 10�01

Uterus
Pre-menopause 123 33,368 3.98 (1.48e10.7) 6.2 £ 10¡03

Postmenopause 1106 79,714 1.00 (0.75e1.34) 9.8 � 10�01

Estimates from the UK Biobank are from logistic regression after adjustment for age,
sex, and assessment centre, genotyping array, 40 principal components and birth
location. 95% CI indicates 95% confidence interval. P < 0.05 shown in bold.
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Our study also uncovered a potential role for milk in increasing
the risk of uterine cancer. It has previously been suggested that
steroid hormones and growth factors such as oestrogens present in
milk and dairy products may increase risk of uterine cancer among
postmenopausal women; particularly those not receiving hormone
replacement therapy [58]. However, our study suggests milk con-
sumption may increase the risk of uterine cancer in pre-
menopausal women only. A potential mechanism may be the
menopause-delaying effects of milk consumption [59,60] since
later menopause is a risk factor for uterine cancer [61]. Milk con-
sumption also has an increasing effect on body mass index (BMI)
[26] and strong evidence exists for a positive association between
BMI and the risk of endometrial cancer (the most common uterine
cancer) in premenopausal women [62].

We observed some evidence for an adverse effect of genetically
proxied milk consumption on risk of female breast cancer in the UK
Biobank population. These findings are, however, directionally
opposed to findings from meta-analyses of observational studies
which tend to link milk and dairy consumption to lower risk of
breast cancer; particularly consumption of low fat or fermented
dairy products [1,14,15,17,63,64], although not all studies have
found conclusive associations [16].While the reason for the adverse
association in the UK Biobank MR analysis is unclear, it could be
related to the type of milk products used, and commonly, lactose
intolerant individuals can tolerate (and are recommended to use)
fermented milk products [65].

A positive association was observed between dairy milk con-
sumption and cancer of the bladder and urinary tract in our UK
Biobank observational analysis but not in our MR analyses,
consistent with previous MR studies [22,66]. Previously, findings
from meta-analyses of observational studies have been inconsis-
tent, showing either associations of milk consumption with lower
risk of bladder cancer [10,11,13], no association [12,67], or milk
type-dependent associations [13]. It cannot be excluded that
reverse causality, or a confounding effect of kidney (dys)function,
may influence the relationship between milk consumption and
cancer of the bladder and urinary tract. For example, a lower
glomerular filtration rate (a measure of poor kidney function) is
associated with greater risk of renal and urothelial cancer [68] and
is linked to lower retention of serum proteins. Endocrine signals of
low protein states can drive protein appetite, and indeed, the hor-
mone fibroblast growth factor 21, produced by the liver andmuscle,
signals protein deficiency and promotes a preference for protein-
rich foods [69]. This kidney-protective hormone is emerging as an
early marker of chronic kidney disease [70] raising the possibility
that subclinical changes in kidney function could influence appetite
for protein-rich dietary items such asmilk. On the other hand, a low
6

protein diet is often recommended for management of chronic
kidney disease to reduce stress on the glomerulus [71]. Kidney
function therefore has the potential to influence milk intake in
different ways, which may underlie some of the inconsistences in
the reported relationship between milk intake and risk of bladder-
related cancers. Despite utilising large populations, we acknowl-
edge that we were underpowered to confirm suggested milk as-
sociations with some of the rarer cancers (mouth, liver, stomach,
DLBCL). However, a suggestive trend towards lower mouth cancer
risk was seen in the UK Biobank phenotypic analysis, which is not
inconsistent with previous observational studies linking milk
intake with lower risk of oral and oropharyngeal cancers [18]. Also
MR point estimates for cancer of the liver in the UK Biobank and
FinnGen were directionally consistent with previous positive ob-
servations [21,72], warranting further studies with larger numbers
of cases. Our analyses did not support a causal relationship with
prostate cancer, in contrast to some limited MR evidence reported
previously, using a smaller series of cases [22].

A strength of this study is the inclusion of a wide range of
cancers, and unlike earlier investigations, we were able to look into
all cancer types that have shown previous evidence of association
with milk consumption in observational meta-analyses. The use of
MR helps overcome some hurdles that complicate observational
studies such as heterogeneity due to differences in measurements
of milk intake across different studies, and reverse causality where
symptoms or signs of cancer lead to a change in milk drinking
habits. While we included some of the world's largest cohorts and
supplemented information with consortia findings, we may have
lacked power to detect an association for some cancers, in partic-
ular for those where consortia information was not available. In
genetically instrumenting milk consumption with the lactase
variant, we must acknowledge the possibility of pleiotropic effects.
For example, the lactase persistence allele was associated with
some demographic traits in our UK Biobank population, tending to
be more common among individuals with lower education
attainment and less common among individuals considered to be
less deprived. The lactase persistence allele also associates with
consumption of other dietary factors, and as such we cannot
exclude the possibility of their effect on the outcome. For example,
the milk-increasing allele has previously been found to associate
with lower intake of fruits, non-alcoholic beverages, and wine [28],
and it is feasible that lactose intolerant individuals that drink less
milk compensate by supplementing their diet with better tolerated
dairy products such as cheese and yoghurts, and consuming alter-
native beverages such as fruit juice or hot drinks. Milk drinking
habits and tolerance are also associated with differences in BMI
[26], andmodulations in themicrobiome [73], whichmay influence
effects on the outcome. For analyses stratified by menopausal sta-
tus, we acknowledge limitations such as not being able to confirm
whether carcinogenesis started pre or post menopause, or to rule
out an effect of milk consumption (or related factors) on the age of
menopause. Finally, as we have limited our study to populations of
European ancestry to reduce the possibility of population stratifi-
cation biases such as differences in frequency of the lactase
persistence allele, our observations may not be generalisable to
other populations.

5. Conclusion

Our study provided additional support for a causal association
between higher genetically predicted milk consumption and lower
risk of colorectal cancer and some evidence of an increasing effect
on female breast cancer and uterine cancer. No evidence of cau-
sality was observed for a variety of other cancer types, however
several suggestive associations warrant further investigation.
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