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Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary

hormones, in that it is predominantly inhibitory, by means of dopamine from the tubero-

infundibular dopamine neurons. In addition, prolactin does not have an endocrine target

tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead,

it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate

production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively

simplename,prolactin has a broadrange offunctions in the body, inadditionto its definingrole

in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that

are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief

overview of our current understanding of the neuroendocrine control of prolactin secretion,

in particular focusing on the plasticity evident in this system, which keeps prolactin secretion

at low levels most of the time, but enables extended periods of hyperprolactinemia when

necessary for lactation. Key prolactin functions beyond milk production will be discussed,

particularly focusing on the role of prolactin in inducing adaptive responses in multiple

different systems to facilitate lactation, and the consequences if prolactin action is impaired.

A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state

might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give

a flavour of both the history and current state of the field of prolactin neuroendocrinology, and

identify some exciting new areas of research development.
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Introduction
When Geoffrey Harris wrote his influential monograph on

‘Neural Control of the Pituitary Gland’, it was already

apparent that prolactin, or ‘lactogenic hormone’ as he

referred to it, might be controlled differently to the other

adenohypophyseal hormones. Harris convincingly built the

case that humeral factors from the hypothalamus control

secretion of anterior pituitary hormones, correctly predict-

ing the existence of hypothalamic ‘releasing factors’ that

mediate the neural control of pituitary secretions (Harris

1948). Despite the clear evidence that neural stimuli (such

as suckling) could stimulate prolactin secretion, however,
Harris noted that cutting the pituitary stalk did not abolish

lactation (Dempsey & Uotila 1940), leading to the inevitable

conclusion that a hypothalamic ‘prolactin-releasing factor’

was not necessary to stimulate prolactin secretion. Indeed,

it was subsequently shown in hypophysectomised rats that

ectopic pituitary grafts were able to maintain corpus luteum

function (Everett 1954) and lactation (Cowie et al. 1960),

demonstrating hypothalamic-independent secretion of

prolactin from the grafts. At first impression, this appeared

to contradict Harris’ principle of neural control of the

anterior pituitary. But further observations identified the
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fact that hypothalamic regulation was indeed critical for

normal prolactin secretion, as Harris predicted, but that the

mode of control was different. Everett found that while

pituitaries located away from the hypothalamus would

induce pseudopregnancy, a marker of elevated prolactin

secretion in rodents, normal cycles (and therefore normal

low levels of prolactin) would resume if transplanted

pituitaries were re-vascularised by portal vessels under the

median eminence (Nikitovitch-Winer & Everett 1958). Two

groups independently demonstrated that extracts of the

median eminence/infundibular region could inhibit pro-

lactin secretion from anterior pituitary cells in vitro (Pasteels

1963, Talwalker et al. 1963). Subsequently, it was shown that

median eminence lesions (Arimura et al. 1972) or destruc-

tion of the pituitary stalk (Kanematsu & Sawyer 1973)

resulted in elevated prolactin secretion (accounting for the

pseudopregnancies described earlier by Everett). Thus, it was

proven that the hypothalamus was essential for the

regulation of prolactin secretion, but that it primarily

exerted an inhibitory influence.

This brief review will summarise our current under-

standing of the hypothalamic control of prolactin secretion,

and the neuroendocrine functions of prolactin, highlight-

ing (admittedly selected) areas of current research interest.

From the somewhat contrary beginnings previously intro-

duced, the neural control of prolactin secretion, and indeed

the whole hypothalamo-prolactin axis, continues to prove

itself a bit different from other hypothalamo-pituitary

systems. Not only is the hypothalamic regulation predomi-

nantly inhibitory, as opposed to stimulatory, it also involves

a catecholamine neurotransmitter, dopamine, rather than

the more typical peptide hypothalamic hormones involved

in regulating all other pituitary systems. Prolactin is also the

only anterior pituitary hormone that does not have an

endocrine target tissue, and therefore lacks a classical

hormonal feedback system. It is regulated, instead, by a

short loop feedback whereby prolactin itself stimulates the

secretion of the inhibitory factor, dopamine. Finally, despite

its rather simple and one-dimensional name, prolactin does

much more than simply PROmote LACTation. It is now

recognised as a pleiotrophic hormone with arguably the

widest range of physiological actions of any extracellular

signalling molecule in the body.
Neuroendocrine control of prolactin secretion

Dopamine as a prolactin-inhibitory hormone

Even after the clear demonstration of inhibitory regulation

of prolactin secretion in the 1950s, the search for the
http://joe.endocrinology-journals.org
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inhibitory hormone mediating this action was controver-

sial. All hypothalamic hormones identified to date had been

peptides, and the expectation was that ‘prolactin-inhibitory

factor’ would also be a peptide. Initial clues that this might

not be the case came from observations that drugs such as

reserpine, which depletes endogenous catecholamines,

induced pseudopregnancy in rats (Barraclough & Sawyer

1959), indicative of elevated prolactin. It was assumed,

however, that the functional role of catecholamines were as

neurotransmitters acting in the hypothalamus to regulate

the release of a hypothalamic hormone (Kanematsu et al.

1963). Based on the evidence of dopaminergic nerve

terminals in the median eminence (Fuxe 1963), McLeod

proposed that dopamine may be released into the pituitary

portal system, and thereby acting as a hypothalamic

hormone (as distinct from its neurotransmitter role in

other systems) (MacLeod et al. 1970). He demonstrated

that dopaminergic agonists were effective at suppressing

prolactin secretion in vivo, and perhaps more importantly,

that dopamine could inhibit prolactin secretion from

isolated pituitary glands (MacLeod et al. 1970). Dopamine

was subsequently detected in the pituitary portal blood

(Kamberi et al. 1970), and Porter’s group (and others) found

that variations of levels of dopamine in the portal blood

accounted for changes in prolactin secretion in various

physiological conditions (Ben-Jonathan et al. 1977, 1980,

Gibbs & Neill 1978, De Greef & Neill 1979). Dopamine

receptors were identified on lactotroph cells in the anterior

pituitary (Mansour et al. 1990). The observation that mice

lacking the dopamine D2 receptor are hyperprolactinemic

(Kelly et al. 1997, Saiardi et al. 1997), clearly demonstrated

the critical role of dopamine in suppressing endogenous

prolactin secretion (see Fig. 1).

The dopamine neurons that control prolactin

secretion are located within the arcuate nucleus of the

hypothalamus. While it seems likely that they serve

functionally as a single population, these neurons have

been subdivided into three sub-populations based on the

anatomy of their projections: the tuberoinfundibular

(TIDA), tuberohypophyseal (THDA), and periventricular

hypophyseal (PHDA) dopaminergic neurons (Freeman

et al. 2000). TIDA neurons arise from the dorsomedial

arcuate nucleus and project to the external zone of the

median eminence (Bjorklund et al. 1973). The other two

populations have their cell bodies located slightly more

rostrally, but their projections pass in the hypothalamo-

hypophyseal tract through the median eminence to the

hypophysis. The THDA neurons originate in the rostral

arcuate nucleus and project to the intermediate and neural

lobes of the pituitary gland (Fuxe 1964, Holzbauer &
Published by Bioscientifica Ltd
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Figure 1

Diagrammatic representation of the neuroendocrine regulation of

prolactin secretion. Anterior pituitary prolactin release is inhibited by

dopamine coming from the tuberoinfundibular dopamine neurons (shown

in the coronal section on the top left using immunohistochemistry against

tyrosine hydroxylase, brown) whose cell bodies are found in the arcuate

nucleus of the hypothalamus, with axons projecting to the external layer of

the median eminence. Images on the right show examples of both rapid

feedback (electrophysiological activation) and delayed feedback

(phosphorylation of STAT5, black nuclear staining) in TIDA neurons.

In each example, 1) illustrates prior to prolactin treatment, and 2) after

administration of prolactin (reproduced, with permission, from Brown RS,

Piet R, Herbison AE & Grattan DR (2012) Differential actions of prolactin on

electrical activity and intracellular signal transduction in hypothalamic

neurons. Endocrinology 153 2375–2384. Copyright 2012 The Endocrine

Society). Prolactin stimulates dopamine secretion, to inhibit its own

secretion by short loop feedback.
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Racke 1985), while the PHDA neurons originate in the

periventricular nucleus, with axons terminating in the

intermediate lobe (Goudreau et al. 1992). The TIDA

neurons produce the classical hypothalamic hormone

secretion into the pituitary portal blood vessels, while

THDA and PHDA neurons contribute to basal regulation of

prolactin secretion, after transport of dopamine to the

anterior pituitary gland through short portal vessels from

the neurohypophysis (Peters et al. 1981). While anatomi-

cally distinct, there is considerable overlap in their

dendritic fields (van den Pol et al. 1984), and all three

populations appear to be regulated similarly. For example,

all are stimulated by prolactin (DeMaria et al. 1999).

Hence, it is reasonable to consider them as a functional

unit of prolactin-inhibiting neurons.

Electrophysiological studies of hypothalamic dopa-

mine neurons in the rat have described TIDA neurons as

exhibiting a robust oscillation between hyperpolarized and

depolarized states, with periodicity of about 20 s, and a
http://joe.endocrinology-journals.org
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spontaneous firing rate of w4 Hz during the depolarized

‘up-state’. Remarkably, the TIDA neurons were found to

show a synchronous pattern of firing suggestive of an

interconnected network, dependent on functional

expression of gap junctions (Lyons et al. 2010). Taking

advantage of transgenic technologies to label dopamin-

ergic neurons with fluorescent tags, studies of TIDA

electrical activity have also been completed in brain slices

from mice (Brown et al. 2012, Romano et al. 2013), showing

a similar pattern of firing to that seen in the rat, although

only a small proportion of TIDA neurons showed the phasic

oscillations in this model. Importantly, one of these latter

studies demonstrated that patterns of firing of an individ-

ual TIDA neuron were reflected in the pattern of dopamine

release from the population, as measured using in vivo

amperometry in the median eminence (Romano et al.

2013). These data support the concept postulated by Lyons

et al. (2010), that the neurons act as a synchronous network

to release dopamine in a pulsatile or phasic fashion.
Published by Bioscientifica Ltd
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Of the five dopamine receptors, the two members of the

D2-like receptor family, D2 and D4are found in the pituitary

gland (Valerio et al. 1994, Matsumoto et al. 1995) and it is

through these D2-like receptors that dopamine acts to

inhibit lactotroph cell function (Mansour et al. 1990,

Ben-Jonathan & Hnasko 2001). Uniquely among anterior

pituitary cells, lactotrophs display spontaneous electrical

activity in the absence of hypothalamic stimulation and

Ca2C influx through voltage-gated Ca2C channels (VGCC)

stimulates to prolactin secretion (Gregerson 2006). This

accounts for the high levels of basal prolactin secretion, and

is consistent with a regulatory mechanism primarily based

on inhibition. Dopamine inhibits calcium influx resulting

in membrane hyperpolarisation (Gregerson et al. 1994,

Gregerson2003)and reducedprolactin secretion (Lledo etal.

1990). In addition to its effect on secretion, dopamine-

induced suppression of adenylate cyclase leads to a

reduction in prolactin gene expression (Maurer 1982,

Elsholtz et al. 1991, Ishida et al. 2007). Dopamine also has

a significant role to regulate lactotroph proliferation, as

demonstrated in cultures of pituitary cells (Ishida et al.

2007), as well as in vivo by suppression of oestradiol-induced

proliferation (Borgundvaag et al. 1992). When dopamine

levels are increased, such as caused by the loss of the

dopamine transporter, there is a severe post-natal reduction

in lactotroph proliferation leading to a dramatic reduction

in the number of lactotrophs by 8 weeks of age (Bosse et al.

1997). In contrast, there is marked lactotroph hyperplaisia

following loss of the D2 receptor (Kelly et al. 1997, Saiardi

et al. 1997), leading to the formation of prolactinomas. This

is exacerbated by age, and more prevalent in females than

males (Saiardi et al. 1997, Asa et al. 1999). A bias towards

lactotroph hyperplasia and more rapid generation of

pituitary tumours in females may be expected from the

direct actions of estradiol to stimulate prolactin production

by lactotrophs, but this may not be the sole factor leading to

the increased female hyperplasia. Gonadectomy has been

shown to reduce lactotroph hyperplasia and tumour

formation in D2 knockout mice, but that this could not be

fully rescued by estradiol replacement, suggesting that

ovarian factors other than estradiol may contribute to the

proliferation of lactotrophs (Hentges & Low 2002).
Prolactin regulation of dopamine neurons: short loop

feedback

As previously mentioned, the hypothalamo-prolactin

system does not have a specific endocrine target, and

therefore lacks the classical hormone-mediate negative

feedback pathway described for all other anterior pituitary
http://joe.endocrinology-journals.org
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hormones. Nevertheless, it is still regulated in a negative

feedback manner, with prolactin itself providing the

afferent signal in a process known as short-loop feedback.

The presence of prolactin receptors on dopamine neurons

(Lerant & Freeman 1998, Grattan 2001, Kokay & Grattan

2005) was predicted by early neurochemical studies that

showed that exogenous prolactin stimulated hypo-

thalamic dopamine synthesis (Hokfelt & Fuxe 1972) and

turnover (Eikenburg et al. 1977, Annunziato & Moore

1978), increased dopamine metabolism in the median

eminence (Lookingland et al. 1987) and promoted

dopamine secretion into the pituitary portal blood

(Gudelsky & Porter 1979). In contrast, hypoprolactinemia

induced by administration of dopamine agonists resulted

in suppression of dopamine secretion (Arbogast & Voogt

1991a), indicating that the basal activity of these neurons

is dependent on the endogenous levels of prolactin

present in the blood. Using these biochemical indices of

activity of TIDA neurons, the time course of prolactin

action was described as having a ‘rapid’ component of

increased activity observed 2–4 h after prolactin treatment

(Selmanoff 1985), and a delayed component seen w12 h

after prolactin treatment (Demarest et al. 1984a, 1986).

More recent electrophysiological data has demonstrated

even more rapid actions of prolactin on the electrical

activity of TIDA neurons in mice (Brown et al. 2012,

Romano et al. 2013) or rats (Lyons et al. 2012). These

studies show that prolactin induces a fourfold increase in

firing rate within seconds to minutes of application,

acutely changing the firing pattern from a basal phasic

pattern to a tonically active pattern. Hence, there seem to

be multiple mechanisms of prolactin regulation of these

dopamine neurons mediated over different time courses.

It was observed that prolactin feedback was markedly

impaired in mice lacking the transcription factor STAT5b

(Grattan et al. 2001), likely through impairment in the

long-term regulation of expression of the rate limiting

enzyme in dopamine synthesis, tyrosine hydroxylase

(Arbogast & Voogt 1991a, Ma et al. 2005). While such an

effect might account for the ‘delayed’ component of

prolactin feedback, which requires protein synthesis

(Johnston et al. 1980), it is unlikely to account for more

rapid components of short look feedback. The very rapid

action revealed by electrophysiology appears to involve

two components: a low voltage component from transient

receptor potential (TRP)-like current and high voltage

component from inhibition of a Ca2C-dependent BK-type

KC current, with the latter component being wortmannin

sensitive, suggesting an involvement of the PI3K pathway

(Lyons et al. 2012). The slower component, originally
Published by Bioscientifica Ltd
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(A) Diagrammatic representation of short loop feedback control of

prolactin secretion. (B) Adaptive changes in the regulation of prolactin

secretion during pregnancy and lactation. Note that there are multiple

adaptive processes to ensure elevated levels of lactogenic hormones

present both in the blood and in the brain of the mother, potentially

regulating a wide range of functions to facilitate lactation: 1) Production of

prolactin-like molecules from the placenta to bypass feedback regulation

of pituitary prolactin secretion. 2) Plasticity in the TIDA neuronal response

to prolactin, with reduced secretion of dopamine and induction of

enkephalin expression. 3) Maternal behavioural adaptation to suckle the

pups, providing the most powerful prolactin-releasing stimulus known.

4) Increased transport of prolactin into the brain during lactation.
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described as ‘rapid’ in neurochemical experiments, with a

time course of minutes to hours, likely involves prolactin-

induced serine phosphorylation of tyrosine hydroxylase

(Ma et al. 2005), resulting in increased enzyme activity

(Arbogast & Voogt 1997). Together, these three layers of

prolactin regulation of hypothalamic dopamine neurons

provides a tight homeostatic control, with prolactin

rapidly increasing the firing rate of these neurons to

induce increased dopamine secretion into the portal blood

and rapid suppression of further prolactin secretion from

the lactotroph. At the same time, slower but more

prolonged changes in tyrosine hydroxylase phosphoryl-

ation and transcriptional events to maintain changes in

tyrosine hydroxylase gene transcription serve to regulate

neuronal function over a much longer time-course,

priming the neurons for continued responses to changes

in prolactin levels (Grattan & LeTissier 2015).

For endogenous prolactin to function in the short-loop

feedback manner, previously described, one important

consideration is how this relatively large (197–199 amino

acids; 21 kDa) polypeptide hormone crosses the blood

brain barrier to gain access to the dopamine neurons. While

it is possible that the arcuate nucleus/median eminence

region may have an incomplete blood-brain barrier such

that hormones can directly access to neurons in this area

(Schaeffer et al. 2013), it seems unlikely that this is the

major mechanism by which prolactin regulates the

hypothalamic dopamine neurons. Indeed, systemic

administration of prolactin has been shown to simul-

taneously activate neurons throughout the hypothalamus

(Brown et al. 2010, Sapsford et al. 2012), not simply in the

arcuate nucleus. There is clear evidence that systemic

prolactin crosses the blood brain barrier through a

saturable, carrier-mediated transport system (Walsh et al.

1987). As a result, prolactin levels in the cerebrospinal fluid

parallel changes in prolactin in the peripheral circulation

(Login & MacLeod 1977, Nicholson et al. 1980, Grattan &

Averill 1991). Because of the high levels of prolactin

receptor expression and prolactin binding seen in the

choroid plexus (Walsh et al. 1978, 1990, Pi & Grattan

1998a,b, Augustine et al. 2003), it has been widely assumed

that the prolactin receptor might mediate prolactin entry

into the cerebrospinal fluid. However, we have recently

shown that prolactin transport into the brain is indepen-

dent of the prolactin receptor, occurring just as well in

prolactin receptor knockout mice (Brown RSE, Wyatt AK,

Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA

& Grattan DR, unpublished observations). Hence, precise

mechanism that translocates prolactin from the blood into

the CSF remains to be determined.
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-15-0213

� 2015 Society for Endocrinology
Printed in Great Britain
Plasticity in prolactin feedback during lactation

In order to support a period of hyperprolactinemia during

lactation, and thereby promote the milk production that is

essential to this state, there is an apparent loss of sensitivity

of the short-loop feedback system during late pregnancy

and lactation (Grattan et al. 2008). This is a remarkable

example of adaptive plasticity within a neuroendocrine

control network, allowing a sustained period of high

prolactin secretion to be maintained unencumbered by a

regulatory feedback pathway (see Fig. 2). The mechanisms
Published by Bioscientifica Ltd
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mediating this adaptive response are only recently becom-

ing elucidated. Up until late pregnancy in rodents, normal

negative feedback regulation of prolactin secretion dom-

inates, as previously described, but high levels of placental

lactogens are produced. As placental lactogen binds to and

activates prolactin receptors, this mimics prolactin action

and bypasses the feedback inhibition to ensure that

prolactin responsive functions are highly stimulated at

this time. Activity of hypothalamic dopamine neurons

is maintained by the presence of placental lactogen, so

pituitary prolactin secretion is low. Despite the continued

presence of placental lactogens, however, there is a

decrease in activity of the dopamine neurons during late

pregnancy (Andrews et al. 2001) associated with a

nocturnal surge in pituitary prolactin secretion immedi-

ately before parturition (Grattan & Averill 1990, 1995).

Hypothalamic dopamine neurons apparently no longer

release dopamine in response to prolactin or placental

lactogen at this time, rendering the short-loop negative

feedback system functionally inactive (Grattan & Averill

1995, Fliestra & Voogt 1997). This adaptation persists into

lactation, and dopamine secretion remains low throughout

this period of elevated prolactin secretion (Ben-Jonathan

et al. 1980, Demarest et al. 1983). This is an important

adaptation, because prolactin is required for milk pro-

duction and maternal behaviour at this time.

There is a highly coordinated release of prolactin

during lactation, caused by the suckling stimulus. This is

associated with a decrease in dopamine turnover in

hypothalamic dopamine neurons (Selmanoff & Wise

1981, Demarest et al. 1983, Selmanoff & Gregerson 1985)

and a profound suppression of tyrosine hydroxylase mRNA

levels (Wang et al. 1993). The original perception that

hypothalamic dopamine neurons show a ‘loss of response’

to prolactin at this time has proved to be incorrect. In fact,

prolactin receptor expression in the dopamine neurons is

maintained (Kokay & Grattan 2005), and acute electro-

physiological responses to prolactin persist in lactation

(Romano et al. 2013). Downstream of the prolactin

receptor, however, there is a change in the cellular

response. Serine 40 phosphorylation of tyrosine hydroxy-

lase in the median eminence is decreased (Feher et al. 2010,

Romano et al. 2013), resulting in a reduction in the activity

of this enzyme (and a reduction in dopamine synthesis).

Strikingly, there is a disconnection between neuronal firing

and dopamine release at the median eminence. Even

though the electrophysiological response to prolactin is

unchanged, there is no longer detectable release of

dopamine in the median eminence (Romano et al. 2013).

Prolactin-induced activation of STAT5b in dopamine
http://joe.endocrinology-journals.org
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neurons is reduced during lactation, potentially mediated

by an up-regulation of endogenous inhibitors of STAT

signaling, the suppressors of cytokine signaling (SOCS)

proteins (Anderson et al. 2006a,b, Steyn et al. 2008). At the

same time as the loss of dopamine secretion, there is an

increase in met-enkephalin expression in the dopamine

neurons (Merchenthaler 1993, 1994, Szabo et al. 2011), and

it seems possible that elevated prolactin may drive this

met-enkephalin expression (Nahi & Arbogast 2003).

Hence, the neurons essentially change their phenotype,

changing from being dopaminergic to enkephalinergic. As

they still respond electrophysiologically to prolactin, they

may be mediating a completely different function of

prolactin in the brain during lactation.

It is interesting to note that while the suckling-induced

prolactin secretion could be consistent with the ‘dopamine

withdrawal’ or ‘disinhibition’ model of prolactin secretion,

previously discussed, the chronic reduction in dopamine

output seen during lactation complicates this inter-

pretation. If dopamine production is lost, as implied in

the data of Romano et al. (2013), how can suckling cause an

acute increase in prolactin secretion through dopamine

withdrawal? Perhaps this is evidence that a suckling-

induced ‘prolactin-releasing factor’ may be involved in

stimulating prolactin secretion at this time (see further

discussion of prolactin-releasing factors in the following

section). It is well established that enkephalin can promote

prolactin secretion (Cusan et al. 1977), and while most

evidence suggests that this effect is mediated centrally

through regulation of TIDA neurons, it can also act in the

pituitary gland to antagonize dopaminergic inhibition of

lactotrophs (Enjalbert et al. 1979). Could the lactation-

specific release of enkephalin from TIDA neurons be

functioning as a prolactin-releasing factor, either in the

classical sense, by regulating lactotroph function via the

portalblood,or througha more local effectonTIDAneurons

within the median eminence? Either way, the idea that

prolactin might be promoting its own secretion through

the same neurons that normally inhibits its secretion,

essentially switching from negative to positive feedback at

a time when high levels of prolactin are required, is a

provocative one worthy of further investigation.

Some significant insight has been provided by recent

advances in mapping the neuronal pathways conveying

the sucking stimulus through to specific neuronal popu-

lations within the hypothalamus. A direct neuronal

pathway is involved, transmitting the somatosensory

afferent information from the nipple via the spinal cord

to the hypothalamus (Berghorn et al. 2001). Recent

evidence suggests that there is a direct pathway from the
Published by Bioscientifica Ltd
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subparafascicular nucleus and posterior thalamus to the

ventrolateral arcuate nucleus, possibly connecting with

the dynorphin neurons located in this region (Szabo et al.

2011). Neurons in this pathway express the peptide

tuberoinfundibular peptide of 39 residues (TIP39), and

this peptide may be a critical regulator of prolactin

secretion in response to suckling (Cservenak et al.

2010, Dobolyi 2011), acting through the parathyroid

hormone 2 receptor (Dobolyi et al. 2012) to suppress

activity of TIDA neurons.
Role of a ‘prolactin-releasing factor’?

Ever since Harris’ first proposal of the humeral control

of the anterior pituitary gland, researchers have searched

for a ‘prolactin-releasing factor’ to match that of other

pituitary hormones. There have been some notable

discoveries, but to date, convincing evidence for a

physiological prolactin-releasing factor has not been

forthcoming (for reviews, see Freeman et al. (2000),

Ben-Jonathan & Hnasko (2001) and Crowley (2015)).

Most of the factors that regulate prolactin secretion do

so by directly or indirectly influencing dopamine secretion

from the hypothalamic dopamine neurons. The best

example of this is prolactin itself, which stimulates

dopamine release to inhibit its own secretion (previously

discussed). Other examples are opioid peptides, which are

potent stimulators of prolactin secretion, and act pre-

dominantly through an inhibition of dopamine neurons.

Alternatively, factors may stimulate prolactin secretion

through an action on the pituitary gland. The ovarian

steroid, estradiol, is an excellent example, acting on

lactotrophs to increase prolactin gene expression and

increase levels of prolactin released in response to other

stimuli (Fink 1988). Neither of these actions would classify

as a hypophysiotrophic ‘prolactin releasing factor’, as

defined by Harris. For this, the factor would need to be

produced in the hypothalamus, be secreted into the portal

blood, and act in the pituitary gland to stimulate prolactin

secretion (and thereby oppose the actions of the hypo-

thalamic inhibitory hormone).

The levels of prolactin achieved by administration of

dopamine antagonists are as high as one would normally

associate with prolactin release stimulated under physio-

logical conditions, such as in response to the suckling

stimulus (Andrews & Grattan 2004). Thus, it would seem

possible to account for most stimulated prolactin

secretion simply by a process of disinhibition, removing

the normal dopaminergic inhibitory control. However,

whether such a total withdrawal of dopamine ever occurs
http://joe.endocrinology-journals.org
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in vivo is unlikely (Martinez de la Escalera & Weiner 1992).

There is continued interest in the possibility that a

physiological ‘prolactin-releasing factor’ exists. Vasoactive

intestinal polypeptide (VIP) may be the ancestral regulator

of prolactin secretion, since it is the primary ‘prolactin-

releasing factor’ in non-mammalian vertebrates

(Horseman 1995), and it has stimulatory effects on

prolactin secretion in mammals (Murai et al. 1989).

However, while produced in both the hypothalamus and

in the pituitary gland, it is unlikely that VIP acts as a

hypophysiotrophic releasing factor, in the sense defined

by Harris. It does not appear to be secreted into the portal

system at levels higher than in the systemic circulation,

nor is it present at elevated levels in the blood at all times

that prolactin secretion is high. The same is probably true

for a large number of factors that have been investigated as

putative ‘prolactin releasing hormones’, including thyro-

tropin-releasing hormone, oxytocin, galanin, salsolinol,

prolactin-releasing peptide and others (reviewed in Free-

man et al. (2000), Crowley (2015) and Grattan & LeTissier

(2015)). Many of these factors may influence prolactin

secretion, either from effects on hypothalamic dopamine

neurons, or from effects on pituitary lactotrophs, but none

have proven to meet the criteria to be considered

hypothalamic hypophysiotrophic factors.

Freeman’s group tackled this question by investi-

gating whether changes in prolactin could be observed

independently of dopaminergic inhibition. They observed

that administration of the D2 antagonist domperidone

induced different levels of prolactin secretion at different

times of the day (Arey et al. 1989). Assuming that

antagonism of dopamine was complete at each time

point, they interpreted these data to demonstrate the

existence of an ‘endogenous stimulatory rhythm’, where

factors from the hypothalamus (including oxytocin and

VIP) were promoting prolactin secretion at specific times

in dependently of dopamine (Arey & Freeman 1990,

1992a,b), but this stimulation was usually masked by the

prevailing dopaminergic tone. Importantly, they also

showed that endogenous stimuli that reduce dopamine

input to the pituitary, such as suckling, could also reveal

this stimulatory rhythm, promoting different levels of

prolactin secretion at different times of the day (Arey et al.

1991). These data provide convincing evidence of

dopamine-independent regulation of prolactin secretion,

but cannot conclusively prove it is mediated by a

‘prolactin-releasing factor’. An alternative possibility is

that endogenous circadian regulators within the pituitary

gland might influence that amount of prolactin released

at different times of the day (Becquet et al. 2014).
Published by Bioscientifica Ltd
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Circadian regulation of prolactin secretion has also been

documented via melatonin actions in the pars tuberalis

(Lincoln et al. 2003).

If there is a physiological ‘prolactin-releasing factor’, it

remains elusive. One possible reason for this is that the

stimulatory control exerted from the hypothalamus may

not be a ‘classical’ system, as defined by Harris. In the late

1980s and early 1990s, there was a particularly well-

developed story regarding a putative prolactin-releasing

factor coming from a subpopulation of melanotrophs in the

intermediate lobe of the pituitary, as opposed to the median

eminence. This factor was originally discovered by Murai &

Ben-Jonathan (1987, 1990), who showed that surgical

removal of the posterior pituitary (including the inter-

mediate lobe) impaired the prolactin release in response to

estradiol administration or suckling. This was subsequently

supported by a number of other groups, with studies

demonstrating reduced or absent prolactin secretion after

removal of the neurointermediate lobe (Samson et al. 1990,

Averill et al. 1991, Andrews & Grattan 2004). Moreover,

mice with secretory tumours of the intermediate lobe

were hyperprolactinemic (Allen et al. 1995). Despite

extensive effort at characterisation, particularly from the

Ben-Jonathan group, the specific identity of this factor

(or factors) has not been identified, although a number of

known prolactin secretagogues (TRH, oxytocin, VIP) were

excluded (Allen et al. 1995, Hnasko et al. 1997). Never-

theless, this highlights the possibility that ‘non classical’

prolactin releasing systems may remain to be discovered.

Based on the magnitude of prolactin release in

response to dopamine inhibition (Andrews & Grattan

2004), I have previously held the view that most prolactin

release could be accounted for by a decrease in dopamine.

Our new data showing that even after marked reductions

in dopamine secretion during lactation in mice (Romano

et al. 2013), there is a sustained ability to regulate prolactin

secretion in response to suckling, however, has forced a

re-think of this view. It would seem that other regulatory

factors must be involved in the physiological regulation of

prolactin secretion, particularly during lactation when it is

most required. Whether one or more of these factors

becomes the long sought ‘prolactin-releasing factor’

predicted by Harris remains an exciting area needing

further investigation.
Regulation of prolactin secretion by estradiol

The ovarian steroid estradiol is arguably one of the most

important regulators of prolactin secretion in several

different physiological states. In the pituitary gland,
http://joe.endocrinology-journals.org
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estradiol is a major stimulator of prolactin secretion,

although this is principally through a classical genomic

regulation of prolactin gene expression (Lieberman et al.

1981), by increasing the number of lactotrophs (Takahashi

et al. 1984, Scully et al. 1997, Kansra et al. 2005, 2010,

Nolan & Levy 2009) and by modifying lactotroph

responsiveness to other regulators (De Lean & Labrie

1977, Raymond et al. 1978, West & Dannies 1980),

although a rapid non-genomic actions of estradiol

stimulating prolactin secretion have been described

(Huerta-Ocampo et al. 2005). The TIDA neurons also

express receptors for both estradiol (estrogen receptor

alpha (ERa)) and progesterone (Sar 1984, 1988, Fox et al.

1990, Lonstein & Blaustein 2004, Steyn et al. 2007), and

gonadal steroids regulate prolactin secretion indirectly

through actions on these neurons (Jones & Naftolin 1990,

Arbogast & Voogt 1993, 1994, DeMaria et al. 2000). These

actions of estradiol are particularly important during the

reproductive cycle and during pregnancy. The predomi-

nant direct action of estradiol on TIDA neurons is one of

inhibition (Demarest et al. 1984b, Arita & Kimura 1987,

DeMaria et al. 2000, Morel et al. 2009), suppressing TH

expression (Blum et al. 1987, Morrell et al. 1989) and

activity (Pasqualini et al. 1993), and reducing secretion of

dopamine into the portal blood (Cramer et al. 1979),

thereby facilitating prolactin secretion. The estradiol-

induced proestrous prolactin surge is associated with a

steroid-dependent decline in TIDA activity (DeMaria et al.

1998, Yen & Pan 1998, Liu & Arbogast 2008, 2010), with

a prominent role for progesterone suppressing dopamine

release during the plateau phase of the surge (Arbogast &

Ben-Jonathan 1990, Arbogast & Voogt 1994). Similarly,

ovarian steroids play a critical role in controlling the

twice-daily prolactin surges required to sustain luteal

function pregnancy in rodents (Gunnet & Freeman

1983, Arbogast & Voogt 1991b). The rising levels of

estradiol during pregnancy are also critical to promoting

prolactin secretion, particularly during late pregnancy

(Grattan & Averill 1990, Andrews 2005), and to the

plasticity in the TIDA neurons as previously described

(Grattan et al. 2008). In addition to regulation of prolactin

secretion, estradiol may also regulate the cellular

responses to prolactin. In the brain, many of the neurons

expressing the prolactin receptor also express ERa (Furigo

et al. 2014). Estradiol may regulate prolactin receptor

expression on neurons (Lerant & Freeman 1998), and

several of the actions of prolactin are dependent on the

presence of estradiol (Anderson et al. 2008). Thus, estradiol

acts at multiple levels to both directly and indirectly

regulate prolactin synthesis, secretion and action.
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Neuroendocrine functions of prolactin

Prolactin was identified and named for its critical role in

the physiology of lactation, and this remains its best-

characterised function. Prolactin is indispensible for

lactation. However, a vast array of additional functions

has also been characterised. These have been thoroughly

reviewed by Paul Kelly’s group (Bole-Feysot et al. 1998),

who classified the functions under six broad headings:

water and electrolyte balance, growth and development,

endocrinology and metabolism, brain and behaviour,

reproduction and immune regulation and protection.

The breadth of potential functions is astounding and

difficult to conceptualise into a theoretical framework.

Many of the reported actions of prolactin appear to be

redundant, as evidenced by the lack of a significant

phenotype in the prolactin or prolactin-receptor knockout

mice. This may simply be the evolutionary result of a

phylogenically old signalling molecule being used for

multiple adaptive roles in homeostasis. One can see

examples where prolactin has subserved similar functions

across many species. For example, in fish and amphibia, it

is involved in electrolyte balance, and movement of ions

and water across epithelial barriers (Bole-Feysot et al.

1998). Perhaps this is not so different from inducing

secretion of nutrients and electrolytes from an epithelial

gland, as in the crop milk of pigeons, and the breast milk

of mammals. Similarly, prolactin has been implicated in

parental behaviour ranging from nest fanning in fish,

through to incubation and brooding behaviour in birds, to

lactation and maternal behaviour in mammals. When

viewed from an evolutionary context, it seems logical that

the nurturing parental behaviour actions of prolactin

might have evolved in parallel with a nutrient synthesis

and secretion role, providing an adaptive advantage of

novel reproductive strategies.

There is insufficient space in this review to do justice to

the wide range of potential prolactin-sensitive functions.

Instead, I have taken the strategy of focusing on functions

that are specifically regulated when endogenous prolactin

levels are high. Apart from the estrogen-induced prolactin

surge during the female reproductive cycle (which may not

occur in all species (Ben-Jonathan et al. 2008), and the

response to stress, which is transient and of low magnitude

(Gala 1990), prolactin levels are typically maintained at low

levels as a consequence of the highly effective short loop

negative feedback. The exception to this is pregnancy and

lactation, where mammals exhibit at least three adaptations

to ensure high levels of lactogenic hormone activity

throughout these conditions (see Fig. 2). First, there is the
http://joe.endocrinology-journals.org
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production of placental lactogen and/or decidual prolactin,

lactogens from reproductive tissues. These hormones act on

the prolactin receptor, and therefore bypass the short-loop

feedback regulation of the anterior pituitary gland to

provide constantly elevated levels of lactogenic hormones

throughout pregnancy. Secondly, there are the adaptive

changes in feedback occurring in the maternal hypo-

thalamic dopamine neurons, previously discussed, chan-

ging the manner in which they respond to prolactin,

enabling high secretion to prolactin to be maintained

from the maternal pituitary after the pregnancy-specific

placental lactogens are lost at parturition. Thirdly, there is

the hormone-dependent expression of maternal behavior,

with the consequent suckling stimulus from the pups

providing the most powerful stimulus to pituitary prolactin

secretion that is known in mammals. As previously

discussed, this might involve chronic and/or acute dopa-

mine withdrawal, as well as the additional stimulus of an as

yet unidentified ‘prolactin-releasing factor’ to maintain

elevated levels of prolactin. Finally, we have recent evidence

suggesting that transport of prolactin into the brain is

increased during lactation (Brown RSE, Wyatt AK, Herbison

RE, Knowles PJ, Ladyman SR, Binart N, Banks WA & Grattan

DR, unpublished observations), suggesting that many of the

CNS functions of prolactin might be further enhanced at

this time. These multiple adaptive changes make a

compelling argument to focus on pregnancy and lactation

as the most critical time for prolactin actions in the body.

It is absolutely clear that these elevated levels of

lactogenic hormones are required for development of the

mammary gland during pregnancy and for milk pro-

duction during lactation. The regulation of mammary

function by prolactin is extensively reviewed elsewhere

(Hovey et al. 2001, Trott et al. 2012). It is important to

recognize, however, that prolactin and placental lactogen

are also able to act in a wide variety of other tissues in the

body. The prolactin receptor is widely expressed in

numerous body systems, including bone, adipose tissue,

gut, reproductive tract, skin, immune system, pituitary

and brain (Bole-Feysot et al. 1998, Goffin et al. 2002), and

hence, when prolactin is elevated there is potential for a

wide variety of systems to be influenced. In recent reviews

(Grattan & Kokay 2008, Grattan & LeTissier 2015), we

have proposed the hypothesis that the wide range of

potential actions of prolactin in the body make some

collective sense if considered within the context of the

physiological hyperprolactinemic state of pregnancy and

lactation. These are complex and demanding processes for

a mother, requiring multiple diverse systems to undergo

adaptive changes to facilitate her successful transition
Published by Bioscientifica Ltd
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from the non-pregnant into the maternal state. A selection

of these adaptive changes, and a summary of the evidence

that prolactin might influence the adaptive response, are

outlined in Table 1. Here, prolactin can be considered as

interoceptive sensory information for the body, informing
Table 1 Role of prolactin in the maternal adaptation to pregnanc

Tissue or function Adaptive change during pregnancy Evidence fo

Mammary gland/
lactation

Branching and alveolar develop-
ment of mammary gland

Unequivoca
in PrlrK/

Milk secretion
Maternal behaviour Retrieval and nursing of pups Prolactin a

responsiv

Impairs beh
Adult neurogenesis Increased neurogenesis in the

subventricular zone of the
maternal brain

Driven by p
pregnanc

Important
changes

Pancreatic b cell/
glucose
homeostasis

Maternal tissues become insulin
resistant to promote glucose
transfer to fetus

Prolactin re
cells, and
pregnanc

Expansion of beta cells in mother
to increase insulin production,
to prevent gestational diabetes

Prolactin st
secretion

Impaired g
pregnanc

Appetite regulation Increased appetite and develop-
ment of leptin resistance

Prolactin st
non-preg

Fat deposition during pregnancy,
mobilisation during lactation

Contribute
leptin res

Prolactin co
during la

Bone and calcium
homeostasis

Increased calcium uptake and
mobilisation of calcium stores
for fetal skeletal growth and
for milk production

Prolactin re
chondroc

Prolactin st
Prolactin p

in the gu
Reproduction Maintenance of pregnancy

(in rodents).
Prolactin st

function
maintain

Loss of reproductive cycle during
pregnancy, persisting during
lactation

Hyperprola
Possible/lik

lactation
Stress responses Reduced response to stress

during late pregnancy and
lactation, to minimise exposure
of offspring to glucocorticoids

Prolactin is
response
females

Role during
likely, bu

Oxytocin secretion Marked change in firing pattern,
generation of ‘burst’ firing to
facilitate parturition and milk
ejection

Prolactin re
neurons,
on activit

Stimulation

Prolactin secretion Altered feedback to facilitate
prolactin secretion

Prolactin co
neurons,
decrease

Induction o
TIDA
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it of its new physiological state. The changes it induces are

adaptive, which means that the functions are unlikely to

completely fail in the absence of prolactin action, but they

might not perform optimally. This would account for the

absence of widespread adverse phenotype in the prolactin
y

r possible role of prolactin? Selected references

l role, with lactation lost
K mice

Ormandy et al. (1997) and
Trott et al. (2012)

dvances maternal
eness to pups in rats

Rosenblatt (1967), Bridges et al.
(1985, 1990, 1996) and Bridges
& Ronsheim (1990)

aviour in PrlrK/K mice Lucas et al. (1998)
rolactin changes of
y

Shingo et al. (2003)

for mood and behavioural
post partum

Larsen et al. (2008) and Larsen &
Grattan (2010, 2012)

ceptors expressed in beta
expression increased during
y

Moldrup et al. (1993), Sorenson &
Stout (1995) and Brelje et al.
(2004)

imulates insulin expression,
and beta cell proliferation

Karnik et al. (2007)

lucose tolerance during
y in PrlrC/K mice

Huang et al. (2009), Kim et al.
(2010), Rieck & Kaestner (2010),
Schraenen et al. (2010) and
Zhang et al. (2010)

imulates food intake in
nant animals

Gerardo-Gettens et al. (1989),
Sauvé & Woodside (1996, 2000)
and Naef & Woodside (2007)

s to the development of
istance during pregnancy

Augustine & Grattan (2008),
Ladyman (2008) and Ladyman
et al. (2010)

ntributes to appetite drive
ctation

Woodside et al. (2012)

ceptors on osteoblasts and
ytes

Charoenphandhu et al. (2010)
and Wongdee et al. (2011)

imulates bone turnover
romotes calcium absorption
t
imulates corpus luteum
in rodents, essential to
pregnancy

Gibori & Richards (1978) and
Bachelot et al. (2009)

ctinemia causes infertility Patel & Bamigboye (2007)
ely involvement in
al infertility

McNeilly (2001a,b) and Liu et al.
(2014)

anxiolytic and reduced stress
s in males and non-pregnant

Shanks et al. (1999), Torner et al.
(2001), Lonstein (2007) and
Brunton & Russell (2008)

pregnancy and lactation
t unproven

Torner & Neumann (2002) and
Slattery & Neumann (2008)

ceptors on oxytocin
and acute inhibitory effects
y

Kokay et al. (2006) and Sapsford
et al. (2011)

of oxytocin gene expression Parker et al. (1991) and Ghosh &
Sladek (1995a,b)

ntinues to stimulate TIDA
but dopamine secretion is

d

Grattan et al. (2008) and Romano
et al. (2013)

f enkephalin production in Merchenthaler et al. (1994) and
Nahi & Arbogast (2003)
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receptor knockout mice. It is appropriate to point out that

many of the associations shown in Table 1 are, at this

stage, correlative only, and comprehensive investigation

proving that prolactin may be mediating a particular

adaptive change will require significant further work.

Nevertheless, we have found this to be a useful construct

for understanding why prolactin might be influencing

such a wide range of biological function. We used to be

concerned by the question of, ‘Why would there be over

300 physiological actions of prolactin?’ Now, we can

consider each of the different tissues that express the

prolactin receptor and ask the question, ‘Why might this

tissue need to change its function during lactation?’

Comprehensive reviews of the wide range of actions of

prolactin in the body are available elsewhere (Bole-Feysot

et al. 1998, Freeman et al. 2000), as is our hypothesis

regarding the role of prolactin in the physiological

adaptation to pregnancy (Grattan & Kokay 2008, Grattan

& LeTissier 2015), and hence, I will not go into detail here.

In the final section of this review, I would like to briefly

highlight three selected examples from recent research.

The first of these, the metabolic functions of prolactin,

nicely illustrates the context previously outlined that

prolactin is acting in a number of different tissues and cell

types in the mother to facilitate adaptation to pregnancy

or lactation. The second example, looking at prolactin

effects on fertility, highlights how functions of prolactin

that might be considered adaptive in a lactating female,

might be maladaptive should high prolactin occur at an

inappropriate time. The third example asks the question,

‘What is prolactin doing in the male?’ This example is used

to acknowledge the fact that some of the known functions

of prolactin do not comfortably fit into the conceptual

framework previously presented.
Metabolic function of prolactin

This is, perhaps, the best example of the pleiotropic role of

prolactin (defined to mean a single gene product, prolactin,

exerting multiple seemingly diverse actions). Prolactin

receptors are expressed on multiple tissues involved in

metabolic regulation, including adipose tissue, liver,

pancreas and the brain. It appears to play a broad role in

both pancreatic and adipose development. In adipose

tissue, prolactin is essential in adipogenesis and adipocyte

differentiation, as well as modulating lipid metabolism. It

also regulates the secretion is several adipokines, including

stimulation of leptin and inhibition of adiponectin

production (Ben-Jonathan et al. 2006, Carre & Binart

2014). In the pancreas, it promotes growth of islets during
http://joe.endocrinology-journals.org
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development (Freemark et al. 2002), and increases insulin

expression and glucose-stimulated insulin secretion (Sinha

& Sorenson 1993, Brelje et al. 1994, 2004). It also increases

expression of glucose transporter 2 and promotes glucose

entry into the b-cells (Petryk et al. 2000), resulting in

enhanced activity of glucose-sensitive enzymes such as

glucokinase (Weinhaus et al. 2007). In both adipose tissue

and pancreas, these actions are likely to be profoundly

important during pregnancy and lactation. Lipid metab-

olism is altered, with lipid mobilisation from stores and

utilisation in mamary gland promoted by prolactin (Barber

et al. 1992). Adaptive changes in glucose homeostasis are

also important in pregnancy (Rieck & Kaestner 2010).

Maternal tissues develop insulin resistance to preferentially

direct glucose to the fetal/placental compartment (Herrera

2000), and to ensure the maternal tissues continue to

receive thenutrients required, there is increased demand for

maternal insulin secretion, and glucose-stimulated insulin

secretion increases. To adapt to this altered demand, there is

significant proliferation of b-cells in the islets (Parsons et al.

1992), enhanced insulin synthesis (Bone & Taylor 1976),

and decreased threshold for glucose-stimulated insulin

secretion (Sorenson & Parsons 1985), with prolactin

playing a critical adaptive role in promoting these changes

(Newbern & Freemark 2011). Failure of this adaptive res-

ponse results in gestational diabetes (Ramos-Roman 2011).

These peripheral actions of prolactin on metabolism

are complemented by CNS actions of prolactin to promote

appetite and potentially regulate glucose homeostasis.

Systemic prolactin administration increases food intake

in a variety of species (Moore et al. 1986, Gerardo-Gettens

et al. 1989, Noel & Woodside 1993, Buntin et al. 1999),

independent of potential effects on ovarian steroids (Noel

& Woodside 1993, 2007, Sauvé & Woodside 1996). Thus,

the elevated prolactin secretion is likely to contribute to the

rapid increase in food intake during pregnancy (Shirley

1984, Ladyman & Grattan 2004, Ladyman et al. 2012) and

the extreme hyperphagia of lactation (Woodside 2007,

Woodside et al. 2012). Prolactin also induces functional

leptin resistance, which would contribute to increased food

intake (Naef & Woodside 2007, Augustine & Grattan 2008),

potentially mediating the well-established leptin resistance

of pregnancy (Grattan et al. 2007a, Augustine et al. 2008,

Ladyman 2008, Ladyman et al. 2010). Prolactin receptors

are found in many of the nuclei involved in the

homeostatic regulation of food intake, including the

arcuate, ventromedial and paraventricular nuclei

(Bakowska & Morrell 1997, Pi & Grattan 1998b, Brown

et al. 2010). However, prolactin receptors do not appear to

be expressed in the arcuate neuropeptide Y (NPY) and
Published by Bioscientifica Ltd
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proopiomelanocortin (POMC) neurons (Li et al. 1999,

Chen & Smith 2004, Kokay & Grattan 2005) that regulate

appetite. Hence, it seems likely that prolactin acts down-

stream of the arcuate neurons, such as at the paraventri-

cular nucleus. Consistent with this hypothesis, localised

injections of prolactin directly into the paraventricular

nucleus stimulate food intake in a dose-dependent manner

in female rats (Sauvé & Woodside 2000).

Thus, seemingly diverse actions of prolactin in

multiple different cell types can be unified into a single

adaptive function, which is metabolic adaptation to

pregnancy, increasing energy availability to the mother

and offspring. This is an example of the conceptual

framework previously outlined, and it can be viewed as a

positive, adaptive mechanism. Should hyperprolactine-

mia occur at an inappropriate time, however, then one

might predict this could contribute to metabolic disorders.

There is some evidence for this. While it is not universally

observed, patients with hyperprolactinemia are prone to

excessive weight gain (Creemers et al. 1991, Delgrange

et al. 1999, Doknic et al. 2002, Baptista et al. 2004), and

normalisation of prolactin levels using dopamine agonists

is associated with weight loss (Greenman et al. 1998,

Doknic et al. 2002, Galluzzi et al. 2005). Interestingly,

genome-wide association studies have revealed that a

common variant adjacent to the prolactin gene is

associated with obesity (Meyre et al. 2009, Nilsson et al.

2011) suggesting that abnormalities in prolactin or

prolactin signalling may contribute to human obesity.
Hyperprolactinemia and infertility

Hyperprolactinemia causes infertility in both males and

females (Patel & Bamigboye 2007), and this provides an

even more clear-cut example of a potentially adaptive

function under certain conditions becoming clearly mala-

daptive in another situation. The mechanism by which

prolactin inhibits the reproductive axis is not clear, but

evidence suggests that prolactin impacts fertility through

actions on GnRH neurons. In humans, hyperprolactinae-

mia is associated with a marked reduction in both the

frequency and amplitude of LH pulses (Bohnet et al. 1976,

Matsuzaki et al. 1994) indicative of a change in GnRH

pulses, and the suppression of LH pulsatility can be reversed

by reducing serum prolactin concentrations to normal

(Moult et al. 1982). While prolactin could exert effects in

either the pituitary or gonad, pulsatile GnRH replacement

can reverse the infertility induced by hyperprolactinaemia

(Polson et al. 1986, Matsuzaki et al. 1994, Lecomte et al.

1997), suggesting a prolactin-induced suppression of GnRH
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release is the proximal cause of infertility. Similarly,

prolactin suppresses both the frequency and amplitude of

LH pulses in male and female rats (Cohen-Becker et al. 1986,

Fox et al. 1987, Park & Selmanoff 1991, Park et al. 1993) and

measurements of GnRH secretion into the portal blood

have revealed prolactin-induced suppression of GnRH

release (Weber et al. 1983, Koike et al. 1984, 1991, Sarkar

et al. 1992). Furthermore, hyperprolactinaemia has been

shown to prevent the castration-induced increase in GnRH

mRNA expression in rats (Selmanoff et al. 1991). Thus,

although there is ample evidence that prolactin can act in

the pituitary gland to suppress LH secretion (Smith 1978,

1982, Cheung 1983, Morel et al. 1994, Tortonese et al.

1998), in animal models, as in clinical studies, the primary

cause of infertility appears to be the suppression of the

activity of GnRH neurons. This effect of prolactin is unlikely

to be mediated directly by an action on GnRH neurons, as

the majority of these neurons do not express the prolactin

receptor (Grattan et al. 2007b, Kokay et al. 2011). Thus,

prolactin-induced inhibition of GnRH neurons must

involve prolactin-sensitive afferents to these cells. Interest-

ingly, most prolactin responsive neurons also express ERa

(Furigo et al. 2014), so prolactin may share a common

mechanism of regulating GnRH with the negative feedback

pathway mediated by estradiol. As such, kisspeptin neurons

have emerged as the most likely intermediate regulators.

Since first being identified as essential for puberty

in humans (de Roux et al. 2003, Seminara et al. 2003),

kisspeptin neurons are now recognised as critical parts of

the circuit regulating activity of the GnRH neurons that

control fertility (Pinilla et al. 2012). Kisspeptin neurons

may have an important role in mediating the suppressive

effect of prolactin on fertility. Kisspeptin is the most

potent stimulator of GnRH neuronal activity yet identified

(Han et al. 2005, Liu et al. 2008). In most mammalian

species, there are two populations of kisspeptin neurons,

with kisspeptin neurons in the rostral periventricular area

of the third ventricle (RP3V) playing an essential role

in enabling ovulation in rodents by activating GnRH

neurons (Herbison 2008, Clarkson & Herbison 2009,

Oakley et al. 2009), while kisspeptin neurons in the

arcuate nucleus are thought to be involved in the

regulation of the basal pulsatile secretion of GnRH

(Li et al. 2009, Roseweir et al. 2009, Lehman et al. 2010,

Navarro et al. 2011). Prolactin receptors are expressed

in the majority of kisspeptin neurons in both populations

(Kokay et al. 2011, Li et al. 2011), and prolactin has

recently been shown to induce the phosphorylation of

signal transducer and activator of transcription 5 (pSTAT5)

in arcuate nucleus kisspeptin neurons in the rat
Published by Bioscientifica Ltd
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(Araujo-Lopes et al. 2014) and rostral hypothalamic

kisspeptin neurons in the mouse (Brown et al. 2014).

Chronic infusion of prolactin in female mice abolished

estrous cyclicity and suppressed global Gnrh and Kiss1

mRNA expression in the hypothalamus, while kisspeptin

therapy restored estrous cycles in hyperprolactinemic

mice (Sonigo et al. 2012), consistent with the hypothesis

that prolactin-induced suppression of GnRH secretion is

mediated by an inhibition of kisspeptin neurons.

Clearly, under most conditions, hyperprolactinemia

represents a pathological condition with adverse con-

sequences. During pregnancy and lactation, however,

hyperprolactinemia is physiologically appropriate. When

viewed from this context, an inhibitory action of prolactin

on fertility during pregnancy and lactation would be

highly adaptive, allowing the mother to focus energy on

feeding her offspring, before investing resources in a

further pregnancy (Valeggia & Ellison 2009). Lactation is

associated with a period of infertility in most mammalian

females, including women (McNeilly 2001a). In humans,

this function serves as a critical regulator of population

growth, spacing the timing of births to allow the mother

to ration her metabolic investment across sequential

pregnancies (Short 1976). Despite the extensive impact

on mammalian reproductive physiology, our understand-

ing of the mechanisms mediating lactational infertility

remains incomplete (McNeilly 1994, 2001a,b). It is clear

that suckling is the critical inhibitory signal (Tsukamura &

Maeda 2001), and the principle cause of infertility is an

almost-complete suppression of the pulsatile secretion of

GnRH from the hypothalamus, the consequent loss of

pituitary gonadotropin secretion and ovulation failure

(Fox & Smith 1984). The pathways linking the suckling

stimulus to the suppression of ovulation, however, are

unclear. Kiss1 mRNA and protein levels are reduced in the

arcuate nucleus of lactating rats associated with the

suppression of pulsatile GnRH secretion during lactation

(Yamada et al. 2007, 2012, Smith et al. 2010, True et al.

2011, Araujo-Lopes et al. 2014, Ladyman & Woodside

2014), and in both populations in the mouse (Brown et al.

2014). The RP3V kisspeptin population is harder to study

in rats (Yamada et al. 2007, Desroziers et al. 2010), with

reports of both Kiss1 mRNA remaining unchanged during

lactation (Yamada et al. 2007) and of kisspeptin protein

increasing while Kiss1 mRNA labeling decreased during

lactation (Smith et al. 2010). More importantly, we have

also shown that the reduction in kisspeptin expression

results in complete loss of capacity for these neurons to

activate GnRH neurons, even if they are stimulated

exogenously (Liu et al. 2014). Given the similarity between
http://joe.endocrinology-journals.org
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the effect of suckling and the effect of prolactin, and the

knowledge that suckling stimulates prolactin secretion, it

seems likely that elevated prolactin during pregnancy and

lactation contributes to the infertility of lactation, but this

remains to be proven, and the relative roles of prolactin

and/or suckling may be different in different species.
What does prolactin do in the male?

The hypothesis that most prolactin actions in the body can

be tied to the adaptation to pregnancy and lactation clearly

does not explain effects of prolactin in the male. Up to 40%

of the male pituitary gland is dedicated to lactotrophs,

suggesting that some function is retained in males, but

knockout studies havenot identified anessential functionof

prolactin. While there is no male equivalent of lactation,

many of the other functions of prolactin in females can also

be observed in males. For example, as in females, prolactin

seems to be involved in parental behaviour in males,

although the relative role that the mammalian father plays

in parental care of offspring varies amongst species. In

species where the male plays some role in rearing of the

offspring, including humans (Gordon et al. 2010, Gettler

et al. 2012), studies have found a association between

prolactin and paternal care (Schradin & Anzenberger

1999), although the overall picture is unclear and con-

troversial (Schradin 2007, Wynne-Edwards & Timonin

2007). Nevertheless, paternal recognition of offspring is

consistent amongst most species. Pup-contact by male rats

can lead to some forms of parental care behaviour and this is

associated with an increase in serum prolactin, as well as

increased expression of the long-form of the prolactin

receptor in the brain (Sakaguchi et al. 1996). Further

evidence for a direct role for prolactin in paternal recog-

nition of offspring has been shown by studies of PrlrK/K

fathers, who fail to distinguish adult offspring from non-

offspring, possibly as a result of failure of prolactin-induced

neurogensis in the sub-ventricular zone and the dentate

gyrus (Mak & Weiss 2010).

As in females, pathological hyperprolactinemia causes

infertility in males, but it is not clear that there is an adaptive

role for prolactin in male reproduction. At lower levels,

prolactin contributes a range of functions in the male

reproductive tract, revealed by subtle reproductivedeficits in

the prolactin receptor deficient mice (Grattan & LeTissier

2015). In addition, many of the metabolic and immune

functions ofprolactin can be observed inmales, but whether

prolactin levels are ever sufficient for these effects to be of

physiological significance is uncertain. Perhaps the most

consistent stimulus for prolactin secretion in males is stress,
Published by Bioscientifica Ltd
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but the functional consequences of this response are not

well-understood (Gala 1990).
Conclusion

While Harris was correct in proposing that the brain

controls prolactin secretion, the hypothalamo-prolactin

axis proved itself to be quite different from all other

pituitary systems. It remains the most complex and

versatile of all of the hypothalamo-pituitary axes. Even if

we just consider the relatively simple task of controlling

milk production during lactation, there is much that

remains to be understood, such as the possible role of one

or more prolactin-releasing factors during the suckling

stimulus, and the mechanism controlling the loss of

dopamine production in the TIDA neurons and the

changes in prolactin negative feedback. If we include

the wide range of additional functions of prolactin, then

the complexity becomes overwhelming. I have presented

here a context to attempt to understand the pleiotropic

roles of prolactin, arguing that many of the functions of

prolactin can be unified into the overall task of maternal

adaptation to pregnancy and lactation. Within this

context, prolactin function promotes adaptive changes

in a variety of body systems, but such actions can also be

maladaptive, in a different context, if hyperprolactinemia

occurs at an inappropriate time. This theoretical construct

presents many new opportunities for generating testable

hypotheses about prolactin function. But there are also

many functions that do not fit easily into this construct,

providing further opportunities for expanding our under-

standing. I anticipate that the coming availability of novel

tools for investigating prolactin function, including gene-

targeting approaches that allow conditional regulation of

prolactin responsive cells, will provide the impetus for a

new wave of research to enhance our understanding of

this fascinating system. Sixty years on from Geoffrey

Harris’ prescient predictions, we still have a lot of work to

do to understand the hypothalamo-prolactin system.
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