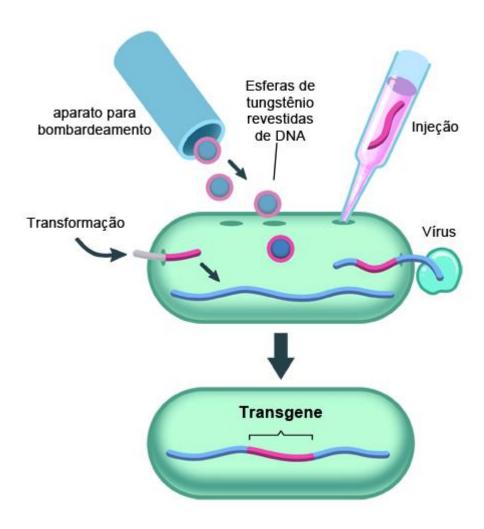
## MÉTODOS DE TRANSFORMAÇÃO EM PROCARIONTES E EUCARIONTES

#### LGN 5809- Genética Molecular

Docente: Profa. Caroline Quencine Verdi

Discentes: Daniele Bononi

Henrique Nery Cipriani


Marina Gouvêa

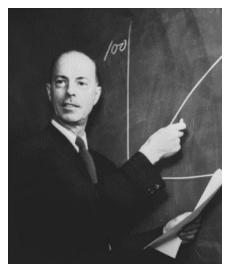
Nicoli Gomes de Moraes



### Transformação

Processo de introdução de um gene de interesse no genoma de uma célula receptora e sua posterior expressão





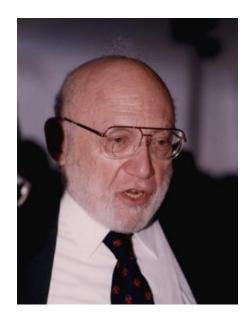

## Histórico



- ➤ A primeira transformação de bactéria foi demonstrada em 1928 pelo bacteriologista Frederick Griffith → ficou interessado se após injeção de calor em "células" se as mesmas poderiam ser usadas para vacinar camundongos contra pneumonia.
- Com isso descobriu a cepa não virulenta de Streptococcus pneumoniae, e hipotetizou que algum princípio transformante tornou a cepa inofensiva.








Colin MacLeod

M. McCarty

- > 1944 foi identificado esse princípio como sendo genético.
- > E chamaram a absorção e incorporação da porção de DNA pela bactéria de "transformação".
- Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III", Journal of Experimental Medicine, 1944





Joshua Lederberg

- $ightarrow 1947-1953 
  ightarrow Conjugação/Transdução <math>
  lap{\cite{10}}$
- > Aceita teoria da "Transformação"

"Originalmente, pensava-se que a *Escherichia coli* era refratária à transformação."



### Factors Influencing Competence of *Escherichia coli* for Lambda-Phage Deoxyribonucleic Acid Infection

Akiko Higa, Morton Mandel



First published: April 1972 | https://doi.org/10.1111/j.1348-0421.1972.tb00657.x | Citations: 4

*E. coli* pode ser induzida a absorver DNA do bacteriófago  $\lambda$  sem o uso

do fago auxiliar, após tratamento com solução de CaCl2



# Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of *Escherichia coli* by R-Factor DNA

Stanley N. Cohen, Annie C. Y. Chang, and Leslie Hsu Authors Info & Affiliations

**August 1, 1972** 69 (8) 2110-2114 https://doi.org/10.1073/pnas.69.8.2110

Demonstraram que o tratamento com CaCl2 é eficiente para

transformação de DNA plasmidial.







Volume 166, Issue 4, 5 June 1983, Pages 557-580

## Studies on transformation of *Escherichia* coli with plasmids

Douglas Hanahan

- > O método de transformação de Mandel e Higa foi aprimorado por Douglas Hanahan.
- ➤ A descoberta da competência induzida artificialmente em *E. coli* criou um procedimento eficiente para transformar bactérias que permite métodos de clonagem molecular mais simples em biotecnologia e pesquisa.



## Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation

Reinhard Wirth, Anita Friesenegger & Stefan Fiedler

Molecular and General Genetics MGG 216, 175-177 (1989) | Cite this article

## Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes

Richard D. Palmiter, Ralph L. Brinster, Robert E. Hammer, Myrna E. Trumbauer, Michael G. Rosenfeld, Neal

C. Birnberg & Ronald M. Evans

Nature **300**, 611–615 (1982) Cite this article

## Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity

P. Zambryski, H. Joos, C. Genetello, J. Leemans, M. Van Montagu, J. Schell





## Etapas envolvidas na transformação genética

#### Genetic construct

Promoter Gene of interest Marker gene Terminator

1 - Design do cassete genético

2 - Inserção do cassete em um vetor

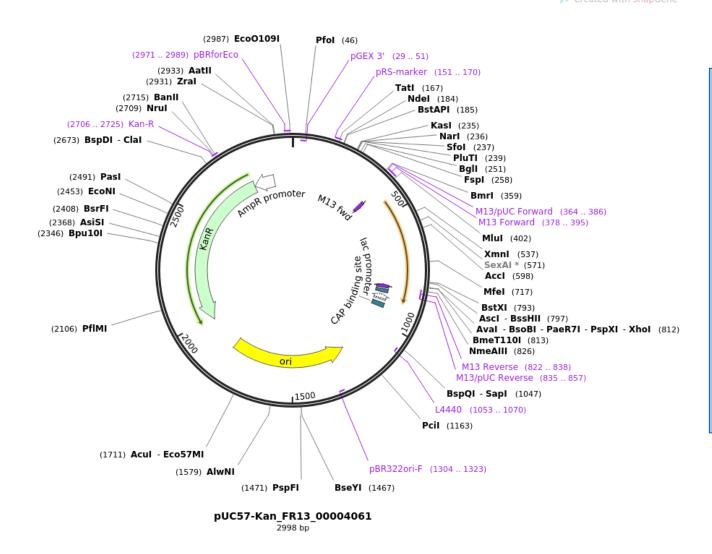
3 - Amplificação do vetor

4 - Escolha do método e inserção do DNA dentro da célula

5 - Seleção de células (indivíduos) transformados

6 - Recuperação/Regeneração

7 - Confirmação

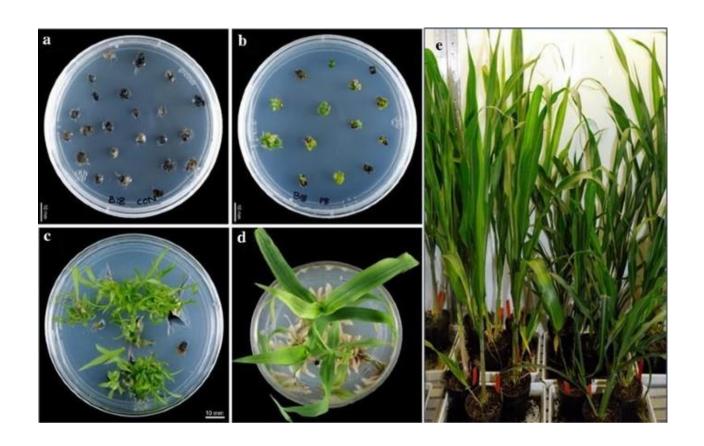

Eficiência pretendida, Quantidade e tamanho de genes,
Reprodutibilidade, célula alvo,
Características do organismo,
Estabilidade, Local para transformação (núcleo, cloroplasto, mitocôndria)

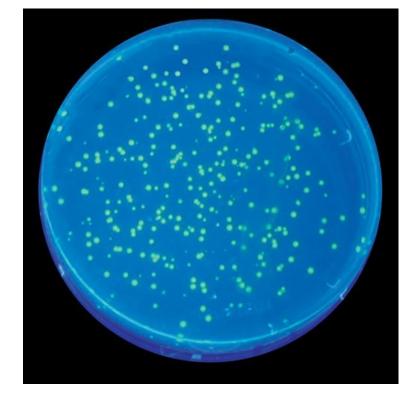


**Vetores** - Veículos que transportam o gene de interesse dentro de uma célula alvo para replicação e expressão (Plasmídeos. cosmídeos. cromossomos artificiais. vetores virais, etc)

## Elementos de vetor:

- l -Origem de replicação
  - 2 -Sítio de múltipla clonagem
- 3- Marcador seletivo





## Elementos Cassete:

- 1 -Promotor
- 2 Região codificadora do gene
- 3- Região terminadora



Seleção de organismos transformados através de genes que conferem às células transformadas alguma característica para a sua identificação (Marcadores seletivos). Exemplo: Genes de resistência à antibióticos, a herbicidas (no caso de plantas) e genes de proteínas fluorescentes, por exemplo.







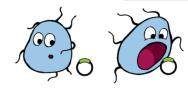
### Métodos de transformação genética

## Indiretos ou Biológicos (vetores)

Transferência mediada por Agrobacterium

#### Vetores virais

(CaMV - permite inserções de no máx. 0.8 Kb - pouco usado)


### Diretos ou Físicos e Químicos

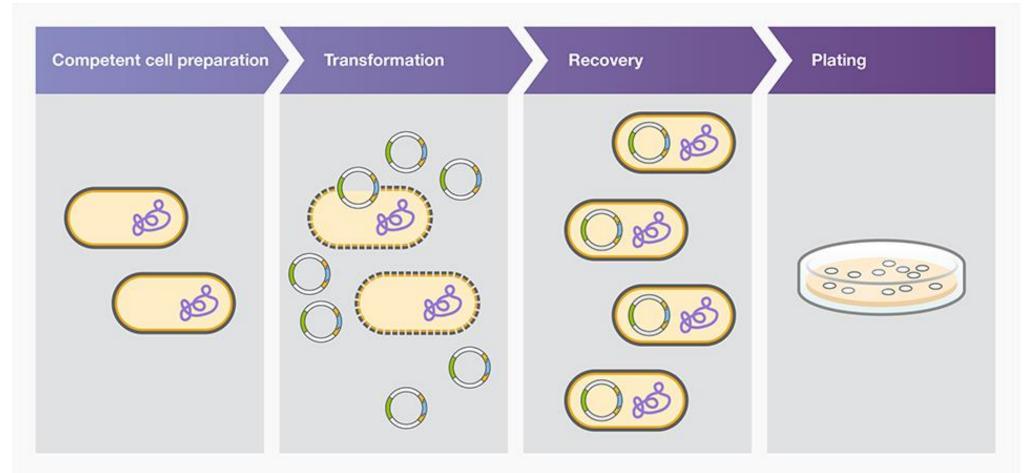
**Protoplastos** 

Biobalística

Macro/Micro injeção

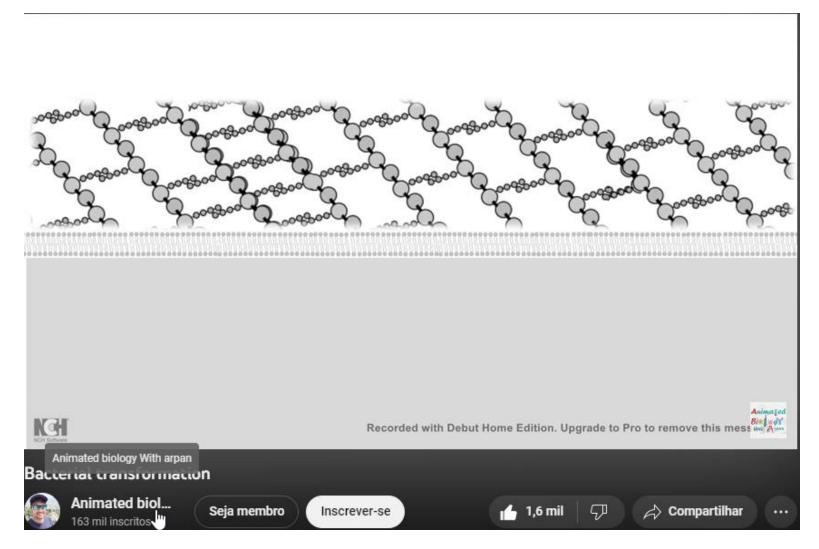
Eletroporação/ Eletrofusão





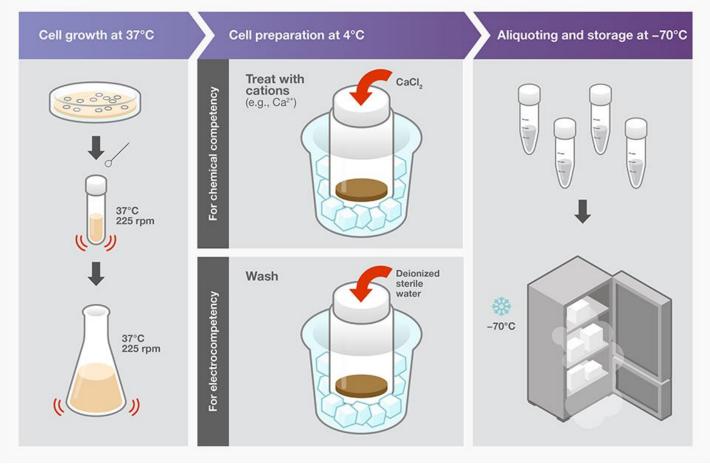






# Transformação em procariotos

## Etapas




THERMOFISCHER. Bacterial Transformation Workflow-4 Main Steps - BR. Disponível em: <a href="https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/transformation/bacterial-transformation-workflow.html">https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/transformation/bacterial-transformation-workflow.html</a>. Acesso em: 25 abr. 2023.

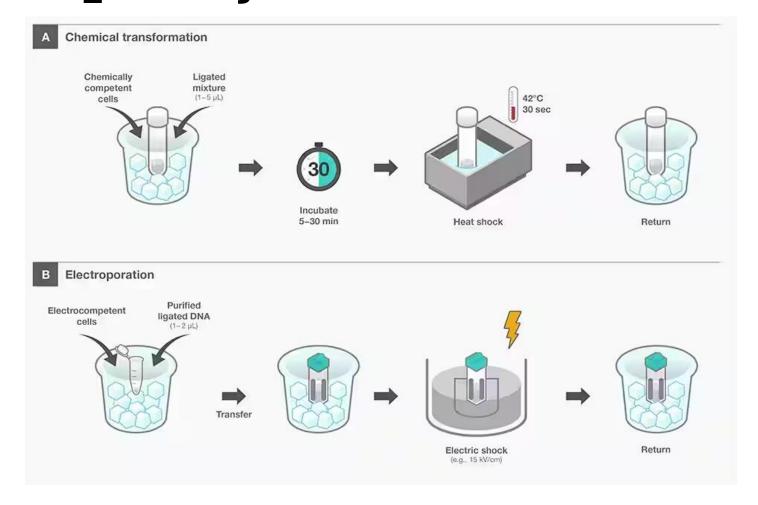
## Preparação da célula competente





## O método de preparo depende do método de transformação




THERMOFISCHER.
Bacterial
Transformation
Workflow-4 Main
Steps - BR.
Disponível em:
<a href="https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-biology/molecular-biology/molecular-

cloning/transform ation/bacterialtransformationworkflow.html>. Acesso em: 25

-1--- 0000



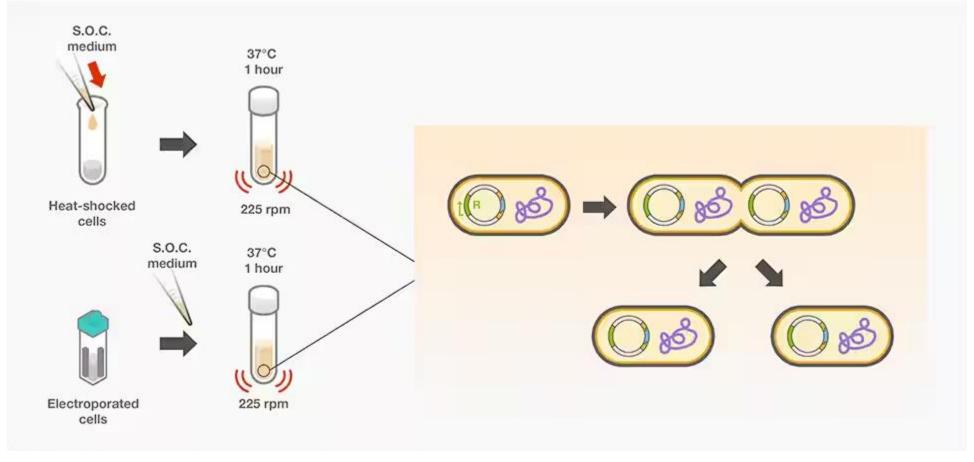
## Transformação química x eletroporação



Bacterial
Transformation
Workflow-4 Main
Steps - BR.
Disponível em:
<a href="https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-">https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-</a>

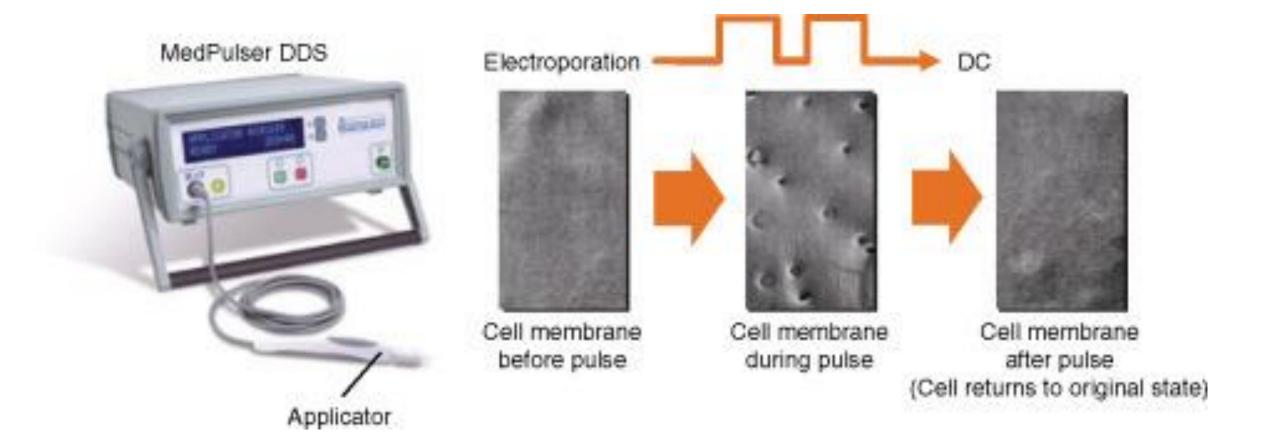
THERMOFISCHER.

cloning/transform ation/bacterialtransformationworkflow.html>. Acesso em: 25


biology/molecular

molecular-

-1--- 0000




## Incubação das células



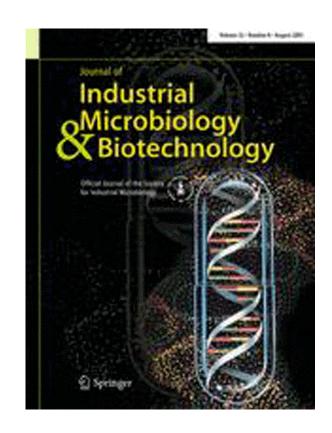
THERMOFISCHER. Bacterial Transformation Workflow-4 Main Steps - BR. Disponível em: <a href="https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/transformation/bacterial-transformation-workflow.html">https://www.thermofisher.com/br/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/transformation/bacterial-transformation-workflow.html</a>. Acesso em: 25 abr.



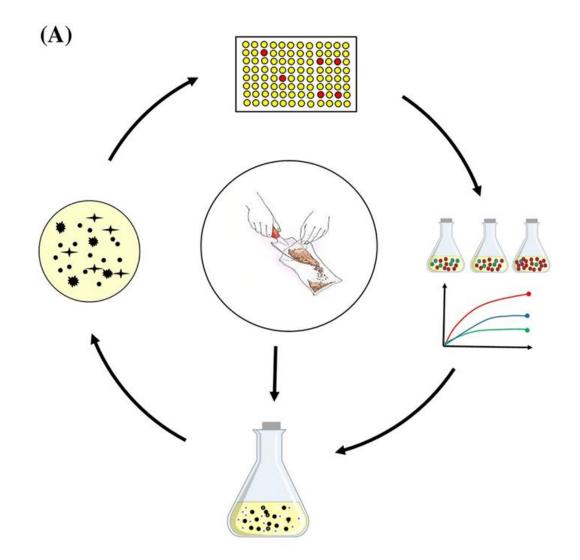


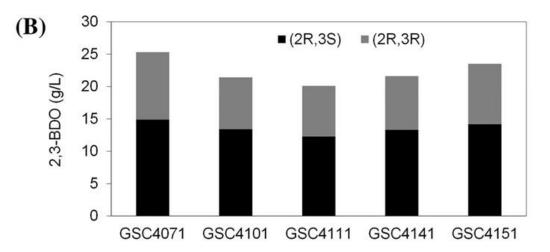


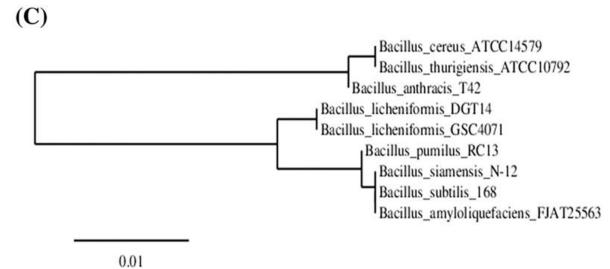
## Plaqueamento



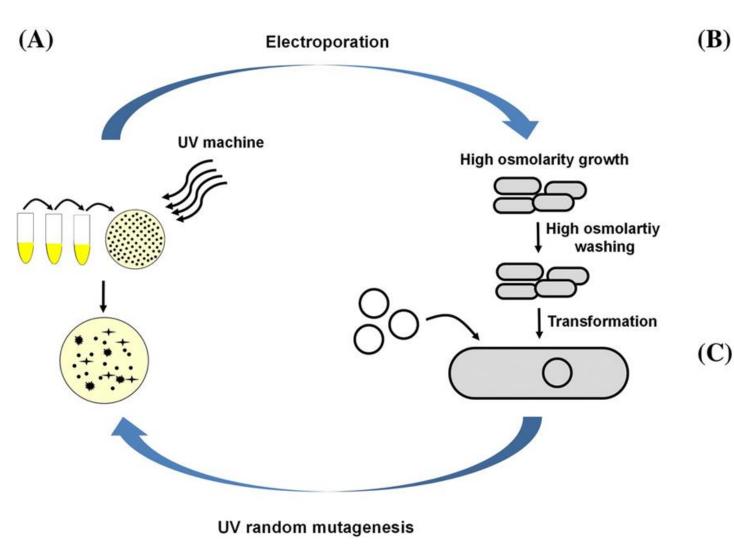




# Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol


Chan Woo Song, Rathnasingh Chelladurai, Jong Myoung Park, Hyohak Song


Journal of Industrial Microbiology and Biotechnology, Volume 47, Issue 1, 1 January 2020, Pages 97–108, https://doi.org/10.1007/s10295-019-02249-4









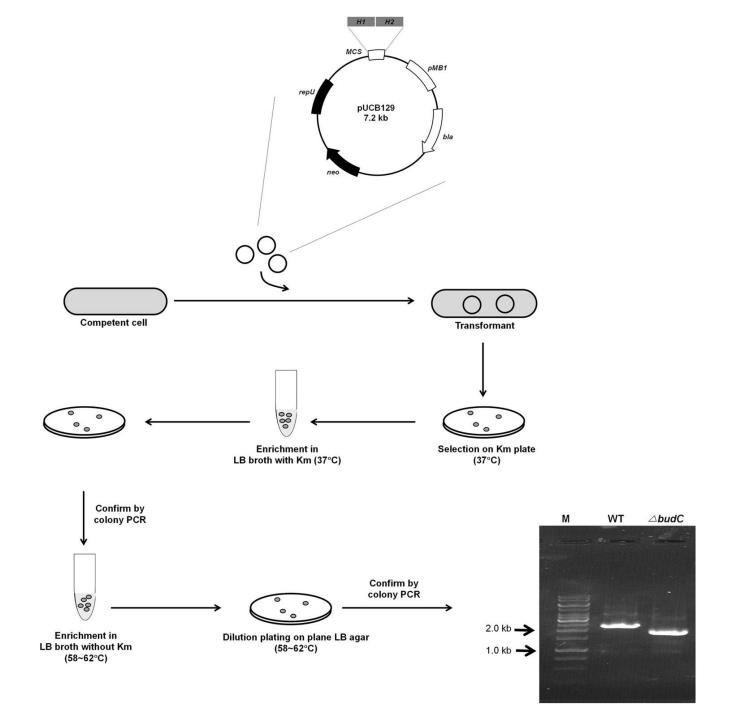




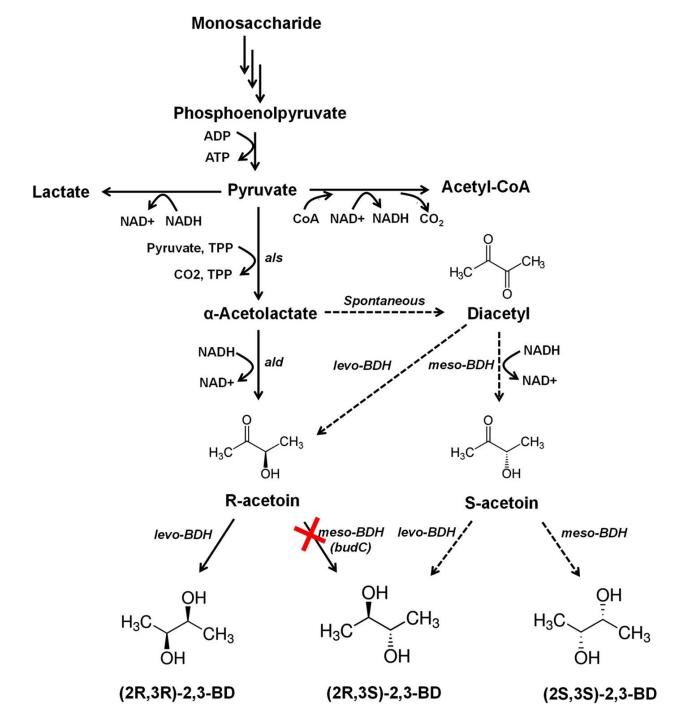








Wild type (4071)

**UV** mutant (4071-15)


**(C)** 

| Plasmid - | Efficiency (CFU/µg DNA) |                       |
|-----------|-------------------------|-----------------------|
|           | 4071                    | 4071-15               |
| pC194     | 0                       | 2.8 X 10 <sup>2</sup> |
| pUB110    | 2.0 X 10                | 1.5 X 10 <sup>2</sup> |
| pUCB129   | 1.0 X 10                | 6.0 X 10              |
|           |                         |                       |



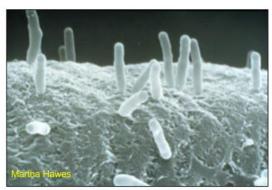








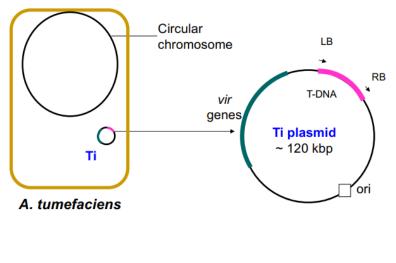
# Transformação em Eucariotos

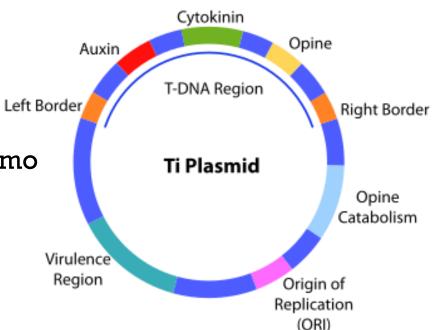

### Transformação mediada por Agrobacterium tumefaciens

- Bactéria de solo Gram-negativa, tipo bacilo
- Causa galha da coroa: roseiras, macieiras, videiras
- Afeta mais dicotiledôneas e pouco monocotiledôneas
- Cromossomo linear de 2 Mb e um circular de 2.8 Mb
- Plasmídeo Ti (tumor-inducing) de até 250 Kb
- Família *Rhizobiaceae*

#### Outras espécies:

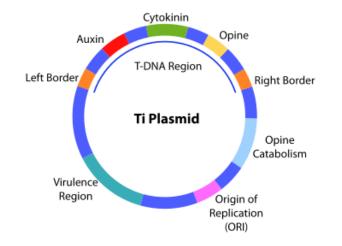
- Agrobacterium rhizogenes raiz em cabeleira
- Agrobacterium rubi hospedeiros limitados
- Agrobacterium radiobacter não tumorogênica (sem Ti)




Agrobacterium tumefaciens attached to plant tissue

#### Transformação mediada por Agrobacterium tumefaciens


- Infecção natural ferimentos
- Quimiotactismo fenóis, açúcares, aminoácidos
- Expressão de genes da bactéria transferidos e integrados de forma estável ao genoma vegetal
- Capacidade tumorigênica plasmídeo Ti = Tumor Inducing
- Regiões importantes do plasmídeo Ti:
- região T-DNA Transfer DNA
  - transferem genes para direcionar metabolismo visando manutenção da *Agrobacterium*
- região vir genes de virulência

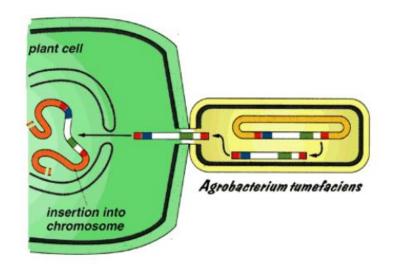


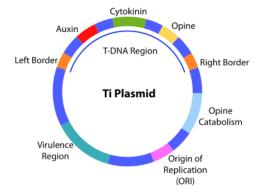


#### Transformação mediada por Agrobacterium tumefaciens







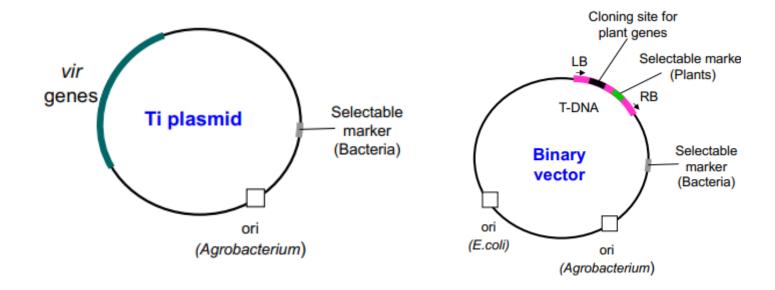


- LB e RB repetições diretas de 25 bp
- Nos nopalina sintase gene para síntese de opina
- Shi indução de brotos 2 genes para síntese de auxina
- Roi indutor de raiz gene para síntese de citocinina



### Transferência de T-DNA em plantas

- Ativada quando entra em contato com tecido vegetal danificado
- O T-DNA é cortado na RB, replicado até LB e transferido para a célula vegetal, catalisados por produtos de genes vir
- O T-DNA é inserido no genoma nuclear da planta em locais aleatórios
- A célula transformada começa a se proliferar após a integração do DNA, resultando em formação de tumores

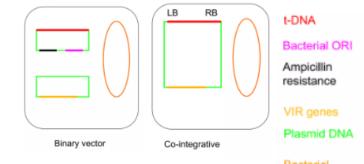





☐ Células transformadas produzem opinas = nutrientes ricos em N (derivados de aminoácidos) para bactéria ("colonização genética")

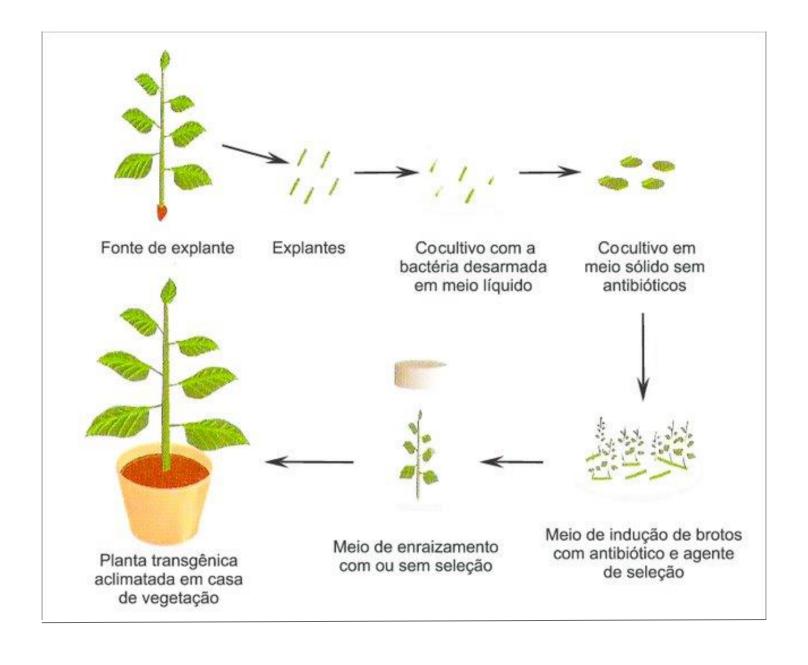


### Agrobacterium como uma ferramenta na engenharia genética


- Exclusão: genes de auxina, citocinina e opina
- Manutenção: *vir*, LB, RB e ori
- O plasmídeo Ti é enorme (~120 kb) precisa torná-lo menor
- Genes vir e T-DNA podem estar em plasmídeos separados
- Apenas as bordas esquerda e direita (LB e RB) são necessárias para o T-DNA ser transferido






#### Passo a passo na transformação mediada por Agrobacterium

- 1. Propagar vetor binário em *E. coli*
- 2. Isolar o vetor binário de *E.coli* e inserir um gene de interesse
- 3. Reintroduzir o vetor modificado em *E. coli* para amplificá-lo
- 4. Isolar o vetor manipulado de *E. coli* e introduzir em *Agrobacterium* já contendo um Plasmídeo Ti modificado (menor) com genes *vir*
- 5. Infectar o tecido da planta com Agrobacterium modificada



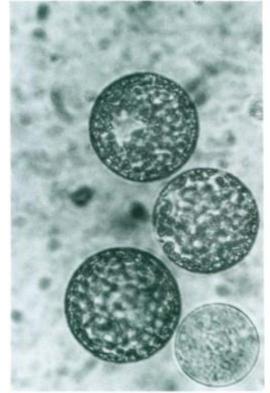
- ☐ Em cada célula, o T-DNA é integrado em um local diferente no genoma
- ☐ Cada célula é hemizigótica para a inserção apenas 1 dos cromossomos homólogos recebe a inserção
- ☐ Transformação de células vegetais em meio de cultura, seleção de células transformadas e regeneração de toda a planta a partir da célula transformada.

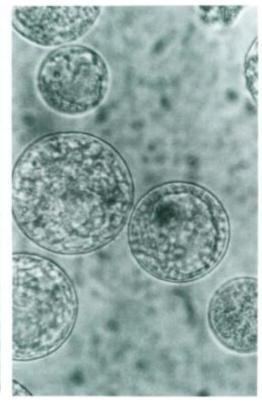






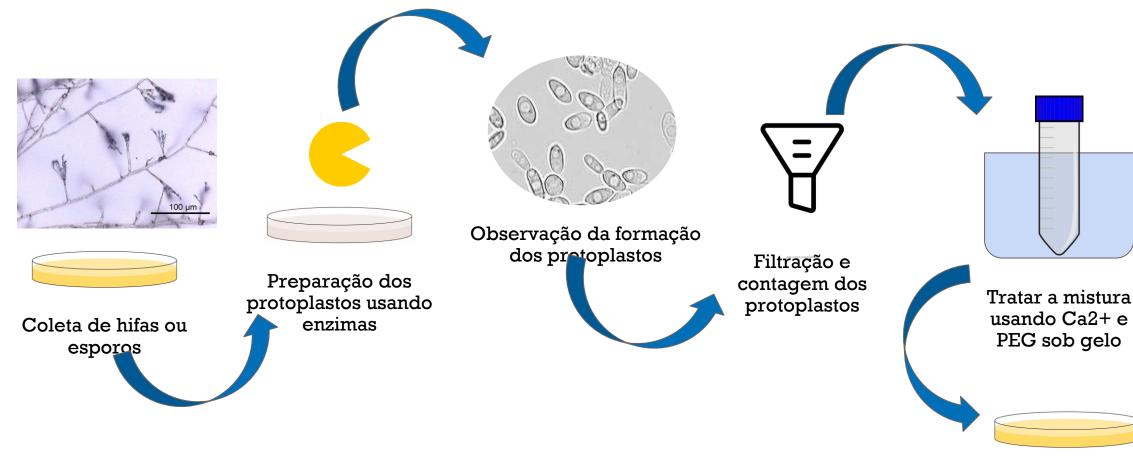
### Transformação mediada por protoplastos


Protoplastos - Células livres de parede celular




Algumas enzimas removem a parede celular (planta, fungos)- Celulases e quitinases




Reagentes químicos são utilizados para promover a fusão entre protoplastos e DNA exógeno

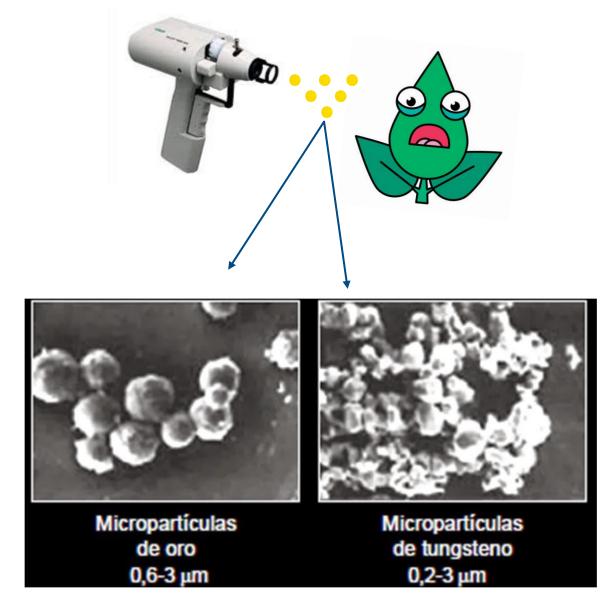






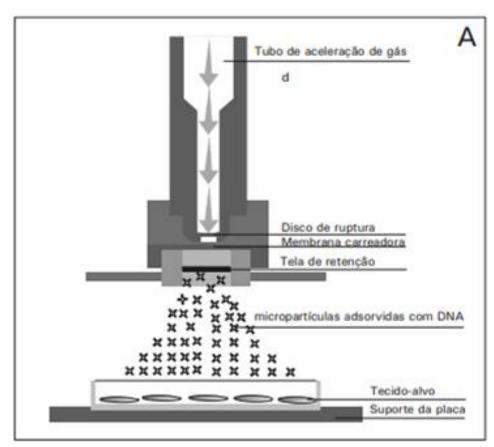
#### Transformação mediada por protoplastos

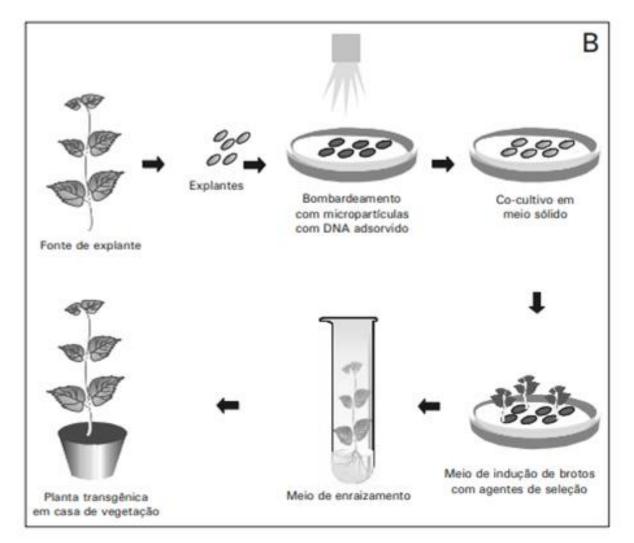



- > Sorbitol estabilização osmótica
- > Cálcio abertura de canais na citomembrana
- > PEG Promotor de fusão nuclear
- > Regeneração sem pressão seletiva

Regeneração e cultivo




#### Biolística - Gene gun


- Ampla variedade de células.
- > DNA imobilizado em MPs de ouro ou tungstênio  $(0,5-5 \mu m)$ .
- Descarga elétrica ou pulso de hélio pressurizado.
- > Superam a parede celular e epiderme.
- > Transfecção in vivo e in vitro.
- Uso em organismos difíceis de cultivar ou com difícil preparo de protoplastos.



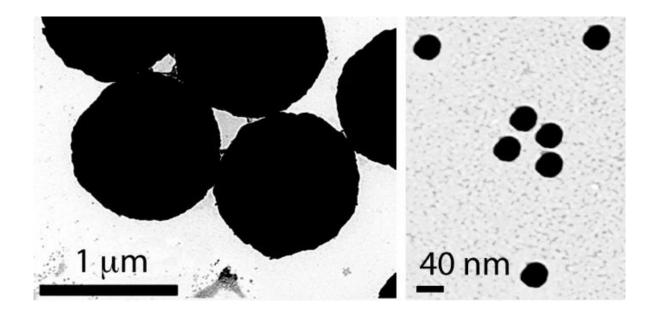


## Biolística - Gene gun










#### **METHODOLOGY ARTICLE**

**Open Access** 

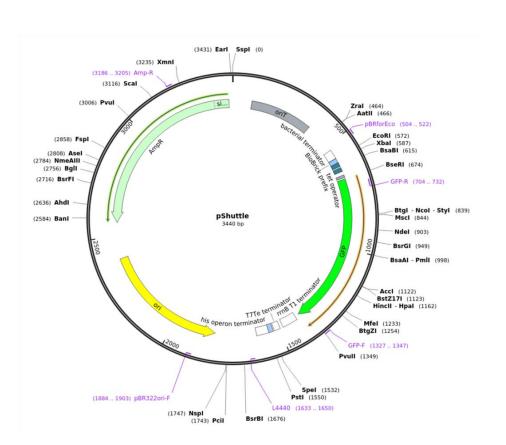
Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

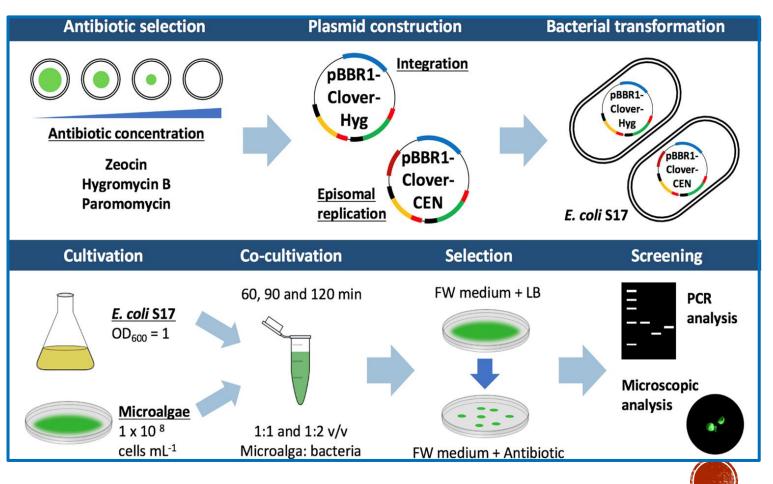
John A O'Brien and Sarah CR Lummis 1,2\*



- Nanobiolística Uma modificação do método biolístico.
- > Partículas menores do que 40 nm.
- Apropriado para uso em células pequenas e para entrega no cloroplasto ou mitocôndria.

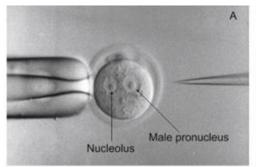


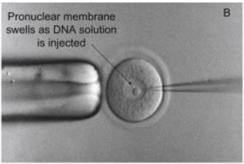

### Conjugação

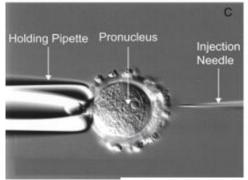


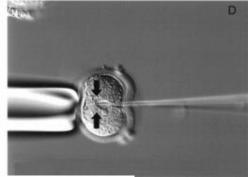

#### Algal Research Volume 39, May 2019, 101453

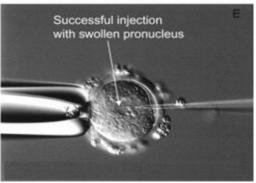



#### Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation





### Microinjeção


- Método direto para introduzir DNA no citoplasma ou no núcleo de uma célula.
- ➢ Pipeta microcapilar de vidro + dispositivo de posicionamento de precisão (200 a 400 x de ampliação) para controlar o movimento da micropipeta + microinjetor.
- Extrusão do material genético através da micropipeta por pressão hidrostática.



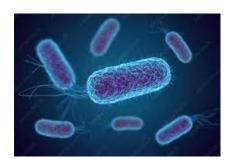











| Métodos de Transformação | Vantagens                                                     | Desvantagens                                                      |
|--------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
|                          | Meio natural de transferência                                 | Genótipo específica                                               |
|                          | Eficiente                                                     | Variação somaclonal                                               |
|                          | Grandes fragmentos de genes                                   | Regeneração lenta                                                 |
|                          | Integração do T-DNA é precisa                                 | Incapacidade de transferir múltiplos genes                        |
|                          | Excelente estabilidade do gene                                |                                                                   |
| Fusão de Protoplastos    | Sem necessidade de equipamentos caros                         | Muitas etapas                                                     |
|                          | Rápido                                                        | Citotoxicidade                                                    |
|                          | Alta taxa de trasnformantes estáveis                          | Baixa regeneração                                                 |
|                          |                                                               |                                                                   |
| Biobalistica             | Capacidade de superar barreiras físicas como a parede celular | Requer dispositivos e reagentes caros                             |
|                          | Transfecção de grandes quantidades de células por uso único   | Dano tecidual                                                     |
|                          | Reduzida degradação do gene                                   | Capacidade de regeneração limitada                                |
|                          | Versátil e adaptável a uma ampla gama de células e tecidos    | Integração de sequências de DNA rearranjadas ou truncadas         |
|                          | Genótipo independente                                         |                                                                   |
| Conjugação               | Não requer equipamentos caros                                 | Baixa eficiência                                                  |
|                          | Poucas etapas                                                 |                                                                   |
|                          |                                                               |                                                                   |
| Microinjeção             | Simples                                                       | Dificil de aplicar                                                |
|                          | Eficiência de até 100% em células viáveis                     | Procedimento trabalhoso                                           |
|                          | Dosagem precisa do material                                   | Não é possível injetar mais de 100-200 células em cada tratamento |
|                          | Entrega seletiva do material no citosol ou núcleo             |                                                                   |





# Organismos modelos e desafios

# Organismos Modelos



E. coli



Saccharomyces cerevisiae



Chlamydomonas reinhardtii

Danio rerio



Drosophila melanogaster



Caenorhabditis elegans



Mus musculus

Arabidopsis thaliana

Estudos funcionais, desenvolvimento biotecnológico, terapia gênica, melhoria de plantas e animais, medicina...



## Desafios

- Regulamentação: muitos países têm regulamentações rigorosas sobre a produção e uso de OGMs, além da dificuldade em harmonizar as regulamentações de diferentes países, o que pode limitar seu uso global;
- Baixa eficiência de transformação e regeneração em espécies de plantas recalcitrantes e protocolos genótipo dependentes;
- Desenvolvimento de métodos de transformação eficientes para espécies não modelo;
- Ciclo de vida heterocariótico em fungos (cél. monocatióticas) e espessura da parede celular;
- O escurecimento e a necrose dos tecidos após a infecção por Agrobacterium na transformação genética de cereais agentes inibidores de necrose, como nitrato de prata, para aumentar a eficiência da transformação;
- Na infecção por patógenos, um dos primeiros mecanismos de defesa ativados é a produção de espécies reativas de oxigênio - explosão oxidativa, que ativa a morte celular programada (HR). Foi demonstrada correlação entre a redução na morte celular e a melhora na frequência de transformação;
- A supressão da resposta de defesa do hospedeiro pode ser um fator para a transformação bem-sucedida da planta.



# Referências

#### Referência

S

Sartoretto, L. M., Saldanha, C. W., Corder, M. P. M. (2008). Transformação genética: Estratégias e aplicações para o melhoramento genético de espécies florestais. Ciência Rural, 38(3), 861–871. <a href="https://doi.org/10.1590/s0103-84782008000300046">https://doi.org/10.1590/s0103-84782008000300046</a>

Hutchison, H. T., Hartwell, L. H. (1967). Macromolecule synthesis in yeast spheroplasts. Journal of Bacteriology, 94(5), 1697–1705. https://doi.org/10.1128/jb.94.5.1697-1705.1967

Cai, Y., Hartnett, B., Gustafsson, C., & Peccoud, J. (2007). A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics, 23(20), 2760–2767. <a href="https://doi.org/10.1093/bioinformatics/btm446">https://doi.org/10.1093/bioinformatics/btm446</a>

Anton, B. P. (2013). Vectors. In Brenner's Encyclopedia of Genetics (pp. 277–280). Elsevier. http://dx.doi.org/10.1016/b978-0-12-374984-0.01621-1

Alam, J.; Cook, J. L. (1990). Reporter genes: Application to the study of mammalian gene transcription. Analytical Biochemistry, 188(2), 245–254. <a href="https://doi.org/10.1016/0003-2697(90)90601-5">https://doi.org/10.1016/0003-2697(90)90601-5</a>

Li, D., Tang, Y., Lin, J. et al. Methods for genetic transformation of filamentous fungi. Microb Cell Fact 16, 168 (2017). https://doi.org/10.1186/s12934-017-0785-7

O'Brien, J.A., Lummis, S.C. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11, 66 (2011). <a href="https://doi.org/10.1186/1472-6750-11-66">https://doi.org/10.1186/1472-6750-11-66</a>

Sanford, J. C. (1990). Biolistic plant transformation. Physiologia Plantarum, 79(1), 206–209. https://doi.org/10.1111/j.1399-3054.1990.tb05888.x

Muñoz, C. F., Sturme, M. H. J., D'Adamo, S., Weusthuis, R. A., & Wijffels, R. H. (2019). Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation. Algal Research, 39, 101453. <a href="https://doi.org/10.1016/j.algal.2019.101453">https://doi.org/10.1016/j.algal.2019.101453</a>

Barber MA (1911) A technique for the innoculation of bacteria and other substances into living cells. J. Infec. Diseases 8: 348–352

Keshavareddy, G., Kumar, A. R. V., & S. Ramu, V. (2018). Methods of plant transformation- A review. International Journal of Current Microbiology and Applied Sciences, 7(07), 2656–2668. https://doi.org/10.20546/ijcmas.2018.707.312





**OBRIGADO!!!!!** 

