Introduction to VHDL

Prof. Vanderlei Bonato - vbonato@icmc.usp.br

9/26/17

Summary

* History

 VHDL Structure

« Sequencial and Parallel Execution

« Signal and Variable

« Data Types, Assignments, Data Conversions
* Operators

« Component Instantiation

« Bi-directional Pins

« EXxercises

9/26/17

Concepts

 VHDL is the VHSIC (Very High Speed
Integrated Circuit) Hardware Description
Language

 VHDL is an international standard

specification language for describing digital
hardware used by industry worldwide

 VHDL enables hardware modeling from the
gate to system level

 VHDL provides a mechanism for digital
design and reusable design documentation

9/26/17

History of VHDL

 Launched in 1980
* Aggressive effort to advance state of the art

* Object was to achieve significant gains in
VLSI technology

* Need for common descriptive language

* In July 1983, a team of Intermetrics, IBM and
Texas Instruments were awarded a contract

to develop VHDL

9/26/17

History of VHDL

* In August 1985, the final version of the
language under government contract was
released: VHDL Version 7.2

 In December 1987, VHDL became IEEE
Standard 1076-1987 and in 1988 an ANSI
approved standard

* In September 1993, VHDL was restandardized

to clarify and enhance the language (IEEE
Standard 1076-1993)

» Since then there has been many other VHDL
standard revision

9/26/17 5

How about Quartus li

 The Quartus Il software supports a subset of
the constructs defined by the IEEE Std
1076-1987, and IEEE Std 1076-1993, and IEEE
Std 1076-2008

— It supports only those constructs that are relevant
to logic synthesis

« The Quartus Il 11.1 software contains
support for VHDL 2008: IEEE Std 1076-2008

 The Quartus Il software also supports the
packages defined by these patterns

9/26/17 6

Why Use VHDL?

* Provides technology independence
* Describes a wide variety of digital hardware

 Eases communication through standard
language

* Allows for better design management

* Provides a flexible design language

9/26/17

cCKage

Architecture chitecture Architecture
} structural)

Concurrent;
statements:

-Jt:.ll:.%lll:.illl:.v

VHDL Design Process

* Problem: design a single bit half adder with
carry and enable

+ Specifications
— Passes results only on enable high
— Passes zero on enable low
— Result gets x plus y
— Carry gets any carry of x plus y

9/26/17

Entity Declaration

* An entity declaration describes the interface
of the component

« PORT clause indicates input and output
ports

* An entity can be thought of as a symbol for a
component

 Generics may be added for readability,
maintenance and configuration

9/26/17 10

Entity Declaration

ENTITY half adder IS
PORT (x, y, enable: IN bit;

carry, result: OUT bit);

END half_adder;

X—

y—» HalfjAdder

___e-carry

enable . __»-result

9/26/17

11

Architecture Declaration

* Architecture declarations describe the
operation of the component

 Many architectures may exist for one entity,
but only one may be active at a time

 An architecture is similar to a schematic of
the component

9/26/17

12

ARCHITECTURE behaviorl OF]

half_adder IS BEGIN

PROCESS (enable, x, y)

X
BEGIN y_}_carry
IF (enable = 'l') THEN ﬁmme--[:

result <= x XOR y;

e [ES LIt

carry <= X AND y;

ELSE

carry <= '0'

result <= '0';

END PROCESS;

END behaviorl;

Packages and Libraries

 User defined constructs declared inside
architectures and entities are not visible to other
entities
— Subprograms, user defined data types, and constants can
not be shared
 Packages and libraries provide the ability to reuse
constructs in multiple entities and architectures

 An important VHDL library is the IEEE library. This

package provides a set of user-defined datatypes
and conversion functions that should be used in
VHDL designs.

— LIBRARY ieee;
— USE ieee.std_logic_1164.ALL;

9/26/17 14

Sequential and Concurrent Statements

 VHDL provides two different types of
execution: sequential and concurrent

* Different types of execution are useful for
modeling of real hardware
— Supports various levels of abstraction

« Sequential statements view hardware from a
"programmer” approach

« Concurrent statements are order-independent
and asynchronous

9/26/17 15

Sequential Statements

« Sequential statements run in top to bottom
order

« Sequential execution most often found in
behavioral descriptions

« Statements inside PROCESS execute
sequentially

9/26/17

16

Concurrent Statements

 All concurrent statements occur
simultaneously

« How are concurrent statements processed?

« Simulator time does not advance until all
concurrent statements are processed

« Some concurrent statements

— Block, process, assert, signal assignment,
procedure call, component instantiation

9/26/17

17

VHDL Processes

Assignments executed sequentially

Sequential statements
— {Signal, variable} assignments

— Flow control
« if <condition> then <statements> else <statements> end if;

 for <range> loop <statements> end loop;
while <condition> loop <statements> end loop;

e case <condition> is when <value> => <statements>;
when <value> => <statements>;
when others => <statements>;

end case;
— Wait on <signal> until <expression> for <time>;
— Assert <condition> report <string> severity <level>;

9/26/17

18

VHDL Processes

A VHDL process statement is used for all
behavioral descriptions

[Process label :] PROCESS

[(sensitivity_list)]

process declarations

process statements

END PROCESS [process_label];

9/26/17

19

Process Example - Carry Bit

Carry: PROCESS(A, B, Cin)

BEGIN
= '1l'" and B = '1")

Cout

ELSIF (A
Cout

ELSIF (B and Cin
Cout '1';

ELSE
Cout

END IF;

END PROCESS Carry;

9/26/17

20

A Design Example: 8-bits Register
with asynchronous clear

LIBRARY ijieee;
USE ieee.std logic 1164.all;

ENTITY reg8 IS
PORT (clock, rst : IN BIT;
D: IN STD LOGIC VECTOR(7 DOWNTO O) ;
Q: OUT STD LOGIC VECTOR (7 DOWNTO 0)) ;
END reg8; - -

ARCHITECTURE behavior OF reg8 IS

BEGIN
register8: PROCESS (clock,rst)
BEGIN
IF rst = ‘0' THEN
Q <= “000000007;
ELSIF clock’ EVENT AND clock ='l' THEN
Q <= D;
END IF;
END PROCESS register8;
END behavior;

9/26/17

21

A Design Example: 2-bits Counter

ENTITY count2 IS
PORT (clock : IN BIT;
ql, g0: OUT BIT)
END count2;

ARCHITECTURE behavior OF count2 IS

BEGIN
count up: PROCESS (clock)
VARIABLE count value: NATURAL := 0;
BEGIN
IF clock='1l' THEN
count value := (count value+l) MOD 4;

g0 <= bit'val (count value MOD 2);
ql <= bit'val (count value/2);
END IF; -
END PROCESS count up;
END behavior; -

9/26/17

Signals vs Variables

« Variables
— Used for local storage of data

— Generally not available to multiple components and
processes

— All variable assignments take place immediately

— Variables are more convenient than signals for the storage
of data

— Variables may be made global
« Signals
— Used for communication between components

— Signals can be seen as real, physical signals
— Some delay must be incurred in a signal assignment

9/26/17

23

Assignments

ARCHITECTURE testl OF

test mux IS
SIGNAL a : BIT
SIGNAL b : BIT

BEGIN

statements. ..
|
ar

statements. ..

END testl;

_|BROCESS (result)

ARCHITECTURE test2 OF test mux IS BEGIN

VARIABLE a : BIT
VARIABLE b : BIT
BEGIN

statements...
a := b;
b := a;
.more statements...
END PROCESS;

END test2;

9/26/17

Signal x Variable Behaviour

ENTITY aulavhdl IS
PORT (clock, data_in : IN BIT;
r_v, r_s, r_s_par: OUT BIT);
END aulavhdl;

ARCHITECTURE behavior OF aulavhdl IS
signal a_s, a_s_par: BIT :='0';
BEGIN
PROCESS (clock)
variable a_v: BIT :='0";
BEGIN
IF clock='1' THEN
a_v := data_in;
rv<=a.yv,

a_s <= data_in;
rs<=a.s;
END IF;
END PROCESS;
a_s_par <= data_in;
r_s par <= a_s_par;
END behavior;

9/26/17

Signal x Variable Behaviour

* Percebam a diferenca de comportamento do
“signal” dentro e fora do processo!

* Quanto a “variable” ndo ha surpresa, pois €
utilizada somente dentro do processo

clock l | | | | | | | | | | | | | | I ,_
data_in | |
r_v | EREERE
rs L

.

¥

¢

¢

r_s_par | |

¢

9/26/17 26

Data Types

Data types

Synthesizable values

BIT, BIT_VECTOR

STD_LOGIC, STD_LOGIC_VECTOR
STD_ULOGIC, STD_ULOGIC_VECTOR
BOOLEAN

NATURAL

INTEGER

SIGNED

UNSIGNED

User-defined mteger type

User-defined enumerated type
SUBTYPE

ARRAY

RECORD

0.1
X, 07, 1, 2 (resolved)

X, 07, ‘1, *Z (unresolved)

True, False

From 0 to +2, 147, 483, 647

From —2,147,483,647 to +2,147,483,647
From —2,147,483,647 to +2,147,483,647
From 0 to +2,147,483,647

Subset of INTEGER

Collection enumerated by user

Subset of any type (pre- or user-defined)
Single-type collection of any type above
Multiple-type collection of any types above

9/26/17

27

Dealing with Data Types

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD LOGIC;

TYPE meml IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC;
TYPE mem2 IS ARRAY (0 TO 3) OF byte;

TYPE mem3 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(O TO 7);
SIGNAL a: STD LOGIC; -
SIGNAL b: BIT; -
SIGNAL x: byte; -- 1D
SIGNAL y: STD LOGIC_VECTOR (7 DOWNTO 0); -- 1D
SIGNAL v: BIT VECTOR (3 DOWNTO 0); -- 1D
SIGNAL z: STD LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D
SIGNAL wl: meml; -=- 2D
SIGNAL w2: mem2; -
SIGNAL w3: mem3; -

1D

array
2D

array
1Dx1D
array
1Dx1D
array

scalar signal

scalar signal

signal
signal
signal
signal
signal

1Dx1D signal

1Dx1D signal

9/26/17

28

Scalar Assignments

X(2) <= a;

y(0) <= x(0);
z(7) <= x(5);

b <=v(3);
wl(0,0) <= x(3);

wl(2,5) <i= vy(7);
w2(0)(0) <= x(2);
w2(2)(5) <= y(7);
wl(2,5) <= w2(3)(7);

same
same
same
same

same

same
same
same

same

types
types
types
types
types

types
types
types
types

(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing
(BIT), correct indexing

(STD LOGIC), correct indexing

(STD _LOGIC), correct indexing
(STD _LOGIC), correct indexing
(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing

9/26/17

29

Vector Assignments

<= "11111110";
<= ('1','1','1',"'1','1','1','0"','%2");
"11111" & "000";
<= (OTHERS => '1');
<= (7 =>'0', 1 =>'0', OTHERS => '1');
Z <= Y;
y(2 DOWNTO 0) <= z(6 DOWNTO 4);
w2(0)(7 DOWNTO 0) <= "11110000";
w3(2) <=y;
z <= w3(1);
z(5 DOWNTO 0) <= w3(1l)(2 TO 7);
w3(1l) <= "00000000";
w3 (1) <= (OTHERS => '0');
w2 <= ((OTHERS=>'0"'), (OTHERS=>'0"'), (OTHERS=>'0"), (OTHERS=>'0"));
w3 <= ("11111100", ('0O','0','0','0','2"','2",'2",'2",),
(OTHERS=>'0"'), (OTHERS=>'0"));
wl <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0"'));

MOX N KON
A
I

9/26/17

llegal Assignments

------- Illegal scalar assignments: ————cemmm e

b <= a; -- type mismatch (BIT x STD LOGIC)
wl(0)(2) <= x(2); —-—- index of wl must be 2D
w2(2,0) <= a; —— index of w2 must be 1Dx1D

—=—==== TIllegal array assignments: ————eemm o

X <= y; -- type mismatch

y(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y
wl <= (OTHERS => '1"'); -- wl is a 2D array
wl(0, 7 DOWNTO 0) <="11111111"; -- wl is a 2D array

w2 <= (OTHERS => 'Z"'); -— W2 1is a 1Dx1D array
w2(0, 7 DOWNTO 0) <= "11110000"; -— index should be 1Dx1D

9/26/17 31

DOWNTO and TO

SIGNAL x: BIT;

-- X 1s declared as a one-digit signal of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);
-— y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT VECTOR (0 TO 7);
-— w 1s an 8-bit vector, with the rightmost bit being the MSB.

x<= lll;

-- X 1s a single-bit signal (as specified above), whose value is

--— '1l'., Notice that single guotes (' ') are used for a single bit.
y <= "0111";

-- y 1is a 4-bit signal (as specified above), whose value is "0111"
-— (MSB='0"'). Notice that double quotes (" ") are used for

-- vectors.

w <= "01110001";
-- w 1is an 8-bit signal, whose value is "01110001" (MSB='1').

9/26/17 32

Bit Levels

« BIT (and BIT_VECTOR): 2-level logic (‘0°, “I")

« STD_LOGIC (and STD_LOGIC_VECTOR): 8-valued logic system introduced in
the IEEE 1164 standard.

‘X" Forcing Unknown (synthesizable unknown)

‘0> Forcing Low (synthesizable logic ‘1)

‘1" Forcing High (synthesizable logic “0)

‘2’ High impedance (synthesizable tri-state buffer)
‘W’ Weak unknown

‘L Weak low

‘H> Weak high
‘> Don’t care

Most of the std_logic are intended for simulation only!

9/26/17 33

ULOGIC

« STD_ULOGIC (STD_ULOGIC_VECTOR): 9-level logic system introduced in
the IEEE 1164 standard (*U’°, X, “0°, ‘1", *Z°, “W’, ‘L’, ‘H’, *2).

- STD_LOGIC system described above is a subtype of STD_ULOGIC. The latter
includes an extra logic value, ‘“U’, which stands for unresolved. Thus, contrary to
STD_LOGIC, conflicting logic levels are not automatically resolved here, so output
wires should never be connected together directly. However, if two output wires are
never supposed to be connected together, this logic system can be used to detect
design errors.

9/26/17 34

SIGNED and UNSIGNED

* Their syntax similarto STD_LOGIC VECTOR

 SIGNED and UNSIGNED are intended mainly
for arithmetic operations

* Logic operations are not allowed

SIGNAL x: SIGNED (7 DOWNTO 0);
SIGNAL y: UNSIGNED (0 TO 3);

9/26/17

35

Data Conversion

« VHDL does not allow direct operations
between data of different types

« Conversions are necessary

« Several data conversion functions can be

found in the std_logic_arith package of IEEE
library

9/26/17 36

std_logic_arith Conversion Functions

« conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_
VECTOR is not included.

* conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD ULOGIC to an UNSIGNED value with size b bits.

« conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD _ULOGIC to a SIGNED value with size b bits.

 conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER, UN-
SIGNED, SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value with size
b bits.

9/26/17 37

Operators

Operator type Operators Data types
Assignment <=, =, => Any
Logical NOT, AND, NAND, BIT, BIT_VECTOR,
OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR
Arithmetic +, =, % [, R INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)*
Comparison =, [=, <, >, <=, >= All above
Shift sll, srl, sla, sra, rol, ror BIT VECTOR
Concatenation &, (,,,) Same as for logical operators, plus SIGNED and
UNSIGNED

9/26/17 38

The concatentation operator &

VARIABLE shifted, shiftin : BIT_VECTOR (0 TO 3)=

STRIRLEN [e="SURIRRNAR A 8 8 8.2 = 3 e 281 =

SHIFTIN

SHIFTED 3 J

The exponentiation operator **

TR T

¥
K.
¥

s

Component instantiation
(Structural VHDL)

component fifo_cam is

port(data :in STD_LOGIC_VECTOR (31 downto 0);

wrreq :in STD_LOGIC ;

rdreq :in STD_LOGIC ;

rdclk :in STD_LOGIC ;

wrclk :in STD_LOGIC ;

aclr :in STD_LOGIC ;

q :out STD_LOGIC _VECTOR (31 downto 0);
rdempty :out STD LOGIC;

wrfull :out STD_LOGIC);

end component;

fifo: fifo_cam port map(pixel,'1',read_cs,clk _n,ready pixel,aclr_fifo,readdata,waitrequest,fifofull);

9/26/17 40

Bidirectional pin

ENTITY proc_eld2 is

PORT(clk, rst S in STD _LOGIC;
data : inout STD_LOGIC_VECTOR(7 downto 0);
web_oeb : buffer STD_LOGIC;
address :out STD _LOGIC _VECTOR(7 downto 0);
pc_out, ir_out :out STD _LOGIC_VECTOR(7 downto 0);
saida :out STD_LOGIC_VECTOR(2 downto 0)

);
END proc_eld2;

signal ACC : std_logic_vector(7 downto 0);

web_oeb <=1"'; --1 escreve e 0 |é da mem.
data <= ACC WHEN web oeb="'1'else "Z2Z2Z27277727",

web_oeb <=‘0"; --1 escreve e 0 |é da mem.
ACC <= data;

9/26/17

41

Tips

* The ENTITY name and the file name must be
the same

* Physical and time data types are not
synthesizable for FPGAs

— ohm, kohm
— fs, ps, ns, um, ms, min, hr

9/26/17

42

And more ...

* Function
— Produce a single return value
— Requires a RETURN statement
* Procedure
— Produce many output values
— Do not require a RETURN statement

 Testbench
— Generate stimulus for simulation
— Compare output responses with expected values

9/26/17

43

Implemente em VHDL
0s seguintes componentes

e FFsdotipoD, TeJK

» Registrador de deslocamento da direita para a esquerda
« Conversor de binario para display de 7 segmentos

* Crie um componente somador completo de 1 bit e
instancie esse mesmo componente para formar um
somador/subtrator de 8 bits do tipo ripple-carry.
Considere que os numeros estao em complemento de 2;
e para o controle da operacao utilize C=0 para adicao e
C=1 para subtracao. Indique também overflow. Utilize
ST%_LOGIC_VECTOR para os sinais de entrada e
saida

9/26/17 44

References

* Pedroni, Volnei A. Circuit Design with VHDL,
MIT Press, 2004

 DARPA/Tri-Services RASSP Program
— http://www.vhdl.org/rassp/

 Brown, S. and Vranesic, Z.. Funhdamentals of
Digital Logic with VHDL Design, 2"9 Ed., P.
939, 2005.

9/26/17 45

