
9/26/17 1

Prof. Vanderlei Bonato - vbonato@icmc.usp.br

Introduction to VHDL

9/26/17 2

Summary
•  History
•  VHDL Structure
•  Sequencial and Parallel Execution
•  Signal and Variable
•  Data Types, Assignments, Data Conversions
•  Operators
•  Component Instantiation
•  Bi-directional Pins
•  Exercises

9/26/17 3

Concepts
•  VHDL is the VHSIC (Very High Speed

Integrated Circuit) Hardware Description
Language

•  VHDL is an international standard
specification language for describing digital
hardware used by industry worldwide

•  VHDL enables hardware modeling from the
gate to system level

•  VHDL provides a mechanism for digital
design and reusable design documentation

9/26/17 4

History of VHDL
•  Launched in 1980
•  Aggressive effort to advance state of the art
•  Object was to achieve significant gains in

VLSI technology
•  Need for common descriptive language
•  In July 1983, a team of Intermetrics, IBM and

Texas Instruments were awarded a contract
to develop VHDL

9/26/17 5

History of VHDL
•  In August 1985, the final version of the

language under government contract was
released: VHDL Version 7.2

•  In December 1987, VHDL became IEEE
Standard 1076-1987 and in 1988 an ANSI
approved standard

•  In September 1993, VHDL was restandardized
to clarify and enhance the language (IEEE
Standard 1076-1993)

•  Since then there has been many other VHDL
standard revision

9/26/17 6

How about Quartus II
•  The Quartus II software supports a subset of

the constructs defined by the IEEE Std
1076-1987, and IEEE Std 1076-1993, and IEEE
Std 1076-2008
–  It supports only those constructs that are relevant

to logic synthesis
•  The Quartus II 11.1 software contains

support for VHDL 2008: IEEE Std 1076-2008
•  The Quartus II software also supports the

packages defined by these patterns

9/26/17 7

Why Use VHDL?
•  Provides technology independence

•  Describes a wide variety of digital hardware

•  Eases communication through standard
language

•  Allows for better design management

•  Provides a flexible design language

9/26/17 8

9/26/17 9

VHDL Design Process
•  Problem: design a single bit half adder with

carry and enable
•  Specifications

–  Passes results only on enable high
–  Passes zero on enable low
–  Result gets x plus y
–  Carry gets any carry of x plus y

9/26/17 10

Entity Declaration

•  An entity declaration describes the interface
of the component

•  PORT clause indicates input and output
ports

•  An entity can be thought of as a symbol for a
component

•  Generics may be added for readability,
maintenance and configuration

9/26/17 11

Entity Declaration

9/26/17 12

Architecture Declaration
•  Architecture declarations describe the

operation of the component

•  Many architectures may exist for one entity,
but only one may be active at a time

•  An architecture is similar to a schematic of
the component

9/26/17 13

9/26/17 14

Packages and Libraries
•  User defined constructs declared inside

architectures and entities are not visible to other
entities
–  Subprograms, user defined data types, and constants can

not be shared
•  Packages and libraries provide the ability to reuse

constructs in multiple entities and architectures
•  An important VHDL library is the IEEE library. This

package provides a set of user-defined datatypes
and conversion functions that should be used in
VHDL designs.
–  LIBRARY ieee;
–  USE ieee.std_logic_1164.ALL;

9/26/17 15

Sequential and Concurrent Statements
•  VHDL provides two different types of

execution: sequential and concurrent
•  Different types of execution are useful for

modeling of real hardware
–  Supports various levels of abstraction

•  Sequential statements view hardware from a
"programmer" approach

•  Concurrent statements are order-independent
and asynchronous

9/26/17 16

Sequential Statements
•  Sequential statements run in top to bottom

order

•  Sequential execution most often found in
behavioral descriptions

•  Statements inside PROCESS execute
sequentially

9/26/17 17

Concurrent Statements
•  All concurrent statements occur

simultaneously
•  How are concurrent statements processed?
•  Simulator time does not advance until all

concurrent statements are processed
•  Some concurrent statements

–  Block, process, assert, signal assignment,
procedure call, component instantiation

9/26/17 18

VHDL Processes
•  Assignments executed sequentially
•  Sequential statements

–  {Signal, variable} assignments
–  Flow control

•  if <condition> then <statements> else <statements> end if;
•  for <range> loop <statements> end loop;

while <condition> loop <statements> end loop;
•  case <condition> is when <value> => <statements>;

 when <value> => <statements>;
 when others => <statements>;
 end case;

–  Wait on <signal> until <expression> for <time>;
–  Assert <condition> report <string> severity <level>;

9/26/17 19

VHDL Processes
•  A VHDL process statement is used for all

behavioral descriptions

9/26/17 20

Process Example - Carry Bit

9/26/17 21

A Design Example: 8-bits Register
with asynchronous clear

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg8 IS
 PORT (clock, rst : IN BIT;
 D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END reg8;

ARCHITECTURE behavior OF reg8 IS

BEGIN
 register8: PROCESS (clock,rst)
 BEGIN
 IF rst = ‘0‘ THEN
 Q <= “00000000”;

 ELSIF clock’EVENT AND clock ='1' THEN
 Q <= D;
 END IF;
 END PROCESS register8;
END behavior;

9/26/17 22

A Design Example: 2-bits Counter
ENTITY count2 IS
 PORT (clock : IN BIT;
 q1, q0: OUT BIT);
END count2;

ARCHITECTURE behavior OF count2 IS

BEGIN
 count_up: PROCESS (clock)
 VARIABLE count_value: NATURAL := 0;

 BEGIN
 IF clock='1' THEN
 count_value := (count_value+1) MOD 4;
 q0 <= bit'val(count_value MOD 2);
 q1 <= bit'val(count_value/2);
 END IF;
 END PROCESS count_up;
END behavior;

9/26/17 23

Signals vs Variables
•  Variables

–  Used for local storage of data
–  Generally not available to multiple components and

processes
–  All variable assignments take place immediately
–  Variables are more convenient than signals for the storage

of data
–  Variables may be made global

•  Signals
–  Used for communication between components
–  Signals can be seen as real, physical signals
–  Some delay must be incurred in a signal assignment

9/26/17 24

Assignments

9/26/17 25

Signal x Variable Behaviour
ENTITY aulavhdl IS
 PORT (clock, data_in : IN BIT;
 r_v, r_s, r_s_par: OUT BIT);
END aulavhdl;

ARCHITECTURE behavior OF aulavhdl IS
 signal a_s, a_s_par: BIT := '0';
BEGIN
 PROCESS (clock)
 variable a_v: BIT := '0';
 BEGIN
 IF clock='1' THEN
 a_v := data_in;
 r_v <= a_v;

 a_s <= data_in;
 r_s <= a_s;
 END IF;
 END PROCESS;
 a_s_par <= data_in;
 r_s_par <= a_s_par;
END behavior;

9/26/17 26

Signal x Variable Behaviour
•  Percebam a diferença de comportamento do

“signal” dentro e fora do processo!
•  Quanto a “variable” não há surpresa, pois é

utilizada somente dentro do processo

9/26/17 27

Data Types

9/26/17 28

Dealing with Data Types

9/26/17 29

Scalar Assignments

9/26/17 30

Vector Assignments

9/26/17 31

Ilegal Assignments

9/26/17 32

DOWNTO and TO

9/26/17 33

Bit Levels

 Most of the std_logic are intended for simulation only!

9/26/17 34

ULOGIC

9/26/17 35

SIGNED and UNSIGNED
•  Their syntax similar to STD_LOGIC_VECTOR
•  SIGNED and UNSIGNED are intended mainly

for arithmetic operations
•  Logic operations are not allowed

9/26/17 36

Data Conversion

•  VHDL does not allow direct operations
between data of different types

•  Conversions are necessary
•  Several data conversion functions can be

found in the std_logic_arith package of IEEE
library

9/26/17 37

std_logic_arith Conversion Functions

9/26/17 38

Operators

9/26/17 39

Some Explanations

9/26/17 40

Component instantiation
(Structural VHDL)

 component fifo_cam is
 port(data : in STD_LOGIC_VECTOR (31 downto 0);
 wrreq : in STD_LOGIC ;
 rdreq : in STD_LOGIC ;
 rdclk : in STD_LOGIC ;
 wrclk : in STD_LOGIC ;
 aclr : in STD_LOGIC ;
 q : out STD_LOGIC_VECTOR (31 downto 0);
 rdempty : out STD_LOGIC ;
 wrfull : out STD_LOGIC);
 end component;

 fifo: fifo_cam port map(pixel,'1',read_cs,clk_n,ready_pixel,aclr_fifo,readdata,waitrequest,fifofull);

9/26/17 41

Bidirectional pin
ENTITY proc_eld2 is

 PORT(clk, rst : in STD_LOGIC;
 data : inout STD_LOGIC_VECTOR(7 downto 0);
 web_oeb : buffer STD_LOGIC;
 address : out STD_LOGIC_VECTOR(7 downto 0);
 pc_out, ir_out : out STD_LOGIC_VECTOR(7 downto 0);
 saida : out STD_LOGIC_VECTOR(2 downto 0)
);

END proc_eld2;

signal ACC : std_logic_vector(7 downto 0);

web_oeb <= ‘1'; --1 escreve e 0 lê da mem.
data <= ACC WHEN web_oeb='1' else "ZZZZZZZZ";

web_oeb <= ‘0'; --1 escreve e 0 lê da mem.
ACC <= data;

9/26/17 42

Tips
•  The ENTITY name and the file name must be

the same

•  Physical and time data types are not
synthesizable for FPGAs
–  ohm, kohm
–  fs, ps, ns, um, ms, min, hr

9/26/17 43

And more ...
•  Function

–  Produce a single return value
–  Requires a RETURN statement

•  Procedure
–  Produce many output values
–  Do not require a RETURN statement

•  Testbench
–  Generate stimulus for simulation
–  Compare output responses with expected values

9/26/17 44

Implemente em VHDL
os seguintes componentes

•  FFs do tipo D, T e JK

•  Registrador de deslocamento da direita para a esquerda

•  Conversor de binário para display de 7 segmentos

•  Crie um componente somador completo de 1 bit e
instancie esse mesmo componente para formar um
somador/subtrator de 8 bits do tipo ripple-carry.
Considere que os números estão em complemento de 2;
e para o controle da operação utilize C=0 para adição e
C=1 para subtração. Indique também overflow. Utilize
STD_LOGIC_VECTOR para os sinais de entrada e
saída

9/26/17 45

References
•  Pedroni, Volnei A. Circuit Design with VHDL,

MIT Press, 2004

•  DARPA/Tri-Services RASSP Program
–  http://www.vhdl.org/rassp/

•  Brown, S. and Vranesic, Z.. Fundamentals of
Digital Logic with VHDL Design, 2nd Ed., P.
939, 2005.

