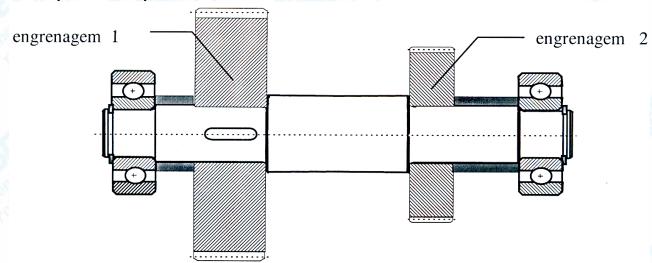
ELEMENTOS DE MÁQUINAS (SEM 0241)

Notas de Aulas v.2023


Lista de exercícios – aula 12 – Dimensionamento de mancais de rolamentos

Professor: Carlos Alberto Fortulan

Ex47- aula 12 Máquina operatriz para trabalho 8 horas diárias não totalmente utilizadas

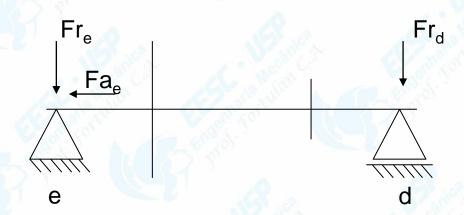
Dados	Mancal esquerdo	Mancal direito
Força radial Força axial (sentido único para esquerda)	6000 N 3000 N	8000 N
Diâmetro do eixo no assento do rol. (d) Temp. de serviço	40 mm 60°C	40 mm 60°C
Direção das forças bem definidas; lubrificação de rotação contínua de 200 rpm em funcionam		

Pede-se:

- ✓ Dimensionar os rolamentos;
- ✓ Escolher o óleo e método de lubrificação;
- √ Verificar n_{máx};
- ✓ Calcular momentos de atrito;
- ✓ Escolher vedadores;
- √ Fazer desenho dos mancais.

Roteiro da solução do exercício:

- ✓ Modelagem das cargas
- ✓ Método direto
 - ✓ Estático
 - ✓ Carga estática equivalente
 - √ Capacidade de carga estática
 - ✓ Dinâmico
 - ✓ Carga dinâmica equivalente
 - ✓ Esquerdo
 - ✓ Direito
 - ✓ Cálculo da vida do rolamento em horas


Ocorreu a troca do rolamento escolhido – motivo: não atendeu a quantidade de horas

- ✓ Cálculo da vida do rolamento em horas
- ✓ Limite de rotação
- ✓ Estimativa do momento de atrito

Cargas nos rolamentos - Modelagem

$$F_{calc} = f.F_{te\'oricas}$$

Onde o valor de **f** varia de 1 a 3 em função das incertezas associadas ao uso do rolamento.

Para a aplicação dos rolamentos associadas ao exercício aplicaremos f = 1,5

Onde:

e = esquerda

d = direita

Fr_e = força radial esquerda

Fr_d = força radial direita

Fa_e = força axial esquerda

As forças associadas os rolamentos são:

$$Fr_e = (1.5). (6000) \Rightarrow Fr_e = 9000N$$

$$Fa_e = 4500N$$

$$Fa_d = 12000N$$

Método direto, tem choques então pré-dimensionamento estático

✓ Primeira aproximação – utilização de Rolamentos Esféricos

Carga estática equivalente do rolamento (P₀)

$$P_0 = X_0 \cdot F_r + Y_0 \cdot F_a$$

Onde: X₀ e Y₀ são coeficientes (radial e axial) retirados do catálogo SKF para diferentes tipos de rolamentos – para o caso de rolamentos de esfera utilizar a página 316

Carga estática equivalente do rolamento

$$P_0 = 0.6 F_r + 0.5 F_a$$

 $P_0 < F_r \rightarrow P_0 = F_r$

Sendo assim o cálculo para as cargas estáticas esquerda e direita ficam:

$$P_{0_e} = (0.6).F_r + (0.5).F_a \Rightarrow P_{0_e} = (0.6).(9000) + (0.5).(4500) : P_{0_e} = 7650N$$

Como
$$P_{0_e} < F_r$$
 então utilizar $P_{0_e} = 9000N$

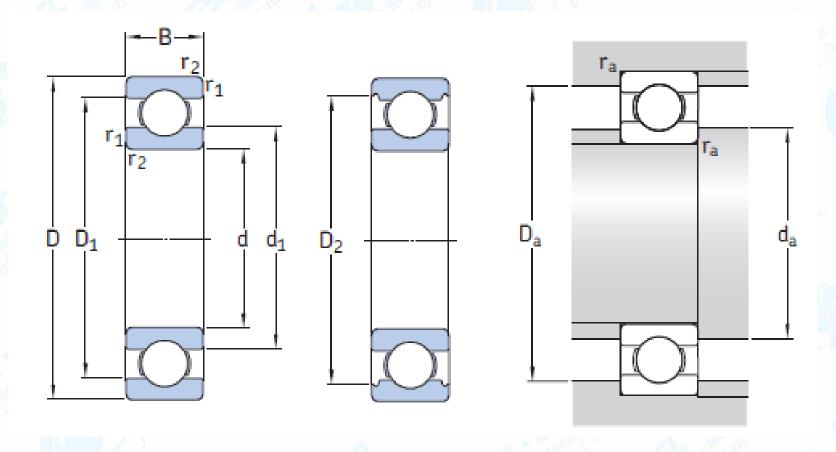
$$P_{0_d} = F_r : P_{0_d} = 12000N$$

Capacidade de carga estática (C₀), é a carga [N] que produz uma deformação permanente e total no elemento rolante e na pista, igual a: 0.0001.d_{elem}

A capacidade estática é calculada por:

$$C_0 \ge s_0.P_0$$
 Onde: $P_0 = \acute{e}$ a carga estática equivalente $s_0 = fator de segurança estático$

Para encontrar o fator de segurança estático utilizar a tabela 11 do manual SKF para rolamentos de esferas – página 89 Utilizando s_0 =1 então $C_0 \ge P_0$ e portanto:


$$C_{0_e} \ge 7650N$$
 Assim como o caso da carga estática esquerda utilizar a capacidade estática esquerda como: $C_{0_e} \ge 9000N$

$$C_{0_d} \ge 12000N$$

De posse das informações de que o diâmetro do eixo no assento do rolamento é: 40mm, dos valores das cargas estáticas e capacidades de carga estática calculados, é possível determinar o rolamento de esfera a ser aplicado.

Onde as dimensões dos rolamentos estão representadas nas imagens a seguir:

De acordo com a página 328 do manual SKF para rolamentos de esfera tem-se:

Dimensões principais		rincipais Classificações básicas de carga dinâmica estática			Limite de carga de fadiga	carga de de velocidade			Designação	
d	D	В	C	Co	P _u	de referênci				
mm			kN		kN	r/min		kg	-	
40	52	7	4,49	3,75	0,16	26 000	16 000	0,032	61808	
	62	12	13,8	10	0,425	24 000	14 000	0,12	61908	
	68	9	13,8	10,2	0,44	22 000	14 000	0,13	* 16008	
	68 68	15	17,8	11	0,49	22 000	14 000	0,19	* 6008	
	80	18	32,5	19	0,8	18 000	11 000	0,37	* 6208	
	80	18	35,8	20,8	0,88	18 000	11 000	0,34	6208 ETN9	
	90	23	42,3	24	1,02	17 000	11 000	0,63	* 6308	
	110	27	63,7	36,5	1,53	14 000	9 000	1,25	6408	

Além das informações obtidas no trecho da tabela do slide anterior é possível obter as demais informações a respeito do rolamento na continuação da tabela abaixo (pág. 329 – Manual SKF rolamentos de esfera)

Dimensões				Dimens	ões de enco	sto e raio	Fatores	tores de cálculo	
d	d ₁	D ₁	D ₂	r _{1,2} min.	d _a mín.	D _a máx.	r _a máx.	k_r	f_0
mm					mm			-	
40	43,2	48,1	-	0,3	42	50	0,3	0,015	15
	46,9	55,1	-	0,6	43,2	58,8	0,6	0,02	16
	49,4	58,6		0,3	42	66	0,3	0,02	16
	49,2	58,8	61,1	1	44,6	63,4	1	0,025	15
	52,6	67,4	69,8	1,1	47	73	1	0,025	14
	52	68,8	-	1,1	47	73	1	0,025	13
	56,1	73,8	77,7	1,5	49	81	1,5	0,03	13
	62,8	87	_	2	53	97	2	0,035	12

Método direto pré-dimensionamento dinâmico

Carga dinâmica equivalente do rolamento (P)

$$P = X.F_r + Y.F_a$$

Onde: X e Y são coeficientes (radial e axial) retirados do catálogo SKF para diferentes tipos de rolamentos – para o caso de rolamentos de esfera utilizar a página 316

Carga dinâmica equivalente do rolamento
$$\begin{array}{c|ccc} F_a/F_r \leq e & \longrightarrow & P = F_r \\ F_a/F_r > e & \longrightarrow & P = XF_r + YF_a \end{array}$$

Para a determinação dos valores de X e Y deve-se utilizar a tabela 8 – página 315 – baseada no fator de cálculo f₀ sendo que esse valor é obtido pela tabela de informações do rolamento apresentada anteriormente

Fatores de	e cálculo	para rola	mentos rígidos de esferas	5					
	Rolamentos de uma e de duas carreiras Folga normal				as Rolamentos de uma carreira Folga C3 Folga C4				
$f_0 F_a/C_0$	е	X	Υ	е	X	Υ	е	X	Υ
0,172 0,345 0,689	0,19 0,22 0,26	0,56 0,56 0,56	2,3 1,99 1,71	0,29 0,32 0,36	0,46 0,46 0,46	1,88 1,71 1,52	0,38 0,4 0,43	0,44 0,44 0,44	1,47 1,4 1,3
1,03 1,38 2,07	0,28 0,3 0,34	0,56 0,56 0,56	1,55 1,45 1,31	0,38 0,4 0,44	0,46 0,46 0,46	1,41 1,34 1,23	0,46 0,47 0,5	0,44 0,44 0,44	1,23 1,19 1,12
3,45 5,17 6,89	0,38 0,42 0,44	0,56 0,56 0,56	1,15 1,04 1	0,49 0,54 0,54	0,46 0,46 0,46	1,1 1,01 1	0,55 0,56 0,56	0,44 0,44 0,44	1,02 1 1

→ Rolamento esquerdo

$$f_0 \cdot \frac{F_a}{C_0} \Rightarrow 14 \cdot \frac{4500}{19000} = 3,32$$
 Da tabela tem-se: $\begin{cases} e = 0,38 \\ X = 0,56 \\ Y = 1,15 \end{cases}$

Nos rolamentos radiais de uma carreira, F_a só é levada em com se:

$$\frac{F_a}{F_r} \ge e$$
 Então nesse caso tem-se: $\frac{F_a}{F_r} = \frac{4500}{9000} = 0.5 \ge e = 0.38$

→ Rolamento direito

$$P_d = F_r = 12000N$$

$$P_e = 10215N$$

 $P_e = (0.56)(9000) + (1.15)(4500)$

Cálculo da vida do rolamento em h

- → Máquina operatriz para trabalho 8 horas diárias não totalmente utilizadas: 10.000 a 25.000 horas
- informação obtida pelo manual SKF rolamentos de esfera tabela 9 página 83

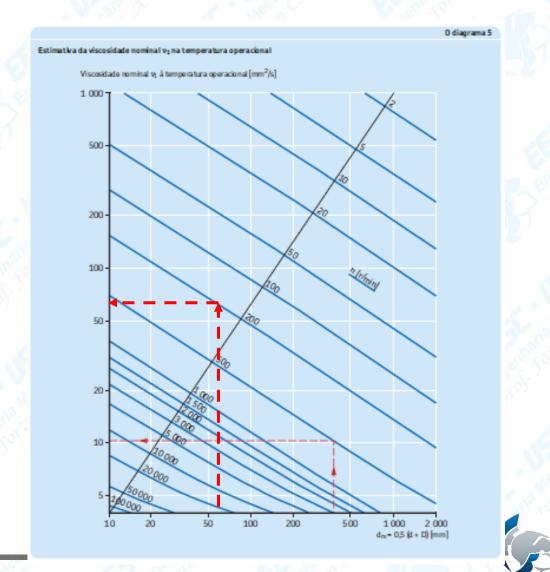
Utilizando a fórmula ampliada de vida de rolamentos (nominal ajustada tem-se:

$$L = a_1. a_2. a_3. \left(\frac{c}{P}\right)^p$$
 ou $L_h = a_1. a_2. a_3. \frac{10^6}{60.n}. \left(\frac{c}{P}\right)^p$

Onde: a_1 = fator de ajuste de confiabilidade – tabela 1 – pág 65 a_2 = fator de ajuste para o material do rolamento a_3 = fator de ajuste para lubrificação

A SKF combina os fatores a_2 e a_3 = a_{23} ou a_{skf}

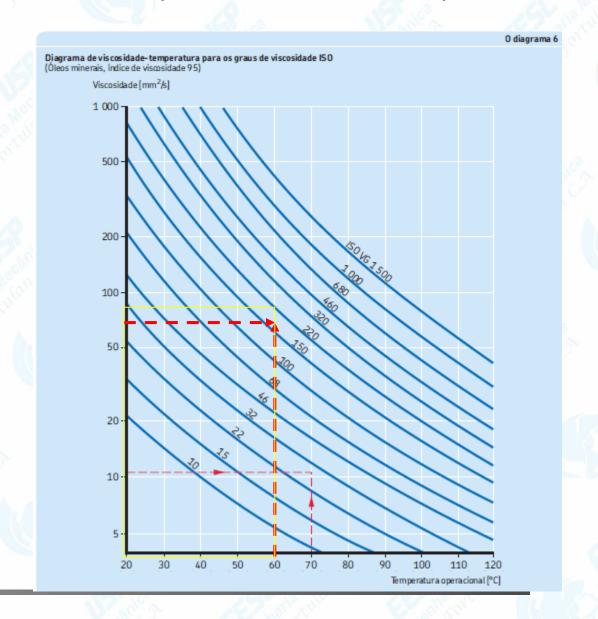
and the same of th	
T [°C]	a ₂
150	1.00
200	0.73
250	0.42
300	0.22


Utilizando o diagrama 5 – página 72 do manual SKF é possível encontrar o valor para a viscosidade nominal

Para o Eixo horizontal tem-se: $d_m = 0.5(d + D)$ Que da tabela de seleção do rolamento tem-se:

$$d_m = 0.5(40 + 80)$$
$$d_m = 60mm$$

E como o enunciado do exercício indica a velocidade de 200rpm para a utilização do rolamento é possível verificar a viscosidade nominal de:


$$v_1 = 70 \text{mm}^2/\text{s}$$

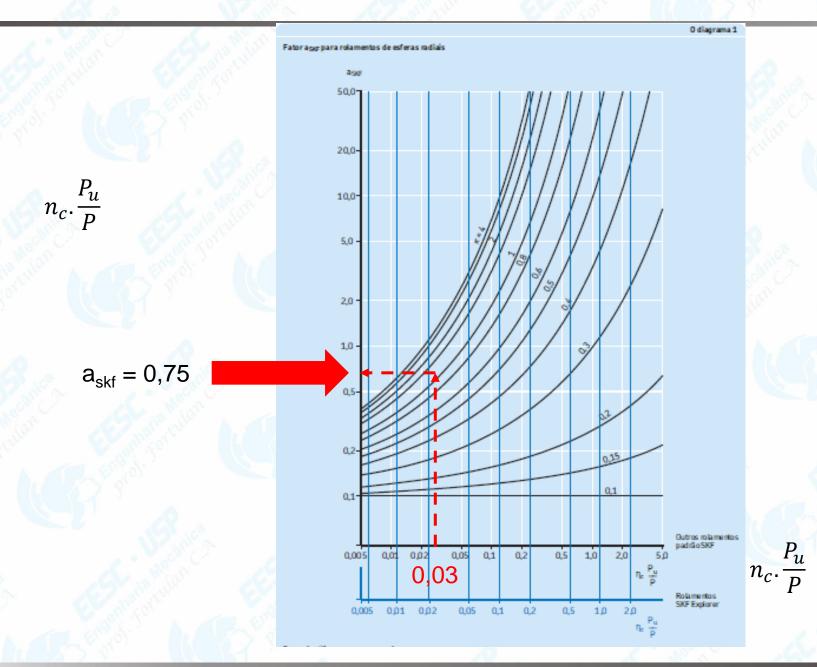
Utilizando o diagrama 6 – página 73 do manual SKF é possível encontrar o valor para a viscosidade

Com a temperatura de operação de 60° C indicada no enunciado do exercício e utilizando o óleo ISSO VG220 é possível encontrar o calor da viscosidade de $v = 80 \text{mm}^2/\text{s}$

Para o cálculo do fator de ajuste para lubrificação a SKF sugere:

$$n_c.rac{P_u}{P}$$

 $n_c \cdot \frac{P_u}{D}$ Onde: P_u = limite de carga de fadiga – obtido pela tabela da seleção de rolamento n_c = fator de nível de contaminação – obtido pela tabela 4 – página 74


- Para o rolamento esquerdo, utilizando considerando uma leve contaminação do lubrificante

$$0,4.\frac{800}{10215} \Rightarrow 0,03$$

Utilizando a relação de viscosidades e o diagrama 1 – página 66 do manual SKF é possível encontrar o valor para o fator de ajuste de lubrificação a₂₃ ou a_{skf}

$$k = \frac{v}{v_1} \qquad \qquad k = \frac{80}{70} \Longrightarrow k = 1,14$$

De posse dos seguintes valores é possível voltar a equação do cálculo do tempo de vida do rolamento:

 $a_1 = 1$ (considerando uma confiabilidade de 90%)

 a_{23} ou $a_{skf} = 0.75$

n = 200 rpm

C = 32500 kN (carga dinâmica da tabela de seleção do rolamento

P = 10215 kN (carga aplicada no rolamento esquerdo)

p = 3 (para rolamentos de esfera)

$$L_h = a_1. a_2. a_3. \frac{10^6}{60.n}. \left(\frac{C}{P}\right)^p$$

$$L_h = (1).(0,75).\frac{10^6}{60.(200)}.\left(\frac{32500}{10215}\right)^3$$

$$L_h = 2012 \text{ horas}$$

Quantidade insuficiente de horas – não atende as necessidades

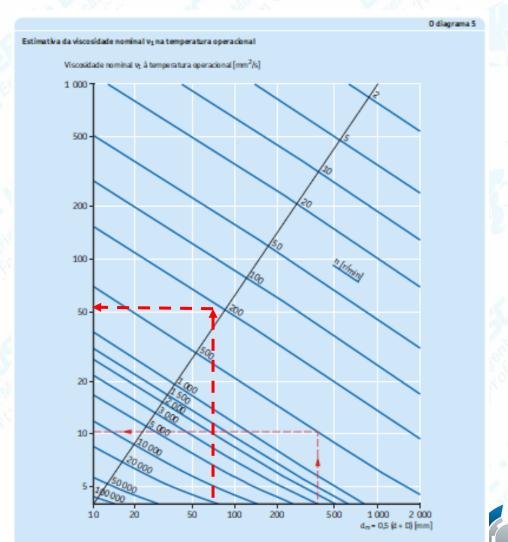
Necessário então selecionar um outro modelo de rolamento

De acordo com a página 328 do manual SKF para rolamentos de esfera tem-se:

Dimensões principais			Classificações básicas de carga		Limite de Classificações carga de de velocidade		Massa	Designação	
d	D	В	dinâmica C	estática C ₀	fadiga P _u	Velocidade de referência	Velocidade- limite		
mm			kN		kN	r/min		kg	-
40	52	7	4,49	3,75	0,16	26 000	16 000	0,032	61808
	62	12	13,8	10	0,425	24 000	14 000	0,12	61908
	68	9	13,8	10,2	0,44	22 000	14 000	0,13	* 16008
	68	15	17,8	11	0,49	22 000	14 000	0,19	* 6008
	80	18	32,5	19	0,8	18 000	11 000	0,37	* 6208
	80	18	35,8	20,8	0,88	18 000	11 000	0,34	6208 ETN9
	90	23	42,3	24	1,02	17 000	11 000	0,63	* 6308
	110	27	63,7	36,5	1,53	14 000	9 000	1,25	6408

Os cálculos serão semelhantes aos utilizados para o modelo anterior de rolamento

→ Cálculo da vida do rolamento em h

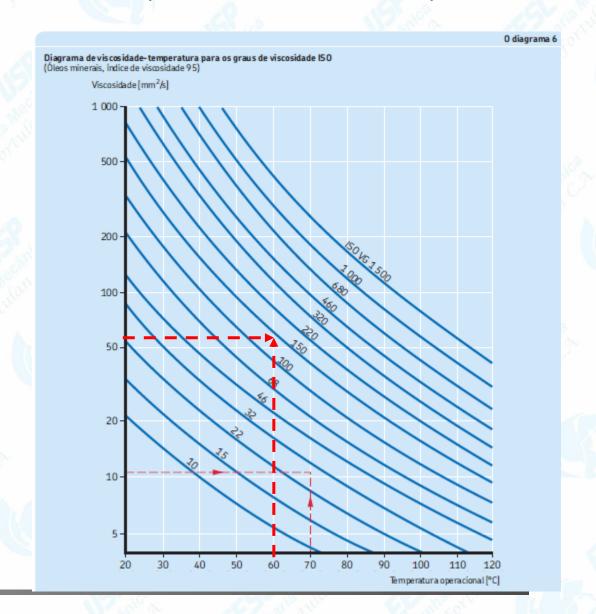

Utilizando o diagrama 5 – página 72 do manual SKF é possível encontrar o valor para a viscosidade nominal

Para o Eixo horizontal tem-se: $d_m = 0.5(d + D)$ Que da tabela de seleção do rolamento tem-se:

$$d_m = 0.5(40 + 110)$$

 $d_m = 75 \ mm$

E como o enunciado do exercício indica a velocidade de 200rpm para a utilização do rolamento é possível verificar a viscosidade nominal de:


$$v_1 = 55 \text{mm}^2/\text{s}$$

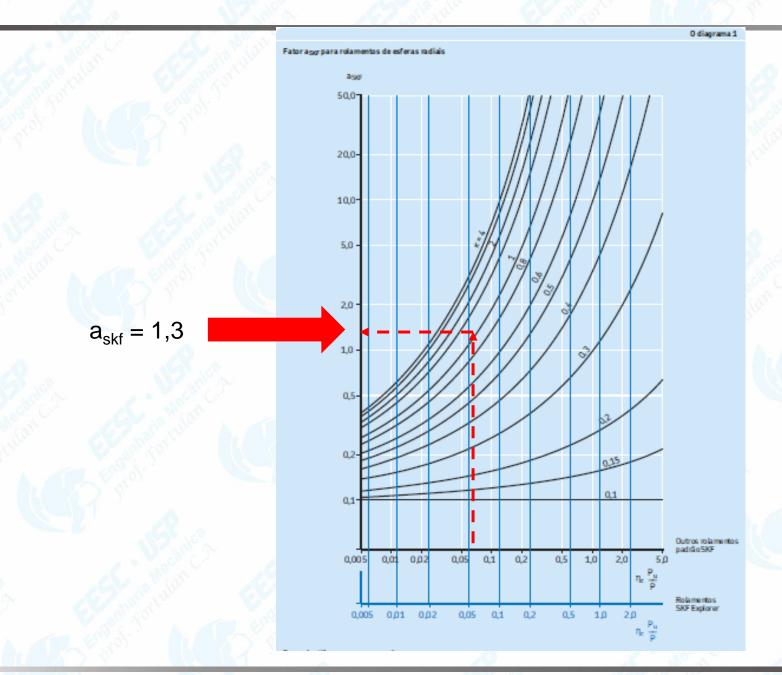
Utilizando o diagrama 6 – página 73 do manual SKF é possível encontrar o valor para a viscosidade

Com a temperatura de operação de 60°C indicada no enunciado do exercício e utilizando o óleo ISSO VG150 é possível encontrar o calor da viscosidade de $v = 60 \text{mm}^2/\text{s}$

Para o cálculo do fator de ajuste para lubrificação a SKF sugere:

 $n_c \cdot \frac{P_u}{P}$ Onde: P_u = limite de carga de fadiga – obtido pela tabela da seleção de rolamento

n_c = fator de nível de contaminação – obtido pela tabela 4 – página 74


- Para o rolamento esquerdo, utilizando considerando uma leve contaminação do lubrificante

$$0,4.\frac{1530}{10215} \Longrightarrow 0,06$$

Utilizando a relação de viscosidades e o diagrama 1 – página 66 do manual SKF é possível encontrar o valor para o fator de ajuste de lubrificação a₂₃ ou a_{skf}

$$k = \frac{v}{v_1} \qquad \qquad k = \frac{60}{55} \Longrightarrow k = 1,1$$

De posse dos seguintes valores é possível voltar a equação do cálculo do tempo de vida do rolamento:

 $a_1 = 1$ (considerando uma confiabilidade de 90%)

 a_{23} ou $a_{skf} = 1,3$

n = 200 rpm

C = 63700 kN (carga dinâmica da tabela de seleção do rolamento

P = 10215 kN (carga aplicada no rolamento esquerdo)

p = 3 (para rolamentos de esfera)

$$L_h = a_1. a_2. a_3. \frac{10^6}{60.n}. \left(\frac{C}{P}\right)^p$$

$$L_h = (1). (1,3). \frac{10^6}{60. (200)}. \left(\frac{63700}{10215}\right)^3$$

$$L_h = 26270 \text{ horas}$$

Quantidade suficiente de horas – atende as necessidades

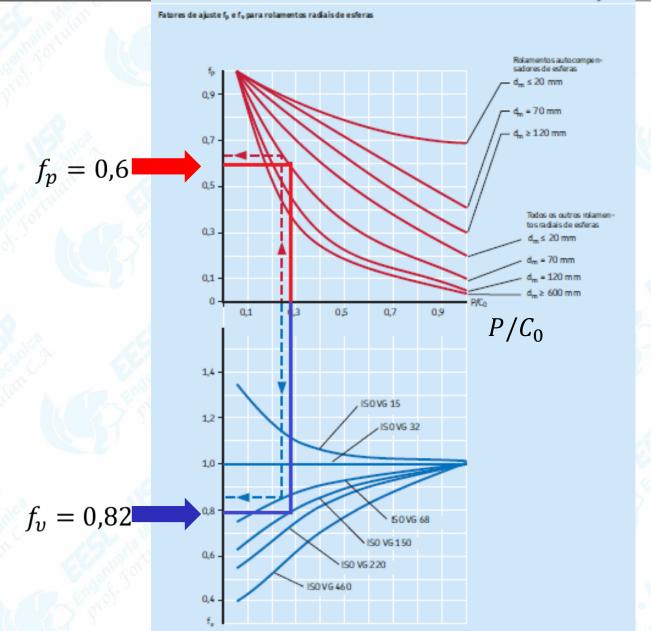
Limite de rotação

A velocidade de referência ajustada para lubrificação com óleo pode ser estimada usando-se:

$$\eta_{ar} = \eta_r.f_p.f_v$$

Onde:

 η_{ar} = velocidade de referência ajustada [r/min] η_{r} = velocidade de referência nominal [r/min] f_{p} = fator de ajuste para carga do rolamento P f_{υ} = fator de ajuste para viscosidade do óleo



Os fatores de ajustes podem ser obtidos utilizando o digrama 2 – pág. 121 do manual SKF para rolamentos de esferas

Os valores do eixo das abscissas é obtido pela equação:

$$\frac{P}{C_0}$$
 Então tem-se: $\frac{10215}{36500} = 0.28$

Então velocidade de referência ajustada para lubrificação com óleo pode ser estimada será:

$$\eta_{ar} = \eta_r \cdot f_p \cdot f_v$$
 $\eta_{ar} = (14000) \cdot (0,6) \cdot (0,82)$
 $\eta_{ar} = 6888 \text{rpm}$
 $\eta_{ar} < \eta_{lim}$
 $6888 < 9000$

Portanto a velocidade de referência ajustada é menor que a velocidade limite do rolamento, além disso a velocidade de utilização dos rolamentos (200rpm) é menor que a velocidade de referência ajustada (6888rpm)

Estimativa do momento de atrito

Sob certas condições, o momento de atrito pode ser estimado com precisão suficiente, usando-se um coeficiente constante de atrito µ. As condições são:

- √ carga do rolamento P ≈ 0,1 C
- ✓ boa lubrificação
- ✓ condições operacionais normais

O momento de atrito sob essas condições pode ser estimado por:

$$M = 0.5. \mu. P. d$$

Onde: M = momento de atrito [Nmm]

P = carga dinâmica equivalente do rolamento [N]

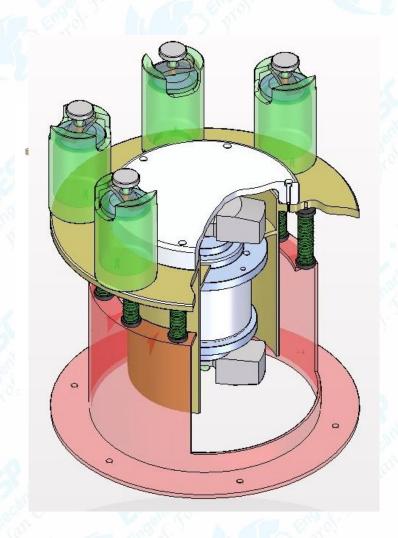
d = diâmetro do furo do rolamento [mm]

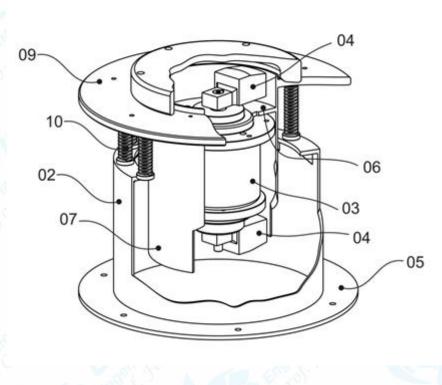
 μ = coeficiente constante de atrito para o rolamento

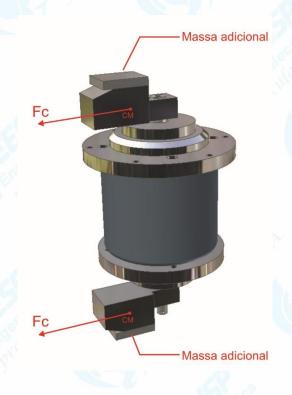
O coeficiente de atrito é obtido pela tabela 1 – pág 98 do manual SKF para rolamentos de esferas

A estimativa do momento de atrito para a aplicação em estudo é então obtida por:

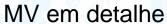
$$M = (0,5).(0,0015).(10215).(40)$$


$$M = 306 \text{ N. mm ou } 0.31 \text{ N. m}$$


Óleo, Banho, retentores!



Ex12.2- Selecionar e dimensionar os mancais de rolamentos para um moinho vibratório



MV em corte

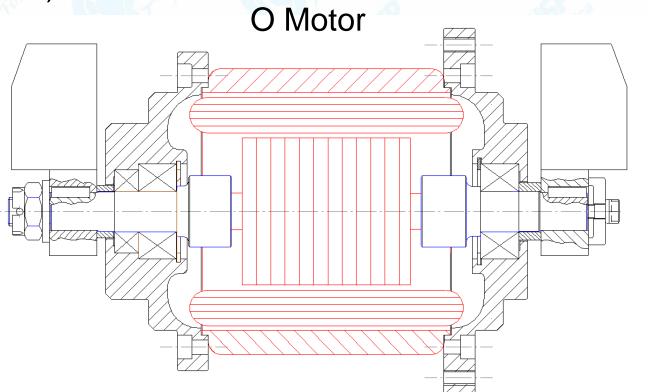
Motor

1100N

Valores: Fc = 1100N

rotação: 1720 rpm

lubrificação: graxa


vibração (desbalanceamento): alta

temperatura: ~70° (média)

sem choques

d=17mm

* Restrições dimensionais Dmax=50mm Bmaz=30 mm

1100N

50N

