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Preface

This book arose from a course of lectures given by the first author during
the winter term 1977/1978 at the University of Munster (West Germany).
The course was primarily addressed to future high school teachers of
mathematics; it was not meant as a systematic introduction to number
theory but rather as a historically motivated invitation to the subject,
designed to interest the audience in number-theoretical questions and
developments. This is also the objective of this book, which is certainly not
meant to replace any of the existing excellent texts in number theory. Our
selection of topics and examples tries to show how, in the historical
development, the investigation of obvious or natural questions has led to
more and more comprehensive and profound theories, how again and
again, surprising connections between seemingly unrelated problems were
discovered, and how the introduction of new methods and concepts led to
the solution of hitherto unassailable questions. All this means that we do
not present the student with polished proofs (which in turn are the fruit of a
long historical development); rather, we try to show how these theorems are
the necessary consequences of natural questions.

Two examples might illustrate our objectives. The book will be successful
if the reader understands that the representation of natural numbers by
quadratic forms-say. n - x2 + dv`-necessarily leads to quadratic reci-
procity, or that Dirichlet, in his proof of the theorem on primes in
arithmetical progression, simply had to find the analytical class number
formula. This is why, despite some doubts, we retained the relatively
amorphous, unsystematic and occasionally uneconomical structure of the
original lectures in the book. A systematic presentation, with formal defini-
tions, theorems, proofs and remarks would not have suited the real purpose
of this course, the description of living developments. We i.evertheless hope
that the reader, with the occasional help of a supplementary text, will be
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able to learn a number of subjects from this book such as the theory of
binary quadratic forms or of continued fractions or important facts on
L-series and c-functions.

Clearly, we are primarily interested in number theory but we present it
not as a streamlined ready-made theory but in its historical genesis.
however, without inordinately many detours. We also believe that the lives
and times of the mathematicians whose works we study are of intrinsic
interest: to learn something about the lives of Euler and Gauss is a sensible
supplement to learning mathematics. What was said above also applies to
the history in this book: we do not aim at completeness but hope to stir up
the interests of our readers by confining ourselves to a few themes and hope
this will give enough motivation to study some of the literature quoted in
our text.

Many persons have contributed to this book. First of all, the students of
the course showed a lot of enthusiasm for the subject and made it
worthwhile to prepare a set of notes; Walter K. Biihler kindly suggested to
publish these notes in book form and prepared the English translation.
Gary Cornell helped with the translation and suggested several mathemati-
cal improvements; many colleagues and friends contributed encouragement
and mathematical and historical comments and pointed out a number of
embarrassing errors. We wish to mention in particular Harold Edwards,
Wulf-Dieter Gcyer, Martin Kneser, and Olaf Neumann. It is a pleasure to
thank them all.

Munster, West Germany WINFRIED SCHARLAC
June 1984 HANS OPOLKA

Added in proof. In early 1984. Andrr Weil's Number Theory: An Approach
Through History from Hammurapi to Legendre appeared. It contains substantial
additional material and discussion, especially concerning the period between
Fermat and Legendre.
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CHAPTER 1
The Beginnings

The first work devoted to topics from the history of mathematics of which
at least a few fragments survive is by the Greek mathematician Eudemus of
Rhodes, a member of the school of Aristotle. It begins as follows (quoted
from Proclus:

Next we must speak of the development of this science during the present
era ... we say, as have most writers of history, that geometry was first
discovered among the Egyptians and originated in the remeasuring of their
lands. This was necessary for them because the Nile overflows and obliterates
the boundary lines between their properties. It is not surprising that the
discovery of this and the other sciences had its origin in necessity, since
everything in the world of generation proceeds from imperfection to perfec-
tion. Thus they would naturally pass from sense-perception to calculation and
from calculation to reason. Just as among the Phoenicians the necessities of
trade and exchange gave the impetus to the accurate study of number, so also
among the Egyptians the invention of geometry came about from the cause
mentioned.

According to Eudemus the Phoenicians invented number theory but this is
probably false; rather, we should look to Babylon for the origins of
arithmetic and algebra. It is more interesting to see what Eudemus' main
message is: If we interpret his first sentence in a general way, we can
understand it as motivating the necessity of studying history. The followers
of Aristotle liked to assign an author to every idea, a tendency which makes
Eudemus' statement not very surprising. Nonetheless, the most eminent
mathematicians have emphasized again and again how important it was for
them to go back to study the original papers of their predecessors. This is
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often connected with a direct encouragement to the reader to follow the
masters' footsteps. Today. where one never learns mathematics from the
originals but rather from secondary sources, this is certainly not clear.
However. one of the main objectives of this book is to guide the reader to
the study of the works of some of the greatest number theorists.

Let us stop for a second and consider the statement that science proceeds
from the imperfect to the perfect. This appears to he a triviality, and
mathematicians will certainly agree with it. But it gains a new dimension
when we keep in mind that generally the history of mankind does not seem
to proceed or progress from the imperfect to the perfect. Some of our
readers might feel challenged to reflect on whether this is a real or only an
apparent contradiction. To us. it is particularly important to see how
Eudemus describes the development of a mathematical theory. and this is a
legitimate reading of what he says. In mathematics. sense perception may
entail an interesting numerical example. or a specific problem that we want
to solve. Calculation tries to solve the problem in a more general frame-
work, perhaps by determining all solutions of an equation or by finding
necessary and sufficient conditions for its solvability. And reason is the
imbedding of a specific problem in a more general theory, the generaliza-
tion of special cases, or the search for the "real reasons." We want to
illustrate this with the help of an example: the only number-theoretical
problem that we believe to have been fully solved in antiquity.

Let us take as a "sense-perception" the equation 32 +4 2 = 52 which has a
well-known geometrical interpretation by the Pythagorean theorem-which
was known long before Pythagoras (approximately 580-500 B.C.). (if this
does not suffice as "sense perception" one can convince oneself that a
string, stretched in a corresponding right triangle, is tuned in the proportion
keynote : quart : sexy.) Other Pythagorean triples have been known for a
long time and in many different cultures:

52 + 122 = 132,

72 + 242 - 252,

82 + 152 - 172.
Now it is not too far-fetched (?!) to try to determine all such triples. The
first observation is that one can generate new triples by multiplying one of
the equations by a square. One can invert this idea and cancel, as far as
possible, square factors. This means that it is enough to investigate the
equation

a2 + b2 = c2
only when a, b, and c have no common factor. Specifically, all three
numbers are not even, neither are all of them odd. (Now we are in the
midst of what Eudemus called "calculation"!) Exactly one of the three
numbers is even. Which one? Giving the matter some more thought we see
that it cannot he c. For then c`2 would be a multiple of 4 while since a and h
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are both odd. say a = 2d + I and b = 2f + I. a2 + b22 could be written as
a2+b2=4(d2+d+ f2+ f) +2

which is not a multiple of 4. Let a now denote the number that is even in
our Pythagorean triple. We transform the equation into

a2 = c2 - b2 = (c - b)(c + b).
All factors are positive even numbers, so we set

a=2n, c-b=2v, c+b-2w
which yields n2 = vw. What happened along the way to our condition that
a, b, and c are relatively prime? Answer: v and w are relatively prime and
not both odd because otherwise b = w - v, c = w + v would have a com-
mon factor. Then, because of unique prime factorization, a theorem already
known to Euclid (approx. 300 B.C.). the factors v and w in the equation
n2 - vw have to be perfect squares because v and w are relatively prime.

Now turn this around: Let v and w be arbitrary relatively prime squares
of different parity, say v = p2 and w = q2 with q > p. If we set

a=2pq, b=q2-p2, C=q2+p2
then we see that every Pythagorean triple must be of this form. Conversely,
a. b, and c are, as one can easily see, relatively prime and

a2 + b2 = (2pq)2+ (q2 - p2)2= 4p2q2 + q4 - 2p2q2 + p4

= q° + 2p2q2 + p4 _ (q2 + p2)2 _- c2.

The Babylonian mathematician (unfortunately we do not know his name)
who apparently knew all this some 3500 years ago did what we would do:
he asked one of his assistants to compute a list of the first 60, 120, or 3600
Pythagorean triples and to write them down. He used clay tables; we would
write a small program for our pocket calculator and print out the results. If
we could ask the Babylonian mathematician why he wanted to know these
numbers he would perhaps give us answers as obscure as those we would
give and certainly not as clear as

49612 + 64802 = 81612.
We have already mentioned that these considerations mark the highest
achievements of ancient number theory. Whatever was known beyond this
can be described in a few sentences: the most important divisibility
theorems for integers including the Euclidean algorithm and unique factor-
ization into primes, the summation of simple finite series such as

1 +2+3+ +n= n(n + 1)
2

or

1+k+k2+ +k" - k";' - 1
k - I



4 From Fermat to Minkowski

and, as perhaps the most remarkable single result. Euclid's theorem that for
any prime of the form 1 + 2 + - - + 2" = 2"+' - I = p, the number 2"p is
a perfect number. i.e.. it is the sum of its proper divisors. (in this connec-
tion, the following remark: to determine all perfect numbers is the oldest
unsolved problem in number theory, probably the oldest unsolved mathe-
matical problem. Euler showed that any even perfect number has the form
given by Euclid. No odd perfect number is known, but their nonexistence
has not been proved.)

The other number-theoretical results that were known in antiquity con-
cern not general problems but rather special numerical equations or sys-
tems of equations. Many of those results, often with tricky solutions, can be
found in the works of Diophantos (approximately 250 A.D.). Contrary to
modern terminology where "Diophantine solutions" are always integers,
Diophantos himself allows rational solutions. This means that his work is
algebraic rather than number theoretic. Of course, this distinction is superfi-
cial; just consider the above equation, a2 + b2 = c2. Having a rational
solution, one obtains an integral solution by multiplication by a common
denominator: conversely, one obtains rational solutions from integral solu-
tions by dividing by arbitrary squares of integers. In fact. Diophantos'
derivation is quite similar to our solution above. Moreover, Diophantos
knew some basic theorems about the representations of numbers as sums of
squares but largely without proofs or sometimes with only partial proofs.
His work was an important source of inspiration for later mathemati-
cians. particularly Fermat. One can agree completely with Jacobi's words:
"Diophantos will always be remembered because he started the investiga-
tion of the deep-rooted properties and relations between numbers which
have been understood by the beautiful research of modern mathematics."

References

Proclus. A on the First Book of Euclid's Elements, translated with
Introduction and Notes by Glenn R. Morrow. Princeton University Press.
Princeton. N.J.. 1970.

Edwards. Chap. I.
Th. L. Heath: Diophantus of Alexandria. Dover. New York. 1964.



CHAPTER 2
Fermat

After more than a thousand years of stagnation and decay the rejuvenation
and revitalization of western mathematics, particularly algebra and number
theory, starts with Leonardo of Pisa, known as Fibonacci (ca. 1180-1250).
Occasionally, the formula

(a2 + b2)(c2 + d2) - (ac - bd )2+ (ad + bc)2 (2.1)

is ascribed to Fibonacci: if two numbers are the sums of two squares, their
product is a sum of two squares as well. This development was continued
by the Italian renaissance mathematicians Scipio del Ferro (ca. 1465-1526).
Nicolo Fontano, known as Tartaglia (ca. 1500-1557), Geronimo Cardano
(1501-1576), and Ludovico Ferrari (1522-1565). Their solution of algebraic
equations of the third and fourth degree marks the first real progress over
ancient mathematics. Next in this line is Francois Vi6te (1530-1603) who
introduced the use of letters in mathematics. With Viete, we enter the
seventeenth century; from that time on, mathematics enjoys an uninter-
rupted, continuous and exponentionally accelerating development. This
new era, the era of modern mathematics, starts with four great French
mathematicians: Girard Desargues (1591-1661), Renb Descartes (1596-
1650). Pierre de Fermat (1601-1665), and Blaise Pascal (1623-1662).

It is difficult to imagine four persons more different from each other:
Desargues-the most original, an architect by profession-was thought of
as strange, an individualist who wrote his main opus in a kind of secret
code and had it printed in minute letters. Descartes-the most famous-
started out as a professional soldier and was well able to fend off a group of
sailors who wanted to rob him. Like a professional soldier, he planned a
general attack (Discours sur la methode) on the foundations of science.
Pascal-the most ingenious-left mathematics and became a religious
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fanatic, troubled by constipation for most of his short life. Finally, Fermat
-the most important-was royal councillor at the Parliament of Toulouse,
a position that. in today's terms, can be described as a high-level adminis-
trator.

Fermat's profession apparently provided him with all the leisure he
needed to occupy himself with mathematics. His style of work was slow, his
letters, which contain all his important number-theoretical results. are
laconic and dry. The majority of these were directed to Mersenne who, for
a while, was Fermat's go-between in exchanges with other mathematicians.
Several of these correspondents were important in the development of
number theory. among them Frenicle. Pascal, and Carcavi. In these letters.
Fermat formulated number-theoretical problems. but there are also several
definitive statements and discussions of special numerical examples.

Fermat never gave proofs and only once did he indicate his method of
proof. (We will come back to this later.) This makes it difficult to determine
what Fermat really proved as opposed to what he conjectured on the basis
of partial results or numerical evidence. We will see that many of his
theorems cannot be proved easily, and first-rate mathematicians. such as
Euler, had great trouble proving them. On the other hand, there can be no
doubt that Fermat knew how to prove many if not most of his theorems
completely. His letters indicate that at about 1635. inspired by Mersenne.
Fermat began to occupy himself with number-theoretical questions. His
first interests were perfect numbers. amicable numbers. and similar arith-
metical brain-teasers. He describes several ways to construct such numbers.
but far more remarkable is that-showing more insight than any of his
contemporaries-he succeeded in proving an important theorem in this still
very barren area, "Fermat's little theorem": a"- 1 = I mod p for every
prime number p and every number a prime to p. (Today this theorem is
proved early in an algebra course from the basic notions of group theory.)
Fermat's most important number-theoretical heritage is a letter to Carcavi
in August 1650 (Fermat. Oeuvres. IT, pp. 431-436). He himself considers
this as his testament. a fact which he expresses in the following words:
"Voila sommairement le compte de mes reveries sur le sujet des nombres."
At the beginning of this letter, one finds the passage where he describes a
certain method of proof which he himself discovered and used with great
success. He then formulates a number of theorems all of which were
contained in earlier letters or papers, but it is obvious that he wanted to
compile what he himself considered his most beautiful and important
results.

Fermat writes the following about his method of proof, quoted from
E. T. Bell. Men of Mathematics:

For a long time I was unable to apply my method to affirmative propositions.
because the twist and the trick for getting at them is much more troublesome
than that which I use for negative propositions. Thus. when I had to prove
that even, prime number which exceeds a multiple of 4 by I is composed of two
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squares. I found myself in a fine torment. But at last a meditation many times
repeated gave me the light I lacked, and now affirmative propositions submit
to my method, with the aid of certain new principles which necessarily must
be adjoined to it. The course of my reasoning in affirmative propositions is
such: if an arbitrarily chosen prime of the form 4n + I is not a sum of two
squares, [I prove that] there will be another of the same nature, less than the
one chosen, and [therefore] next a third still less, and so on. Making an
infinite descent in this way we finally arrive at the number 5, the least of all
the numbers of this kind 14n + 1]. By the proof mentioned and the preceding
argument from it], it follows that 5 is not a sum of two squares. But it is.
Therefore we must infer by a reductio ad absurdum that all numbers of the
form 4n + I are sums of two squares.

This method is now called the method of infinite descent. Before going into
more details we want to give a brief explanation of what Fermat might
have been thinking when he spoke of the relative simplicity with which one
can prove negative statements. First we consider an example using the same
principle encountered in our earlier discussion of Pythagorean triples.

(2.2) Theorem. No natural number of the form 8n + 7 is the sum of three
squares.

PROOF. Let k be a natural number (including 0). If one divides k2 by 8. the
remainder will be 0. 1. or 4: When k is even, the remainder will be either 0
or 4, for odd k = 21 + 1. the remainder is always I because k'- = 4(12 +
1) + 1. Consequently, after forming the sum of three squares of natural
numbers, division by 8 leaves a remainder p + q + r with p, q. r either 0. I.
or 4. Checking all the possibilities shows that the remainder will be 0, 1, 2.
3. 4. 5, or 6 but not 7.

It is easy to obtain numerous similar negative results. For example, try to
determine which numbers cannot be written as sums of two squares.

We now formulate most of the theorems listed in Fermat's letter to
Carcavi.

(2.3) Theorem (Two-Square Theorem). Even, prime number of the form
4k + I can be written uniquely as a sum of two squares.

(2.4) Theorem (Four-Square Theorem). Every natural number is a sum of
four squares of natural numbers (zero is allowed as a summand).

(2.5) Theorem, Let N not be a square. Then the equation

Nx2+I=y2
has infinitely many integer solutions.
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This equation is frequently called Pell's equation (because the English
mathematician Pell (1610-1685) had nothing to do with it).

(2.6) Theorem. The equation

cannot be solved in natural numbers.
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(2.7) Theorem. The only solution in natural numbers of the equation

x3= 1,2+2
isy=5,x=3.

Finally, there is an assertion that was later disproved by Euler; namely:
(2.8) Every integer of the form 22 + I is prime.

Euler gave the example

22' + 1 = 4294967297 = 641 6700417.
Quite correctly, Fermat writes in his letter, "II y a infinies questions de cette
espece....... and it is remarkable with what certainty he identified central
problems in number theory. Each of the theorems we have just listed is the
starting point for a deep and rich theory. This is true even for the incorrect
assertion (2.8). The so-called Fermat numbers 22" + I occur in Gauss'
solution to the problem of constructing the regular k-gon. According to
Gauss, the division of the circle into k parts with ruler and compass is
possible for odd k only if k is a square free product of Fermat primes.
Jacobi writes the following about Fermat's statements concerning the
"quadratic forms" x'- +.1, 2,x2 +2

'
1.2. X2 +3 v2. x 2 - d1,2.... (in his Col-

lecred Papers, Vol. 7): "The efforts of mathematicians to prove these
theorems have created the great arithmetical theory of quadratic forms."
There is nothing we have to add to Descartes' statement about the four-
square theorem: "Without any doubt this theorem is one of the most
beautiful that can be found in number theory but I do not know a proof; in
my judgement, it will be so difficult that I did not even attempt to search
for it." Euler, the most important mathematician of the eighteenth century,
tried for 40 years to find a proof, without succeeding. We know from the
correspondence with Mersenne that Fermat knew most of these theorems
before 1638.

Before starting to explain some of the proofs, we want to give a better
idea of the development of number theory by the middle of the seventeenth
century by quoting a few further statements and propositions from Fer-
mat's correspondence.

(2.9) Theorem. The equation x° +y° m z2, and more specifically the equation
x4 + y4 = z`, is not solvable in integers.

(2.10) Theorem (from a letter to Pascal on September 25. 1654). Even
prime number of the form 3k + I can be written as x2 +3

'
v2. Every prime

number of the form 8k + I or 8k + 3 can be written as x2 + 2v2.

(2.11) Theorem. Every number is the sum of at most three triangular num-
bers, i.e., numbers of the form n(n - 1)/2 - (2).
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Approximately 150 years later, Gauss proved that every natural number
which is not of the form 4k(8n + 7) can be written as the sum of three
squares. This result is basically equivalent to the theorem on triangular
numbers.

(2.12) Theorem. No triangular number (with the exception of 1) is a cube.

Though we could add many more interesting results, let us stop here. It is
obvious that the majority of these theorems remain central to lectures or
books on elementary number theory even today.

We will now give a detailed proof of (2.9). There are three reasons why
we start with this theorem. It is the only theorem for which Fermat himself
published a rather complete proof. Also, proving it, we can continue where
we left off when determining the Pythagorean triples in Chapter I. Finally,
this is the simplest result to which we may apply the method of infinite
descent.

PROOF OF (2.9). Let us assume that the proposition is wrong. Then there are
pairwise relatively prime integers x, y, z with x4 + y4 = z2. We assume that
z is minimal with this property. It follows from our study of Pythagorean
triples (Chapter 1) that x2 = A2 - B2, _v2 = 2AB, z - A2 + B 2, where B is
even. Since x and y are relatively prime, A and B are as well, and therefore
A = a2, B = 2h2. Consequently, x2 + (2b2)2 = as which leads to 2b2
- 2CD. a2 = C2 + D2. The numbers C and D are relatively prime. One
obtains C = c2. D - d2: consequently a2 = c4 + d4. Now z a a4 + (21,2)2
> a° > a, and we know b > 0 because Y > 0. This is a contradiction to the
fact that z is minimal.

Before proving the two-square theorem (also with the help of the method
of infinite descent), we prove the following lemma:

(2.13) Lemma. The equation x2 + v2 = 0 has a nontrivial solution in the field
F. of q elements if and only if q is of the form q = 4k + 1.
PROOF. For q = 4k + I the multiplicative group F9 of F. contains an
element x of order 4, i.e., x2 + I = x2 + 12 = 0 in Fy. Let us assume a
nontrivial solution (x, )) exists for q = 4k + 3. Then x/y is a nontrivial
element in Fq of order 4. This is a contradiction because the order of the
groupFq isq- 1 -4k+2-2(2k+ 1).

It is, we think, reasonable to assume that Fermat thought of a proof of
the two-square theorem along the following lines.

PROOF OF (2.3) First, let us prove existence. Assume that the statement is
false. Then there is a minimal prime number p with p - 4k + I. which is
not the sum of two integer squares. Let n be the smallest natural number
such that np - x2 +.V 2 with x, y relatively prime. Such an n exists because
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by (2.13) we know mp - z2 + u2 for suitable integers. We can assume that
x, y > 0 and that x, y < p12. This can be easily proved by determining
integers k, l with Ix - kpl < p/2 and l y - lpI < p12 and replacing x, y by
ix - kpl and I y - lpl. Another consequence is n < p12. Moreover x and y
are both relatively prime. Otherwise there would be a prime number q with
x - x0q, y - yoq and consequently np - g2(xo +Y0. Then, q < p and
consequently q2 is a divisor of n because x, y < p12. This means that n/q2
is a natural number n, and consequently (n/q2)p is the sum of two squares,
contradicting our choice of n. Specifically, x, y are not both even nor are
they both odd, for if they were, 2 would be a divisor of both x ± y and n,
and we would obtain the following contradiction: (n/2)p - (x + y)2/4 +
(x - y)2/4. To complete this proof, we observe that n contains only prime
factors of the form 4k + 1, for if there were a prime factor of the form
q - 4k + 3 then, according to (2.13), x and ,v would have q as a common
factor. This contradicts the fact that x and)' are relatively prime. Let q be a
prime factor of n. Since n < p. we have q < p. and q can be written as a
sum of two squares: q - u2 + c2. Then

n p - 1 (x2 + y2) - x2 + y2
q q u2 + 2

- \ + v2
)2+

(

u2 + v2u2 )2

-
\

)2
u2 + 2

+
\ u2 + v2

In the field with q elements one has: v2/u2 - -I and x2/y2 - -1;
consequently v/u - ± x/y or vy ± xu - 0. This means that or
provides a representation of (n/q)p as a sum of two squares of integers,
which contradicts our assumption.

Now, we prove uniqueness. Let us assume that
p=x2+v2-X2+ Y2. (+)

There are exactly two solutions of the congruence z2 + I - 0 mod p (c.f.
(2.13)]. They can be written as z - ± h mod p. Consequently, x - ± by
mod p and X h Y mod p. Since the sign does not matter, we choose

x m by mod p, X = - h Y mod p. (+ +)
From (+) and Fibonacci's formula (2.1) we have

P2-(x2+y2)(X2+ Y2)-(xX-yY)2+(xY+ yX)2.
Because of (+ +), xY + yX - 0 mod p and consequently xX - y Y - 0
mod p. Division by p2 yields a representation of I as a sum of two integral
squares. The only possible representation of this kind is I - (± 1)2 + 02.
This shows xX - yY or xY + vX - 0. Uniqueness follows from the fact
that x, v, X. Y are pairwise relatively prime.
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From what we have proved so far and Fibonacci's formula (2.1). it
follows that all numbers divisible only by 2 and numbers of the form
4k + I can be written as sums of two squares. Once one knows that every
prime number p of the form 4k + 1 can be written uniquely in the form

2 +y2X , it is natural to ask how to construct such numbers x, y. Here we
mention only that there are several known methods [Legendre (1808),
Gauss (1825), Serret (1848), and Jacobsthal (1906)]. Lengendre's method is
based on the theory of continued fractions which will be discussed in
Chapter 5 and used in our proof of the important Theorem (2.5). Let us
now make a few comments on the equation x2 - dye - 1: (this is now the
usual way of writing the equation which occurs in (2.5)). One reason why
this equation is so interesting is that using it one can find an optimal
rational approximation of R. For large x, y, one has tr z x/y if x2 - y2d

1. However, it is mathematically much more interesting that the smallest
solutions of the equation do not appear to follow any regular pattern. This
can be seen in Table I which lists the smallest solutions for a few d. Fermat
seems to have computed a similar table because in his letters he poses the
equation x2 - y2d = I as a problem and repeatedly chooses special d for
which x and y become particularly large, e.g., d - 61,109,149. (Centuries
earlier, Indian mathematicians seem to have known much about this
equation.)

Table of the smallest solutions of x2 - dye = I.
d x
8 3 1

10 19 6

II 10 3

12 7 2

13 649 I80

14 15 4
IS 4 1

60 31 4
61 1766319049 226153980
62 63 8

108 1351 130

109 158070671986249 15140424455100
110 21 2

148 73 6
149 25801741449 2113761020
1S0 49 4

And who will be able to see right away that with d - 991
x - 379516400906811930638014896080,
y - 12055735790331359447442538767?
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To conclude this chapter, a few words about the so-called "Fermat's last
theorem." Whether Fermat knew a proof or not has been the subject of
many speculations. The truth seems to be obvious. Fermat made his
famous remark in the margin of his private copy of Bachet's edition of
Diophantos in 1637 (next to the problem of decomposing a square into the
sum of two squares): "Cubum autem in duos cubos, aut quadrato-
quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum
ultra quadratum potestatem in duas ejusdem nominis fas est dividere: cujus
rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non
caperet." (Fermat, Oeuvres, III, p. 241). Basically, Fermat claims that the
equation x" + y" - z", n > 3, is unsolvable in natural numbers and states
that he has a truly wonderful proof. The margin, however, was too small to
write it down.

This statement was made at the time of his first letters concerning
number theory and we can assume that this was also the time his interest
awakened in the theory of numbers. As far as we know, he never repeated
his general remark but repeatedly made the statement for the cases n - 3
and 4 and posed these cases as problems to his correspondents. We have
already seen that he formulated the case n - 3 in a letter to Carcavi in 1659
(n - 4 obviously appeared to be too simple to be included in his collection
of important theorems). All these facts indicate that Fermat quickly be-
came aware of the incompleteness of the "proof" of 1637. Of course, there
was no reason for a public retraction of his privately made conjecture.
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CHAPTER 3
Euler

After 1650 number theory stood virtually still for a hundred years. This
period saw the development of analysis in the work of Isaac Newton
(1643-1727). Gottfried Wilhelm Leibniz (1646-1716), the Bernoullis (Ja-
cob, 1655-1705; Johann 1, 1667-1748; Nicholas 11, 1687-1759; Daniel
1700-1792). and Leonhard Euler (1707-1783). Analysis is not the subject
of this book, but analytic methods have played an important role in
number theory since Dirichlet. This interplay between analysis and number
theory has its origins in the work of Euler, and we will try to sketch the
beginnings of this development here.

One of the most important and interesting objects in analysis was the
geometrical series which was first summed by Nicole Oresme (ca. 1323-
1382):

1 IX for IxI <1.

Comparatively simple manipulations, well known since the beginnings of
analysis, lead to other series, e.g.,

1 2 3

I + x
by integration we get

s I - X + X - x + . ,

log(l+x)_x- 22

+
33 -+

Applying Abel's limit theorem yields
log(2)-1-2+;-+
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Another example is

1 =1-x2+xs-x6+- ;
1+x2

by integration one obtains

arctanx = x - 3 +
Ss -+

and with the help of Abel's limit theorem,

4=arctanl=l-#+}-#+-
To this last series, well known to the reader from lectures in analysis, we
will return repeatedly. Its discovery, as the discovery of many fundamental
results in analysis, can be ascribed to several mathematicians. Gregory
seems to have been the first, but Leibniz independently found it approxi-
mately 1663, i.e., before (re)discovering the fundamental theorem of calcu-
lus. It is quite possible that this immediately acknowledged outstanding
achievement (by, among others, Huygens) prompted Leibniz, who was then
a lawyer and diplomat, to turn to mathematics.

These series show-though in a naive and superficial way-that there is a
connection between sequences of integers satisfying a simple mathematical
principle and transcendental functions. We will encounter such examples
again and again, and we now introduce a particularly important one,
related to the so-called Bernoulli numbers which are of great importance in
mathematics even today.

The function

f(x) = x

has a convergent power series expansion in the unit disc,

f(x) = BO +
B' x +

22

x2 + ... + B' x" + .. .

The coefficients B. are called the "Bernoulli numbers" (after Jacob Ber-
noulli). We will now give a recursive formula for these numbers.

00 00

l
amxm)(2 bnx^) akbr-k)xr

m-0 n-0 r-0 k-0
is the Cauchy product of two power series. If the right-hand side of this
formula equals 1, one obtains

n-1
a060 1, a0bn - bk an - k

k-0
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This permits us to compute b,, recursively. Because

e'-I _' 1 x"x "0 (n+ 1)t .
we obtain the following recursive formula for the Bernoulli numbers:

n-I ntB"_- 2 Bk! (n -k+ 1)! (3.1)

According to (3.1) all the B" are rational numbers. We have
Bo= 1, Bt - - , B26, B3-0, B4= 3
B5-0, B6=42, B7=O, BS= - , B9=0.

Bt0=-1, Bit=0. B12- - ,...
Euler computed Bk for k < 30. The Bk seem to occur first in Jacob
Bernoulli's Ars conjecrandi. Basel. 1713. in connection with computing the
sum 2,.vk. I < v < n - 1. The computation of such sums was of interest
even before Fermat, and Fermat himself did some work on them. Today.
Bernoulli numbers appear in many places in number theory, but also in
other areas such as algebraic topology. One feels that they are connected
with particularly deep and central questions. Let us discuss some of the
more elementary properties of these numbers.

First, let us rewrite the recursive formula:

" n!
0-kZ0 k!(n - k + 1)!

Multiplying by n + I and using the identity
(n+l)! ((n+11k!(n-k+l)! k )

yields

A-0
(n+

k )BA=O.
Using forp(x) = Lk-oakxA the notation

p(B):= 2 akBk,
k-0

the recursion formula can be written very concisely as
(I + B)"+t- B"+t =0

The above table suggests the following.

(3.1)'

(3.2) Remark. Bk = 0 for odd k > 1.
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PRooF. Obviously, this statement is equivalent to the statement that
x/(ex - 1) + x/2 is an even function. This is easy to prove since

a-x- 1 2exX 1 + 2 xa x
is equivalent to

ix
l+e-X-I'-x,

which is true because a xe - x - 1.
We mentioned above that Bernoulli numbers occurred for the first time

in the formula

lk+2k+ ... +(n - 1)'- k+ 1 ((n + B)k+I - Bk+I(3.3)

specifically, for k - 1, 2, 3:
1+2 + +(n-1)=Z(n-1)n,
1+22+ +(n-1)2- n(n - 1)(2n - 1),
1+2'+ +(n - l)'=3n2(n- 1)2.

PROOF. Obviously,
nx M- I n- I oo k k oo n- i ke x rx rx a r )Xk.- 2: e- E ( 2X ex - I r-0 r-0 k-0 Ti k-0 r-0 k!

On the other hand, using the Cauchy product with r - k - s,

enx - I x _ 0 n=+Ix: 00
B, xr

x e' - 1 0 (S + 1)! o t! )
0o k n:+ IB

s
k--r s))Xk.

(s+l)!(kk-0 s-0
Comparing coefficients yields

n-I k k n:+IB

ro k! -o (s + 1)! (k - s)!
and multiplication by k!

n-I
k

1 k (k+ 1)!Z r nIBkr0 k+ I _0 (s+ 1)!(k-s)! -J

I k+I n`+IB -
k+ 1 1s+ 11 k

I

k+ t ((n+ B)k+l - Bk+I).
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We now come to one of Euler's most celebrated theorems, discovered in
1736 (institutions Calculi Differentialis, Opera (I), Vol. 10).

(3.4) Theorem.
1

a- i n2k (2k)!

Specifically, for k - 1, 2, and 3 one obtains
ao

2

n2 a 6 ,

00 2' -1,ff 'KI B2J

00

nb - 945

The series 2: n-
n

(1 /n2k) converges because I/n2k < 1/n2 < 1/n(n - I) for
)2and

n(nl - (n! n

For a proof of (3.4) we need a few facts from the theory of trigonometric
functions. First we make sort of a pedagogical remark: the usual definitions
of the sine and cosine functions.

'0 2n+lsin x - (- t)n

2n + 1( )!n-o

cosx - n x2n( - I)
n-0

(2n)t

.

do not make it obvious that these functions are periodic. It is natural to
look for an expression that makes the periodicity obvious. The simplest
approach is to consider

00x) - If( nxx+n (3.5)

Let us assume for a moment that this definition makes sense. Obviously,
the right-hand side has period 1, for if one replaces x by x + 1, one just
replaces the summation index n by n + 1. Now let us rewrite (3.5):

+ 2xf( X)
X n_ x+ n X n x n- 1 x2 _ n2

Clearly, f(x) is not defined for x E Z, but it is easy to show that
E',_1(l/(x + n) + 1 /(x - n)) is absolutely convergent for x Z. How can
we express f by a known periodic function? The answer is easy:

f(z) - 1+ x(
1 + 1 /X n- x+n x - n

(3.6)
- 7rcot(7rx).
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This is the well-known decomposition of the cotangent by partial fractions.
Although the reader should be familiar with this from calculus, we will
deduce it from Euler's product representation of the sine because the steps
in this deduction are typical and use arguments that will reoccur. Euler's
general idea for representing functions as products is to find a representa-
tion analogous to the decomposition of a polynomial in linear factors of the
form x - a where the a,. are the roots of the polynomial. Of course, the
product will usually not be finite, and one has to deal with questions of
convergence. Once a representation of the product has been found, taking
logarithms-which is permitted under certain conditions-transforms the
product into a series. For sin(,rx), the roots of which are all integers, Euler
found the following product representation.

sinrrx=xri (1-xn
n o

° O 2=xf 1- x 2
n-I n

The expression on the right-hand side converges absolutely. This product
leads to the representation of the cotangent by partial fractions. it cot(irx) is
the logarithmic derivative of sin(,ffx). Thus, taking logarithms (which can be
done term by term because the product converges absolutely) the product
representation of sin irx becomes

O0 2
log(sinirx) = logx + 2 log(1 X2 },

n-1 n

and by term by term differentiation,

1r cot(lrx) = z + E - 2x
n-1 n2(1 - x2/n2)

nl
Let us mention that the theory of periodic and trigonometric functions can
be developed from the above definition of the cotangent (cf. Andre Weil.
Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag,
Ergebnisse der Mathematik, 1976).
PROOF OF (3.4). Let us substitute x = 2iz in x/(e` - 1). Then

2iz 00 Bk k
x 2ki kBk k

- 1 = (2iz) = k2:0 k! ze2,, k!

I - iz +
22k( - 1)kB2k

z2k,
k-I (2k)!
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because the Bk vanish for all odd k > I. On the other hand,

z cotz = z cost (1/2)(e':+
sinz (1/2i)(e': - e-,:)

=tz+e =ize2r:+1
eiz - e-;: e2r: - 1

=iz2+e2ir-I s 2iz +iz.
e2i: - 1 e2rr - 1

From this last equation it follows that
x 22k(- I )kB2k

zcotz = 1 + z2A

k-1 (2k),.

Using the decomposition of the cotangent in partial fractions (with z - 7rx)
yields

z cotz - 7Txcot(7rx) = I+ x 2 (X + n+ X I nn-l
+ Z ( I Ia l

7r
'1 1 z/7r + n+ z/7r - n

( 1 + I )n-1 z+n7r z-mrr
'jo

z2 zI+2Z =I-2 z ( 1

M- 1 z2 n27r2 n- t n2'rr2 1 1 -

I - 2
222 2+ 2k2k2k (geometrical series)n-I n7r k-o n 7r

Eoc ( 1
z2k+2= I -2

k-o n- 1 n2k+z ) zk+z (absolute convergence)

'0 E
00

1 z2k
1 2 E1(n-

t n2k, 2k

Comparing the coefficients of both representations of z cot z one obtains

x 1

,I1 n2k m
22k - 1r2k (- I )k + 1 B24

(2k)!

Since this series is positive, the B.R have alternating signs. which completes
our proof.

(3.8) Corollary. I B,A I and even ZVI 821,1 -+ oo with k - oc.
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PROOF. Let us write Gk :- n_1(1/n2k). Then.

\2 2k.<
1

°° 2 2= G1 - I0<Gk-1 22k n_ 2n 22k n 22k -2

so that

lim 1

k-' o (2k)!

Then

2k !
lira k-'0O2k ( )

IB2kI
= 21r.

This proves our corollary.

21

Euler's life, as opposed to Fermat's, was very eventful. Leonhard Euler
was born in Basel in 1707. His father, Paul Euler, a parson interested in
mathematics, who had taken courses from Jacob Bernoulli, was his son's
first teacher. In 1720. not quite 14 years old, Euler became a student at the
University of Basel, first in theology and philosophy. He also attended
mathematical lectures given by Johann 1. Bernoulli. Though he passed his
examination in philosophy, his main interest was mathematics. At the age
of 18, Euler published his first mathematical paper. When two of Johann I.
Bernoulli's sons, Daniel and Nicholas IT., were called to St. Petersburg by
Catherine I to be members of the newly founded Academy, created
according to plans of Peter the Great, they tried to find a position for their
friend Euler. They were partially successful, since Euler was invited to join
the medical department of the Academy in 1726. After quickly studying
some physiology, he arrived in Petersburg after a fairly arduous trip (from
April 5-May 24, 1727). Contrary to his expectations he was immediately
appointed adjunct to the mathematical class, and in 1731, appointed
Professor of Natural Science, and in 1733, Professor of Mathematics as the
successor of Daniel Bernoulli. Euler devoted much of his time to applied
sciences (physics and engineering, maps, navigation, shipbuilding) and the
teaching of mathematics. He also wrote several texts in mathematics and
physics. Nonetheless, Euler's most important achievements are in pure
mathematics; but even they are often computationally oriented. Before
formulating general theorems, Euler used to verify special cases through
calculations.

In 1740, the political situation in the Russian capital was very confused.
At the same time, Frederick the Great, who had just become King of
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Joseph Louis Lagrange. Published by permission, Germanisches Museum, Munich.
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24 From Fermat to Mtinkowski

Prussia, made an effort to revive the Berlin Academy of Science that had
been founded by his grandfather Frederick 1. Euler was invited to work
there, accepted. and with his large family reached Berlin on July 25, 1741.
There he was faced with a multitude of problems, partly administrative. but
also practical ones such as the assignment to plan the construction of a
canal, insurance matters, and ballistics. But he did not neglect mathematics
and physics. lie published much and maintained a lively correspondence
with scientists all over Europe. Frederick the Great and Euler were very
different, both intellectually and in their personalities. The King, very
interested in literature. music and philosophy, surrounded himself with
artists, philosophers, and free thinkers. This was a world into which Euler
did not fit at all. Educated as a protestant, he was a devout Christian all his
life. It should not come as a surprise that leading personalities at the Court
made fun of him when he involved himself, with his Christian background.
in the current philosophical quarrels about the so-called doctrine of
monads. This hostile atmosphere and his failure to become President of the
Academy after Maupertuis died might have contributed to the decision to
accept Catherine the Great's invitation to return to the Academy in St.
Petersburg in 1766. Euler lived there until his death on September 18, 1783.
Even though he lost his eyesight in 1771, he continued to be incredibly
productive. The publication of his works, started in 1911 by the Schweiz-
erische Naturforschende Gesellschaft. has not yet been completed! His
mathematical works alone occupy more than one yard of shelf space. Euler
made meaningful contributions in every field of mathematics in which he
worked. Doubtlessly. his most important achievements are in analysis
(infinite series, theory of functions, differential and integral calculus, differ-
ential equations, calculus of variations). We have already mentioned that
Euler's applications of infinite series to different number theoretical prob-
lems was of principal importance. We will now study this.

The study of the series In "2k leads to series of the form In-. .c EN.
The case where s - 2k + I runs into major difficulties. Even today, no
explicit formula like (3.4) is known for the corresponding series. Minkowski
discovered interesting and very different interpretations for these expres-
sions (see Ch. 10). Euler was probably the first to see that these series can
he applied to number theory. His proof of the existence of infinitely many
primes uses the divergence of the harmonic series En-': If we assume that
there are only finitely many prime numbers, the product

I,(1 - p )_t,

as p runs through the prime numbers, is finite. Expanding every factor in a
geometrical series and using the so-called fundamental theorem of arithme-
tic which says that every natural number can uniquely be written as
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product of powers of primes, one obtains

oc>rl I- 1 =Ij(I+p-, +p-z+...)_ 1

P P P n-I n
a contradiction!

=00.
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L. P. G. Dirichlet (1805-1859) systematically introduced analytical meth-
ods in number theory. Among other things, he investigated the series En
for real s. B. Riemann (1826-1866) allowed complex s.

For real s > I + e (e > 0), En-(I+`) majorizes En -'. Thus Enis
uniformly convergent for s > I + c and is a continuous function of s
because of the continuity of its summands. The function represented by
this series is called the Zeta-function, and is denoted by $(s). One obtains

I 00 1 f" I
,

I

and consequently
limt(s)(s - 1) = 1, specifically limt(s) = oo. (3.9)
sit sit

The Zeta-function has a first order pole at s = 1.
If one now expands each factor of the infinite product jjP(1 p

running over the primes, in a geometrical series and again uses the
fundamental theorem of arithmetic, one obtains, analogous to the above,
Euler's product representation for the Zeta-function for all real s > 1:

00

(s)
It

n- n HO -P-,)-,.

(3.11) Theorem. GP 1 l p is divergent.

PROOF. oo because oo. Because of

log (s) = log(H no - p -') -' ) _ 2: log(I - p -' )

(3.10)

_z p-n:
(logarithmic series)

P n-1 n

P-'+ Pnu
P P n-2

it suffices to show that converges. This can be seen from
the following rough estimate:

'° 1 °` I 1 l 1
_S 23

00<z I = 2 1 - 1.P P(P - 1) n-2 n(n - 1)
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From (3.11) one obtains a first statement about the distribution of prime
numbers: the prime numbers are denser than the squares since

"-i n
by (3.4). The series Zo l /p diverges very slowly. The partial sum after the
first 50 million terms is still less than 4.

Another typical example for Euler's way of thinking is the following
attempt to prove the four-square theorem. The problem fascinated him over
several decades but he never found a complete proof: however, he im-
proved and simplified the first proof of the theorem, due to Lagrange.
Euler's approach tries to use the function

f(X) = 1+x+ X4 + X9 + X2S +

which is defined for Ix( < 1. After expanding the function f(x)° in a power
series

x
f(x)4= 2 T(n)x""-o

and comparing coefficients, r(n) will denote the number of ways n can be
written as a sum of four squares. To prove Fermat's statement, one only
has to show that r(n) > 0. It is quite difficult to do this: only many years
later did C. G. J. Jacobi succeed, using the theory of elliptic functions. We
do. however, see how Euler nearly magically transforms a purely arithmeti-
cal question into an analytical problem. In fact. Euler's idea is more
general. as we will now see in our discussion of a similar problem. A
partition of a natural number is a representation as a sum of natural
numbers. Two partitions are the same if they differ only in the sequence of
their summands: consequently. we can always assume in a partition it
= n, + + nA that it, : it, ? n,. Let p(n) he the number of
partitions of it. For example. p(2) = 2. p(3) - 3. p(4) = 5. p(S) = 7. In 1663.
Leibniz suggested investigating these partitions in a letter to Johann 1.
Bernoulli. It is extremely difficult to compute p(n) for arbitrary it. Like r(n)
considered above. p(n) is an arithmetical function. i.e.. a function f : N -RN.
Euler assigns to every such function a series

F(x) f(n)x" f(0) := 1 (3.12)
"_o

F is called the generating function of f. If f(n) does not approach infinity too
rapidly with n. this series has a positive radius of convergence. When f is
the partition function, this series converges for jxj < 1. Euler shows:
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(3.13) Theorem. For Ix) < 1,

Z p(n)x"- H
M-0 M-1 I - Xm

(with p(0) = 1).
PROOF. First, we expand every factor in a geometrical series and obtain

27

O0 I
I xm

=(l+x+x2+ )(1 +x2+X4+ )(l+XI+x6+ ) .

Disregarding questions of convergence, we multiply the series on the
right-hand side as if they were polynomials and order them according to
powers of x. Then we obtain a power series of the form

00

E a(k)Xk (a(0) := 1).
k-0

Now we have to show that a(k) = p(k). Let xki be a term of the first series,
X2k: a term of the second. and, generally, xmk-' a term of the mth series. The
product of these terms is

Xk,X2k, ... Xmk,. = Xk
with

k=k,+2k2+ +mkm.
This last expression is a partition of k. Any term gives us a partition of k;
conversely, any partition of k corresponds to a term. This relation is one to
one; so a(k) - p(k). This is not yet a complete proof. We will now fill in
the gaps. First let x E [0, 1). We introduce the functions

1 , G(x) _ fl 1 = lim Gr(x).k-I I - Xk k-I l - Xk m-**o

The product defining G converges for x E [0, 1) because the series 2:Xk do.
For fixed x in (0, 1), the series Gm(x) grows monotonically. Therefore,
Gm(x) < G(x) for fixed x e [0, 1) and every m. Since G(x) is a product of
a finite number of absolutely convergent series, Gm(x) is absolutely conver-
gent and can be written as

Gm(X) - pm(k)Xk.k-0
where pm(k) denotes the number of partitions of k into parts not greater
than m (pm(0):= 1). For m > k, pm(k) = p(k). Since pm(k) < p(k) one
obtains limm.xp",(k) = p(k).
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Let us now decompose Gm(x) into two parts:
cc

Gm(x) pm(k)xk+ pm(k)xk

k-0 k-m+l
m u
E p(k)xk+ Z pm(k)xk.k-0 k-m+1

Because x > 0,

m
p(k)xk5 Gm(x) 5 G(x).

k-0
Consequently Ik_op(k)xk converges; because pm(k) < p(k).

x o0

7, pm(k)xk,< Z p(k)xk9 G(x).k-0 k-0
Consequently. the series Zk_t,p,,,(k)xk converges uniformly for all m and

x
G(x) = nlimo Gm(x) _ llmo Z pm(k)xk

k-0
00

_ lim pm(k)xk
k-0 "b0

_ F, p(k)xk
k-0

This proves Euler's formula for x E [0, I). By analytic continuation, the
proof follows for x E (-1.1).

Let q(n) be the number of partitions of n in odd summands and r(n) the
number of partitions of n into different summands. Then the generating
functions of q and r can be found in a similar way.

(3.14) Theorem (Euler).

(I - x)(1 - x3)(1 - x) .. .
is a generating function of q and (I + x)(1 + x2)(1 + x) ... is a generating
function of r.

The first statement can be proved in a way similar to (2.4): the second is
trivial.

(3.15) T eorem (Euler). q(n) - r(n).

The proof is easy with the help of the corresponding generating func-
tions. We just have to show that they coincide. The statement follows by
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comparing coefficients. In fact,

2 3
(1 -x2)(1 - x4)(1 - x6)(l + x)(1 + x)(1 + x) . ' _ (1 - x)(1 - ,r2)(1 - x)

.. .
(I - x)(1 - x3)(1 - x)

Without generating functions the proof of the theorem is not obvious; cf.
Hardy and Wright, The Theory of Numbers.

We have just seen a fine example of the power of this method, and we
end with another theorem of Euler which, however, we will not prove.

Let us look at (I - x'"), the reciprocal of the generating function
of p. The first terms are

(I - X)(I - X2)(I - X)(l - X4)(I - x)(l - x6)(l - x) ...
- I - X - X2 + Xs + x7 - X12 - X15 + - .. .

The series does not follow an obvious law, and Euler certainly calculated a
great number of terms before he found it. A few years later he proved:

(3.16) Theorem.

fl (I - Xm) _ E (- l)kX(3k2+k)/2
M-1 k--00

00

E (- l)k(X(3k2-k)/2 +
k-0

x(3k=+k)/2)

It was Jacobi who gave the first "natural" proof of this result, again
within the framework of the theory of elliptic functions. There is an
attractive combinatorial proof of F. Franklin (1881) to be found in Hardy
and Wright.

Obviously, what has been discussed so far in this chapter can be
characterized by the use of analytical methods and might be said to belong
to analysis rather than to number theory. Number theory, in a way, did not
exist when Euler began his work, since Fermat had not left any proofs.
Initially. Euler was quite isolated; only later did Lagrange join him as a
versatile and knowledgeable partner. It is difficult to realize today what
kind of obstacles Euler faced, obstacles which we can overcome easily
today with the help of simple algebraic concepts such as the theory of
groups. Andrb Well, one of the most eminent mathematicians of our time
made the following comments on Euler's number-theoretical work: "One
must realize that Euler had absolutely nothing to start from except Fer-
mat's mysterious-looking statements ... Euler had to reconstruct every-
thing from scratch ...... However, one would not do justice to Euler's
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versatility if one tried to pin him down too tightly, be it with regard to the
problems he treated or to the methods he used. On the contrary, it is
significant and typical for Euler that he was interested in everything and
pursued so many different and disparate questions with the enthusiasm of
the natural philosopher of his period.

To conclude this chapter, we will mention a few more results which show
the breadth of Euler's mathematical work. Some reflect deep insights,
others are just curiosities. But everything has some connection to number
theory and we will discuss some of these results later in more detail.

There are formulas, easy to understand but not so simple to prove, such
as

0

sinx2dx= Z12
2+4-5+I-...a it

3F
Then there is another formula which is very difficult to prove and seems
very obscure at first sight:

I-2m_I+3m-t-4m-I+
I -2-m+3-m-4-m+

1 .2.3 ... (m - 1)(2m _ 1)
(2m _ 1 1 ),ff m COs .

(Remarques sur un beau rapport entre les series des Puissances rant directes
que reciproques, Opera (1), Vol. 15, p. 83). If one looks at it more closely,
one sees that this is the functional equation for the Zeta-function. Then. in
his correspondence and in his papers, there are various strictly arithmetical
theorems for which Euler does not have a proof and which he does not
even state precisely, among them the following. The numbers d - 1, 2.3, 4,
5,6,7,8,9,10,12.13,15,16,18,21. ..., 1320.1365.1848 (altogether 65) have
the following property: If ab - d and if a number can be uniquely written
in the form ax2 + by2 with ax.by relatively prime. then this number is of
the form p, 2p, or 2k, where p is a prime number. Specifically, any odd
number > I that can be written uniquely in this way is prime; Euler calls
these numbers numeri idonei because they can be used for primality tests.
He gives the following application for d - 57. 1000003 is a prime number
because it can be written uniquely as

19.82+3.5772.
d - 1848 yields the prime number 18518809 with the unique representation

1972 + 1848 1002.
It is still unsolved whether Euler's 65 numbers are the only numeri idonei.
(Only for the cases d - I. 2,3 did Euler show that they have the required
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property. In the case of d - I there is an obvious connection to Fermat's
theorem (2.3).)

The following is a decidedly curious statement. x2 + x + 41 is a prime
number for x - 0, 1, 2, ... , 39. Of course, one can check this easily, but
how does one find such a result and what is the real reason? (The field
Q( -163 ) has class number 1.)

It is equally easy to check the following purely algebraic formula (with
xx in Euler's notation, instead of x2):

(aa + bb + cc + dd)(pp + qq + rr + ss) - xx +yy + zz + vv
with

x- ap+ bq + cr+ ds,
y-aq-by±cs+dr,
z=ar+bs-cp±dq,
v=as±br+cq-dp.

Obviously, this means that the product of two sums of four squares is the
sum of four squares. This means that one can confine oneself to primes in
the proof of Fermat's four-square theorem.

We conclude this list with the statement of the law of quadratic reciproc-
ity which Euler found but could not prove: An odd prime number s is a
square modulo an odd prime number p if and only if (- l)2(_ p is a
square modulo s.
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CHAPTER 4
Lagrange

Joseph Louis Lagrange lived from 1736 to 1813. Born in Turino. he had
both French and Italian ancestors. His family was well off but Lagrange's
father lost the family fortune in risky financial transactions. This is said to
have prompted Lagrange to remark. "Had I inherited a fortune I would
probably not have fallen prey to mathematics." (cf. E. T. Bell. Men of
Mathematics). As a youth Lagrange was more interested in classical lan-
guages than in mathematics, but his interest in mathematics was stirred by
a paper by Halley, the friend of Newton. In a short time he acquired a deep
knowledge of analysis; only 19 years old, he became Professor at the Royal
School of Artillery in Turino. Lagrange stayed there for about 10 years. His
reputation as a mathematician grew quickly, mainly by basic contributions
to analysis, specifically the calculus of variations, the theory of differential
equations, and mechanics. This combination of mathematics and mechan-
ics or, more generally, theoretical physics. is typical of the eighteenth
century. Mathematics was not viewed as an end in itself but mostly as a
tool for understanding nature. In 1766, d'Alembert was instrumental in
bringing Lagrange to succeed Euler at the Berlin Academy of Science.
Financial conditions in Berlin were very good: moreover. he could devote
himself exclusively to his mathematical work. Lagrange stayed there until
1787 when he moved to the Academie Francaise in Paris. At that time.
soon after Euler's death. he was recognized as the most important living
mathematician. Though Lagrange had had close ties to the French royal
family he was not persecuted during the French Revolution. Altogether. the
sciences gained importance during the era of the French Revolution and
Napoleon. Lagrange's authority transcended the sphere of science. He was
a Senator of the Empire and in fact received a state burial in the Pantheon.

While he was in Paris. Lagrange was quite involved in the problems of
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teaching mathematics and other areas of science. For a time, he even seems
to have dropped his interest in mathematics. Lagrange's number-theoretical
papers belong to the Berlin era, mainly to the years 1766-1777. Lagrange's
main inspiration seems to have been Euler's work which he read very
carefully. Though there is an extensive correspondence between Euler and
Lagrange, they never met.

Euler was not really successful in treating Fermat's problems. In spite of
great efforts he gave a complete proof, after several unsuccessful attempts,
only of the two-square theorem. Euler's contributions to the four-square
theorem or to the theory of the equations x3 = 1.2+2 or x3 + j,3 = z3 were
almost successful, but serious gaps remained. Euler's real achievement was
the presentation of many examples and the use of analytical methods.

Lagrange is Fermat's true successor in number theory. He was the first to
give proofs for a series of Fermat's propositions and did so without leaving
the realm of arithmetic; many of these techniques were his own. Three of
Lagrange's (not very numerous) papers in number theory are particularly
important:

"Solution d'un probleme d'arithmftique" (1768. Oeuvres de Lagrange 1,
671-731). Lagrange treats the equation x2 - dye - I (see (2.5)).

"Demonstration d'un theor8me d'arithmEtique" (1770, Oeuvres III, 189-
201). This paper contains the first proof of the four-square theorem (2.4).

"Recherches d'arithmftique" (1773, Oeuvres 111, 695-795). Lagrange
develops the theory of binary quadratic forms and derives from the general
theory, among other things, Fermat's theorems about the representation of
prime numbers by x2 + 2y2 and x2 + 3v2.

We are particularly interested in this third paper because it is the first
work to develop systematically and coherently a complete arithmetical
theory, going much further than the individual problems which are dis-
cussed by Fermat and Euler. The importance of this step cannot be
overestimated for the further development of number theory and algebra.
About 25 years later. Gauss considerably expanded the theory of binary
quadratic forms. We will discuss this below, though we will use some of
Gauss's terminology in this chapter.

This might be a good occasion to mention that it is often difficult or
sometimes nearly impossible to credit a mathematical result to just one
mathematician. Often A discovers a theorem, B gives a partial proof, C
proves it completely, and D generalizes it. This gives us a certain freedom
in deciding in what context to discuss a specific theorem-and this freedom
we will often exploit.

Returning to Lagrange, we note that his papers are written in "con-
temporary" mathematical style. They are very readable, even exemplary in
their clear and well-organized presentation. We will now give a systematic
development of the foundations of the theory of binary quadratic forms,
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following Lagrange's exposition. Let us start with a free translation of
excerpts from the introduction of the paper "Recherches d'arithm6tique":

These investigations are concerned with the numbers that can be written in
the form

Bt2 + Cru + Due
where B. C, D are integers and t. u are also integers but variable. Thus. I will
determine those forms which represent numbers whose divisors can be
represented in the same way: later I will give a technique which permits us to
reduce these forms to their smallest number. This will lead to a table for
practical use: I will show how to use this table in the investigation of the
divisors of a number. I will finally give proofs for several theorems about
prime numbers of the form Bt2 + Ctu + Due; some of these theorems are
known but without proof and others are completely new.

Thus the author studies the quadratic forms
q(x. y) = ax2 + bxv + cy2.

Certain quadratic forms, namely x2 + v2,x2 +2
1

V2, X2 + 3y2,x2 - dv2, were
already treated by Fermat (see Chapter 2). First, Lagrange investigates the
divisors of a number represented by ax2 + bxy + cy2. One says that a
number nt can be represented by this form if the equation

m=ax2+bxv+cv2
is solvable in integers. Lagrange proves the following theorem: the proof is
taken nearly word for word from his paper.

(4.1) Theorem. Let r be a divisor of a number that can be represented by the
form ax2 + bxv + cv2 with x = xo, v = Yo relatively prime. Then r can be
represented by a form AX 2 + BX Y + C Y2 with X - Xo. Y - Yo relativeh
prime, and 4AC - B 2 - 4ac - b2.
PROOF. Let

rs = ax 2 + bxy + cy2.
Let t be the greatest common divisor of s and y, i.e., s - tu, y - tX with u
and X relatively prime. This leads to

rtu = ax2 + btxX + ct2X 2
which means that t divides ax2. By our assumptions, x and y are relatively
prime, consequently, x and t are as well. This means that t divides a, i.e..
a = et. Dividing by t gives

ru = ex 2 + bxX + ctX 2.
Since u and X are relatively prime, we can write x in the form

x=uY+wX.
Substituting this in the last equation, one obtains

ru-e(uY+wX)2+b(uY+wX)X+ctX2
=(ewe+bw+ct)X2+(2euw+bu)XY+eu2Y2.
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The first summand must be divisible by u. Since u and X are relatively
prime, u is a divisor of ew 2 + bw + ct. Setting

A :- ewe + bw + ct
u

one obtains, as required,

B:-2ew+b, C:- eu,

r -AX2+BXY+CY2.
X and Y are relatively prime, and it is easy to check that

4AC - B2 - 4ac - b2.

We say that a number m is properly represented by a (binary) quadratic
form q if the equation m - q(x, y) can be solved in relatively prime
integers. m is called a divisor of q if m is a divisor of a number that can be
properly represented by q. The expression 4ac - b2 is called the discrimi-
nant' of the form ax 2 + bxy + C)'2. Now we can reformulate theorem (4.1):

(4.1)' Theorem. If m is a divisor of a quadratic form, m can be properly
represented by a quadratic form with the same discriminant.

In what follows we consider, instead of ax 2 + bxy + cy2, the more special
quadratic form

ax 2 + 2bxy + cv2.
In this, we follow Lagrange and, later, Gauss. (4.1) and (4.1)' are valid for
this new form, too, because if b is even B also is even as B - 2ew + b.
Using matrices, one can write

axe+2bxy+cy2-(x,y) a
1b c)\y)

One sees that the form can completely be described by a 2 x 2 matrix with
integral entries a, b, c. Depending on the context, we will identify the form
with the matrix. Frequently, we will use the abbreviations q(x, y) - ax 2 +
2bxy + cy2 and

A :- det( a

Throughout, we will assume i 0.
Two forms

b)-ac-b2.
c

axe+2bxy+cy2, AX2+2BXY+CY2
are equivalent (or isomorphic) if they can be transformed into each other
with an invertible integral linear substitution of variables, i.e., if

X - ax + fly
Y - Yx+sy with (a E GL(2, Z).

'(Translator's note). This is occasionally called the determinant, but for quadratic forms
discriminant is more common.
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The forms are properly equivalent if (Y a) E SL(2. Z). Here GL(2. Z) and
SL(2, Z) denote, as usual, the groups of invertible integral 2 x 2 matrices
and the group of invertible integral 2 x 2 matrices with determinant 1.

Using matrix notation, one has

( Y) -(a7 8 1(y l
This leads to

(X.Y)(B C)(Y)s(x'y)(ft 8)(B CITY 811Y

(x, y)(ba b)(y)Thus,
two matrices (e °),(a c) define equivalent (or properly equivalent)

forms if and only if there is T EIGL(2, Z) (T E SL(2, Z)) such that

lB CI T'(b d)T,

where T' is the transpose of T. "Equivalence" and "proper equivalence"
determine equivalence relations. Equivalent forms represent the same num-
bers and have the same discriminant because of (det T)2 - 1. We call a
form s axe + 2bxr + ct'2 positive (negative) if q(x.),) > 0 (< 0) for
all x. v E Z. If a form is either positive or negative it is called definite;
otherwise it is indefinite.

It is easy to see that a form q is positive if and only if A is positive and
a > 0; q is negative if and only if A is positive and a < 0. It is indefinite if
and only if A < 0. To prove this, write

axe + 2bxy + cy2 = a(x + b y)2+ cy2 - b2 y2
a

and test the three cases.
Below, we consider only definite and, without loss of generality, positive

forms.
Lagrange's next result is the following; it is of fundamental importance

for the whole theory.

(4.2) Theorem. A positive form q is properly equivalent to a so-called reduced
form, i.e., a form that can be described by a matrix (b °) with the entries
satisfying

a<b2 arc, and 05b52 if a-c.
These conditions uniquely determine the matrix. Moreover,

where A is the diseriminant of q.
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PaooF. Suppose q is described by the matrix (B ). Let a be the smallest
number which can be represented by q. Thus a can be written

a-AXO+2BXOYo+CYO'
for suitable X0, Yo E Z. X0 and Yo must be relatively prime. This means
that there are a, $ E Z with

aXo + $ Yo = 1.
Then

Xo Yo) E SL(2, Z)
Q a

and

Y BX$
ao)(B C)1 Yo aJ B' C' l(

with B', C' E Z. For arbitrary k E Z, we use the transformation
E SL(2, Z) to obtain

(k 1)(B' C')(0 1)-(B'+ka
B'; ka

(k j)

Let us now pick k E Z such that -a/2 < B' + ka < a/2. Setting b :=
B' + ka, c:- a, the matrix

a
lb c!

is, by construction, properly equivalent to (8 1) and satisfies the conditions
- a/2 < b < a/2 and a < c. Then a < c since c can be represented (with
x - 0, y - ± 1) and a was assumed to be the smallest number that can be
represented.

If b is negative for the case a 1=( c, we use the matrix (° -a) E SL(2, Z):

\1 0/1b all -1 0) =
(l -b al

Then - b > 0.
Now we have to show uniqueness. First we show that if (b b) is a reduced

form, then a is necessarily the smallest number represented by this form.
Hence a is determined uniquely.

Let us now prove this last statement. If (b b) is reduced, the form
ax2 + 2bxy + cy2 assumes only values > ax2 > a for 0 < lxl < lyl because
of 2bxy + cy2 > 0. If 0 < lyl < lxl, then ax2 + 2bxy > 0, and the form
assumes only values > cy2 > a. If x - 0 or y - 0, then again ax2 + 2bxv +
cy2 > a. One obtains this minimum when x - ± 1, y - 0.

If a < c, these are the only values that give the minimum because
lxl > L Y - 0 will not give all possible a, and x, y # 0 leads to

ax2+2bxy+cy2> cy2>a for x > y > 1,
ax2 + 2bxy + cy2 > ax2 > a for 1 4 lxl 4 lyi.
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Consequently, if (B ) is properly equivalent to (b °) in reduced form, say

(a
B

a a a
C) =1 R 8llb c11y

aa2 + 2bay + cy2

we have a = aa2 + 2bay + cy2, i.e., y = 0. a 1. The transformation is
then given by

(B
C)=(

pl
01)\b

b/( 01 1)

This leads to l3 - 0 because - a/2 < b, B < a/2. Also, B - b and conse-
quently ('e c) _ (°b b)

If a = c, 0 b < a/2, the smallest a is attained when x I, y - 0 and
x - 0, y - ±1. Hence, if (B B) is properly equivalent to (b b) in its reduced
form, this equivalence can be expressed by

(B C) a ( /31
01)(b

a)( 01 ± 1) (')
or

(B C) - ( O 1 Sl)(b a)( I Ql ).

Then it follows that B - ± a/3 + b and B = t aft - b. Because of 0 < b,
B < a/2, it follows that 0 = 0, hence (°a c) - (b b) If a - c - 2b, one has

a
lb

b) s 611 2

and it suffices to consider the matrix (2 ;). One obtains 2, the minimum of
2x2+2xv+2v2, when x= ±1, y=0 or x=0, y= ±1 or x- ±l,
v - + 1. It follows that B - b, C - c. The last inequality for a follows from
the previous inequalities.

(4.3) Corollary. There are only finitely many proper equivalence classes of
positive binary quadratic forms with a given discriminant A.

PROOF. Every proper equivalence class contains the reduced form (b with

a :_4A3 IbI ;9 3.

This means that there are only finitely many possibilities for a and b, hence
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also for c. We can now devise a table of positive reduced forms (Table 1)
(cf.. Lagrange. Oeuvres 111, page 757 or Gauss, Disquisitiones Arithmeticae.
art 176).

Table I
A positive reduced forms

I
1 0)

\0 I

2 I 0
0 2

13 1 1 ( l

0 3 / 1 1 2 /
4 1 l ( 1

10 4/ \0 2/
5

)(

( )

0 5 1 3

6
/(

)(

0 6 0 3

7 l(

0 7
)(

4
8

l/(\ 1 1
2 ll ( l

8 )\0 0 41 1l1 3

9 1/ l f 1 0 )(
10 9/ 11 5/ l0 3

10 l (

5)\0 0/ l0

II ( l1 / ( 1 ( 3 l r 3 l

)\0 \1 6/ l1 41 1- 1 41
12 l

2
) (3 l ( l

10 ) 10 6 41 \2 41

We have now enough theoretical results to supplement one of the
concrete statements in Chapter 2 (cf. (2.3)).

(4.4) Theorem (Fermat). A natural number a = b2c. c square free. is the sum
of two squares if and only if c contains on y prime factors of the form 4n + I
or 2.
PROOF. If c is square free and of the given form, it is, by (2.3) and its
corollary, the sum of two squares. Consequently a is the sum of two
squares. Conversely, let a be the sum of two squares, a = xo +yo. Without
loss of generality we can assume that xo and yo are relatively prime. Let p
be a prime factor of c. Then p is a factor of x2 + y2; so by (4.1) p can be
represented by a positive form with discriminant 1. Up to equivalence there
is, however, only one form with discriminant 1. This means that p can be
properly represented by x2 + y2 and consequently is equal to 2 or of the
form 4n + I because a prime number of the form 4n + 3 is not the sum of
two squares (cf. (2.13)).
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Let q be a binary quadratic form, represented by the matrix M. A matrix
T E GL(2, Z) is called a unit (automorph) of q if

T'MT = M,
i.e.. if T maps the form q in itself. The unit T of q is called proper. if
det(T) = 1. We shall determine the proper units of a form q. Obviously
they form a group E(q). If the two forms q.q'-represented by matrices
M, N. respectively-are properly equivalent, i.e.,

M= U'NU
with U E GL(2. Z). then the mapping T-+ UTU -' yields an isomorphism
E(q) E(q'). Therefore, in view of (4.2). we may assume that q is reduced.

(4.5) Theorem. The only proper units of q(x, v) = a(.x22 + v2) are ±(o °) and
G°=o). The onh proper units of q(x. v) = a(x' + 2xy + y2) are ±(o o),
(.° + ) and ( io). Any positive reduced form distinct from these two has
only the trivial proper units ± (o °).

PROOF. This proof follows from an analysis of the proof of the uniqueness
statement in (4.2).

We have not yet discussed indefinite forms. One treats this case in a way
similar to (4.2).

(4.6) Theorem. An indefinite quadratic form is properly equivalent to a form
with matrix (' whose coefficients satisfy the following conditions:

IaI<Icl. IbI<2.
(In general the reduced form of an indefinite form is not uniquely determined.)

The discriminant of an indefinite form is negative. This means that
A - ac - b2 < 0 for the reduced form given by the above. Hence ac < 0
and IAI > 5b2, i.e.,

Ibl ISI

As in the positive case, one can write a table of reduced indefinite forms
(Table 2). Among other things, the table shows that any odd natural
number which is a divisor of x2 - 51-2 can be represented by x2 - 5v2 or
5x2 - 1-2. In fact, there are three reduced forms with the same discriminant
as x2 - 51-2. and the form 2x2 + 2xt - 2y2 represents even numbers only.

Next Lagrange investigates the problem of representing prime numbers p
by the form x2 + aye, a e Z - (0). He distinguishes between the cases
p-4n- I andp=4n+ 1.
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Table 2
0

-2

-3

-4

-5

-6

-7

-8

-9

- 10

reduced indefinite forms (not necessarily inequivalent)

( 1 0
0 -1

1
( 0 - 2 l1 rl 0

1

21l
1

0
-0

3/l 0 3l/

t/0 -4) (l 0 411

((\0 -5
6

) l 0 51 -21
10

_0) 1 l1 1

' -0 6) (2 _0)
/

10 -7) 0 71 11 - 3
2 4

(0 -41 \0 -2l/ l0 -8/
3
l)

((1 - 4 /l
((

1 4 /l ( 0
_0

\0 - 0/ 0 0/ (0 - 5/

. 1 2)

0 31

1 3

(_0
3

8l1

(_0
2

3l/
( l( l

(_0 5/ \1 -311 1 31

(4.7) Theorem. Let a be an integer 0. A prime number p of the form
p- 4n - 1 is adivisor of x2-ayeifand only ifpis not adivisor of x2+ay2.
PROOF. Let 4n - I be a divisor of x2 - aye. Then in the field FP with p
elements, x - ay2 - 0, i.e., a is a square in FP. If in addition x2 + ay2 - 0
in FP, then - a and consequently - I would be a square in FP. We already
saw (c.f. (2.13)) that this is not possible. Now let us assume that p is not a
divisor of x2 - ay2. We have to show that in this case p is a divisor of
x2 + ay2. It will suffice to show that I + at P-1VI2 - 12 + a(atP-3j14)2 is a
multiple of p ((p - 3)/4 is an integer).

According to the so-called little theorem of Fermat, aP- - I -
(a(P-')/2- lxa(P-1/2+ I) is a multiple of p, i.e., it suffices to show that

atP-')12 - I is not a multiple of p. Let us assume that a(-*- 1)/2 - I is a
multiple of p. Then the following polynomial identity

xP-' - I - xP-' - a(P-1)/2
holds in FP. The last expression in this formula is a multiple of x2 - a. This
would imply that x2 - a decomposes into linear factors because (by Fer-
mat's little theorem) xP-' - I - xP"' - a(p - 1)/2 does. This means that
a is a square in FP, i.e., there is x0 E Z such that p divides xo - a, i.e., is a
factor of x2 - ay2, which is a contradiction.

Now we give a few typical applications which enable us to solve several
of Fermat's problems (cf. (2.10)).
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(4.8) Application. (I) Let p be a prime number of the form p = 8n + 3.
Then p can be represented by the form x2 + 2v2. (2) Let p be a prime
number of the form p - 12n + 7. Then p can be represented by x2 +
(3) Let p be a prime number of the form p - 24n + 7. Then p can be
represented by x2 +6 Y2.

PROOF. (I) Assume p is a divisor of x2 -2 v2. Then one can represent it by
.x2 -2

'
1.2 or - x2 +2 v2 by (4.1) and Table 2. The only odd residues modulo

8 of these forms are ± I but not 3. Consequently, p is not a divisor of
x2 - 2.2: by theorem (4.7) p is a divisor of x2 + 2t'2. the only reduced form
with discriminant 2. This means that p - 8n + 3 can be represented by
x2 + 2v2.

(2) Assume p = 12n + 7 is a proper divisor of x2 -3 Y2 . Then it can be
represented by x2 - 3y2 or - x2 + 3y2. However, these expressions have
only ± 1. ±9. ±3 as their odd residues modulo 12. but not 7. Consequently,
p is not a divisor of x2 -3

'
y2 which means that it is a divisor of x2 +3. by

(4.7). 2x2 + 2.x1. + 21.2. the other reduced form of discriminant 3. represents
even numbers only. Consequently. x2 + 3v2 represents p = 12n + 7.

(3) Assume p = 24n + 7 is a divisor of x2 +6
-

r2. Then it can be repre-
sented by ±(x2 - 6v2) or ±(2x2 -3

'
v2). One easily shows that these forms

do not give the odd residue 7 modulo 24. According to (4.7) p is a divisor of
x2 + 6r2; consequently. p - 24n + 7 can be represented by a form with
determinant 6. i.e., by x2 +6. or 2x2 +3. according to Table 7. This
latter form does not leave the residue 7 modulo 24. Consequently. p can be
represented by x2 + 6v2.

Let us now consider prime numbers p of the form p = 4n + 1. The
following lemma is central.

(4.9) Lemma. p is a divisor of x2 + aye if and only if p is a divisor of
x2 - 2ay.
PROOF. p is a divisor of x2 ± av2 if and only if x2 ± aye - 0 in F,,. This
means that + a is a square in Fp. For p - 4n + 1, -1 is a square in Fp;
consequently, - a is a square in F,, if and only if a is a square in F,,.

From this point on, Lagrange confines himself to prime numbers p of the
form p - 4an + 1. One first observes that there is x0 such that )C02*" + I is a
multiple of p because the following identity holds for the polynomial
xp- t - 1:

(xp- i - (X, p- 11/2 + 1)/2

_ (x2an + 1)(x2an - 1).
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As we have seen above, xP-' - I (and consequently x2an + 1) decomposes
into linear factors in F,,. Also, x0 can be chosen in such a way that xo" + I
is not a multiple of p = 4an + I for a > 1. Let us now set )' :- x",
z :=.v2 + 1. Then one has the remarkable identity

x2an + l = za - aza-I,2 +
a(a - 3) za-4y4

2!
a(a - 4)(a - 5) za-6y6 +

a(a - 5)(a - 6)(a - 7) za-sys
3! 4!

Since yo - x0' and zo = yo + 1 are relatively prime, a consequence of this
formula is that p - 8n + I is a divisor of the form x2 -2 Y2 for a - 2. By
(4.8) p is a divisor of x2 +2 Y2. the only reduced form with discriminant 2.
According to (4.1) p can be represented by this form.

When a - 3 we have the following consequences. p is a divisor of the
2 2- 3yo) and, since p and zo are relatively prime,number 4' - 3zo o - zo(zo

also of zo - 3vo. Consequently, p = 12n + I is a divisor of the form
x2 -3

'
V2 and, according to (4.8), also of x2 + 3v2. Other than x2 + 3v2,

only the reduced form 2x2 + 2xv + 2y2 has discriminant 3. The latter does
not have residue I modulo 12. This means that p can be represented by
x2 +3 ,2.

If a = 5 then p = 2! + 1 is a divisor of the number za - 5zoyo + 5zoyo =
zo(zo - 5z01y02 + 5y04), i.e., of za - 5z02y02 + 5y40 and consequently also of
4zo - 20zoyo + 200 - (2zo - 5yo)2 - 5y04. This means that p is a divisor of
the form x2 - 5y and consequently of x2 + 5y2 by (4.8). According to
Table 1. p can be represented by x2 + 5y1 or 2x2 + 2xy + 3y2. The latter
equation does not have residue I modulo 20 which means that p is
represented by x2 + 5y2. We summarize the above:

(4.10) Application. Prime numbers of the form 8n + I can be represented
by x2 + 2y2, prime numbers of the form 12n + I can be represented by
x2 + 3y2. and prime numbers of the form 20n + I can be represented by
x2 + 5y2.

It is not difficult to prove more theorems like this, see, for instance,
Lagrange's paper.

The problem of representing numbers by quadratic forms inevitably
leads to the solution of quadratic congruences (cf. (5.2)), i.e., to the law of
quadratic reciprocity (cf. (5.1)). We will discuss this in the following
chapter.

Next we look at Lagrange's solution of Fermat's equation
x2-dy2=1.

Here Lagrange makes essential use of the theory of continued fractions
which he substantially extended for this purpose. These solutions essentially
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coincide with the units of the quadratic diagonal form
(1 0 1.
0 d'

for if
(x )' 1 0 ul = 1 0 1

u vJ 0
-d)(X

r vl 10 -dl'
then by simple calculations.

x2-dy2-1, xu - dyv = 0, u2 - dc2 = - d.
For x = ± I. }' = 0 one obtains u - 0, r = ± 1. For x. r 0 one obtains

u LYE -d= dz,2L2
-dal.=-,x x2

This latter relation yields
dy2v2 - v2x2 = - x2, v2(x2 - dv2) - X2, v2 = x2,

and consequently
u = ±d)'.

Therefore, the units are

l (
x

l±(0
1

I )' ±(0 -1/ l y dx l' )'
and the units of determinant I are

±(U 0), x dy).

c - i-x

In particular. the set of solutions of Fermat's equation can be interpreted as
a group in a natural way.

Lagrange uses the so-called continued fraction algorithm for the solution
of Fermat's equation. After many individual results and more or less
accidentally discovered connections, Euler and, even more so, Lagrange
developed the theory of continued fractions in a systematic way. Euler is
even more a member of the "naive" period of discovery, calculation and
heuristic methods. But modern mathematics with its rigorous proofs, sys-
tematic procedures, and clear descriptions and delineations of the problems
begins with Lagrange. A decisive change took place in the development of
number theory between Euler and Lagrange.

We will now describe the theory of continued fractions. As references we
mention Niven and Zuckermann, An Introduction to the Theory of Numbers.
Hardy and Wright. and Hasse.

Let [9] denote the largest integer < 9 for 9 E R. [ ] is called the Gauss
bracket (or the "greatest integer function.") For 9 a Z we define

0 :- a(, + with ao := (9], 9, > I.
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We continue in this way:

9,a,+B with a,:=[911, 92>1, if 9,eZ

0,, an + with an := [9n]. Bn+! > 1, if 9n q Z.
Bn + 1

This definition leads to

9=ao+

a2 +

+an+
en+ 1

The sequence ao, a,, a2, . . . is called the expansion of 0 into a continued
fraction.

(4.11) Remark. The expansion into a continued fraction terminates if and
only if 0 is a rational number.
PROOF. If the expansion breaks off, then 9n - a is an integer. Then

9 - ao + a l+

a" - + a

which is obviously rational. Conversely, if 9 - u/v is rational we use the
Euclidean algorithm to write

u=a0v+r,, 0<r,<v,
vMair, +r2, 0<r2<r,,
r,=a2r2+r3, 0<r3<r2,

This procedure breaks off after finitely many steps with r,,-I - The
equations are equivalent to

9=ao+

91 a,+

92 a2 +

a + 1

r,

V

r2

r,

r3

r2
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Eventually one obtains Bn - r,,- 1r,, E Z, and the expansion into a contin-
ued fraction ends.

It is interesting to find the continuous fraction expansions of a few
numbers:

17: 3 7 15 I 293 ...
e: 2 I 2 I 1 4 1 1 6 I ...
F: I 2 2 2 ...

1 1 2 1 2 1 ...
2 4 4 4 .../: 2 2 4 2 4 2 ...

(for e. see A. Hurwitz. Uber die Kettenbruchentwicklung der Zahl e.
Gesammelre Abhandlungen 11: Euler showed that generally nZ + 1 = n.
2n.....)

Quadratic irrationalities have periodic expansions. a phenomenon which
will be investigated later.

Let us now derive a number of formulas that will be needed later. For
av, a, ..... a E R. a, ..... an > 1. we define

(a a a i :a s + tp. , ..... n o

an_,+Q .
an

For a > I one has an - an - I + I/ I and consequently
<ao,a,,.. ,an>=<ao,a,,...,a.- 1,1>.

The expansion of a rational number as a continued fraction is unique
except for this identity.

(4.12) Remark. Let < a 0 . . . . . an> - <bo, . . . , bn> with a,,b, E Z,
a,. . . . , b,.... > 1 and an,, bn > 1. Then m s n and a, b, for all i.
PROOF. The proof follows by induction from

<ao,...,a,.>-ao+ I -bo+<a,....,an,> <b,... bn>

if we can only show that <a,, . . . , an,> > I whenever a,. . . . . . a , , > I.
an, > 1. But this is obvious from

<a,,...,a,,,>ma,+ 1

a, +

az +
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Let ao, a,, a2, . . . be a sequence with a,, a2, . . . > 0. Let
Tn _ <ao. a, , a2 , . . . , an>.

Tn can be computed with the help of the formulas

Po m ao,
qo - 1,

Pi=aoa,+ 1,.. pn-anPn-i+Pn-2
q,=a,,..., gnaanq,,-,+qn-2

(4.13)

Then

LO . LO _
I

'to, =
ao + a, = T, ... .

9o q,

and more generally:

(4.14) Remark. p,,/q,, - Tn, specifically,

B = enPn - I + P.- 2
engn) + qn-2

PROOF. This is proved by induction. The cases n - 0, 1 have already been
discussed. Suppose that

Tn - <a0 , a, , , an> ao , a, , ... an - I + a,

where p,,q;-, are the p, q belonging to ao, ... , aa_2,an_, + 1/an. Then

(an-, + 1/a.)pp-2 +p .. 3 p._, + (1/an)Pn-2
qn-i (an-, + 1/an)gn-2 + gn-3 = qn-i + (1/an)gn-2

The second statement follows from the first and 0 - < a 0 , . . . , an_,On>.

Tn is called the nth convergent to the sequence ao. a,, a2, ... .

(4.15) Theorem. Let ao E Z: a, , a2, . . . E N. Then the sequence
{ Tn } n _ , 2.... converges to 0, where 0 is an irrational number. The a; are
uniquely defined by the expansion of 0 as a continued fraction. Conversely, let
0 be an arbitrary irrational number. Then 0 - lim Tn if Tn - <ao, .... a,,> is
obtained by expanding 0 as a continued fraction.
PROOF. Obviously, (p; ). (q;) are strictly monotonically increasing se-
quences of natural numbers. Convergence follows from

Tn - Tn -I °
(-1)n 1 1

n9n
(4.16)

4
because this formula shows that the differences form an alternating se-
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quence converging to 0. Relation (4.16) is equivalent to

P"qn-1Pn-1q" (4.16),

and this formula follows trivially by induction.
With these considerations we have nearly completed the proof of the

second statement. Let ao.al, ... be the expansion of 0 in a continued
fraction. Let To,T1.... be the convergents. If we apply (4.16) to

9 - <ao, al ... . a"-1,6">
we obtain

9-T =(-I\n-1 1

n-1 q"1 + q"-2)
Since 9" > 0, q1 -' + oc, it follows that lim"T" = 0. It remains to show the
uniqueness of the expansion in a continued fraction. This is done analo-
gously to the rational case (4.12).

A continued fraction of the form
(ao,...,a"- I,b1,...,bk,b,, ..,bk,...>

is called periodic. Occasionally we use the abbreviation
<ao,.. .an_1, >.

a 0 . . . . . a"- I is called the "preperiod," b , ,.. . , bk the "period."

(4.17) Theorem. 9 can be expanded into a periodic continued fraction if and
only if it is of the form a + /Iv7 with a, ft E Q and d E N not a square.
PROOF. Let us assume we have a periodic continued fraction. First we
consider the purely periodic case

... >.B = <ao, a l , ... , a" ao , a l , ... , a.,
Then

9=<ao,al,...,a",9>,
hence

9 = OP"-I +P"-2
Bq"- I + q"-2

This is a quadratic equation for 9. If there is a preperiod, say
9=<a,,...,a,", bl,...,b",...>,

then we set

T:=<bl,...,b">, 9:=<ao,.. .a,,,,T>, 9= Tp,.+P"l-I
Tq. + q,,- I

So there is a rational relation between 0 and r, i.e., 0 is of the form
a+OFd.
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Conversely, a quadratic irrationality 8 can be written as

a + F ac + bcz - ac + bcz8 a
= C 2 or cz

(a, b, c E Z)
C

mo+F_ (mo,ko,d c- Z),
ko

where ko is a factor of mo - d. We recursively define
m +Fd0:= 00, 8,I. , ai:- [Bill

m :=ak -m k '_ d - m+l
(4.18)

i+I i i i, i+I k

We will now show that a,, m,, k, e Z and that the a, give the expansion of
0 = 00 as a continued fraction. Clearly, a,, m,, k, are sequences of real
numbers. m,, k, E Z for i - 0, and k, is a factor of d - m?. Let us assume
that this holds for i. Then for i + I we obtain

m. E Z k. _ d - a?k, + 2a,k,m,-m?
+I , ,+I ki

d-m2
' +2a,m,-a,k,EZ.

ki

From k,-(d- m + I)/ki+ 1, it follows that k, + 1 is a divisor of d - m +
We obtain directly from the definitions

-a,k,+m,+F a Fd - m,+I
ki ki

d - mi+I
1

k,I +k,mi+I m, +I +i Bi+I

Hence 0 - (ao, a,, az, ... >.
To this point we have been considering a slightly different way of

expanding a number as a continued fraction. We will now start with the
proof proper. Let t' - a - F d be the conjugate of E - a + / J ; then
(E + n)' = E' + n', (En)' = Q/ -q)' a J'/ q'. We obtain

0'-Bo- B>;Pn-I+Pn-z
qn-z

and solve this equation for 0,,:
q n-2 (196 - Pn-219n-1
9n-I 00-Pn-I14n-I

The number in the parenthesis converges to 1 - (0e - B)/(Ba - 0) for
n --+ oo. Hence 0,, < 0 for n > No. Because On > 0 we also have 0 - 8;, > 0.
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By the definition of 8,,,

On - 9 - 2k > 0,

and specifically
0<kn.

From (4.18) it follows that
0<knkn+1-d-mn,.1:9 d,

mn'+1 < m,2,+t + kkn+1 = d Imn+1I <F
Consequently, for n > No, the numbers kn, m will assume only finitely
many values. Thus there are indices n <j with k,, = ki. in,, - in,. conse-
quently 9n - 0., and hence

9=<ao,.. .an-I+an,an+1,.. a,-,

(4.19) Theorem. The continued fraction of a quadratic irrationality 9 is purely
periodic if and only if I < 9, - I < 0' < 0.
PROOF. We start out by assuming that I < 0 and - 1 < 0'< 0. Then

9 =a + L , I =0,' -a .
ei+1 ei+1+

,

We know that a, > I for every i, and also for i - 0, since 0 > 1. For 0,' < 0
one obtains I/#,+ < - I and - 1 < 9J+, < 0. Since -1 < < 0, it fol-
lows by induction that - I < 0,' < 0 for all i > 0. Hence

0<--- a1<I, a,-[- 1

6, + 1 81 + 1

As 0 is a quadratic irrationality, its continued fraction is periodic. This
means that there are indices n < j with On - 01. an - a,. Then it follows that
- 1 /9 _ - I /9j'. [ - I /9R] - [ - I 10j 'l and 1 - a,,.1. Induction shows
that the fraction is purely periodic.

Conversely, let us assume that we have a purely periodic expansion of 0
into a continued fraction, say

9-<a0,a,.. (a;EZ,a,>0).
Then, because 9 > ao > I and

9 - BnPn - 1 + Pn - 2
9.q.- 1 + q.- 2

we have
,,-I n-2<ao,a,,...,an_1,9>=

0q.-t + qn-2
This means that 9 satisfies the quadratic equation

f(X)-x2gn-1 +x(qn-2-Pn-1)-Pn-2-0.

0P +P
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9 and 0' are the solutions of this equation. Since 0 > 1 it suffices to show
that the equation has a root between - I and 0. To show this, it suffices to
show that f(- 1) and f(0) have opposite signs. By the definition of pn,
f(O) - -pn-2 < 0. Moreover, for n > 1, we have

f(-1)-qn-I -4n-2+Pn-I -Pn-2
_ (4n-2 + Pn-2)(a.- I - 1) + qn-3 + Pn-3
= qn-3+Pn-3> 0.

Finally, for n - I we have f(-1) - ao > 0.

Let us now expand Fd as a continued fraction where d is a positive
integer that is not a square. We consider the irrational number 0:-
Fd + [N]. Then 0 > I. 0' = - Fd + [Fd] and - I < 0'< 0. By Theorem
(4.19), 0 has a purely periodic expansion as a continued fraction, say

0 =<a0,...,a,,-,>=<a0,a,,.. ,an-,,a0>.
Let n be its minimal period. 0, :_ (a,,a,+,, ... > is purely periodic for all i
and 0 - 00 = 0n - 02n = . 9o, B,, .... 9n_, are all different, otherwise n
would not be the minimal length of the period. Then 0; = 00 if and only if
i = nj for a certain j. By (4.18) on page 49 we start out with 00 = (m0 + r
k0 = 1. m0 = Then

m +Fd MO +Fd_ =Bn=Bo=
kn, kj 0

+Ya

and consequently

mni - kn1 [ Fd ] = (knj - I) vrd- .

This means that kni - I because the left-hand side is rational and Fd
irrational. We claim k; = I only for i = nj. In fact, 9, - m, + Fd follows
from k; - 1. However, 9, has a purely periodic expansion as a continued
fraction, and one has, by Theorem (4.19). - I < m; - Fd < 0, Fd - I < m;
<Fd, and consequently m; _ [p], i.e.. 0, - 00, and i is a multiple of n. In
fact, k, # - I for every i, for k, - - 1 implies 9, _ - m, - Jd and
- m, - vrd- > I and - I < - m, + Fd < 0 according to Theorem (4.19).
This leads to the contradiction trd- < in, < - Fd - 1. Since a0 - [Fd + [/]]
= 2['], one has

,r= -[,r] +(Fd +[v ])
_ + 2

([Fd ],a, a2, ... an-1,ao)

with a0 - 2[]].
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Applying the formulas (4.18) to F d + [a ], ko - 1 , mo - [ f ] leads to
ao - 2[Fd], in, - [Fd], k, - d - [Fd]2. If one applies these formulas to Fd
with ko - 1, mo - 0, one obtains ao - [N], m, - (a], k, - d - [,rd 12. This
means that ao assumes different values but m, and k, remain constant.
Since B; - (mi +Fd )/k,, these formulas yield the same values for a,, m,.
and k, (i 0). We see that the expansions as continued fractions for
Fd + [ V ] and vrd- differ only in ao and mo.

We are now in a position to solve the equation
x2 - dye - ± 1. d not a square.

Let us first state:

(4.20) Theorem. Using the definitions above, we have p,2,_, - q,2,_,d
(-1)"k".
PROOF. Let us begin with the identity

6F Bnp"-i+P"-e = ((m"+F)/k")P"-i+P"-2
engn - I + qn-2 ((m" +v)/kn)gn-i + q"-2

m"pn_i +tdpn-t + knpn-2
mngn - I + Fd gn-I + knq"-2

If one multiplies this equation by its denominator and separates the
rational from the irrational part, it follows that

dq"-, - mapn_, +
PR-1 - mnq"-, + k"qn-2

Multiplying the first equation by qn - , and the second bypnand subtract-
ing the second from the first equation yields

d 2 2q"_I -P"-, kn(P"-29n-t - 4"-:P"-j)
By (4.16)', pn-2q"- - q,, -2Pn- - (-1)"-

Let n be the length of the period of the expansion of trd- as a continued
fraction. Then kn - 1, and the following corollary holds for everyj E N.

(4.21) Corollary. p,2y_, - dq,2y_, - (-1)"".

(4.22) Corollary. The equation x2 - dy2 - I has infinitely many solutions.
For n even. x = p"j -,. y = q11 _,. and for n odd, x - Pty-,, y - q2.,-I' /f n
is odd the equation x2 - dv = - I has infinitely many solutions of the form
x - P", - , . y - q., _j for odd j.

The next theorem shows that every solution of x2 - dye - t I is ob-
tained from the expansion of Fd as a continued fraction.
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First we make the following simple observation. Save for the trivial
solutions x - ± 1, y - 0 of x2 - dy2 - I (and, analogously, the correspond-
ing trivial solutions of x2 - dy2 - n), every solution of x2 - dy2 - n yields
three additional solutions, by combining all the possible signs of ± x and
± y. Hence, it suffices to consider positive solutions x > 0, y > 0.

(4.23) 'T'heorem. Let d be a natural number which is not a square and
the convergents in the expansion of Fd as a continued fraction. If I N I <Fd
and s, t is a solution of x2 - dy2 - N in natural numbers such that g.c.d.(s, t)
- 1, then there is an index n such that s - p,, , t = q .
PROOF. Let E and M be natural numbers with g.c.d.(E,M) -I and
E2 - pM 2 - a. where Fe is irrational and 0 < a <F, a, p E R. Then

E -F- a
M M(E+ MF)

and consequently

,

0<E-F< F - I
M M(E + MF) M2((E/MF) + 1)

From 0 < E/M - F it follows that E/MJ > 1. Consequently

I M -TI< 2M2 .

According to lemma (4.24) which we will prove presently, E/ M is a
convergent to the continued fraction expansion of lp- .

(4.24) Lemma. Let 0 be an arbitrary irrational number. Assume the rational
number alb satisfies

19- 1
b

1<-L
2b2

with b > 1.

Then alb is a convergent in the expansion of 0 as a continued fraction.

We now complete the proof of (4.23). When N > 0 we set a - N, p - d,
E - s, M - t, and the theorem is obviously true. If N < 0 then t2 - (1 /d)s2
- - N/d. We set a - - N/d, p - 1 /d, E - t, M - s. One can easily see
that t/s is a convergent in the expansion of 1/vrd-. By the lemma below,
s/t is a convergent in the expansion of Fd.

(4.25) Lemma. The nth convergent to I /x is the reciprocal of the (n - I)th
convergent to x for x E R. x > 1.
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We can summarize our results as follows:

(4.26) Theorem. All positive solutions of x2 - dye _ ± I are given by the
convergents of the expansion of Fd as a continued fraction. Let n be the length
of the period of the expansion of Fd and even. Then x2 - dye - -I does not
have a solution; all positive solutions of x2 - dv2 - I are given by x - p,,j
y - qj_, for j - 1, 2, .... For n odd, all positive solutions of xe - dy2 - -1
are g i v e n b ) ' x - p , , and y - q, , j _ , f o r j - 1, 3.5 .... These are all the
positive solutions o f x2 - d y e - 1 for j - 2, 4, 6. ... .

The sequence of the pairs (po, qo). (pi qj). . . . contains all positive
solutions of x2 - dy2 - 1. Since ao - [v] > 0. the sequence po, p,, P21 ...
is strictly monotonically increasing. Let x,, y, be the first solution. For all
other solutions, x > x, and y > v,. After finding the smallest positive
solution with the help of the continued fraction, one can find all other
positive solutions by a simple method:

(4.27) Theorem. Let x, y, be the minimal solution of x2 - dye - 1 in natural
numbers (d > 0, not a square). All further solutions in natural numbers are
given by x", y", n - 1, 2,3,.. . with x", y" defined by

x"+y"Fd -(x,+y.Fd)"

(One computes x and y" by expanding the right-hand side into a rational
and irrational part.)
PROOF. Obviously, x - y"Fd - (x, - y,rd)". Hence

xn - y, ,d - (x" - y"Fd )(x" + y,, )

(x1 -y,Fd)"(x1 + y,Fd)"
2 2 "(x, -yid )

Every positive solution is obtained in this way. In fact, assume that there is
a positive solution (s, t) which does not correspond to any of the (x", y,,).
Since x, + y,Fd > I and s + tFd > I there is an m such that

(x, +y,Fd)m < s + t'/ <(x, +y,Fd) .I

(x, + ya)"' - s + t'J is impossible because this /leads to xm +,ym I
- S + tVa . i.e.. S - Xm. Clearly (x, - V,Va )m - (x, +.y,Va )-m.
Multiplying the above inequality by (x, - y,Ya )m, one obtains

1 <(s + t.)(x, - y,Va )m< x, + y,J .
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We define the integers a, b by

(a+bI)=(s+tFd)(x,-y,I)
and obtain

m

55

a2 - bed - (s2 - t2d)(xi - v2,d )m=
This means that a,b is the solution of x2 - dye = 1 with I <a + bI
< x, +y,Fd. On the other hand, 0 < (a + bFd)-' < 1, i.e., 0 < a - bFd
<1.So

a=2(a+bFd)+=(a-b')> +0>0,
bFd = J(a+bFd)- J(a-bFd)>220;

This means that a,b is a positive solution. Hence a > x,, b > y, which
contradicts a + bia < x, + y, Fd.

We will now prove (4.24) and (4.25).
(4.25) is easy. Obviously, we have x = (ao, a, , ... > and 1 / x = (0, ao,

a,, ... >. Let and p,,/q,, be the convergents to x and I/x. Then
Po=0, pi-1, pi- a,, P.

q0 = 1, q, - al, qn- 1 - a"- 1qn-2 + qn-3
qo= , q, - ao, -2,

Po = ao, P,lo aoa,+1,
The statement follows by induction.

Pa-, - an-IPn-2 +Pn-)'

Now we consider (4.24). Let g.c.d.(a, b) - I which we can assume with-
out loss of generality. Let p.1 q. be the convergents to 0. Suppose a/b is not
one of them. Then the inequality q,,, < b < q,,,+, defines a number m. We
claim that lOb - al < I ft, - pml is impossible. Suppose not. We consider
the linear system of equations

qmx+qm+,y-b,
Pmx+Pm+iy-a.

We know (see (4.16)') that the determinant of this system is gn,pm+, -
qm+, pm - ± 1. Then an integral solution x. }' exists with x to 0 and y:* 0.
For if x - 0, then b =.),q,,,+ , and hence r > 0 and b > qm+,, which
contradicts b < If , - 0 then a = xp,,,, b - xqm, and

lab - al - 10xgm-xpml
=Ixllagm - pml 2: legm - pml.

a contradiction because of lxl > 1.
x and y have different signs. If )' < 0 then x > 0 follows immediately

from xq,,, = b - y > 0 then b < vq,,,+, follows immediately be-
cause b < qm+, . In other words, xqm is negative, and hence x < 0. Formu-
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las (4.16) and (4.16)' show that qm - p,,, and qm+I - pm+t have different
signs; consequently, x(q,,, - pm) and y(qm+i - pm+i) have the same sign.
From the equations which define x and y we have

Bb - a = x(6gm -Pm)+y(egm+I -Pm+1)
Since the two expressions on the right-hand side have the same sign, we
have

lOb - al - x(8gm -pm) +y(8gm+1 -Pm+1)I

- x(Ogm -pm)I + Iy(Bgm+I -Pm+)I

> I x (egm - pm)I
Ixllegm - pmI

= 8gm - p. j.
a contradiction. This leads to

I0gm-pmI;9 I86-al <2b,

I8- pmI < 1

qm 2bgm

Since alb 1# p,./q,,, we have
1 5 Ibpm - agml pm a

bqm bqm qm b

m 8_ Pm
qm

+I8
bl

1

+
1

< 2bgm 2b2
.

and hence b < qm, a contradiction.

This concludes our discussion of continued fractions and our chapter on
Lagrange. Let us end with a quote from Dirichlet:

This gap (the fact that x2 - dr2 - n2 has solutions in addition to x - n. r - 01
was only filled by Lagrange. This. I believe, is one of the most important
achievements of this great mathematician in the area of number theory
because the tools he introduced for this purpose can be very well generalized
and applied to analogous higher problems.
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CHAPTER 5
Legendre

One of the most celebrated theorems in number theory is the law of
quadratic reciprocity. We formulated it at the end of Chapter 3. The history
of the discovery of this theorem is complicated and not quite clear, but we
will shortly show that one is led to the theorem by the problem of deciding
whether a given prime number divides a number of the form x2 + aye. This
was how Euler and later (around 1785), independently, Legendre discov-
ered the theorem. Unlike Euler, Lagrange tried to prove the theorem, but
his proof had serious gaps. We will discuss it below. Finally, it was
rediscovered by Gauss, probably after numerical calculations and not in
connection with the theory of binary forms. Gauss gave the first complete
proof.

Let p be an odd prime number and a an integer with (p, a) = 1. Legendre
defined the following symbol:

(a) 1, if the congruence x2 =_ a mod p is solvable,:. (
` P - 1, otherwise.

Today, (A) is called the Legendre Symbol. In the first case, a is called a
quadratic residue modulo p, in the second, a quadratic nonresidue mod-
ulo p.

(5.1) Theorem. Let p, q be prime numbers * 2. Then:
(fl(

3)=(-1)(I/4Xp-IXq-1) (l)q p
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( 1 - 1, if p - 1 mod4
P / - 1. if p=3 mod 4

(2 - I, if p- 1,7 mod8
PI -1. if pm3.5 mod8

-(-I)118(p'-II

(2)

(3)

Formula (1) is called the law of quadratic reciprocity.
(2) has already been proved [see (2.13)). It is called the first supplement to

the law of quadratic reciprocity.
(3) is called the second supplementary theorem. (I) establishes a connec-

tion between (°) and (q). Offhand, it is not immediately clear that these
two expressions are in any way related.

We will come to the proof of the theorem later, but first we will discuss
what it means.

If p is an odd prime number, the multiplicative group Fo of the field F.
with p elements is cyclic of order p - I. The kernel of the homomorphisms
FP 9 x - x2 E FP has order 2. Therefore, (FP *)2, the image of this homo-
morphism, has order (p - 1)/2. This means that F' contains the same
number of squares as nonsquares: (Fo : (Fo)2) - 2. Let a,b E Fo be two
nonsquares. Then the product (axb) is a square. This leads to

l P/ (P)`P
In addition, trivially, (p)-(ak

P
For a "denominator" b that can be written b - p, ... p*. one defines

b) '(Pt) ...(P*
For odd a and b with (a, b) - I the following formula is a consequence of
(5.1).

( b)(a
)(-I)(I/4Na-IXb-1)

Now we can easily compute the Legendre symbol. An example:
)(-))(I/1g1a382.416(A)-(MY-40

383

(). I -(W)(-1)t1;41382.16-(W) I -(-197)- 1.
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The following theorem establishes the connection between the representa-
tion of numbers by binary quadratic forms and quadratic reciprocity.

(5.2) Theorem. Let m be a natural number properly represented by the form
axe + 2bxv + cy2. Then b2 - ac is a quadratic residue modulo m.

PROOF. Let x0. ro be two relatively prime integers such that nt = axo +
2bx0vo + cv2. Let k. / be two integers with kxo + fro = I. Then

(axo + 2bxo vo + cyo)(a12 - 2bkl + ck)

_ (k (x0b +yoc) - l(x0a + vob))2- (b2 - ac)(kxo + /vo)2

or

m(a12 - 2bkl + ck2) _ (k(xob + voc) - l(x0a + y0b))2- (b2 - ac).

Our statement follows.

Now we will show that the problem of representing a prime number by
the form x2 + av2 leads to the law of quadratic reciprocity, i.e., the
connection between (J) and (3 ). If one can represent a prime number p of
the form 4n + 3 by x2 + aye, then p, by (4.7), is not a divisor of x2 - av2.
This means that p cannot be represented by a form with discriminant - a.
Hence ($) _ - 1. Conversely, if the condition (o) _ - I is satisfied for a
prime number p, then, by (5.2), p cannot be represented by a form of
discriminant - a. Then, by (4.7), p is a divisor of x2 + av2. Let us now
consider all reduced forms of discriminant a and look at congruences to
determine whether or not p can be represented by x2 + av2. We have
already seen that this technique is often successful. The condition (P) =
- I is crucial for representing the prime number p - 4n + 3 by the form
x2 + av2.

To illustrate this situation, we investigate the representability by the form
x2 + av2 of prime numbers p - 4n + 3 of the special form p - ka + b. The
number b is to be chosen in such a way that (R ) _ -1. Offhand, it
appears to be difficult to check this condition. More specifically, it is not at
all clear that (k a ) depends only on the residue of b. One could think that
prime numbers of the form ka + b might yield the symbol + I or - I and
that sometimes we have a representation and sometimes not. Also, it would
be very difficult to compute ($) for large p = ka + b. For the sake of
simplicity, we assume that a is a prime number. Then it is easy to compute
the "reciprocal" (of) _ (a) which depends only on b. In other words. one
studies whether it is helpful to know and this leads to the law of
quadratic reciprocity which then. in fact, solves the problem as follows.
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By the law of quadratic reciprocity one has
a

\
( a ) (ka+b\(_1)(1/4Na-INp-1)

P ka+b a

- ( )(- 1)(1/2x.- lxt/2xp- )= I 1 - 1 )(1/2Na- II.a

Thus the condition I is satisfied if and only if (^)(- I )'' 2n.: ''

Now we give a few examples.
a = 3. b - I. Then )(- 1)13-''' 2 I. We know that p mod 3.

and consequently p is congruent 7 modulo 12. This means that every prime
number p - 7 modulo 12 is a divisor of x2 +3 v 2 : since the other reduced
form with discriminant 3. 2x2 + 2v2. never has residue 7 modulo 12.
every prime number of the form p = 7 modulo 12 can be represented by
x2 + 31.2.

Let a = 5. Then (.6)(- 1)(a- 1)/Z = ( ) _ - I if and only if b - 2 or 3. In
these cases, p is congruent 3 or 7 modulo 20. Every prime number of the
form p = 3.7 modulo 20 is a divisor of x2 + 5v2 and thus can be repre-
sented by x2 + 5v2 or 2x2 + 2x v + 3v2. But x2 + 51'2 - x2 + v2 modulo 4:
consequently x2 +5

'

r 2 represents at most the odd numbers congruent to I
modulo 4. Consequently, prime numbers of the form p - 3.7 modulo 20
are represented by 2x2 + 2xv +

Leta=7.Then Q X-I)t"-"/2=(4)- -I if and only ifb= 1.2or4.p
is congruent to 11, 15.23 modulo 28. By analogous reasoning, one sees that
p can be represented by x2 + 71'2.

Like his slightly older contemporary Lagrange, Adrien Marie Legendre
was the offspring of a wealthy family. He received a solid education at the
College Mazarin in Paris and concluded his studies in mathematics and
physics in 1770 when he was 18 years old. Abbe Francois-Joseph Marie.
who had also furthered Lagrange's carrier, introduced Legendre to mathe-
matics. Legendre was financially independent and was able to devote
several years to pure research. Between 1775 and 1780, he was a teacher at
the Ecole Militaire in Paris. After 1783 he was connected with the Acade-
mic, first as successor of Laplace as "adjoint mecanicien" and then, from
1785 on, as "associe."

In 1782. Legendre won the prize of the Berlin Academic with a paper on
ballistics. This is how he came to Lagrange's attention. who was still at
Berlin. Later there were publications in number theory. celestial mechanics.
and the theory of elliptic functions. During the French revolution, Le-
gendre lost his fortune and was forced to give up his position at the
Academic. The Commission for Public Affairs gave him the task of writing.
together with Lagrange. a book on analysis and geometry. Legendre had
several other public positions but he fell out of favor in 1824 and lost his
annual pension of 3000 francs after he disagreed with certain official
personnel policies. At his death in 1833, Legendre had a position at the
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Bureau des Longitudes as successor of Lagrange. His priority quarrels with
Gauss about the method of least squares and the law of quadratic reciproc-
ity are dark chapters in Legendre's life. Quite upset and embittered, he
complained to Jacobi that Gauss called both these discoveries his own. On
the other hand, towards the end of his life, Legendre had the satisfaction of
seeing that his favorite subject. the theory of elliptic functions, developed
by two brilliant young mathematicians, Abel and Jacobi.

To this point, we have discussed the problem of the representation of
natural numbers by binary quadratic forms. More generally, one can
consider the analogous problem for forms in n variables for arbitrary n e N.
We start out with a symmetric n x n matrix A with integral entries a,j - a,,,
an n-tuple x - (x,, .... x,,) of unknowns, and the quadratic form

q(x) = xAx' _ a,ix,.xj
I

_ a x? + 2 a,, x, xj .i-I i<j
The general representation problem consists of finding necessary and suffi-
cient conditions for the integral solutions and possibly also the number of
solutions of the equation

q(x) - t
for a given t E Z. This very natural problem is extraordinarily difficult, and
a complete solution is still far away.

Of course, a necessary condition for a solution of q(x) = t is the
solvability modulo an arbitrary prime power. (For reasons which we will
not explain, one calls this "local" solvability of q(x) = t, whereas a solution
of q(x) - t is called "global.") One can easily see that the only important
cases are powers of 2 and powers of those primes which are not relatively
prime to the coefficients of the form. The example 5x2 + I Iy2 - I shows
that, in general. this condition is not sufficient for global solvability.
However, Legendre discovered an important case in which the "local-global
principle" holds. He proved:

(5.3) Theorem. Let a, b, c be integers other than 0. such that abc is square
free. Then the equation

ax2+bv2+cz2-0
has a nontrivial solution in integers if and only if a, b, c do not all have the
same sign and - be, - ac, - ab are quadratic residue modulo a, b. and c,
respectively. In other words, if the following congruences can be solved:

x2- -bc mod a,
{'2 = - ac mod b,
z2 = - ab mod c.
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To see that this contains a "local-global principle' one first shows that
the conditions on the signs of a, b, c can be replaced by the condition that
the congruence

axe+by2+cz20 mod8
is solvable in integers not all of which are even. To do this one has to
distinguish several cases in a lengthy but simple proof. We will not go
through this but show that the conditions thus modified for the solvability
of axe + bv2 + cz2 - 0 are equivalent to the solvability of axe + br2 + cz2

0 for every prime power N with g.c.d.(x, ), z. N) - 1. Obviously, the
condition that the equation can be solved modulo every prime power is
necessary for global solvability.

Conversely, assume that the equation ax2 + bv2 + cz2 - 0 modulo N is
solvable for every prime power N with g.c.d.(.r, y. z, N) - 1. Specifically, let
N - p2 with p I c and x0, y0. zo a solution of the corresponding congruence.
Let v0 be a multiple of p: because g.c.d.(a. p) - I. x,) is a multiple of p.
contradicting our assumption g.c.d.(xo. )-o, zo. N) = 1. One similarly shows
that x0 is not a multiple of p, either. It follows from the congruence
axo + bva = 0 modulo p that - ab is quadratic residue modulo p and
consequently modulo c. Analogously, - ac is quadratic residue modulo p
and - be a quadratic residue modulo a. One obtains the last condition for
N - 8.

We will prove the above theorem of Legendre only in Chapter 9 because
we will then have more efficient tools. Legendre tried to derive the law of
quadratic reciprocity from (5.3). However, he was only partially successful.
Nevertheless, we will follow some of his (basically) very interesting ideas.
especially since they lead naturally to one of the most famous theorems in
arithmetic.

Let us recall the main statement (1) of the law of quadratic reciprocity.

(P1(9) =(_l)1114Mp-1Ny-11- -I. if p.q=_3 mod4, (I)
11 q /l `` P I, otherwise.

The conditions p. q - 1,3 modulo 4 and (Q ), (3) - ± I lead to 16 possibili-
ties; to prove statement (1). one has to exclude half of these possibilities.

A first case can be excluded in the following way. For p, q - 3 modulo 4.
(y) I and (1) - I can not hold simultaneously because then all the
conditions of (5.3) for the solvability of the equation ax2 + bv2 + cz2 - 0
would be satisfied with a - 1, b = -p. c = - q. We know, however, that
x2 - pv2 - qz2=x2+ v2 + z2 modulo 4: this means, as one can easily see,
that this equation has nontrivial solutions only for even x. y, z-a contra-
diction. Similarly, one excludes the case p - I modulo 4, q - 3 modulo 4.
(F) = 1. (p) I by looking at the equation x2 + pv2 - qz2 - 0. To
exclude further cases. Legendre formulates and uses the following theorem
which, however. he was not able to prove.
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(5.4) Theorem. Let m be a natural number and a an integer which is
relatively prime to m. Then there are infinitely man)' prime numbers of the
form km + a.

This famous theorem was proved by Dirichlet (around 1837). We will
discuss it in Chapter 8.

Using this theorem one can exclude further cases. Let us look at the case
p - 1 modulo 4. q - 3 modulo 4. (9) = 1. (P) = - I. Then there is a prime
number r with r - I modulo 4 and (P) _ - 1. (y) 1. To see this, we
reason in the following way. The set of all numbers which are smaller than
4pq and relatively prime to 4pq consists of 2(p - 1)(q - 1) elements and
decomposes into four classes. One of these classes consists of nonresidues
of the numbers p and q. Half of this class consists of numbers - I modulo
4 and the other half of numbers = 3 modulo 4. Hence in this class there are

(p - 1)(q - 1) nonresidues of p and of q - I modulo 4; we call them
g. g', g"..... The numbers g + k 4pq, g' + k 4pq, g" + k 4pq, .. .
k E Z. are nonresidues of p. q - I modulo 4. By (5.4) there are infinitely
many prime numbers of this form. By the second case above. ("-) = - I for
such a prime number r. Furthermore, we know that (°) _ - I since p = 1
modulo 4. r = I modulo 4. (;) = I. (L) 1 is impossible because other-
wise one could again, using (5.4). find a prime number r'. r' = 3 modulo 4
with (°)_ -1. i.e.. (o)= -I and (.)= +1. Also, then (=P)= 1, (;!')

1. and consequently (;,°) - 1. Then x2 + pt'2 - rr'z2 - 0 would have
nontrivial solutions. Calculating modulo 4. one sees that this is clearly
impossible. On the other hand, from (y) = - I and (°) - - I one obtains

1. Consequently. if we had (°) = I. (1) 1. then all the condi-
tions for the existence of nontrivial solutions of px2 - qt'2 + rz2 - 0 would
be satisfied. Again reducing modulo 4. one sees that this is a contradiction.
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CHAPTER 6
Gauss

Carl Friedrich Gauss lived from 1777 to 1855. In his lifetime he was known
as "princeps mathematicorum." His main number-theoretical work, Dis-
quisitiones Arithmeticae, and several smaller number-theoretical papers con-
tain so many deep and technical results that we have to confine ourselves to
just a small sample. Other equally important results will not be mentioned.

Gauss's mathematical career started in a singularly spectacular way. We
know this from his diary which informs us about his most important
discoveries. It begins with an entry on March 30. 1796: "Principia quibus
innititur secticio circuli, ac divisibilitas eiusdem geometrica in septemdecim
partes etc." In his letter of January 6, 1819 to Gerling, Gauss gives a more
extensive description of his discovery of the constructability of the regular
17-gon:

By concentrated analysis of the connection of all roots (of the equation
I + x + - + xP-' - 0) according to arithmetical reasons I succeeded. dur-
ing a vacation in Braunschweig, in the morning of this day, before I got up. to
see the connection clearly such that 1 was able to make the specific applica-
tion to the 17-gon and to confirm it numerically right away.

In other words, Gauss solved an ancient problem:

(6.1) Theorem. The regular I7-gon can he constructed with ruler and com-
pass.

As he emphasized in his very first announcement. Gauss's methods
suffice to solve the problem of constructing regular n-gons completely.
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(6.2) Theorem. The regular n-gon can be constructed with ruler and compass
if and only if n = 2kp, ... p where p, are Fermat prime numbers, i.e., of the
form 2" + 1.

A few weeks later, on April 18, 1796, Gauss found the first complete
proof of the law of quadratic reciprocity. He had discovered the law a few
months earlier, independent of Euler and Legendre. In connection with this
law he developed the theory of binary quadratic forms and established a
theory which far transcends everything that had been done by his predeces-
sors, specifically Lagrange and Legendre. His famous Disquisitiones Arith-
meticae, first published in 1801 (in Latin), deals mainly with this subject; it
established number theory as a systematic, well-founded, and rich area of
mathematics.

Today, the theorem about constructing the regular n-gon is a part of
Galois theory; but there are, as Gauss himself emphasizes. essential num-
ber-theoretical aspects to it. We will now sketch one of these, particularly
since we will see that there is a connection to the law of quadratic
reciprocity. Again, we see a process quite typical in the development of a
mathematical theory: initially, one has a number of apparently uncon-
nected facts, here the construction of the n-gon and the law of quadratic
reciprocity. After penetrating into these problems more deeply, one discov-
ers a close connection, often to the surprise of the discoverer; this prepares
the way for what Eudemus called "reason."

The edges of the n-gon inscribed in the unit circle are the nth roots of
unity,

exp(2kai/n) - cos(2kir/n) + i sin(2ker/n), k = 0, ... , n - 1.
These are the roots of the equation

x"-1=(x-1)(x"-''+x"-Z+ +1) -0.
Elementary algebra shows that the construction can be performed by ruler
and compass if the equation

x1''+x"-2+ +1=0
can be reduced to a chain of quadratic equations. For any prime number
n - p, this can be done if and only if p - I is a power of 2 (as one knows
from the Galois theory of the fields of roots of unity). Gauss determines the
first one in this chain of quadratic equations in the following way. Let
c := exp(21ri/p); the roots of xP - I are 1.E, .... EP ' , specifically, I +
E + + EP-' - 0. Now consider the (as we say today) Gaussian sum

P-1
S:= Z(klEkk-I p
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where (A-) is the Legendre symbol. Then:

(6.3) Remark. S' - (=' )p. Thus the first field in the chain of quadratic
field extensions 0 C KI C K-, c C K,, = 0(c) is Q(F )p .

PROOF. We know that
P ... I

rS2= k
Ad I\ P)(

p)fA+r

kl EA+r
k.1 P

As k runs through the nonzero residue classes modulo p. k1 will as well.
with l fixed. We may therefore replace k by kl:

S- j:( k121 Ar+r
P

)t:

k E/A+II
P

p1 ) EU{

and. because _7,Er'A+'' + E` + + EP-' _ -1, thiss expression can
be written as

_(
P1 )(P-

l)+ Z I(P
P_

P) (P pl )(-1)

In other words. (6.3) determines the Gaussian sum S up to sign. An
obvious and. as we shall see. for many problems. very important question is
to determine the sign of S. However, this is a very difficult problem and
Gauss worked very hard, over several years. before finding the solution. He
writes in a letter to Olbers (September 3. 1805):

The determination of the sign of the root has vexed me for many years. This
deficiency, overshadowed everything that I found: over the last four years.
there was rarely a week that I did not make one or another attempt.
unsuccessfully. to untie the knot. Finally, a few days ago, I succeeded-but
not as a result of my search but rather. I should say. through the mercy, of
God. As lightning strikes, the riddle has solved itself.
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(6.4) Theorem (Gauss, Summatio quarundam serierum singularium, 1808,
Werke 11). Let c:- exp(21ri/p). Then

p-1
kXtivI, if

if
p
p-3

mod 4.

mod4

(choose the positive square root).

The proof of this theorem is an easy consequence of the following
theorem which has a slightly different Gaussian sum as its subject. Let m be
a natural number and

m- 1
k=G(m)E

k-0
with c := exp( 21ri

m
).

(6.5) Theorem. We have the following:

(l +i)F for m0 mod4,
G(m) _ F for m - 1 mod4,

0 for m 2 mod 4,

iF for m 3 mod4.

Later we will give Dirichlet's beautiful proof of this theorem. Here we
derive (6.4) from (6.5) (this is a simple exercise). Then, following Gauss, we
prove the law of quadratic reciprocity.

Derivation of (6.4) from (6.5). Let µ run through all the quadratic residues
and v through all the nonresidues modulo p. Then obviously

S = EEµ- E'.
P Y

Since

1 +201+zE'- 0,
µ r

we have

S = l + 2 FIE".

V

Let us assume k runs through all the numbers 0, 1, ... , p - 1. Then k2
runs through all the quadratic residues exactly twice, except for 0 which
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occurs only once. Consequently,
p-I

S = >J ER = G(P).
i.e., (6.4).

k-0

We now prove the formula

(q)( p)=(-1)1114Np-tpq-1)

for odd primes p,q. If k - I modulo m, then (k2 - 12)/m E Z. i.e.,
exp(2rik2/11t) = exp(21ri12/m). This means that we can compute the
Gaussian sum using an arbitrary system of residues modulo m. Specifically.

m-I m-I
G(2m) = Z c = 2 Z Ek- I + E

k- -m k-0
m-1

=2 E I:A - I +(-I)m.
k-0

By (6.5), one has for even m - 2n
2n-1 2

exp(4n )- 2G(4n)_(1+i)v.
k-0

Let
2n -

1H(2n) :=
Z

exp(
k-0 4n

Also, here, we can compute the sum with the help of an arbitrary residue
system for (k + 2n1)2 = k2 + 4nk1 + 4n212 - k2 modulo 4n. Now let p, q be
two relatively prime odd numbers. We claim that the following formula
holds:

H(4pq) - exp( 2mig'pq ))(exp( 2zri2gv2

))(
q

exp( ))p-1
` q

One sees this by observing that k = ppq + v4q + p4p goes through a full
system of residues modulo 4pq for I < t < 4. 1 < v < p. 1 < p < q. Then

exp( 2Tik2 l =( 21ri(p.p1g2 + v216g2 + p216p2)

8Pq
exp

J 8pq

Since exp(2,7it) has period 1. the mixed terms of k2 can be deleted. This
immediately yields our formula. For the sake of brevity, we write

H(4pq) - H2(4pq)Hp(4pq)Hq(4pq)

and compute the three factors separately. With 71 - exp(21ri/8) one obtains
H2- ilm+714pq+ g9P9+ r;l6Pq-2-q04
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because rls = 1. First we calculate HP when q = 1. Then

(1 + i)F - H(4p) - H2HP - 211PHP,
and consequently

HP(4P)-Hr -11)-PF (_i).
We now need a lemma.

Lemma. Let p, q be different odd primes. Then

69

P ( 27ri2 v2) _ (q) ) -P
V- P

HP(4Pq) - I( exp `
P
n

PROOF. Let 1. Then 2v2 runs through the same numbers as 2gv2
modulo p. Thus our claim follows from the case q - I considered above. If
(p) 1, then qP2 runs through the quadratic nonresidues modulo p twice
except for 0 which occurs only once. Then

P 2 2
exp( lPI

v ) + ± exp( 2qv ) - 0.

for the complete sum is twice the sum of all the pth roots of unity. This
equation together with the first case completes the proof.

We are now nearly finished with our proof of the law of quadratic
reciprocity. From what we have shown so far, it follows that

2 P4 r1- H (4pq) - H2HpHq

- 2-nP9( Q )i?i-P(
Pq

consequentlyand
)(

5P-

)
(

This is Gauss's fourth proof of the law of quadratic reciprocity. In 1818 he
published another proof (his sixth) which also uses the theory of Gauss
sums but needs only the simple result (6.3):

S2=( Ll)p.
and the congruence

(x + y)9=_ x9 + y9 (modq)
for any prime number q. Then one has

9

m k
2: () E k

(modq),(kI())
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and thus
Sy =(q )S (modq).P/

We now multiply by S and use (6.3):
( PI )(q+tl/2pty+11/2

(p)(
pl

)p (mod q)I1
_ I ly- I1/2 1y11J2 -_(
P

) p P(mod

For every number a relatively prime to q. the so-called Euler criterion
holds:

aty-II/2=(Q) modq
q

(which is proved by using the fact that the residues form a cyclic group).
Then it follows that

for p - I mod 4:
lgls(p

for p-3 mod4: ( -1 )(p)_(p
These formulas contain the quadratic law of reciprocity. We cheated a bit
in our proof because right at the beginning we used the congruence
(X + J.)y = (Xy +)i4) modq for nonintegral x, y. One justifies this step with
a bit of algebra. Instead of making our calculations in Z. we make them in
the ring

Z[c] := Z ®Zc ®. . . ® Zcp-2 c _ exp( ?Pr ).

Virtually the same proof was published later by Jacobi. Eisenstein, and
Cauchy. who involved themselves in a priority quarrel over it.

We can prove the second supplement of the law of quadratic reciprocity
with the help of Euler's criterion. Since

(1 + i)2
=2

i

Euler's criterion yields

=-(I + I)p-I/itp-11/2 mod p

=-(I + i)p/it p-1 j12(i + I) mod p

(I + ip)/i'p-11/2(l + i) mod p
exp(pai/4) + exp(- prri/4) mod p

exp(iri/4) + exp( - iri /4)
cos(prr/4)

mod p.- cos(ir/4)
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Then
1 2 cos(p7r/4) ( 1 if p= ±l mod8.

p)
-

cos(7r/4) (l - l if p = ± 3 mod 8,

and consequently

(1p)
P -

Gauss, who called it his theorema fundamentale. considered the law of
quadratic reciprocity to be one of his most important contributions to
number theory. Again and again he came back to it and altogether proved
it in six different ways. His first proof. which uses only properties of the
integers, is the most elementary. In a simplified and elegant form it was
presented by Dirichlet (see his Werke 11. page 121). With this we conclude
our discussion of Gaussian sums and the law of quadratic reciprocity.

Up until now, all our manipulations were possible without leaving the
real numbers. Since Cardano's time, mathematicians were dimly aware of
the existence of the complex numbers, but when Gauss started his work it
was not yet obvious how to use them. Their naive manipulation, e.g., in
Euler's work, led to a number of mistakes. Gauss's dissertation dealt with
the fundamental theorem of algebra (for which d'Alembert had already
given a nearly complete proof). Interest in the fundamental theorem of
algebra was motivated by the decomposition of rational functions into
partial fractions. the decomposition being needed for integrating these
functions.

(6.6) Theorem (Fundamental Theorem of Algebra). Ever, polynomial with
complex coefficients can be written as a product of linear factors over the field
of complex numbers.

For number theory it was more important that Gauss considered also
integral complex numbers. This initiated a development which was taken
up and pursued by the most important number theorists of the nineteenth
century. Gauss's most significant achievement in this field might well be the
discovery and the proofs of the cubic and biquadratic law of reciprocity.
These two laws deal with the behavior of integers modulo 3rd and 4th
powers. We will not discuss this question in any detail but will instead show
that the integral complex numbers provide a conceptual framework for
simple and elegant solutions of many number-theoretical problems. Most
of the problems we will discuss had already been posed by Fermat. For the
sake of simplicity, we will use modern terminology.

As usual, let i - IT and A :-(a+ bi l a. b E Z). One can immediately
see that A is closed with respect to addition and multiplication. We call A
the ring of Gaussian integers. As is well known, the elements of A
correspond to the points of a lattice in the complex plane. The complex
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number x = a + bi has the "norm"

lixll sae+b2=(a+bi)(a-bi).
(This already indicates that there is a connection to the representation of
numbers as sums of two squares.) According to (2.1) we have

II vIl. The arithmetic of A is based on the following simple theorem.

(6.7) Theorem (Gauss). A is a Euclidean ring, i.e., for every x. Y E A, Y 0.
there are q, r E A with

x - qv+r, r =0 or 11rll<II I$

PROOF. Since }' r# 0 we may form the complex number
X = a + Si; a, 0 E Q.
1'

Then a, b e Z exist with la - al. Ib - ill < J. For q:= a + bi it follows that
Ilx/v - qll < 2. Also.

x-qr-0 or lix - gyll < '11 ,11 <Ilvll

A well-known consequence of the existence of a Euclidean algorithm is
that every element of A can be written uniquely as a product of prime
elements. Speaking more precisely, this representation is unique up to
multiplication by units. i.e.. invertible elements, of the ring A. If x is a unit
element and xy = I it follows that Ilxll II I'll - 1. and consequently Ilxll - 1.
i.e., x E (I, -1. i. - i ). If r is a prime element, r. - r. ir, - it are
"associated" prime elements, i.e.. they differ from r only by a unit. If one
selects one of these four elements, every element of A can uniquely, up to
order, be written in the form

Eri ... sr,, ; t: unit. r, prime element. (6.8)

Let us mention that Gauss obviously realized that it is necessary to prove
unique decomposition into prime factors in A. Other mathematicians.
among them Euler. along with his predecessors and several mathematicians
of the following generations (Lame, Cauchy. Kummer), implicitly use this
property (in other rings) without proving it or. occasionally, even when it
does not hold. (in this connection see remarks in Edwards, Fermat's Last
Theorem, page 76ff).

If one wants to determine all the prime elements of A. it suffices to
determine the decomposition of the ordinary (rational) primes into prime
factors. This is closely related to the representation of numbers as sums of
two squares.
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(6.9) Theorem (Fermat-Euler). The prime numbers can be written as prod-
ucts of prime elements in A in the following war:

2 = (- i)(l + i)2. I + i a prime element,

p = p. p a prime element, when p - 3 mod 4,

p = M2. qi , q2 nonassociated prime elements, if p - 1 mod 4.

PROOF. Let a + bi be a prime element, then a - bi is a prime element as
well (since, if it were possible to decompose a - bi into two factors, one
could do this for a + bi analogously). Then a2 + b2 has the following
decomposition into prime factors:

a2 + b2 = (a + bi)(a - bi).

Consequently, a2 + b2
7-1

r a2 + b2 - p2, where p is a rational prime. If
p - 3 mod 4, then a2 + p cannot be solved, i.e., p is a prime element of
A. If p - 1 mod4, then, by (2.3),

a2+b2=p
is solvable, and we can write

P = q,g2I q,=(a+bi). q, =(a-bi).
The statement is trivial for p - 2.

Remark. Here we see once more that a prime number p = 1 mod 4 can, up
to sign and order of the summands, be represented uniquely as a sum of
two squares; if this were not the case, ,p could be written in two different
ways as a product of prime elements in A, contradicting (6.8).

Having introduced the ring of Gaussian integers, we will now indicate
how number theory can be further developed in this ring. To do this, we
define a ('-function for A :

O I
s aE Ilall'af0

Since every element a E A can be written uniquely as a product of prime
elements (and units) this series can also be expanded as an Euler product:

(s)=4rl I+
I + I

+... -4jI I
11

J
119112'

9(I-11911

(q) is a system of representatives for the prime elements of A. The factor 4
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is due to the four units. The prime elements were listed in (6.9). For the last
product this yieldsr+(sl=I4t P2- r at(I -IP ) rHat` I p11

The first factor stems from the prime element I + I with Ill + ill = 2. Next
is the product coming from the two factors of p with norm p, and the last
product comes from the prime elements of norm p This leads to

s-4 1 , !
(s) I-2 ')r 4)`I-lp-')P134) I -Ip)( 1+p-`)4H I II

P- 1441` 1- p r=3<4 1+ p )

4 (s) L(s).
In this formula. i(s) is the zeta-function which we introduced in Chapter 3.
and L(s) is a so-called L-function.

1L(s). 11 (I -`! 11
11+1P.:3(4)( Pp== 1(4) P`

= (i+-t+J+...) +- -.1.r )taP Pr _. sa)

P P /I

Performing the multiplication yields. similar to the case of the i-function
X(n)Ls n, -I-3.,+5 --fI g,-+...-t

with
0. if n even.

X(n) = 1. if n = I mod4.
-1. if n -I mod4.

It is easy to see that L(s) converges for s > 0. When s = I we have exactly
the Leibniz series

L(I)-I-;+.)_I+y-+...

which we already know. Let us once more consider the equation
i,'4(s) =

It has a pole of order I at .s = I (see (3.9)). lim,.t(s - I)$(s) - I leads to the
equation

lim(.s - 4L(l ).

Since Ilx + ii-II

(s-IKi(s)=(s-I) 2 1 '(x +y
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Intuitively. it is fairly clear that we have an approximate equality of the
following kind (the left-hand side is a Riemann sum for the integral):

1 _ f dxdv
(.r.r)-(0.0) (X2 + V`)' J I ( 2 + ) 2).

More precisely, one has

_ dxdvllm(S - 1) 1

f f
- 0.

'1( (.r_r)w(0.0) (x2+}.2) r2+r2a( (x2+)")
Computing this integral is a standard exercise in analysis. One substitutes
polar coordinates x = r cos 4 . v = r sin 40 and obtains

5
dxdv 2T oo r dr do =f

(x2 + J,2)-'
0

)

1 "
a f f r2s - 2(s - 1)r2(s- I)

This yields

lim(s- I) ff
ajl sll 2+r'ZI

dx dv
2 +v2)'

- Tr

and finally the Leibniz series

4=L(1)=1-3+5-I+ 1 -+...
We have thus proved Leibniz' formula once more. Since this proof is much
more complicated than the usual proof in Chapter 3, one is led to ask about
the purpose of our calculation. To answer this, let us remember what is at
the root of our proof, namely the unique decomposition into prime factors
in A. Offhand, it is rather surprising that this and the Leibniz series for it/4
should be connected, but this connection is in fact of utmost importance in
number theory and was discovered in full generality by Dirichlet. Gauss,
whose proof of Leibnii formula is quite similar, never published his ideas.
but some of them, only partially developed, are in a paper that was written
33 years after Disquisitiones Arithmeticae and published posthumously. It
would be interesting to know whether he gave Dirichlet any clues in this
regard. Unfortunately, we cannot tell; Dirichlet's papers that deal with this
subject do not refer to Gauss; conversely, Gauss did not make any
comments on those of Dirichlet's papers that develop these ideas. In
general, Gauss paid very little attention to the discoveries of other mathe-
maticians. This is particularly regrettable in Dirichlet's case because he was
one of the few from whom Gauss could have learned things which he did
not already know.

Having strayed from our consideration of Gauss's main number-
theoretical papers, we might as well stray a bit further. Let us consider once
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more the Zeta-function ,($). From its definition, and since llall - x` + r=.
we immediately have

A(S) a N2(n)
n`n-I

where N2(n) denotes the number of representations of n as the sum of two
squares x2 + r2, x. Y E Z. Considering the identity

,(s) =

ic

1x X(m4(

r k) i m
x

= 4 2 (2: X(m))n
n - I ni/n

one derives. by comparing coefficients, the following theorem. (Comparing
coefficients is permitted because of a uniqueness theorem, similar to the
one for power series: see Chapter 8).

(6.10) Theorem. N2(n) - 4 En/nX(m).

This theorem again solves one of Fermat's problems. The proof we have
given was, we think, first found by Jacobi. We have already mentioned that
Gauss did not work out his investigations of the Zeta-function t,,: but his
posthumously published papers show that he knew much more general
results. These will be discussed in Chapter 8.

More than four-fifths of the Disquisitiones Arithmeticae deals with qua-
dratic congruences and binary quadratic forms. We know today that this
theory is essentially equivalent to the ideal theory of quadratic numbers
fields. i.e.. extensions of the rational number field Qof degree 2. Gauss and
his immediate successors. Dirichlet and Kummer. did not know this: only a
generation later, with Dedekind, did this idea gain general acceptance. The
language of ideals is much simpler. more perspicuous. and more suitable
for generalizations and will be explained below. Our presentation goes back
to Gauss in its substance. but the concepts and the way we present them
are those of later mathematicians. If the reader is interested in the original
version. he should consult the Disquisitionesr or Dirichlet's Number Theory.

Let d be a square free integer d ' 1. We consider the quadratic number
field

Q(Fd vid_ Ix.rEQ}.
If d > 0. then Q(v) C R. and the field is called a real quadratic field. If
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d < 0 then C D Q(Fd ) ¢ R, and the field is an imaginary quadratic field.
We define integers in the field Q(Fd) in the following way.

x + y' integral e* f x, y E Z if d-=2.3 mod 4,
2x.2v.x+)'EZ if d-1 mod4.

(This definition is surprising when d - I (mod4); Gauss, Dirichlet. and
Kummer did not think of this.) Let Ad be the set of integers in Q(Fd). For
w= F d ford=-2.3 and w a . (I + Fd) ford=- 1 we have

Ad b'EZ).
Then, one easily sees:

Remark. Ad is a ring.

Ad is called the ring of integers in the quadratic number field Q(Fd). This
ring can be characterized in the following way.

(6.11) Remark. Ad = (a E Q(v) I a + a'. aa' E Z) (a' is the conjugate
of a).

PROOF. Let a = x + vw E Ad. It is straightforward to show that a + a' E Z.
When d - 2.3 mod 4. one has (x + ),Fd )(x - y2) = x2 - dy2 E Z; in the
cased=- I mod 4, d = I + 4n one has

+ I+Vrd- 1-vdl 2 + y2 v2d(xv 2 l(x+ 2 /=xxv+
4 4

= x2+x'+
=x2+xv-

r2 - _2 - 4n; 2
4 4 4

n),2EZ.
Conversely, let a = x + vFd E Q(Fd ) and a + a', aa' E Z. that is. 2x = m
E Z. x2 - dv2 - m2/4 - dv2 E Z. Due to this last condition, 2 is the only
factor of the denominator of v after reducing the fraction. Let us set
v := n/2. Then m2/4 - dv2 = m2/4 - d(n2/4) E 7 if and only if m2 - dn2

0 mod 4. The case d - 0 mod 4 is impossible. This means that we have to
check the cases d - 1, 2, 3 mod 4. When d - I mod 4, the congruence
assumes the form m2 - n2 mod 4. This is equivalent to m - n mod 2.
that is. m = n + 21, and we obtain a = m/2 + (n/2)Fd _ ! + n(1 +y)/2
with I. n E Z. If. in the case d =_ 2.3 mod 4, the congruence m2 - dn2 _= 0
mod 4 had a solution with n odd. d - m 2 mod 4 would lead to d 0 mod 4
for m even and d - I mod 4 for odd m. Both these results contradict the
choice of d. For n even, one obtains from the congruence m2 = 0 mod 4
that m is even as well. Then x = m/2 and.v = n/2 are both integers.
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One can visualize the elements a = x +.r' d of Q(,Id) as points in the
plane with Cartesian coordinates

R(a)m a+a' =.x
2

and

[a-_a' =rid for d>0.
I a - a' _ ' v`d

2i i

for d<0.

Geometrically, a'= x - rR, the conjugate of a. corresponds to reflection
at the x-axis. The elements of Ad can be visualized as lattice points in the
plane.

d = 2, 3 mod 4 d 1 mod 4

We have already mentioned that the number theory of the ring A,,
corresponds to the theory of binary quadratic forms of discriminant - d or
- d/4. To see an example of this correspondence we determine the group
of units of this ring. Let x + ),Fd be a unit element. Then u + cv exists
with

(x+r7)(u+tFd)-I.
It follows that

(x-!'Fd)(u-r'd)=1.

Consequently. x - is a unit element as well and so is

(x +r,'d)(x- ru)=x2-dr2.
Since the only units of Z are ± I. we have

x2 - dr2 = i' I.
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Conversely. if this equation is satisfied. .v + vvd is a unit element. Hence
there is a bijective correspondence between the units and the solutions of
Fermat's (Pell's) equation x2 - dt"' = ± I. where x. Y E Z for d - 2,3
mod 4 and 2x. 2 v, x + v E Z ford= I mod 4.

We know the following theorem from previous considerations.

(6.12) Theorem. The units of Ad are

l.i. - I. - i for d = - 1,
1.E, ... , E3, E := exp(2iri/6) for d = - 3,
1.-I for d<O, d#-I,-3,
± E k, k E Z, c fundamental unit for d > 0.

(A fundamental unit c is of the form c - x + v7, where (x, is the
smallest nontrivial solution of the corresponding Fermat (Pell) equation).

Units can be visualized as lattice points on the circle: (a = x + ),s
x. _v E R, R(a)2 + 1(a)2 z 1) ford < 0 or on the hyperbolas (a = x + vFd
x. v ER. R(a)2- l(a)2_ _1) ford >0.

I(d)

VA)

After settling the question of how to define the ring of integers in Ad, one
asks oneself: For which d does the theorem of unique prime factorization
hold. This question is a natural one also in the language of binary forms
because it means: For which d is there only one form of discriminant d or
d/4 (up to proper equivalence)? We have already seen that this is an
important question when representing numbers by quadratic forms. The
exact connection will be explained later.
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Dirichlet was the first to see clearly that unique prime factorization does
not always hold. There are, for example, in A _ s these two different
decompositions

6=2.3=(1+ )(l-1 7- -).
Gauss determined. without proof. all negative d for which A,, has the
property that A,, is a principal ideal domain. However, it was only recently
that the last step in proving this was taken (cf. A. Baker: Transcendental
Number Theory. Cambridge University Press. Cambridge. England 1975.
and H. M. Stark: A complete determination of the complex quadratic fields
with class number one. Michigan Math. J. 14 (1967), 1-27.) if d is positive
we are not even close to solving the problem. There is a conjecture that Ad
is a principal ideal domain for infinitely many d: but no promising
approach is in sight to prove this.

A natural approach to a solution is to investigate for what d the norm
function norm(a) = N(a) = aa' defines a Euclidean algorithm. If it does.
unique prime factorization follows. The problem has an easy solution for
negative d but is difficult for positive d and was settled only about 1950.
Some of these cases are treated in Hasse's Lectures on Number Theory.

(6.13) Theorem. Let d < 0. Then Ad is Euclidean with respect to its norm
only f o r d = - 1 . - 2, - 3, - 7. - I I . So for these values of d we have unique

factorization. Moreover, the remaining imaginary quadratic fields with unique
factorization correspond to d = - 19. - 43. - 67. - 163. If d > 0, then Ad is
Euclidean with respect to its norm for the following values: d - 2, 3.5.6, 7. 11.
13. 17, 19, 21.29, 33.37, 41, 57, 73. So again, we have unique factorization for
these d. In addition, unique factorization holds for "many other" d.

To determine whether Ad is Euclidean one proceeds as follows. One has
to determine those d such that for any two numbers y. y, E Ad, y, 0. a
/3 E A. exists such that

IN(Y2)I < IN(y1)J for Ysfll I+Y2

This condition is equivalent to the following condition. For any a e a2(Fd)
there is $ E Ad such that

IN(a-13)I <1.

We begin with the case d < 0 and d = 2 or 3 mod4. Then Ad = Z 9 ZFd
and the elements of Ad can be identified with the points of a lattice in the
plane. We consider each lattice point as the center of a rectangle R,,
parallel to the axes and with edges of length I and F d.
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The maximal distance between an arbitrary a EQ(Fd) and a lattice point,
say 0, is realized by the corners of the rectangles, that is, e.g., by
a = I(1 + Fd ) for 6 - 0. Thus our necessary and sufficient condition is
equivalent to

IN(3(1 +Fd# = a(l + Idl) < I,

that is d - -1 or - 2.
If d < 0 and d = I mod 4, then Ad contains not only the lattice points

Z ® Z/ but also the corners of the rectangles RQ (see the figure above). By
constructing a suitable hexagon around any element of Ad one sees that
points a of maximal distance from any /3 E Ad are, for example, the corner
points on the "imaginary" axis.
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A simple calculation shows that the first such point has the 1-coordinate
61d + 11R). This leads to the condition

IN(!4 (I +
of P)) = 16 (Idl + 2 + dl < I.

that is d= -3. -7. or -II.
Let us now give two typical applications of (6.13) to two questions of

Fermat and Euler that were mentioned earlier.
First let us consider the equation +2- x3. In (2.7). we claimed that

x - 3. r - 5 is the only solution in natural numbers. We use an idea of
Euler to show this. Let x. Y be an arbitrary solution. Then, in Z[ZJ.

.r3.I"+2-0* +J-2)(r-r--2 ).
Since there is unique prime factorization in Z1117-21 and since (v
and (r - 2) are relatively prime (!). r + 2 can by (6.12) be written
as a cube (up to sign):

+f-22 = ±(xt+x22)3
(x3, - 2x,x - 4xlxi) + (24x2 + xjx2 - 2x-)Y 2 ).

Comparing coefficients, one obtains
I = x2(2x + x - 2XZ), r = ±(xj - 2x,x2 - 4x14).

i.e.. x2 = ± 1, x, - + 1, r - ± 5, and hence our statement. The theory for
the general equation r2 + k = x3 with k e Z is very interesting. see L. J.
Mordell, Diophantine Equations, §26.

Let us now continue with another application of (6.13) and sketch a
proof of Euler's discovery, mentioned in Chapter 3. that x2 + x + 41 is
prime for x = 0,1.2.3..... 39. The expression x2 + x + 41 is the norm of
1(2x + I + i- 1663) in A _ 163 and consequently not a prime element in

A _ 163. Without loss of generality we can assume that the prime factor
u + cv 163 (u. r E I Z, u + o E Z) of x2 + x + 41 is a factor of 1(2x +
I + - 663)inA_161:

1(2x+I+f-163)-(u+c - 1663)(r+s - 1663). r, s E I Z. r + s E Z.

Separating real and imaginary parts, one obtains
1(2x+1)-ru- 163cs. 2-4(us+rv).

Save for exceptional cases, this second equation can only hold if us and cr
have opposite signs. i.e.. ru, - rs have the same signs. In the latter case,
x a 401. An exception is when 0 4 x G 39. Then r - ± I. s - 0. conse-
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quently j (2x + I + - 1663) is a prime element in A - X63 i.e., x2 + x + 41
is a rational prime for 0 < x < 39.

Let us now interrupt our discussion of Ad to formulate an interesting
program of exercises for the reader. Define a Zeta-function for those
negative d with unique prime factorization by analogy to our considerations
for A - 1. This Zeta-function should then be expanded in an Euler product.
Next. explicitly determine the prime elements and write the Zeta-function
d for Ad in the form

3'd(s) - 4M LAS)'
where p is the number of units and Ld(s) a suitable L-series. Then express
the residue for s - 1, i.e., lim5l,(s - 1)3'd(s). as a series and interpret 3'd(s) as
a Riemann sum for a suitable double integral. This can be computed and
lim(s - 1)3'd(s) can be calculated. Comparing both results one obtains the
following formulas for - d - 2,3,7.

(6.14) Theorem.

1+3-5-!+9+ 11 --++ (Newton),2F
2+4-5+!-g+- =3 (Euler),

2 3 4 5 6 8 F
(We recommend the case d = - 163 to the indefatigable calculator. If

necessary, help may be found in Chapter 8.)

We will now give a systematic development of the connections between
the ideal theory of the rings Ad and binary forms. First let us look once
again at the diagram below (readers with some knowledge of algebraic
number theory know what is significant: Q is the quotient field of the
Dedekind ring Z. and Q(Fd)/Q is a finite separable extension, and Ad is
the integral closure of Z in Q(Fd ). Specifically, Ad f1 Q = Z; in our case. Ad
is a free Z-module of rank 2.)

Q(Fd

Q 7d\
z
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(6.15) Definition. A subset M C Q(V) is called a module (or fractional
ideal) if the following conditions are satisfied.

(1) There are finitely many (so-called) generating elements b, ..... b, in
Q(Fd) such that every element of M can be written in the form

alb, + with a,EZ.
(2) If aEAd and xEM.then ax EM.

EXAMPLES.
(I) Aa is a module.
(2) Let M C Ad. Then M is a module if and only if M is an ideal of Ad.

(One can show that every ideal is finitely generated.)
(3) C(Fd) is not a module because Q(Fd) does not satisfy condition (I) of

our definition.

(6.16) Remark. Every nontrivial module M not only is finitely generated
but has a basis with two elements.

PROOF. This proof will use the theory of finitely generated abelian groups.
Every (nontrivial) module M is a finitely generated abelian group. Since
M C Q(rd ). M is torsion free and is therefore a free abelian group, i.e.,
there is a basis. If the number of elements c,..... c,,, in a basis were > 3.
c,. . . . . c, would then be linearly dependent over Q since they belong to a
two-dimensional Q-vector space. Then 0 = a,c, + - - + with a; E Q
and not all the a, vanishing; multiplying this equation by the denominators
of a, shows that c,..... cwould be linearly dependent over Z which
contradicts the fact that the c, form a basis. m - I is equally impossible; for
in that case, every element of M could uniquely be written in the form ac
with a E Z and c s M - (0); specifically, for the element we in M, we
have we - ac, whence Fd E Z. This is a contradiction.

Modules can be visualized in a natural way as lattices in an appropriate
plane.

Taking the norm map establishes a correspondence between quadratic
number fields and binary quadratic forms. Let M = (a, b> :- aZ ® bZ be a
module and ax + by. x. Y E Z be an element in M. Then

is the norm of this element. Usually, the values of this binary quadratic
form in x and v are rational but not integral. However, we are interested in
integral quadratic forms. We want to associate to every integral binary
quadratic form (in a way that has to be made more precise) a module in a
quadratic number field and vice versa. We have just seen that this corre-
spondence can not be established by restricting the field norm to the given
module and using the resulting quadratic form. A more careful analysis is
needed.
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Let us compare the modules Ad = I Z ®wZ and M = aZ ® H. Let
a : Q()-i. Q(N/) be a Q-linear mapping with a(1) -a and a(w) = b, i.e..
a(Ad) - M. The condition a(Ad) = M defines the determinant det(a) up to
sign; for letting r be another mapping with r(Ad) = M, then r - ' o a is an
automorphism of Ad. This means that it can be described by an element of
GL(2,Z) and consequently has determinant ± 1. We can therefore define
Norm (M):- N(M):= Idet(a)j.

For example. let us consider the element h - a + QFd E Q(Fd ), h 0.
and the module hAd - hZ ® hwZ. In this case, a can be described by the
matrices

a /3 [a_fl 2ft
-

Sd a
or Pd

2
/3 a+0

for d =- 2,3 mod 4 or d =- I mod 4. Then

N(hAd) = Idet(o)I = lag - /32d1 = IN(h)j.

i.e., the norm of the module hAd is given by the norm of the element h.
More generally:

(6.17) Remark. Let a module M and h E Q(Fd ), h :96 0 be given. Then
N(hM) _ IN(h)IN(M).

for it is easy to see that det(Ad - hM) = det(Ad hAd)det(Ad -* M), i.e.,
det(hAd -4 hM) = det(Ad -+ M ).

Can one say something in general about the norm of a module? To
answer this question we may assume that our module M is of the form
M = <1, c> = Z ®Zc because later we will not need to distinguish between
modules M,, M2 that are constant multiples of each other, i.e., without loss
of generality, we can replace <a, b> by (1 / a)<a. b> - < 1. b/a) < 1, c).
Now we will show that c is a root of a polynomial

rte+kt+l
with r, k, l E Z, r > 0, g.c.d(r, k, l) - 1. To see this, we have only to consider
the minimal polynomial (t - c)(t - c') = t2 - (c + c')t + cc', form the
greatest common denominator r (or its negative) of c + c' and cc', and
write

12-(c+c')t+cc'=t2+ kt+ fr r
with g.c.d(r, k. l) = 1. Then c is a root of the polynomial

-0,(t):=rte+kt+1
which is uniquely determined by these conditions. (Obviously 4 . - q and
0,.o = -0, if and only if co - c or = c'.) This leads to
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(6.18) Remark. N (M) = I/ r.
PROOF. To prove this it suffices to show that Ad = <I.rc) for then (o 1/0,) is
the matrix which effects the transition from the basis I. rc to the basis I, c.
This matrix has determinant I/r which is the norm of M. First we show
AdC<1.rc). Let aEAd. Then a<l.c)C<I,c), i.e.. a I -x+yc and
a c = x, + v,c with x, y. x,, v, E Z. It follows that xc + yc2 = x, + v,c.
Since c2 = -(k/r)c - l/r, we have xc + y(-(k/r)c - l/r) _ -yl/r +
(x - kv/r)c = x, +v,c. Hence x, - -y1/r E Z and y, _ x - ky/r E Z.
Since g.c.d(r. k, 1) - I, it follows that r divides }'. Let v -.v r with yo E Z.
Then a=x+vc=x+yore E<I.rc).

Conversely, we show that <l,rc) C Ad. It suffices to show that r,c E Ad.
rc is a root of the polynomial t2 + ki + lr with k - rc + re', lr - (rcxrc').
rc E Ad follows from the characterization of Ad in (6.11).

In the same way as above one shows that <l,c) - ZI ® Zc determines a
module in a quadratic number field for every root of a polynomial
rte + ki + 1 with r, k. I E Z and g.c.d(r. k,1) = 1.

(6.19) Definition. Two modules M, and M2 in a quadratic number field
Q(v) are called equivalent if there is an element h e Q(Fd ), h * 0, such
that M, - hM,.

This does indeed define an equivalence relation. We have already seen
that every module is equivalent to a module of the form <l,c).

We consider the correspondence between a basis (a, b) of a module
M in Q(om) and the binary quadratic form

N(ax + by)
ga.b(x.y) :a N(M)

We will show that this form has integral coefficients; consequently. it is a
good candidate for the desired correspondence. If one changes the basis.
the corresponding forms are equivalent. If one replaces M - <a.b> by an
equivalent module hM then, by applying (6.17).

N(hax + hbr)
gba.hb(x y) = N(hM)

N(h) N(ax + hv)=
IN(h)I N(M)

= ±q,,.b(x r).
This leads to the following definition.

(6.20) Definition. Two modules M,, M2 in Q(Fd ) are called properly equiv-
alent if there is an element h e Q(Fd) with N(h) > 0 such that M, - hM,.
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If we replace the module <a. b> by a properly equivalent module <ha,
hb>, then qo.h = For d < 0, the norm N(h) = a2 - d$2 is > 0 for
every h = a + /3v'd E Q(Fd) - (0). This means that the concepts equiva-
lent and properly equivalent are the same for an imaginary quadratic field
Q(). In the real quadratic case d > 0. they coincide if there is a unit e
with norm - 1. Since eM2 = M, for an arbitrary module M, in Q(N i), two
equivalent modules M,. M2, say M, = hM, with N(h) < 0, can be made
properly equivalent by replacing h by eh. Incidentally, the converse is true
also. i.e.. if equivalence of two modules in Q(/) is the same as proper
equivalence then there is a unit with norm - I. In the real quadratic case.
proper equivalence differs from equivalence only if all units of Ad have
norm 1. It is clear that in this case every equivalence class of modules
contains exactly two proper equivalence classes.
(6.21) Remark. q,,.b is a primitive integral quadratic form of discriminant
- d if d - 2,3 mod 4 and of the discriminant - d/4 if d - 1 mod 4. If
d < 0 then qa.b is positive.

A quadratic form ax2 + bxy + cv2 is primitive if the greatest common
divisor of the coefficients a, b, c is equal to 1. Obviously, this concept is
compatible with equivalence of forms. The discriminant of axe + bxy + cy2
is defined by the determinant of hr 2), that is, by ac - b2/4.

For a proof of this remark we assume without loss of generality that the
module M has the form M = < 1. c>. This is legitimate because <a, b> is
equivalent to <l. c> with c:- b/a; also, q,,.b = ± q,,.- = q,,, ford < 0. Using
the notation of page 85 and (6.18), one obtains

N(x + cv) x2 + (C + c')xv + cc'y2
y) N(M) = N(M)

=r(x2_ kxv+
1

12

tt r r
= rr2 - kxy + 1v2.

All values of q, are obviously in Z and g.c.d(r, k,1) = 1, i.e., q,., is
primitive. If d < 0 then q,., is positive because N(a) > 0 for all a E O(Fd).
In addition, det(q,.,) = det(rN(x + vc)) = r2det(N(x +.vc)) _ (r2/r2)
det(N(x + ),rc)) = det(q, ) = - d. if d - 2.3 mod 4. d/4, if d - 1
mod 4.

(6.22) Theorem. The set of equivalence classes (proper equivalence classes) of
modules in Q(f) forms an abelian group with respect to the product

M,M2 :_ <(a$ I a E M, , /3 E M2) >.

PROOF. Let M, = <a, b>. M, _ <c, d ). Then MM, is the set of all Z-linear
combinations of ac, ad. be, bd; hence it is finitely generated. With a E Ad,



88 From Fermat to Minkowski

aM, M2 C M, M2. This means that M, M2 is a module. Obviously, the
associative and commutative laws are satisfied. The module Ad is the
neutral element. The inverse to <a, b> is given by <a', b'>. where a'. b' are
the conjugates of a, b. To show this, we notice that <a. b)<a', b'> is
equivalent to <I.c><l,c'> with c - b/a, and this module is generated by
1. c, c'. cc', and consequently by 1. c + c'. cc', c as well. c is a root of
0,(t) - rt2 + kr + 1. where r > 0 and g.c.d(r,k, l) - I (see page 86). Conse-
quently, <I.c><l.c'> will also be generated by 1, k/r.l/r,c. Also, <l.c><l.
c') is equivalent to N(<l,c>)-'<l.c>(l.c'>; because N(<l,c>)- 1/r (see
(6.18)) it is equivalent to the module generated by r, k. 1, rc or l.rc. By the
proof of (6.18). < l , rc> - Ad.

From now on, we will only consider bases a, b with

det(a b) >0 for d > 0.a' b'

ideta b>0 for d < 0(a' b')
(a)

for modules M in Q(Fd). One can always find such bases, if necessary. by
changing the order of the basis elements. Geometrically, the condition (a) is
an orientation. This orientation becomes relevant when we define a map-
ping from the set of proper equivalence classes of modules into the set of
proper equivalence classes of primitive binary quadratic forms (for fixed d).
For if one assigns to every basis <a,b> (oriented as above) of a module
in Q(v) the form

r )_(
N(ax + by)

va.b , y N(M) ,

then this is a well-defined mapping 4, of the set of proper equivalence
classes of modules in Q(Fd) into the set of proper equivalence classes of
primitive binary quadratic forms with "correct" discriminant. If Mi. M2 are
properly equivalent, say M, - hM2 with N(h) > 0 and if a,.a2 and b,.b2
are oriented bases in M, and M2, then there is a matrix (Y a) E GL(2. Z)
such that

hb,-aa,+$a2.hb2=ya,+Sa2.
Then

(1)

(aS - fy)(a,a2' - aa2) - hh'(b,bi - bib2)
- N(h)(b,bz - b;b2). (2)

Since N(h) > 0 and we have aS - fly = + I. Together with (1) and
(6.17) one easily finds that qa,.a: and qb,.b: are properly equivalent.

(6.23) Theorem. The mapping 4, is a bijection between the set of proper
equivalence classes of modules in Q(Fd) and the set of proper equivalence



6. Gauss 89

classes of primitive positive forms of discriminant - d or - d/4 for d < 0. If
d > 0 then 4, is a byection between the set of proper equivalence classes of
modules in Q(g) and the set of proper equivalence classes of primitive forms
of discriminant - d or - d/4. The discriminant - d occurs when d =_ 2,3
mod 4 and - d/4 occurs when d =- I mod 4.

The group of equivalence classes (or of proper equivalence classes) of
modules in Q(Fd) is called the class group (narrow class group) of Q(Fd).
Then:

(6.24) Corollary. The (narrow) class group of Q(v) is finite.

This follows easily from the fact that the set of proper equivalence classes
of binary quadratic forms of fixed discriminant is finite (see Chapter 4).
The order h (or h) of the class group (narrow class group) of Q(Fd) is called
the class number (narrow class number) of Q(Fd).

Let us summarize:

h=h
h=h

for d<0.
for d>0, if a unit e exists with N(e) 1,

h = 2h for d > 0. if N(e) = + l for all units e.
From (6.23) we immediately obtain:

(6.25) Corollary. Ad is a principal ideal domain if and only if the class
number h of Q(/) is I. Ad is a principal ideal domain with the additional
property that each ideal contains a generator with positive norm if and only if
there exists one class of properly equivalent primitive (positive for d < 0)
quadratic forms with discriminant - d or - d/4.
PROOF OF (6.23). The mapping ¢ is surjective: Let rx2 + kxy + lye be a
primitive form with "correct" discriminant. Let M:-<l.c>. where c is a
root of rx2 + kx + I such that /3 < 0 in the representation c - a + fl (if c
does not have this property, c' will). Then 1, c is an oriented basis in the
sense of (s) and we have q,.,(x, y) - rN(x + c),) = rx2 + kxy + 1v2.

The mapping 4, is injective: Let M, _ <l , a>, M2 = < i, b> be two modules
oriented in the sense of (s) and q,.., q,.b be properly equivalent by (Y R)
E SL(2, Z). Then

g1..(ax + /3),, Ix + 8y) - gi.b(x. Y)
which can be written as

' ')x + (/3 + 8aN(M1) ((a + ya)x + (f3 + Sa)v) . ((a + ya )y)

= N(M2) (x + by)(x + b'y). (3)
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The numbers - b and - b' are the roots of q,,,(x. 1) - q,.(ax + /3.
Yx + 8). The roots of the last term are
conjugate. Consequently.

-(ft + 6a)/(a + ya) and its

a+Ya=1
/3 + Sa b or

This means that h E 0(vg) exists such that
a+ya=h.
/3 + Sa = hb or

b' '

= W.
From (3) it follows that 0 < N(M,)N(M2)`' = hh' = N(h). If we assume
that /3 + Sa = W. then, similar to (2).

(aS-/37)(a'-a)= -hh'(b'-b).
This is impossible because the bases are oriented in the sense of (+).
Consequently, h, hb is a basis of M, . i.e.. M, = <h, hb> = h(1. b> = hM2.
M, is properly equivalent to M2. Using remark (6.21). this completes our
proof.

Gauss formulated these propositions in the language of binary quadratic
forms which is often quite complicated. The so-called "composition" of
forms corresponds to the multiplication of modules. The group which arises
in this way seems to be one of the first examples of a non-obvious group
structure, that is, one not arising from a permutation group.

When d < 0. one determines the number of primitive reduced forms of
discriminant - d or - d/4 in order to find the class number h of Q(v ).
This means that one has to count the number of triples (a, b, c) withJbia<c: -a<b<a: 04b<a, if a-c: ac-b2/4=-d or
= - d/4 and g.c.d(a. b. c) = 1: cf. (4.2).

EXAMPLES. (1) d = -23. Since - 23 = I mod 4 we have ac - b2/4 = 23/4.
Our conditions allow three possibilities:

1
21

6)' (±2 +3)'
and consequently h = 3.
(2) d - -47. Since -47 - I mod4 we have ac - b2/4 = 47/4. Our condi-
tions allow the possibilities

(1

Consequently. h = 5.

We now apply (6.25) to prove that A,, is a principal ideal domain for
certain d > 0. When d = 2, all reduced binary quadratic forms are given by
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(-0 2) and (o _2) (see page 41). Using (_2 _;) E SL(2.Z). these are properly
equivalent. Therefore, every module inQ(v) is properly equivalent to A2;
specifically, A. is a principal ideal domain.

When d - 3, (-o ,°), (o _ 3) are the only reduced forms. They are not
equivalent because - I can be represented by -x2 +3 22 but not by
x2 - 3y2. By (6.23), every module will be properly equivalent to the
modules belonging to these forms, i.e., to <1,'; = A. or <I, 1/3 ).
Clearly. 3<1, 1/3) = <3,F>: this last module is equivalent to <I,'3 >
= A3 using the factor vr3-. Hence A3 is a principal ideal domain.

When d = 5, the only primitive reduced forms with determinant - 5/4
are

1

These forms are equivalent using (° a). Since the equation x2 - S1,2 = - 1
has a nontrivial solution, these forms are properly equivalent (see page 87).
Hence At is a principal ideal domain. In a similar way, one shows for many
other positive d that Ad is principal. e.g., ford = 6, 7. 11,13, 14.17. 19,21,22,
23, 29, 31.

The class number will also be studied in the following chapter when we
sketch an analytical proof for a general formula.

The following theorem. which can be proved purely algebraically, is the
first result about the structure of the narrow class group of a quadratic
number field:

(6.26) Theorem. Let r be the number of the prime divisors of the discriminant
of Q(% ). Then the narrow class group of Q(N i) has exactly 2'-' elements of
order 6 2.

Corollary. In the decomposition of the narrow class group as a product of
cyclic groups, exactly r - I factors of even order occur.

This theorem is closely tied to the so-called genus theory, one of the most
difficult parts of Disquisitiones Arithmeticae. Hasse's hook, Number Theory
(III, 26, 8) contains a proof which uses quadratic reciprocity and Dirichlet's
theorem about primes in arithmetic progressions.

Let us briefly consider the case d < 0 and show that there are at least
2`_1 elements of order 2. Without loss of generality, we can assume that d
is squarefree. If for example, d - 2 mod 4 and if d = ab is a decomposition
into two relatively prime factors, then an element of order 2 corresponds to
the form ax2 - bye in the narrow class group. This is so because one has

M2=Z+ZQ +ZV
a

= a(Za+Zb+ZFd)- QAd

because g.c.d(a. b) = I for the module M = < 1. b/a > which belongs to this
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form. The decomposition of d into r different prime numbers. d =
- p, . p,, yields at least 2'-' different reduced primitive forms ax' + Cr2.
ac = - d. a< c. Consequently. the class group contains at least 2'
elements of order < 2.

The following theorem is obtained by using results from the reduction
theory of positive binary quadratic forms (see (4.2)).

(6.27) Teorem. The form which corresponds to the module <I. c> in an
imaginary quadratic number field Q(F) is reduced if and only if the following
conditions are satisfied for c: c > 0, - i < Re c < 1. lei > I for - # < Re c
<0.lei> I for0<Rec<#.

Geometrically, these conditions mean that c lies in the domain G in the
figure below (the heavy part of the boundary, including i. is part of G: the
rest of the boundary is not). This figure which can often be seen in
books on function theory can be found in Gauss's posthumously published
papers. However. Gauss developed it in a different context. In the real
quadratic case d > 0, every module M in Q(dd) is equivalent to a module
of the form /I.9>. where 9 EQ(i) - Q has a periodic expansion into a
continued fraction (see (4.17)). We remind the reader (see (4.19)) that 9 has
a purely periodic expansion if and only if 9 is reduced. i.e.. if I < 0.
-1 <8'<0.

'f t

(6.28) Remark. A module <1.8 in Q(Fd ), d > 0 is equivalent to a module
where 0 is reduced.

One can prove this remark within the framework of the reduction theory
of quadratic forms. We prefer a different technique and remind the reader
that C 1. a'> is equivalent to <1.b> if and only if there is a matrix (Y fl)
E GL(2. Z) such that

ab+/3a- yb+8
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This statement already occurs in the proof of (6.23) and can easily be
verified.

PROOF OF THE REMARK. Let us use the notation of Chapter 4, page 44. Then

0=00 =ao+ B. 91=
l1

g ao

Applying (° -o). one sees that (1,9,> is equivalent to <1.9>. Let 0, be an
arbitrary number in the expansion of 9. Then <1,9,> is equivalent to <1.9>.
After finitely many steps we find a 0, with a purely periodic expansion into
a continued fraction. Consequently, it is reduced.

The following corollary reduces the question of the equivalence of two
modules in a real quadratic field to a strictly computational exercise.

(6.29) T eorem. Let 0, 9 E Q(y) - Q, d > 0; let 0, 0 be reduced. The
modules <1,0> and <1,0*> are equivalent if and only if B' occurs in the
expansion of 0 (as one of the 0).

PROOF. Let us assume. 0' occurs as some 0, in the expansion into a
continued fraction of 0:

9= erpr-I +A-2
0,q,-1 + qi-2

Then the modules <1.0> and <1,9'> are equivalent because the matrix
Pr-i P,-2l
q,-i qi-2/

is in GL(2, Z) as p,-,qr-2 - Pr-2qr- i = (- 1)' (see (4.16')).
To prove the converse we recall that the reduction theory (see page 37)

says that GL(2, Z) can be generated by (o 1), (° a), a E Z (even by (o '1), (° o)).
Since we have assumed that

0'
fo

with (a S) E GL(2, Z),

it suffices to show that

0.9+ l = 10+a I s 00+ 1
00+ 1 ' 0 10+0

have the same periods, up to a cyclic permutation. 0 + a satisfies this
condition trivially. It consequently suffices to consider 1/(8 - ao) - 01
instead of 1/0; the statement obviously follows.

Let us conclude this chapter with a few words about Gauss's life and
personality. In his "Lobrede auf Herrn Leonhard Euler" (Laudatio of
Leonhard Euler), Nicolaus Fuss, a distant relative and colleague of Euler,
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has given a description of what one would expect from a scientific biogra-
phy. His oration was delivered to a session of the Imperial Academy of
Sciences at St. Petersburg on October 23, 1783:

Whoever describes the life of a great man who has enlightened his century
praises the human mind. Nobody should undertake the presentation of such
an interesting picture who does not combine a most pleasant style, essential
to the orator. with the most perfect knowledge of the sciences whose progress
he is to report. Many claim that these two things are not compatible with
each other. Even though the biographer need not adorn his subject by
unnecessary decorations, this does not release him from the obligation to
organise his facts tastefully, to present them clearly, and to narrate them with
dignity. He ought to show how Nature brings forth great meat; he ought to
investigate the circumstances that help in the development of excellent
talents; and in his extensive explanations of the learned works of the man
whom be praises he must not forget to describe its state before this man
appeared and to determine the level from which he started.

Of course, in these few pages we cannot satisfy this program. There is a
relatively comprehensive literature about Gauss which gives more informa-
tion. A new excellent biography, by W. K. Biihler, has just been published.
For a shorter summary we refer to K. O. May's article in the Dictionary of
Scientific Biography and to Maier-Leibniz, "Kreativitiit," in the Abhand-
lungen tr Braunschweigischen Wissenschaftlichen Gesellschaft, Gauss-
Festschri*, 1977.

Gauss was born in Braunschweig on April 30, 1777. His father, Gebhavrd
Dietrich Qausa, worked at several jobs, as a mason, butcher, gardener, and
water wooer. Before her marriage, his mother was a domestic. His father
was always busy trying to improve the poor circumstances of his family,
but he was a rather hard and strict man. In a letter of April 15, 1810 to his
bride, Minna Waldeck, Gauss writes about his father:

hey father was a perfectly honest and in a way respectable and wcM-respected
man, but at home he was very authoritarian, rough and unrefined; I might
well say that he never had my full confidence as a child even though this
never led to actual misunderataadings because early on I became very
independent of him.

Initially Gauss received little encouragement in his modest domestic
arrat9ements although his uncommon genius manifested itself at an early
age. He taught himself how to calculate and read. In elementary school, his
teachers, particularly the assistant teacher, Martin Bartels, became aware of
Gauss's talent during their arithmetic lessons. He was nine when Bartels
started given him special instruction, providing special textbooks and
drawing the attention of influential persons to his exceptional student. In
1788, against his father's wishes, Gauss entered the gymnasium, a type of
tiigh school. He made such good progress that he was promoted to the top
class within two years. In addition to his mathematicLl talents, his excep-
tional gift for languages was recognized. In 1791, at the age of 14, Gauss
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was presented at Court. Duke Carl Wilhelm Ferdinand of Braunschweig
bestowed a scholarship on him which relieved him from the financial
confinements of his home and made it much easier for him to continue his
education. This scholarship was regularly renewed until Gauss was 30.
Repeatedly, Gauss expressed his deep gratitude which he felt towards his
prince. In 1792, Gauss entered the Collegium Carolinum in Braunschweig.
At that time, he read the great mathematical classics, among them New-
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ton's Principia, J. Bernoulli's Ars Conjeclandi, and the works of Euler and
Lagrange. This was also the time when Gauss started his own research.
Three years later, Gauss left the Collegium and began studying in Gotting-
en, without yet having decided whether to specialize in mathematics or the
classical languages. The discovery of the constructability of the regular
17-gon with ruler and compass prompted him to choose mathematicsas his
vocation. He now entered a phase during which he had so many ideas that
he hardly had time to write everything down. His scientific diary is a
testimonial to the extent of his research. This period, until 1800, was one of
the most fruitful of his life. He never fully developed many results that
could have been among his most important works, especially his investiga-
tions of elliptic functions. This is also the period during which Disquisiiiones
Arithmeticae was written, a book that was published in 1801 and which,
though not much of it was understood when published, catapulted him to
prominence as a mathematician. In 1798, Gauss completed his studies and
returned to Braunschweig. He continued his research, still benefitting from
his scholarship. In 1799, he was, in absentia, given the doctoral degree by
the University of Helmstedt. In 1801, Gauss made the calculations which
led. to the rediscovery of the planetoid Ceres. This made his name well
known to the public. Piazzi had found this planetoid in the winter of
1800/1801 but soon lost it. Gauss achieved the seemingly impossible. On
the basis of only a few observations and as a consequence of extensive
theoretical and numerical investigations, he succeeded in computing its
orbit. (In 1978, Ceres made the papers again when a radio signal, reflected
by Ceres, was recaptured.) This success led Gauss to turn to astronomy. He
inv Ived himself systematically in this science and was made director of the
Gongen Observatory in 1807, a position which he retained until his death
in 1855. This allowed him to pursue his research largely independently of
any teaching obligations, but it also entailed much practical work: As a
consequence, mathematics drifted into the background for long periods.
His extensive geodesic work in northern Germany was particularly time
consuming. However, one should not overlook that this involvement with
practical questions stimulated some of Gauss's mathematical research. An
example is differential geometry, where Gauss concerned himself with the
question of map; -ing of a curved surface onto a plane. His geodesical
observations led :tim to the development of many numerical techniques
which helped him to master the immense experimental material. Gauss
estimated that he worked through more than one million calculations in the
course of his life. Nevertheless, one can assume that it would have been
better for mathematics had Gauss been able to devote to it his full energies.

We have already seen that Gauss's life was without important external
upsetting changes. He spent over 50 years in Gottingen and practically
never left the city during his last few decades. He lived simply and
modestly, but accumulated a relatively substantial fortune in this way,
perhaps a reaction to his poor background.
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Letter from Carl Friedrich Gauss to Gustav Peter Lejeune
Dirichlet (see p. 178 for English translation). Published by per-
mission, Niedersachsische Staats-und Universitatsbibliothek Got-
tingen.

Although his life was simple, his personal and domestic arrangements, as
well as his relations to other scientists, were often complicated and not
always easy. Here, we are mainly interested in the latter. We have already
noted that it is no exaggeration to say that Gauss did not take much notice
of the work of other mathematicians. Jacobi complained that Gauss did not
quote any of his or Dirichlet's papers over 20 years. He did not pay any
attention to Abel while he was alive; only after Abel's early death did
Gauss ask his friend Olbers to see whether he could get his picture for him.
Towards the French mathematicians, perhaps also for political reasons,
Gauss was lukewarm at best; towards some, he showed considerable
animosity. One of the few whom he praised in public was the unhappy
Eisenstein, who suffered from illness and depression. In many respects,
Eisenstein was the exact opposite of Gauss: his work does not fit at all into
Gauss's world of "pauca sed matura."
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It seems peculiar that Gauss did not develop many of his most important
discoveries though he never tired of claiming his priority over other
mathematicians. This created much ill will, and he was often criticized for
this. The older he became, the stronger grew his reputation for being
inaccessible and unapproachable. He had very few students and avoided
contacts whenever he could. To Alexander von Humboldt he appeared to
be as icy as a glacier. His unhappy family relations might have contributed
to his attitude. As far as we can see, his youth and first period in Gottingen
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were free of great aggravations and he seemed to have been quite happy.
The four years of his first marriage with Johanna Osthoff, 1805-1809, was
a period of serene and satisfied togetherness. Gauss never got over the
death of his first wife, which occurred soon after the birth of his second
son. He soon remarried, but the second marriage, with Minna Waldeck,
was not really happy. Minna was often sick and appears to have had
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hysterical tendencies. Later, his relationship to his sons from the second
marriage was full of tension; eventually, both turned from their father and
emigrated to America. Gauss wrote to Wolfgang Bolyai, who had been a
friend from the time that both were students in Gottingen: "It is true, my
life had much for which the world could envy me. But believe me, the bitter
experiences, at least in my life, go very deep; the older one gets, the less one
can fight them. They outweigh whatever was good more than a hundred-
fold."
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CHAPTER 7
Fourier

Jean Baptiste Joseph Fourier (1768-1830) was not a number theorist. He
would probably not even have called himself a mathematician, but a
physicist. His main area of research was the mathematical theory of heat.
tie wrote several papers about the topic and one basic book. Theorie
analwique de la chaleur (Paris, 1822; an English translation was published
in 1878). Fourier was a professional politician; as prefect of the Depart-
ment d'Isere (at Grenoble), he was closely associated with Napoleon. He
accompanied Napoleon on his campaign in Egypt and had the reputation
of being quite knowledgeable about that country.

In the preface of his book on heat. Fourier has given a very clear and
balanced opinion about the tasks of mathematics and the sciences. Since
his convictions coincide with those of so many mathematicians and physi-
cists, we will quote a lengthy passage from this preface. It begins as follows:

Primary causes are unknown to us: but are subject to simple and constant
laws, which may be discovered by observation, the study of them being the
object of natural philosophy ... the most diverse phenomena are subject to
a small number of fundamental laws which are reproduced in all the acts of
nature. It is recognized that the same principles regulate all the movements of
the stars, their form. the inequalities of their courses, the equilibrium and the
oscillations of the seas, the harmonic vibrations of air and sonorous bodies,
the transmission of light, capillary actions, the undulations of fluids, in fine
the most complex effects of all the natural forces, and thus has the thought of
Newton been confirmed: quod tam paucis tam multa praestet geometria
gloriatur.

Subsequently. Fourier talks about his proper subject, the theory of heat:
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and then his statements become more basic again:
Such are the chief problems which f have solved, and which have never yet
been submitted to calculation.
The principles of the theory are derived, as are those of rational mechanics.
from a very small number of primary facts, the causes of which are not
considered by geometers, but which they admit as the results of common
observations confirmed by all experiment.
The differential equations of the propagation of heat express the most general
conditions, and reduce the physical questions to problems of pure analysis.
and this is the proper object of theory.
The coefficients which they contain are subject to variations whose exact
measure is not yet known ...

Fourier finally develops his basic idea of the simple, immutable, and
general laws, recognizable by observation and mathematical description
with magnificent and moving intensity and clarity:

The equations of the movement of heat, like those which express the vibra-
tions of sonorous bodies, or the ultimate oscillations of liquids, belong to one
of the most recently discovered branches of analysis, which is very important
to perfect. After having established these differential equations their integrals
must be obtained; this process consists in passing from a common expression
to a particular solution subject to all the given conditions. This difficult
investigation requires a special analysis founded on new theorems, whose
object we could not in this place make known. The method which is derived
from them leaves nothing vague and indeterminate in the solutions, it leads
them up to the final numerical applications, a necessary condition of every
investigation, without which we should only arrive at useless transformations.

The same theorems which have made known to us the equations of the
movement of heat, apply directly to certain problems of general analysis and
dynamics whose solution has for a long time been desired.

Profound study of nature is the most fertile source of mathematical
discoveries. Not only has this study. in offering a determinate object to
investigation, the advantage of excluding vague questions and calculations
without issue; it is besides a sure method of forming analysis itself, and of
discovering the elements which it concerns us to know, and which natural
science ought always to preserve: these are the fundamental elements which
are reproduced in all natural effects.

We see, for example. that the same expression whose abstract properties
geometers had considered, and which in this respect belongs to general
analysis. represents as well the motion of light in the atmosphere, as it
determines the laws of diffusion of heat in solid matter. and enters into all the
chief problems of the theory of probability.

The analytical equations, unknown to the ancient geometers, which Des-
cartes was the first to introduce into the study of curves and surfaces, are not
restricted to the properties of figures, and to those properties which are the
object of rational mechanics: they extend to all general phenomena. There
cannot be a language more universal and more simple. more free from errors
and from obscurities, that is to say more worthy to express the invariable
relations of natural things.

Considered from this point of view, mathematical analysis is as extensive as
nature itself; it defines all perceptible relations, measures times, spaces,
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forces, temperatures: this difficult science is formed slowly, but it preserves
every principle which it has once acquired: it grows and strengthens itself
incessantly in the midst of the many variations and errors of the human
mind.

Its chief attribute is clearness: it has no marks to express confused notions.
It brings together phenomena the most diverse. and discovers the hidden
analogies which unite them. If matter escapes us. as that of air and light, by
its extreme tenuity. if bodies are placed far from us in the immensity of space.
if man wishes to know the aspect of the heavens at successive epochs
separated by a great number of centuries, if the actions of gravity and of heat
are exerted in the interior of the earth at depths which will be always
inaccessible, mathematical analysis can yet lay hold of the laws of these
phenomena. It makes them present and measurable, and seems to be a
faculty of the human mind destined to supplement the shortness of life and
the imperfection of the senses; and what is still more remarkable, it follows
the same course in the study of all phenomena; it interprets them by the same
language. as if to attest the unity and simplicity of the plan of the universe.
and to make still more evident that unchangeable order which presides over
all natural causes.

The problems of the theory of heat present so many examples of the simple
and constant dispositions which spring from the general laws of nature: and
if the order which is established in these phenomena could be grasped by our
senses, it would produce in us an impression comparable to the sensation of
musical sound.

The forms of bodies are infinitely varied; the distribution of the heat which
penetrates them seems to be arbitrary and confused: but all the inequalities
are rapidly cancelled and disappear as time passes on. The progress of the
phenomenon becomes more regular and simpler, remains finally subject to a
definite law which is the same in all cases, and which bears no sensible
impress of the initial arrangement.

We should perhaps keep in mind that Fourier lived during a time of
fundamental political and social revolutions. He boldly and decisively
defended people who were persecuted during the postrevolutionary terror.
He himself was jailed and persecuted as an alleged partisan of Robes-
pierre. Thus Fourier well knew what he meant when he spoke of the errors
and changes of the human mind.

The mathematical theory which is the object of Fourier's book is the
theory of heat convection described by

de=a't+-6v+a2V-ka;,
X2 a)2 a:2

where r denotes the distribution of heat in a three-dimensional homoge-
neous body. To treat and solve this partial differential equation. Fourier
makes systematic use of the theory of trigonometric series (or "Fourier
series"). These series had already appeared in Euler's and D. Bernoulli's
work (about the problem of the vibrating string), but Fourier was the first
to develop a systematic theory and to recognize that nearly all periodic
functions can be expanded as Fourier series. At first, his methods were
rejected by Lagrange and consequently did not find general acceptance.
The basic result in the theory of Fourier series was proved by Dirichlet.
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(7.1) 'Theorem. Let f(x) be an integral function with period 27r. Assume that
for xo e R the one-sided limits

f(xo) := 1 m f(x).

f(xo) := lim f(x)
xtxo

and the one-sided derivatives

f'(xu) := lim
h

(f(xo + h) - f(xo )),

f'(xo ):= him h(f(xo+h)-f(xo
exist. Then

00

ao + Z nxo+ nxo2 (f (x0+) + f (x0 )) = 2 '

with

a = - f2rf(x)cos(nx)dx.

b _ I r2° f(x)sin(nx)dr.

In the case that f(x) is continuous in xo. we have f(xo) = f(xo) and therefore

f(xo) - 2 + Z bsin(nxo).

Two hundred years ago, mathematicians had great difficulties with
functions of this kind. It was generally believed that "proper functions"
could be expanded into power series: this explains Lagrange's skepticism.
Fourier himself gave several interesting applications of his results to classi-
cal theorems of analysis. Some of them we have already seen with different
proofs. Here we explain some of his examples:

(7.2) EXAMPLES. Consider the function f with f(x) - x in (- w, wj (con-
tinued to be periodic on R). Then all the a are 0 since f is an odd function.

X
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For b,, we have

-.vcos(nx) sin(nx)b _ i r xsin(nx)di= +
-I

T n
n2 ,--

n
hence in (- .:r J,

.r=2(sinx-Isin2x+4sin3x-+ ).

For x = -r12 one obtains

3 5 7

Obviously, this is another derivation of Leibniz's series.
As a second example. we consider the continuous function f with

f(x) = IxI in [ - r,.lr] and periodically continued as shown in the figure.

f is an even function; consequently. all the b = 0. Also,

ao= 1 f, lxIdx= 2 f "xdx = zr.
17 o

For reasons of symmetry, one has
f sin nx + cos nxa,, = 2 x cos nx dx =f n

2 x
?T 17 n

2
U

=2(cosni 1 1

11 n2 n2

-
10

for n even

- III 4 for n odd
n 2,r

for it > 0. On [ - T. it I one has

1.iI = 2 - (cosx + cos3x +

For x = 0 one gets

cos 5 x +
52

8 =1+32+52+...



7. Fourier

Euler's result
x i

3 (2) - i = 7f,-i nz 6

follows easily because

+ + + +
22 32 42

=(I+4+ 16+...)(1+ z+...1
Z2 2

1 -
l1/4)(32

1+ 1+ I + 1 +...1=3.
8 652 72 I
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As a final application, we consider the function f with f(x):= cosax on
IT. Tr]. Here a is a real number, not an integer. Then b - 0 and

a _ I ITcos ax cos nx dx

2a sin air
- ( ) 7r(a2 - n2)

Consequently, on [ - zr, ,r].

cosax = sin air
l I

- a22a Iz cosx + a22a2, cos2x - +

If one sets x = 17 and writes x for a, one obtains the expression

IT cot my = 1 + 2x + 2x + .. .
X x2-12 x2-22

i.e., the representation of the cotangent as a partial fraction (cf. page 18). It
is valid for every x * 0, ± 1, ± 2 ... .

While he was a student in Paris. Dirichlet made the acquaintance of
Fourier and was probably the first to understand his theory of trig-
onometric series. We have already mentioned that he gave a complete
proof of (7.1) and successfully applied Fourier's results to number theory.
We will discuss this in the next chapter.

Since we have already strayed so far from our main subject, we want to
stray even further and mention a connection to the theory of quadratic
forms which Fourier or one of his contemporaries might easily have found.

Let us consider the Laplace operator A (see page 104) on the space of
functions defined on the closed unit cube W C R3, differentiable arbitrarily
often and vanishing on the boundary a W of W, and the corresponding
eigenvalue problem. Obviously.

fA.r.,,, (x, r, z) -

where k,/.m E Z and (x. r, z) E W defines a system of linearly indepen-
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dent eigenfunctions with eigenvalues of the form

A*.ta - - w2(k2 + 12 M2)_: - wen.

One can show that these are all the linearly independent eigenfunctions.
The multiplicity of the eigenvalue - wen is therefore equal to the number of
representations of n as sum of three squares minus the number of represen-
tations by two squares. (k, 1, or m equals 0 if and only if f - 0.) The
number of representations of a natural number as a sum of three squares
can be described only somewhat indirectly. Thus, this observation is not a
contribution to mathematical physics, but rather shows in what a simple
and direct way seemingly diverse questions are connected.
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CHAPTER 8
Dirichlet

" ... Dirichlet created a new part of mathematics, the application of those
infinite series which Fourier has introduced in the theory of heat to the
exploration of the properties of the prime numbers. He has discovered a
variety of theorems which ... are the pillars of new theories." This is what
on December 21, 1M C. G. J. Jacobi wrote in a letter to Alexander von
Humboldt. Today, Dirichlet's techniques in number theory are more alive
than ever.

In this chapter, we will basically discuss three topics: (1) the still
unfinished calculation of the Gaussian sum G(m) (see page 67); (2) the
theorem on prime numbers in arithmetical progressions; and (3) the analyt-
ical class number formula for a quadratic number field. We will see that
these three topics are closely connected.

Let us start with the calculation of the Gaussian sum G(m) (see Dirichlet
and Dedekind, Vorlesungen fiber Zahlentheorie, Supplement I). This calcula-
tion uses Fourier's result, proved by Dirichlet, about the expansion of
periodic functions as trigonometric series (see (7.1)).

Let m E N, c:- exp(27ri/m),
M- I

G(m) :- Z CO.
k-0

As is often done in number theory, set e(t):-exp(21rit). Clearly, e(t) has
period I and G(m) can be written as

m-I k2
G(nt) - er }.

k-o m
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Dirichlet then considered the continuously differentiable function

f(t)
:= ill

::e m

for t E [0. I]. extended it to a periodic function on all of R (observe that
f(0) = f(1) = G(m)), and expanded it as a Fourier series. For this it is
convenient to use the following equivalent form of (7.1): Every continuous.
piecewise continuously differentiable periodic function with pe-
riod I can be expanded as a series of the form

f(t)=

a = f I f(t)e(n)dt.
This can easily be derived from (7.1) by making the substitution r-+
21rt and separating real and imaginary parts. Applying this to f(t)
Zk_ j((k + 1)2/m), one obtains

+x
f(t) _ nt)n_-x

with

and, specifically,

Im- I + t)2 1
an =f e(

(k

1
e(nt)dto k_O m

G(nt) = f(O) _ a..

This transforms the finite sum E Ie(k2/nt) into an infinite series which,
as we will see, can be calculated fairly easily. One has

I,,, I

1

(k + t) 2a = f 2 e )e(nt)dto kp m

,,,-I 'Iel (k+t)2+mnt 1dt=
k`O p 1l I1t J

((k+t+Zmn)2 - kmn+Im2n2\= f e J dt.
o m mk -0

Because of knot/nn e Z and the periodicity of the exponential function, this
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expression can be written as

=" 1

f 1e(
(k + t + Am )2 )e(- 1mnz)dt

1'-0 0 m 4

"r- I I (k + t + mn) 2
= e(-

4
mn2) f e(

m
)dt.

The substitution r := k + t + I mn leads to /

2
m1 k+I+(1/2)mn r2e(- mn) l A. e( )d,

4 A-o k+(I/2)"in nl

= e( 1 n n2) t'm+(1 /2)mn (7'
4 1J e )d,.

(1/2)mn in

Then
l 2 m+(I/2)mn T'G(m) _ I an =

x
e(-

4 1

mn) f e )dT.

n even, ;mn2 is an integer and consequently e(- ; mn2) = I. For n
odd, n2 = l mod 4 and hence e(- ; mn2) _ 71 with

1 for m = 0 mod 4,
71= -i for m= 1 mod4,

- 1 for m = 2 mod 4.
for m 3 mod 4,

and consequently

G(m) t m+(1/2)mne( T2 )dr+ E' t m+(1/2)mne( T2 ) dT
J Jn even (I /2)mn m n odd l I /2)mn M

=(1 +rt) f"c e( L- )dTm

_ (1 + 7l) nt f xe(t2)dt

(I + r7)/ (E0. cos(21rt2) d t + i f I sin(21rt2) dtl.

We calculate the integrals using the following trick. Obviously,

G(1)=I@(I-i) f30 e(t2)di..
hence

f- e(12)dt= I = I +1-i 2
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This gives us Euler's result (see page 30)

f " cos(2rrr=)d1- fb
2 .

x x
For G(m), we obtain finally:

(I + for m 0 mod 4.

G(m) _ '?t for m = I mod4.
0 for m = 2 mod 4.if for m3 mod4,

i.e.. (6.5).

We now come to Dirichlet's theorem on primes in arithmetic pro-
gressions. This theorem is one of the most famous and important theorems
in number theory.

Dirichlet starts out with the following question. Are there any prime
numbers among the elements of the "arithmetical sequence" ("arithmetical
progression")

a, a + m, a + 2m, . . . . a + km....
with a,m a N, a < m, g.c.d.(a,m) - 1? If so, are there infinitely many, and
in what way are the prime numbers distributed over the sets

P :- (p prime numberI p = a mod m),

are they perhaps "equidistributed"? All these questions can be answered as
follows:

(8.1) There are prime numbers in P,.
(8.2) There are infinitely many prime numbers in P,.
(8.3) The ¢(m) disjoint sets P. contain "asymptotically equally many"

prime numbers (0 denotes the Euler totient function).

These statements look tantalizingly simple but no simple proof is known.
Legendre yielded to the temptation of basing his "proof" of the law of
quadratic reciprocity on the unproven statement (8.1) (see page 63). Inci-
dentally. each known proof of (8.1) uses (8.2); (8.2) is not significantly
easier to prove than (8.3).

Let P be the set of prime numbers. By (3.11) the series GPe P 1 /p
diverges. More precisely, one can show that

I 1PEPpsit log(l/(s- I))) 1.

for real s. This specifically implies the existence of infinitely many prime
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numbers. (8.3) is proved analogously, by showing that the series 7,pE P 1 l p
diverges-more precisely, that

lim >2PEP..p-r = 1slt (Iog(1/(s - I))) +(m)

This statement is the precise version of what is meant by (8.3).
One of the difficulties of the proof lies in the fact that one has to

"isolate" the prime numbers in the residue classes modulo m. Dirichlet
overcame this difficulty by using an idea that was completely new to his
contemporaries. He considered (in. of course, a different "language") the
so-called characters of the multiplicative group (Z/mZ)' of residues mod m
which are relatively prime to m. Exploiting elementary properties of these
characters gave the required "isolation."

By definition, a character of a finite abelian group G is a homomorphism
X of G into C. The characters form an abelian group Hom(G, G,
with respect to pointwise multiplication. One can show that for any
subgroup H of G the exact sequence I -> H 4 G -+ G/ H -4 I (with the
obvious mappings i and ir) induces an exact sequence

I)G H- )G r 'H 1. (I)

G has the same order as G: one can even show that G and id are
isomorphic (but they are not canonically isomorphic). The map
G x H x E G. x(X) : - X(x), is a canonical isomorphism G = G. Using

E X(x) _ x e G
if X$IG

one obtains the relation

X(x) _ IGI if x = 1, (III)
XEG 0 if X:0 1.

(1I) and (III) are called "orthogonality relations." For a proof of these
purely algebraic facts, we refer to J. P. Serre, A Course in Arithmetic, page
61 ff. In the special case G - (Z/mZ)*, (III) leads to isolating the prime
numbers in the residue classes modulo m. Before making the necessary
calculations, we mention that we can interpret a character X of (Z/mZ) as
a function X on Z by setting

X'(a + mZ) if g.c.d(a,m) = 1,
X(a) =0 otherwise.

IGI if X = I G = principal (identity) character of G, i.e.,

(11

0
)
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We then speak of a character modulo m. For example, the only nontrivial
character modulo 4 is given by

I if a l mod 4.
X(a)= -1 if a-3 mod4.

0 if a=0 mod2.
and a nontrivial character mod p of order 2 (p a prime number : 2) is
given by

a
x p(a) :- J( P

if p is not a divisor of a

1 0 otherwise.
To prove (8.3) we must show that

lim ZpEP(l/P`) I
ail log(]/(s- 1)) ¢(m)

Let us first trv to understand this statement and transform it so as to see
what it really means. In doing this, we do not concern ourselves with
questions of convergence. We should, however, mention that this series will
certainly converge for real s > I. Therefore, our manipulations are permissi-
ble in this case.

Since I(Z/mZ)*I _ 4(m), one obtains by (II1)
I` a 1 a_1 X(P)

Z7 P"
p 4(m) X( ) pP P,,

+ + - a
((

X(P)
O(m) 1 p PP t)1

P P

O(M)
(fi(s) + ' X(a- t)fx(s)

In this formula, I is the principal character modulo m and

Am :_ X( P)

pEP P
Since

lim = 1.
im log(l / (s - 1))

we must show that

AM
'lm log(l/(s- I)) =0

for X I. This is best done by showing that fx(s), X - 1, is bounded for
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sJ, I . To do this, Dirichlet considered, for a character modulo m, the series

L(s, X) E
x(n)

s .

n-1 n

These are now called "Dirichlet L-series." We encountered special exam-
ples of such series in Chapter 6. Since '(s) majorizes )Zn 1X(n)/ns) for
s > I (because )X(n)) < I), this series converges absolutely for s > I. We
denote by L(s.X) the function that is represented this way for s > 1.
Because of the multiplicativity of the character X the L-series can be written
as a product for s > 1,

L(s,X)-' 1

PEP X(P)/PS
The proof is analogous to the proof of the corresponding formula for
the c-function: One replaces (I - X(p)/ps)-' by the geometrical series
Xk-o(X(P)P s)k, computes the product of these series, uses the multiplica-
tivity of X. and rearranges the series. This is permitted because of absolute
convergence. We now try to isolate the prime numbers that belong to a
certain prime residue class modulo m in this product representation. By
taking the logarithm of the product we obtain

log(L(s,X)) = Zlog( I - X(P)/PPE
P t

X is complex in general and the logarithm not unique. We determine it
uniquely by the series

log 1 I x = x + 2x2 + 3x3 + for )x) < 1

with x - X(p)p"s. (We justify the process of taking logarithms term by
term by first doing it for a finite part of the product,

I - X(P)/PS
and then passing to the limit as t -> oo.) This leads to

°° X(P)klog( L(s,X)) - Z
PEPk-1 kpkr

X(P) X(P) k
PEP PS pEPk-2 kpks

- fx(s) .}. F,(s).

By the calculation on page 25 and because )X(p)) < 1, it follows that Fx(s)
is bounded. If one wants to show that fr(s), X* 1, is bounded as 41, it
suffices to show that log(L(s,X)), X I, is bounded as s,l,l. This is the case
if the following theorem holds.
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(8.4) Theorem. If X 1 1, the L-series L(s,X) converges for s, l to a limit
L(I,X)-a O.

The proof of convergence is the simpler part of (8.4): the core of
Dirichlet's theorem (8.3) is that the L-series does not vanish at I for
nonprincipal characters X. There are several ways of proving this. The most
direct method is to compute L(1, X) for X# 1 directly, and Dirichlet did
just this. Later, he realized that L(l,X) coincides (up to constant factors)
with the logarithm of the fundamental unit of Q(I) for m - p. p a prime
number =_ I mod 4. This result must have left him considerably surprised
until he found the general connection between L(1, X) and quadratic
number fields. The most interesting case is X nontrivial and real. that is
X = X 1. The proof of the fact that L(l, X) does not vanish can easily be
reduced to this case. Dirichlet discovered that there is an integer D which is
closely related to in such that L(l,X) is in a natural way a factor of the
class number of the quadratic number field Q(fD ). This is, of course, an
exceptionally valuable result because, in addition to proving the nonvanish-
ing of L(l,X), it connects an analytic object with a purely algebraic one.
We will take this up later, but let us first look at a proof of E. Landau, that
L(l, X) ' 0, which uses techniques from function theory and is much
shorter and easier.

We consider "Dirichlet series," i.e., series of the form

a E C,

where s not necessarily real. Naturally, n' - e'1Og". The Riemann Zeta-
function

f(s) n-in
is an example. Since Illn-'l depends only on Re(s) the series converges
absolutely in the half-plane Re(s) > 1. It is possible to continue i(s) to a
meromorphic function (with a pole at s - I having residue 1) in the
half-plane Re(s) > 0.

(8.5) Corollary. There is a holomorphic function 4,(s), defined for Re(s) > 0,
with

(s) -
s

1 1 +,p(s) for Re(s) > 1.

PROOF. We write the fairly innocuous function I/(s - 1) in a bit more
complicated way:

I 00 "+t ,=1 r-fdts
,f t -dt.s- 1 i "_1 "
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Then
1 " 1 +t+ f t- dt)s- 1 _ n-1 n

00 +I (n-s+ Z fn

s- 1 n_I n
We now set

00.r, +t +
Wn(s) := f"" (n-s - t-s)dt, '(s) :- G 4'.m.

n_)

117

Then we have to show that ,,(s) is defined and holomorphic in the
half-plane Re(s) > 0. Obviously, each tn(s) has these properties. It is well
known that it suffices to show that the series Z¢n(s) converges uniformly
on every compact subset of the half-plane (s I Re(s) > 0). We know that

sup fin-'- t-sl
nsIsn+I

sup (derivative)

= sup t:+tl
s Isl

nRe(s)+I

For any compact set K C (s Re(s) > 0) there are e > 0, c > 0 such that
Re(s) > c, Isl < C; hence Ii`n(s)I < C/n`+t for s E K. Since the series
ZR_IC/n+t converges this proves our proposition.

Although we will not make use of this, we mention that c(s) can be
continued to a meromorphic function on C with a simple pole at s - 1
which satisfies the so-called functional equation i(s) _ E(1 - s) with i(s)
:- 'ff (I' = the Gamma-function). In the half-plane Re(s)
< 0, i(s) only vanishes for s = - 2, - 4, - 6..... These zeros are simple
and called the trivial zeros. All further zeros are located inside the strip
0 < Re(s) < 1. Riemann's famous conjecture states that all the zeros lie on
the line Re(s) - J.

The following theorem summarizes the convergence behavior of a gen-
eral Dirichlet series, Y, ' ,a,,n-J, a,, E C, s E C. For a proof of this purely
function-theoretic theorem we refer to J. P. Serre. A Course in Arithmetic,
Chapter 6. §2.

(8.6) Theorem. (1) If the series 7,a,,n-s converges for so, it converges for
every s with Re(s) > Re(so). There is a minimal p E R (± oo are allowed)
such that the series converges for Re(s) > p. p is called the abscissa of
convergence of the series.
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We visualize this situation in the figure below. The shaded half-plane,
without the line Re(s) - Re(so), is the area of convergence.

P

r5
(2) If the series converges for so it converges uniformly in every sector

{ s E C I Re(s - so) > 0, arg(s - so) < a. a < v/2). Specifically, the function
defined by for Re(s) > Re(so) is holomorphic by Weierstrass' well-
known convergence theorem.

(3) If there is C E R, C > 0. with I C. the series converges for
Re(s) > 1. The convergence is absolute.

We can sharpen this result:
(4) If the partial sums Z'_ ta,, are bounded, E'._ G C, C E R. then

the series converges for Refs) > 0.
The following theorem of Landau for Dirichlet series is analogous to the

theorem that at least one singular point is located on the circle of conver-
gence of a power series.

(5) Suppose all the coefficients a are real and non-negative. Then the
domain of convergence of the series is limited by a singularity (which
is located on the real axis) of the function f represented by this series. In other
words, if 2: a,, n - ' is convergent in the half plane Re(s) > a, a E R and if f
can be continued to be holomorphic in a neighborhood of a. then there is c > 0
such that the series converges in Re(s) > a - e as well.
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The following statement is analogous to the uniqueness theorem for
power series.

(6) If two Dirichlet series Fa,,n-', F_bnn-' converge in a half-plane and
represent the same function, then a,, - b,, for all n > 1.

Though there are many analogies between power series and
Dirichlet series, there is one basic difference. ZIc,Iz" and F_c,,z" have the
same radii of convergence, but this is generally not the case for the
abscissas of convergence. I - 1/3' + 1/5' - 1/7' + provides a simple
example. The abscissa of convergence p+ of the positive series ZIanl n-' is
1. but the abscissa of convergence of Mann -' is 0. In general, one can show
thatp+ -p< 1.

Let us now apply these general propositions to the specific Dirichlet
series

L(s,X) - X(n)n"-t
with X a character modulo m. Specifically, we will show that L(1, X) 0 for
X # 1. First we note that L(s,1) can be continued to a meromorphic
function on the half-plane Re(s) > 0 with a simple pole at s - 1. This
follows from the fact that the function c(s) has these properties by (8.5) and

L(s, 1) - ( 11 (I -
Plm

For X 1, the series L(s, X) converges (converges absolutely) in the half-
plane Re(s) > 0 (Re(s) > 1) and, as already stated,

L(s.X) - fI I

Per 1 - X(P)P
for Re(s) > 1. For by (8.6), (4), it suffices to show that the partial sums

IX(n) are bounded. Since X 1,
i+m-I

X(n) _ X(n) = 0,
n- 1

by the orthogonality relations (II) on page 113. Hence it suffices to estimate
the partial sums Z'X(n) for v - I < m which is easily seen to be < 4(m).

Specifically, L(l.X) is finite for X$ 1. It remains to prove that L(l,X)
0 for X 1. To do this we consider the product

(s) :- HL(s.X)
X

of all the L-series L(s.X). where X runs through the various characters
modulo m. If L(l. X) = 0 for X * 1. .(s) would be holomorphic at s - 1.
for the simple pole of L(s, 1) will be removed at s = I by this zero.
Then, according to the two previous statements, is holomorphic
for Re(s) > 0. We show that this is a contradiction by analyzing urn(s)
= fj,,flXl/(1 - X(p)p-'). Let p' be the image of p in (Z/mZ)' with p * m:
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let f(p) be the order of p. By definition, f(p) is the smallest natural number
f > I such that pf = I mod m. f(p) divides +(m). We set g(p) :-
0(m)/ f(p). Using this notation, one has

11 (1 - X(p)T) - [ I - TfPI ] p1
X

in the polynomial ring G T] where the product extends over all the
characters X of (Z/mZ) because

(I-wT)-I-VcP1
as w runs through all the f(p)-th, the roots of unity: there are g(p)
characters X of (Z/mZ) such that X(p) - w (this can, for instance, be
derived from (1)). Then

),PIJm(S) - f (I - p -I
.

Using standard techniques (geometrical series for the individual factors,
etc.) one sees that m(s) is a Dirichlet series with real non-negative coeffi-
cients which converges in the half-plane Re(s) > 1. Now we show that this
series does not converge everywhere for Re(s) > 0 . One sees this from the
estimate

- L(O(m)so, 1)r.(SO) is II 1 I it 10tm1=o
pxm - P p,rm

1

- P
(which holds for real so) and the fact, noted above, that L(0(m)so, 1)
diverges for so - I /0(m).

So we have seen that if L(1,X) = 0 for X 1, the Dirichlet series for Lm(s)
with real non-negative coefficients is holomorphic in the half-plane Re(s)
> 0; on the other hand, it is not convergent everywhere in this half-plane, a
contradiction to (8.6), (5).

This function-theoretic proof is beautiful, but we will see that Dirichlet's
direct proof for the nonvanishing of L(I, X), X I. was more important for
the development of number theory. It is contained in his paper "Beweis des
Satzes, dass jede unbegrenzte arithmetische Progression. deren erstes Glied
and Differenz ganze Zahlen ohne gemeinschaftlichen Faktor Bind, unend-
lich viele Primzahlen enthiilt." The calculations are not difficult but quite
lengthy, so we first summarize the proof. The first step is a derivation of the
formula

m- 1
-c1 Zk-I

with

m-I
X(k) log(sin(w k

1l - f!
c1 Z X(k) km m k-1

m

CI - , 2 X(J)Em j_1
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for a nontrivial character X modulo m. We show that it suffices to prove the
nonvanishing of L(1. X) for a real character X modulo m; without proving it
we mention that one can confine oneself to the case when m = p is a prime
number. In the next step, we make use of the above formula for the two
cases m = p =_ 1 mod 4 and m = p - 3 mod 4. One obtains

for p - I mod 4,

F
i for p-3 mod4,

and hence, for real X (i.e., X(k) = (k/p)),(for p m I mod4,
P P P

L(l.X)=j P-1a 2: (k )k for p - 3 mod4.p/ k-1 P

When p =_ 3 mod4 it is easy to see that

L(1, X) = - 'r (Eb - 0,
PF

where b runs through all quadratic nonresidues and a through all quadratic
residues modulo p. This gives us a proof of Dirichlet's theorem for this case.

The case p =_ 1 mod 4 is more difficult. One finds

L(l. X) - log n sin(zrb/P)
i

(b and a as above)n(7ra/p)
VP

rj s

= 2logt1 0
FP

with rl I a unit in AP. This proves the theorem in the case p = l mod 4.
but this is only a by-product of our argument giving the formulas for
L(1,X). We will see that the last formula leads to a deep connection
between L(1,X) and Q(v). Dirichlet investigated this and derived an
expression for the class number of an arbitrary quadratic number field
which contains L(1.X) in an essential way (here. X is a real character
defined modulo the discriminant of the quadratic number field; see page
128-129). We do not have the space to give a complete proof of the
so-called analytic class number formula, but we will summarize the essen-
tial steps of the analytical proof. The main step consists of deriving an
alternate expression for L(I,X). We perform this calculation when X is the
character of a quadratic number field with class number 1. It may seem
odd that we compute L(I. X) only in this case when one wants to derive the



122 From Fermat to Minkowski

class number formula; but this case does indeed contain all the essential
elements of the analytical proof. Everything else is basically an algebraic
problem: see page 136 ff. The so-called decomposition theorem for Ad (see
page 136) yields. for L(l. X).

L(I.X) - lim(s -
VII

where A (s) is the i'-function of the quadratic number field K = Q(dd ): see
page 133. One interprets the representation of this i-function by a series as
a limit of a Riemann sum for a double integral. The latter can be calculated
easily (see page 134). Except when d - - 1. - 3. one obtains

L(1,X) _

2loge
FD

if d>0.
77

D
if d<0.

D is the discriminant of Q(Fd) and c the fundamental unit in Q(Fd).

Step I

Let e be a primitive mth root of unity. One considers the series
3+

2
+

3
+...

Since the partial sums are bounded m), the series converges by
(8.6). (4). Then

i + 2z+ 3?+...
-logl 1 E,

according to Abel's limit theorem. Consequently.
Ek E2k E3k

+
2

+
3

+ - log
I - Ek

The linear system

X(1)

X(M)
(t)
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can be solved for c1, . . . , cm because the matrix A is nonsingular. One way
to see this is to square it.

M

m

A2=(
1rkJk) i'j =( 1E(I+J)k)iJ

(o .. o m 0

0

to ... mJ

Below, we will solve explicitly. For now, we write L(l,X) in the form

L O , x(l) X(2) X(m)
+

x(1)
1 + 2 +...+

m m+l ...

- c l log l l E+ c2log + + cm _ Ilog
I

using the solution of (s):
rn iw

(X(l),...,X(m)): Ck(Ek,E2k,.. ,EMk), Ck-0.
k-I k-l

With e = exp(2ri/m) and, hence, Ek = exp(21rik/m), one obtains

log 1 = log
1 - E k I - exp(2vik/m)

exp( - zrik/m)
- log - exp(rrik/m) + exp(- irik/m)

- log exp(-inik/m)
- 2i sin(srk/m)

Since i = e"12 one can write this as

= log
exp(inr/2)exp(- irik/m)

2 sin(ik/m)
= (imr _ i rk) - log 2 - to (sin

2 m m
and consequently

L(I,X) _ - I ck( nk + log( sly k )) + ('"EI ck)(2 log 2).

To solve the system we multiply both sides of (s) by the coefficient
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matrix A and obtain, using the above expression for A 2,

10 0 m 01 1X(j)Ej
cl. '

0

n1 cm

Z X(j)E21

0 m X(j)E

For the coefficients, one obtains

Cm :
11

X(j)E = 0>

ck M 1 . X(j)E-kj-

m J-1

Lemma. (c1,c2, ... , c,,,)- c I(X(l), X(2), ... , X(m)).

PROOF. We have to show that ck - c1X(k).

First Case. Let us assume that k is relatively prime to m. Then there is a j
with kj = I mod m. Then x(k)x(j) = 1, i.e., x(k) -X(j). Hence

c1 X(k) =
m

(X(1)E- I + X(2)E-2 + ... + X(m)E-m) X(k)

= m
(X(j)E-I +X(2j)E-2+ ... +X(mj)E-m)

_
Al

(X(1)E-k + X(2)E-2k + ... + X(m)E-mk)

- Ck
Second Case. k is not relatively prime to m. Then one can write k = pr,
m - pn. We have to show that ck = 0 Wk) 0!). We start with

Ck = Ai (X(I)e-w+X(2)E-2Pr+ ... +X(m)E--W').

If ar - br mod n, then` arp = brp mod m; hence c - al = e - bry and

Ck - m (( X(1) 4-P, + ... + (
351() :n-i(n).

It suffices to show that 2,=l(n)X(t) - 0, E,=2(n)X(t) - 0, .... This follows
from the orthogonality relations. See page 113.

For L(1,X) we now have the formula
m'-I m-1

Lt!, X) = = cI 2 X(k) logsin(irk/m) - r-'r cl E X(k) k (s*)
k-i m k-i
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Step II

Before continuing with our computation of this expression we claim that it
will suffice to show that L(1, X) # 0 for a real character X:# 1. This is
because of the following lemma.

Lemma. Let X # I be a nonreal character. Then L(l,X) # 0.
PROOF. Let us assume there is a nonreal character X # I with L(l. X) = 0. If
X is a character, then X, defined by X(x) =X(x) is also a character, and
X # X. If X is real, then

00L(s,X) X(n)n-'= L(s,X)"-I
This means that we have shown that L(l. X) = 0 implies L(1, X) = 0 which
is impossible by the following

Lemma. If there is a character X2 # 1 with L (1, X2) = 0, then there is no
character X3 different from X2 and 1, such that L(1, X3) = 0.

PROOF. For real s > I one has

-1- 2 X(a)log L(s,X)=Z 1 p"ma modm.0(m) x p "-I nP

For a - 1, one obtains

' 7,logL(s,X)- p-2'+ l p-3J+ ... ,
p= I(M) p

2

s I(m) p3a l(m)
and hence

HL(s,X) > I
X

and

(s - 1)L(s,1)
1 1

L(s, X2)L(s X3)
)(s - )(s-

II s 1 1 . (**.)
Let us now assume that

Then

x 11 1 X2-X3

L(1,X2) = L(1,X3) - 0.

lim L(s,X2) - L(1,X2) = im L(s,X2)

ill s-1 ill s-I
An analogous expression holds for L(s,X3). Since limsjl(s -

1) - jjp/m(I - p-')I'(s), one has Iim5l1(s - 1)L(s, 1) - 0(m)lm. So it
follows that the left-hand side of (***) converges towards a fixed finite limit
for s1l, while the right-hand side diverges.
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Step III

We now continue with the computation of L(I,X) for a real character x
modulo m, X:# 1; we are aiming towards the analytic class number
formula.

It is possible to reduce the proof that L(l,X) # 0 to the case thatm - p is
an odd prime number (see Dirichlet's original paper, paragraph 7). -The
only nontrivial real character x modulo p is given by

X(k) k
Then

C1
EP -1l Pi_J,

Ec'3 P 1jJ J-
The second expression is a Gaussian sum. By (6.5) we obtain

C'

C'

F

if p = 1 mod 4,

' if p-3 mod4.

Since X is real, L(I,X) is real as well (and obviously > 0 if one looks at the
expansion L(l,X) = jlP(i - x(p)p-')-'). Then it follows from that

t- (.)logsin(!.k) if p l mod 4,

L(l,)
f k_i PP
v )k if p=3 mod4.

P P k-1 PII

When p _= 3 mod4, L(l,X) can be written as

L(l,X) - (,jb - a),
where b runs through all k with (k/p) - - I and a through all k with
(k/p) - + 1. If one calculates modulo 2, >b - Ea equals Eb + Fa
= Ek: Ik - p(p - l)/2. This latter number is odd because p - 4n + 3.
Specifically, Zb - Za # 0 and consequently L(l,X) # 0.

PF if p=_l mod4,

=
I

iFp if p 3 mod4,

FP
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Let us, for example, look at the case p - 3:
X(l) = 1, X(2) 1. X(3) - 0.

L(1.X)=1- 2+4- 5+7 - 8+-...
(2- 1) = 'r3F 3I

Again, this is a result which Euler had already found.
Our considerations contain a very interesting consequence:

(8.7) Theorem. >b-Za>0.

This means that for p = 3 mod4 the quadratic residues are on the
average smaller than the nonresidues in the interval I to p. Although so
simple. this statement is a very deep number-theoretical result. one can
only admire Dirichlet's perception since he quite rightly remarked that it
would probably be very difficult to prove this result in any other way. In
fact. no proof that is essentially different from this one seems to be known.

Step IV

We now investigate the more difficult case m = p = 1 mod 4. With a, b as
above, we have

I fj sin(irb/p)
toL 1, g fj sin(ira/P)X)

PF
In order to obtain more information about L(1, X) from this expression, one
shows that

fj sin(-Yrb/p) s+tT
fjsin(ira/p) -s+ tF

with s + tFp E A. and s2 - t2p = ±4. This last expression can thus be
written as

p 2s+t
4

F)z

_ +(5+2 ' 1

and q :_ (s + tF)/2 is a unit in A. So we see that the computation of
L(I,X) leads to an equation of the form x2 - dv2 - ±4.

There is a connection between this equation and the equation x2 - dv2
_ ± 1 discussed in Chapter 5. Let us assume that d - I mod 4. If d - 5



128 From Fermat to Minkowski

mod 8 and c - x + yd with 2x, 2y, x + y E Z a unit in Ad, then

3 S3 + 3st2d + (3s2t + tad) l
E =

8

with x = s/2, y - 1/2. We also know that s3 + 3st2d - s(s2 + 3t2d) = 16
0 mod 8 and 3s2t + tad - t(3s2 + t2d) = 0 mod 8. Hence c-3 - u +

vFd with u,vEZ,and(u,v)isasolution ofx2-dy2- ±1. The cased=- I
mod 8 is even simpler.

We have seen that the equation involving ± 4 leads to the one involving
± 1. In the case under consideration, a fundamental unit c exists in A., i.e.,
E has the form

SID + toii
2

where so, to > 0 is a minimal solution of x2 - py2 - ±4. Every other unit is
a power of E. Dirichlet was familiar with all this (from Lagrange's work).
His great discovery was that

hij=E
for the 7l defined above, where h is the class number of Q(j). Hence one
obtains the following relation for h (or for L(1, X)):

h 21` - L(1,X).

Specifically, L(l,X) # 0 because e # 1, h # 0. Here we observe explicitly
that Dirichlet's proof naturally leads to the problem rf - El that is answered
by the class number formula. Today, this formula is often proved in
textbooks without showing how one would be led to it-it miraculously
appears out of nothing.

(8.8) Theorem (The Analytic Class Number Formula). Let d be a square-
free integer # - 1, 3 (these cases have already been treated in Chapter 6).
Then the following formula holds for the class number h of Q(1).

F L(l X) for d > 0,
h=

,
21oger L l or <0( ,X) .

D is the discriminant of 0 (Fd ) and c the fundamental unit in Ad for d > 0. X
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is the following character modulo I D 1:

129

k or d 1 mod 4,fn P

X(k)= (-1)(k-I1/DTI (ic) for d3 mod4,
pld

(- 1)(k2-I1/8+(k-Ix8-I)/4 TT (.-) for d-28, 8 odd.

The expressions (- 1)(k -1)12 and (- I)(k2 - I1 /8 are defined when d - 2, 3
mod 4 since k is odd. As X has been defined as a product of characters it is
itself a character called the (real or quadratic) character belonging to
Q(Fd ).

A complete proof of this formula is too lengthy to fit within the
framework of this book, and we will confine ourselves to a few special cases
which show the pattern of the general proof. Towards the end of this
chapter, we will make a few remarks about what is necessary for a general
proof.

Let us first return to the special case d = p _- 1 mod 4. First, we have to
prove the relation

fl sin(arb/p) s + tFP
flsin(ira/p) -s+tf

where b runs through all k with (k/p) _ - I and a through all k with
(k/p) = 1. Here we make use of a few facts from algebra. The primitive pth
root of unity e - exp(27ri/p) (p, for now, is an arbitrary prime number) is a
zero of the so-called cyclotomic polynomial

,0P(x) := xP- 11 = xP- l + xP-2 + ... + I E Q[x].
¢ is irreducible over Q, which can easily be proved with the help of
gisenstein's criterion after replacing x by x + I. This means that the field
extension Q(E)/Q has degree p - 1. By (6.3), the relation SZ = tp holds
for the Gauss sum S = E'. , j(0 )Ek Thus 0(c) contains the quadratic
field Q( ), with the positive sign when p =_ 1 mod 4 and the negative
sign when p 3 mod 4. The expressions E. E2, ... , EP-1 are the zeros of
4 (x) and 0(c) -Q(Ek) for k - 1, ... , p - 1. The minimal polynomial of
Ek has degree (p - 1)/2 over er( ). P(x) decomposes over Q(om)
and there is a factorization

4,(x) =f(x)g(x)
with degree f - degree g = (p - 1)/2. We now claim the following:

if. without loss of generality, c is a zero of f(x) then the E° are the zeros of
f(x) and c' the zeros of g(x).
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PROOF. Since the Galois group G of the extension Q(c)/Q is isomor-
phic to (Z/pZ) we can associate to r (=- (Z/pZ)* the element a,(E)
: = c'. r determines an clement of the Galois group H of the extension
Q(c)/Q(om) if and only if r is a square in (Z/pZ)', i.e., if (p) = 1. With
c, also a(c) = c', a E H, is a zero of f. Thus f has the zeros E° as claimed
and g the remainder of the zeros, namely, Eb.

Since f and g are polynomials with coefficients inQ(f) we may write

f(X) -fo(x) +f1(x)FT Y-,

g(x) - go(x) +
gt(X)Y-T

P

with polynomials fo, f1, go, g, EQJxJ. We claim that

fo - go, f1- -g,.
PROOF. Let a be a generator of the cyclic Galois group G of Q(c)/ Q e.g.,
a : c-+ c', where r is a generating element of (Z/pZ)'. Then a(Ea) - ca',
and since ar is a quadratijc7nonresidue in (Z/pZ)', we have

(of )(X) - 11(x - Cal) - fl (X - Eb) - g(x).
a b

a restricted to the field Q(f) gives conjugation, i.e., a : a + IS
-4 a - p. The statement follows immediately.

This means that the cyclotomic polynomial ¢v(x) can be decomposed in
the form

4o(x) - (fo(x) +ff(x) )(fo(x) -ft(X) )
_fO(X)2+ fl(x)2p.

Then, for the case p m I mod 4, we claim

f(l) - 2tv-')/2flsin( p ).
a

PROOF. Clearly,

rra) - 2tv-1)/211 (1 exp( raa) - exp( - i+ra l
a p a 2i p P

_ (- )/In exp( - itra) fl (Cxp( 2rria) - I )
a '"t P P

t)/a [1 exp( - fwa) exp( 2aia
r P P
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Since

and

i /p) = 1. one obtains (a'/p) 1 by setting a' - p - a. Then

( - p a a) =exp )exp( _

Hexp(
a

- ior
P

a) _ (-1)(P- 44

and, consequently,
(_ 1)(P- 1)/4

11
exp( - irra) jj (1 - exp( 2sria

))a p ia1 p

= n(1- exp( Pa )) =f(1)

Similarly, one shows

131

g(1)=2(P-h/211 sin(P
)

All of our further computations are for the case p I mod 4. Since it is an
element of Q(I), g(l) can be written as

g(1)=k+l>p
with k, l E Q. Then; by what we have shown above,

f(1)=k-If
and

flsin(irb/p) _ g(1) k+li
IIsin(7ra/p) f(1)

=
k - 1Fp

The expression
p-#P(l)-f(1)g(l)=k2-12p

shows that both l and k # 0. Then, (k + lFP )/(k -1jj) = I and conse-
quently,

log
n sin(rb/p) #0
II sin(ira/p)

which means
L(l,X)#0.

We note that we have given a complete proof for the nonvanishing of
L(1, X) for any prime number m - p.
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Step V

In deriving the class number formula one is led to the expression

n sin(rrb/p) k + if
11 sin(ira/P) k - /FP

which has to be investigated.
We show that

k+1Fp EA,,.
i.e.. that 2k. 21, k + 1 E Z for p =_ 1 mod 4 in this case. Anybody who is
partly familiar with the fundamentals of algebraic number theory knows
that any product of algebraic integers is again an algebraic integer. This is
also true for g(1):

k+I/ =g(1)= f1 (1 -exp(2Pbll.

Since we are assuming as little as possible in this book, we will give a direct
proof. First, one has to show that

Z[e]-ZED Ze9... ®ZEp-2
is a ring, i.e., closed with respect to multiplication. This one easily sees by
using the relation

EP-1 - -EP-2 - Ep-3 - ... - I.
Next, one shows that

Q(v)nZ[c]cAp.
To see this, we assume that an element k + 1f E Q(F) n Z[EJ is not
in AP. According to our characterization of A. on page 77, (k + 1j) +
(k - 1r) - 2k a Z or k2 - p12 (Z Z. This contradicts Z[EJ n Q - Z which is
true because 1,E, . . . , Ep-2 are linearly independent.

Since k, / E # Z and p - k2 - 12p, there is one and only one h E # Z such
thatk=hp and I =ph2-12 or

12-ph2--I
and consequently

k+1/j l+ h/ (1+hF)2
2

k-1W -1+hFp
where -q is a unit in Ap.
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Step VT

To derive the class number formula one has to find yet another way to
express L(1, X). To illustrate this procedure we look at the case Q(Fd),
d =_ 1 mod 4 having class number I and a fundamental unit c of negative
norm, for example, d = 5. To confine ourselves to the case of class number
1 is certainly a restriction but the general case can be handled similarly.
First, let us look at the series

2: l
IN(a)L'

for K - Q(v) and real s > 1. We have the sum over a complete system of
representatives of the equivalence classes of associated elements 0 in A.
Obviously, this series converges for s > 1. The function OK(s) represented in
this way is called the Zeta-function of K. A careful selection of the system
of representatives will enable us to compute this Zeta-function. For a E Ad,
a * 0, all elements associated to a are of the form ± ac", n E Z. Every a is
associated to an element ± ac k which is located in the shaded area G in the
figure below (the upper boundary is in G, the lower is not). One sees this by
noticing that if one multiplies a by a unit ±ck, G maps to an area with
± c k and ± c k* 2 as boundaries.

These areas are disjoint, R2 is their union. For s > I one obtains

K(s)= F ( 1

)x2 dy2J'
the summation extends over all (x, y) E G n Ad, (x, y) # (0, 0). Similarly
to the case treated on page 75, we can approximate 3'K(s) by a double
integral:

dx dy(x2 1 dy2)3 2 f fH (x2 - dy2)3
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where H denotes the area ; (x. r) E G x2 - I ), i.e.. the difference of
the two expressions is bounded for s j 1. The factor 2 occurs because we
consider intervals of area 4 in the Riemann sum for the double integral
since d - I mod 4. We compute the integral by substituting x -- z. This
transforms H into H, _ { (z, v) 10 < ur < vd z. z2 - }'2 > lid), where
c2 - u + vd. and we obtain

1I
dYdv Fd I1

dzd,.
//

i x

// (x2 - dl.2
r

) d H,
(Z2 - 1'2

Let us now introduce the hyperbolic coordinates z - rcosh9, v - rsinh9.
Then we obtain the following expression for our double integral

ld-a (' (' r dr d9d JJ r2.`

where the integration is extended over r > I/d and 0 < 9 < loge2. This
follows since the Jacobian

az az
ar a9
aI. aV.

ar a9

equals
cosh9 rsinh9 - r.
sinh9 rcosh9

because cosh9=1(e°+e-"). sinh9=i(e*-e-"). (cosh9)2-(sinh9)2
= 1. Our conditions z2 - y2 > 1 /d and 0< uv < vd z become r> l / d
and ur sinh 0 < yr cosh OR or 0 < 9 < log e2 due to arctanh(x) = 4log(1 +
x)/(I - x). Let us continue to calculate the integral. We can now write it as

d-
d loge

x rt -2idr

r2-2.r xd 2loge 2-2sd-t l t,:a

d'-' 2loge - loge I- rd-

d` 2(s - I) d (s - I)

Consequently,
2log elim(s-
ta

One has to modify the system of representatives of nonassociated elements
in Ad when the fundamental unit has positive norm (we still assume h = 1).
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S

8

MX
8

In that case, one chooses an area G that has the lines through I and a as
boundaries. Again, the upper boundary is part of G, and the lower is not.
One obtains u,r,,,,;,iG = I U 111, i.e.. not the whole plane. This is the reason
why one uses the transformation (having determinant I)

0 -Fd
1 / dd 0

replacing x by v t; and r by - u/ f . Obviously, this transformation does
not change the integral

I((

dxdyf
1x2 - d,21'

so that in the case under consideration, one can approximate the Zeta-
function of Q(i) by doubling (for d 2,3 mod 4) or doubling twice (for
d I mod 4) the value of the integral fjc [dx dy/(x2 - dr2)`]. For
K = Q(Fd). d > 0. one obtains

2 log E for d =- 1 mod 4,
lim(s- (s) Jd

log e or -=2,3 od 4
Fd

2 loge

where D is the discriminant of K.
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To establish the connection to the L-series, we write OK(s) as an Euler
product:

JK(s) H
A 1 -

it runs through a system of nonassociated prime elements of Ad. This
representation of ,OK(s) is possible since every element of Ad can be written
uniquely (up to units) as the product of prime elements because of our
assumption h(K) = 1. We now have to continue to evaluate the right-hand
side; to this end; we will give a more precise description of the prime
elements in Ad.

Step VII

Remark. Let d E Z be square free and the class number of Q(y) be 1, i.e.,
in Ad unique prime factorization holds, and let p E Z be a prime number.
Then p can be decomposed into prime factors in Ad in the following way.
Either

p=eir2
with a unit a and a prime element ar in Ad (in this case, p is said to be
ramified) or

p - ±1M,
with nonassociated conjugate prime elements ar, rr' (in this case, p is said to
be decomposed or split) or

p is a prime element
in Ad (p is called inert in this case).

PROOF. Let it be a prime element in Ad of the form w:.- x + y-trd- with
x,yEZ or 2x,2y,x+yEZ. Then N(w)-wv'-x2-dye-p, ...pk
with prime numbers p, E Z. Without loss of generality we can assume that w
is a divisor of p

- p, . Then rrp - p - +r'p' with p E Ad. Hence w' (p and
' Ip or rrar' I p . In the first case, arri - ±p and hence p - ewe if w,A' are

associated or p - ± star' if it, ir' are nonassociated. In the second case, WV' -
± p2 = ± pp. p is a prime element in Ad because one has unique prime
factorization in Ad.

(8.9) Theorem (Euler, Gauss). Under the same assumptions as in the preced-
ing remark one has:
(a) p is ramified if and only if p divides the discriminant D ofQ(i).
(b) If p is odd and relatively prime to A then it splits if and only if (P) = 1; p

is inert if and only if (o) _ -1.
(c) If 2 does not divide D (i.e., D = I mod4), 2 splits if and only if D =- 1

mod 8 and is inert if and only if D = 5 mod S.
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PROOF. Assume p * 2 is a divisor of D or p = 2 and 2 is a divisor of d.
Then p is a divisor of d. If p = I d I, then p = ± i Fd, i.e., p is ramified in
Ad. If p < I d l one writes

d=pd =FdFd. (')
P

But p is not a divisor of in Ad. Consequently, p is not a prime element in
Ad. Then there is a prime element iT in Ad with 7m' - ± p, it not a divisor of
d/p. According to (+), it is also a divisor of Fd, 7r2 a divisor of d and hence
a divisor of p, sop is ramified. If p = 2 is a divisor of D and not a divisor of
d. then d 3 mod 4. One has

de-d=2d22 d =(d+Fd )(d-vrd-)
and 2X(d t Fd), hence 2 is not a prime element in Ad. This means that
there is a prime element x + yR in Ad such that ± 2 = x2 - dy2. Then it
follows that

+ x - Vx2+dy2-2xy . x2+dy2 -xyF
x+)Fd x2-dy2 2

and

+ x + yy = x2 + dy2 + xvFdx-yiJ 2

are in Ad. Therefore (x - yFd Xx + yFd)-' is a unit, i.e., x -yFd and
x + y' are associated. Let p 2# 2 and relatively prime to D. If ($) - 1 then
x0 E Z exists with

xp - d - 0 mod p.
Let us assume that p is a prime element of Ad. Then is a divisor of
xo + Fd or x0 - v. Then one of the two numbers (xo + )/p, (xo - Fd)/p
is contained in Ad, which is a contradiction. This means that there is a
prime element x + yFd in Ad such that ± p - (x + yFd )(x - yJ) = x2 -
dye. Let us first assume that d $ 1 mod 4. Assume that x + yFd. x - yv
are associated. Then ±(x +yFd)/(.r - yFd) _ ±(xe + dy2 + 2xyFd)/p is
contained in Ad and p is consequently a divisor of x and y, which is a
contradiction. We now consider the case d - I mod 4. Assume that
x + y', x - yFd are associated. Then ± 4p - xo - dyo with x0, yo E Z
and, similar to the above, p is a divisor of xo and yo, which is a contradic-
tion. So we have shown that p is decomposed. Let (%) _ - 1. Assume
that p is not a prime element in Ad. Then there is a prime element
x + yFd C -Ad with ±p_ x2 - dy2. Then ±4p - (2x)2 - d(2y)2, (2x)2

d(2y)2 mod p with 2x, 2y E Z. If p is a divisor of 2x or 2y, then p2 is a
divisor of 4p. So 2y and p are relatively prime. Then there is an integer z
such that 2rz - I mod p. (2xz)2 - d(2yz)2 - d mod p. i.e., (f) - 1. which
is a contradiction. If 2 is not a factor of D, then d - I mod 4. If 2 is
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not a prime element in Ad, then there is a prime element sr = (x + vl) in
Ad such that

or ±8=x--dr-.
If x and r are even. say x = 2s. .r = 2r. then s2 - dt2 ±2. But s2 - dt2 is
either odd or a multiple of 4 because d - I mod 4. Hence x and y are odd.
Then r2 = r2 = 1 mod 8: from it follows that x2 - dr2 =_ 1 - d = 0
mod 8 and consequently d = I mod 8. Hence 2 is a prime element in Ad if
d = 5 mod 8. Let d = I mod 8. Then

I -d =2 1 -d = 1 -rd I +y
4 8 2 2

and 24'(1 ± Fd)/2. Since 2 is not a prime element in Ad. the equation is
only satisfied for odd x. v E Z. The prime elements 1(x +v>r),1(x -
Fd) are not associated in Ad, for their quotient

x + yM x2 + dt,2 +x,r - 8 - 4

is not in Ad.

The decomposition law can conveniently be expressed with the help of
the character X modulo D of K -Q(y) (which was defined on page 128)
in the following way.

(8.10) Theorem. The following conditions give the prime factorization of a
rational prime number p in the ring of integers Ad of Q(v ):
(I) p is ramified if and only if x(p) = 0.
(2) p is decomposed if and only if X( p) - 1.
(3) p is inert if and only if X(p) = - 1.
PROOF. Statement (1) is clear by the definition of a character modulo D.
Let p not be a divisor of D. Then it suffices to show that X(p) - (4 ). We do
this with the aid of the law of quadratic reciprocity. We need to distinguish
between the cases d - 1. 2 and 3 mod 4 and d > 0. d < 0. Take, for
example. the case d < 0 and d = 3 mod 4. By the law of quadratic reciproc-
ity, one has

(
P )

= ( p1 ) 11 ( I)_(_ I p,-1112 T-i (_ l )Itp - U/2pq - n; Z/ E

The number of prime numbers = 3 mod4 which are factors of d is even.
The last expression can be written as

-(-I)`p-1)/2fl(2)-X(P)
qld q
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The other cases are treated similarly. We illustrate this with another
example, d > 0. d = 28 =_ 2 mod 4. Again, by the law of quadratic reciproc-
ity, one has

(
d 21 ) _ ( 9 _ i)!R hp-1t/zA(e-1)21
P =( P P)n(

1)(p--
Iq1A
I1) (i).

The number of prime numbers = 3 mod4 which are factors of 8 is
[(S - 1)/21 mod 2. This means that the last expression can be written as

P1 =X(P).
q1a q

)

Step VIII

For the Zeta-function, the decomposition law means the following:

K(S) = F, I N(a)l -5= 11 1

(a)-O r 1 - IN(17)1

fi I -, fl( I
-s z'n- p I- P

)Z II I-
I

lp I -'1p .,1o p

p ramified p decomposed p inert
z

X (
01-Ipxt I

(I-'P-S)X(P1_-I\1-p-z.)

- 5(S) II I II I -,
xdpt-i 1 x(p)-- I 1 +P

(s)L(s, X),
where L(s, X) = - 1X(n)n -' is the L-function belonging to the character
X of K = Q(Fd). Since

Iim(s - 21oge (ford > 0),
51 D

one has

L(l,X) = 2loge
F

In general, one can show:

(8.11) Theorem. For d > 0,
log p

with p =
jj sin(irb/ D )

F jjsin(ira/D)
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where b runs through the set ( k 11 < k < D. X( k) I) and a through the
set (kIl <k<D,X(k)=I).

For D >a d = p = I mod 4, we have already proved this theorem. The
general case does not pose any new essential difficulties. This theorem has a
very interesting consequence.

(8.12) Corollary. Let d > 0 and suppose the class number of Q(v) is 1. Then

2= jj sin(rb/D )
sin(ora/D) (b, a as in (8.11

11
))

for the fundamental unite of Ad.

This is an explicit formula for the fundamental unit c in which all factors
occur twice because of the periodicity of the sine function. We now have
two methods for the determination of the fundamental unit, continued
fractions and a representation by a trigonometric function. It is hard to
believe that both lead to the same answer. Let us look at an example,
d = 13. The fundamental unit is (3 + 13 )/2 = 3.302775636.... The qua-
dratic non-residues in the interval [ I,13] are 2,5,6,7,8,11, and the qua-
dratic residues 1,4,9,3,12, 10. Hence

sin(1r2/ I3)sin(or5/ I3)sin(7r6/ 13)=
sin(7r/13)sin(sr3/13)sin(7r4/13)

which is indeed

3.302775636... .

To this point we have not considered the case d < 0 (except for d =
- 1, -3 in Chapter 6). We mention the relevant results now, still excluding
the cases d = - 1, - 3. For d = 2, 3 mod 4 one has for the Zeta-
function K(s) of K =Q(Fd), d < 0 the following expressions if h(k) - I.

s - l 1 I (( dxdl
JJ2 ro.o (x2 -dye) 2 r2-mlal (x` - dtZ)

d(r--d z)dt' Ylal dzdv
2 J J-d:-dv-Z1 (-dz2 - dvi)s 2ldl' :=+i.za1/ldl (Z2+ t.2

r2-1, X
= I I r-2`rdrd19= 21r

2 Ides-1 II2a1/Id1 Idl2s-1 [ 2 - 2s 1wia1

1 T
IdIs-1

2 1 Idles-1
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and hence

lim(s - IT
'll 2VSIa1

For the case d - I mod 4. one obtains

"M (S - 7
a,l

YINI

i.e.. always

This leads to

with

(See also page 126.)

Step IX

llm(S - 1KK(s) =
Nil _/i nI

L(l.X)= 7'

VDI

17 -L(l.X)=
I

ID,- 1
X(k)k

k=1
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Up until now, we have always assumed that the class number of the field
K - Q(Fd) equals 1. Nevertheless, we have essentially completed the ana-
lytical part of the proof of the class number formula on page 128. We did
not, however, cover several important algebraic facts which we now men-
tion without proof. One of the fundamental steps was to represent the Zeta-
function of Q(/) as a Euler product. This was based on the unique
decomposition of the elements of Ad as a product of prime elements. This
decomposition is not possible in general. Kummer found a way around it
(see the historical remarks in Edwards, Fermat's Last Theorem, page 76) by
introducing his so-called ideal numbers or, as one says today, ideals. An
ideal I in a commutative ring R with unit is a subgroup of the additive
group of R such that ra E I for all r E R. a E I. 1 is a prime ideal if I * R
and ab E I implies either a or b E 1. i.e., the quotient ring R/I has no zero
divisors. For two ideals I,J in R, one defines the product IJ as the ideal
generated by (ab I a E 1, b e J), i.e.,

IJ:={2a;b;c;Ia;EI.biEJ,c;ER}.
The following basic theorem holds.

(8.13) Theorem. In the ring Ad, every ideal a * 0 can be written uniquely as
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a product of prime ideals tt, ,
tt=v''...it('

The norm N(n) of an ideal a in Ad is defined as the number of elements
in the residue class ring AA/n,

N(n) := SAd/nI
Ad/a is finite. Also. N(nb) = N(a)N(b). The fact that every ideal a in Ad-
n * 0. can be decomposed uniquely into a product of prime ideals and the
product. formula for the norm allow us to write the Zeta-function of
K = Q(v) as an Euler product for s > 1.

('x(s)= N(n)
=0

= 1t I -
The decomposition law can directly be transferred into the form of (8.10):
if p is a rational prime number, generating the principal ideal (p) = pAd
and if X is the character of Ad, then

(p) = u2 if and only if X(p) = 0 (p ramified).
(p) = vv' if and only if x(p) = I (p splits).
(p) - v if and only if X(p) - - I (p inert).

Similar to the way we proceeded on page 139, one shows that, for s > 1,
A (.s) = (s)L(.s.X)

for some L-function L(s,X). Hence
lim (s - (s) = L(l, X).
511

One gets a connection with the class number h of Q(/). that is the order
of the class group C, by writing

x (s) = r,(S)
cEC

with
ac(s) _ N(a)

nEc
Then one can prove:

(8.14) Lemma. lim<<1(s - is independent of c.

PROOF. Let a' E C'. Then a' - (a) is an integral ideal and

js) _ N(a) '= N(a')' N(a)-.,

aEc n=0
a E l '

not asscx.
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Ad is the disjoint union of N(a') residue classes $ + a'. It is easy to show
that

E N(a) E N(a)
a-o a=o

nE/i+o' aEa'
not assoc. not assoc.

Hence
N (a')s,(s) = N(a')' Zo N(a)-s. N(a') 3't(s),

a'O
dea,

not assoc.

which proves our assertion.

Choosing for c the principal class Ad and using earlier results (see pages
139 and 141).

for d>0,
Tsl for d < 0

LO, X) = lim(s - 1).K (s) =

with our usual L-function L(s,X).

This completes our sketch of a proof of the class number formula. For
details, we refer the reader to the literature. We think it has become clear
that a whole series of number-theoretical questions is connected to the
problem of the class number formula, a fact that is not obvious from the
formula itself. We have also seen how deeply one can penetrate with the
help of various analytical methods. Moreover, with the aid of these meth-
ods, one obtains a number of surprising and interesting results. It is obvious
that Dirichlet's methods opened up a completely new perspective on
number theory. His results will always be among the most important work
ever done in mathematics.

In the first third of the nineteenth century, the bourgeoisie became the
main exponent of cultural life. This development was initiated by the
French revolution: the emerging industrialization and the social changes
that took place paved its way. Neohumanism with its emphasis on the
ideals of classical antiquity formed the basis of intellectual life in Germany.

Wilhelm and Alexander von Humboldt's reformation of the Prussian
universities had a lasting influence on scientific organization in Germany.
Trying to express the spirit and the ideals of this time, we can do no better
than to quote E. E. Kummer in his memorial to Dirichlet (Gedachtnisrede
auf Gustav Peter Lejeune Dirichlet):
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Gustav Peter Lejeune Dirichlet was born in DUren on February 13. 1805. His
father was a postmaster. a gentle. pleasant, and civil man: his mother, a
spirited and well-educated woman, gave the exceptionally gifted boy a very
careful education. . . . His parents wished that he would be a merchant but
since he showed a decided aversion to this profession they changed their
minds and sent him to Bonn to the Gymnasium in 1817. ... He was
conspicuous by his decency and good manners: the ease and openness of his
character made everybody who came into contact with him his friend. He
was industrious but his main efforts were dedicated to mathematics and
history. He studied even if he did not have any homework from school
because his active mind was always occupied with worthy objects of thought.
Great historical events. like the French revolution. and public affairs inter-
ested him deeply. He judged these and other things with an independence
unusual for his youth. and from a liberal viewpoint, probably the fruit of his
parents' teaching. Dirichlet stayed at the Gymnasium in Bonn for only two
years and subsequently moved to the Jesuit gymnasium in Cologne. His
teacher in mathematics was Georg Simon Ohm, later famous for the law of
electrical resistance. Ohm's instruction, as well as his assiduous independent
study of mathematical works, helped him to make remarkable progress in this
science and to acquire an unusual degree of knowledge. He completed the
course at the Gymnasium very quickly and obtained in 1821. when he was
only 16 years old, the final diploma which permitted him to go to University.
When he went home to discuss the choice of his future profession with his
parents it was natural that they seriously questioned his decision to study
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mathematics and admonished him to secure his place in the world by
choosing a more practically oriented subject. the law. Modestly but firmly he
declared that if they requested this from him he would agree but he was not
able to give up his favorite subject and would at least devote his nights to it.
His parents. who were as rational as they were tenderly loving, gave in to
their son's request.

At that time. mathematical education at the Prussian and the other
German universities was at a low point. The lectures, whose level barely
exceeded that of elementary mathematics, were in no way capable of satisfy-
ing the desire for knowledge which burned in the young Dirichlet: also.
except for the great Gauss, there was nobody in Germany whose name could
have attracted him. In France, and particularly in Paris, mathematics was still
in full bloom; a circle of men, whose names will shine in the history of
mathematics for all time, worked as researchers and teachers and contributed
to the development and propagation of our science. . . . Judging these
circumstances correctly. Dirichlet decided that Paris would be the place
where he could expect the greatest gain for his mathematical studies and went
to this center of mathematical sciences in May of 1822. in the happy
expectation that he could now wholly devote himself to his favorite subject.
He listened to the lectures at the College de France and the Faculte des
Sciences. ... Besides attending these lectures and working through the
material. Dirichlet devoted his time to the attentive study of the most eminent
mathematical works and among those specifically Gauss's works on higher
arithmetic. Disquisiriones Arithmericae. This book exercised a more important
and deeper influence on his mathematical education and the direction of his
interests than all his other work in Paris. He went through it not only more
than once but he never ceased, throughout his life, to return again and again
to its wealth of deep mathematical ideas. This is the reason why it was never
on his bookshelf but had a permanent place on his desk. .. .

Dirichlet's life during the first years of his stay in Paris was most simple
and withdrawn. ... This changed during the Summer of 1823 which was of
greatest importance to his general education. General Foy was a universally
educated man, a leader excelling through his prominent station as head of the
opposition in the House of Deputies, as well as being one of its most
celebrated speakers and his illustrious military career. His house was one of
the most renowned and sought out in Paris: at that time, the General looked
for a young man to be a teacher of his children ... and Dirichlet was
recommended to him through the good offices of a friend. During the first
personal interview the open and modest character of the young man made
such a good impression on the General that he immediately offered him the
position, with a decent salary and with such small obligations that there was
enough free time for Dirichlet to continue his studies. But the General
exercised his deepest influence by his example of an active, noble, and
well-educated man. This influence extended not only to Dirichlet's education.
his manners, and preferences, but also to his way of thinking and acting and
his general outlook on life. It was also of great importance that the house of
the General, which was the center of the most prominent artists and scientists
in the capital of France. gave Dirichlet the opportunity to look at life on a
grand scale and to actively participate in it. All these new impressions
... did not distract Dirichlet from his mathematical studies; to the con-

trary. during this time he assiduously worked on the first of his published
papers. Memoire sur l'impossibilite de quelques equations indCterminees du
cinquieme degrC. . . . Not only through its new results. gained in one of the
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most difficult parts of number theory, but also by its conciseness and
sharpness of the proofs and the exceptional clarity of presentation this
first paper secured for Dirichlet an illustrious success. . . . It established
Dirichlet's reputation as an excellent mathematician; as a young man with a
great future he was not only admitted to the highest scientific circles in Paris,
he was sought out by them. He came into close connection with several of the
most reputable members of the Academy in Paris among whom two have to
be singled out, Fourier, who influenced the direction of Dirichiet's future
scientific investigations, and Alexander von Humboldt, who influenced the
further development of his life.

As a young man, Fourier participated at the foundation of the Ecole
Normale and Ecole Polytechnique; he retained his enthusiasm for active
scientific communication, and he had an inner need to tell of the beautiful
and great matters which he investigated. In Dirichlet, he found a young
man ... by whom he was not only admired but also completely understood.

Alexander von Humboldt, who at that time lived in Paris ... , besides
respecting his talents and his scientific skills, also gave him his most vivid
personal attention and affection which he continued to harbor and to express.
Already, during this first visit to Paris, Dirichlet expressed, in a course of a
conversation, his intention to return later to his native country. Hum-
boldt ... confirmed him in this plan. The death of his sponsor, General Foy,
in November 1825, and the influence of Alexander von Humboldt, who soon
after left Paris and moved to Berlin, prompted Dirichlet to realize his
intention of returning to his native country. He petitioned the Minister von
Altenstein for suitable employment which Humboldt undertook to second
and to further by his influence. He was very active in the matter of Dirichlet's
position, but all his efforts, which Gauss himself assisted by a letter to our
colleague, Mr. Encke, who forwarded it to the Royal Ministry, could not
achieve more than the assurance of 400 Taler as remuneration to help
Dirichlet to become a Privatdozent in Breslau. Since this remuneration
assured him a modest living and since he could rely on Humboldt's efforts to
help him find a more suitable position, Dirichlet accepted without further
consideration. In the meantime, he had been made Doctor of Philosophy
honoris causa by the philosophical faculty of the University of Bonn, which
made it considerably easier to become a Privatdozent at a university.

On his way to Breslau, Dirichlet chose to go via Gottingen to meet Gauss
personally. He visited him on March 18, 1827. 1 did not find any details
about his meeting, but in a letter to his mother, Dirichlet says that Gauss
received him very kindly and that his personal impression of this great man
was much better than expected.

In the meantime, Alexander von Humboldt had succeeded in having
Diridhlet named ausserordentlicher Professor at the University of Breslau. He
now went to work to gain him for the University and Academy here, but first
to pit him to Berlin. A suitable occasion was a vacancy at the Aligemeine
Kriegsechule; Humboldt seized this opportunity and recommended Dirichlet
very highly to the General von Radowitz and the Minister of War. There was,
however, no immediate firm offer, probably because Dirichlet was only 23
years old and might have seemed to be too young for such a position;
consequently, the Minister of Altenstein was asked to agree that Dirichlet
would be granted a sabbatical 'of one year to be a substitute teacher at the
Kriegsschule.

In the fall of 1828 he came to Berlin to start at his new position. He was
very fond of giving these lectures which he had to present to officers who
were approximately contemporaries of his ... .
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Soon after his arrival in Berlin, Dirichlet undertook the necessary steps to
be permitted to give lectures at the University. As Professor at another
university, he was not entitled to do this and there was no alternative to being
a Privatdozent once more.. He consequently directed such a petition to the
Philosophical Faculty. Since he already had proved his scientific competence
he was immediately permitted to give lectures with the title of a Privatdozent.
Only in 1831 was he formally made ausserordentlicher Professor at the
University here; a few months later he was made a full member of our
Academy. In the same year, he married Rebecca Mendelsohn-Bartholdy, a
granddaughter of Moses Mendelsohn. It is remarkable that Alexander von
Humboldt had a share even in this, because he introduced Dirichlet to the
house of his future in-laws, which was so famous for its intellectual spirit and
love of the arts.

After this his life is of less interest than his scientific works which Dirichlet
prepared during the next 27 years.

Reading these words of Kummer today and comparing them to our own
attitude-much more skeptical and in its values less certain-the difference
is obvious. But it is edifying to follow the undramatic but remarkable
career of this young man who was equipped with firm ideals and convic-
tions, overpowering mental facilities, and a winning and kind character-
this is emphasized again and again. In just two years he finds access,
despite his petit-bourgeois origins, to the highest circles of bourgeois
society.

The life of Nils Hendrick Abel, intellectually Dirichlet's peer and a
person as appealing as Dirichlet, is a reminder of just how fortunate
Dirichlet was. Dirichlet and Abel had met in Paris and held dpch other in
high regard, but they did not stay in contact.

At this point we would like to add a few words about 'Alexander von
Humboldt, whose positive political influence can hardly be overestimated.
The German University which only now, more than 150 years later, has
entered a new phase, was basically established by Humboldt. With great
personal effort, Humboldt helped the careers of many scientific talents,
among them most of the mathematicians of his time, like Gotthold
Eisenstein, who, sickly and depressed, had barely any personal contacts
and whom, despite an age difference of nearly 50 years, von Humboldt
aided again and again.

In his memorial, Kummer discusses. Dirichlet's scientific work exten-
sively. There is no need to repeat the passages on number theory which
have been described in this chapter. A few sentences will conclude Dirich-
let's biography. Until 1855 he stayed in Berlin, at the center of a growing
circle of important colleagues and students, Jacobi, Steiner, Borchardt,
Kummer, Eisenstein, Kronecker, Dedekind, and Riemann, to name the
most important among them. A close scientific and personal friendship of
more than a quarter of a century tied him to Jacobi. Kummer writes:

The common interest in the knowledge of truth and the furtherance of the
mathematical sciences was the firm foundation of the friendly relations
between Jacobi and Dirichlet. They saw each other virtually every day and
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discussed more general or specific scientific questions; the difference between
their perspectives of the whole of mathematics lent their spirited discussions a
vivid and always renewed interest. Jacobi, who on account of the wonderful
broadness of mind no less than by the depth of his mathematical investiga-
tions and the glamor of his discoveries gained acceptance and acknowledg-
ment everywhere, enjoyed a wider reputation than Dirichlet, who did not
know how to build a reputation: his papers, which treated only the most
difficult problems of our science, had a smaller circle of readers and
admirers. Nobody was more aware of the odd disparity between the reputa-
tion and scientific importance of Dirichlet than Jacobi: nobody was more
skillful and more active at counterbalancing this and to seek for his friend the
most deserved acknowledgement in wider circles.

Dirichlet's wife gives a more personal account of the relations with the so
different, extroverted, lively, ironical, and aggressive Jacobi, after whose
death she writes:

... enough that he died and that the world has lost a gigantic mind who was
so close to us with all his mistakes and virtues. His relation to Dirichlet was
nice-for hours they sat together, calling it "to be silent about mathematics"
("Mathematikschweigen"); they never spared each other and Dirichlet often
told him the bitterest truths, but Jacobi understood this well and he made his
great mind bend before Dirichlet's great character ...

After Gauss's death in 1855, the university in Gottingen "which for half
a century had been proud to own the first of all living mathematicians.
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tried to preserve this glory by inviting Dirichlet to occupy Gauss's chair"
(Kummer). He accepted the offer, since the more quiet atmosphere in Got-
tingen was very much to his taste. In Berlin, the considerable teaching obli-
gations at the Kriegsschule were often a great aggravation; in Gottingen.
he had more time. But only four years remained for him: he died after a
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heart attack on May 5, 1853. Dirichlet has not published much; neither did
he leave much unpublished material even though it is known that he was
mathematically active into his last year. He was used to keeping his
thoughts to himself and was reluctant to write down his results. However,
the relatively little that has been published is among the most perfect and
important contributions to mathematics.

References

G. P. L. Dirichlet: Werke, particularly the papers: Beweis des Satzes. dass jede
unbegrenzte arithmetische Progression, deren erstes Glied and Differenz ganze
Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen ent-
halt, 1837. Sur la manure de rbsoudre I'e quation t2 - pn2 - I au moyen des
fonctions circulaires, 1837. Recherches sur diverses applications de ('analyse
infinitisimale It la theorie des nombres, 1839/40.

0. Ore: Dirichlet. Gustav Peter Lejeune in Dictionary of Scientific Biography.
E. Kummer: Geddchtnisrede auf Gustav Peter Lejeune Dirichlet, Dirichler's Works or

Kummer's Works.
H. Minkowski: Peter Gustav Lejeune Dirichlet and seine Bedeutung fiir die heutige

Mathematik. Gesammelte Abhandlungen II.
K.-R. Biermann: Johann Peter Gustav Lejeune Dirichlet, Dokumente fair .vein Leben

and Wirken. Abh. Deutsche Akad. Wiss. Berlin, Klasce fur Mathematik. Physik
and Technik. Akademie-Verlag, Berlin. 1959.



CHAPTER 9
From Hermite to Minkowski

In Chapter 6 we saw that the theory of binary quadratic forms is essentially
equiv t to the theory of quadratic number fields. After Gauss, number
theory developed in two basically different directions, the theory of alge-
braic number fields, i.e., finite extensions of 0 as generalizations of qua-
dratic number fields, and the theory of (integral) quadratic forms in several
variables and their automorphisms, as a generalization of binary quadratic
forms. In this chapter, we will sketch the development of certain aspects of
the latter. To do this, we have to introduce a few basic concepts; for the
sake of simplicity, we will use modern terminology.

A (symmetric) bilinear space over Z consists of a pair (N, b), where N is a
finitely generated free Z-module and b : N X N - R a Z-bilinear symmetric
mapping. We define the quadratic form q(x) - b(x, x). This completely
determines the bilinear form b because b(x. y) - I(q(x + y) - q(x) -
q(y)).

Let e1,.. . , be a basis of Nand x=Jj_1x;e;,yZ7_,yjej.Then
b(x, y) _ Fxb(e;,ej)yj

1j

= xBy
when B denotes the symmetric matrix (b(e;, eJ.));, E M(n, R) and t the
transpose. Conversely, every. symmetric matrix BC M(n, R) defines a bilin-
ear space (Z', b) by

b(x, y) :- xBy`
for all x - (x1, ... , y - (y,, . . . , E V. Two bilinear spaces (N, b),
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(N', b') are isomorphic if there is a Z-linear isomorphism a : N -) N' with
b'(ax.a),) = b(x. v) for all x. Y E N.

One of the basic problems is to determine all isomorphism classes of
bilinear spaces.

Let us interpret isomorphisms using matrices. Let B. B' be matrices
belonging to (N. b). (N'. Y) and A E GL(n. Z), a matrix belonging to a.
Then the isomorphism (N.b) -= (N',b') means

xBr, _ (xA)B'(rA)'= xAB'A'v'.
that is

B = AB'A'.
In general. we call symmetric matrices B. B' congruent if they satisfy this
relation. Expressed in the language of matrices. our main problem is to
determine all congruence classes of symmetric matrices.

The determinant of a bilinear space (N, b) is the determinant of a matrix
belonging to h. The determinant of (N,b) is indeed uniquely defined
because a change of basis, with A E GL(n, Z). transforms the matrix B to
the matrix ABA': then det(ABA') - det(B)det(A)2 = det(B). If one allows
rings other than Z, then the determinant of a bilinear space is determined
only up to squares of units.

Two elements x. v E N are called orthogonal (written x 1Y) if h(x. r)
= 0. The submodule

X1 :_ { vE Nlv.Lx for all xEX )
is called the orthogonal complement of a submodule X C N (with respect to
b). Suppose that (N,,b,), .... (N,,b,) are bilinear spaces over Z; then

is the bilinear space (N,b) with N - ®;_,N, and

b(x,®...®.r,.r,ED ...®,;l= b,(x,....)-i
1;_,(N,,b) is called the orthogonal sum of (N,. b,). Using matrices. (N.b)
- 1',_,(N,,b,) means that a matrix belonging to (N.b) is congruent to a
matrix of the form

I

BI B0

2

0 B,

where the B; are matrices for (N,. b,). A symmetric bilinear form b : N X N
- R is called positive definite if b(x. x) > 0 for all x 0. One makes an
analogous definition for symmetric matrices. Generalizing the reduction
theorem (4.2) of Lagrange in the binary case. Charles Hermite (1822-1901)
proved the following theorem.
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(9.1) i beores. Let (N, b) be a positive bilinear space of rank a with
detenninant D. 7bew there exists x E N with

0<b(x,x)<(3) D.

PaooF (By induction on a). Without loss of generality we can assume
N - Z". The can al is clear. For a>!,_ choose e, E Z" such that
M - b(e,,e,) is minimal. Extend b bilinearly to all of W and consider the
orthogonal projection +r an the hyperplane

H- (y ERnI b(e,;y)-0),
1W

i.e., the mapping w : R* -* H with w(e,) -O WI - identity; clearly w(x)
- x - Let e,, ... , e, be a basis of Z" and L :-
Zw(e2) + + Zw(e ). L has dimension n - 1. Use the matrix

A-

a2 ... a
0

(1

0
1

with a; - - b(e,, e,)/b(e,, e,) to switch from the basis e,, ... , e to the
basis el,w(e2), ... , w(e ). With B - (b(e,, e,)), one obtains

ABA'- I I00 B"),
where B' is the matrix belonging t o bI L X L Then D - Md with d -
det((L, bI L X L)) By induction there is x E L, x # 0, rich that

4
(w-2)/2. _

Let y E Z" be such that r(y) - x. Then w(y) - y + te, with t e R. By
adding, if necessary, a suitable integral multiple of e, toy, we can ensure
that ItI < .. This is the decisive step of the proof; for then

M-b(e,,e,);S b(y,y) - b(x - te,,x - te,)
- b(x,x) + b(x,x) + 4M,

and hence

(R -2)/2}M<b(x,x)a3) "-Vd,

3 M '
I y12.M

'

M ; (1)("-l)/2
(3
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Hermite communicated his result to Jacobi in a letter of August 6. 1845.
He stated "de nombreuses questions me semblent dependre des resultats
precedents." (Numerous questions seem to depend on the preceding re-
sults.) Concluding this letter, he derived several results of Jacobi with the
help of his estimate. In a second letter to Jacobi, he discussed further
applications: we will come to them presently.

For now, we consider only bilinear spaces over Z which assume integral
values, i.e., bilinear forms b : N X N -> Z. Such bilinear spaces are called
unimodu/ar or nonsingular if the determinant equals ± I.

Lemma. Let (N. h) be a bilinear space over Z, M a nonsingular submodule of
N. Then (N, h) is isomorphic to (M. b)1(M 1. b).

PROOF. Let e,..... eA be a basis of M which can be extended to a basis
e,.... . e" of N. Then B = (b(e,,ei)), I < i. j < n has the form

BB, CJ
C' D

with B, = (h(e,.e,)). I < i. j < k. By our assumption. B, is invertible in the
ring M(n. Z) of matrices with integral entries. One has

l-(B, 'C)I E/1C' D/l0
E is a unit matrix of appropriate size.

(9.2) Corollary. Let b : N X N - Z be a positive definite bilinear form with
determinant I. If n = dim(N) < 5. then (N.h) m (Z", c), where c is the
bilinear form given by the unit matrix. In other words, if B is a matrix
belonging to h then X E GL(n, Z) exists with

XBX' =
0 I

PROOF. By Hermite's theorem. e, E N exists with b(e,.e,) < (4/3)` < 2.
Hence b(e,,e,) = I because b assumes only integral values. Thus the
one-dimensional submodule of N defined by e, is nonsingular. Hence, by
the above lemma. there is an orthogonal decomposition N = e,Zl N,.
where (N,,h) is unimodular also. Applying this procedure with N,, one
obtains the corollary.

Hermite showed that this latter result is true for it < 7: however it is not
true for it = 8. We will return to this later.

Hermite's estimate has another important consequence which we already
know from Chapter 4 in the case of two-dimensional forms.
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(9.3) Theorem (Eisenstein. Hermite). There are only finitely many isomor-
phism classes of positive definite (symmetric) bilinear spaces over Z of given
dimension n and given determinant D.
PROOF (By induction on n). The case n = I is clear. Let B = (b,) (B a
positive definite symmetric matrix with coefficients in Z and) be the matrix
of a positive definite bilinear space over Z with determinant D. Without
loss of generality we can assume that b is minimal. Set

raA = 1

\ 0 E - 1
where a = (b21/b11,b3,/b,,, ... , and is a unit matrix of
rank n - I. Then

B=A' , AB I

with an integral symmetric matrix B' of rank n - I and det(B') - bii 2D.
By (9.1) b can assume only finitely many values: this is, of course, true
for the determinant of B' as well. Moreover. B' is positive definite.
By induction, up to congruence there are only finitely many possibilities for
B', say B,.... , B,. Then there is a k, l < k < t. and also an X E
GL(n - 1, Z) such that B' = X'BA.X. that is.

1 0 11bl, 0 1

B = a' X'
0 bii Bk 0

Set

Then

1 0Y= 0 X-1

a X.

1 0 b11 0 I $
Y'BY= R, E1 0 Bk 0 Eb

with /3 = aX -1. Now we select a vector u E Z' such that the absolute
value of each component u + .8 = y does not exceed 4. Set

Z= 1 U

0

then, with Z' = YZ,
1 0 11bh1 0 J1 yB:=Z"BZL
Y E

bli
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Obviously, there are only finitely many possibilities for B. The statement
follows.

The further development of the theory of integral quadratic forms was
strongly influenced by Hermann Minkowski. Minkowski was primarily a
number theorist, but, motivated by his number-theoretical research. he
became more and more interested in geometry and virtually created a new
subject which he called the "geometry of numbers." It deals with the use of
geometrical methods in number theory. Minkowski's first attempts in this
direction probably occurred in 1889 when he studied Hermite's reduction
theory. We do not know whether Minkowski attempted to simplify the
proof of (9.1) or if he tried to improve the estimate for the minimum. In
any event, on November 6. 1889, he wrote to Hilbert: "Perhaps you or
Hurwitz are interested in the following theorem (which I can prove in half a
page): in a positive quadratic form of determinant D with n (> 2) one
always can assign such values to the variables that the form is < nD
Expressed in our terminology, this theorem says the following.

(9.4) Theorem. Let b : Z" X Z" Z he a positive definite symmetric bilinear
form of determinant D. Then there exists x = (x,.... , x") E Z". x * 0 such
that

0 < b (x, x) < n'V-D .

PROOF. In his proof, Minkowski identifies the given bilinear form with the
usually Euclidean metric in R". i.e., he performs a transformation X = ($;,)
such that

X'BX -
1 0

0 1

Here B - (hij). b,j - b(e,,ej) and e,.... , e" is the canonical basis of R".
Under this transformation, the vectors (x,, ... , x") E Z" correspond to

the points of the lattice L in R" formed by the column vectors of X -', i.e..

L= (a1b1Ia1EZ}r-i
for suitable vectors b,.... , b". We then have to find the minimal distance
between different lattice points. Let E be the parallelotope with edges
b,..... b". We know that

A = J(L) := vol(E) = (det(b,, ... , bJ = Idet(X -')I.

holds for the volume of E. the so-called fundamental domain (or fundamen-
tal cell) of L. (According to Weierstrass. this is virtually the definition of
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the determinant.) Instead of vol(E) we can write vol(L), since this number
depends on L only. Since det(X - 1) - D . we also have A - vol(t) - FD .
The parallelotopes E + x, x E L fill the whole space R" and have common
edges. Around every lattice point as a center, Minkowski constructs an
n-dimensional cube with edges of length (1 /F )M, where M is the minimal
distance between two different lattice points. Suppose all these cubes are
parallel to each other, as shown in the figure below. According to the
theorem of Pythagoras. the distance between the center of the cube to any
of its corners is

r2

n(2 M) = 2M.

Since M is the minimal distance between two points of the lattice, all the
cubes are disjoint. Then

vol(E) > vol (cube). that is i5 > (-L M
Fn

and hence

M2<n"F.

Obviously. Minkowski's estimate is much better than Hermite's for large
n. Minkowski immediately realized that his estimate can be improved once
again, by using balls around every point of the lattice with radius j M.
These balls touch each other, so that their volume is smaller than the
volume of the fundamental domain, i.e.,

(2M)"w"<fD,
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where w,, is the volume of the n-dimensional unit ball, i.e.,

w,=2, w2=ar, 2rrn
One obtains:

(9.5) Theorem. Let b : Z" x Z" -+ Z be a positive definite symmetric bilinear
form of determinant D. Then x = (x1,.. . , x") E Z", X:# 0, exists, such that

b(x,x) G o ; - ".

The proof of this theorem is so simple and so natural that hardly any
mathematician would have thought much about it. Minkowski did and
analyzed what properties of the ball are really needed for the proof. If one
asks this question it is easy to find the answer-one requires that the ball be
symmetric with respect to its center and that its limiting surface, as
Minkowski first expresses it, be nowhere concave. These properties ensure
that the balls around the lattice points will all be disjoint. This leads to
Minkowski's famous lattice point theorem which is the foundation of his
"geometry of numbers." We formulate this theorem in the way it is usually
applied.

(9.6) Minkowsid's Lattice Point Theorem. Let L be a lattice in K" and K a
centrally symmetric convex set around the origin, i.e., when x, y E K, then
- x and I (x + y) E K. Then, if vol(K) > 2"t(L), the set K contains a lattice
point xEL,x#0.

Let us give a brief sketch of the proof. First, let K be an arbitrary set with
a well-defined volume, K disjoint from all the K + x, x E L, x:# 0. Then
vol(K) < vol(E), where E is a fundamental domain. Intuitively, this is
obvious; one proves it by .decomposing K in pieces Kt, K2, ... , where the
pieces lie in the different translates of the fundamental domain. Then one
moves the pieces into a fixed fundamental domain where they are disjoint.
This immediately gives our inequality (see sketch below). If vol(K) > 2"A,
i.e., vol(2 K) > A with J K = { x I x E K), then not all the parallel trans-
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lates of I K are disjoint. Therefore there are I x.ly E # K and z G L, z -* 0
with

i
x = i y + z or z = i (x - y). By our assumption. -y and

i
(x - y)

lie in K, which completes the proof.

In his obituary of Minkowski, Hilbert made the following comment
about this theorem and its proof.

The proof of a deep number theoretical theorem without major computations,
and basically with the help of geometric intuition is a pearl among Min-
kowski's inventions . . . . It is even more important that the basic idea of
Minkowski's proof only uses the property of the ellipsoid that it is a convex
figure with a center. Thus it can be transferred to arbitrary convex figures
with center. This led Minkowski to see that the concept of convex bodies is a
fundamental notion in our science, one of its most fertile tools for research.

Minkowski first published these ideas and theorems in his paper "Uber
positive quadratische Formen and fiber die kettenbruchahnlichen Algo-
rithmen" which was published in Crelle's Journal (Volume 107, pp. 278-
297) in 1891. He immediately saw that the lattice point theorem opened
direct access to the proof of many fundamental facts of algebraic number
theory. Examples are the theorem that the class number is finite and
Dirichlet's unit theorem both of which are proved in modern texts on
algebraic number theory using the lattice point theorem (see, for instance,
Borevich and Shafarevich). Another important consequence of Minkow-
ski's technique was a proof of Kronecker's conjecture that the discriminant
of an algebraic number field Q is always greater than 1. i.e., that at least
one prime ramifies in such a field.

Since this text does not assume the basics of algebraic number theory, we
will not continue our discussion of such topics. Instead, we will use the
lattice point theorem to give new proofs of the following more elementary
theorems.

Theorem (Fermat, Euler). Every prime number p of the form for 4k + I can
be written as the sum of two squares of integers.

Theorem (Lagrange, Euler). Every natural number is the sum of four squares
of integers.

Theorem (Legendre). Let a, b, c be relatively prime square free integers which
do not all have the same sign. The equation

ax2+bv2+cz2=0
has a solution (x, y. z) (0, 0, 0) if and only if the following congruences are
solvable:

u2- -be (mod a).
t:2= -ca (modb),
w2 = -ab (mode).
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One proves the first theorem in the following way. We have already
mentioned that an integer u exists such that u2 I mod p. In R2 we
consider the lattice

L = Z 2

Thus one can choose x E Z arbitrarily. This x determines.y up to multiples
of p so that our lattice contains every pth integral pair x, . The fundamen-
tal domain has area p. Setting r = 2fp/ir and K = K(0.r), i.e., a disc
around 0 with radius r, we obtain vol(K) > 22c1(L). According to the lattice
point theorem. (x. r) E L - (0) exists such that

0<x2+y2=LP <2pir
Since u2 = - I mod p and y - ux mod p, we have x2 + t'2 = 0 mod p and
x2 +t'2 = p follows.

Using the same technique, the reader can prove other theorems, among
them the following two which go back to Euler:

Every prime numberp = I + 6k is of the form x2 + 3y2.
Every prime number p = I + 8k is of the form x2 + 2y2.

To prove the four-square theorem, it suffices to show that every odd
prime number p is the sum of four squares (see page 31 ).

We first mention that the equation axe + bye = c is solvable for all
a.b,c E K in a finite field K. This is proved with the help of the so-called
pigeonhole principle: let q be the number of elements in K. Without loss of
generality we can assume that q is odd because the equation ax2 = c can be
solved for even q. Substituting consecutively the elements of K for x
provides 4 (q + 1) different values for the expression axe. If one does the
same fort'. one obtains ?(q + 1) values for c - bye. Since

1)+'-(q+ 1) > q.
it follows that one of the values for ax2 is identical to one of the values for
c - bye. i.e.. ax2 + bye = c is solvable.

In our problem. this means that there are u, v E Z with u2 + v2 + I = 0
mod p. Now we consider in It4 the lattice

L = ((a. b. c, d) I c = ua + cb mod p. d = ub - ra mod p)

for which J(L) = p2. With r =°v32 , one obtains vol(K(0. r)) - r°w,
=24p2>24 (L). and (a. b. c, d) E L - (0) with 0<a2+b2+c2+d2
< (4ap)17,- < 2p exists according to the lattice point theorem. Then
a2+b2+c2+d2=p because a2+b-'+c2+d2=a2+b2+(ua+rb)2
+(ub-ra)emod p=(a2+b2)(a2+c2+1)mod p-0mod p.

Concerning Legendre's theorem. it is easy to see that the given con-
gruences are necessary. For axe + bye + cz2 = 0. one has hy2 + cz2 = 0
(mod a) and consequently (c: )2 = - bcy2. Since we can assume that x. y. z
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are relatively prime, y is a unit mod a, consequently x2 _ - be (mod a) is
solvable. Conversely, we consider the lattice L of all integral (x, y, z) with

uy m cz (mod a),

vz m ax (mod b),
wx by (mod c)

for a fixed solution (u, v, w) of the congruences in Legendre's theorem. It is
easy to see that A(L) - labcl and that these congruences lead to the
congruence

ax2 + bye + cz2 0 (modabc), (x, y, z) E L.
We know that the convex centrally symmetrical ellipsoid

K- ((x, y,z) E R3I lalx2 + lbly2 + lclz2 = R

has volume (4r/3)(R3/label)'"2. According to the lattice point theorem, an
element (x, y,z) E (L f1 K) with (x, y,z) # 0 exists if

4a R3
)

1/2

3 (l l
>8Iab`l

abc
or

R>(s)2/3label.

This means that (x, y, z) E L with (x, y, z) # 0 exists with
lax2 + by2 + cz2l < IaIx2 + lbly2 + lclz2 < 2labcl,

i.e., axe + bye + cz2 = 0 or axe + bye + cz2 ±abc. In the first case, we,
are finished. If axo + byo + czo = - abc, then

a(xozo + byo)2+ b(yozo - axo)2+ c(zo + ab)2i 0,
and we are finished. To exclude the case ax2 + bye + cz2 - abc, we use the
fact that a, b, c do not all have the same sign. We will not go into details
here because we are only interested in the applications of the lattice point
theorem.

Like nearly every other great mathematician, Minkowski was very inter-
ested in the applications of mathematics, specifically to physical questions.
His five papers in physics made Minkowski's name known beyond the
small circle of specialists. He was the first to formulate the basic equations
of electrodynamics in a relativistic setting. Historically, it should be men-
tioned that essential parts of special relativity were formulated by Lorentz
towards the end of the last century; 10 years later, Einstein developed them
into the theory of special relativity. Einstein, incidentally, was a student of
Minkowski when he was in Zurich but did not seem to understand much in
his lectures. Central relativistic concepts, such as light cone, time and space
vector go back to Minkowski; he postulated that gravitation propagates
with the speed of light, something that has not been verified experimentally.



162 From Fermat to Minkowski

Having made these few remarks about Minkowski's work in physics, we
turn to Minkowski's life. When Gottingen offered him a position as a full
professor, he wrote:

Hermann Minkowski. born 22 June 1864 in Alexoten in Russia, attended the
Altstadtische Gymnasium zu Konigsberg in Preussen from 1872 to 1880.
Starting on Easter 1880. he studied mathematics, first five semesters in
Konigsberg in Prussia with Heinrich Weber. then three semesters in Berlin
with Kronecker and Weierstrass. He obtained his Ph.D. in Konigsberg in
Prussia on 30 July 1885 and obtained permission to teach at the University
(Habilitation) in Bonn on 15 April 1887. He obtained a position as ausseror-
dentlicher Professor in Bonn on 12 August 1892. In April of 1894. he moved
to Konigsberg and was made a full professor there on 18 March 1895.
Minkowski resigned this position on 12 October 18% to accept an offer as
Professor of Mathematics at the Eidgenossische Polytechnikum in Zurich. a
position which he held until the Fall of 1902. On 7 July 1902. Minkowski was
appointed full Professor in Gottingen.

Minkowski had been a full Professor in Gottingen for seven years when
he suddenly died of appendicitis on January 12, 1909.

We learn much about Minkowski's life, his person and his scientific work
from a lengthy obituary by his close friend David Hilbert (1862-1943), the
most important mathematician of the time and one of the most important
mathematicians of all times, and the recollections of his daughter which
were published as an introduction to an edition of his letters to Hilbert.

Charles Hermite
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Hermann Minkowski
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According to these sources, Minkowski was the scion of a family of Jewish
merchants which came from the boundary area between Russia. Poland,
Lithuania. and East Prussia (in terms of pre-World War I boundaries). The
village Alexoten which is mentioned in his curriculum is located opposite
the city of Kaunas (Kowno) on the River Memel. Political unrest, the
Polish revolt against Russia. and discrimination against Jews at universities
in Russia prompted the family to move to Konigsberg, at that time the
capital city of the German province of East Prussia. Like his brothers.
Hermann Minkowski was extraordinarily gifted (his brother Oscar was an
important medical researcher who, among other things, first understood the
mechanism of diabetes) and, at a very early age, was able to obtain
extraordinary scientific results. Hilbert writes:

Since he was very quick and had an excellent memory he finished secondary
school very fast and was granted his abitur diploma in March 1880 when he
was only 15 years old. On Easter 1880 Minkowski started to go to university.
All together, he studied five semesters in Konigsberg, mainly with Weber and
Voigt. and three semesters in Berlin where he went to courses of lectures by
Kummer. Kronecker, Weierstrass. Helmholtz and Kirchhoff. Very early on.
Minkowski began his deep and thorough mathematical investigations. On
Easter 1881. the Academy in Paris posed the problem of the composition of
integers in sums of five squares as its prize essay. The seventeen-year-old
student attacked this topic with all his energy and solved it brilliantly,
developing, far beyond the original question, a general theory of quadratic
forms. specifically their division in orders and genera. even for arbitrary rank.
It is remarkable how well versed Minkowski was in algebraic methods.
particularly the theory of elementary divisors. and in transcendental tools.



164

1-0

l lr ( . rf r.. r

Gotthold Eisenstein

From Fermat to Minkowski

r

such as Dirichlet series and Gauss sums... . Not yet eighteen, Minkowski
submitted his paper to the Academy in Paris on 30 May 1882. Although it
was, contrary to the rules of the Academy, written in German, the Academy,
stressing the exceptional character of the case, gave Minkowski the full prize.
The report points out that a work of such importance should not be excluded
because of an irregularity in the form in which it was submitted. Minkowski
received the Grand Prix des Sciences Mathematiques in April 1883... .
When it became known in Paris that he was supposed to obtain the prize of
the Academy, the nationalistic press started completely unfounded attacks
and rumors. The Academicians C. Jordan and J. Bertrand defended Min-
kowski immediately without any reservation: "Travaillez. je vous prie, it
devenir un geometre eminent." This was the climax of the correspondence
between the great French mathematician C. Jordan and the young German
student-an admonition which Minkowski heeded. For him, a very produc-
tive period with many publications started.

The above estimates for the minimum M, by Hermite and Minkowski,
naturally lead to the question of the best possible bound, i.e., the question
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of finding lattices, so-called extremal lattices, with determinant I and best
possible M. Let µ" be the largest value such that a lattice of determinant I
exists in R" for which the distances between different lattice points are all
> µ,,. This problem has only been solved for dimension G 8. One has:

(9.7) Theorem (Korkint, Zolotareff, Blichfeldt). For n = 2, ... , 8. p" as-
sumes the values

4/3 , , t/4 , 'vi 'V6_4 / 3 ,
F

There is an easy proof only when n - 2. In this case, the lattice is
constructed by covering the plane with isosceles triangles; in other words, it

is spanned by the vectors (4 4/3 , 0) and ( Y4/3 ,
4 3/4 ). The fundamen-

tal domain obviously has area I - 44/3 . ' 3/4 ; one can easily show that
M is maximal for this lattice. (Proof: Consider an extremal lattice. Without
loss of generality, let (a, 0), a > 0 be a lattice point with minimal distance
from 0. Then the second basis vector can be written in the form (b, I/a).
Let c be parallel to the axis of the lattice with distance 1/a; then c contains
lattice points with the distance a. Choosing the point closest to the y-axis,
we can ensure that b G a/2. If a > f4/-3, we would have a4 > I and
consequently I/a2 < 3a2/4, i.e., a2/4 + 1/a2 < a2, and a2/4 + I/a2
< a and b2 + I/a2 < a. This says that (b, I la) has a smaller distance to
the origin than a, a contradiction to our assumption.)

We will now describe the lattices for which the maximum µ" is assumed.
in dimensions 2 to 8. First we consider the following graphs [these graphs
are important in many areas of mathematics, specifically in the theory of
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Lie groups (whence the notation A 2..... E8) or in the determination of all
Platonic solids]. For any of these graphs with n points, one constructs a
lattice in W' in the following way. A basis vector of the lattice corresponds
to each point of the graph. All basis vectors have the same length. If there
is a direct link between the points that correspond to two basis vectors, the
basis vectors are connected by an angle of 60°: otherwise, they are
orthogonal to each other. One finally determines the length of the basis
vectors in such a way that the fundamental cell has volume 1. This
determines the lattice.

r--- 0 S S S --c
A2 A3 04 D5

0. S
E6 E7 E8

We have already mentioned that it is difficult to show that these lattices
have the required property. but it is easy to calculate that µ has the given
values. Let b,..... b,, be basis vectors which, for now, are all of length a.
i.e., their inner product (b,, b;) is equal to 2. The inner product between
two neighboring basis vectors is 1 (= 2cos60°), and for two basis vectors
that are not neighbors, the inner product is 0. In other words,

2. b;= bi,
(b;.bl) = I. b;,b, ne igh bors .

0. b, h, no t ne igh bor s.

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 1 0 0 0

2
I ` 2 1 0

0 0 1 2 0 0 0 0
1 2 1

I 2
0 0 1 0 2 1 0 00 1 2 0 0 0 0 0 2 1 0
0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 2

are the corresponding matrices, and it is not difficult to show that they are
positive definite.

It is well known that the determinant of the matrix B - (<b;, bj)) is equal
to the square of the volume of the fundamental domain. (Write b; as a
linear combination of the orthonormal basis e,..... a", b; _ Sye,. Then
B°(/3,)'(A,).)
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None of the latice points are closer to the origin than b,: for suppose
0 $ 2:",-Ikibi, ki E l is an arbitrary lattice point: then

(±k.b1.±k1) k,k<bi,b>

I i j adjacent
i`%

One obtains the number µ" by explicitly computing det(B). Let us look at
the case n = 3 as an example. Then

2 1 0
B = 1 2 1 det(B) = 4.

0 1 2

This means that the volume of the fundamental cell is 2. To obtain the
volume 1, one has to multiply everything by the factor I/i2 . The minimal
distance is //V _V-2. This lattice occurs in the crystal structure of
many elements, among them silver and gold. In general. if one wants to
obtain the volume I for the fundamental cell, one has to multiply the basis
vectors by the factor a - 1 /2' det B . The minimal distance is aF.

The case it = 8 is particularly interesting. Then det B = I and the mini-
mal distance is y. The corresponding symmetric bilinear form b is not
isomorphic to the unit form x, + + xe because b assumes only even
values.

The question of the maximum p, is connected to the problem of densest
sphere packings. This is the problem of packing infinitely many spheres (of
equal radius) in R" as densely as possible. This problem is open for all n 3
even though all physicists "know" (and no mathematician would doubt
this) that the lattice that belongs to A3 supplies the densest packing in R3:
every lattice point will be the center of a sphere.

To conclude this topic we want to draw the reader's attention to another
unsolved problem which is of practical importance in the theory of crystal
structures. If one tries to determine the crystal structure of an object, one
measures the distances between the different lattice planes by x-ray interfer-
ence (the Debye-Scherrer experiment). We do not know whether these
distances determine the lattice uniquely.
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CHAPTER 10
Preview: Reduction Theory

The main emphasis of this book has been on the theory of quadratic forms,
and we have given special attention to reduction theory. The main question
of reduction theory can be formulated in the following way. Let us consider
the real-valued quadratic forms in n variables. We look for inequalities for
the coefficients such that every form is integrally equivalent to one and
only one reduced form, i.e., to a form which satisfies all these inequalities.
(From now on, without again stating this explicitly, we will confine our-
selves to positive forms.)

In the simplest case of forms of two variables, we have described the
solution of this problem by Lagrange and discussed some of its applica-
tions. The question is much more complicated for three variables. It was
solved by Seeber, a student of Gauss. Dirichlet gave a proof using only
methods from elementary geometry (see References). If the form is given
by the matrix

a d e

d b f ,

e f c

the Seeber-Dirichlet conditions are the following:
0<a;9 b'c,

21d! - :5 a, 2tej : a, 21 fI b,

either d. e, f ? 0
or d,e, f_<0 and -2(d+e+ f)<a+b.

(There are additional constraints in exceptional cases such as a = b, etc.,
which we will not discuss.)
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For more than three variables, the problem is so complicated that an
explicit solution is not known (and would probably not be of any interest
because it would be so complicated). Minkowski, in one of his most
important papers, gave a nonconstructive solution to the problem. This we
will now describe. A quadratic form in n variables or a symmetric n x n
matrix has j n(n + 1) - N free coefficients and will thus be interpreted as
an clement of the- Euclidean space R"'. Then:

(10.1) Theorew (Minkowski). There is a convex cone H in R", with finitely
many hyperplanes through the origin as boundaries, such that for every positive
symmetric matrix A E R", an integrally equivalent matrix TAT' E H exists.
It is uniquely determined if it is in the interior of H. (H contains positive
Jbrms only.)

The theorem states that a general reduction theory similar to the theory
for two and three variables exists. Minkowski proves a second basic
theorem by considering the part H, of H which contains all symmetric
matrices of determinant < 1. He calculates the volume of H, :

(10.2) 11meorew (Minkowski).

volume(HI) = 2" j (2) . (n)
n+ s2...s"

where sk is the .+ rface area of the k-dimensional unit sphere, i.e.,

2s"'+1
ak a 2nk/2

r(k/2)
M!

22-+'ir-mi
(2m)!

for k=2(m+ 1),

for k=2m+1.

First note that H, is not uniquely determined. However, since a change
of variables with determinant I does not change the volume, vol(H1) is
uniquely determined.

Perhaps the n ost interesting aspect of this deep and difficult theorem is
that these formulas inductively yield geometrical interpretations for all
values (n) (also for odd n, see the chapter on Euler). Look, for example, at
the case n - 2. Then vol(H,) - 2j'(2)/3v; on the other hand, using
Lagrange's explicit description of H,, one obtains vol(H,) - IT/9 after a
computation of approximately half a page length. This is equivalent to
Euler's formula

t(2) - 6
Analogously, for x - 3 one obtains

t(3) - 24vo1(H1).
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The Seeber-Dirichlet inequalities and the condition on the determinant
describe H, explicitly, which means that this formula can be seen as a
satisfactory interpretation of j;(3). (Alternatively, one might attempt to
calculate the sextuple integral for vol(H,), but presumably no one has ever
attempted this.)

Minkowski had a completely different reason for calculating the volume
of H, (one should not forget that there was no way to guess what the result
would be). According to Hermits (9.3), the class number h(d) is finite for
the forms of determinant d. The volume of H, can be used to describe the
asymptotic growth h(d). For a positive real number t, the area of tH,
contains all reduced forms with determinant t". This area has volume
t Nvol(H,), which means that the volume of the space of all reduced forms
with determinants s d equals d<n*t>'2vol(H,). For large d, this volume is
approximasely equal to the number of integral lattice points (corresponding
to the integral quadratic forms) in this area, and we obtain

d
h(l) ± h(d)

vol(H,). (10.3)

[If one were to assume that h(d) grows uniformly (which is not the case),
differentiating would yield that h(d) grows like d("-')/2 up to a'constant
factor. For the case n - 2, C. L. Siegel has shown that the class numbers
of the imaginary. quadratic fields with discriminant d satisfy the as-
ymptotic law logh(d)---1og(rd).j

For n = 2, Gauss found a formula of the type, (10.3), by a "theoretical
investigation," as he expresses it in §302 of Disquisitiones. He did not prove
this but one would suspect that he actually did have a proof because he
would certainly have mentioned "induction" if he had relied on numerical
evidence only. Altogether, §$301403 contain a number of interesting
asymptotic formulas and statements on classes and genera which even
today have not all been proved. In fact, the situation which Gauss consid-
ers is somewhat more complicated because he only deals with primitive
forms, i.e., forms whose coefficients do not have a common divisor. This
leads to a factor (3), which is explained by the following observation of
Gauss: When one considers n-tuples of integers, fi(n) - 1 is the probability
that these n numbers are relatively prime because I - I /p" is the probabil-
ity that they do not all have the factor p for any prime number p. This
means that

II (I -- p
P

describes the probabilit,, that these numbers do not have any prime number
as a common factor.

Minkowski published Theorems (10.1), (10.2), and (10.3) in his paper
"Diskontinuitatsbereich fur arithmetische Aquivalenz" in 1905 in Crelle's
journal in an anniversary vclume on the occasion of Dirichlet's one-
hundredth birthday. The paper begins with the following characteristic
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sentence. "This paper repeatedly uses methods which were developed by
Dirichlet." This clearly describes the tradition in which Minkowski saw
himself and his mathematical research.

It was clear to Minkowski that the reduction theory of quadratic forms
has a natural place in a more comprehensive "arithmetical theory of the
group of all linear transformations." However, he did not expand this
theory, but the program was picked up by C. L. Siegel and A. Weil and
today occupies a central place in mathematical research (computation of
Tamagawa numbers, etc.). We use the example of SL(n, R) to describe these
efforts. In the course of our computations, we will use analytical tools
which were not yet available to Dirichlet and Minkowski, i.e., integration
on locally compact topological groups. (A systematic presentation of alge-
braic number theory with thorough use of integration in topological groups
is given in A. Weil's Basic Number Theory, Springer-Verlag. 1967.)

Let G - SL(n, R) and I' - SL(n, Z). We investigate the homogeneous
space G/r. Let dg be the Haar measure in G which induces the metric
Ilx 112 - trace(X'X) on the Lie algebra sl(n,R). Let us now prove the main
result of this chapter.

(10.4) Theorem. G/r has the finite volume (2) ... (n)F.
PROOF. The proof is by induction on n (for n - 1 trivially vol(G/r) - I).
Let us consider the "parabolic subgroup"

P 0 g,)IxER"-I,g'E G'

(A prime ' denotes corresponding objects for n - 1, i.e., G' - SL(n - 1, R)
etc.) P is the isotropy group of the first basis vector el . Futhermore,

T- ((1.....,t")II;EZ.g.c.d.(it,....t")- 1).
r operates transitively on T. Then one obtains for arbitrary integrable
functions : R" -> R. with compact support,

fG/r(gt)dg_f,( nP+(gYeI))dg

-JG/rnP0(Bel)dg-

We now come to the decisive step in the proof: dg induces measures dg and
dp on G/P and P/r n P such that we can use Fubini's theorem and write
the latter integral as the double integral,

f (f $(gpel)dp)dg- f 0(ge.)dg f dp
G/P P/rnP G/P P/rnP

-vol(P/rn P) f O(ge.)dg-.
G/P
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P is the semidirect product of G' ;a ((0' R.)) and R"-' a ((o Since G'
operates on R" -' isometrically, dg yields the product measure dg' dx. where
dx is the Euclidean measure. Analogously, r n P is the semidirect product
of r' and R"'' n r = Z"-', hence

vol(r n PM vol( z" _ )vol( T,) = vol(

Furthermore, the natural operation of G on R" - 0 introduces a homo-
morphism G/P -a R" - 0. The orthogonal space with respect to the qua-
dratic form trace(X'X) of the Lie algebra of P is formed by the matrices

x,

x2 y

x
Then

v=-

n
Y

dx, ... dx"
1

is the induced measure.
We immediately obtain the formula

x,

n- 1 '

n vol(G'/r') f^
G

f.-f/r,(1Er'(gt))dg.n - I a

Setting C - n/(n - 1) vol(G'/I") and multiplying by fi(n), we obtain

Cr(n)f ¢(x)dx- C f i-"4(x)dx
n^ e

y

00 OC

=CEfa^0(ix)dx=>f (4t(giz))dg
-i ,- G/r r =r

f ( git )) dg= f (E #( gu)) dgG/r !-I,Er G/r uEZ^ur0
For the last equality, we have used the fact that every u r= Z" can uniquely
be written with t E T. With 4 the characteristic function XK of a compact
set K, we obtain the formula

Cr(n)vol(K)- f XK(gu)dgG/ruEZ^
u+0

Let W, be the cube with Ix,1 r and h(g,r) be the number of u with
gu e W,, i.e.,

h(g. r) - Z X.,(gu)
uEZ"u*0
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Then gu E W, if and only if u E g -'W,. We now use Gauss' and Dirich-
let's technique to compute the volume by estimating the number of lattice
points. Then

lim r-"h(g,r) = vol(g-'W,) = 2".r %

This immediately yields

2"vol(G/r) = f liraG/rr x
*h t n r r(n)C2",

that is. vol(G/r)= n/(n- 1) (n)vol(G'/r').

Unfortunately this last step is not justified. Offhand, we can not ex-
change integral and limit. Instead of the equality, one only has G , i.e., at
least the finiteness of the volume vol(G/r). Weil overcomes this problem
by the technique which Dirichlet uses to compute the Gaussian sums and
which we have occasion to admire here once more.

Let ¢(r) be the Fourier transform of ¢(x), i.e.,

¢(,o = R"Q(x)e-2 dx.

and specifically

$(0) -1"$(x)dx.

We can use the Poisson summation formula

E .0(gu)- E $(g-c)
uEZ" rEZ"

(One proves this by expanding the periodic function Z"EL-$(g(u + x))
into a uniformly convergent Fourier series and computing the expansion at
x - 0.) Then we obtain

Q(n) f ¢(x)dx+0(0)vol(G/r)t"

=fG1r"Z"4(gu)dg

=f 4(g-'c)dg=f E 4(gv)dg
ex"G/r1 Z G/rrEZ"

= Ca(n)f (x)dr+¢(o)vol(G/r),
R"

(a(n) - vol(G/r))(.(o) - o(o))
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Since this is true for every function 0, we miraculously obtain

vol(G/r) = (n) vol(G'/r').

175

This completes the proof of Theorem (10.4). We did not establish the
connection to quadratic forms, but we at least saw the natural geometrical
interpretation of the integral 3'-values. This was the main objective of this
chapter. Let us now give a quick sketch of the connection with quadratic
forms. Let P be the set of positive symmetric (n x n) matrices. P can be
interpreted as an open subset of R', N = n(n + 1)/2. Our further argument
is based on a study of the mapping

tP : G --3 P. g --> g'g.

Obviously, g'g is symmetric and positive for every invertible matrix. We
know from linear algebra (Sylvester's law of inertia) that every q e P can
be written in this form. Then the mapping 4' is surjective. The "fibers" of 0
are the cosets of the orthogonal groups 0(n) g E G I g'g - e), since
0(n)g is obviously the pre-image of g'g.

With the help of the mapping y one can easily show that it follows from
(10.1) that a fundamental domain F exists for GL(n, R)/GL(n, Z): there is a
"reasonable" set F with GL(n,R) = U.rECL,n.z,YF such that F and YF do
not have any common interior points for Y $ 1. For if one sets

F=1gEGIg'gEH,detg>0 ifnodd l
trace g > 0 if n even J

one obtains a fundamental domain F, for SL(n. R)/SL(n. Z) - G/r,
namely

-1

1

We leave the necessary easy computations to the reader. We computed the
volume of F, (with respect to Haar measure) in (10.4). Due to the condition
det(g) > 0 (or trace(g) > 0) in the definition of F, the set 4 - l(H,) consists
of two parts. They have the same volume as the cone K over F, with the
vertex at the origin. Comparing the Haar measure with the Euclidean
measure dp shows that the cone has Euclidean measure (1 g(n),
and 4,-l(H,) the volume (2/n)3'(2) ... (n). Now it is possible to compute
the volume of H, with the help of the following transformation formula. In
a way, it is a combination of the theorems of Fubini and the formula for
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the changing of variables. Let M be measurable and f : P - R integrable.
Then f(¢) is integrable and

f s22"-fMdet(a)-i/2f(a)dle(a). (10.5)

PROOF OF (10.2). Let f(a)-det(a)'/2. With the help of (10.5) one obtains

K(H,) - f dp(a) - f det(a)-1/2det(a)1/2dR.(a)

=
2" i

det gi dµ(g)
For odd n, det(g) > 0 and

F+(Hi) - fdet gdµ(g)s2...s" K
On the cone K, one has, for any integral of a function depending only on
det(g),

The statement

fKh(det g)dµ(g) - .ol(K)f'h(tt/")dt. (10.6)

2" r(2) ... r(n) n
N(Hi)s2...s" n n+l

follows immediately.

It is necessary to prove (10.6) only for the characteristic function X of
(0,c); once proved for X, one can generalize it to a step function and so on.
One has

f X(det g) dµ(g) = vol (g E K E det(g) < c)

- vol(c'/"K) - c"vol(K) - vol(K)l IX(t'/")dt.

Formula (10.5) has nothing to do with number theory; it is a statement
from the integration theory of several variables, which we will not prove
here, although we have to admit that there does not seem to be an
elementary proof in the literature.
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APPENDIX
English Translation of Gauss's Letter to
Dirichlet, November 1838

The following is a translation of the letter on pp. 97-100:

Gottingen, November 2, 1838
f owe you. my most esteemed friend, my thanks for sending me your
beautiful papers as well as for the kind words which you sent along with
them. However. I am sorry that my expectations to see you here came to
naught this time-I am very disappointed since to be with you during this
dark period would have cheered me up. too.

You mentioned my earlier communication to Mr. Krone and the discretion
I had asked him for. I wish you might not overinterpret the letter and
explain to you that, by telling him right away that he should not make
anything public, either directly or indirectly by passing it along to others, I
wanted to retain the possibility to publish my investigations myself: as soon
as I am no longer interested in working out my results, this possibility is no
longer of any concern. I would be very pleased to explain the subject to
you. but two circumstances would have to come together: from your end, a
somewhat extended stay here. and from mine. sufficient leisure (and
cheerfulness) to bring the subjects into the order necessary for further
communication. This is the more difficult since little, and nothing orga-
nized. has been written down by me. However. I can assure you of my
desire that circumstances will permit me to work things out.

However, in the immediate future I will have the little time that is left to me
from business that I must call nonscientific, to complete another investiga-
tion which meanwhile might not he without interest to you.
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When you mentioned in your letter several subjects in higher arithmetic.
my heart fills with pain. For the higher I place this part of mathematics
above all others (and have always done so). the more painful it is to me that
I am so far removed from my favorite occupation. directly or indirectly by
the circumstances. Again and again I had to delay my theory of the
number of classes of quadratic forms of which I was already in possession
in 1801 and to whose completion I have looked forward as a particularly
pleasant job. Two or three years ago I thought to have found the time and
have indeed made some progress; the opportunity presented several new
and interesting results, however not in relation to the theory itself, which is
complete since 1801, but rather in relation to insights that lead into it.
However, I had to interrupt myself again and have not been able to resume
my work, painful as this was. I am sure you yourself know from your own
experience what such a resumption would mean. This is not like an
everyday job which one can interrupt any minute and resume again. One
always has to invest a lot of effort and has to have much free time to again
bring everything to one's attention.

I was not aware of the quarrels of Poinsot or Poisson over the attraction of
elliptical spheroids of which you wrote me. However, going through the
Com[p)tes Rendus, I realized that such a quarrel was mentioned but I did
skip those pages because I am disgusted by such arguments. Indeed, just as
I like nothing better than when I realize that someone is interested in
science for the sake of science, in the same way nothing is more disgusting
to me than persons whom, for their talents, I hold in high regard show the
pettiness of their characters.

Our beloved Weber sends his cordial regards and I recommend myself to
your kind memory.

Yours, C. F. Gauss
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