SEL0310 - Ondas Eletromagnéticas

Resolução Quiz #2

Um guia retangular metálico preenchido por ar possui dimensão de $50~\mathrm{mm}$ x $40~\mathrm{mm}$. Encontre:

(a) Os modos TE e TM que se propagam neste guia com $\lambda > 37.5$ mm

Seja a frequência de corte dos modos TE e TM dada por:

$$f_{c_{mn}} = \frac{1}{2\pi\sqrt{\epsilon\mu}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Deduz-se que o comprimento de onda será em um guia de onda metálico preenchido por ar (ϵ_0, μ_0) :

$$\lambda_{c_{mn}} = \frac{c}{f} = \frac{2\pi}{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}}$$

Logo, busca-se valores (m, n) que satisfaçam a condição $\lambda_{c_{mn}} > 37.5$ mm dada pelo enunciado. Assim, seja a = 50 mm e b = 40 mm, calcula-se

m	n	$\lambda_c \; ({ m mm})$
1	0	100.0
0	1	80.0
1	1	62.5
2	0	50.0
2	1	42.4
0	2	40.0
1	2	37.1
3	0	33.3
2	2	31.2
0	3	26.7

Tabela 1: Valores do comprimento de onda de corte para (m, n).

Portanto, observa-se que os modos que satisfazem a questão são os modos:

$$TE_{10}$$
, TE_{01} , TE_{11} , TM_{11} , TE_{20} , TM_{20} , TE_{21} , TM_{21} , TE_{02} e TM_{02} .

È válido salientar que os modos TE_{00} e TM_{00} não existem, pois associam-se a campos nulos. Além disso, para o modo TM, tem-se:

$$E_z(x, y, z) = B_{m,n} \cdot sen\left(\frac{m\pi x}{a}\right) sen\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

Logo, se m = 0, n = 1 ou m = 1, n = 0, encontra-se $E_z=0$, o que conduz a ausência de campos. Assim, os modos TM_{01} e TM_{10} também não existem.

(b) A velocidade de fase relativa (v_p/c) para os modos para os quais $\lambda=0.6$ $\lambda_c.$

Sejam $v_0 = c$ e $\lambda = \lambda_0$ a velocidade e o comprimento de onda, respectivamente, no espaço livre (\sim ar), tem-se:

$$\frac{v_p}{c} = \frac{1}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$$

Assim, para os modos do guia retangular em que $\lambda=0.6~\lambda_c$, a velocidade de fase relativa assume o valor $v_p/c=1.25$