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Unconstrained Optimization

The problem of interest
Given f : Rn → R find

min
x∈Rn

f (X )

Fundamentals

• Recognizing a local minimum

• Gradient-based algorithms

• Line search methods

• Trust region

• Derivative free algorithms
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Unconstrained Optimization

The problem of interest
Given f : Rn → R find

min
x∈Rn

f (X )

How to recognize a local minimum?

Necessary conditions and sufficient conditions
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Unconstrained Optimization

What are necessary and sufficient conditions for a local minimum?

• Necessary conditions: Conditions satisfied by every local minimum

• Sufficient conditions: Conditions which guarantee a local minimum

Easy to characterize a local minimum if f is sufficiently smooth
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Unconstrained Optimization - using derivatives

A naive example

Consider f : R→ R, f (x) = (x − 2)2

• Find a stationary point f
′
(x∗) = 0

• Identify if it is a minimum

Finding the real roots of g(x) = f
′
(x) may be difficult. Examples: find the minimum

of f (x) = x2 − ex
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Unconstrained Optimization - using derivatives

First order necessary condition
If x∗ is a local minimizer and f is continuously differentiable in a open neighborhood

of x∗, then ∇f (x∗) = 0

Second order necessary condition

If x∗ is a local minimizer and ∇2f exists and is continuously in a open neighborhood

of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite.

Second order sufficient condition

Suppose that ∇2f (x∗) is continuous in an open neighborhood of x∗ If the following

two conditions are satisfied, then x∗ is a strict local minimizer of f:

• ∇f (x∗) = 0

• ∇2f (x∗) is positive semidefinite.
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Algorithms for unconstrained optimization

How do we compute the optimal (local or global) solutions?

• Analytically: only possible for some simple problems (e.g. univariate

minimization)

• Numerically: required for most engineering optimization problems (too large and

complex to solve analytically)

Numerical optimization algorithms used to solve these problems
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Algorithms for unconstrained optimization

Goals

• Robust: low failure rate, convergence conditions are met

• Fast: convergence in a few iterations and low cost per iteration

• Feasible: reasonable memory requirements

Algorithm design involves tradeoffs to achieve these goals (e.g. using high-order

information may lead to fewer iterations, but each iteration becomes more expensive)

Algorithms are iterative in nature

Categorization

• Gradient-based v. Derivative-free

• Global v. local

Gradient-based algorithms tend to be local, while derivative-free algorithms tend to

be global
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Algorithms for unconstrained optimizationn

Characteristics

• Commom feature: they start from an initial guess x0 ∈ Rn and generate a

sequence of iterates {xk}k such that xk → x∗, x∗ ∈ argminx∈Rn f (x)

• Usually make progress towards solving the problem in every iteration, that is,

f (xk+1) < f (xk) (descent methods).

• In practice x∗ cannot be obtained precisely. The process stops when xk is

sufficiently close to x∗ .

• Optimality conditions can serve as a stopping criterion when they are satisfied to

within a predetermined error tolerance.

• It is important that {xk}k converges to x∗ at a rapid rate

faster convergence ↔ higher computational cost per iteration.
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Algorithms for unconstrained optimization

Line search
The algorithm chooses a direction pk and searches along this direction from the

current point xk for a new iterate with a lower function value

Trust region
The information gathered about f is used to construct a model function mk whose

behavior near the current point xk is similar to that of the actual objective function f .

As mk may not be a good approximation of f far from xk , we restrict the search for

a minimizer of mk to some region around xk

minpmk (xk + p)

where xk + p lies inside the trust region
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Unconstrained Optimization

Descent Directions
Definition Let x̂ ∈ Rn and f : Rn → R. The vetor p ∈ Rnis called a descent

direction for f at x̂ if ∃ᾱ ∈ R++ such that

0 < α ≤ ᾱ⇒ f (x̂ + αp) < f (x̂)

If there is a descent direction x̂ is not a local minimizer.

Descent Directions
Let f : Rn → R be partially differentiable with continuous partial derivatives and let

x̂ ∈ Rn, p ∈ Rn. Suppose p
′∇f (x̂) < 0. Then p is a descent direction for f at x̂

Obvious choice: p = −∇f (x̂)

Usually considers normalized direction −∇f (x̂)
||∇f (x̂)||
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Examples

(1) Consider f (x) = (x1 − 1)2 + (x2 − 3)2 ∀x ∈ R2

Show that

[
1

3

]
is a minimizer (use information about the Hessian). Can you

find a descent direction at this point?

(2) Consider f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8 (x1 − 1) (x2 − 3)

• Find ∇f (x) and ∇2f (x)

• Write f (x) as f (x) = 1
2 x

tQx + ctx (Hint: c =

[
3.4

−4.2

]
)

• Beginning with x (0) =

[
3

−5

]
find the next step of the steepest descent method(

x (1)
)
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Example

Level curves ad descent directions of f (x) = (x1 − 1)2 + (x2 − 3)2 ∀x ∈ R2

Point

[
1

3

]
is indicated as •
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Unconstrained Optimization

Generic Line Search Method

Given x0, set k := 0.

Until xk has converged,

1 Calculate a search direction pk from xk , ensuring that this is a descent direction

2 Calculate a suitable step-length λk > 0 so that

f (xk + λkdk) < f (xk)

The computation of λk is called line search, (usually an inner iterative loop).

3 Set xk+1 ← xk + λkdk

4 k ← k + 1.

Go to Step 1.

Methods differ according to steps (1) and (2) .
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Unconstrained Optimization

Steepest descent algorithm

Given x0, set k := 0.

1 dk = −∇f (xk ). If ∥dk∥ ≤ ϵ ,then stop.

2 Solve minλf (xk + λdk ), obtaining the step-length λk , perhaps chosen by an exact

or inexact line-search.

3 Set xk+1 ← xk + λkdk

4 k ← k + 1.

Go to Step 1.
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Example - steepest descent

∇f (x(0)) =
[

18.4

−19.6

]

x(1) = x(0) + α(0)∇f (x(0)) =
[

3

−5

]
+ α(0)

[
18.4

−19.6

]

Obtain α(0) through the minimization of f
(
α(0)

)
, x(1) ≈

[
−1.8467
0.1628

]
Far from optimal solution! After two iterations you get close to the optimal solution
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Example - Steepest descent

Starting point x(0) =

[
−2
−5

]
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Unconstrained optimization

The steepest descent
The convergence depends on the objective function:

Figure 1: Slow convergence

Figure 2: Fast convergence
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Unconstrained optimization

Bissection

Consider f (x) : R→ R convex and differentiable.

Let
[
a1, b1

]
be an uncertainty interval

Let l be a given precision level, and n the lowest integer such that
(
1
2

)n ≤ l
b1−a1

k ← 1

1 Consider
[
ak , bk

]
Calcule λk = ak+bk

2
e f

′ (
λk

)
2 If f

′ (
λk

)
= 0,

stop

3 If f
′ (

λk
)
> 0,ak+1 ← ak e bk+1 ← λk Go to step 5

4 If f
′ (

λk
)
< 0,ak+1 ← λk e bk+1 ← bk Go to step 5

5 If k = n stop, the minimum in in
[
ak , bk

]
. Otherwise k ← k + 1 Go to step 1
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Unconstrained optimization

Bissection
Example

Min f (λ) = λ2 + 2λ on [−3, 6], com l = 0.2

n = 6

k ak bk λk f
′
(λk)

1 -3.0000 6.0000 1.5000 5.0000

2 -3.0000 1.5000 -0.7500 0.5000

3 -3.0000 -0.7500 -1.8750 -1.7500

4 -1.8750 -0.7500 -1.3125 -0.6250

5 -1.3125 -0.7500 -1.0313 -0.0625

6 -1.0313 -0.7500 -0.8907 0.2186

7 -1.0313 -0.8907

Solution −0.961
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Unconstrained Optimization

Unimodal functions

Let ϕ : R→ R and x∗ ∈ [a, b] a minimum of ϕ,

The function ϕ is said to be unimodal on [a, b] if for

a ≤ x1 < x2 ≤ b

• x2 < x∗ ⇒ ϕ(x1) > ϕ(x2)

• x1 > x∗ ⇒ ϕ(x2) > ϕ(x1)
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Dichotomous Search Algorithm

• Inicialization step

Choose ϵ > 0, l > 0 and an initial interval of uncertainty, [a1, b1]

• while (bk − ak ) > l

• λk =
ak+bk

2 − ϵ µk =
ak+bk

2 + ϵ

• if ϕ(λk ) < ϕ(µk )

• then

• ak+1 = ak and bk+1 = µk

• else

• ak+1 = λk and bk+1 = bk
• endif

• k = k + 1;

• end while

• Output: x∗ = ak+bk
2
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Unconstrained Optimization

Example

Find the minimum of f (x) = 1
4
x4 − 5

3
x3 − 6x2 + 19x − 7

( unimodular in [−4, 4] )
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k ak bk bk − ak

0 -4 0 4

1 -4 -1.98 2.02

2 -3.0001 -1.98 1.0201

3 -3.0001 -2.4849 0.5152

10 -2.5669 -2.5626 0.0043

20 -2.5652 -2.5652 4.65e−6

23 -2.5652 -2.5652 5.99e−7

x∗ = −2.5652 , f (x∗) = −56.2626
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Unconstrained Optimization

Taylor’s theorem
Suppose f : Rn → R is continuously differentiable and that p ∈ Rn. Then we have

f (x + p) = f (x) +∇f (x + tp)Tp

for com t ∈ (0, 1)
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Theorem Convergence

Assume f twice continuously differentiable on an open interval (a,b) and that there

exists x∗ ∈ (a, b) with f
′
(x∗) ̸= 0 Define Newton’s method by the sequence

xk+1 = xk −
f (xk)

f ′ (xk )
, k = 1, 2, 3, ...

Assume also that xk converges to x∗ as k →∞. Then, for k sufficiently large,

∥xk+1 − x∗∥ ≤ M∥xk − x∗∥2 if M >
f
′′
(x∗)

2f
′
(x∗)

Thus, xk converges to x∗ quadratically .
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Unconstrained Optimization

Line search with derivarives - Newton’s Method
The method is based on the quadratic approximation of the function ϕ at a given

point λk

ϕ(λ) ≈ q(λ) = ϕ(λk) + ϕ
′
(λk)(λ− λk) +

1

2
ϕ

′′
(λk)(λ− λk)

2︸ ︷︷ ︸
derivative equals to zero

Main step

λk+1 = λk −
ϕ

′
(λk)

ϕ′′ (λk)
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Unconstrained Optimization

• Newton’s method presents quadratic convergence when the initial point is close

to the optimal solution.

• Numerical difficulties occur when the second derivative is close to zero.

• If a poor starting point is chosen the method may fail to converge or diverge.
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Example 1

ϕ(λ) =

{
4λ3 − 3λ4 ifλ ≥ 0

4λ3 + 3λ4 ifλ < 0

Consider

a) λ0 = 0.40

b) λ0 = 0.60
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Example 2

Find a zero of f (x) = x
1+x2

In this case the sequence is given as

λk+1 = λk −
f (λk)

f ′ (λk )

Consider

a) x0 = 0.5 and ϵ = 10−4

b) x0 = 0.75 and ϵ = 10−4
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