PRO 5970 Métodos de Otimização Não Linear

Celma de Oliveira Ribeiro 2023

Departmento de Engenharia de Produção Universidade de São Paulo

The problem of interest

Given $f : \mathbb{R}^n \to \mathbb{R}$ find

 $\min_{x\in\mathbb{R}^n}f(X)$

Fundamentals

- Recognizing a local minimum
- Gradient-based algorithms
 - Line search methods
 - Trust region
- Derivative free algorithms

The problem of interest

Given $f : \mathbb{R}^n \to \mathbb{R}$ find

 $\min_{x\in\mathbb{R}^n}f(X)$

How to recognize a local minimum?

Necessary conditions and sufficient conditions

What are necessary and sufficient conditions for a local minimum?

- Necessary conditions: Conditions satisfied by every local minimum
- Sufficient conditions: Conditions which guarantee a local minimum

Easy to characterize a local minimum if f is sufficiently smooth

A naive example

Consider $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (x - 2)^2$

- Find a stationary point $f'(x^*) = 0$
- Identify if it is a minimum

Finding the real roots of g(x) = f'(x) may be difficult. Examples: find the minimum of $f(x) = x^2 - e^x$

First order necessary condition

If x^* is a local minimizer and f is continuously differentiable in a open neighborhood of x^* , then $\nabla f(x^*) = 0$

First order necessary condition

If x^* is a local minimizer and f is continuously differentiable in a open neighborhood of x^* , then $\nabla f(x^*) = 0$

Second order necessary condition

If x^* is a local minimizer and $\nabla^2 f$ exists and is continuously in a open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

First order necessary condition

If x^* is a local minimizer and f is continuously differentiable in a open neighborhood of x^* , then $\nabla f(x^*) = 0$

Second order necessary condition

If x^* is a local minimizer and $\nabla^2 f$ exists and is continuously in a open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

Second order sufficient condition

Suppose that $\nabla^2 f(x^*)$ is continuous in an open neighborhood of x^* If the following two conditions are satisfied, then x^* is a strict local minimizer of f:

- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*)$ is positive semidefinite.

How do we compute the optimal (local or global) solutions?

- Analytically: only possible for some simple problems (e.g. univariate minimization)
- Numerically: required for most engineering optimization problems (too large and complex to solve analytically)

Numerical optimization algorithms used to solve these problems

Goals

- Robust: low failure rate, convergence conditions are met
- Fast: convergence in a few iterations and low cost per iteration
- Feasible: reasonable memory requirements

Algorithm design involves tradeoffs to achieve these goals (e.g. using high-order information may lead to fewer iterations, but each iteration becomes more expensive)

Algorithms are iterative in nature

Categorization

- Gradient-based v. Derivative-free
- Global v. local

Gradient-based algorithms tend to be local, while derivative-free algorithms tend to be global

Common feature: they start from an initial guess x₀ ∈ ℝⁿ and generate a sequence of iterates {x_k}_k such that x_k → x^{*}, x^{*} ∈ arg min_{x∈ℝⁿ} f(x)

- Common feature: they start from an initial guess x₀ ∈ ℝⁿ and generate a sequence of iterates {x_k}_k such that x_k → x*, x* ∈ arg min_{x∈ℝⁿ} f(x)
- Usually make progress towards solving the problem in every iteration, that is, $f(x_{k+1}) < f(x_k)$ (descent methods).

- Common feature: they start from an initial guess x₀ ∈ ℝⁿ and generate a sequence of iterates {x_k}_k such that x_k → x*, x* ∈ arg min_{x∈ℝⁿ} f(x)
- Usually make progress towards solving the problem in every iteration, that is, $f(x_{k+1}) < f(x_k)$ (descent methods).
- In practice x^\ast cannot be obtained precisely. The process stops when x_k is sufficiently close to x^\ast .

- Commom feature: they start from an initial guess x₀ ∈ ℝⁿ and generate a sequence of iterates {x_k}_k such that x_k → x*, x* ∈ arg min_{x∈ℝⁿ} f(x)
- Usually make progress towards solving the problem in every iteration, that is, $f(x_{k+1}) < f(x_k)$ (descent methods).
- In practice x^\ast cannot be obtained precisely. The process stops when x_k is sufficiently close to x^\ast .
- Optimality conditions can serve as a stopping criterion when they are satisfied to within a predetermined error tolerance.

- Commom feature: they start from an initial guess x₀ ∈ ℝⁿ and generate a sequence of iterates {x_k}_k such that x_k → x*, x* ∈ arg min_{x∈ℝⁿ} f(x)
- Usually make progress towards solving the problem in every iteration, that is, $f(x_{k+1}) < f(x_k)$ (descent methods).
- In practice x^\ast cannot be obtained precisely. The process stops when x_k is sufficiently close to x^\ast .
- Optimality conditions can serve as a stopping criterion when they are satisfied to within a predetermined error tolerance.
- It is important that $\{x_k\}_k$ converges to x^* at a rapid rate

faster convergence \leftrightarrow higher computational cost per iteration.

Line search

The algorithm chooses a direction p_k and searches along this direction from the current point x_k for a new iterate with a lower function value

Line search

The algorithm chooses a direction p_k and searches along this direction from the current point x_k for a new iterate with a lower function value

Trust region

The information gathered about f is used to construct a model function m_k whose behavior near the current point x_k is similar to that of the actual objective function f.

As m_k may not be a good approximation of f far from x_k , we restrict the search for a minimizer of m_k to some region around x_k

 $min_p m_k (x_k + p)$

where $x_k + p$ lies inside the trust region

Descent Directions Definition Let $\hat{x} \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$. The vetor $p \in \mathbb{R}^n$ is called a descent direction for f at \hat{x} if $\exists \bar{\alpha} \in \mathbb{R}_{++}$ such that

$$0 < \alpha \le \bar{\alpha} \Rightarrow f(\hat{x} + \alpha p) < f(\hat{x})$$

If there is a descent direction \hat{x} is not a local minimizer.

Descent Directions

Let $f : \mathbb{R}^n \to \mathbb{R}$ be partially differentiable with continuous partial derivatives and let $\hat{x} \in \mathbb{R}^n$, $p \in \mathbb{R}^n$. Suppose $p' \nabla f(\hat{x}) < 0$. Then p is a descent direction for f at \hat{x}

Obvious choice: $p = -\nabla f(\hat{x})$

Usually considers normalized direction $\frac{-\nabla f(\hat{x})}{||\nabla f(\hat{x})||}$

Examples

Example

Level curves ad descent directions of $f(x) = (x_1 - 1)^2 + (x_2 - 3)^2 \,\, orall x \in \mathbb{R}^2$

Generic Line Search Method

Given x_0 , set k := 0.

Until x_k has converged,

- 1 Calculate a search direction p_k from x_k , ensuring that this is a descent direction
- 2 Calculate a suitable step-length $\lambda_k > 0$ so that

$$f(x_k + \lambda_k d_k) < f(x_k)$$

The computation of λ_k is called line search, (usually an inner iterative loop).

3 Set
$$x_{k+1} \leftarrow x_k + \lambda_k d_k$$

 $4 \ k \leftarrow k+1.$

Go to Step 1.

Methods differ according to steps (1) and (2).

Steepest descent algorithm

Given x_0 , set k := 0.

- 1 $d_k = -\nabla f(x_k)$. If $||d_k|| \le \epsilon$,then stop.
- 2 Solve $min_{\lambda}f(x_k + \lambda d_k)$, obtaining the step-length λ_k , perhaps chosen by an exact or inexact line-search.

3 Set
$$x_{k+1} \leftarrow x_k + \lambda_k d_k$$

 $4 \ k \leftarrow k+1.$

Go to Step 1.

$$\nabla f(x^{(0)}) = \left[\begin{array}{c} 18.4\\ -19.6 \end{array} \right]$$

 $\nabla f(\mathbf{x}^{(0)}) = \begin{bmatrix} 18.4\\ -19.6 \end{bmatrix}$

$$x^{(1)} = x^{(0)} + \alpha^{(0)} \nabla f(x^{(0)}) = \begin{bmatrix} 3\\ -5 \end{bmatrix} + \alpha^{(0)} \begin{bmatrix} 18.4\\ -19.6 \end{bmatrix}$$

 $\nabla f(x^{(0)}) = \left[\begin{array}{c} 18.4\\ -19.6 \end{array} \right]$

$$x^{(1)} = x^{(0)} + \alpha^{(0)} \nabla f(x^{(0)}) = \begin{bmatrix} 3\\ -5 \end{bmatrix} + \alpha^{(0)} \begin{bmatrix} 18.4\\ -19.6 \end{bmatrix}$$

Obtain $\alpha^{(0)}$ through the minimization of $f(\alpha^{(0)})$, $x^{(1)} \approx \begin{bmatrix} -1.8467 \\ 0.1628 \end{bmatrix}$

 $\nabla f(x^{(0)}) = \left[\begin{array}{c} 18.4\\ -19.6 \end{array} \right]$

$$x^{(1)} = x^{(0)} + \alpha^{(0)} \nabla f(x^{(0)}) = \begin{bmatrix} 3\\ -5 \end{bmatrix} + \alpha^{(0)} \begin{bmatrix} 18.4\\ -19.6 \end{bmatrix}$$

Obtain $\alpha^{(0)}$ through the minimization of $f(\alpha^{(0)})$, $x^{(1)} \approx \begin{bmatrix} -1.8467 \\ 0.1628 \end{bmatrix}$

Far from optimal solution! After two iterations you get close to the optimal solution

 $\nabla f(x^{(0)}) = \left[\begin{array}{c} 18.4\\ -19.6 \end{array} \right]$

$$x^{(1)} = x^{(0)} + \alpha^{(0)} \nabla f(x^{(0)}) = \begin{bmatrix} 3\\ -5 \end{bmatrix} + \alpha^{(0)} \begin{bmatrix} 18.4\\ -19.6 \end{bmatrix}$$

Obtain $\alpha^{(0)}$ through the minimization of $f(\alpha^{(0)})$, $x^{(1)} \approx \begin{bmatrix} -1.8467 \\ 0.1628 \end{bmatrix}$

Far from optimal solution! After two iterations you get close to the optimal solution

The steepest descent

The convergence depends on the objective function:

Figure 2: Fast convergence

Consider $f(x) : \mathbb{R} \to \mathbb{R}$ convex and differentiable.

Let $[a^1, b^1]$ be an uncertainty interval Let l be a given precision level, and n the lowest integer such that $(\frac{1}{2})^n \le \frac{l}{b^1 - a^1}$ $k \leftarrow 1$

$$\begin{array}{l} 1 \ \, {\rm Consider} \ \left[a^k, b^k \right] \ \, {\rm Calcule} \ \, \lambda^k = \frac{a^k + b^k}{2} \ \, {\rm e} \ f' \ \, \left(\lambda^k \right) \\ \\ 2 \ \, {\rm If} \ f' \ \, \left(\lambda^k \right) = 0, \end{array} \end{array}$$

Consider $f(x) : \mathbb{R} \to \mathbb{R}$ convex and differentiable.

Let $[a^1, b^1]$ be an uncertainty interval Let l be a given precision level, and n the lowest integer such that $(\frac{1}{2})^n \le \frac{l}{b^1 - a^1}$ $k \leftarrow 1$

$$\begin{array}{l} 1 \ \, {\rm Consider} \ \left[a^k,b^k\right] \ \, {\rm Calcule} \ \, \lambda^k = \frac{a^k+b^k}{2} \ \, {\rm e} \ f' \ \, \left(\lambda^k\right) \\ \\ 2 \ \, {\rm If} \ f' \ \, \left(\lambda^k\right) = 0, \ \, {\rm stop} \\ \\ 3 \ \, {\rm If} \ f' \ \, \left(\lambda^k\right) > 0, \end{array} \end{array}$$

Consider $f(x) : \mathbb{R} \to \mathbb{R}$ convex and differentiable.

Let $[a^1, b^1]$ be an uncertainty interval Let l be a given precision level, and n the lowest integer such that $(\frac{1}{2})^n \leq \frac{l}{b^1 - a^1}$ $k \leftarrow 1$

1 Consider
$$[a^k, b^k]$$
 Calcule $\lambda^k = \frac{a^k + b^k}{2} e f'(\lambda^k)$
2 If $f'(\lambda^k) = 0$, stop
3 If $f'(\lambda^k) > 0, a^{k+1} \leftarrow a^k e b^{k+1} \leftarrow \lambda^k$ Go to step 5
4 If $f'(\lambda^k) < 0$,

Consider $f(x) : \mathbb{R} \to \mathbb{R}$ convex and differentiable.

Let $[a^1, b^1]$ be an uncertainty interval Let l be a given precision level, and n the lowest integer such that $(\frac{1}{2})^n \le \frac{l}{b^1 - a^1}$ $k \leftarrow 1$

1 Consider
$$[a^k, b^k]$$
 Calcule $\lambda^k = \frac{a^k + b^k}{2} \in f'(\lambda^k)$
2 If $f'(\lambda^k) = 0$, stop
3 If $f'(\lambda^k) > 0, a^{k+1} \leftarrow a^k \in b^{k+1} \leftarrow \lambda^k$ Go to step 5
4 If $f'(\lambda^k) < 0, a^{k+1} \leftarrow \lambda^k \in b^{k+1} \leftarrow b^k$ Go to step 5
5 If $k = n$ stop, the minimum in $[a^k, b^k]$. Otherwise $k \leftarrow k + 1$ Go to step 1

Bissection

Example

Min $f(\lambda) = \lambda^2 + 2\lambda$ on [-3, 6], com l = 0.2

Bissection

Example

Min $f(\lambda) = \lambda^2 + 2\lambda$ on [-3, 6], com l = 0.2

k	a _k	b _k	λ_k	$f^{'}(\lambda_{k})$

Bissection

Example

Min $f(\lambda) = \lambda^2 + 2\lambda$ on [-3, 6], com l = 0.2

ſ	k	a _k	b_k	λ_k	$f'(\lambda_k)$
ſ	1	-3.0000	6.0000	1.5000	5.0000

Bissection

Example

Min
$$f(\lambda) = \lambda^2 + 2\lambda$$
 on $[-3, 6]$, com $l = 0.2$

ĺ	k	a _k	b _k	λ_k	$f^{'}(\lambda_{k})$
	1	-3.0000	6.0000	1.5000	5.0000
	2	-3.0000	1.5000	-0.7500	0.5000

Example

Min $f(\lambda) = \lambda^2 + 2\lambda$ on [-3, 6], com l = 0.2

k	a _k	b_k	λ_k	$f^{'}(\lambda_{k})$
1	-3.0000	6.0000	1.5000	5.0000
2	-3.0000	1.5000	-0.7500	0.5000
3	-3.0000	-0.7500	-1.8750	-1.7500

Example

Min
$$f(\lambda) = \lambda^2 + 2\lambda$$
 on $[-3, 6]$, com $l = 0.2$

n = 6

k	a _k	b_k	λ_k	$f^{'}(\lambda_{k})$
1	-3.0000	6.0000	1.5000	5.0000
2	-3.0000	1.5000	-0.7500	0.5000
3	-3.0000	-0.7500	-1.8750	-1.7500
4	-1.8750	-0.7500	-1.3125	-0.6250
5	-1.3125	-0.7500	-1.0313	-0.0625
6	-1.0313	-0.7500	-0.8907	0.2186
7	-1.0313	-0.8907		

Solution -0.961

Unimodal functions

Let $\phi : \mathbb{R} \to \mathbb{R}$ and $x^* \in [a, b]$ a minimum of ϕ ,

The function ϕ is said to be unimodal on [a, b] if for

 $a \le x_1 < x_2 \le b$

•
$$x_2 < x^* \Rightarrow \phi(x_1) > \phi(x_2)$$

• $x_1 > x^* \Rightarrow \phi(x_2) > \phi(x_1)$

• Inicialization step

Choose $\epsilon > 0$, l > 0 and an initial interval of uncertainty, $[a_1, b_1]$

• while $(b_k - a_k) > l$

•
$$\lambda_k = \frac{a_k + b_k}{2} - \epsilon$$
 $\mu_k = \frac{a_k + b_k}{2} + \epsilon$

• if
$$\phi(\lambda_k) < \phi(\mu_k)$$

• then

•
$$a_{k+1} = a_k$$
 and $b_{k+1} = \mu_k$

• else

•
$$a_{k+1} = \lambda_k$$
 and $b_{k+1} = b_k$

• endif

•
$$k = k + 1;$$

• end while

• Output:
$$x^* = \frac{a_k + b_k}{2}$$

Example

Find the minimum of $f(x) = \frac{1}{4}x^4 - \frac{5}{3}x^3 - 6x^2 + 19x - 7$ (unimodular in [-4,4])

k	a _k	b _k	$b_k - a_k$
0	-4	0	4
1	-4	-1.98	2.02
2	-3.0001	-1.98	1.0201
3	-3.0001	-2.4849	0.5152
10	-2.5669	-2.5626	0.0043
20	-2.5652	-2.5652	4.65e ⁻⁶
23	-2.5652	-2.5652	$5.99e^{-7}$

 $x^* = -2.5652$, $f(x^*) = -56.2626$

Taylor's theorem

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^n$. Then we have

$$f(x+p) = f(x) + \nabla f(x+tp)^T p$$

for com $t \in (0, 1)$

Assume f twice continuously differentiable on an open interval (a,b) and that there exists $x^* \in (a, b)$ with $f'(x^*) \neq 0$ Define Newton's method by the sequence

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 1, 2, 3, ...$$

Assume also that x_k converges to x^* as $k \to \infty$. Then, for k sufficiently large, $\|x_{k+1} - x^*\| \le M \|x_k - x^*\|^2$ if $M > \frac{f^{''}(x^*)}{2f'(x^*)}$

Thus, x_k converges to x^* quadratically.

Line search with derivarives - Newton's Method

The method is based on the quadratic approximation of the function ϕ at a given point λ_k

$$\phi(\lambda) \approx q(\lambda) = \underbrace{\phi(\lambda_k) + \phi^{'}(\lambda_k)(\lambda - \lambda_k) + \frac{1}{2}\phi^{''}(\lambda_k)(\lambda - \lambda_k)^2}_{\text{derivative equals to zero}}$$

Main step

$$\lambda_{k+1} = \lambda_k - \frac{\phi'(\lambda_k)}{\phi''(\lambda_k)}$$

- Newton's method presents quadratic convergence when the initial point is close to the optimal solution.
- Numerical difficulties occur when the second derivative is close to zero.
- If a poor starting point is chosen the method may fail to converge or diverge.

Example 1

$$\phi(\lambda) = egin{cases} 4\lambda^3 - 3\lambda^4 & ext{if}\lambda \geq 0 \ 4\lambda^3 + 3\lambda^4 & ext{if}\lambda < 0 \end{cases}$$

Consider

a) $\lambda_0 = 0.40$ b) $\lambda_0 = 0.60$

Example 2

Find a zero of $f(x) = \frac{x}{1+x^2}$ In this case the sequence is given as

$$\lambda_{k+1} = \lambda_k - \frac{f(\lambda_k)}{f'(\lambda_k)}$$

Consider

a)
$$x_0 = 0.5$$
 and $\epsilon = 10^{-4}$
b) $x_0 = 0.75$ and $\epsilon = 10^{-4}$