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Unconstrained Optimization

The problem of interest
Given f : R" — R find

Fundamentals

e Recognizing a local minimum
e Gradient-based algorithms

e Line search methods
e Trust region

e Derivative free algorithms
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Unconstrained Optimization

The problem of interest

Given f : R" — R find
min £(X)
xERN

’ How to recognize a local minimum? ‘

’ Necessary conditions and sufficient conditions ‘
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Unconstrained Optimization

What are necessary and sufficient conditions for a local minimum?

e Necessary conditions: Conditions satisfied by every local minimum

e Sufficient conditions: Conditions which guarantee a local minimum

Easy to characterize a local minimum if f is sufficiently smooth
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Unconstrained Optimization - using derivatives

A naive example
Consider f : R — R, f(x) = (x —2)?

e Find a stationary point f/(x*) =0

e Identify if it is a minimum

Finding the real roots of g(x) = f (x) may be difficult. Examples: find the minimum
of f(x) = x% — eX
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Unconstrained Optimization - using derivatives

First order necessary condition
If x* is a local minimizer and f is continuously differentiable in a open neighborhood
of x*, then Vf(x*) =0
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Unconstrained Optimization - using derivatives

First order necessary condition
If x* is a local minimizer and f is continuously differentiable in a open neighborhood
of x*, then Vf(x*) =0

Second order necessary condition

If x* is a local minimizer and V2f exists and is continuously in a open neighborhood
of x*, then Vf(x*) = 0 and V2f(x*) is positive semidefinite.
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Unconstrained Optimization - using derivatives

First order necessary condition
If x* is a local minimizer and f is continuously differentiable in a open neighborhood
of x*, then Vf(x*) =0

Second order necessary condition
If x* is a local minimizer and V2f exists and is continuously in a open neighborhood
of x*, then Vf(x*) = 0 and V2f(x*) is positive semidefinite.

Second order sufficient condition
Suppose that sz(x*) is continuous in an open neighborhood of x* If the following
two conditions are satisfied, then x™* is a strict local minimizer of f:

e Vi(x*)=0

o V2f(x*) is positive semidefinite.
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Algorithms for unconstrained optimization

How do we compute the optimal (local or global) solutions?

e Analytically: only possible for some simple problems (e.g. univariate
minimization)

e Numerically: required for most engineering optimization problems (too large and
complex to solve analytically)

Numerical optimization algorithms used to solve these problems ‘
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Algorithms for unconstrained optimization

Goals
e Robust: low failure rate, convergence conditions are met
e Fast: convergence in a few iterations and low cost per iteration

e Feasible: reasonable memory requirements

Algorithm design involves tradeoffs to achieve these goals (e.g. using high-order
information may lead to fewer iterations, but each iteration becomes more expensive)

Algorithms are iterative in nature

Categorization
e Gradient-based v. Derivative-free

e Global v. local

Gradient-based algorithms tend to be local, while derivative-free algorithms tend to
be global
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Algorithms for unconstrained optimizationn

Characteristics

e Commom feature: they start from an initial guess xg € R” and generate a
sequence of iterates {x\}, such that x, — x*, x* € arg min,crn f(x)
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Algorithms for unconstrained optimizationn

Characteristics

e Commom feature: they start from an initial guess xg € R” and generate a
sequence of iterates {x\}, such that x, — x*, x* € arg min,crn f(x)

e Usually make progress towards solving the problem in every iteration, that is,
f(xk4+1) < f(xk) (descent methods).
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Algorithms for unconstrained optimizationn

Characteristics

e Commom feature: they start from an initial guess xg € R” and generate a
sequence of iterates {x\}, such that x, — x*, x* € arg min,crn f(x)

e Usually make progress towards solving the problem in every iteration, that is,
f(xk4+1) < f(xk) (descent methods).

e In practice x* cannot be obtained precisely. The process stops when xj is
sufficiently close to x* .
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Algorithms for unconstrained optimizationn

Characteristics

e Commom feature: they start from an initial guess xg € R” and generate a
sequence of iterates {x\}, such that x, — x*, x* € arg min,crn f(x)

e Usually make progress towards solving the problem in every iteration, that is,
f(xk4+1) < f(xk) (descent methods).

e In practice x* cannot be obtained precisely. The process stops when xj is
sufficiently close to x* .

e Optimality conditions can serve as a stopping criterion when they are satisfied to
within a predetermined error tolerance.
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Algorithms for unconstrained optimizationn

Characteristics

e Commom feature: they start from an initial guess xg € R” and generate a
sequence of iterates {x\}, such that x, — x*, x* € arg min,crn f(x)

e Usually make progress towards solving the problem in every iteration, that is,
f(xk4+1) < f(xk) (descent methods).

e In practice x* cannot be obtained precisely. The process stops when xj is
sufficiently close to x* .

e Optimality conditions can serve as a stopping criterion when they are satisfied to
within a predetermined error tolerance.

e It is important that {x;}, converges to x* at a rapid rate

faster convergence <+ higher computational cost per iteration.
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Algorithms for unconstrained optimization

Line search
The algorithm chooses a direction pyx and searches along this direction from the
current point xi for a new iterate with a lower function value
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Algorithms for unconstrained optimization

Line search
The algorithm chooses a direction pyx and searches along this direction from the
current point xi for a new iterate with a lower function value

Trust region
The information gathered about f is used to construct a model function my whose
behavior near the current point x is similar to that of the actual objective function f.

As my may not be a good approximation of f far from x;, we restrict the search for
a minimizer of my to some region around xy

minpmy (xx + p)

where x; + p lies inside the trust region
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Unconstrained Optimization

Descent Directions
Definition Let X € R” and f : R” — R. The vetor p € R"is called a descent

direction for f at X if 3@ € R4 such that

0<a<a= f(&+ap) < f(X)

If there is a descent direction X is not a local minimizer.

Descent Directions
Let f : R" — R be partially differentiable with continuous partial derivatives and let

X € R", p € R". Suppose prf(Q) < 0. Then p is a descent direction for f at X

Obvious choice: p = —Vf(X)

—VF()

Usually considers normalized direction -
Y Gl
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Examples

(1) Consider f(x) = (x1 — 1)® + (x2 — 3)® ¥x € R?

Show that 3 is a minimizer (use information about the Hessian). Can you

find a descent direction at this point?
(2) Consider f(x) = (x1 — 1) + (x0 —3)% — 1.8 (x1 — 1) (x2 — 3)
e Find Vf(x) and V*f(x)

e Write f(x) as f(x) = $x"Qx + c'x (Hint: ¢ = [ _i; })

e Beginning with x© = |: g } find the next step of the steepest descent method

()

Celma de Oliveira Ribeiro



Example

(x1 —1)% + (xo — 3)2 Vx € R?

Level curves ad descent directions of f(x)

is indicated as o

Ribeiro
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Unconstrained Optimization

Generic Line Search Method
Given xp, set k := 0.
Until xx has converged,
1 Calculate a search direction py from xi, ensuring that this is a descent direction

2 Calculate a suitable step-length A\ > 0 so that
f(Xk + )\kdk) < f(Xk)

The computation of A\ is called line search, (usually an inner iterative loop).
3 Set xp41 < Xk + Aedk
4 k< k + 1.

Go to Step 1.

Methods differ according to steps (1) and (2) .
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Unconstrained Optimization

Steepest descent algorithm
Given xp, set k := 0.
1 dx = =V f(xk). If ||dk]] < € then stop.

2 Solve minyf(xx + Adk), obtaining the step-length Ax, perhaps chosen by an exact
or inexact line-search.

3 Set Xp41 — Xk + Acdk
4 k «+ k + 1.
Go to Step 1.
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Example - steepest descent

VF(x©) = [ 712'2 ]
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Example - steepest descent

VF(x©) = [ 712'2 ]

3

-5

(1) = x(0) O wvf(x0) =
X x\9 4+ V£ (xD)) [ 106

a® { 18.4 }
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Example - steepest descent

VF(x©) = [ 712'2 ]

3

1) = (0 | 4O yF(x(0)) = [ .

Obtain a(® through the minimization of f (a(o)) , x(1)
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Example - steepest descent

VF(x©) = [ 712'2 ]

1) = x(0) 4 O TF(x(0) = [ _2 N0 { _12:2 }
Obtain a(® through the minimization of f (a(o)) , x(1) ~ —1.8467
0.1628

Far from optimal solution! After two iterations you get close to the optimal solution
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Example - steepest descent

VF(x©) = [ 712'2 ]

1) = x(0) 4 O TF(x(0) = [ _3 NG { _12:2 }
Obtain a(® through the minimization of f (a(o)) , x(1) ~ —1.8467
0.1628

Far from optimal solution! After two iterations you get close to the optimal solution
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Example - Steepest descent

Starting point x(0) = |: 7? }
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Unconstrained optimization

Bissection
Consider f (x) : R — R convex and differentiable.

Let [al, bl] be an uncertainty interval

Let / be a given precision level, and n the lowest integer such that (%)" < ﬁ

k<+1
1 Consider [a¥, bK] Calcule \* = # ef (A9
21 £ (A%) =0,
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Unconstrained optimization

Bissection
Consider f (x) : R — R convex and differentiable.

Let [al, bl] be an uncertainty interval

Let / be a given precision level, and n the lowest integer such that (%)" < ﬁ

k<+1
1 Consider [a¥, bK] Calcule \* = # ef (A9
2 If £ (Ak) =0, stop
31U f (W) >0,
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Unconstrained optimization

Bissection
Consider f (x) : R — R convex and differentiable.

Let [al, bl] be an uncertainty interval

Let / be a given precision level, and n the lowest integer such that (%)" < ﬁ

k+1
1 Consider [a¥, bK] Calcule \* = # ef (A9
2 If £ (Ak) =0, stop
30FfF ()\k) > 0,1 +— ak e bK*T1 « XK Go to step 5
40f f (M) <o,

Celma de Oliveira Ribeiro



Unconstrained optimization

Bissection
Consider f (x) : R — R convex and differentiable.

Let [al, bl] be an uncertainty interval

Let / be a given precision level, and n the lowest integer such that (%)" < ﬁ

k<+1
1 Consider [a¥, bK] Calcule \* = # ef (A9
2 If £ (Ak) =0, stop
30FfF ()\k) > 0,1 +— ak e bK*T1 « XK Go to step 5
4 0f f (AF) < 0,a%*L «— Xk e bkl + pk Go to step 5
5 If k = n stop, the minimum in in [ak7 bk]. Otherwise k + k+ 1 Go to step 1
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Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2
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Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2
n==6

k ‘ ag ‘ bk )\k

) |
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Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2
n==6

ajl bk )\k

(M)

1 | -3.0000 | 6.0000 1.5000
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Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2
n==6

ag bk )\k f/(>\k)

1 | -3.0000 | 6.0000 1.5000 5.0000
-3.0000 | 1.5000 | -0.7500 | 0.5000
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Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2

n==~6
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k ax br M (M)
1| -3.0000 | 6.0000 | 1.5000 | 5.0000
2 | -3.0000 | 1.5000 | -0.7500 | 0.5000
3 | -3.0000 | -0.7500 | -1.8750 | -1.7500




Unconstrained optimization

Bissection
Example

Min f (\) = A2 +2X on [-3,6], com | = 0.2

n==6

k ax br M (M)
1| -3.0000 | 6.0000 | 1.5000 | 5.0000
2 | -3.0000 | 1.5000 | -0.7500 | 0.5000
3 | -3.0000 | -0.7500 | -1.8750 | -1.7500
4 | -1.8750 | -0.7500 | -1.3125 | -0.6250
5 | -1.3125 | -0.7500 | -1.0313 | -0.0625
6 | -1.0313 | -0.7500 | -0.8907 | 0.2186
7 | -1.0313 | -0.8907
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Unconstrained Optimization

Unimodal functions
Let ¢ : R — R and x* € [a, b] @ minimum of ¢,

The function ¢ is said to be unimodal on |[a, b] if for

a<xy<x<b

e xp < x* = ¢(x1) > d(x2)
e x1 > x* = ¢(x2) > o(x1)
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Dichotomous Search Algorithm

e Inicialization step
Choose € > 0, / > 0 and an initial interval of uncertainty, [a1, b1]
e while (bk — ak) >

ag+b ag+b,
)\k:ka* #k:k2k+5

°
o if p(Ak) < H(pk)
e then
® a1 = ak and bryr = pk
e else
° a1 = Ak and byy1 = by
e endif

o k=k+1;

e end while

e Output: x* = w
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Unconstrained Optimization

Example
Find the minimum of f(x) = %x“ - %X?’ —6x%+19x — 7

(unimodular in [—4,4] )
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ak by by — ay

k

0 -4 0 4

1 -4 -1.98 2.02
2 | -3.0001 | -1.98 1.0201
3 | -3.0001 | -2.4849 | 0.5152
10 | -2.5669 | -2.5626 | 0.0043
20 | -2.5652 | -2.5652 | 4.65¢~°
23 | -2.5652 | -2.5652 | 5.99¢~7

x* = —2.5652 , f(x*) = —56.2626
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Unconstrained Optimization

Taylor’s theorem
Suppose f : R" — R is continuously differentiable and that p € R”. Then we have

f(x+p) = f(x) + VF(x+tp)Tp

for com t € (0,1)
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Theorem Convergence

Assume f twice continuously differentiable on an open interval (a,b) and that there
exists x* € (a, b) with f'(x*) # 0 Define Newton's method by the sequence

f(x)
f-/ (Xk) )

Xk+1 = Xk — k=1,2,3,...
Assume also that x, converges to x* as k — oo. Then, for k sufficiently large,

17
. fo(x*
[ = x| < Ml = |2 if M > 23

Thus, x, converges to x* quadratically .
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Unconstrained Optimization

Line search with derivarives - Newton’s Method
The method is based on the quadratic approximation of the function ¢ at a given

point Ak
B = 4N) = B0 + ¢ (WO = M) + 56 () — M2
derivative equals to zero
Main step
¢ (k)
Mt =M 00
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Unconstrained Optimization

e Newton's method presents quadratic convergence when the initial point is close
to the optimal solution.

o Numerical difficulties occur when the second derivative is close to zero.

e If a poor starting point is chosen the method may fail to converge or diverge.
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Example 1
4X3 —3)\* ifA>0
s =4 "
4N + 3\ ifA<O0

Example Newton Bazaraa 8.2.2

Consider
a) Ao =0.40
b) Ao = 0.60
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Example 2

Find a zero of f(x) = 75 In this case the sequence is given as
Akl = Ak — GO
F' (M)
s Example Newton f(x) = x / (1+x%) s Example Newton 2 f(x) = x / (14x?)
04 04
03 03
02 02
01 01
o o
041 01
02 02
03 03
04 04
o %.5 06 04 0.2 o 02 04 06 08 1 ° 5'30 -25 -20 -15 -10 -5

Consider

a) xo=0.5and e=10"*%
b) xo = 0.75 and e = 10~#
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