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Positive semi definite matrices

Definition

A symmetric matrix A ∈ Rn×n is called positive semidefinite if

x
′
Ax ≥ 0 ∀x ∈ Rn

It is called positive definite if

x
′
Ax > 0 ∀x ∈ Rn, x ̸= 0

A symmetric matrix A ∈ Rn×n is called negative semidefinite if

x
′
Ax ≤ 0 ∀x ∈ Rn

It is called negative definite if

x
′
Ax < 0 ∀x ∈ Rn, x ̸= 0

Celma de Oliveira Ribeiro



Positive semidefinite funccions

Definition
For an n × n matrix of A, a minor of order k is principal if it is obtained by deleting

n − k rows and the corresponding n − k columns.

For instance, in a principal minor where you have deleted row 1 and 3, you should also

delete column 1 and 3.

Definition

For a given k ∈ {1, 2, . . . , n} the dominant principal submatrix Ak of matrix A

(∈ Rn) is given as


a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...

ak1 ak2 . . . akk
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Definition
The k − th leading principal minor of an n× n matrix is the determinant of the k × k

matrix obtained by deleting the last n − k rows and columns of the matrix.

The leading principal minors of a matrix A n × n are the determinants of the

submatrices:

A1 = [a11]

A2 =

[
a11 a12
a21 a22

]
...

An =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann



Celma de Oliveira Ribeiro



Observation
The matrix A is positive semidefinite if and only if −A is negative semidefinite.

Similarly a matrix A is positive definite if and only if −A is negative definite.

Theorem
The following statements are equivalent:

• The symmetric matrix A is positive definite (semidefinite).

• All eigenvalues of A are stricly positive (non negative ).

• There exists a non singular B ∈ Rn×k such that A = B
′
B. (B may be singular) 1
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Theorem
Let A be a symmetric n × n matrix. Then:

A is positive definite ⇔ all leading principal minors are positive

A is positive semidefinite ⇔ determinant of all minors are non negative ≥ 0

• In the first case, it is enough to check the inequality for all the leading principal

minors (i.e. for 1 ≤ k ≤ n).

• In the last case, we must check for all minors , i.e. for each 1 ≤ k ≤ n and for

each of the

(
n

k

)
principal minors of order k.
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Example - Positive definite  2 −1 0

−1 2 −1

0 −1 2


det(A1) = 2 > 0 det(A2) = 3 > 0 det(A3) = 4 > 0

Example - Indefinite  0 0 1

0 0 0

1 0 2


Leading minors det(A1) = 0 det(A2) = 0 det(A3) = 0

k = 2 det(a22) = 0 , det(a33) = 2

k = 1

det

[
0 1

1 2

]
= −1 det

[
0 0

0 2

]
= 0
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