PRO 5970 Métodos de Otimização Não Linear

Convexity and matrices

Celma de Oliveira Ribeiro
2023

Departmento de Engenharia de Produção
Universidade de São Paulo

Positive semi definite matrices

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive semidefinite if

$$
x^{\prime} A x \geq 0 \quad \forall x \in \mathbb{R}^{n}
$$

It is called positive definite if

$$
x^{\prime} A x>0 \quad \forall x \in \mathbb{R}^{n}, x \neq 0
$$

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called negative semidefinite if

$$
x^{\prime} A x \leq 0 \quad \forall x \in \mathbb{R}^{n}
$$

It is called negative definite if

$$
x^{\prime} A x<0 \quad \forall x \in \mathbb{R}^{n}, x \neq 0
$$

Positive semidefinite funccions

Definition

For an $n \times n$ matrix of A, a minor of order k is principal if it is obtained by deleting $n-k$ rows and the corresponding $n-k$ columns.

For instance, in a principal minor where you have deleted row 1 and 3 , you should also delete column 1 and 3.

Definition

For a given $k \in\{1,2, \ldots, n\}$ the dominant principal submatrix A_{k} of matrix A $\left(\in \mathbb{R}^{n}\right)$ is given as

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]
$$

Definition

The k-th leading principal minor of an $n \times n$ matrix is the determinant of the $k \times k$ matrix obtained by deleting the last $n-k$ rows and columns of the matrix.

The leading principal minors of a matrix A $n \times n$ are the determinants of the submatrices:

$$
\begin{aligned}
A_{1} & =\left[a_{11}\right] \\
A_{2} & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
\end{aligned}
$$

$$
A_{n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Observation

The matrix A is positive semidefinite if and only if $-A$ is negative semidefinite. Similarly a matrix A is positive definite if and only if $-A$ is negative definite.

Theorem

The following statements are equivalent:

- The symmetric matrix A is positive definite (semidefinite).
- All eigenvalues of A are stricly positive (non negative).
- There exists a non singular $B \in \mathbb{R}^{n \times k}$ such that $A=B^{\prime} B$. (B may be singular $)^{1}$

Theorem

Let A be a symmetric $n \times n$ matrix. Then:
A is positive definite \Leftrightarrow all leading principal minors are positive
A is positive semidefinite \Leftrightarrow determinant of all minors are non negative ≥ 0

- In the first case, it is enough to check the inequality for all the leading principal minors (i.e. for $1 \leq k \leq n$).
- In the last case, we must check for all minors, i.e. for each $1 \leq k \leq n$ and for each of the $\binom{n}{k}$ principal minors of order k.

Example - Positive definite

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]} \\
& \operatorname{det}\left(A_{1}\right)=2>0 \quad \operatorname{det}\left(A_{2}\right)=3>0 \\
& \operatorname{det}\left(A_{3}\right)=4>0
\end{aligned}
$$

Example - Indefinite

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

$$
\text { Leading minors } \operatorname{det}\left(A_{1}\right)=0 \quad \operatorname{det}\left(A_{2}\right)=0 \quad \operatorname{det}\left(A_{3}\right)=0
$$

$$
\begin{aligned}
& \mathrm{k}=2 \quad \operatorname{det}\left(a_{22}\right)=0, \operatorname{det}\left(a_{33}\right)=2 \\
& \mathrm{k}=1
\end{aligned}
$$

$$
\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]=-1 \quad \operatorname{det}\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]=0
$$

