

Biossensores plasmônicos

Cristina Kurachi

Nanobiosensors and Bioanalytical applications (NanoB2A) – ICN2

Institut Català de Nanociència y Nanotecnologia

Medical diagnostics

Clinical laboratory

- Limited and centralized laboratories
- Trained personnel and time-consuming analysis
- Expensive instrumentation

Point-of-Care diagnostics

- Fast, portable and user-friendly
- Decentralized analysis: diagnosis in situ
- Healthcare improvement in
- resource-constrained settings

Lateral-Flow Assay Test

Pregnancy Test

Biosensors

Quantitative signal

Yes/No Response Low sensitivity Difficulties for

multiplexed assays

- High sensitivity
- Integrated technology

- - E.

Biosensors

"Self-contained integrated device that provides specific quantitative or semiquantitive analytical information using a biological or biomimetic recognition element which is in direct spatial contact with a transducer." (IUPAC definition)

Main properties

- Rapid and simple analysis
- Sensitive and selective
- Small devices
- Low-cost production

Biomedical Applications

- Diagnosis and monitoring
- Biomarker identification
- Drug discovery

Surface Plasmon Resonance

Surface Plasmon Resonance (SPR) Biosensor

Surface Plasmon Resonance: Collective oscillation of surface electrons at the interface of a metal (e.g. Au) and a dielectric that generates an evanescent wave sensitive to RI changes.

- Evanescent Field Penetration: 100 500 nm
- Light Coupling: Prism / Waveguide / Gratings

Surface Plasmon Resonance (SPR) Biosensor

Intensity changes (ΔR)

Real-time monitoring

Surface Plasmon Resonance (SPR) Biosensor

Localized Surface Plasmon Resonance (LSPR) Biosensor

Localized Surface Plasmon Resonance: Oscillation of surface electrons of metal nanoparticles ($\emptyset < \lambda$), inducing a dipolar field that generates an evanescent wave sensitive to RI changes.

- Evanescent Field Penetration: 30 50 nm
- Light Coupling: not required
- Size and shape tunability

Numerous sensor schemes and devices

Plasmonic Nanostructured Surfaces

Nanorods

Nanodisks

Nanoholes

LSPR Detection Systems

Localized Surface Plasmon Resonance (LSPR) Biosensor

LSPR-based Waveguide Biosensor:

In-plane LSPR excitation enhances the nanoparticle polarizability, creating an effective RI sufficiently large to support a guided EM mode.

Localized Surface Plasmon Resonance (LSPR) Biosensor

Gold Nanodisks Structured Surfaces

Hole-mask Colloidal Lithography:

Diameter = 100 nm / Height = 20 nm / Density = 6-7%

User-friendly
Real-time analysis
Small (20 x 20 cm)
Low-cost production
Surface Functionalization

- Selective capture of target analyte
- Sensitive detection of small amounts
- Stability and reproducibility

Optimum analysis performance

Key factors

- Density of receptors
- Accessibility of the target
- Orientation
- Retaining of biological activity
- Stable linkage
- Anti-fouling properties

Nanostructured surface:

- Receptor immobilization solely on sensor spots (gold nanodisks)
- Anti-fouling coating of nonsensing areas
 - (glass substrate)

BiModal Waveguide sensor

One of the most sensitive label-free existing biosensors

Standard Microelectronics technology

Miniaturization, integration & mass-production

Truly portable POC

Si technology

Polymer microfluidics

DNA methylation analysis

César Sanchez Albert Piqué Cristina Kurachi Laura Lechuga

Epigenetics mechanisms

Epigenetics

 changes in a chromosome that affect gene activity and expression;

 any heritable phenotypic change that doesn't derive from a modification of the genome;

- functionally relevant changes to the genome that do not involve a change in the nucleotide sequence.

Nature Reviews | Genetics

DNA Methylation

Cytosine methylation in DNA. (A) Addition of a methyl group, CH3 (red), at the five position of the cytosine pyrimidine ring (black arrow) does not sterically interfere with GC base pairing (blue lines).

DNA Methylation - implications

- Embryonic development
- Cell differentiation
- Cell death (cDNA)
- Syndromes: Fragile X and Rett (learning disabilities and cognitive impairment)
- Cancer (cDNA)

K Warton and G Samimi, Front Mol Biosci 2:13, 2015 R Lehmann-Werman et al., PNAS E1826-34, 2016

Figure 1: DNA methylation and cancer.

The diagram shows a representative region of genomic DNA in a normal cell. The region shown contains repeat-rich, hypermethylated pericentromeric heterochromatin and an actively transcribed tumour suppressor gene (TSG) associated with a hypomethylated CpG island (indicated in red). In tumour cells, repeat-rich heterochromatin becomes hypomethylated and this contributes to genomic instability, a hallmark of tumour cells, through increased mitotic recombination events. *De novo* methylation of CpG islands also occurs in cancer cells, and can result in the transcriptional silencing of growth-regulatory genes. These changes in methylation are early events in tumorigenesis.

© 2005 <u>Nature Publishing Group</u> Robertson, K. DNA methylation and human disease. *Nature Reviews Genetics* **6**, 598.

cDNA methylation in cancer diagnosis

• Motivation: gene mutations can be spread over very large regions of its sequence

Complex development: blood tests based on DNA mutations

DNA methylation usually occurs in the CpG islands, it can be consistently measured.

Assay	Biological relevance	Amount of DNA required (used in our assay)	Equipment needed
LINE1	\sim 700,00 copies, which relates to \sim 17% in human genome§	500 pg –2 μg (250 ng)	Thermal cycler, Pyrosequencer
Alu	${\sim}1,100,00$ copies, which relates to ${\sim}11\%$ in human genome§	500 pg -2 μg (250 ng)	Thermal cycler, Pyrosequencer
LUMA	Proportion of CpGs located within Hpall sites (5'CCGG'3) in the human genome is 4.14% in transposable elements +3.90% in unique sequence (8.04% in total) [#]	100 —500 ng (100 ng)	Incubator, Pyrosequencer
HPLC-UV	Total 5mC in the human genome	1 –5µg (3 µg)	HPLC

Table 1. Overview of various assays to assess global DNA methylation, depicting their biological relevance.

[§]Information taken from [37] and [38]. [#] Information taken from [39 doi:10.1371/journal.pone.0079044.t001

PCR

Gold standard

Lisanti S, Omar WAW, Tomaszewski B, De Prins S, Jacobs G, et al. (2013) Comparison of Methods for Quantification of Global DNA Methylation in Human Cells and Tissues. PLOS ONE 8(11): e79044. doi:10.1371/journal.pone.0079044 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079044

DNA sequences

Duplex <i>PAX-5</i> gene probe	5'SH-(T) ₁₅ -GGAGGGAAGGAAGGCTTCAGCCTG 3'	
PAX-5 + strand 1x 5mCpG	5 ' TCCCGTAGGTG <mark>C</mark> mGCTGGCTAGCGCCCGGCG <u>CAGGCTGAAGCCTTCCTTCCCTCC</u> CCCCAACCCCTATAA AAGTCTGGGGCGGCG3 '	
PAX-5 + strand 4x 5mCpG	5 ' TCC <mark>C</mark> mGTAGGTG <mark>C</mark> mGCTGGCTAGCGCC <mark>C</mark> mGGCG <u>CAGGCTGAAGCCTTCCTTCCCTCC</u> CCCCAACCCCTAT AAAAGTCTGGGGC <mark>m</mark> GGCG3 '	
<i>PAX-5</i> – strand Non-methylated	5 ' CGCCGCCCCAGACTTTTATAGGGGTTGGGGGGGGGGGGG	

Anna Aviñó and Ramón Eritja (IQAC)

С

D

В

Pneumocystis jirovecii pneumonia (PcP) detection

César Sanchez Cristina Kurachi Anna Aviñó Laura Lechuga

Pneumocystis jirovecii pneumonia

- Opportunistic infection caused by an ascomycete fungus
- Up to 20% of mortality rate
- AIDS patients
- Other immunocompromised conditions
 - Solid organ transplant
 - Hematological malignancies
 - Chemotherapy and/or steroidal therapy for prolonged duration
 - Auto-immune disorders
 - Chronic pulmonary disorders

Laboratory diagnosis of PcP

•No *in vitro* system for routinely obtaining *Pneunomocystis* isolates

• <u>Microscopic detection</u>: bronchoalveolar lavage fluid (BALF), induced sputum samples or lung biopsy specimens *(costly, unpleasant to the patient, time consuming and specialized technicians in clinical settings are needed)*. False negative: low fungal loads.

•<u>Molecular detection</u>: Conventional or real-time PCR assays based on the amplification of the large subunit of mitochondrial ribosomal RNA (mtLSUrRNA) (*sample preparation, instrumentation needed, and time consuming*). Overdetection: colonization x infection.

P. jirovecii at lung biopsy specimen (top) and Pap smear (bottom)

Silver Gram staining

Gold standard: visualization of *P jirovecii* cysts and/or trophozoites in biopsy lung specimens

Product Description

MycoReal Pneumocystis

Order No.: RTPM400, RTPM401, or RTPM403

Unit: 50 reactions

For research use only, not for diagnostic use

MycAssay Pneumocystis kit

(Myconostica, UK) – clinical test

- PCR technology
- Up to 4 hours
- > 2 mL sample (colected by BAL)
- 93% sensitivity (13 out of 14 pts)

FIG 2 Results of qPCR (C_T of amplification) according to final diagnosis (A) or HIV status (B), expressed as the mean \pm SEM. The values were compared using *t* tests. Statistically significant differences are marked as *, P < 0.05 or ***, P < 0.001.

Protocol:

- 1 mL BALF sample
- DNA extraction
- qPCR targeting mtLSU
- Amplification for 40 cycles

mitochondrial large-subunit of Pneumocystis jirovecii (mt LSU)

Quantification in copies/mL was not reliable

 C_T : mean amplification cycle threshold

Triplex helix

Probe: DNA "tail-clamp"

Target: nucleic acid sequences of the *P jirovecii*

Targeting genes of *PcP* which are more suitable to be identified in the exhale of patients from oropharyngeal washes in pneumonia patients.

 Selected the gene encoding the mitochondrial large-subunit of Pneumocystis jirovecii (mt LSU)

- Immobilization protocol
 - Pre-heating: 20 min @ 70°C (DNA + TCEP)
 - 20 min @ room temperature
 - Overnight *ex situ* immobilization (1 DNA probe : 1 PEG)
- Target hybridization
 - SCC5x, SCC5x/FA20%
 - MgCl₂ (1.5, 2.5, 5 and 10 mM)

Sensor calibration

Muchas gracias!