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PREFACE

When I began writing the first edition, my intent was to write a text in time-series

macroeconometrics. Fortunately, a number of my colleagues convinced me to broaden

the focus. Applied microeconomists have embraced time-series methods, and the

political science journals have become more quantitative. As in the previous editions,

examples are drawn from macroeconomics, agricultural economics, international

finance, and my work with Todd Sandler on the study of domestic and transnational

terrorism. You should find that the examples in the text provide a reasonable balance

between macroeconomic and microeconomic applications.

1. BACKGROUND

The text is intended for those with some background in multiple regression analysis.

I presume the reader understands the assumptions underlying the use of ordinary least

squares. All of my students are familiar with the concepts correlation and covariation;

they also know how to use t-tests andF-tests in a regression framework. I use terms such

asmean square error, significance level, and unbiased estimatewithout explaining their
meaning. Two chapters of the text examine multiple time-series techniques. To work

through these chapters, it is necessary to know how to solve a system of equations

using matrix algebra. Chapter 1, entitled “Difference Equations,” is the cornerstone

of the text. In my experience, this material and a knowledge of regression analysis

are sufficient to bring students to the point where they are able to read the professional

journals and to embark on a serious applied study. Nevertheless, one unfortunate reader

wrote, “I did everything you said in you book, and my article still got rejected.”

Some of the techniques illustrated in the text need to be explicitly programmed.

Structural VARs need to be estimated using a package that has the capacity to manip-

ulate matrices. Monte Carlo methods are very computer intensive. Nonlinear models

need to be estimated using a package that can perform nonlinear least squares and max-

imum likelihood estimation. Completely menu-driven software packages are not able

to estimate every form of time-series model. As I tell my students, by the time a pro-

cedure appears on the menu of an econometric software package, it is not new. To get

the most from the text, you should have access to a program such as EViews, RATS,

MATLAB, R, STATA, SAS, or GAUSS.

I take the term applied that appears in the title earnestly. Toward this end,

I believe in teaching by induction. The method is to take a simple example and

build toward more general and more complicated models. Detailed examples of each

procedure are provided. Each concludes with a step-by-step summary of the stages

typically employed in using that procedure. The approach is one of learning by doing.
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viii PREFACE

A large number of solved problems are included in the body of each chapter.

The “Questions and Exercises” section at the end of each chapter is especially

important. You are encouraged to work through as many of the examples and exercises

as possible.

2. WHAT IS NEW IN THE FOURTH EDITION?

I have tried to be careful about the trade-off between being complete and being con-

cise. In deciding on which new topics to include in the text, I relied heavily on the

e-mail messages I received from instructors and from students. To keep the manuscript

from becoming encyclopedic, I have included a number of new topics in the Sup-
plementary Manual. The new material in Chapter 2 discusses the important issue of

combining multiple univariate forecasts so as to reduce overall forecast error vari-

ance. Chapter 3 expands the discussion of multivariate GARCH models by illustrating

volatility impulse response functions. In doing so, volatility spillovers need to be ana-

lyzed in a way that is analogous to the impulse responses from a VAR. I received a

surprisingly large number of questions regarding autoregressive distributed lag (ADL)

models. As such, the first few parts of Chapter 5 have been rewritten so as to show the

appropriate ways to properly identify and estimate ADLs. This new material comple-

ments the material in Chapter 6 involving ADLs in a cointegrated system. Chapter 7

now discusses the so-called Davies problem involving unidentified nuisance parame-

ters under the null hypothesis. The chapter continues to discuss the issues involved with

testing for multiple endogenous breaks (i.e., potential breaks occurring at an unknown

date) using the Bai–Perron procedure. Moreover, since breaks can manifest themselves

slowly, the process of estimating a model with a logistic break is illustrated.

Some content has been moved to the website for the Fourth Edition. This content

is called out in the Table of Contents as being “online.” To locate this content, go to

Wiley.com/College/Enders or to time-series.net.

3. ADDITIONAL MATERIALS

Since it was necessary to exclude some topics from the text, I prepared a Supplementary
Manual to the text. This manual contains material that I deemed important (or interest-

ing), but not sufficiently important for all readers, to include in the text. Often the text

refers you to this Supplementary Manual to obtain additional information on a topic.

To assist you in your programming, I have written a RATS Programming Manual
to accompany this text. Of course, it is impossible for me to have versions of the guide

for every possible platform. Most programmers should be able to transcribe a program

written in RATS into the language used by their personal software package.

An Instructors’ Manual is available to those adopting the text for their class.

The manual contains the answers to all of the mathematical questions. It also contains

programs that can be used to reproduce most of the results reported in the text and

all of the models indicated in the “Questions and Exercises” sections. Versions of the
manual are available for EVIEWS, RATS, SAS, and STATA users.
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PREFACE ix

I have prepared a set of Powerpoint slides for each chapter. I have prepared the

slides from thematerials I use in my own class. As such, they emphasize on the material

I deem to consider most important. Moreover, some of the slides expand in the material

in the text.

Wiley makes all of the manuals available to the faculty who use the text for their

class. The Supplementary Manual and several versions of the Programming Manual
can be downloaded (at no charge) from theWiley website or frommy personal website:

www.time-series.net. The Programming Manual can also be downloaded from the

ESTIMA website: www.estima.com.

In spite of all my efforts, some errors have undoubtedly crept into the text. If the

first three editions are any guide, the number is embarrassingly large. I will keep an

updated list of typos and corrections on my website www.time-series.net.

Many people made valuable suggestions for improving the organization, style, and

clarity of themanuscript. I received a great number of e-mails from readers who pointed

out typos and who made very useful suggestions concerning the exposition of the text.

I am grateful to my students who kept me challenged and were quick to point out

errors. Especially helpful were my former students Karl Boulware, Pin Chung, Sela-

hattin Dibooglu, HyeJin Lee, Jing Li, Eric Olson, Ling Shao, and Jingan Yuan. Pierre

Siklos and Mark Wohar who made a number of important suggestions concerning the

revised chapters for the second edition. I learned so much about time series from Barry

Falk and Junsoo Lee that they deserve a special mention. I would like to thank my lov-

ing wife, Linda, for putting up with me during my illness (especially during the time I

was working on the manuscript).

Just before writing the preface to the third edition, I learned that Clive Granger had

died. A few months before I was to take a sabbatical at the University of Minnesota,

I had the opportunity to present a seminar at UCSD. At the time, I was working with

overlapping generations models and had no thoughts about being an applied econo-

metrician. However, when I first met Clive, he stated: “It will be 100 degrees warmer

here than in Minnesota next winter. Why not do the sabbatical here?” I changed my

plans, thinking that I would work with the math–econ types at UCSD. Fortunately,

I happened to sit through one of his classes (team-taught with Robert Engle) and fell in

love with time-series econometrics. I know that it tickled Clive to tell people the story

of how his class clearly changed my career. In an important way, he and Robert Engle

are responsible for the approach taken in the text.
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CHAPTER1
DIFFERENCE EQUATIONS

Learning Objectives
1. Explain how stochastic difference equations can be used for forecasting and

illustrate how such equations can arise from familiar economic models.

2. Explain what it means to solve a difference equation.

3. Demonstrate how to find the solution to a stochastic difference equation using

the iterative method.

4. Demonstrate how to find the homogeneous solution to a difference equation.

5. Illustrate the process of finding the homogeneous solution.

6. Show how to find homogeneous solutions in higher order difference

equations.

7. Show how to find the particular solution to a deterministic difference

equation.

8. Explain how to use the Method of Undetermined Coefficients to find the par-

ticular solution to a stochastic difference equation.

9. Explain how to use lag operators to find the particular solution to a stochastic

difference equation.

INTRODUCTION

The theory of difference equations underlies all of the time-series methods employed in

later chapters of this text. It is fair to say that time-series econometrics is concerned with

the estimation of difference equations containing stochastic components. The tradi-

tional use of time-series analysis was to forecast the time path of a variable. Uncovering

the dynamic path of a series improves forecasts since the predictable components of the

series can be extrapolated into the future. The growing interest in economic dynamics

has given a new emphasis to time-series econometrics. Stochastic difference equations

arise quite naturally from dynamic economic models. Appropriately estimated equa-

tions can be used for the interpretation of economic data and for hypothesis testing.

1. TIME-SERIES MODELS

The task facing the modern time-series econometrician is to develop reasonably

simple models capable of forecasting, interpreting, and testing hypotheses concerning

economic data. The challenge has grown over time; the original use of time-series

1
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2 CHAPTER 1 DIFFERENCE EQUATIONS

analysis was primarily as an aid to forecasting. As such, a methodology was developed

to decompose a series into a trend, a seasonal, a cyclical, and an irregular component.

The trend component represented the long-term behavior of the series and the cyclical

component represented the regular periodic movements. The irregular component

was stochastic and the goal of the econometrician was to estimate and forecast this

component.

Suppose you observe the fifty data points shown in Figure 1.1 and are interested

in forecasting the subsequent values. Using the time-series methods discussed in the

next several chapters, it is possible to decompose this series into the trend, seasonal,

and irregular components shown in the lower panel of the figure. As you can see, the

trend changes the mean of the series, and the seasonal component imparts a regular

cyclical pattern with peaks occurring every twelve units of time. In practice, the trend

and seasonal components will not be the simplistic deterministic functions shown in

this figure. The modern view maintains that a series contains stochastic elements in

the trend, seasonal, and irregular components. For the time being, it is wise to sidestep

these complications so that the projection of the trend and seasonal components into

periods 51 and beyond is straightforward.

Notice that the irregular component, while lacking a well-defined pattern, is some-

what predictable. If you examine the figure closely, you will see that the positive and

negative values occur in runs; the occurrence of a large value in any period tends to
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FIGURE 1.1 Hypothetical Time-Series
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TIME-SERIES MODELS 3

be followed by another large value. Short-run forecasts will make use of this posi-

tive correlation in the irregular component. Over the entire span, however, the irregular

component exhibits a tendency to revert to zero. As shown in the lower part, the projec-

tion of the irregular component past period 50 rapidly decays toward zero. The overall

forecast, shown in the top part of the figure, is the sum of each forecasted component.

The general methodology used to make such forecasts entails finding the equation
of motion driving a stochastic process and using that equation to predict subsequent

outcomes. Let yt denote the value of a data point at period t; if we use this notation,

the example in Figure 1.1 assumes we observed y1 through y50. For t = 1 to 50, the

equations of motion used to construct components of the yt series are

Trend: Tt = 1 + 0.1t

Seasonal: St = 1.6 sin(t𝜋∕6)
Irregular: It = 0.7It−1 + 𝜀t

where: Tt = value of the trend component in period t

St = value of the seasonal component in t

It = the value of the irregular component in t

𝜀t = a pure random disturbance in t

Thus, the irregular disturbance in t is 70% of the previous period’s irregular disturbance

plus a random disturbance term.

Each of these three equations is a type of difference equation. In its most gen-

eral form, a difference equation expresses the value of a variable as a function of its

own lagged values, time, and other variables. The trend and seasonal terms are both

functions of time and the irregular term is a function of its own lagged value and of

the stochastic variable 𝜀t. The reason for introducing this set of equations is to make

the point that time-series econometrics is concerned with the estimation of difference
equations containing stochastic components. The time-series econometrician may esti-

mate the properties of a single series or a vector containing many interdependent series.

Both univariate and multivariate forecasting methods are presented in the text. Chapter

2 shows how to estimate the irregular part of a series. Chapter 3 considers estimating

the variance when the data exhibit periods of volatility and tranquility. Estimation of

the trend is considered in Chapter 4, which focuses on the issue of whether the trend is

deterministic or stochastic. Chapter 5 discusses the properties of a vector of stochastic

difference equations, and Chapter 6 is concerned with the estimation of trends in a mul-

tivariate model. Chapter 7 introduces the new and growing area of research involving

nonlinear time-series models.

Although forecasting has always been the mainstay of time-series analysis, the

growing importance of economic dynamics has generated new uses for time-series

analysis. Many economic theories have natural representations as stochastic difference

equations. Moreover, many of these models have testable implications concerning the

time path of a key economic variable. Consider the following four examples:

1. The RandomWalk Hypothesis: In its simplest form, the random walk

model suggests that day-to-day changes in the price of a stock should have
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4 CHAPTER 1 DIFFERENCE EQUATIONS

a mean value of zero. After all, if it is known that a capital gain can be made

by buying a share on day t and selling it for an expected profit the very next
day, efficient speculation will drive up the current price. Similarly, no one will

want to hold a stock if it is expected to depreciate. Formally, the model asserts

that the price of a stock should evolve according to the stochastic difference

equation

yt+1 = yt + 𝜀t+1

or

Δyt+1 = 𝜀t+1

where yt = the logarithm of the price of a share of stock on day t, and 𝜀t+1 =
a random disturbance term that has an expected value of zero.

Now consider the more general stochastic difference equation

Δyt+1 = 𝛼0 + 𝛼1yt + 𝜀t+1

The random walk hypothesis requires the testable restriction: 𝛼0=𝛼1= 0.

Rejecting this restriction is equivalent to rejecting the theory. Given the

information available in period t, the theory also requires that the mean

of 𝜀t+1 be equal to zero; evidence that 𝜀t+1 is predictable invalidates the
random walk hypothesis. Again, the appropriate estimation of this type of

single-equation model is considered in Chapters 2 through 4.

2. Reduced-Forms and Structural Equations: Often it is useful to collapse a
system of difference equations into separate single-equation models. To illus-

trate the key issues involved, consider a stochastic version of Samuelson’s

(1939) classic model:

yt = ct + it (1.1)

ct = 𝛼yt−1 + 𝜀ct 0 < 𝛼 < 1 (1.2)

it = 𝛽(ct − ct−1) + 𝜀it 𝛽 > 0 (1.3)

where yt, ct, and it denote real GDP, consumption, and investment in time

period t, respectively. In this Keynesian model, yt, ct, and it are endogenous
variables. The previous period’s GDP and consumption, yt−1 and ct−1, are
called predetermined or lagged endogenous variables. The terms 𝜀ct and 𝜀it
are zero mean random disturbances for consumption and investment, and the

coefficients 𝛼 and 𝛽 are parameters to be estimated.

The first equation equates aggregate output (GDP) with the sum of con-

sumption and investment spending. The second equation asserts that con-

sumption spending is proportional to the previous period’s GDP plus a ran-

dom disturbance term. The third equation illustrates the accelerator principle.

Investment spending is proportional to the change in consumption; the idea is

that growth in consumption necessitates new investment spending. The error

terms 𝜀ct and 𝜀it represent the portions of consumption and investment not

explained by the behavioral equations of the model.
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TIME-SERIES MODELS 5

Equation (1.3) is a structural equation since it expresses the endoge-

nous variable it as being dependent on the current realization of another
endogenous variable, ct. A reduced-form equation is one expressing the

value of a variable in terms of its own lags, lags of other endogenous vari-

ables, current and past values of exogenous variables, and disturbance terms.

As formulated, the consumption function is already in reduced form; current

consumption depends only on lagged income and the current value of the

stochastic disturbance term 𝜀ct. Investment is not in reduced form because it

depends on current period consumption.

To derive a reduced-form equation for investment, substitute (1.2) into

the investment equation to obtain

it = 𝛽[𝛼yt−1 + 𝜀ct − ct−1] + 𝜀it

= 𝛼𝛽yt−1 − 𝛽ct−1 + 𝛽𝜀ct + 𝜀it

Notice that the reduced-form equation for investment is not unique. You

can lag (1.2) one period to obtain: ct−1 = 𝛼yt−2 + 𝜀ct−1. Using this expression,
the reduced-form investment equation can also be written as

it = 𝛼𝛽yt−1 − 𝛽(𝛼yt−2 + 𝜀ct−1) + 𝛽𝜀ct + 𝜀it

= 𝛼𝛽(yt−1 − yt−2) + 𝛽(𝜀ct − 𝜀ct−1) + 𝜀it (1.4)

Similarly, a reduced-form equation for GDP can be obtained by substi-

tuting (1.2) and (1.4) into (1.1):

yt = 𝛼yt−1 + 𝜀ct + 𝛼𝛽(yt−1 − yt−2) + 𝛽(𝜀ct − 𝜀ct−1) + 𝜀it

= 𝛼(1 + 𝛽)yt−1 − 𝛼𝛽yt−2 + (1 + 𝛽)𝜀ct + 𝜀it − 𝛽𝜀ct−1

so that yt can be written in the form

yt = ayt−1 + byt−2 + xt (1.5)

where a = 𝛼(1 + 𝛽), b = –𝛼𝛽, and xt = (1 + 𝛽)𝜀ct + 𝜀it − 𝛽𝜀ct–1.

Equation (1.5) is a univariate reduced-form equation; yt is expressed
solely as a function of its own lags and a disturbance term. A univariate model

is particularly useful for forecasting since it enables you to predict a series

based solely on its own current and past realizations. It is possible to esti-

mate (1.5) using the univariate time-series techniques explained in Chapters 2

through 4. Once you have obtained estimates of a and b, it is straightforward
to use the observed values of y1 through yt to predict all future values in the
series (i.e., yt+1, yt+2,… ).

Chapter 5 considers the estimation of multivariate models when all vari-

ables are treated as jointly endogenous. The chapter also discusses the restric-

tions needed to recover (i.e., identify) the structural model from the estimated

reduced-form model.

3. Error-Correction: Forward and Spot Prices: Certain commodities and

financial instruments can be bought and sold on the spot market (for imme-

diate delivery) or for delivery at some specified future date. For example,
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suppose that the price of a particular foreign currency on the spot market is

st dollars and that the price of the currency for delivery one period into the
future is ft dollars. Now, consider a speculator who purchased forward cur-
rency at the price ft dollars per unit. At the beginning of period t + 1, the

speculator receives the currency and pays ft dollars per unit received. Since
spot foreign exchange can be sold at st+1, the speculator can earn a profit (or
loss) of st+1 − ft per unit transacted.

The Unbiased Forward Rate (UFR) hypothesis asserts that expected prof-

its from such speculative behavior should be zero. Formally, the hypothesis

posits the following relationship between forward and spot exchange rates:

st+1 = ft + 𝜀t+1 (1.6)

where 𝜀t+1 has a mean value of zero from the perspective of time period t.
In (1.6), the forward rate in t is an unbiased estimate of the spot rate in

t + 1. Thus, suppose you collected data on the two rates and estimated the

regression

st+1 = 𝛼0 + 𝛼1ft + 𝜀t+1

If you were able to conclude that 𝛼0 = 0, 𝛼1 = 1, and that the regression

residuals 𝜀t+1 have a mean value of zero from the perspective of time period t,
the UFR hypothesis could be maintained.

The spot and forward markets are said to be in long-run equilibrium
when 𝜀t+1 = 0. Whenever st+1 turns out to differ from ft, some sort of adjust-

ment must occur to restore the equilibrium in the subsequent period. Consider

the adjustment process

st+2 = st+1 − 𝛼[st+1 − ft] + 𝜀st+2 𝛼 > 0 (1.7)

ft+1 = ft + 𝛽[st+1 − ft] + 𝜀ft+1 𝛽 > 0 (1.8)

where 𝜀st+2 and 𝜀ft+1 both have a mean value of zero.

Equations (1.7) and (1.8) illustrate the type of simultaneous adjustment

mechanism considered in Chapter 6. This dynamic model is called an

error-correctionmodel because the movement of the variables in any period

is related to the previous period’s gap from long-run equilibrium. If the spot

rate st+1 turns out to equal the forward rate ft, (1.7) and (1.8) state that the
spot rate and forward rates are expected to remain unchanged. If there is a

positive gap between the spot and forward rates so that st+1 − ft > 0, (1.7)

and (1.8) lead to the prediction that the spot rate will fall and the forward rate

will rise.

4. Nonlinear Dynamics: All of the equations considered thus far are linear (in
the sence that each variable is raised to the first power) with constant coeffi-

cients. Chapter 7 considers the estimation of models that allow for more com-

plicated dynamic structures. Recall that (1.3) assumes investment is always a

constant proportion of the change in consumption. It might be more realistic

to assume investment responds more to positive than to negative changes in
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consumption. After all, firms might want to take advantage of positive con-

sumption growth but simply let the capital stock decay in response to declines

in consumption. Such behavior can be captured by modifying (1.3) such that

the coefficient on (ct − ct−1) is not constant. Consider the specification

it = 𝛽1(ct − ct−1) − 𝜆t𝛽2(ct − ct−1) + 𝜀it

where 𝛽1 > 𝛽2 > 0 and 𝜆t is an indicator function such that 𝜆t = 1 if

(ct − ct−1) < 0, otherwise 𝜆t = 0. Hence, if (ct − ct−1) ≥ 0, 𝜆t = 0

so that it = 𝛽1(ct − ct−1) + 𝜀it and if (ct − ct−1) < 0, 𝜆t = 1 so that

it = (𝛽1 − 𝛽2) (ct − ct−1) + 𝜀it. Since 𝛽1 − 𝛽2 > 0, investment is more

responsive to positive than negative changes in consumption.

2. DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

Although many of the ideas in the previous section were probably familiar to you, it

is necessary to formalize some of the concepts used. In this section, we will examine

the type of difference equation used in econometric analysis and make explicit what

it means to “solve” such equations. To begin our examination of difference equations,

consider the function y = f (t). If we evaluate the function when the independent vari-

able t takes on the specific value t∗, we get a specific value for the dependent variable
called yt∗ . Formally, yt∗ = f (t∗). Using this same notation, yt∗+h represents the value

of y when t takes on the specific value t∗ + h. The first difference of y is defined as

the value of the function when evaluated at t = t∗ + h minus the value of the function

evaluated at t∗:

Δyt∗+h ≡ f (t∗ + h) − f (t∗)
≡ yt∗+h − yt∗ (1.9)

Differential calculus allows the change in the independent variable (i.e., the

term h) to approach zero. Since most economic data is collected over discrete periods,

however, it is more useful to allow the length of the time period to be greater than zero.

Using difference equations, we normalize units so that h represents a unit change in

t (i.e., h = 1) and consider the sequence of equally spaced values of the independent

variable. Without any loss of generality, we can always drop the asterisk on t∗. We can

then form the first differences:

Δyt = f (t) − f (t − 1) ≡ yt − yt−1
Δyt+1 = f (t + 1) − f (t) ≡ yt+1 − yt
Δyt+2 = f (t + 2) − f (t + 1) ≡ yt+2 − yt+1

Often it will be convenient to express the entire sequence of values {… yt−2, yt−1, yt,
yt+1, yt+2, …} as {yt}. We can then refer to any particular value in the sequence as yt.
Unless specified, the index t runs from –∞ to +∞. In time-series econometric models,

we use t to represent “time” and h to represent the length of a time period. Thus, yt
and yt+1 might represent the realizations of the {yt} sequence in the first and second

quarters of 2014, respectively.
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In the same way we can form the second difference as the change in the first

difference. Consider

Δ2yt ≡ Δ(Δyt) = Δ(yt − yt−1) = (yt − yt−1) − (yt−1 − yt−2) = yt − 2yt−1 + yt−2
Δ2yt+1 ≡ Δ(Δyt+1) = Δ(yt+1 − yt) = (yt+1 − yt) − (yt − yt−1) = yt+1 − 2yt + yt−1

The nth difference (Δn) is defined analogously. At this point, we risk taking the

theory of difference equations too far. As you will see, the need to use second differ-

ences rarely arises in time-series analysis. It is safe to say that third- and higher order

differences are never used in applied work.

Since most of this text considers linear time-series methods, it is possible to exam-

ine only the special case of an nth-order linear difference equation with constant coef-
ficients. The form for this special type of difference equation is given by

yt = a0 +
n∑
i=1

aiyt−i + xt (1.10)

The order of the difference equation is given by the value of n. The equation is lin-
ear because all values of the dependent variable are raised to the first power. Economic

theory may dictate instances in which the various ai are functions of variables within
the economy. However, as long as they do not depend on any of the values of yt or xt,
we can regard them as parameters. The term xt is called the forcing process. The form
of the forcing process can be very general; xt can be any function of time, current and

lagged values of other variables, and/or stochastic disturbances. From an appropriate

choice of the forcing process, we can obtain a wide variety of important macroeco-

nomic models. Re-examine equation (1.5), the reduced-form equation for real GDP.

This equation is a second-order difference equation since yt depends on yt−2. The forc-
ing process is the expression (1 + 𝛽)𝜀ct + 𝜀it − 𝛽𝜀ct−1. You will note that (1.5) has no

intercept term corresponding to the expression a0 in (1.10).
An important special case for the {xt} sequence is

xt =
∞∑
i=0

𝛽i𝜀t−i

where the 𝛽i are constants (some of which can equal zero) and the individual elements

of the sequence {𝜀t} are not functions of the yt. At this point it is useful to allow the

{𝜀t} sequence to be nothing more than a sequence of unspecified exogenous shocks.

For example, let {𝜀t} be a random error term and set 𝛽0 = 1 and 𝛽1 = 𝛽2 = · · · = 0; in

this case, (1.10) becomes the autoregression equation

yt = a0 + a1yt –1 + a2yt– 2 + · · · + anyt−n + 𝜀t

Let n = 1, a0 = 0, and a1 = 1 to obtain the random walk model. Notice that

equation (1.10) can be written in terms of the difference operator (Δ). Subtracting
yt−1 from (1.10), we obtain

yt − yt−1 = a0 + (a1 − 1) yt−1 +
n∑
i=2

aiyt−i + xt
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or defining 𝛾 = (a1 − 1), we get

Δyt = a0 + 𝛾yt−1 +
n∑
i=2

aiyt−i + xt (1.11)

Clearly, equation (1.11) is simply a modified version of (1.10).

A solution to a difference equation expresses the value of yt as a function of the ele-
ments of the {xt} sequence and t (and possibly some given values of the {yt} sequence
called initial conditions). Examining (1.11) makes it clear that there is a strong anal-

ogy to integral calculus, where the problem is to find a primitive function from a given

derivative. We seek to find the primitive function f (t), given an equation expressed in

the form of (1.10) or (1.11). Notice that a solution is a function rather than a number.

The key property of a solution is that it satisfies the difference equation for all permissi-

ble values of t and {xt}. Thus, the substitution of a solution into the difference equation
must result in an identity. For example, consider the simple difference equationΔyt = 2

(or yt = yt−1 + 2). You can easily verify that a solution to this difference equation is

yt = 2t + c, where c is any arbitrary constant. By definition, if 2t + c is a solution, it

must hold for all permissible values of t. Thus, for period t − 1, yt−1 = 2(t − 1) + c.
Now substitute the solution into the difference equation to form

2t + c ≡ 2(t − 1) + c + 2 (1.12)

It is straightforward to carry out the algebra and verify that (1.12) is an identity.

This simple example also illustrates that the solution to a difference equation need not

be unique; there is a solution for any arbitrary value of c.
Another useful example is provided by the irregular term shown in Figure 1.1;

recall that the equation for this expression is: It = 0.7It−1 + 𝜀t. You can verify that the

solution to this first-order equation is

It =
∞∑
i=0

(0.7)i𝜀t−i (1.13)

Since (1.13) holds for all time periods, the value of the irregular component in

t − 1 is given by

It−1 =
∞∑
i=0

(0.7)i𝜀t−1−i (1.14)

Now substitute (1.13) and (1.14) into It = 0.7It−1 + 𝜀t to obtain

𝜀t + 0.7𝜀t−1 + (0.7)2𝜀t−2 + (0.7)3𝜀t−3 + · · ·
= 0.7[𝜀t−1 + 0.7𝜀t−2 + (0.7)2𝜀t−3 + (0.7)3𝜀t−4 + · · ·] + 𝜀t (1.15)

The two sides of (1.15) are identical; this proves that (1.13) is a solution to the

first-order stochastic difference equation It = 0.7It−1 + 𝜀t. Be aware of the distinction

between reduced-form equations and solutions. Since It = 0.7It−1 + 𝜀t holds for all val-

ues of t, it follows that It−1 = 0.7It−2 + 𝜀t−1. Combining these two equations yields

It = 0.7[0.7It−2 + 𝜀t−1] + 𝜀t

= 0.49It−2 + 0.7𝜀t−1 + 𝜀t (1.16)
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Equation (1.16) is a reduced-form equation since it expresses It in terms of its own

lags and disturbance terms. However, (1.16) does not qualify as a solution because it

contains the “unknown” value of It−2. To qualify as a solution, (1.16) must express It
in terms of the elements xt, t, and any given initial conditions.

3. SOLUTION BY ITERATION

The solution given by (1.15) was simply postulated. The remaining portions of this

chapter develop the methods you can use to obtain such solutions. Each method has its

own merits; knowing the most appropriate to use in a particular circumstance is a skill

that comes only with practice. This section develops the method of iteration. Although

iteration is the most cumbersome and time-intensive method, most people find it to be

very intuitive.

If the value of y in some specific period is known, a direct method of solution is

to iterate forward from that period to obtain the subsequent time path of the entire y
sequence. Refer to this known value of y as the initial condition or the value of y in
time period 0 (denoted by y0). It is easiest to illustrate the iterative technique using the
first-order difference equation

yt = a0 + a1yt−1 + 𝜀t (1.17)

Given the value of y0, it follows that y1 will be given by

y1 = a0 + a1y0 + 𝜀1

In the same way, y2 must be

y2 = a0 + a1y1 + 𝜀2

= a0 + a1[a0 + a1y0 + 𝜀1] + 𝜀2

= a0 + a0a1 + (a1)2y0 + a1𝜀1 + 𝜀2

Continuing the process in order to find y3, we obtain

y3 = a0 + a1y2 + 𝜀3

= a0[1 + a1 + (a1)2] + (a1)3y0 + a1
2𝜀1 + a1𝜀2 + 𝜀3

You can easily verify that for all t > 0, repeated iteration yields

yt = a0

t−1∑
i=0

aii + at
1
y0 +

t−1∑
i=0

aii𝜀t−i (1.18)

Equation (1.18) is a solution to (1.17) since it expresses yt as a function of t, the
forcing process xt = Σ(a1)i𝜀t−i, and the known value of y0. As an exercise, it is useful

to show that iteration from yt back to y0 yields exactly the formula given by (1.18).

Since yt = a0 + a1yt−1 + 𝜀t, it follows that

yt = a0 + a1 [a0 + a1yt−2 + 𝜀t−1] + 𝜀t

= a0(1 + a1) + a1𝜀t−1 + 𝜀t + a1
2[a0 + a1yt−3 + 𝜀t−2]

Continuing the iteration back to period 0 yields equation (1.18).
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Iteration without an Initial Condition

Suppose you were not given the initial condition for y0. The solution given by (1.18)

would no longer be appropriate because the value of y0 is an unknown. You would not
be able to select this initial value of y and iterate forward, nor would you be able to iter-
ate backward from yt and simply choose to stop at t = t0. Thus, suppose we continued
to iterate backward by substituting a0 + a1y−1 + 𝜀0 for y0 in (1.18):

yt = a0

t−1∑
i=0

ai
1
+ at

1
(a0 + a1y−1 + 𝜀0) +

t−1∑
i=0

ai
1
𝜀t−i

= a0

t∑
i=0

ai
1
+

t∑
i=0

ai
1
𝜀t−i + at+1

1
y−1 (1.19)

Continuing to iterate backward another m periods, we obtain

yt = a0

t+m∑
i=0

ai
1
+

t+m∑
i=0

ai
1
𝜀t−i + at+m+1

1
y−m−1 (1.20)

Now examine the pattern emerging from (1.19) and (1.20). If |a1| < 1, the term

a1
t+m+1 approaches zero as m approaches infinity. Also, the infinite sum [1 + a1 +

(a1)2 + · · ·] converges to 1∕(1 − a1). Thus, if we temporarily assume that |a1| < 1,

after continual substitution, (1.20) can be written as

yt = a0∕(1 − a1) +
∞∑
i=0

ai
1
𝜀t−i (1.21)

You should take a few minutes to convince yourself that (1.21) is a solution to the

original difference equation (1.17); substitution of (1.21) into (1.17) yields an identity.

However, (1.21) is not a unique solution. For any arbitrary value of A, a solution to

(1.17) is given by

yt = Aat
1
+ a0∕(1 − a1) +

∞∑
i=0

ai
1
𝜀t−i (1.22)

To verify that (1.22) is a solution for any arbitrary value of A, substitute (1.22)

into (1.17) to obtain

yt = Aat
1
+ a0∕(1 − a1) +

∞∑
i=0

ai
1
𝜀t−i

= a0 + a1

[
Aat−1

1
+ a0∕

(
1 − a1

)
+

∞∑
i=0

ai
1
𝜀t−1−i

]
+ 𝜀t

Since the two sides are identical, (1.22) is necessarily a solution to (1.17).

Reconciling the Two Iterative Methods

Given the iterative solution (1.22), suppose that you are now given an initial condi-

tion concerning the value of y in the arbitrary period t0. It is straightforward to show

that we can impose the initial condition on (1.22) to yield the same solution as (1.18).
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Since (1.22) must be valid for all periods (including t0), when t = 0, it must be true

that

y0 = A + a0∕(1 − a1) +
∞∑
i=0

ai
1
𝜀−i (1.23)

so that

A = y0 − a0∕(1 − a1) −
∞∑
i=0

ai
1
𝜀−i

Since y0 is given, we can view (1.23) as the value of A that renders (1.22) as a

solution to (1.17), given the initial condition. Hence, the presence of the initial condition

eliminates the arbitrariness of A. Substituting this value of A into (1.22) yields

yt =

[
y0 − a0∕

(
1 − a1

)
−

∞∑
i=0

ai
1
𝜀−i

]
at
1
+ a0∕(1 − a1) +

∞∑
i=0

ai
1
𝜀t−i (1.24)

Simplification of (1.24) results in

yt = [y0 − a0∕(1 − a1)]at1 + a0∕(1 − a1) +
t−1∑
i=0

ai
1
𝜀t−i (1.25)

It is a worthwhile exercise to verify that (1.25) is identical to (1.18).

Nonconvergent Sequences

Given that |a1| < 1, (1.21) is the limiting value of (1.20) as m grows infinitely large.

What happens to the solution in other circumstances? If |a1| > 1, it is not possible

to move from (1.20) to (1.21) because the expression |a1|t+m grows infinitely large as

t + m approaches∞.1 However, if there is an initial condition, there is no need to obtain

the infinite summation. Simply select the initial condition y0 and iterate forward; the

result will be (1.18):

yt = a0

t−1∑
i=0

ai
1
+ at

1
y0 +

t−1∑
i=0

ai
1
𝜀t−i

Although the successive values of the {yt} sequence will become progressively

larger in absolute value, all values in the series will be finite.

A very interesting case arises if a1 = 1. Rewrite (1.17) as

yt = a0 + yt−1 + 𝜀t

or

Δyt = a0 + 𝜀t

As you should verify by iterating from yt back to y0, a solution to this equation is
2

yt = a0t +
t∑
i=1

𝜀i + y0 (1.26)

After a moment’s reflection, the form of the solution is quite intuitive. In every

period t, the value of yt changes by a0 + 𝜀t units. After t periods, there are t such
changes; hence, the total change is ta0 plus the t values of the {𝜀t} sequence. Notice

that the solution contains summation of all disturbances from 𝜀1 through 𝜀t. Thus,
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when a1 = 1, each disturbance has a permanent non-decaying effect on the value of yt.
You should compare this result to the solution found in (1.21). For the case in which|a1| < 1, |a1|t is a decreasing function of t so that the effects of past disturbances

become successively smaller over time.

The importance of the magnitude of a1 is illustrated in Figure 1.2. Thirty random

numbers with a theoretical mean equal to zero were computer-generated and denoted

by 𝜀1 through 𝜀30. Then the value of y0 was set equal to unity and the next 30 values of
the {yt} sequence were constructed using the formula yt = 0.9yt−1 + 𝜀t. The result is

shown by the thin line in Panel (a) of Figure 1.2. If you substitute a0 = 0 and a1 = 0.9
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FIGURE 1.2 Convergent and Nonconvergent Sequences
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into (1.18), you will see that the time path of {yt} consists of two parts. The first part,

0.9t, is shown by the slowly decaying thick line in the panel. This term dominates the

solution for relatively small values of t. The influence of the random part is shown by

the difference between the thin and the thick line; you can see that the first several

values of {𝜀t} are negative. Notice that as t increases, the influence of the initial value
y0 = 1 becomes less pronounced.

Using the previously drawn random numbers, we again set y0 equal to unity and

a second sequence was constructed using the formula yt = 0.5yt−1 + 𝜀t. This second

sequence is shown by the thin line in Panel (b) of Figure 1.2. The influence of the

expression 0.5t is shown by the rapidly decaying thick line. Again, as t increases,
the random portion of the solution becomes more dominant in the time path of {yt}.
When we compare the first two panels, it is clear that reducing the magnitude of |a1|
increases the rate of convergence. Moreover, the discrepancies between the simulated

values of yt and the thick line are less pronounced in the second panel. As you can see
in (1.18), each value of 𝜀t−i enters the solution for yt with a coefficient of (a1)i. The
smaller value of a1 means that the past realizations of 𝜀t−i have a smaller influence on

the current value of yt.
Simulating a third sequence with a1 = −0.5, yields the thin line shown in Panel (c).

The oscillations are due to the negative value of a1. The expression (−0.5)t, shown by

the thick line, is positive when t is even and negative when t is odd. Since |a1| < 1, the

oscillations are dampened.

The next three panels in Figure 1.2 all show nonconvergent sequences. Each uses

the initial condition y0 = 1 and the same 30 values of {𝜀t} used in the other simulations.

The line in Panel (d) shows the time path of yt = yt−1 + 𝜀t. Since each value of 𝜀t has an

expected value of zero, Panel (d) illustrates a random walk process. Here Δyt = 𝜀t so

that the change in yt is purely random. The nonconvergence is shown by the tendency

of {yt} to meander. In Panel (e), the thick line representing the explosive expression

(1.2)t dominates the random portion of the {yt} sequence. Also notice that the discrep-
ancy between the simulated {yt} sequence and the thick line widens as t increases. The
reason is that past values of 𝜀t−i enter the solution for yt with the coefficient (1.2)i.
As i increases, the importance of these previous discrepancies becomes increasingly

important. Similarly, setting a1 = −1.2 results in the exploding oscillations shown in

the lower-right panel of the figure. The value (−1.2)t is positive for even values of t and
negative for odd values of t.

4. AN ALTERNATIVE SOLUTION METHODOLOGY

Solution by the iterative method breaks down in higher order equations. The alge-

braic complexity quickly overwhelms any reasonable attempt to find a solution. Fortu-

nately, there are several alternative solution techniques that can be helpful in solving the

nth-order equation given by (1.10). If we use the principle that you should learn to walk
before you learn to run, it is best to step through the first-order equation given by (1.17).

Although you will be covering some familiar ground, the first-order case illustrates the

general methodology extremely well. To split the procedure into its component parts,
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consider only the homogeneous portion of (1.17)3

yt = a1yt−1 (1.27)

The solution to this homogeneous equation is called the homogeneous solution; at
times it will be useful to denote the homogeneous solution by the expression yht . Obvi-

ously, the trivial solution yt = yt−1 = · · · = 0 satisfies (1.27). However, this solution is

not unique. By setting a0 and all values of {𝜀t} equal to zero, (1.18) becomes yt = at
1
y0.

Hence, yt = at
1
y0 must be a solution to (1.27). Yet, even this solution does not consti-

tute the full set of solutions. It is easy to verify that the expression at
1
multiplied by any

arbitrary constant A satisfies (1.27). Simply substitute yt = Aat
1
and yt−1 = Aat−1

1
into

(1.27) to obtain

Aat
1
= a1Aa

t−1
1

Since at
1
= a1a

t−1
1

, it follows that yt = Aat
1
also solves (1.27). With the aid of the

thick lines in Figure 1.2, we can classify the properties of the homogeneous solution

as follows:

1. If |a1| < 1, the expression at
1
converges to zero as t approaches infinity. Con-

vergence is direct if 0 < a1 < 1 and oscillatory if −1 < a1 < 0.

2. If |a1| > 1, the homogeneous solution is not stable. If a1 > 1, the homoge-

neous solution approaches∞ as t increases. If a1 < −1, the homogeneous

solution oscillates explosively.

3. If a1 = 1, any arbitrary constant A satisfies the homogeneous equation yt =
yt−1. If a1 = −1, the system is meta-stable: at

1
= 1 for even values of t and −1

for odd values of t.

Now consider (1.17) in its entirety. In the last section, you confirmed that (1.21) is

a valid solution to (1.17). Equation (1.21) is called a particular solution to the differ-

ence equation; all such particular solutions will be denoted by the term ypt . The term
“particular” stems from the fact that a solution to a difference equation may not be

unique; hence, (1.21) is just one particular solution out of the many possibilities.

In moving to (1.22) you verified that the particular solution was not unique. The

homogeneous solution Aat
1
plus the particular solution given by (1.21) constituted the

complete solution to (1.17). The general solution to a difference equation is defined

to be a particular solution plus all homogeneous solutions. Once the general solution

is obtained, the arbitrary constant A can be eliminated by imposing an initial condition

for y0.

The Solution Methodology

The results of the first-order case are directly applicable to the nth-order equation given
by (1.10). In this general case, it will be more difficult to find the particular solution and

there will be n distinct homogeneous solutions. Nevertheless, the solutionmethodology

will always entail the following four steps:

STEP 1: form the homogeneous equation and find all n homogeneous solutions;

STEP 2: find a particular solution;
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STEP 3: obtain the general solution as the sum of the particular solution and a linear

combination of all homogeneous solutions;

STEP 4: eliminate the arbitrary constant(s) by imposing the initial condition(s) on the

general solution.

Before we address the various techniques that can be used to obtain homoge-

neous and particular solutions, it is worthwhile to illustrate the methodology using the

equation

yt = 0.9yt−1 − 0.2yt−2 + 3 (1.28)

Clearly, this second-order equation is in the form of (1.10) with a0 = 3, a1 = 0.9,

a2 = −0.2, and xt = 0. Beginning with the first of the four steps, form the homogenous

equation

yt − 0.9yt−1 + 0.2yt−2 = 0 (1.29)

In the first-order case of (1.17), the homogeneous solution was Aat
1
. Section 1.6 will

show you how to find the complete set of homogeneous solutions. For now, it is suf-

ficient to assert that the two homogeneous solutions are yh
1t = (0.5)t and yh

2t = (0.4)t.
To verify the first solution, note that yh

1t−1 = (0.5)t−1 and yh
1t−2 = (0.5)t−2. Thus, yh

1t is

a solution if it satisfies

(0.5)t − 0.9(0.5)t−1 + 0.2(0.5)t−2 = 0

If we divide by (0.5)t−2, the issue is whether

(0.5)2 − 0.9(0.5) + 0.2 = 0

Carrying out the algebra, 0.25 − 0.45 + 0.2 does equal zero so that (0.5)t is a solution
to (1.29). In the same way, it is easy to verify that yh

2t = (0.4)t is a solution since

(0.4)t − 0.9(0.4)t−1 + 0.2(0.4)t−2 = 0

Divide by (0.4)t−2 to obtain (0.4)2 − 0.9(0.4) + 0.2 = 0.16 − 0.36 + 0.2 = 0.

The second step is to obtain a particular solution; you can easily confirm that the

particular solution ypt = 10 solves (1.28) as 10 = 0.9(10) − 0.2(10) + 3.

The third step is to combine the particular solution and a linear combination of

both homogeneous solutions to obtain

yt = A1(0.5)t + A2(0.4)t + 10

where A1 and A2 are arbitrary constants.

For the fourth step, assume you have two initial conditions for the {yt} sequence.
So that we can keep our numbers reasonably round, suppose that y0 = 13 and y1 = 11.3.

Thus, for periods zero and one, our solution must satisfy

13 = A1 + A2 + 10

11.3 = A1(0.5) + A2(0.4) + 10

Solving simultaneously for A1 and A2, you should find A1 = 1 and A2 = 2. Hence, the

solution is

yt = (0.5)t + 2(0.4)t + 10
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You can substitute yt = (0.5)t + 2(0.4)t + 10 into (1.28) to verify that the solution is

correct.

Generalizing the Method

To show that this method is applicable to higher order equations, consider the homo-

geneous part of (1.10):

yt =
n∑
i=1

aiyt−i (1.30)

As shown in Section 1.6, there are n homogeneous solutions that satisfy (1.30). For

now, it is sufficient to demonstrate the following proposition: If y ht is a homogeneous
solution to (1.30), Ayht is also a solution for any arbitrary constant A. By assumption,

yht solves the homogeneous equation so that

yht =
n∑
i=1

aiy
h
t−i (1.31)

The expression Ayht is also a solution if

Ayht =
n∑
i=1

aiAy
h
t−i (1.32)

We know (1.32) is satisfied because dividing each term by A yields (1.31). Now

suppose that there are two separate solutions to the homogeneous equation denoted by

yh
1t and y

h
2t. It is straightforward to show that for any two constants A1 and A2, the linear

combination A1y
h
1t + A2y

h
2t is also a solution to the homogeneous equation. If A1y

h
1t +

A2y
h
2t is a solution to (1.30), it must satisfy

A1y
h
1t + A2y

h
2t = a1[A1y

h
1t−1 + A2y

h
2t−1] + a2 [A1 y

h
1t−2 + A2y

h
2t−2] + · · ·

+ an[A1y
h
1t−n + A2y

h
2t−n]

Regrouping terms, we want to know if[
A1y

h
1t −

n∑
i=1

A1aiy
h
1t−i

]
+

[
A2 y

h
2t −

n∑
i=1

A2ai y
h
2t−i

]
= 0

Since A1y
h
1t and A2y

h
2t are separate solutions to (1.30), each of the expressions in

brackets is zero. Hence, the linear combination is necessarily a solution to the homo-

geneous equation. This result easily generalizes to all n homogeneous solutions of an

nth-order equation.
Finally, the use of Step 3 is appropriate since the sum of any particular solution

and any linear combination of all homogeneous solutions is also a solution. To prove

this proposition, substitute the sum of the particular and homogeneous solutions into

(1.10) to obtain

ypt + yht = a0 +
n∑
i=1

ai(y
p
t−i + yht−i) + xt (1.33)
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Recombining the terms in (1.33), we want to know if[
ypt − a0 −

n∑
i=1

aiy
p
t−i − xt

]
+

[
yht −

n∑
i=1

aiy
h
t−i

]
= 0 (1.34)

Since ypt solves (1.10), the expression in the first bracket of (1.34) is zero. Since yht
solves the homogeneous equation, the expression in the second bracket is zero. Thus,

(1.34) is an identity; the sum of the homogeneous and particular solutions solves (1.10).

5. THE COBWEB MODEL

An interesting way to illustrate the methodology outlined in the previous section is to

consider a stochastic version of the traditional cobweb model. Since the model was

originally developed to explain the volatility in agricultural prices, let the market for a

product—say, wheat—be represented by

dt = a − 𝛾pt 𝛾 > 0 (1.35)

st = b + 𝛽p∗t + 𝜀t 𝛽 > 0 (1.36)

st = dt (1.37)

where: dt = demand for wheat in period t
st = supply of wheat in t
pt = market price of wheat in t
p∗t = price that farmers expect to prevail at t
𝜀t = a zero mean stochastic supply shock

and parameters a, b, 𝛾 , and 𝛽 are all positive such that a > b.4

The nature of the model is such that consumers buy as much wheat as is desired

at the market clearing price pt. At planting time, farmers do not know the price pre-

vailing at harvest time; they base their supply decision on the expected price (p∗t ). The
actual quantity produced depends on the planned quantity b + 𝛽p∗t plus a random supply

shock 𝜀t. Once the product is harvested, market equilibrium requires that the quantity

supplied equals the quantity demanded. Unlike the actual market for wheat, the model

does not allow for the possibility of storage. The essence of the cobweb model is that

farmers form their expectations in a naive fashion; let farmers use last year’s price as

the expected market price

p∗t = pt−1 (1.38)

Point E in Figure 1.3 represents the long-run equilibrium price and quantity com-

bination. Note that the equilibrium concept in this stochastic model differs from that

of the traditional cobweb model. If the system is stable, successive prices will tend to
converge to point E. However, the nature of the stochastic equilibrium is such that the

ever-present supply shocks prevent the system from remaining at E. Nevertheless, it is
useful to solve for the long-run price. If we set all values of the {𝜀t} sequence equal to
zero, set pt = pt−1 = · · · = p, and equate supply and demand, the long-run equilibrium
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FIGURE 1.3 The Cobweb Model

price is given by p = (a − b)∕(𝛾 + 𝛽). Similarly, the equilibrium quantity (s) is given
by s = (a𝛽 + 𝛾b)∕(𝛾 + 𝛽).

To understand the dynamics of the system, suppose that farmers in t plan to produce
the equilibrium quantity s. However, let there be a negative supply shock such that

the actual quantity produced turns out to be st. As shown by point 1 in Figure 1.3,

consumers are willing to pay pt for the quantity st; hence, market equilibrium in t occurs
at point 1. Updating one period allows us to see the main result of the cobweb model.

For simplicity, assume that all subsequent values of the supply shock are zero (i.e.,

𝜀t+1 = 𝜀t+2 = · · · = 0). At the beginning of period t + 1, farmers expect the price at

harvest time to be the price of the previous period; thus, p∗t+1 = pt. Accordingly, they
produce quantity st+1 (see point 2 in the figure); consumers, however, are willing to buy

quantity st+1 only if the price falls to that indicated by pt+1 (see point 3 in the figure).

The next period begins with farmers expecting to be at point 4. The process continually

repeats until the equilibrium point E is attained.

As drawn, Figure 1.3 suggests that the market will always converge to the long-run

equilibrium point. This result does not hold for all demand and supply curves. To for-

mally derive the stability condition, combine (1.35) through (1.38) to obtain

b + 𝛽pt−1 + 𝜀t = a − 𝛾pt

or

pt = (−𝛽∕𝛾)pt−1 + (a − b)∕𝛾 − 𝜀t∕𝛾 (1.39)

Clearly, (1.39) is a stochastic first-order linear difference equation with constant

coefficients. To obtain the general solution, proceed using the four steps listed at the

end of the last section:

1. Form the homogeneous equation pt = (−𝛽∕𝛾)pt−1. In the next section you
will learn how to find the solution(s) to a homogeneous equation. For now, it
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is sufficient to verify that the homogeneous solution is

pht = A(−𝛽∕𝛾)t

where A is an arbitrary constant.

2. Note that (1.39) is a first-order difference equation in the form pt = a0 +
a1pt−1 + et where a0 = (a − b)∕𝛾 , a1 = −(𝛽∕𝛾), and et = −𝜀t∕𝛾 . If the ratio
𝛽∕𝛾 is less than unity, you can iterate (1.39) backward from pt to verify that
the particular solution for the price is

ppt =
a − b
𝛾 + 𝛽

− 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀t−i (1.40)

If 𝛽∕𝛾 ≥ 1, the infinite summation in (1.40) is not convergent. As discussed

in the last section, it is necessary to impose an initial condition on (1.40) if

𝛽∕𝛾 ≥ 1.

3. The general solution is the sum of the homogeneous and particular solutions;

combining these two solutions, the general solution is

pt =
a − b
𝛾 + 𝛽

− 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀t−i + A(−𝛽∕𝛾)t (1.41)

4. In (1.41), A is an arbitrary constant that can be eliminated if we know the

price in some initial period. For convenience, let this initial period have a time

subscript of zero. Since the solution must hold for every period, including
period zero, it must be the case that

p0 =
a − b
𝛾 + 𝛽

− 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀−i + A(−𝛽∕𝛾)0

Since (−𝛽∕𝛾)0 = 1, the value of A is given by

A = p0 −
a − b
𝛾 + 𝛽

+ 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀−i

Substituting this solution for A back into (1.41) yields

pt =
a − b
𝛾 + 𝛽

− 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀t−i +
[
−𝛽

𝛾

]t [
p0 −

a − b
𝛾 + 𝛽

+ 1

𝛾

∞∑
i=0

(−𝛽∕𝛾)i𝜀−i

]
and, after simplifying the two summations,

pt =
a − b
𝛾 + 𝛽

− 1

𝛾

t−1∑
i=0

(−𝛽∕𝛾)i𝜀t−i +
[
−𝛽
𝛾

]t [
p0 −

a − b
𝛾 + 𝛽

]
(1.42)

We can interpret (1.42) in terms of Figure 1.3. In order to focus on the stability of

the system, temporarily assume that all values of the {𝜀t} sequence are zero. Subse-

quently, we will return to a consideration of the effects of supply shocks. If the system
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begins in long-run equilibrium, the initial condition is such that p0 = (a − b)∕(𝛾 + 𝛽).
In this case, inspection of equation (1.42) indicates that pt = (a − b)∕(𝛾 + 𝛽). Thus, if
we begin the process at point E, the system remains in long-run equilibrium.

Instead, suppose that the process begins at a price below long-run equilibrium:

p0 < (a − b)∕(𝛾 + 𝛽). Equation (1.42) tells us that p1 is

p1 = (a − b)∕(𝛾 + 𝛽) + [p0 − (a − b)∕(𝛾 + 𝛽)] (−𝛽∕𝛾)1 (1.43)

Since p0 < (a − b)∕(𝛾 + 𝛽) and −𝛽∕𝛾 < 0, it follows that p1 will be above the

long-run equilibrium price (a − b)∕(𝛾 + 𝛽). In period 2,

p2 = (a − b)∕(𝛾 + 𝛽) + [p0 − (a − b)∕(𝛾 + 𝛽)] (−𝛽∕𝛾)2

Although p0 < (a − b)∕(𝛾 + 𝛽), (−𝛽∕𝛾)2 is positive; hence, p2 is below the

long-run equilibrium. For the subsequent periods, note that (−𝛽∕𝛾)t will be positive

for even values of t and negative for odd values of t. Just as we found graphically, the

successive values of the {pt} sequence will oscillate above and below the long-run

equilibrium price. Since (𝛽∕𝛾)t goes to zero if 𝛽 < 𝛾 and explodes if 𝛽 > 𝛾 , the mag-

nitude of 𝛽∕𝛾 determines whether the price actually converges toward the long-run

equilibrium. If 𝛽∕𝛾 < 1, the oscillations will diminish in magnitude, and if 𝛽∕𝛾 > 1,

the oscillations will be explosive.

The economic interpretation of this stability condition is straightforward. The

slope of the supply curve (i.e., 𝜕pt∕𝜕st) is 1∕𝛽 and the absolute value of the slope

of the demand curve [i.e., −𝜕pt∕𝜕(dt)] is 1∕𝛾 . If the supply curve is steeper than the

demand curve, it must be the case that 1∕𝛽 > 1∕𝛾 or 𝛽∕𝛾 < 1 so that the system is

stable. This is precisely the case illustrated in Figure 1.3. As an exercise, you should

draw a diagram with the demand curve steeper than the supply curve and show that

the price oscillates and diverges from the long-run equilibrium.

Now consider the effects of the supply shocks. The contemporaneous effect of

a supply shock on the price of wheat is the partial derivative of pt with respect to 𝜀t;

from (1.42)
𝜕pt
𝜕𝜀t

= −1

𝛾
(1.44)

Equation (1.44) is called the impact multiplier since it shows the impact effect of

a change in 𝜀t on the price in t. In terms of Figure 1.3, a negative value of 𝜀t implies a

price above the long-run price p; the price in t rises by 1∕𝛾 units for each unit decline in
current period supply. Of course, this terminology is not specific to the cobweb model;

in terms of the nth-order model given by (1.10), the impact multiplier is the partial

derivative of yt with respect to the partial change in the forcing process.
5

The effects of the supply shock in t persist into future periods. Updating (1.42) by
one period yields the one-period multiplier:

𝜕pt+1
𝜕𝜀t

= −1

𝛾
(−𝛽∕𝛾)

= 𝛽∕𝛾2
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Point 3 in Figure 1.3 illustrates how the price in t + 1 is affected by the negative

supply shock in t. It is straightforward to derive the result that the effects of the supply
shock decay over time. Since 𝛽∕𝛾 < 1, the absolute value of 𝜕pt∕𝜕𝜀t exceeds 𝜕pt+1∕𝜕𝜀t.
All of the multipliers can be derived analogously; updating (1.42) by two periods

𝜕pt+2∕𝜕𝜀t = −(1∕𝛾)(−𝛽∕𝛾)2

and after n periods:
𝜕pt+n∕𝜕𝜀t = −(1∕𝛾)(−𝛽∕𝛾)n

The time path of all such multipliers is called the impulse response function. This
function has many important applications in time-series analysis because it shows how

the entire time path of a variable is affected by a stochastic shock. Here, the impulse

function traces the effects of a supply shock in the wheat market. In other economic

applications, you may be interested in the time path of a money supply shock or a

productivity shock on real GDP.

In actuality, the function can be derived without updating (1.42) because it is

always the case that
𝜕pt+j
𝜕𝜀t

=
𝜕pt
𝜕𝜀t−j

To find the impulse response function, simply find the partial derivative of (1.42) with

respect to the various 𝜀t−j. These partial derivatives are nothing more than the coeffi-

cients of the {𝜀t−j} sequence in (1.42).
Each of the three components in (1.42) has a direct economic interpretation. The

deterministic portion of the particular solution (a − b)∕(𝛾 + 𝛽) is the long-run equi-

librium price; if the stability condition is met, the {pt} sequence tends to converge

to this long-run value. The stochastic component of the particular solution captures

the short-run price adjustments due to the supply shocks. The ultimate decay of the

coefficients of the impulse response function guarantees that the effects of changes

in the various 𝜀t are of a short-run duration. The third component is the expression

(−𝛽∕𝛾)tA = (−𝛽∕𝛾)t[p0 − (a − b)∕(𝛾 + 𝛽)]. The value of A is the initial period’s devia-

tion of the price from its long-run equilibrium level. Given that 𝛽∕𝛾 < 1, the importance

of this initial deviation diminishes over time.

6. SOLVING HOMOGENEOUS DIFFERENCE
EQUATIONS

Higher order difference equations arise quite naturally in economic analysis.

Equation (1.5)—the reduced-form GDP equation resulting from Samuelson’s (1939)

model—is an example of a second-order difference equation. Moreover, in time-series

econometrics it is quite typical to estimate second- and higher order equations. To

begin our examination of homogeneous solutions, consider the second-order equation

yt − a1yt−1 − a2yt−2 = 0 (1.45)
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Given the findings in the first-order case, you should suspect that the homogeneous

solution has the form yht = A𝛼t. Substitution of this trial solution into (1.45) yields

A𝛼t − a1A𝛼
t−1 − a2A𝛼

t−2 = 0 (1.46)

Clearly, any arbitrary value of A is satisfactory. If you divide (1.46) by A𝛼t−2, the prob-
lem is to find the values of 𝛼 that satisfy

𝛼2 − a1𝛼 − a2 = 0 (1.47)

Solving this quadratic equation—called the characteristic equation—yields two val-

ues of 𝛼, called the characteristic roots. Using the quadratic formula, we find that the

two characteristic roots are

𝛼1, 𝛼2 =
a1 ±

√
a2
1
+ 4a2

2

= (a1 ±
√
d)∕2 (1.48)

where d is the discriminant [a2
1
+ 4a2].

Each of these two characteristic roots yields a valid solution for (1.45). Again,

these solutions are not unique. In fact, for any two arbitrary constants A1 and A2, the

linear combination A1(𝛼1)t + A2(𝛼2)t also solves (1.45). As proof, simply substitute

yt = A1(𝛼1)t + A2(𝛼2)t into (1.45) to obtain

A1(𝛼1)t + A2(𝛼2)t = a1[A1(𝛼1)t−1 + A2(𝛼2)t−1] + a2[A1(𝛼1)t−2 + A2(𝛼2)t−2]

Now, regroup terms as follows:

A1[(𝛼1)t − a1(𝛼1)t−1 − a2(𝛼1)t−2] + A2[(𝛼2)t − a1(𝛼2)t−1 − a2(𝛼2)t−2] = 0

Since 𝛼1 and 𝛼2 each solve (1.45), both terms in brackets must equal zero. As such, the

complete homogeneous solution in the second-order case is

yht = A1(𝛼1)t + A2(𝛼2)t

Without knowing the specific values of a1 and a2, we cannot find the two characteristic
roots 𝛼1 and 𝛼2. Nevertheless, it is possible to characterize the nature of the solution;

three possible cases are dependent on the value of the discriminant d.

CASE 1

If a1
2 + 4a2 > 0, d is a real number and there will be two distinct real character-

istic roots. Hence, there are two separate solutions to the homogeneous equation

denoted by (𝛼1)t and (𝛼2)t. We already know that any linear combination of the

two is also a solution. Hence,

yht = A1(𝛼1)t + A2(𝛼2)t
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WORKSHEET 1.1
SECOND-ORDER EQUATIONS

Example 1: yt = 0.2yt−1 + 0.35yt−2. Hence: a1 = 0.2 and a2 = 0.35

Form the homogeneous equation: yt − 0.2yt−1 − 0.35yt−2 = 0

A check of the discriminant reveals: d = a2
1
+ 4a2 so that d = 1.44. Given

that d > 0, the roots will be real and distinct.

Let the trial solution have the form: yt = 𝛼t. Substitute the trial solution into

the homogenous equation to obtain: 𝛼t − 0.2𝛼t−1 − 0.35 𝛼t−2 = 0

Divide by 𝛼t−2 to obtain the characteristic equation: 𝛼2 − 0.2𝛼 − 0.35 = 0

Compute the two characteristic roots:

𝛼1 = 0.5(a1 + d1∕2) 𝛼2 = 0.5(a1 − d1∕2)
𝛼1 = 0.7 𝛼2 = −0.5

The homogeneous solution is: A1(0.7)t + A2(−0.5)t. The first graph shows

the time path of this solution for the case in which the arbitrary constants

equal unity and t runs from 1 to 20.

Example 2: yt = 0.7yt−1 + 0.35yt−2. Hence: a1 = 0.7 and a2 = 0.35

Form the homogeneous equation: yt − 0.7yt−1 − 0.35yt−2 = 0

A check of the discriminant reveals: d = a2
1
+ 4a2 so that d = 1.89. Given

that d > 0, the roots will be real and distinct.

Form the characteristic equation 𝛼t − 0.7𝛼t−1 − 0.35𝛼t−2 = 0

Divide by 𝛼t−2 to obtain the characteristic equation: 𝛼2 − 0.7𝛼 − 0.35 = 0

Compute the two characteristic roots:

𝛼1 = 0.5(a1 + d1∕2) 𝛼2 = 0.5(a1 − d1∕2).
𝛼1 = 1.037 𝛼2 = −0.337

The homogeneous solution is: A1(1.037)t + A2(−0.337)t. The second graph
shows the time path of this solution for the case in which the arbitrary con-

stants equal unity and t runs from 1 to 20.

0 10 20
0

0.5

1
Example 1

0 10 20
0.5

1.5

2.5
Example 2
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It should be clear that if the absolute value of either 𝛼1 or 𝛼2 exceeds

unity, the homogeneous solution will explode. Worksheet 1.1 examines two

second-order equations showing real and distinct characteristic roots. In the

first example, yt = 0.2yt−1 + 0.35yt−2, the characteristic roots are shown to

be 𝛼1 = 0.7 and 𝛼2 = −0.5. Hence, the full homogeneous solution is yt
h =

A1(0.7)t + A2(−0.5)t. Since both roots are less than unity in absolute value, the

homogeneous solution is convergent. As you can see in the graph on the bottom

left-hand side of Worksheet 1.1, convergence is not monotonic because of the

influence of the expression (−0.5)t.
In the second example, yt = 0.7yt−1 + 0.35yt−2. The worksheet indicates

how to obtain the solution for the two characteristic roots. Given that one

characteristic root is 1.037, the {yt} sequence explodes. The negative root (𝛼2 =
−0.337) is responsible for the nonmonotonicity of the time path. Since (−0.337)t
quickly approaches zero, the dominant root is the explosive value 1.037.

CASE 2

If a2
1
+ 4a2 = 0, it follows that d = 0 and 𝛼1 = 𝛼2 = a1∕2. Hence, a homogeneous

solution is a1∕2. However, when d = 0, there is a second homogeneous solution

given by t(a1∕2)t. To demonstrate that yht = t(a1∕2)t is a homogeneous solution,

substitute it into (1.45) to determine whether

t(a1∕2)t − a1[(t − 1)(a1∕2)t−1] − a2[(t − 2)(a1∕2)t−2] = 0

Divide by (a1∕2)t−2 and form

−[(a2
1
∕4) + a2]t + [(a2

1
∕2) + 2a2] = 0

Since we are operating in the circumstance where a2
1
+ 4a2 = 0, each bracketed

expression is zero; hence, t(a1∕2)t solves (1.45). Again, for arbitrary constants

A1 and A2, the complete homogeneous solution is

yht = A1(a1∕2)t + A2t(a1∕2)t

Clearly, the system is explosive if |a1| > 2. If |a1| < 2, the term A1(a1∕2)t con-
verges, but you might think that the effect of the term t(a1∕2)t is ambiguous

[since the diminishing (a1∕2)t is multiplied by t]. This ambiguity is correct in

the limited sense that the behavior of the homogeneous solution is not mono-

tonic. As illustrated in Figure 1.4 for a1∕2 = 0.95, 0.9, and –0.9, as long as|a1| < 2, lim[t(a1∕2)t] is necessarily zero as t → ∞; thus, there is always con-

vergence. For 0 < a1 < 2, the homogeneous solution appears to explode before

ultimately converging to zero. For −2 < a1 < 0, the behavior is wildly erratic;

the homogeneous solution appears to oscillate explosively before the oscillations

dampen and finally converge to zero.
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FIGURE 1.4 The homogeneous solution t(a1)t

CASE 3

If a1
2 + 4a2 < 0, it follows that d is negative so that the characteristic roots are

imaginary. Since a1
2 ≥ 0, imaginary roots can occur only if a2 < 0. Although this

might be hard to interpret directly, if we switch to polar coordinates it is possible

to transform the roots into more easily understood trigonometric functions. The

technical details are presented in Appendix 1.1 of the Supplementary Manual.
For now, write the two characteristic roots as

𝛼1 = (a1 + i
√
−d)∕2 𝛼2 = (a1 − i

√
−d)∕2

where i =
√
−1.
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As shown inAppendix 1.1, deMoivre’s theorem allows us towrite the homo-

geneous solution as

yht = 𝛽1r
t cos(𝜃t + 𝛽2) (1.49)

where 𝛽1 and 𝛽2 are arbitrary constants, r = (−a2)1∕2, and the value of 𝜃 is chosen
so as to satisfy

cos(𝜃) = a1∕[2(−a2)1∕2] (1.50)

The trigonometric functions impart a wavelike pattern to the time path of the

homogeneous solution; note that the frequency of the oscillations is determined

by 𝜃. Since cos(𝜃t) = cos(2𝜋 + 𝜃t), the stability condition is determined solely

by the magnitude of r = (−a2)1∕2. If |a2| = 1, the oscillations are of unchanging

amplitude; the homogeneous solution is periodic. The oscillations will dampen

if |a2| < 1 and explode if |a2| > 1.

Example: It is worthwhile to work through an exercise using an equation with

imaginary roots. The left-hand side of Worksheet 1.2 examines the behavior of

the equation yt = 1.6yt−1 − 0.9yt−2. A quick check shows that the discriminant d
is negative so that the characteristic roots are imaginary. If we transform to polar

coordinates, the value of r is given by (0.9)1∕2 = 0.949. From (1.50), cos(𝜃) =
1.6∕(2 ∗ 0.949) = 0.843. You can use a trig table or a calculator to show that

𝜃 = 0.567 (i.e., if cos(𝜃) = 0.843, 𝜃 = 0.567). Thus, the homogeneous solution is

yht = 𝛽1(0.949)t cos(0.567t + 𝛽2) (1.51)

The graph on the left-hand side of Worksheet 1.2 sets 𝛽1 = 1 and 𝛽2 = 0 and

plots the homogeneous solution for t = 1, … , 30. Case 2 uses the same value of

a2 (hence, r = 0.949) but sets a1 = −0.6. Again, the value of d is negative; how-
ever, for this set of calculations, cos(𝜃) = −0.316 so that 𝜃 is 1.89. Comparing

the two graphs, you can see that increasing the value of 𝜃 acts to increase the

frequency of the oscillations.

Stability Conditions

The general stability conditions can be summarized using triangle ABC in Figure 1.5.

Arc A0B is the boundary between Cases 1 and 3; it is the locus of points where d =
a1

2 + 4a2 = 0. The region above A0B corresponds to Case 1 (since d > 0), and the

region below A0B corresponds to Case 3 (since d < 0).

In Case 1 (in which the roots are real and distinct), stability requires that the largest

root be less than unity and the smallest root be greater than –1. The largest characteristic

root, 𝛼1 = (a1 +
√
d)∕2, will be less than unity if

a1 + (a12 + 4a2)1∕2 < 2 or (a12 + 4a2)1∕2 < 2 − a1

Square each side to obtain the condition:

a1
2 + 4a2 < 4 − 4a1 + a1

2
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WORKSHEET 1.2
IMAGINARY ROOTS

Example 1 Example 2

yt − 1.6yt−1 + 0.9yt−2 yt + 0.6yt−1 + 0.9yt−2

(a) Check the discriminant d= (a𝟏)
𝟐 + 𝟒a𝟐

d = (1.6)2 + 4(−0.9)
= −1.04

d = (−0.6)2 + 4(−0.9)
= −3.24

Hence, the roots are imaginary. The homogeneous solution has the form

yht = 𝛽1r
t cos(𝜃t + 𝛽2)

where 𝛽1 and 𝛽2 are arbitrary constants.
b) Obtain the value of r= (− a𝟐)

𝟏∕𝟐

r = (0.9)1∕2
= 0.949

r = (0.9)1∕2
= 0.949

c) Obtain 𝜃 from cos(𝜃) = a𝟏 ∕ [𝟐(− a𝟐)
𝟏∕𝟐]

cos(𝜃) = 1.6∕[2(0.9)1∕2]
= 0.843

cos(𝜃) = −0.6∕[2(0.9)1∕2]
= −0.316

Given cos(𝜃), use a calculator or a trig-table to find 𝜃:

𝜃 = 0.567 𝜃 = 1.89

d) Form the homogeneous solution: yht = 𝛽1r
tcos(𝜃t + 𝛽2)

yht = 𝛽1(0.949)t cos(0.567t + 𝛽2) yht = 𝛽1(0.949)t cos(1.89t + 𝛽2)

For 𝛽1 = 1 and 𝛽2 = 0, the time paths of the homogeneous solutions are:

1

–1

1

0

0.5

–0.5

11 21 1

–1

1

0.5

0
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2111
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a2

B

FIGURE 1.5 Characterizing the Stability Conditions

or

a1 + a2 < 1 (1.52)

The smallest root, 𝛼2 = (a1 −
√
d)∕2, will be greater than minus one if

a1 − (a12 + 4a2)1∕2 > −2 or 2 + a1 > (a12 + 4a2)1∕2

Square each side to obtain the condition:

4 + 4a1 + a1
2 > a1

2 + 4a2

or

a2 < 1 + a1 (1.53)

Thus, the region of stability in Case 1 consists of all points in the region bounded by

A0BC. For any point in A0BC, conditions (1.52) and (1.53) hold and d > 0.

In Case 2 (repeated roots), a1
2 + 4a2 = 0. The stability condition is |a1| < 2. Thus,

the region of stability in Case 2 consists of all points on arc A0B. In Case 3 (d < 0), the
stability condition is r = (−a2)1∕2 < 1. Hence,

−a2 < 1 (where a2 < 0) (1.54)

Thus, the region of stability in Case 3 consists of all points in region A0B. For any point
in A0B, (1.54) is satisfied and d < 0.

A succinct way to characterize the stability conditions is to state that the character-

istic roots must lie within the unit circle. Consider the semicircle drawn in Figure 1.6.

Real numbers are measured on the horizontal axis and imaginary numbers are mea-

sured on the vertical axis. If the characteristic roots 𝛼1 and 𝛼2 are both real, they

can be plotted on the horizontal axis. Stability requires that they lie within a circle

of radius one. Complex roots will lie somewhere in the complex plane. If a1 > 0, the

roots 𝛼1 = (a1 + i
√
d)∕2 and 𝛼2 = (a1 − i

√
d)∕2 can be represented by the two points
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Real

Imaginary

0

r

r

α1d1/2/2

α2

a1/2

FIGURE 1.6 Characteristic Roots and the Unit Circle

shown in Figure 1.6. For example, 𝛼1 is drawn by moving a1∕2 units along the real axis
and

√
d∕2 units along the imaginary axis. Using the distance formula, the length of the

radius r is given by

r =
√

(a1∕2)2 + (d1∕2i∕2)2

and, using the fact that i2 = −1, we obtain

r = (−a2)1∕2

The stability condition requires that r < 1. Therefore, when plotted on the complex

plane, the two roots 𝛼1 and 𝛼2 must lie within a circle of radius equal to unity. In the

time-series literature it is simply stated that stability requires that all characteristic
roots lie within the unit circle.

Higher Order Systems

The same method can be used to find the homogeneous solution to higher order differ-

ence equations. The homogeneous equation for (1.10) is

yt −
n∑
i=1

aiyt−i = 0 (1.55)

Given the results in Section 1.4, you should suspect each homogeneous solution to have

the form yht = A𝛼t where A is an arbitrary constant. Thus, to find the value(s) of 𝛼, we

seek the solution for

A𝛼t −
n∑
i=1

aiA𝛼
t−i = 0 (1.56)

or, dividing through by 𝛼t−n, we seek the values of 𝛼 that solve

𝛼n − a1𝛼
n−1 − a2𝛼

n−2 − · · · − an = 0 (1.57)
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This nth-order polynomial will yield n solutions for 𝛼. Denote these n characteristic
roots by 𝛼1, 𝛼2, … , 𝛼n. As in Section 1.4, the linear combination A1𝛼

t
1
+ A2𝛼

t
2
+ · · · +

An𝛼
t
n is also a solution. The arbitrary constants A1 through An can be eliminated by

imposing n initial conditions on the general solution. The 𝛼i may be real or complex

numbers. Stability requires that all real valued 𝛼i be less than unity in absolute value.

Complex roots will necessarily come in pairs. Stability requires that all roots lie within

the unit circle shown in Figure 1.6.

In most circumstances there is little need to directly calculate the characteristic

roots of higher order systems. Many of the technical details are included in Section 1.2

of the Supplementary Manual (Appendix 1.2 of this chapter). However, there are some

useful rules for checking the stability conditions in higher order systems.

1. In an nth-order equation, a necessary condition for all characteristic roots to
lie inside the unit circle is

n∑
i=1

ai < 1

2. Since the values of the ai can be positive or negative, a sufficient condition for
all characteristic roots to lie inside the unit circle is

n∑
i=1

|ai| < 1

3. At least one characteristic root equals unity if

n∑
i=1

ai = 1

Any sequence that contains one or more characteristic roots that equal unity

is called a unit root process.
4. For a third-order equation, the stability conditions can be written as

1 − a1 − a2 − a3 > 0

1 + a1 − a2 + a3 > 0

1 − a1a3 + a2 − a3
2 > 0

3 + a1 + a2 − 3a3 > 0 or 3 − a1 + a2 + 3a3 > 0

Given that the first three inequalities are satisfied, either of the last two can

be checked. One of the last conditions is redundant, given that the other three

hold.

7. PARTICULAR SOLUTIONS FOR
DETERMINISTIC PROCESSES

Finding the particular solution to a difference equation is often a matter of ingenu-

ity and perseverance. The appropriate technique depends heavily on the form of the

{xt} process. We begin by considering those processes that contain only deterministic
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components. Of course, in econometric analysis, the forcing process will contain both

deterministic and stochastic components.

CASE 1

xt=𝟎. When all elements of the {xt} process are zero, the difference equation

becomes

yt = a0 + a1yt−1 + a2yt−2 + · · · + anyt−n (1.58)

Intuition suggests that an unchanging value of y (i.e., yt = yt−1 = · · · = c) should
solve the equation. Substitute the trial solution yt = c into (1.58) to obtain

c = a0 + a1c + a2c + · · · + anc

so that

c = a0∕(1 − a1 − a2 − · · · − an) (1.59)

As long as (1 − a1 − a2 − · · · − an) does not equal zero, the value of c given by

(1.59) is a solution to (1.58). Hence, the particular solution to (1.58) is given by

ypt = a0∕(1 − a1 − a2 − · · · − an).
If 1 − a1 − a2 − · · · − an = 0, the value of c in (1.59) is undefined; it is nec-

essary to try some other form for the solution. The key insight is that {yt} is a

unit root process if Σai = 1. Since {yt} is not convergent, it stands to reason that
the constant solution does not work. Instead, recall equations (1.12) and (1.26);

these solutions suggest that a linear time trend can appear in the solution of a unit

root process. As such, try the solution ypt = ct. For ct to be a solution it must be

the case that

ct = a0 + a1c(t − 1) + a2c(t − 2) + · · · + anc(t − n)

or, combining like terms,

(1 − a1 − a2 − · · · − an)ct = a0 − c(a1 + 2a2 + 3a3 + · · · + nan)

Since 1 − a1 − a2 − · · · − an = 0, select the value of c such that

c = a0∕(a1 + 2a2 + 3a3 + · · · + nan)

For example, let

yt = 2 + 0.75yt−1 + 0.25yt−2

Here, a1 = 0.75 and a2 = 0.25; {yt} is a unit root process because a1 +
a2 = 1. The particular solution has the form ct, where c = 2∕[0.75 + 2(0.25)] =
1.6. In the event that the solution ct fails, sequentially try the solutions ypt =
ct2, ct3, … , ctn. For an nth-order equation, one of these solutions will always be
the particular solution.
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CASE 2

The Exponential Case. Let xt have the exponential form b(d)rt, where b, d, and
r are constants. Since r has the natural interpretation as a growth rate, we would
expect to encounter this type of forcing process case in a growth context. We

illustrate the solution procedure using the first-order equation

yt = a0 + a1yt−1 + bdrt (1.60)

To try to gain an intuitive feel for the form of the solution, notice that if b = 0,

(1.60) is a special case of (1.58). Hence, you should expect a constant to appear in

the particular solution. Moreover, the expression drt grows at the constant rate r.
Thus, you might expect the particular solution to have the form ypt = c0 + c1d

rt,

where c0 and c1 are constants. If this equation is actually a solution, you should be
able to substitute it back into (1.60) and obtain an identity.Making the appropriate

substitutions, we get

c0 + c1d
rt = a0 + a1[c0 + c1d

r(t−1)] + bdrt (1.61)

For this solution to work, it is necessary to select c0 and c1 such that

c0 = a0∕(1 − a1) and c1 = [bdr]∕(dr − a1)

Thus, a particular solution is

ypt =
a0

1 − a1
+ bdr

dr − a1
drt

The nature of the solution is that ypt equals the constant a0∕(1 − a1) plus an

expression that grows at the rate r. Note that for |dr| < 1, the particular solution

converges to a0∕(1 − a1).
If either a1 = 1 or a1 = dr, use the trick suggested in Case 1. If a1 = 1, try

the solution c0 = ct, and if a1 = dr, try the solution c1 = tb. Use precisely the

same methodology in higher order systems.

CASE 3

Deterministic Time Trend. In this case, let the {xt} sequence be represented by
the relationship xt = btd where b is a constant and d is a positive integer. Hence,

yt = a0 +
n∑
i=1

aiyt−i + dtd (1.62)

Since yt depends on td, it follows that yt−1 depends on (t − 1)d, yt−2
depends on (t − 2)d, and so on. As such, the particular solution has the form

ypt = c0 + c1t + c2t
2 + · · · + cdt

d. To find the value of each ci, substitute the

particular solution into (1.62). Then select the value of each ci that results in an

identity. Although various values of d are possible, in economic applications it is
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common to see models incorporating a linear time trend (d = 1). For illustrative
purposes, consider the second-order equation yt = a0 + a1yt−1 + a2yt−2 + bt.
Posit the solution ypt = c0 + c1t where c0 and c1 are undetermined coefficients.

Substituting this “challenge solution” into the second-order difference equation

yields

c0 + c1t = a0 + a1[c0 + c1(t − 1)] + a2 [c0 + c1(t − 2)] + bt (1.63)

Now select values of c0 and c1 so as to force equation (1.63) to be an iden-

tity for all possible values of t. If we combine all constant terms and all terms

involving t, the required values of c0 and c1 are

c1 = b∕(1 − a1 − a2)
c0 = [a0 − (2a2 + a1)c1]∕(1 − a1 − a2)

so that

c0 = [a0∕(1 − a1 − a2)] − [b∕(1 − a1 − a2)2](2a2 + a1)

Thus, the particular solution will also contain a linear time trend. You

should have no difficulty foreseeing the solution technique if a1 + a2 = 1. In

this circumstance—which is applicable to higher order cases, as well—try

multiplying the original challenge solution by t.

8. THE METHOD OF UNDETERMINED
COEFFICIENTS

At this point, it is appropriate to introduce the first of two useful methods for finding

particular solutions when there are stochastic components in the {yt} process. The key
insight of themethod of undetermined coefficients is that linear equations have linear
solutions. Hence, the particular solution to a linear difference equation is necessarily

linear. Moreover, the solution can depend only on time, a constant, and the elements of

the forcing process {xt}. Thus, it is often possible to know the exact form of the solu-

tion even though the coefficients of the solution are unknown. The technique involves

positing a solution—called a challenge solution—that is a linear function of all terms

thought to appear in the actual solution. The problem becomes one of finding the set

of values for those undetermined coefficients that solve the difference equation.

The actual technique for finding the coefficients is straightforward. Substitute the

challenge solution into the original difference equation and solve for the values of the

undetermined coefficients that yield an identity for all possible values of the included

variables. If it is not possible to obtain an identity, the form of the challenge solution is

incorrect. Try a new trial solution and repeat the process. In fact, we used the method

of undetermined coefficients when positing the challenge solutions ypt = c0 + c1d
rt and

ypt = c0 + c1t for Cases 2 and 3 in Section 1.7.

To begin, reconsider the simple first-order equation yt = a0 + a1yt−1 + 𝜀t. Since

you have solved this equation using the iterative method, the equation is useful for

illustrating the method of undetermined coefficients. The nature of the {yt} process
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is such that the particular solution can depend only on a constant term, time, and the

individual elements of the {𝜀t} sequence. Given that t does not explicitly appear in the
forcing process, t can be in the particular solution only if the characteristic root is unity.
Since the goal is to illustrate the method, posit the challenge solution:

yt = b0 + b1t +
∞∑
i=0

𝛼i𝜀t−i (1.64)

where b0, b1, and all the 𝛼i are the coefficients to be determined.

Substitute (1.64) into the original difference equation to form

b0 + b1t + 𝛼0𝜀t + 𝛼1𝜀t−1 + 𝛼2𝜀t−2 + · · ·
= a0 + a1[b0 + b1(t − 1) + 𝛼0𝜀t−1 + 𝛼1𝜀t−2 + · · ·] + 𝜀t

Collecting like terms, we obtain

(b0 − a0 − a1b0 + a1b1) + b1(1 − a1)t + (𝛼0 − 1)𝜀t
+ (𝛼1 − a1𝛼0)𝜀t−1 + (𝛼2 − a1𝛼1)𝜀t−2 + (𝛼3 − a1𝛼2)𝜀t−3 + · · · = 0 (1.65)

Equation (1.65) must hold for all values of t and all possible values of the {𝜀t}
sequence. Thus, each of the following conditions must hold:

𝛼0 − 1 = 0

𝛼1 − a1𝛼0 = 0

𝛼2 − a1𝛼1 = 0

⋮

b0 − a0 − a1b0 + a1b1 = 0

b1 − a1b1 = 0

Notice that the first set of conditions can be solved for the 𝛼i recursively. The

solution of the first condition entails setting 𝛼0 = 1. Given this solution for 𝛼0, the next

equation requires 𝛼1 = a1. Moving down the list, 𝛼2 = a1𝛼1 or 𝛼2 = a1
2. Continuing

the recursive process, we find 𝛼i = a1
i. Now consider the last two equations. There are

two possible cases depending on the value of a1. If a1 ≠ 1, it immediately follows that

b1 = 0 and b0 = a0∕(1 − a1). For this case, the particular solution is

yt =
a0

1 − a1
+

∞∑
i=0

ai
1
𝜀t−i

Compare this result to (1.21); you will see that it is precisely the same solution

found using the iterative method. The general solution is the sum of this particular

solution plus the homogeneous solution Aa1
t. Hence, the general solution is

yt =
a0

1 − a1
+

∞∑
i=0

ai
1
𝜀t−i + Aat

1

Now, if there is an initial condition for y0, it follows that

y0 =
a0

1 − a1
+

∞∑
i=0

ai
1
𝜀−i + A
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Combining these two equations so as to eliminate the arbitrary constant A, we obtain

yt =
a0

1 − a1
+

∞∑
i=0

ai
1
𝜀t−i + at

1

[
y0 − a0∕

(
1 − a1

)
−

∞∑
i=0

ai
1
𝜀−i

]
so that

yt =
a0

1 − a1
+

t−1∑
i=0

ai
1
𝜀t−i + at

1
[y0 − a0∕(1 − a1)] (1.66)

It can be easily verified that (1.66) is identical to (1.25). Instead, if a1 = 1, b0 can be

any arbitrary constant and b1 = a0. The improper form of the solution is

yt = b0 + a0t +
∞∑
i=0

𝜀t−i

The form of the solution is “improper” because the sum of the {𝜀t} sequence may not

be finite. Therefore, it is necessary to impose an initial condition. If the value y0 is

given, it follows that

y0 = b0 +
∞∑
i=0

𝜀−i

Imposing the initial condition on the improper form of the solution yields (1.26)

yt = y0 + a0t +
t∑
i=1

𝜀i

To take a second example, consider the equation

yt = a0 + a1yt−1 + 𝜀t + 𝛽1𝜀t−1 (1.67)

Again, the solution can depend only on a constant, the elements of the {𝜀t} sequence,
and t raised to the first power. As in the previous example, t does not need to be included
in the challenge solution if the characteristic root differs from unity. To reinforce this

point, use the challenge solution given by (1.64). Substitute this tentative solution into

(1.67) to obtain

b0 + b1t +
∞∑
i=0

𝛼i𝜀t−i = a0 + a1

[
b0 + b1 (t − 1) +

∞∑
i=0

𝛼i𝜀t−1−i

]
+ 𝜀t + 𝛽1𝜀t−1

Matching coefficients on all terms containing 𝜀t, 𝜀t−1, 𝜀t−2, … , yields

𝛼0 = 1

𝛼1 = a1𝛼0 + 𝛽1 [so that 𝛼1 = a1 + 𝛽1]
𝛼2 = a1𝛼1 [so that 𝛼2 = a1(a1 + 𝛽1)]
𝛼3 = a1𝛼2 [so that 𝛼3 = (a1)2(a1 + 𝛽1)]
⋮

𝛼i = a1𝛼i−1 [so that 𝛼i = (a1)i−1(a1 + 𝛽1)]
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Matching coefficients of intercept terms and coefficients of terms containing t, we get

b0 = a0 + a1b0 − a1b1
b1 = a1b1

Again, there are two cases. If a1 ≠ 1, then b1 = 0 and b0 = a0∕(1 − a1). The particular
solution is

yt =
a0

1 − a1
+ 𝜀t + (a1 + 𝛽1)

∞∑
i=1

ai−1
1

𝜀t−i

The general solution augments the particular solution with the term Aat
1
. You are

left with the exercise of imposing the initial condition for y0 on the general solution.

Now consider the case in which a1 = 1. The undetermined coefficients are such that

b1 = a0 and b0 is an arbitrary constant. The improper form of the solution is

yt = b0 + a0t + 𝜀t + (1 + 𝛽1)
∞∑
i=1

𝜀t−i

If y0 is given, it follows that

y0 = b0 + 𝜀0 + (1 + 𝛽1)
∞∑
i=1

𝜀−i

Hence, imposing the initial condition, we obtain

yt = y0 + a0t + 𝜀t + (1 + 𝛽1)
t−1∑
i=1

𝜀t−i

Higher Order Systems

The identical procedure is used for higher order systems. As an example, let us find the

particular solution to the second-order equation

yt = a0 + a1yt−1 + a2yt−2 + 𝜀t (1.68)

Since we have a second-order equation, we use the challenge solution

yt = b0 + b1t + b2t
2 + 𝛼0𝜀t + 𝛼1𝜀t−1 + 𝛼2𝜀t−2 + · · ·

where b0, b1, b2, and the 𝛼i are the undetermined coefficients.

Substituting the challenge solution into (1.68) yields

[b0 + b1t + b2t
2] + 𝛼0𝜀t + 𝛼1𝜀t−1 + 𝛼2𝜀t−2 + · · ·

= a0 + a1[b0 + b1(t − 1) + b2(t − 1)2 + 𝛼0𝜀t−1 + 𝛼1𝜀t−2 + 𝛼2𝜀t−3 + · · ·]

+ a2[b0 + b1(t − 2) + b2(t − 2)2 + 𝛼0𝜀t−2 + 𝛼1𝜀t−3 + 𝛼2𝜀t−4 + · · ·] + 𝜀t
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There are several necessary and sufficient conditions for the values of the 𝛼i’s to

render the equation above an identity for all possible realizations of the {𝜀t} sequence:

𝛼0 = 1

𝛼1 = a1𝛼0 [so that 𝛼1 = a1]
𝛼2 = a1𝛼1 + a2𝛼0 [so that 𝛼2 = (a1)2 + a2]
𝛼3 = a1𝛼2 + a2𝛼1 [so that 𝛼3 = (a1)3 + 2a1a2]

⋮

Notice that for any value of j ≥ 2, the coefficients solve the second-order difference

equation 𝛼j = a1𝛼j−1 + a2𝛼j−2. Since we know 𝛼0 and 𝛼1, we can solve for all the 𝛼j
iteratively. The properties of the coefficients will be precisely those discussed when

considering homogeneous solutions:

1. Convergence necessitates that |a2| < 1, a1 + a2 < 1, and that a2 − a1 < 1.

Notice that convergence implies that past values of the {𝜀t} sequence
ultimately have a successively smaller influence on the current

value of yt.

2. If the coefficients converge, convergence will be direct or oscillatory if

(a2
1
+ 4a2) > 0, will follow a sine/cosine pattern if (a2

1
+ 4a2) < 0, and will

“explode” and then converge if (a2
1
+ 4a2) = 0. Appropriately setting the 𝛼i,

we are left with the remaining expression:

b2(1 − a1 − a2)t2 + [b1(1 − a1 − a2) + 2b2(a1 + 2a2)]t
+ [b0(1 − a1 − a2) − a0 + a1(b1 − b2) + 2a2(b1 − 2b2)] = 0 (1.69)

Equation (1.69) must equal zero for all values of t. First, consider the case in which
a1 + a2 ≠ 1. Since (1 − a1 − a2) does not vanish, it is necessary to set the value of b2
equal to zero. Given that b2 = 0 and that the coefficient of t must equal zero, it fol-

lows that b1 must also be set equal to zero. Finally, given that b1 = b2 = 0, we must

set b0 = a0∕(1 − a1 − a2). Instead, if a1 + a2 = 1, the solutions for the bi depend on

the specific values of a0, a1, and a2. The key point is that the stability condition for
the homogeneous equation is precisely the condition for convergence of the particular
solution. If any characteristic root of the homogeneous equation is equal to unity, a
polynomial time trend will appear in the particular solution. The order of the polyno-
mial is the number of unitary characteristic roots. This result generalizes to higher order
equations.

If you are really clever, you can combine the discussion of the last section with the

method of undetermined coefficients. Find the deterministic portion of the particular

solution using the techniques discussed in the last section. Then use the method of

undetermined coefficients to find the stochastic portion of the particular solution. In

(1.67), for example, set 𝜀t = 𝜀t−1 = 0 and obtain the solution a0∕(1 − a1). Now use

the method of undetermined coefficients to find the particular solution of yt = a1yt−1 +
𝜀t + 𝛽1𝜀t−1. Add the deterministic and stochastic components to obtain all components

of the particular solution.
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A Solved Problem

To illustrate the methodology using a second-order equation, augment (1.28) with the

stochastic term 𝜀t so that

yt = 3 + 0.9yt−1 − 0.2yt−2 + 𝜀t (1.70)

You have already verified that the two homogeneous solutions are A1(0.5)t and A2(0.4)t
and that the deterministic portion of the particular solution is ypt = 10. To find the

stochastic portion of the particular solution, form the challenge solution

yt =
∞∑
i=0

𝛼i𝜀t−i

In contrast to (1.64), the intercept term b0 is excluded (since we have already found

the deterministic portion of the particular solution) and the time trend b1t is excluded
(since both characteristic roots are less than unity). For this challenge to work, it must

satisfy

𝛼0𝜀t + 𝛼1𝜀t−1 + 𝛼2𝜀t−2 + 𝛼3𝜀t−3 + · · ·
= 0.9[𝛼0𝜀t−1 + 𝛼1𝜀t−2 + 𝛼2𝜀t−3 + 𝛼3𝜀t−4 + · · ·]
− 0.2 [𝛼0𝜀t−2 + 𝛼1𝜀t−3 + 𝛼2𝜀t−4 + 𝛼3𝜀t−5 + · · ·] + 𝜀t (1.71)

Since (1.71) must hold for all possible realizations of 𝜀t, 𝜀t−1, 𝜀t−2, … , each of the

following conditions must hold:

𝛼0 = 1

𝛼1 = 0.9𝛼0

so that 𝛼1 = 0.9, and for all i ≥ 2,

𝛼i = 0.9𝛼i−1 − 0.2𝛼i−2 (1.72)

Now, it is possible to solve (1.72) iteratively so that 𝛼2 = 0.9𝛼1 − 0.2𝛼0 = 0.61, 𝛼3 =
0.9(0.61) − 0.2(0.9) = 0.369, and so forth. A more elegant solution method is to view

(1.72) as a second-order difference equation in the {𝛼i} sequence with initial conditions
𝛼0 = 1 and 𝛼1 = 0.9. The solution to (1.72) is

𝛼i = 5(0.5)i − 4(0.4)i (1.73)

To obtain (1.73), note that the solution to (1.72) is 𝛼i = A3(0.5)i + A4(0.4)i
where A3 and A4 are arbitrary constants. Imposing the conditions 𝛼0 = 1 and

𝛼1 = 0.9 yields (1.73). If we use (1.73), it follows that 𝛼0 = 5(0.5)0 − 4(0.4)0 = 1;

𝛼1 = 5(0.5)1 − 4(0.4)1 = 0.9; 𝛼2 = 5(0.5)2 − 4(0.4)2 = 0.61; and so on.

The general solution to (1.70) is the sum of the two homogeneous solutions and

the deterministic and stochastic portions of the particular solution:

yt = 10 + A1(0.5)t + A2(0.4)t +
∞∑
i=0

𝛼i𝜀t−i (1.74)

where the 𝛼i are given by (1.73).

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c01.tex V3 - 09/02/2014 12:52pm Page 40

40 CHAPTER 1 DIFFERENCE EQUATIONS

Given initial conditions for y0 and y1, it follows that A1 and A2 must satisfy

y0 = 10 + A1 + A2 +
∞∑
i=0

𝛼i𝜀−i (1.75)

y1 = 10 + A1(0.5) + A2(0.4) +
∞∑
i=0

𝛼i𝜀1−i (1.76)

Although the algebra gets messy, (1.75) and (1.76) can be substituted into (1.74) to

eliminate the arbitrary constants:

yt = 10 + (0.4)t[5(y0 − 10) − 10(y1 − 10)]

+ (0.5)t[10(y1 − 10) − 4 (y0 − 10)] +
t−2∑
i=0

𝛼i𝜀t−i

9. LAG OPERATORS

If it is not important to know the actual values of the coefficients appearing in the par-

ticular solution, it is often more convenient to use lag operators rather than the method

of undetermined coefficients. The lag operator L is defined to be a linear operator such
that for any value yt

Liyt ≡ yt−i (1.77)

Thus, Li preceding yt simply means to lag yt by i periods. It is useful to consider

the following properties of lag operators:

1. The lag of a constant is a constant: Lc = c.

2. The distributive law holds for lag operators. We can set (Li + Lj)yt = Liyt +
Ljyt = yt−i + yt−j.

3. The associative law of multiplication holds for lag operators. We can set

LiLjyt = Li(Ljyt) = Liyt−j = yt−i−j. Similarly, we can set LiLjyt = Li+jyt =
yt−i−j. Note that L

0yt = yt.

4. L raised to a negative power is actually a lead operator: L−iyt = yt+i. To
explain, define j = −i and form Ljyt = yt−j = yt+i.

5. For |a| < 1, the infinite sum (1 + aL + a2L2 + a3L3 + · · ·)yt = yt∕(1 − aL).
This property of lag operators may not seem intuitive, but it follows directly

from properties 2 and 3 above.

Proof:Multiply each side by (1 − aL) to form (1 − aL)(1 + aL + a2L2 +
a3L3 + · · ·)yt = yt. Multiply the two expressions to obtain (1 − aL + aL −
a2L2 + a2L2 − a3L3 + · · ·)yt = yt. Given that |a| < 1, the expression anLnyt
converges to zero as n → ∞. Thus, the two sides of the equation are equal.

6. For |a| > 1, the infinite sum [1 + (aL)−1 + (aL)−2 + (aL)−3 + · · ·]yt =
−aLyt∕(1 − aL). Thus, yt∕(1 − aL) = −(aL)−1

∑∞
i=0

(aL)−i yt
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Proof: Multiply by (1 − aL) to form (1 − aL)[1 + (aL)−1 + (aL)−2 +
(aL)−3 + · · ·]yt = −aLyt. Perform the indicated multiplication to obtain [1 −
aL + (aL)−1 − 1 + (aL)−2 − (aL)−1 + (aL)−3 − (aL)−2 · · ·]yt = −aLyt. Given
that |a| > 1, the expression a−nL−nyt converges to zero as n→ ∞. Thus, the

two sides of the equation are equal.

Lag operators provide a concise notation for writing difference equations. Using

lag operators, we can write the pth-order equation yt = a0 + a1yt−1 + · · · + apyt−p + 𝜀t
as

(1 − a1L − a2L
2 − · · · − apL

p)yt = a0 + 𝜀t

or, more compactly, as

A(L)yt = a0 + 𝜀t

where A(L) is the polynomial (1 − a1L − a2L
2 − · · · − apL

p)
Since A(L) can be viewed as a polynomial in the lag operator, the notation A(1) is

used to denote the sum of the coefficients

A(1) = 1 − a1 − a2 · · · − ap

As a second example, lag operators can be used to express the equation yt = a0 +
a1yt−1 + · · · + apyt−p + 𝜀t + 𝛽1𝜀t−1 + · · · + 𝛽q𝜀t−q as

A(L)yt = a0 + B(L)𝜀t

where A(L) and B(L) are polynomials of orders p and q, respectively.
It is straightforward to use lag operators to solve linear difference equations. Again

consider the first-order equation yt = a0 + a1yt−1 + 𝜀t where |a1| < 1. Use the defini-

tion of L to form

yt = a0 + a1Lyt + 𝜀t (1.78)

Solving for yt, we obtain

yt =
a0 + 𝜀t

1 − a1L
(1.79)

From property 1, we know that La0 = a0, so that a0∕(1 − a1L) = a0 + a1a0 +
a1

2ao + · · · = a0∕(1 − a1). From property 5, we know that 𝜀t∕(1 − a1L) =
𝜀t + a1𝜀t−1 + a1

2𝜀t−2 + · · ·. Combining these two parts of the solution, we obtain the

particular solution given by (1.21).

For practice, we can use lag operators to solve (1.67): yt = a0 + a1yt−1 + 𝜀t +
𝛽1𝜀t−1, where |a1| < 1. Use property 2 to form (1 − a1L)yt = a0 + (1 + 𝛽1L)𝜀t. Solving
for yt yields

yt = [a0 + (1 + 𝛽1L)𝜀t]∕(1 − a1L)

so that

yt = [a0∕(1 − a1)] + [𝜀t∕(1 − a1L)] + [𝛽1𝜀t−1∕(1 − a1L)] (1.80)

Expanding the last two terms of (1.80) yields the same solution found using the method

of undetermined coefficients.
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Now suppose yt = a0 + a1yt−1 + 𝜀t but |a1| > 1. The application of property 5 to

(1.79) is inappropriate because it implies that yt is infinite. Instead, expand (1.79) using
property 6:

yt =
a0

1 − a1
− (a1L)−1

∞∑
i=0

(a1L)−i𝜀t (1.81)

=
a0

1 − a1
− 1

a1

∞∑
i=0

(a1L)−i𝜀t+1

=
a0

1 − a1
− 1

a1

∞∑
i=0

a−i
1
𝜀t+1+i (1.82)

Lag Operators in Higher Order Systems

We can also use lag operators to transform the nth-order equation yt = a0 + a1yt−1 +
a2yt−2 + · · · + anyt−n + 𝜀t into(

1 − a1L − a2L
2 − · · · − anL

n
)
yt = a0 + 𝜀t

or

yt = (a0 + 𝜀t)∕(1 − a1L − a2L
2 − · · · − anL

n)

From our previous analysis (also see Appendix 1.2 in the Supplementary Man-
ual), we know that the stability condition is such that the characteristic roots of the

equation 𝛼n − a1𝛼
n−1 − · · · − an = 0 all lie within the unit circle. Notice that the val-

ues of 𝛼 solving the characteristic equation are the reciprocals of the values of L that

solve the equation 1 − a1L · · · − anL
n = 0. In fact, the expression 1 − a1L · · · − anL

n

is often called the inverse characteristic equation. Thus, in the literature, it is often

stated that the stability condition is for the characteristic roots of (1 − a1L · · · − anL
n)

to lie outside of the unit circle.
In principle, one could use lag operators to actually obtain the coefficients of

the particular solution. To illustrate using the second-order case, consider yt = (a0 +
𝜀t)∕(1 − a1L − a2L

2). If we knew the factors of the quadratic equation were such that

(1 − a1L − a2L
2) = (1 − b1L)(1 − b2L), we could write

yt = (a0 + 𝜀t)∕[(1 − b1L)(1 − b2L)]

If both b1 and b2 are less than unity in absolute value, we can apply property 5 to obtain

yt =

a0∕(1 − b1) +
∞∑
i=0

bi
1
𝜀t−i

1 − b2L

Reapply the rule to a0∕(1 − b1) and to each of the elements in the summation Σb i
1

𝜀t−i to obtain the particular solution. If you want to know the actual coefficients of the

process, it is preferable to use the method of undetermined coefficients. The beauty of
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lag operators is that they can be used to denote such particular solutions succinctly. The

general model

A(L)yt = a0 + B(L)𝜀t

has the particular solution

yt = a0∕A(L) + B(L)𝜀t∕A(L)

As suggested by (1.82), there is a forward-looking solution to any linear dif-

ference equation. This text will not make much use of the forward-looking solution

since future realizations of stochastic variables are not directly observable. Some of

the details of forward-looking solutions can be found in the Supplementary Manual to
this text available at www.time-series.net and from Wiley.

10. SUMMARY

Time-series econometrics is concerned with the estimation of difference equations con-

taining stochastic components. Originally, time-series models were used for forecast-

ing. Uncovering the dynamic path of a series improves forecasts because the predictable

components of the series can be extrapolated into the future. The growing interest in

economic dynamics has given a new emphasis to time-series econometrics. Stochastic

difference equations arise quite naturally from dynamic economic models. Appropri-

ately estimated equations can be used for the interpretation of economic data and for

hypothesis testing.

This introductory chapter focused on methods of “solving” stochastic difference

equations. Although iteration can be useful, it is impractical in many circumstances.

The solution to a linear difference equation can be divided into two parts: a particu-
lar solution and a homogeneous solution. One complicating factor is that the homo-

geneous solution is not unique. The general solution is a linear combination of the

particular solution and all homogeneous solutions. Imposing n initial conditions on the
general solution of an nth-order equation yields a unique solution.

The homogeneous portion of a difference equation is a measure of the disequilib-
rium in the initial period(s). The homogeneous equation is especially important in that

it yields the characteristic roots; an nth-order equation has n such characteristic roots. If
all of the characteristic roots lie within the unit circle, the series will be convergent. As

you will see in Chapter 2, there is a direct relationship between the stability conditions

and the issue of whether an economic variable is stationary or nonstationary.

The method of undetermined coefficients and the use of lag operators are powerful

tools for obtaining the particular solution. The particular solution will be a linear func-

tion of the current and past values of the forcing process. In addition, this solution may

contain an intercept term and a polynomial function of time. Unit roots and character-

istic roots outside of the unit circle require the imposition of an initial condition for the

particular solution to bemeaningful. Some economicmodels allow for forward-looking

solutions; in such circumstances, anticipated future events have consequences for the

present period.

www.Ebook777.com

http://www.time-series.net
http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c01.tex V3 - 09/02/2014 12:52pm Page 44

44 CHAPTER 1 DIFFERENCE EQUATIONS

The tools developed in this chapter are aimed at paving the way for the study of

time-series econometrics. It is a good idea to work all of the exercises presented below.

Characteristic roots, the method of undetermined coefficients, and lag operators will

be encountered throughout the remainder of the text.

QUESTIONSANDEXERCISES
1. Consider the difference equation yt = a0 + a1yt−1 with the initial condition y0. Jill solved the

difference equation by iterating backward:

yt = a0 + a1yt−1
= a0 + a1(a0 + a1yt−2)
= a0 + a0a1 + a0a1

2 + · · · + a0a1
t−1 + a1

ty0

Bill added the homogeneous and particular solutions to obtain yt = a0∕(1 − a1) + a1
t[y0 −

a0∕(1 − a1)].
a. Show that the two solutions are identical for |a1| < 1.

b. Show that for a1 = 1, Jill’s solution is equivalent to yt = a0t + y0. How would you use

Bill’s method to arrive at this same conclusion in the case that a1 = 1 ?

2. The cobweb model in Section 5 assumed static price expectations. Consider an alternative
formulation called adaptive expectations. Let the expected price in t (denoted by p∗t ) be
a weighted average of the price in t − 1 and the price expectation of the previous period.

Formally,

p∗t = 𝛼pt−1 + (1 − 𝛼)p∗t−1 0 < 𝛼 ≤ 1

Clearly, when 𝛼 = 1, the static and adaptive expectations schemes are equivalent. An inter-

esting feature of this model is that it can be viewed as a difference equation expressing the

expected price as a function of its own lagged value and the forcing variable pt−1.

a. Find the homogeneous solution for p∗t .
b. Use lag operators to find the particular solution. Check your answer by substituting your

answer into the original difference equation.

3. Suppose that the money supply process has the form mt = m + 𝜌mt−1 + 𝜀t, where m is a

constant and 0 < 𝜌 < 1.

a. Show that it is possible to express mt+n in terms of the known value mt and the sequence

{𝜀t+1, 𝜀t+2, … , 𝜀t+n}.
b. Suppose that all values of 𝜀t+i for i > 0 have a mean value of zero. Explain how you

could use your result in part a to forecast the money supply n periods into the future.

4. The unit root problem in time-series econometrics is concerned with characteristic roots that

are equal to unity. In order to preview the issue:

a. Find the homogeneous solution to each of the following: (Hint: Each has at least one unit
root.)

i. yt = 1.5yt−1 − 0.5yt−2 + 𝜀t
ii. yt = yt−2 + 𝜀t

iii. yt = 2yt−1 − yt−2 + 𝜀t
iv. yt = yt−1 + 0.25yt−2 − 0.25yt−3 + 𝜀t

b. Show that each of the backward-looking solutions is not convergent.

c. Show that Equation i can be written entirely in first differences; that is, Δyt =
0.5Δyt−1 + 𝜀t. Find the particular solution for Δyt.
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d. Similarly transform the other equations into their first-difference form. Find the particu-

lar solution, if it exists, for the transformed equations.

e. Write equations i through iv using lag operators.
f. Given an initial condition y0, find the solution for yt = a0 − yt−1 + 𝜀t.

5. a. For each of the following, calculate the characteristic roots and the discriminant d in
order to describe the adjustment process.

i. yt = 0.75yt−1 − 0.125yt−2
ii. yt = 1.5yt−1 − 0.75yt−2

iii. yt = 1.8yt−1 − 0.81yt−2
iv. yt = 1.5yt−1 − 0.5625yt−2

b. Suppose y1 = y2 = 10. Use a spreadsheet program or a statistical software package to

calculate and plot the next 25 realizations of the series above.

6. Use the method detailed at the end of Section 1.8 to find the general solutions for

a. yt = 1 + 0.7yt−1 − 0.1yt−1 + 𝜀t
b. yt = 1 − 0.3yt−1 + 0.1yt−1 + 𝜀t

7. Consider the stochastic process yt = a0 + a2yt−2 + 𝜀t.

a. Find the homogeneous solution and determine the stability condition.

b. Find the particular solution using the method of undetermined coefficients.

c. Find the particular solution using lag operators.

8. For each of the following, verify that the posited solution satisfies the difference equation.
The symbols c, c0, and a0 denote constants.

Equation Solution

a. yt − yt−1 = 0 yt = c
b. yt − yt−1 = a0 yt = c + a0t
c. yt − yt−2 = 0 yt = c + c0(−1)t
d. yt − yt−2 = 𝜀t yt = c + c0(−1)t + 𝜀t + 𝜀t−2 + 𝜀t−4 + …

9. Part 1: For each of the following, determine whether {yt} represents a stable process.
Determine whether the characteristic roots are real or imaginary and whether the real parts

are positive or negative.

a. yt − 1.2yt−1 + 0.2yt−2
b. yt − 1.2yt−1 + 0.4yt−2
c. yt − 1.2yt−1 − 1.2yt−2
d. yt + 1.2yt−1
e. yt − 0.7yt−1 − 0.25yt−2 + 0.175yt−3 = 0

[Hint: (x − 0.5)(x + 0.5)(x − 0.7) = x3 − 0.7x2 − 0.25x + 0.175.]

Part 2: Write each of the above equations using lag operators. Determine the characteris-

tic roots of the inverse characteristic equation.

10. Consider the stochastic difference equation

yt = 0.8yt−1 + 𝜀t − 0.5𝜀t−1

a. Suppose that the initial conditions are such that y0 = 0 and 𝜀0 = 𝜀−1 = 0. Now suppose

that 𝜀1 = 1. Determine the values y1 through y5 by forward iteration.
b. Find the homogeneous and particular solutions.

c. Impose the initial conditions in order to obtain the general solution.

d. Trace out the time path of an 𝜀t shock on the entire time path of the {yt} sequence.
11. Use equation (1.5) to determine the restrictions on 𝛼 and 𝛽 necessary to ensure that the {yt}

process is stable.
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12. Consider the following two stochastic difference equations

i. yt = 3 + 0.75yt−1 − 0.125yt−2 + 𝜀t ii. yt = 3 + 0.25yt−1 + 0.375yt−2 + 𝜀t

a. Use the method of undetermined coefficients to find the particular solution for each

equation.

b. Find the homogeneous solutions for each equation.

c. For each process, suppose that y0 = y1 = 8 and that all values of 𝜀t for

t = 1, 0,−1,−2, … = 0. Use the method illustrated by equations (1.75) and

(1.76) to find the values of the constants A1 and A2.

13. Although it is not the simplest solution method, it is possible to use the method of

undetermined coefficients when you are given initial conditions. Consider the model

yt = 0.75yt−1 + 𝜀t where y0 is given. From equations (1.18) and (1.66) you know that the

solution for yt has the form yt = 𝜀t + 𝛼1𝜀t−1 + 𝛼2𝜀t−2 + 𝛼3𝜀t−3 + · · · + 𝛼t−1𝜀1 + 𝛼t
0
y0 where

the 𝛼i are the undetermined coefficients.

a. Show that the solution for yt−1 has the form yt−1 = 𝜀t−1 + 𝛼1𝜀t−2 + 𝛼2𝜀t−3 + 𝛼3𝜀t−4 +
· · · + 𝛼t−2𝜀1 + 𝛼t−1

0
y0.

b. Substitute the challenge solutions for yt and yt−1 into yt = 0.75yt−1 + 𝜀t to find the values

of the 𝛼i.

c. How would you use the method of undetermined coefficients to solve the second-order

process yt = 0.75yt−1 − 0.125yt−2 + 𝜀t where y0 and y1 are given?
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CHAPTER2
STATIONARY TIME-SERIES
MODELS

Learning Objectives
1. Describe the nature of stochastic linear difference equations.

2. Develop the tools used in estimating ARMAmodels.

3. Consider the time-series properties of stationary and nonstationary models.

4. Consider various test statistics to check for model adequacy. Several

examples of estimated ARMA models are analyzed in detail. It is shown

that how a properly estimated model can be used for forecasting.

5. Derive the theoretical autocorrelation function for various ARMA processes.

6. Derive the theoretical partial autocorrelation function for various ARMA

processes.

7. Show how the Box–Jenkins methodology relies on the autocorrelations and

partial autocorrelations in model selection.

8. Develop the complete set of tools for Box–Jenkins model selection.

9. Examine the properties of time-series forecasts.

10. Illustrate the Box–Jenkins methodology using a model of the term structure

of interest rates.

11. Show how to model series containing seasonal factors.

12. Develop diagnostic testing for model adequacy.

13. Show that combined forecasts typically outperform forecasts from a single

model.

1. STOCHASTIC DIFFERENCE EQUATION
MODELS

In this chapter, we continue to work with discrete, rather than continuous, time-series

models. Recall from the discussion in Chapter 1 that we can evaluate the function y =
f (t) at t0 and t0 + h to form

Δy = f (t0 + h) − f (t0)

As a practical matter, most economic time-series data are collected for discrete

time periods. Thus, we consider only the equidistant intervals t0, t0 + h, t0 + 2h, t0 +
3h,… and conveniently set h = 1. Be careful to recognize, however, that a discrete time

47
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series implies that t, but not necessarily yt, is discrete. For example, although Scotland’s

annual rainfall is a continuous variable, the sequence of such annual rainfall totals for

years 1 through t is a discrete time series. In many economic applications, t refers to
“time” so that h represents the change in time. However, t need not refer to the type of
time interval as measured by a clock or calendar. Instead of allowing our measurement

units to be minutes, days, quarters, or years, t can refer to an ordered event number. We

could let yt denote the outcome of spin t on a roulette wheel; yt can then take on any of
the 38 values 00, 0, 1,… , 36.

A discrete variable y is said to be a random variable (i.e., stochastic) if, for any

real number r, there exists a probability p(y ≤ r) that y will take on a value less than

or equal to r. This definition is fairly general; in common usage, it is typically implied

that there is at least one value of r for which 0 < p(y = r) < 1. If there is some r for
which p(y = r) = 1, y is deterministic rather than random.

It is useful to consider the elements of an observed time series {y0, y1, y2,… ,yt} as
being realizations (i.e., outcomes) of a stochastic process. As in Chapter 1, we continue

to let the notation yt to refer to an element of the entire sequence {yt}. In our roulette

example, yt denotes the outcome of spin t on a roulette wheel. If we observe spins 1

through T , we can form the sequence y1, y2,… ,yT or, more compactly, {yt}. In the

same way, the term yt could be used to denote gross domestic product (GDP) in time

period t. Since we cannot forecast GDP perfectly, yt is a random variable. Once we learn

the value of GDP in period t, yt becomes one of the realized values from a stochastic

process. (Of course, measurement error may prevent us from ever knowing the “true”

value of GDP.)

For discrete variables, the probability distribution of yt is given by a formula (or

table) that specifies each possible realized value of yt and the probability associated

with that realization. If the realizations are linked across time, there exists the joint

probability distribution p(y1 = r1, y2 = r2, … , yT = rT ) where ri is the realized value

of y in period i. Having observed the first t realizations, we can form the expected value

of yt+1, yt+2,… , conditioned on the observed values of y1 through yt. This conditional
mean, or expected value, of yt+i is denoted by Et[yt+i|yt, yt−1, … , y1] or Etyt+i.

Of course, if yt refers to the outcome of spinning a fair roulette wheel, the probabil-

ity distribution is easily characterized. In contrast, we may never be able to completely

describe the probability distribution for GDP. Nevertheless, the task of economic theo-

rists is to develop models that capture the essence of the true data-generating process.

Stochastic difference equations are one convenient way ofmodeling dynamic economic

processes. To take a simple example, suppose that the Federal Reserve’s money supply

target grows 3% each year. Hence,

m∗
t = 1.03m∗

t−1 (2.1)

so that, given the initial condition m∗
0
, the particular solution is

m∗
t = (1.03)tm∗

0

where m∗
t = the money supply target in year t;

m∗
0
= the initial condition for the target money supply in period zero.
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Of course, the actual money supply (mt) and the target need not be equal. Suppose
that, at the end of period t − 1, there exists mt−1 outstanding dollars that are carried

forward into period t. Hence, at the beginning of t, there are mt−1 dollars so that the

gap between the target and the actual money supply ism∗
t − mt−1. Suppose that the Fed

cannot perfectly control the money supply but attempts to change the money supply by

𝜌 percentage (𝜌 < 100%) of any gap between the desired and actual money supply. We

can model this behavior as

Δmt = 𝜌[m∗
t − mt−1] + 𝜀t

or using (2.1), we obtain

mt = 𝜌(1.03)tm∗
0
+ (1 − 𝜌)mt−1 + 𝜀t (2.2)

where 𝜀t is the uncontrollable portion of the money supply.

We assume that the mean of 𝜀t is zero in all time periods.

Although the economic theory is overly simple, the model does illustrate the key

points discussed earlier. Note the following:

1. Although the money supply is a continuous variable, (2.2) is a discrete differ-

ence equation. Since the forcing process {𝜀t} is stochastic, the money supply

is stochastic; we can call (2.2) a linear stochastic difference equation.

2. If we knew the distribution of {𝜀t}, we could calculate the distribution for
each element in the {mt} sequence. Since (2.2) shows how the realizations

of the {mt} sequence are linked across time, we would be able to calculate

the various joint probabilities. Notice that the distribution of the money sup-

ply sequence is completely determined by the parameters of the difference

equation (2.2) and the distribution of the {𝜀t} sequence.
3. Having observed the first t observations in the {mt} sequence, we can

make forecasts of mt+1, mt+2,… . For example, updating (2.2) by one

period and taking the conditional expectation, the forecast of mt+1 is
Etmt+1 = 𝜌(1.03)t+1m∗

0
+ (1 − 𝜌)mt.

Before we proceed too far along these lines, let us go back to the basic building

block of discrete stochastic time-series models: the white-noise process. A sequence

{𝜀t} is a white-noise process if each value in the sequence has amean of zero, a constant

variance, and is uncorrelated with all other realizations. Formally, if the notation E(x)
denotes the theoretical mean value of x, the sequence {𝜀t} is a white-noise process if

for each time period t

E(𝜀t) = E(𝜀t−1) = · · · = 0

E(𝜀2t ) = E(𝜀2t−1) = · · · = 𝜎2 [or var(𝜀t) = var(𝜀t−1) = · · · = 𝜎2]
E(𝜀t 𝜀t−s) = E(𝜀t−j 𝜀t−j−s)

= 0 for all j and s [or cov(𝜀t, 𝜀t−s) = cov(𝜀t−j, 𝜀t−j−s) = 0]

In the remainder of this text, {𝜀t} will always refer to a white-noise process and

𝜎2 will refer to the variance of that process. When it is necessary to refer to two or

more white-noise processes, symbols such as {𝜀1t} and {𝜀2t} will be used. Now, use
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a white-noise process to construct the more interesting time series

xt =
q∑
i=0

𝛽i𝜀t−i (2.3)

For each period t, xt is constructed by taking the values 𝜀t, 𝜀t−1,… ,𝜀t−q and mul-

tiplying each by the associated value of 𝛽i. A sequence formed in this manner is called

a moving average of order q and is denoted by MA(q). To illustrate a typical moving

average process, suppose you win $1 if a fair coin shows a head and lose $1 if it shows

a tail. Denote the outcome on toss t by 𝜀t (i.e., for toss t, 𝜀t is either +$1 or −$1). If
you want to keep track of your hot streaks, you might want to calculate your average

winnings on the last four tosses. For each coin toss t, your average payoff on the last

four tosses is 1∕4𝜀t + 1∕4𝜀t−1 + 1∕4𝜀t−2 + 1∕4𝜀t−3. In terms of (2.3), this sequence is

a moving average process such that 𝛽i = 0.25 for i ≤ 3 and zero otherwise.

Although the {𝜀t} sequence is a white-noise process, the constructed {xt} sequence
will not be a white-noise process if two or more of the 𝛽i differ from zero. To illustrate

using anMA(1) process, set 𝛽0 = 1, 𝛽1 = 0.5, and all other 𝛽i = 0. In this circumstance,

E(xt) = E(𝜀t + 0.5𝜀t−1) = 0 and var(xt) = var(𝜀t + 0.5𝜀t−1) = 1.25𝜎2. You can easily

convince yourself that E(xt) = E(xt−s) and that var(xt) = var(xt−s) for all s. Hence,
the first two conditions for {xt} to be a white-noise process are satisfied. However,

E(xtxt−1) = E[(𝜀t + 0.5𝜀t−1)(𝜀t−1 + 0.5𝜀t−2)] = E(𝜀t𝜀t−1 + 0.5(𝜀t−1)2 + 0.5𝜀t𝜀t−2 +
0.25𝜀t−1𝜀t−2) = 0.5𝜎2. Given that there exists a value of s ≠ 0 such that E(xtxt−s) ≠ 0,

the {xt} sequence is not a white-noise process.
Exercise 1 at the end of this chapter asks you to find the mean, variance, and

covariance of your hot streaks in coin tossing. For practice, you should work that

exercise before continuing. If you are a bit “rusty” on the algebra of finding means,

variances and covariances, you should also work through Exercises 2 and 3 and consult

Section 2.3 of the Supplementary Manual to this text.

2. ARMA MODELS

It is possible to combine a moving average process with a linear difference equation

to obtain an autoregressive moving average (ARMA) model. Consider the pth order

difference equation

yt = a0 +
p∑
i=1

aiyt−i + xt (2.4)

Now let {xt} be the MA(q) process given by (2.3) so that we can write

yt = a0 +
p∑
i=1

aiyt−i +
q∑
i=0

𝛽i𝜀t−i (2.5)

We follow the convention of normalizing units so that 𝛽0 is always equal to unity.

If the characteristic roots of (2.5) are all in the unit circle, {yt} is called an ARMA

model for yt. The autoregressive part of the model is the difference equation given by

the homogeneous portion of (2.4) and the moving average part is the {xt} sequence.

If the homogeneous part of the difference equation contains p lags and the model for
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xt contains q lags, the model is called an ARMA(p, q) model. If q = 0, the process is

called a pure autoregressive process denoted by AR(p), and if p = 0, the process is a

pure moving average process denoted by MA(q). In an ARMA model, it is perfectly

permissible to allow p and/or q to be infinite. In this chapter, we consider only models

in which all of the characteristic roots of (2.5) are within the unit circle. However, if one

or more characteristic roots of (2.5) is greater than or equal to unity, the {yt} sequence is
said to be an integrated process and (2.5) is called an autoregressive integrated moving

average (ARIMA) model.

Treating (2.5) as a difference equation suggests that we can “solve” for yt in terms

of the {𝜀t} sequence. The solution of an ARMA(p, q) model expressing yt in terms of

the {𝜀t} sequence is the moving average representation of yt. The procedure is no

different from that discussed in Chapter 1. For the AR(1) model yt = a0 + a1yt−1 + 𝜀t,

the moving average representation was shown to be

yt = a0∕(1 − a1) +
∞∑
i=0

ai
1
𝜀t−i

For the general ARMA(p, q) model, rewrite (2.5) using lag operators so that(
1 −

p∑
i=1

aiL
i

)
yt = a0 +

q∑
i=0

𝛽i𝜀t−i

so that the particular solution for yt is

yt =

(
a0 +

q∑
i=0

𝛽i𝜀t−i

)/(
1 −

p∑
i=1

aiL
i

)
(2.6)

Fortunately, it will not be necessary for us to expand (2.6) to obtain the specific

coefficient for each element in {𝜀t}. The important point to recognize is that the expan-

sionwill yield anMA(∞) process. The issue is whether such an expansion is convergent
so that the stochastic difference equation given by (2.6) is stable. As you will see in

Section 3, the stability condition is that the roots of the polynomial
(
1 − ΣaiLi

)
must

lie outside the unit circle. It is also shown that if yt is a linear stochastic difference
equation, the stability condition is a necessary condition for the time series {yt} to be
stationary.

3. STATIONARITY

Suppose that the quality control division of a manufacturing firm samples four

machines each hour. Every hour, quality control finds the mean of the machines’

output levels. The plot of each machine’s hourly output is shown in Figure 2.1. If yit
represents machine yi’s output at hour t, the means (yt) are readily calculated as

yt =
4∑
i=1

yit∕4

For hours 5, 10, and 15, these mean values are 4.61, 5.14, and 5.03, respectively.
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FIGURE 2.1 Hourly Output of Four Machines

The sample variance for each hour can similarly be constructed. Unfortunately,

applied econometricians do not usually have the luxury of being able to obtain an

ensemble (i.e., multiple time-series data of the same process over the same time

period). Typically, we observe only one set of realizations for any particular series.

Fortunately, if {yt} is a stationary series, the mean, variance, and autocorrelations can

usually be well approximated by sufficiently long time averages based on the single

set of realizations. Suppose that you observed only the output of machine 1 for 20

periods. If you knew that the output was stationary, you could approximate the mean

level of output by

yt ≅
20∑
t=1

y1t∕20

In using this approximation, you would be assuming that the mean was the same

for each period. Formally, a stochastic process having a finite mean and variance is

covariance stationary if for all t and t − s,

E(yt) = E(yt−s) = 𝜇 (2.7)

E[(yt − 𝜇)2] = E[(yt−s − 𝜇)2] = 𝜎2
y [var(yt) = var(yt−s) = 𝜎2

y ] (2.8)

E[(yt − 𝜇)(yt−s − 𝜇)] = E[(yt−j − 𝜇)(yt−j−s − 𝜇)] = 𝛾s

[cov(yt, yt−s) = cov(yt−j, yt−j−s) = 𝛾s] (2.9)

where 𝜇, 𝜎2
y , and 𝛾s are all constants.

In (2.9), allowing s = 0means that 𝛾0 is equivalent to the variance of yt. Simply put,

a time series is covariance stationary if its mean and all autocovariances are unaffected

by a change of time origin. In the literature, a covariance-stationary process is also

referred to as a weakly stationary, second-order stationary, or wide-sense stationary
process. (Note that a strongly stationary process need not have a finite mean and/or
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variance.) The text considers only covariance-stationary series so that there is no ambi-

guity in using the terms stationary and covariance stationary interchangeably. One

further word about terminology: In multivariate models, the term autocovariance is

reserved for the covariance between yt and its own lags. Cross-covariance refers to the
covariance between one series and another. In univariate time-series models, there is

no ambiguity, and the terms autocovariance and covariance are used interchangeably.

For a covariance-stationary series, we can define the autocorrelation between yt
and yt−s as

𝜌s ≡ 𝛾s∕𝛾0
where 𝛾0 and 𝛾s are defined by (2.9).

Since 𝛾s and 𝛾0 are time independent, the autocorrelation coefficients 𝜌s are also

time independent. Although the autocorrelation between yt and yt−1 can differ from the

autocorrelation between yt and yt−2, the autocorrelation between yt and yt−1 must be

identical to that between yt−s and yt−s−1. Obviously, 𝜌0 = 1.

Stationarity Restrictions for an AR(1) Process

For expositional convenience, consider the necessary and sufficient conditions for an

AR(1) process to be stationary. Let

yt = a0 + a1yt−1 + 𝜀t

where 𝜀t = white noise.

Suppose that the process started in period zero, so that y0 is a deterministic initial

condition. In Section 3 of Chapter 1, it was shown that the solution to this equation is

(see also Question 4 at the end of this chapter)

yt = a0

t−1∑
i=0

ai
1
+ at

1
y0 +

t−1∑
i=0

ai
1
𝜀t−i (2.10)

Taking the expected value of (2.10), we obtain

Eyt = a0

t−1∑
i=0

ai
1
+ at

1
y0 (2.11)

Updating by s periods yields

Eyt+s = a0

t+s−1∑
i=0

ai
1
+ at+s

1
y0 (2.12)

Comparing (2.11) and (2.12), it is clear that both means are time dependent. Since

Eyt is not equal to Eyt+s, the sequence cannot be stationary. However, if t is large,

we can consider the limiting value of yt in (2.10). If |a1| < 1, the expression (a1)ty0
converges to zero as t becomes infinitely large and the sum a0[1 + a1 + (a1)2 + (a1)3 +
· · ·] converges to a0∕(1 − a1). Thus, as t → ∞ and if |a1| < 1

lim yt =
a0

1 − a1
+

∞∑
i=0

ai
1
𝜀t−i (2.13)
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Now take expectation of (2.13) so that, for sufficiently large values of t, Eyt =
a0∕(1 − a1). Thus, the mean value of yt is finite and time independent so that Eyt =
Eyt−s = a0∕(1 − a1) ≡ 𝜇 for all t. Turning to the variance, we find

E(yt − 𝜇)2 = E[(𝜀t + a1𝜀t−1 + (a1)2𝜀t−2 + · · ·)2]
= 𝜎2[1 + (a1)2 + (a1)4 + · · ·] = 𝜎2∕(1 − (a1)2)

which is also finite and time independent. Finally, it is easily demonstrated that the

limiting values of all autocovariances are finite and time independent:

E[(yt − 𝜇)(yt−s − 𝜇)] = E{[𝜀t + a1𝜀t−1 + (a1)2𝜀t−2 + · · ·]
[𝜀t−s + a1𝜀t−s−1 + (a1)2𝜀t−s−2 + · · ·]}

= 𝜎2(a1)s[1 + (a1)2 + (a1)4 + · · ·]
= 𝜎2(a1)s∕[1 − (a1)2] (2.14)

In summary, if we can use the limiting value of (2.10), the {yt} sequence will be

stationary. For any given y0 and |a1| < 1, it follows that t must be sufficiently large.

Thus, if a sample is generated by a process that has recently begun, the realizations

may not be stationary. It is for this very reason that many econometricians assume that

the data-generating process has been occurring for an infinitely long time. In prac-

tice, the researcher must be wary of any data generated from a “new” process. For

example, {yt} could represent the daily change in the dollar/mark exchange rate begin-

ning immediately after the demise of the Bretton Woods fixed exchange rate system.

Such a series may not be stationary due to that fact there were deterministic initial con-

ditions (exchange rate changes were essentially zero in the Bretton Woods era). The

careful researcher wishing to use stationary series might consider excluding some of

these earlier observations from the period of analysis.

Little would change were we not given the initial condition. Without the initial

value y0, the sum of the homogeneous and particular solutions for yt is

yt = a0∕(1 − a1) +
∞∑
i=0

ai
1
𝜀t−i + A(a1)t (2.15)

where A is an arbitrary constant.

If you take the expectation of (2.15), it is clear that the {yt} sequence cannot be

stationary unless the expression A(a1)t is equal to zero. Either the sequence must have

started infinitely long ago (so that a1
t = 0) or the arbitrary constant A must be zero.

Recall that the arbitrary constant is interpreted as a deviation from long-run equilib-

rium. The stability conditions can be stated succinctly:

1. The homogeneous solution must be zero. Either the sequence must have

started infinitely far in the past or the process must always be in equilibrium

(so that the arbitrary constant is zero).

2. The characteristic root a1 must be less than unity in absolute value.

These two conditions readily generalize to all ARMA(p, q) processes. We know

that the homogeneous solution to (2.5) has the form

p∑
i=1

Ai𝛼
t
i
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or, if there are m repeated roots,

𝛼

m∑
i=1

Ait
i +

p∑
i=m+1

Ai𝛼
t
i

where Ai are all arbitrary constants, 𝛼 is the repeated root, and 𝛼i are the distinct roots.

If any portion of the homogeneous equation is present, the mean, variance, and all

covariances will be time dependent. Hence, for any ARMA(p, q) model, stationarity

necessitates that the homogeneous solution be zero. Section 4 addresses the stationarity

restrictions for the particular solution.

4. STATIONARITY RESTRICTIONS FOR AN
ARMA (p, q) MODEL

As a prelude to the stationarity conditions for the general ARMA(p, q)model, consider

the restrictions necessary to ensure that an ARMA(2, 1) model is stationary. Since the

magnitude of the intercept term does not affect the stability (or stationarity) conditions,

set a0 = 0 and write

yt = a1yt−1 + a2yt−2 + 𝜀t + 𝛽1𝜀t−1 (2.16)

From the previous section, we know that the homogeneous solution must be zero.

As such, it is only necessary to find the particular solution. Using the method of unde-

termined coefficients, we can write the challenge solution as

yt =
∞∑
i=0

ci𝜀t−i (2.17)

For (2.17) to be a solution of (2.16), the various ci must satisfy

c0𝜀t + c1𝜀t−1 + c2𝜀t−2 + c3𝜀t−3 + · · ·
= a1(c0𝜀t−1 + c1𝜀t−2 + c2𝜀t−3 + c3𝜀t−4 + · · ·)
+ a2(c0𝜀t−2 + c1𝜀t−3 + c2𝜀t−4 + c3𝜀t−5 + · · ·) + 𝜀t + 𝛽1𝜀t−1

To match coefficients on the terms containing 𝜀t, 𝜀t−1, 𝜀t−2,… , it is necessary

to set

1. c0 = 1

2. c1 = a1c0 + 𝛽1 ⇒ c1 = a1 + 𝛽1
3. ci = a1ci−1 + a2ci−2 for all i ≥ 2

The key point is that, for i ≥ 2, the coefficients satisfy the difference equation

ci = a1ci−1 + a2ci−2. If the characteristic roots of (2.16) are within the unit circle, the

{ci}must constitute a convergent sequence. For example, reconsider the case in which

a1 = 1.6 and a2 = −0.9, and let 𝛽1 = 0.5. Worksheet 2.1 shows that the coefficients sat-

isfying (2.17) are 1, 2.1, 2.46, 2.046, 1.06, −0.146, and so on (also see Worksheet 1.2

of the previous chapter).
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WORKSHEET 2.1
COEFFICIENTS OF THE ARMA(2, 1) PROCESS:
yt = 1.6yt−1 − 0.9yt−2 + 𝜀t + 0.5𝜀t−1

If we use the method of undetermined coefficients, the ci must satisfy

c0 = 1

c1 = 1.16 + 0.5 hence c1 = 2.1

c2 = 1.6ci−1 − 0.9ci−2 for all i = 2, 3, 4,…

Notice that the coefficients follow a second-order difference equationwith imaginary

roots. If we use de Moivre’s Theorem, the coefficients will satisfy

ci = 0.949i ⋅ 𝛽1cos(0.567i + 𝛽2)

Imposing the initial conditions for c0 and c1 yields

1 = 𝛽1cos(𝛽2) and 2.1 = 0.949𝛽1cos(0.567 + 𝛽2)

Since 𝛽1 = 1∕cos(𝛽2), we seek the solution to

cos(𝛽2) − (0.949∕2.1) cos(0.567 + 𝛽2) = 0

You can use a calculator or a trig table to verify that the solution for 𝛽2 is −1.197
and the solution for 𝛽1 is 2.739. Hence, the ci must satisfy

(2.739) ⋅ 0.949i ⋅ cos(0.567i − 1.197)

Alternatively, we can use the initial values of c0 and c1 to find the other ci by iteration.
The sequence of the ci is shown in the graph.

10

–2

0

0

2

1

–1

3

30 40 5020

You can use a spreadsheet to verify that the values of c0 through c10 are

i 0 1 2 3 4 5 6 7 8 9 10

ci 1.00 2.10 2.46 2.046 1.06 −0.146 1.187 −1.786 −1.761 −1.226 −0.378
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To verify that the {yt} sequence generated by (2.17) is stationary, take the expecta-
tion of (2.17) to form Eyt = Eyt−i = 0 for all t and i. Hence, the mean is finite and time

invariant. Since the {𝜀t} sequence is assumed to be a white-noise process, the variance

of yt is constant and time independent; that is,

var(yt) = E[(c0𝜀t + c1𝜀t−1 + c2𝜀t−2 + c3𝜀t−3 + · · ·)2]

= 𝜎2

∞∑
i=0

c2i

Hence, var(yt) = var(yt−s) for all t and s. Finally, the covariance between yt and yt−s is

cov(yt, yt−1) = E[(𝜀t + c1𝜀t−1 + c2𝜀t−2 + · · ·)(𝜀t−1 + c1𝜀t−2 + c2𝜀t−3 + c3𝜀t−4 + · · ·)]
= 𝜎2(c1 + c2c1 + c3c2 + · · ·)

cov(yt, yt−2) = E[(𝜀t + c1𝜀t−1 + c2𝜀t−2 + · · ·)(𝜀t−2 + c1𝜀t−3 + c2𝜀t−4 + c3𝜀t−5 + · · ·)]
= 𝜎2(c2 + c3c1 + c4c2 + · · ·)

so that

cov(yt, yt−s) = 𝜎2(cs + cs+1c1 + cs+2c2 + · · ·) (2.18)

Thus, cov(yt, yt−s) is constant and independent of t. Conversely, if the characteristic
roots of (2.16) do not lie within the unit circle, the {ci} sequence will not be convergent.
As such, the {yt} sequence cannot be convergent.

It is not too difficult to generalize these results to the entire class of ARMA(p, q)
models. Begin by considering the conditions ensuring the stationarity of a pureMA(∞)
process. By appropriately restricting the 𝛽i, all of the finite-order MA(q) processes can
be obtained as special cases. Consider

xt =
∞∑
i=0

𝛽i𝜀t−i

where {𝜀t} = a white-noise process with variance 𝜎2.

We have already determined that {xt} is not a white-noise process; now, the issue
is whether {xt} is covariance stationary. Given conditions (2.7), (2.8), and (2.9), we ask
the following:

1. Is the mean finite and time independent? Take the expected value of xt and
remember that the expectation of a sum is the sum of the individual expecta-

tions. Therefore,

E(xt) = E(𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 + · · ·)
= E𝜀t + 𝛽1E𝜀t−1 + 𝛽2E𝜀t−2 + · · · = 0

Repeat the procedure with xt−s:

E(xt−s) = E(𝜀t−s + 𝛽1𝜀t−s−1 + 𝛽2𝜀t−s−2 + · · ·) = 0

Hence, all elements in the {xt} sequence have the same finite mean (𝜇 = 0).
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2. Is the variance finite and time independent? Form var(xt) as

var(xt) = E[(𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 + · · ·)2]

Square the term in parentheses and take expectations. Since {𝜀t} is a
white-noise process, all terms E𝜀t𝜀t−s = 0 for s ≠ 0. Hence,

var(xt) = E(𝜀t)2 + (𝛽1)2E(𝜀t−1)2 + (𝛽2)2E(𝜀t−2)2 + · · ·
= 𝜎2[1 + (𝛽1)2 + (𝛽2)2 + · · ·]

As long as
∑

(𝛽i)2 is finite, it follows that var(xt) is finite. Thus,
∑

(𝛽i)2 being
finite is a necessary condition for {xt} to be stationary. To determine whether

var(xt) = var(xt−s), form

var(xt−s) = E[(𝜀t−s + 𝛽1𝜀t−s−1 + 𝛽2𝜀t−s−2 + · · ·)2]
= 𝜎2[1 + (𝛽1)2 + (𝛽2)2 + · · ·]

Thus, var(xt) = var(xt−s) for all t and t − s.

3. Are all autocovariances finite and time independent? First, form E(xtxt−s) as

E[xtxt−s] = E[(𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 + · · ·)(𝜀t−s + 𝛽1𝜀t−s−1 + 𝛽2𝜀t−s−2 + · · ·)]

Carrying out the multiplication and noting that E(𝜀t𝜀t−s) = 0 for s ≠ 0, we get

E(xtxt−s) = 𝜎2(𝛽s + 𝛽1𝛽s+1 + 𝛽2𝛽s+2 + · · ·)

Restricting the sum 𝛽s + 𝛽1𝛽s+1 + 𝛽2𝛽s+2 + · · · to be finite means that E(xtxt−s) is
finite. Given this second restriction, it is clear that the covariance between xt and xt−s
only depends on the number of periods separating the variables (i.e., the value of s) but
not on the time subscript t.

In summary, the necessary and sufficient conditions for any MA process to be

covariance stationary are for the sums
∑

(𝛽i)2 and (𝛽s + 𝛽1𝛽s+1 + 𝛽2𝛽s+2 + · · ·) to be

finite. For an infinite-order process, these conditions must hold for all s ≥ 0. Some of

the details involved with maximum likelihood estimation of MA processes are dis-

cussed in Appendix 2.1.

Stationarity Restrictions for the Autoregressive
Coefficients

Now consider the pure autoregressive model

yt = a0 +
p∑
i=1

aiyt−i + 𝜀t (2.19)

If the characteristic roots of the homogeneous equation of (2.19) all lie inside the

unit circle, it is possible to write the particular solution as

yt = a0∕

[
1 −

p∑
i=1

ai

]
+

∞∑
i=0

ci𝜀t−i (2.20)

where ci = undetermined coefficients.
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Although it is possible to find the undetermined coefficients {ci}, we know that

(2.20) is a convergent sequence so long as the characteristic roots of (2.19) are inside

the unit circle. To sketch the proof, the method of undetermined coefficients allows us

to write the particular solution in the form of (2.20). We also know that the sequence

{ci} will eventually solve the difference equation

ci − a1ci−1 − a2ci−2 − · · · − apci−p = 0 (2.21)

If the characteristic roots of (2.21) are all inside the unit circle, the {ci} sequence
will be convergent. Although (2.20) is an infinite-order moving average process, the

convergence of the MA coefficients implies that Σc2i is finite. Thus, we can use (2.20)

to check the three conditions for stationarity. From (2.20),

Eyt = Eyt−s = a0∕
(
1 −

∑
ai
)

You should recall from Chapter 1 that a necessary condition for all characteristic

roots to lie inside the unit circle is 1 − Σai > 0. Hence, the mean of the sequence is

finite and time invariant.

Var(yt) = E[(𝜀t + c1𝜀t−1 + c2𝜀t−2 + c3𝜀t−3 + · · ·)2] = 𝜎2
∑

c2i

and

var(yt−s) = E[(𝜀t−s + c1𝜀t−s−1 + c2𝜀t−s−2 + c3𝜀t−s−3 + · · ·)2] = 𝜎2
∑

c2i

Given that
∑
c2i is finite, the variance is finite and time independent.

Cov(yt, yt−s) = E[(𝜀t + c1𝜀t−1 + c2𝜀t−2 + · · ·)(𝜀t−s + c1𝜀t−s−1 + c2𝜀t−s−2 + · · ·)]
= 𝜎2(cs + c1cs+1 + c2cs+2 + · · ·)

Thus, the covariance between yt and yt−s is constant and time invariant for all t and
t − s. Nothing of substance is changed by combining the AR(p) andMA(q)models into

the general ARMA(p, q) model

yt = a0 +
p∑
i=1

aiyt−i + xt

xt =
q∑
i=0

𝛽i𝜀t−i (2.22)

If the roots of the inverse characteristic equation lie outside the unit circle [i.e., if

the roots of the homogeneous form of (2.22) lie inside the unit circle] and if the {xt}
sequence is stationary, the {yt} sequence will be stationary. Consider

yt =
a0

1 −
p∑
i=1

ai

+
𝜀t

1 −
p∑
i=1

aiL
i

+
𝛽1𝜀t−1

1 −
p∑
i=1

aiL
i

+
𝛽2𝜀t−2

1 −
p∑
i=1

aiL
i

+ · · · (2.23)

With very little effort, you can convince yourself that the {yt} sequence satisfies the

three conditions for stationarity. Each of the expressions on the right-hand side of (2.23)
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is stationary as long as the roots of 1 − ΣaiLi are outside the unit circle. Given that {xt}
is stationary, only the roots of the autoregressive portion of (2.22) determine whether

the {yt} sequence is stationary.

5. THE AUTOCORRELATION FUNCTION

The autocovariances and autocorrelations of the type found in (2.18) serve as useful

tools in the Box–Jenkins (1976) approach to identifying and estimating time-series

models. We illustrate by considering four important examples: the AR(1), AR(2),

MA(1), and ARMA(1, 1) models. For the AR(1) model, yt = a0 + a1yt−1 + 𝜀t, (2.14)

shows

𝛾0 = 𝜎2∕[1 − (a1)2]
𝛾s = 𝜎2(a1)s∕[1 − (a1)2]

Forming the autocorrelations by dividing each 𝛾s by 𝛾0, we find that 𝜌0 = 1,

𝜌1 = a1, 𝜌2 = (a1)2,… , 𝜌s = (a1)s. For an AR(1) process, a necessary condition for

stationarity is for |a1| < 1. Thus, the plot of 𝜌s against s—called the autocorrelation
function (ACF) or correlogram—should converge to zero geometrically if the

series is stationary. If a1 is positive, convergence will be direct, and if a1 is negative,
the autocorrelations will follow a dampened oscillatory path around zero. The first

two graphs on the left-hand side of Figure 2.2 show the theoretical autocorrelation

functions for a1 = 0.7 and a1 = −0.7, respectively. Here, 𝜌0 is not shown since its

value is necessarily unity.

The Autocorrelation Function of an AR(2) Process

Now consider the more complicated AR(2) process yt = a1yt−1 + a2yt−2 + 𝜀t. We omit

an intercept term (a0) since it has no effect on the ACF. For the second-order process to
be stationary, we know that it is necessary to restrict the roots of (1 − a1L − a2L

2) to be
outside the unit circle. In Section 4, we derived the autocovariances of an ARMA(2, 1)

process by use of the method of undetermined coefficients. Now, we want to illustrate

an alternative technique using the Yule–Walker equations. Multiply the second-order

difference equation by yt−s for s = 0, s = 1, s = 2,… and take expectations to form

Eytyt = a1Eyt−1yt + a2Eyt−2yt + E𝜀tyt
Eytyt−1 = a1Eyt−1yt−1 + a2Eyt−2yt−1 + E𝜀tyt−1
Eytyt−2 = a1Eyt−1yt−2 + a2Eyt−2yt−2 + E𝜀tyt−2
· · ·
· · ·

Eytyt−s = a1Eyt−1yt−s + a2Eyt−2yt−s + E𝜀tyt−s (2.24)

By definition, the autocovariances of a stationary series are such that Eytyt−s =
Eyt−syt = Eyt−kyt−k−s = 𝛾s. We also know that E𝜀tyt = 𝜎2 and E𝜀tyt−s = 0. Hence, we

can use the equations in (2.24) to form

𝛾0 = a1𝛾1 + a2𝛾2 + 𝜎2 (2.25)
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FIGURE 2.2 Theoretical ACF and PACF Patterns

𝛾1 = a1𝛾0 + a2𝛾1 (2.26)

𝛾s = a1𝛾s−1 + a2𝛾s−2 (2.27)

Dividing (2.26) and (2.27) by 𝛾0 yields

𝜌1 = a1𝜌0 + a2𝜌1 (2.28)

𝜌s = a1𝜌s−1 + a2𝜌s−2 (2.29)

We know that 𝜌0 = 1, so that from (2.28), 𝜌1 = a1∕(1 − a2). Hence, we can find

all 𝜌s for s ≥ 2 by solving the difference equation (2.29). For example, for s = 2
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and s = 3,

𝜌2 = (a1)2∕(1 − a2) + a2
𝜌3 = a1[(a1)2∕(1 − a2) + a2] + a2a1∕(1 − a2)

Although the values of the 𝜌s are cumbersome to derive, we can easily characterize

their properties. Given the solutions for 𝜌0 and 𝜌1, the key point to note is that the 𝜌s
all satisfy the difference equation (2.29). As in the case of a second-order difference

equation, the solution may be oscillatory or direct. Note that the stationarity condition

for yt necessitates that the characteristic roots of (2.29) lie inside the unit circle. Hence,
the {𝜌s} sequence must be convergent. The correlogram for an AR(2) process must be

such that 𝜌0 = 1 and 𝜌1 be determined by (2.28). These two values can be viewed as

initial values for the second-order difference equation (2.29).

The fourth panel on the left-hand side of Figure 2.2 shows the ACF for the process

yt = 0.7yt−1 − 0.49yt−2 + 𝜀t. The properties of the various 𝜌s follow directly from the

homogeneous equation yt − 0.7yt−1 + 0.49yt−2 = 0. The roots are obtained from the

solution to

𝛼 = {0.7 ± [(−0.7)2 − 4(0.49)]1∕2}∕2

Since the discriminant d = (−0.7)2 − 4(0.49) is negative, the characteristic roots
are imaginary so that the solution oscillates. However, since a2 = −0.49, the solution
is convergent and the {yt} sequence is stationary.

Finally, we may wish to find the autocovariances rather than the autocorrelations.

Since we know all of the autocorrelations, if we can find the variance of yt (i.e., 𝛾0), we
can find all of the other 𝛾s. To find 𝛾0, use (2.25) and note that 𝜌i = 𝛾i∕𝛾0 so that

𝛾0(1 − a1𝜌1 − a2𝜌2) = 𝜎2

Substitution for 𝜌1 and 𝜌2 yields

𝛾0 = var(yt) = [(1 − a2)∕(1 + a2)]
(

𝜎2

(a1 + a2 − 1)(a2 − a1 − 1)

)
The Autocorrelation Function of an MA(1) Process

Next consider the MA(1) process yt = 𝜀t + 𝛽𝜀t−1. Again, we can obtain the Yule–

Walker equations by multiplying yt by each yt−s and take expectations

𝛾0 = var(yt) = Eytyt = E[(𝜀t + 𝛽𝜀t−1)(𝜀t + 𝛽𝜀t−1)] = (1 + 𝛽2)𝜎2

𝛾1 = Eytyt−1 = E[(𝜀t + 𝛽𝜀t−1)(𝜀t−1 + 𝛽𝜀t−2)] = 𝛽𝜎2

and

𝛾s = Eytyt−s = E[(𝜀t + 𝛽𝜀t−1)(𝜀t−s + 𝛽𝜀t−s−1)] = 0 for all s > 1

Hence, dividing each 𝛾s by 𝛾0, it can be immediately seen that the ACF is simply

𝜌0 = 1, 𝜌1 = 𝛽∕(1 + 𝛽2), and 𝜌s = 0 for all s > 1. The third graph on the left-hand side

of Figure 2.2 shows the ACF for the MA(1) process yt = 𝜀t − 0.7 𝜀t−1. As an exercise,
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you should demonstrate that the ACF for an MA(2) process has two spikes and then

cuts to zero.

The Autocorrelation Function
of an ARMA(1,1) Process

Finally, let yt = a1yt−1 + 𝜀t + 𝛽1𝜀t−1. Using the now-familiar procedure, we find the

Yule–Walker equations

Eytyt = a1Eyt−1yt + E𝜀tyt + 𝛽1E𝜀t−1yt ⇒ 𝛾0 = a1𝛾1 + 𝜎2 + 𝛽1(a1 + 𝛽1)𝜎2 (2.30)

Eytyt−1 = a1Eyt−1yt−1 + E𝜀tyt−1 + 𝛽1E𝜀t−1yt−1 ⇒ 𝛾1 = a1𝛾0 + 𝛽1𝜎
2 (2.31)

Eytyt−2 = a1Eyt−1yt−2 + E𝜀tyt−2 + 𝛽1E𝜀t−1yt−2 ⇒ 𝛾2 = a1𝛾1 (2.32)

⋮

Eytyt−s = a1Eyt−1yt−s + E𝜀tyt−s + 𝛽1E𝜀t−1yt−s ⇒ 𝛾s = a1𝛾s−1 (2.33)

In obtaining (2.30), note that E𝜀t−1yt is (a1 + 𝛽1)𝜎2. (2.30) and (2.31) simultane-

ously for 𝛾0 and 𝛾1 yields

𝛾0 =
1 + 𝛽2

1
+ 2a1𝛽1

(1 − a2
1
)

𝜎2

𝛾1 =
(1 + a1𝛽1) (a1 + 𝛽1)

(1 − a2
1
)

𝜎2

Form the ratio 𝛾1∕𝛾0 to obtain

𝜌1 =
(1 + a1𝛽1) (a1 + 𝛽1)
(1 + 𝛽2

1
+ 2a1𝛽1)

(2.34)

and 𝜌s = a1𝜌s−1 for all s ≥ 2.

Thus, the ACF for anARMA(1, 1) process is such that themagnitude of 𝜌1 depends

on both a1 and 𝛽1. Beginning with this value of 𝜌1, the ACF of an ARMA(1, 1) pro-

cess looks like that of the AR(1) process. If 0 < a1 < 1, convergence will be direct,

and if −1 < a1 < 0, the autocorrelations will oscillate. The ACF for the function yt =
−0.7yt−1 + 𝜀t − 0.7 𝜀t−1 is shown as the last graph on the left-hand side of Figure 2.2.

The top portion of Worksheet 2.2 derives these autocorrelations.

We leave you with the exercise of deriving the correlogram of the ARMA(2, 1)

process used in Worksheet 2.1. You should be able to recognize the point that the cor-

relogram can reveal the pattern of the autoregressive coefficients. For an ARMA (p, q)
model beginning after lag q, the values of the 𝜌i will satisfy

𝜌i = a1𝜌i−1 + a2𝜌i−2 + · · · + ap𝜌i−p

The previous p values can be treated as initial conditions that satisfy the Yule–

Walker equations. For these lags, the shape of the ACF is determined by the character-

istic equation.
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WORKSHEET 2.2
CALCULATION OF THE PARTIAL AUTOCORRELATIONS OF
yt = −0.7yt−1 + 𝜀t − 0.7𝜀t−1

Step 1: Calculate the autocorrelations. Use (2.34) to calculate 𝜌1 as

𝜌1 =
(1 + 0.49)(−0.7 − 0.7)
1 + 0.49 + 2(0.49)

= −0.8445

The remaining autocorrelations decay at the rate 𝜌i = −0.7𝜌i−1 so that

𝜌2 = 0.591, 𝜌3 = −0.414, 𝜌4 = 0.290, 𝜌5 = −0.203, 𝜌6 = 0.142, 𝜌7 = −0.099, 𝜌8 = 0.070

Step 2: Calculate the first two partial autocorrelations using (2.35) and (2.36). Hence,

𝜙11 = 𝜌1 = −0.8445
𝜙22 = [0.591 − (−0.8445)2]∕[1 − (−0.8445)2] = −0.426

Step 3: Calculate all remaining 𝜙ss iteratively using (2.37). To find 𝜙33, note that 𝜙21 =
𝜙11 − 𝜙22𝜙11 = −1.204 and form

𝜙33 =

(
𝜌3 −

2∑
j=1

𝜙2j𝜌3−j

)(
1 −

2∑
j=1

𝜙2j𝜌j

)−1

= [−0.414 − (−1.204)(0.591) − (−0.426)(−0.8445)]∕[1 − (−1.204)(−0.8445)
−(−0.426)(0.591)]

= −0.262

Similarly, to find 𝜙44, use

𝜙44 =

(
𝜌4 −

3∑
j=1

𝜙3j𝜌4−j

)(
1 −

3∑
j=1

𝜙3j𝜌j

)−1

Since 𝜙3j = 𝜙2j − 𝜙33𝜙2,2−j, it follows that 𝜙31 = −1.315 and 𝜙32 = −0.74. Hence,

𝜙44 = −0.173

If we continue in this manner, it is possible to demonstrate that 𝜙55 = −0.117, 𝜙66 =
−0.081, 𝜙77 = −0.056, and 𝜙88 = −0.039.

6. THE PARTIAL AUTOCORRELATION FUNCTION

In an AR(1) process, yt and yt−2 are correlated even though yt−2 does not directly appear
in the model. The correlation between yt and yt−2 (i.e., 𝜌2) is equal to the correlation

between yt and yt−1 (i.e., 𝜌1) multiplied by the correlation between yt−1 and yt−2 (i.e.,
𝜌1 again) so that 𝜌2 = (𝜌1)2. It is important to note that all such indirect correlations
are present in the ACF of any autoregressive process. In contrast, the partial auto-
correlation between yt and yt−s eliminates the effects of the intervening values yt−1
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through yt−s+1. As such, in an AR(1) process, the partial autocorrelation between yt
and yt−2 is equal to zero. The most direct way to find the partial autocorrelation func-

tion is to first form the series {y∗t } by subtracting the mean of the series (i.e., 𝜇) from

each observation to obtain y∗t ≡ yt − 𝜇. Next, form the first-order autoregression

y∗t = 𝜙11y
∗
t−1 + et

where et is an error term.

Here, the symbol {et} is used since this error process may not be white noise.

Since there are no intervening values, 𝜙11 is both the autocorrelation and the par-

tial autocorrelation between yt and yt−1. Now, form the second-order autoregression

equation

y∗t = 𝜙21y
∗
t−1 + 𝜙22y

∗
t−2 + et

Here, 𝜙22 is the partial autocorrelation coefficient between yt and yt−2. In other

words, 𝜙22 is the correlation between yt and yt−2 controlling for (i.e., “netting out”) the
effect of yt−1. Repeating this process for all additional lags s yields the partial autocor-
relation function (PACF). In practice, with sample size T , only T∕4 lags are used in

obtaining the sample PACF.

Since most statistical computer packages perform these transformations, there

is little need to elaborate on the computational procedure. However, it should be

pointed out that a simple computational method relying on the so-called Yule–

Walker equations is available. One can form the partial autocorrelations from the

autocorrelations as

𝜙11 = 𝜌1 (2.35)

𝜙22 = (𝜌2 − 𝜌2
1
)∕(1 − 𝜌2

1
) (2.36)

and, for additional lags,

𝜙ss =

𝜌s −
s−1∑
j=1

𝜙s−1,j𝜌s−j

1 −
s−1∑
j=1

𝜙s−1,j𝜌j

, s = 3, 4, 5,… . (2.37)

where 𝜙sj = 𝜙s−1,j − 𝜙ss𝜙s−1,s−j, j = 1, 2, 3,… , s − 1.

For an AR(p) process, there is no direct correlation between yt and yt−s for s > p.
Hence, for s > p, all values of 𝜙ss will be zero, and the PACF for a pure AR(p) process
should cut to zero for all lags greater than p. This is a useful feature of the PACF that

can aid in the identification of an AR(p) model. In contrast, consider the PACF for

the MA(1) process: yt = 𝜀t + 𝛽𝜀t−1. As long as 𝛽 ≠ −1, we can write yt∕(1 + 𝛽L) = 𝜀t,

which we know has the infinite-order autoregressive representation

yt − 𝛽yt−1 + 𝛽2yt−2 − 𝛽3yt−3 + · · · = 𝜀t

As such, the PACF will not jump to zero since yt will be correlated with all of its

own lags. Instead, the PACF coefficients exhibit a geometrically decaying pattern. If

𝛽 < 0, decay is direct, and if 𝛽 > 0, the PACF coefficients oscillate.
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Worksheet 2.2 illustrates the procedure used in constructing the PACF for the

ARMA(1, 1) model shown in the fifth panel on the right-hand side of Figure 2.2:

yt = −0.7yt−1 + 𝜀t − 0.7 𝜀t−1

First, calculate the autocorrelations. Clearly, 𝜌0 = 1; use equation (2.34) to calcu-

late as 𝜌1 = −0.8445. Thereafter, the ACF coefficients decay at the rate 𝜌i = (−0.7)𝜌i−1
for i ≥ 2. Using (2.35) and (2.36), we obtain 𝜙11 = −0.8445 and 𝜙22 = −0.4250. All
subsequent 𝜙ss and 𝜙sj can be calculated from (2.37) as in Worksheet 2.2.

More generally, the PACF of a stationary ARMA(p, q) process must ultimately

decay toward zero beginning at lag p. The decay pattern depends on the coefficients

of the polynomial (1 + 𝛽1L + 𝛽2L
2 + · · · + 𝛽qL

q). Table 2.1 summarizes some of the

properties of the ACF and PACF for various ARMA processes. Also, the right-hand

side graphs of Figure 2.2 show the partial autocorrelation functions of the five indicated

processes.

For stationary processes, the key points to note are the following:

1. The ACF of an ARMA(p, q) process will begin to decay after lag q. After
lag q, the coefficients of the ACF (i.e., the 𝜌i) will satisfy the difference

equation (𝜌i = a1𝜌i−1 + a2𝜌i−2 + · · · + ap𝜌i−p). Since the characteristic
roots are inside the unit circle, the autocorrelations will decay after lag q.
Moreover, the pattern of the autocorrelation coefficients will mimic that

suggested by the characteristic roots.

2. The PACF of an ARMA(p, q) process will begin to decay after lag p. After
lag p, the coefficients of the PACF (i.e., the 𝜙ss) will mimic the ACF coeffi-

cients from the model yt∕(1 + 𝛽1L + 𝛽2L
2 + · · · + 𝛽qL

q).

Table 2.1 Properties of the ACF and PACF

Process ACF PACF

White noise All 𝜌s = 0 (s ≠ 0) All 𝜙ss = 0

AR(1): a1 > 0 Direct geometric decay: 𝜌s = as
1

𝜙11 = 𝜌1;𝜙ss = 0 for s ≥ 2

AR(1): a1 < 0 Oscillating decay: 𝜌s = as
1

𝜙11 = 𝜌1;𝜙ss = 0 for s ≥ 2

AR(p) Decays toward zero. Coefficients
may oscillate.

Spikes through lag p. All
𝜙ss = 0 for s > p

MA(1): 𝛽 > 0 Positive spike at lag 1. 𝜌s = 0 for
s ≥ 2

Oscillating decay: 𝜙11 > 0

MA(1): 𝛽 < 0 Negative spike at lag 1. 𝜌s = 0 for
s ≥ 2

Geometric decay: 𝜙11 < 0

ARMA(1, 1):
a1 > 0

Geometric decay beginning after
lag 1. Sign 𝜌1 = sign(a1 + 𝛽)

Oscillating decay after lag 1.
𝜙11 = 𝜌1

ARMA(1, 1):
a1 < 0

Oscillating decay beginning after
lag 1. Sign 𝜌1 = sign(a1 + 𝛽)

Geometric decay beginning
after lag 1. 𝜙11 = 𝜌1 and
sign(𝜙ss) = sign(𝜙11)

ARMA(p,q) Decay (either direct or oscillatory)
beginning after lag q

Decay (either direct or
oscillatory) beginning after
lag p
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We can illustrate the usefulness of the ACF and PACF functions using the model

yt = a0 + 0.7yt−1 + 𝜀t. If we compare the top two graphs in Figure 2.2, the ACF shows

the monotonic decay of the autocorrelations while the PACF exhibits the single spike at

lag 1. Suppose that a researcher collected sample data and plotted the ACF and PACF. If

the actual patterns compared favorably to the theoretical patterns, the researcher might

try to estimate data using an AR(1) model. Correspondingly, if the ACF exhibited a

single spike and the PACF exhibited monotonic decay (see the third graph for the model

yt = 𝜀t − 0.7 𝜀t−1), the researcher might try an MA(1) model.

7. SAMPLE AUTOCORRELATIONS
OF STATIONARY SERIES

In practice, the theoretical mean, variance, and autocorrelations of a series are unknown

to the researcher. Given that a series is stationary, we can use the samplemean, variance,

and autocorrelations to estimate the parameters of the actual data-generating process.

Let there be T observations labeled y1 through yT . We can let y, �̂�2, and rs be estimates

of 𝜇, 𝜎2, and 𝜌s, respectively where1

y = (1∕T)
T∑
t=1

yt (2.38)

�̂�2 = (1∕T)
T∑
t=1

(yt − y)2 (2.39)

and for each value of s = 1, 2,… ,

rs =

T∑
t=s+1

(yt − y)(yt−s − y)

T∑
t=1

(yt − y)2
(2.40)

The sample autocorrelation function [i.e., the ACF derived from (2.40)] and the

sample PACF can be compared to various theoretical functions to help identify the

actual nature of the data-generating process. Box and Jenkins (1976) discuss the dis-

tribution of the sample values of rs under the null that yt is stationary with normally

distributed errors. Allowing var(rs) to denote the sampling variance of rs, they obtained

var(rs) = T−1 for s = 1

= T−1

(
1 + 2

s−1∑
j=1

r2j

)
for s > 1 (2.41)

if the true value of rs = 0 [i.e., if the true data-generating process is an MA(s − 1)
process]. Moreover, in large samples (i.e., for large values of T), rs will be normally dis-

tributed with a mean equal to zero. For the PACF coefficients, under the null hypothesis
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of an AR(p) model (i.e., under the null that all 𝜙p+i,p+i are zero), the variance of the

�̂�p+i,p+i is approximately 1∕T (See Section 2.3 of the Supplementary Manual).
In practice, we can use these sample values to form the sample autocorrelations

and partial autocorrelation functions and test for significance using (2.41). For example,

if we use a 95% confidence interval (i.e., two standard deviations), and the calculated

value of r1 exceeds 2T
−1∕2, it is possible to reject the null hypothesis that the first-order

autocorrelation is not statistically different from zero. Rejecting this hypothesis means

rejecting an MA(s − 1) = MA(0) process and accepting the alternative q > 0. Next, try

s = 2; var(r2) is (1 + 2r2
1
)∕T . If r1 is 0.5 and T is 100, the variance of r2 is 0.015 and the

standard deviation is about 0.123. Thus, if the calculated value of r2 exceeds 2(0.123),
it is possible to reject the hypothesis r2 = 0. Here, rejecting the null means accepting

the alternative that q > 1. Repeating for the various values of s is helpful in identifying
the order to the process. The maximum number of sample autocorrelations and partial

autocorrelations to use is typically set equal to T∕4.
Within any large group of autocorrelations, some will exceed two standard devi-

ations as a result of pure chance even though the true values in the data-generating

process are zero. TheQ-statistic can be used to test whether a group of autocorrelations
is significantly different from zero. Box and Pierce (1970) used the sample autocorre-

lations to form the statistic

Q = T
s∑

k=1
r2k

Under the null hypothesis that all values of rk = 0, Q is asymptotically 𝜒2 dis-

tributed with s degrees of freedom. The intuition behind the use of the statistic is that

high sample autocorrelations lead to large values of Q. Certainly, a white-noise pro-

cess (in which all autocorrelations should be zero) would have a Q value of zero. If

the calculated value of Q exceeds the appropriate value in a 𝜒2 table, we can reject the

null of no significant autocorrelations. Note that rejecting the null means accepting an

alternative that at least one autocorrelation is not zero.

A problem with the Box–Pierce Q-statistic is that it works poorly even in moder-

ately large samples. Ljung and Box (1978) reported superior small sample performance

for the modified Q-statistic calculated as

Q = T(T + 2)
s∑

k=1
r2k∕(T − k) (2.42)

If the sample value of Q calculated from (2.42) exceeds the critical value of 𝜒2

with s degrees of freedom, then at least one value of rk is statistically different from

zero at the specified significance level. The Box–Pierce and Ljung–Box Q-statistics
also serve as a check to see if the residuals from an estimated ARMA(p, q) model

behave as a white-noise process. However, when the s correlations from an estimated

ARMA(p, q) model are formed, the degrees of freedom are reduced by the number of

estimated coefficients. Hence, using the residuals of an ARMA(p, q) model, Q has a

𝜒2 with s − p − q degrees of freedom (if a constant is included, the degrees of freedom

are s − p − q − 1).
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Model Selection Criteria

One natural question to ask of any estimated model is: How well does it fit the data?

Adding additional lags for p and/or q will necessarily reduce the sum of squares of

the estimated residuals. However, adding such lags entails the estimation of additional

coefficients and an associated loss of degrees of freedom. Moreover, the inclusion of

extraneous coefficients will reduce the forecasting performance of the fitted model. As

discussed in Appendix 2.2 in the Supplementary Manual, there exist various model

selection criteria that trade-off a reduction in the sum of squares of the residuals for a

more parsimoniousmodel. The two most commonly used model selection criteria are

the Akaike Information Criterion (AIC) and the Schwartz Bayesian Criterion (SBC).

In the text, we use the following formulas

AIC = T ln(sum of squared residuals) + 2n

SBC = T ln(sum of squared residuals) + n ln(T)

where n = number of parameters estimated (p + q + possible constant term)
T = number of usable observations.

When you estimate a model using lagged variables, some observations are lost. To

adequately compare the alternative models, T should be kept fixed. Otherwise, you will

be comparing the performance of the models over different sample periods. Moreover,

decreasing T has direct effect of reducing the AIC and the SBC; the goal is not to select

a model because it has the smallest number of usable observations. For example, with

100 data points, estimate an AR(1) and an AR(2) using only the last 98 observations

in each estimation. Compare the two models using T = 98.

Ideally, the AIC and SBC will be as small as possible (note that both can be neg-

ative). As the fit of the model improves, the AIC and SBC will approach −∞. We can

use these criteria to aid in selecting the most appropriate model; model A is said to fit

better than model B if the AIC (or SBC) for A is smaller than for model B. In using the
criteria to compare alternative models, we must estimate them over the same sample

period so that they will be comparable. For each, increasing the number of regressors

increases n but should have the effect of reducing the sum of squared residuals (SSR).

Thus, if a regressor has no explanatory power, adding it to the model will cause both the

AIC and SBC to increase. Since ln(T)will be greater than 2, the SBCwill always select

a more parsimonious model than will the AIC; the marginal cost of adding regressors

is greater with the SBC than with the AIC.

An especially useful feature of the model selection criteria is for comparing

non-nested models. For example, suppose you want to compare an AR(2) model to

an MA(3) model. Neither is a restricted form of the other. You would not want to

estimate an ARMA(2, 3) model and perform F-tests to determine whether a1 = a2 = 0

or whether 𝛽1 = 𝛽2 = 𝛽3 = 0. As discussed in Appendix 2.1, the estimation of ARMA

models necessitates computer-based solution methods. If the AR(2) and MA(3)

models are each reasonable, the nonlinear search algorithms required to estimate an

ARMA(2, 3) model are not likely to converge to a solution.Moreover, the values of yt−1
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and yt−2 are clearly correlated with the values of 𝜀t−1, 𝜀t−2, and 𝜀t−3. It is quite possible
that both the hypotheses could be accepted (or rejected). However, it is straightforward

to compare the estimated AR(2) and MA(3) models using the AIC or the SBC.

Of the two criteria, the SBC has superior large sample properties. Let the true order

of the data-generating process be (p∗, q∗) and suppose that we use the AIC and SBC to

estimate all ARMA models of order (p, q) where p ≥ p∗ and q ≥ q∗. Both the AIC and

the SBC will select models of orders greater than or equal to (p∗, q∗) as the sample size

approaches infinity. However, the SBC is asymptotically consistent while the AIC is

biased toward selecting an overparameterized model. However, in small samples, the

AIC can work better than the SBC. You can be quite confident in your results if both

the AIC and the SBC select the same model. If they select different models, you need

to proceed cautiously. Since SBC selects the more parsimonious model, you should

check to determine if the residuals appear to be white noise. Since the AIC can select

an overparameterized model, the t-statistics of all coefficients should be significant at

conventional levels. A number of other diagnostic checks that can be used to compare

alternative models are presented in Sections 8 and 9. Nevertheless, it is wise to retain a

healthy skepticism of your estimated models. With many data sets, it is just not possible

to find the one model that clearly dominates all others. There is nothing wrong with

reporting the results and the forecasts using alternative estimations.

Before proceeding, be aware that a number of different ways are used to report the

AIC and the SBC. For example, the software packages EViews and SAS report values

for the AIC and SBC using

AIC∗ = −2 ln(L)∕T + 2n∕T
SBC∗ = −2 ln(L)∕T + n ln(T)∕T

where n and T are as defined above and L is the maximized value of the log of the

likelihood function.

For a normal distribution, −2 ln(L) = T ln(2𝜋) + T ln(𝜎2) + (1∕𝜎2) (SSR) . The
reason for the plethora of reporting methods is that many software packages (such as

OX, RATS, and GAUSS) do not display any model selection criteria so that users must

calculate these values by themselves. Programmers quickly find that coding all of the

parameters contained in the formulas is unnecessary and simply report the shortened

versions. In point of fact, it does not matter which method you use. If you work through

Question 7 at the end of this chapter, it should be clear that the model with the smallest

value for AIC will always have the smallest AIC∗. Specifically, Question 7 asks you to
write down the formula for ln(L) and show that the equation for AIC∗ is a monotonic

transformation of that for AIC. Hence, whether you use the formula for AIC or AIC∗,
youwill always be selecting the samemodel as the one selected in the text. The identical

relationship holds between SBC∗ and SBC; the model yielding the smallest value for

SBC will always have the smallest value for SBC∗.

Estimation of an AR(1) Model

Let us use a specific example to see how the sample autocorrelation function and par-

tial autocorrelation function can be used as an aid in identifying an ARMA model.

A computer program was used to draw 100 normally distributed random numbers

with a theoretical variance equal to unity. Call these random variates 𝜀t, where t runs
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FIGURE 2.3 ACF and PACF for Two Simulated Processes

from 1 to 100. Beginning with t = 1, values of yt were generated using the formula

yt = 0.7yt−1 + 𝜀t and the initial condition y0 = 0. Note that the problem of nonsta-

tionarity is avoided since the initial condition is consistent with long-run equilibrium.

Panel (a) of Figure 2.3 shows the sample correlogram and Panel (b) shows the sam-

ple PACF. You should take a minute to compare the ACF and PACF to those of the

theoretical processes shown in Figure 2.2.

In practice, we never know the true data-generating process. As an exercise, sup-

pose we were presented with these 100 sample values and were asked to uncover the

true process using the Box–Jenkins methodology. The first step might be to compare

the sample ACF and PACF to those of the various theoretical models. The decaying pat-

tern of the ACF and the single large spike at lag 1 in the sample PACF suggests anAR(1)

model. The first three autocorrelations are r1 = 0.74, r2 = 0.58, and r3 = 0.47. [Note

that these are somewhat greater than the theoretical values of 0.7, 0.49 (0.72 = 0.49),
and 0.343, respectively.] In the PACF, there is a sizable spike of 0.74 at lag 1, and all

other partial autocorrelations (except for lag 12) are very small.

Under the null hypothesis of an MA(0) process, the standard deviation of r1 is

T−1∕2 = 0.1. Since the sample value of r1 = 0.74 ismore than seven standard deviations

from zero, we can reject the null hypothesis that r1 equals 0. The standard deviation of
r2 is obtained by applying (2.41) to the sampling data, where s = 2

var(r2) = (1 + 2(0.74)2)∕100 = 0.021
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Since (0.021)1∕2 = 0.1449, the sample value of r2 is more than three standard devi-

ations from zero; at conventional significance levels, we can reject the null hypothesis

that r2 equals zero. We can similarly test the significance of the other values of the

autocorrelations.

As you can see in Panel (b) of the figure, other than 𝜙11, all partial autocorrelations

(except for lag 12) are less than 2T−1∕2 = 0.2. The decay of the ACF and the single

spike of the PACF give the strong impression of a first-order autoregressive model.

Nevertheless, if we did not know the true underlying process and happened to be using

monthly data, we might be concerned with the significant partial autocorrelation at

lag 12. After all, with monthly data, we might expect some direct relationship between

yt and yt−12.
Although we know that the data was actually generated from an AR(1) process, it

is illuminating to compare the estimates of two different models. Suppose we estimate

an AR(1) model and try to capture the spike at lag 12 with an MA coefficient. Thus,

we can consider the two tentative models

Model 1: yt = a1yt−1 + 𝜀t

Model 2: yt = a1yt−1 + 𝜀t + 𝛽12𝜀t−12.

Table 2.2 reports the results of the two estimations. The coefficient of model 1

satisfies the stability condition |a1| < 1 and has a low standard error (the associated

t-statistic for a null of zero is more than 12). As a useful diagnostic check, we plot

the correlogram of the residuals of the fitted model in Figure 2.4. The Q-statistics for
these residuals indicate that each one of the autocorrelations is less than two standard

deviations from zero. The Ljung–Box Q-statistics of these residuals indicate that, as a
group, lags 1 through 8, 1 through 16, and 1 through 24 are not significantly different

from zero. This is strong evidence that the AR(1) model “fits” the data well. After all, if

residual autocorrelations were significant, the AR(1) model would not use all available

information concerning movements in the {yt} sequence. For example, suppose we

wanted to forecast yt+1 conditioned on all available information up to and including

period t. With model 1, the value of yt+1 is yt+1 = a1yt + 𝜀t+1. Hence, the forecast from

Table 2.2 Estimates of an AR(1) Model

Model 1
yt = a𝟏yt−𝟏 + 𝜺t

Model 2
yt = a𝟏yt−𝟏 + 𝜺t + 𝜷𝟏𝟐𝜺t−𝟏𝟐

Degrees of freedom 98 97

Sum of squared residuals 85.10 85.07

Estimated a1 0.7904 0.7938

(standard error) (0.0624) (0.0643)

Estimated 𝛽 −0.0325

(standard error) (0.1141)

AIC/SBC AIC = 441.9; SBC = 444.5 AIC = 443.9; SBC = 449.1

Ljung–Box Q-statistics for Q(8) = 6.43 (0.490) Q(8) = 6.48 (0.485)
the residuals (significance Q(16) = 15.86 (0.391) Q(16) = 15.75 (0.400)
level in parentheses) Q(24) = 21.74 (0.536) Q(24) = 21.56 (0.547)
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FIGURE 2.4 ACF of Residuals from Model 1

model 1 is a1yt. If the residual autocorrelations had been significant, this forecast would
not capture all of the available information set.

Examining the results for model 2, note that both models yield similar estimates

for the first-order autoregressive coefficient and the associated standard error. However,

the estimate for 𝛽12 is of poor quality; the insignificant t-value suggests that it should
be dropped from the model. Moreover, comparing the AIC and the SBC values of the

two models suggests that the benefits of reducing the SSR is overwhelmed by the detri-

mental effects of estimating an additional parameter. All of these indicators point to the

choice of model 1.

Exercise 8 at the end of this chapter entails various estimations using this series.

The series is denoted by Y1 in the file SIM2.XLS. In this exercise, you are asked to

show that the AR(1) model performs better than some alternative specifications. It is

important that you complete this exercise.

Estimation of an ARMA(1, 1) Model

A second {yt} sequence in the file SIM2.XLS was constructed to illustrate the estima-

tion of an ARMA(1, 1). Given 100 normally distributed values of {𝜀t}, 100 values of

{yt} were generated using

yt = −0.7yt−1 + 𝜀t − 0.7 𝜀t−1

where y0 and 𝜀0 were both set equal to zero.

Both the sample ACF and the PACF from the simulated data (see the second set of

graphs in Figure 2.3) are roughly equivalent to those of the theoretical model shown in

Figure 2.2. However, if the true data-generating process were unknown, the researcher

might be concerned about certain discrepancies. An AR(2) model could yield a sample

ACF and PACF similar to those in the figure. Table 2.3 reports the results of estimating

the data using the following three models:

Model 1: yt = a1yt−1 + 𝜀t
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Table 2.3 Estimates of an ARMA(1,1) Model

Estimates1 Q-Statistics2 AIC/SBC3

Model 1 a1: −0.835 (0.053) Q(8) = 26.19 (0.000);
Q(24) = 41.10 (0.001)

AIC = 496.5;
SBC = 499.0

Model 2 a1: −0.679 (0.076)

𝛽1: −0.676 (0.081)

Q(8) = 3.86 (0.695);
Q(24) = 14.23 (0.892)

AIC = 471.0;
SBC = 476.2

Model 3 a1: −1.16 (0.093)

a2: −0.378 (0.092)

Q(8) = 11.44 (0.057);
Q(24) = 22.59 (0.424)

AIC = 482.8;
SBC = 487.9

Notes:
1Standard errors in parentheses.
2Ljung–Box Q-statistics of the residuals from the fitted model. The significance levels are in parentheses.
3For comparability, the AIC and SBC values are reported for estimations that used only observations
3 through 100. If the AR(1) is estimated using 99 observations, the AIC and SBC are 502.3 and 504.9,
respectively. If the ARMA(1, 1) is estimated using 99 observations, the AIC and SBC are 476.6 and 481.1,
respectively.

Model 2: yt = a1yt−1 + 𝜀t + 𝛽1𝜀t−1

Model 3: yt = a1yt−1 + a2yt−2 + 𝜀t

In examining Table 2.3, notice that all of the estimated values of a1 are highly

significant; each of the estimated values is at least eight standard deviations from zero.

It is clear that the AR(1) model is inappropriate. The Q-statistics for model 1 indicate

that there is significant autocorrelation in the residuals. The estimated ARMA(1, 1)

model does not suffer from this problem. Moreover, both the AIC and the SBC select

model 2 over model 1.

The same type of reasoning indicates that model 2 is preferred to model 3. Note

that, for each model, the estimated coefficients are highly significant and the point

estimates imply convergence. Although the Q-statistic at 24 lags indicates that these

two models do not suffer from correlated residuals, the Q-statistic at 8 lags indicates

serial correlation in the residuals of model 3. Thus, the AR(2) model does not capture

short-term dynamics, as well as the ARMA(1, 1) model. Also note that the AIC and

SBC both select model 2.

Estimation of an AR(2) Model

A third data series was simulated as

yt = 0.7yt−1 − 0.49yt−2 + 𝜀t

The estimated ACF and PACF of the series are

Lags Autocorrelations
1–10 0.47 −0.16 −0.32 −0.11 −0.05 −0.16 −0.10 0.13 0.18 0.03

11–20 −0.09 −0.11 −0.16 −0.06 0.12 0.25 0.05 −0.17 −0.15 0.01

Partial Autocorrelations
1–10 0.47 −0.48 0.02 0.05 −0.25 −0.12 0.10 0.04 −0.08 0.02

11–20 −0.02 −0.14 −0.17 0.21 0.01 0.09 −0.22 0.01 −0.02 −0.03
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Note the large autocorrelation at lag 16 and the large partial autocorrelations at

lags 14 and 17. Given the way the process was simulated, the presence of these auto-

correlations is due to nothing more than chance. However, an econometrician unaware

of the actual data-generating process might be concerned about these autocorrelations.

The estimated AR(2) model (with t-statistics in parentheses) is

yt = 0.692yt−1 − 0.481yt−2 AIC = 219.87,SBC = 225.04

(7.73) (−5.37)

Overall, the model appears to be adequate. However, the two AR(2) coefficients

are unable to capture the correlations at very long lags. For example, the partial auto-

correlations of the residuals for lags 14 and 17 are both greater than 0.2 in absolute

value. The calculated Ljung–Box statistic for 16 lags is 24.6248 (which is significant

at the 0.038 level). At this point, it might be tempting to try to model the correlation at

lag 16 by including the moving average term 𝛽16𝜀t−16. Such an estimation results in2

yt = 0.717yt−1 − 0.465yt−2 + 0.306𝜀t−16 AIC = 213.40,SBC = 221.16

(7.87) (−5.11) (2.78)

All estimated coefficients are significant and the Ljung–Box Q-statistics for the
residuals are all insignificant at conventional levels. In conjunction with the fact that

the AIC and SBC both select this second model, the researcher unaware of the true pro-

cess might be tempted to conclude that the data-generating process includes a moving

average term at lag 16.

A useful model check is to split the sample into two parts. If a coefficient is

present in the data-generating process, its influence should be seen in both subsamples.

If the simulated series is split into two parts, the ACF and PACF using observations

50 through 100 follow:

Lags Autocorrelations
1−10 0.46 −0.21 −0.28 0.03 0.10 −0.15 −0.13 0.10 0.18 0.03

11−20 −0.01 0.01 −0.06 −0.09 0.04 0.21 0.06 −0.16 −0.18 −0.05
Partial Autocorrelations

1−10 0.46 −0.53 0.19 0.06 −0.20 −0.13 0.23 −0.08 0.00 0.06

11−20 0.15 −0.26 0.03 0.15 0.04 0.00 −0.05 −0.01 −0.14 −0.08

As you can see, the size of the partial autocorrelations at lags 14 and 17 is dimin-

ished. Now, estimating a pure AR(2) model over this second part of the sample yields

yt = 0.714yt−1 − 0.538yt−2
(5.92) (−4.47)

Q(8) = 7.83;Q(16) = 15.93;Q(24) = 26.06

All estimated coefficients are significant, and the Ljung–Box Q-statistics do

not indicate any significant autocorrelations in the residuals. The significance levels

of Q(8), Q(16), and Q(24) are 0.251, 0.317, and 0.249, respectively. In fact, this

model does capture the actual data-generating process quite well. In this example, the

large spurious autocorrelations of the long lags can be eliminated by changing the
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sample period. Thus, it is hard to maintain that the correlation at lag 16 is meaningful.

Most sophisticated practitioners warn against trying to fit any model to the very long

lags. As you can infer from (2.41), the variance of rs can be sizable when s is large.
Moreover, in small samples, a few “unusual” observations can create the appearance

of significant autocorrelations at long lags. Since econometric estimation involves

unknown data-generating processes, the more general point is that we always need to

be wary of our estimated model. Fortunately, Box and Jenkins (1976) established a set

of procedures that can be used to check a model’s adequacy.

8. BOX–JENKINS MODEL SELECTION

The estimates of the AR(1), ARMA(1, 1), and AR(2) models in the previous section

illustrate the Box–Jenkins (1976) strategy for appropriate model selection. Box and

Jenkins popularized a three-stage method aimed at selecting an appropriate model for

the purpose of estimating and forecasting a univariate time series. In the identification
stage, the researcher visually examines the time plot of the series, the autocorrelation

function, and the partial correlation function. Plotting the time path of the {yt} sequence
provides useful information concerning outliers, missing values, and structural breaks

in the data. Nonstationary variables may have a pronounced trend or appear to meander

without a constant long-run mean or variance. Missing values and outliers can be cor-

rected at this point. At one time, the standard practice was to first difference any series

deemed to be nonstationary. Currently, there is a large body of literature regarding for-

mal procedures to check for nonstationarity. We defer this discussion until Chapter 4

and assume that we are working with stationary data. A comparison of the sample ACF

and PACF to those of various theoretical ARMA processes may suggest several plausi-

ble models. In the estimation stage, each of the tentative models is fit, and the various

ai and 𝛽i coefficients are examined. In this second stage, the goal is to select a station-

ary and parsimonious model that has a good fit. The third stage involves diagnostic
checking to ensure that the residuals from the estimated model mimic a white-noise

process.

Parsimony

A fundamental idea in the Box–Jenkins approach is the principle of parsimony. Parsi-
mony (meaning sparseness or stinginess) should come as second nature to economists.

Incorporating additional coefficients will necessarily increase fit (e.g., the value of R2

will increase) at a cost of reducing degrees of freedom. Box and Jenkins argue that

parsimonious models produce better forecasts than overparameterized models. A par-

simonious model fits the data well without incorporating any needless coefficients. Cer-

tainly, forecasters do not want to project poorly estimated coefficients into the future.

The aim is to approximate the true data-generating process but not to pin down the

exact process. The goal of parsimony suggested eliminating the MA(12) coefficient in

the simulated AR(1) model above.

In selecting an appropriate model, the econometrician needs to be aware that sev-

eral different models may have similar properties. As an extreme example, note that
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the AR(1) model yt = 0.5yt−1 + 𝜀t has the equivalent infinite-order moving average

representation of yt = 𝜀t + 0.5𝜀t−1 + 0.25𝜀t−2 + 0.125𝜀t−3 + 0.0625𝜀t−4 + · · ·. In most

samples, approximating this MA(∞) process with an MA(2) or MA(3) model will give

a very good fit. However, the AR(1) model is the more parsimonious model and is

preferred. As a quiz, you should show that this AR(1) model has the equivalent repre-

sentation of yt = 0.25yt−2 + 0.5𝜀t−1 + 𝜀t.

In addition, be aware of the common factor problem. Suppose we wanted to fit

the ARMA(2, 3) model

(1 − a1L − a2L
2)yt = (1 + 𝛽1L + 𝛽2L

2 + 𝛽3L
3)𝜀t (2.43)

Suppose that (1 − a1L − a2L
2) and (1 + 𝛽1L + 𝛽2L

2 + 𝛽3L
3) can be factored as

(1 + cL)(1 + aL) and (1 + cL)(1 + b1L + b2L
2), respectively. Since (1 + cL) is a com-

mon factor to each, (2.43) has the equivalent but more parsimonious form:

(1 + aL)yt = (1 + b1L + b2L
2)𝜀t (2.44)

If you passed the last quiz, you know that (1 − 0.25L2)yt = (1 + 0.5L)𝜀t is equiv-
alent to (1 + 0.5L)(1 − 0.5L)yt = (1 + 0.5L)𝜀t so that yt = 0.5yt−1 + 𝜀t. In practice, the

polynomials will not factor exactly. However, if the factors are similar, you should try

a more parsimonious form.

In order to ensure that the model is parsimonious, the various ai and 𝛽i should

all have t-statistics of 2.0 or greater (so that each coefficient is significantly different

from zero at the 5% level). Moreover, the coefficients should not be strongly correlated

with each other. Highly collinear coefficients are unstable; usually, one or more can be

eliminated from the model without reducing forecast performance.

Stationarity and Invertibility

The distribution theory underlying the use of the sample ACF and PACF as approxi-

mations to those of the true data-generating process assumes that the {yt} sequence is
stationary. Moreover, t-statistics and Q-statistics also presume that the data are station-

ary. The estimated autoregressive coefficients should be consistent with this underlying

assumption. Hence, we should be suspicious of an AR(1) model if the estimated value

of a1 is close to unity. For an ARMA(2, q) model, the characteristic roots of the esti-

mated polynomial (1 − a1L − a2L
2) should lie outside of the unit circle.

As discussed in greater detail in Appendix 2.1, the Box–Jenkins approach also

necessitates that the model be invertible. Formally, {yt} is invertible if it can be repre-
sented by a finite-order or convergent autoregressive process. Invertibility is important

because the use of the ACF and PACF implicitly assume that the {yt} sequence can

be represented by an autoregressive model. As a demonstration, consider the simple

MA(1) model:

yt = 𝜀t − 𝛽1𝜀t−1 (2.45)

so that if |𝛽1| < 1,

yt∕(1 − 𝛽1L) = 𝜀t
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or

yt + 𝛽1yt−1 + 𝛽2
1
yt−2 + 𝛽3

1
yt−3 + · · · = 𝜀t (2.46)

If |𝛽1| < 1, (2.46) can be estimated using the Box–Jenkins method. However, if|𝛽1| ≥ 1, the {yt} sequence cannot be represented by a finite-order AR process; as

such, it is not invertible. More generally, for an ARMA model to have a convergent

AR representation, the roots of the polynomial (1 + 𝛽1L + 𝛽2L
2 + · · · + 𝛽qL

q) must

lie outside the unit circle. Note that there is nothing improper about a noninvertible

model. The {yt} sequence implied by yt = 𝜀t − 𝜀t−1 is stationary in that it has a constant
time-invariant mean (Eyt = Eyt−s = 0), a constant time-invariant variance [var(yt) =
var(yt−s) = 𝜎2(1 + 𝛽2

1
) + 2𝜎2], and the autocovariances 𝛾1 = −𝛽1𝜎2 and all other 𝛾s =

0. The problem is that the technique does not allow for the estimation of such models.

If 𝛽1 = 1, (2.46) becomes

yt + yt−1 + yt−2 + yt−3 + yt−4 + · · · = 𝜀t

Clearly, the autocorrelations and partial autocorrelations between yt and yt−s will
never decay.

Goodness of Fit

A good model will fit the data well. Obviously, R2 and the average of the residual

sum of squares are common goodness-of-fit measures in ordinary least squares. The

problem with these measures is that the fit necessarily improves as more parameters

are included in the model. Parsimony suggests using the AIC and/or SBC as more

appropriate measures of the overall fit of the model. Also, be cautious of estimates that

fail to converge rapidly. Most software packages estimate the parameters of an ARMA

model using a nonlinear search procedure. If the search fails to converge rapidly, it is

possible that the estimated parameters are unstable. In such circumstances, adding an

additional observation or two can greatly alter the estimates.

Postestimation Evaluation

The third stage of the Box–Jenkins methodology involves diagnostic checking. The
standard practice is to plot the residuals to look for outliers and evidence of periods

in which the model does not fit the data well. One common practice is to create the

standardized residuals by dividing each residual, 𝜀t, by its estimated standard devia-

tion, 𝜎. If the residuals are normally distributed, the plot of the 𝜀t∕𝜎 series should be

such that no more than 5% lie outside the band from −2 to +2. If the standardized

residuals seem to be much larger in some periods than in others, it may be evidence

of structural change. If all plausible ARMA models show evidence of a poor fit dur-

ing a reasonably long portion of the sample, it is wise to consider using intervention

analysis, transfer function analysis, or any other of the multivariate estimation methods

discussed in later chapters. If the variance of the residuals is increasing, a logarithmic

transformation may be appropriate. Alternatively, you may wish to actually model any

tendency of the variance to change using the ARCH techniques discussed in Chapter 3.

It is particularly important that the residuals from an estimated model be seri-

ally uncorrelated. Any evidence of serial correlation implies a systematic movement
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in the {yt} sequence that is not accounted for by the ARMA coefficients included in

the model. Hence, any of the tentative models yielding nonrandom residuals should be

eliminated from consideration. To check for correlation in the residuals, construct the

ACF and the PACF of the residuals of the estimated model. You can then use (2.41)

and (2.42) to determine whether any or all of the residual autocorrelations or partial

autocorrelations are statistically significant.3 Although there is no significance level

that is deemed “most appropriate,” be wary of any model yielding (1) several residual

correlations that are marginally significant and (2) a Q-statistic that is barely signifi-

cant at the 10% level. In such circumstances, it is usually possible to formulate a better

performing model.

Similarly, a model can be estimated over only a portion of the data set. The esti-

mated model can then be used to forecast the known values of the series. The sum of

the squared forecast errors is a useful way to compare the adequacy of alternative mod-

els. Those models with poor out-of-sample forecasts should be eliminated. Some of the

details in constructing out-of-sample forecasts are discussed in Section 9.

9. PROPERTIES OF FORECASTS

Perhaps the most important use of an ARMA model is to forecast future values of the

{yt} sequence. To simplify the discussion, it is assumed that the actual data-generating

process and the current and past realizations of the {𝜀t} and {yt} sequences are known to
the researcher. First, consider the forecasts from theAR(1)model yt = a0 + a1yt−1 + 𝜀t.

Updating one period, we obtain

yt+1 = a0 + a1yt + 𝜀t+1

If you know the coefficients a0 and a1, you can forecast yt+1 conditional on the

information available at period t as

Etyt+1 = a0 + a1yt (2.47)

where Etyt+j is a short-hand way to write the conditional expectation of yt+j given the

information available at t. Formally, Etyt+j = E(yt+j|yt, yt−1, yt−2,… , 𝜀t, 𝜀t−1, …).
In the same way, since yt+2 = a0 + a1yt+1 + 𝜀t+2, the forecast of yt+2 conditioned

on the information available at period t is

Etyt+2 = a0 + a1Etyt+1

and using (2.47)

Etyt+2 = a0 + a1(a0 + a1yt)

Thus, the forecast of yt+1 can be used to forecast yt+2. The point is that forecasts
can be constructed using forward iteration; the forecast of yt+j can be used to forecast

yt+j+1. Since yt+j+1 = a0 + a1yt+j + 𝜀t+j+1, it immediately follows that

Etyt+j+1 = a0 + a1Etyt+j (2.48)
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From (2.47) and (2.48), it should be clear that it is possible to obtain the entire

sequence of j-step-ahead forecasts by forward iteration. Consider

Etyt+j = a0(1 + a1 + a2
1
+ · · · + aj−1

1
) + aj

1
yt

This equation, called the forecast function, expresses all of the j-step-ahead fore-
casts as a function of the information set in period t. Unfortunately, the quality of

the forecasts declines as we forecast further out into the future. Think of (2.48) as a

first-order difference equation in the {Etyt+j} sequence. Since |a1| < 1, the difference

equation is stable, and it is straightforward to find the particular solution to the differ-

ence equation. If we take the limit ofEtyt+j as j→ ∞, we find thatEtyt+j → a0∕(1 − a1).
This result is really quite general: For any stationary ARMA model, the conditional
forecast of yt+j converges to the unconditional mean as j → ∞.

Because the forecasts from an ARMA model will not be perfectly accurate, it

is important to consider the properties of the forecast errors. Forecasting from time

period t, we can define the j-step-ahead forecast error, called et(j), as the difference

between the realized value of yt+j and the forecasted value:

et(j) ≡ yt+j − Etyt+j

Since the one-step-ahead forecast error is equivalent to et(1) = yt+1 − Etyt+1 =
𝜀t+1, et(1) is precisely the “unforecastable” portion of yt+1, given the information avail-

able in t.
To find the two-step-ahead forecast error, we need to form et(2) = yt+2 − Etyt+2.

Since yt+2 = a0 + a1yt+1 + 𝜀t+2 and Etyt+2 = a0 + a1Etyt+1, it follows that

et(2) = a1(yt+1 − Etyt+1) + 𝜀t+2 = 𝜀t+2 + a1𝜀t+1

You should take a few moments to demonstrate that, for the AR(1) model, the

j-step-ahead forecast error is given by

et(j) = 𝜀t+j + a1𝜀t+j−1 + a2
1
𝜀t+j−2 + a3

1
𝜀t+j−3 + · · · + a j−1

1
𝜀t+1 (2.49)

Since the mean of (2.49) is zero, the forecasts are unbiased estimates of each value

yt+j. The proof is trivial. Since Et𝜀t+j = Et𝜀t+j−1 = · · · = Et𝜀t+1 = 0, the conditional

expectation of (2.49) is Etet(j) = 0. Since the expected value of the forecast error is

zero, the forecasts are unbiased.

Although unbiased, the forecasts from anARMAmodel are necessarily inaccurate.

To find the variance of the forecast error, continue to assume that the elements of the

{𝜀t} sequence are independent with a variance equal to 𝜎2. Hence, from (2.49), the

variance of the forecast error is

var[et(j)] = 𝜎2[1 + a2
1
+ a4

1
+ a6

1
+ · · · + a2(j−1)

1
] (2.50)

Thus, the one-step-ahead forecast error variance is 𝜎2, the two-step-ahead forecast

error variance is 𝜎2(1 + a2
1
), and so forth. The essential point to note is that the vari-

ance of the forecast error is an increasing function of j. As such, you can have more

confidence in short-term forecasts than in long-term forecasts. In the limit as j → ∞,
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the forecast error variance converges to 𝜎2∕(1 − a1
2); hence, the forecast error variance

converges to the unconditional variance of the {yt} sequence.
Moreover, assuming that the {𝜀t} sequence is normally distributed, you can

place confidence intervals around the forecasts. The one-step-ahead forecast of yt+1 is
a0 + a1yt, and the forecast error is 𝜎2. As such, the 95% confidence interval for the

one-step-ahead forecast can be constructed as

a0 + a1yt ± 1.96𝜎

We can construct a confidence interval for the two-step-ahead forecast error in

the same way. From (2.48), the two-step-ahead forecast is a0(1 + a1) + a2
1
yt, and

(2.50) indicates that var[et(2)] is 𝜎2(1 + a2
1
). Thus, the 95% confidence interval for the

two-step-ahead forecast is

a0(1 + a1) + a2
1
yt ± 1.96𝜎(1 + a2

1
)1∕2

Higher-Order Models

To generalize the discussion, it is possible to use the iterative technique to derive

the forecasts for any ARMA(p, q) model. To keep the algebra simple, consider the

ARMA(2, 1) model

yt = a0 + a1yt−1 + a2yt−2 + 𝜀t + 𝛽1𝜀t−1 (2.51)

Updating one period yields

yt+1 = a0 + a1yt + a2yt−1 + 𝜀t+1 + 𝛽1𝜀t

If we continue to assume that (1) all coefficients are known; (2) all variables sub-

scripted t, t − 1, t − 2,… are known at period t; and (3) Et𝜀t+j = 0 for j > 0, the con-

ditional expectation of yt+1 is

Etyt+1 = a0 + a1yt + a2yt−1 + 𝛽1𝜀t (2.52)

Equation (2.52) is the one-step-ahead forecast of yt+1. The one-step-ahead fore-

cast error is the difference between yt+1 and Etyt+1 so that et(1) = 𝜀t+1. To find the

two-step-ahead forecast, update (2.51) by two periods:

yt+2 = a0 + a1yt+1 + a2yt + 𝜀t+2 + 𝛽1𝜀t+1

The conditional expectation of yt+2 is

Etyt+2 = a0 + a1Etyt+1 + a2yt (2.53)

Equation (2.53) expresses the two-step-ahead forecast in terms of the one-

step-ahead forecast and current value of yt. Combining (2.52) and (2.53) yields

Etyt+2 = a0 + a1[a0 + a1yt + a2yt−1 + 𝛽1𝜀t] + a2yt
= a0(1 + a1) + [a2

1
+ a2]yt + a1a2yt−1 + a1𝛽1𝜀t
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To find the two-step-ahead forecast error, subtract (2.53) from yt+2. Thus,

et(2) = a1(yt+1 − Etyt+1) + 𝜀t+2 + 𝛽1𝜀t+1 (2.54)

Since yt+1 − Etyt+1 is the one-step-ahead forecast error, we can write the forecast

error as

et(2) = (a1 + 𝛽1)𝜀t+1 + 𝜀t+2 (2.55)

Finally, all the j-step-ahead forecasts can be obtained from

Etyt+j = a0 + a1Etyt+j−1 + a2Etyt+j−2, j ≥ 2 (2.56)

Equation (2.56) demonstrates that the forecasts will satisfy a second-order differ-

ence equation. As long as the characteristic roots of (2.56) lie inside the unit circle,

the forecasts will converge to the unconditional mean: a0∕(1 − a1 − a2). We can use

(2.56) to find the j-step-ahead forecast errors. Since yt+j = a0 + a1yt+j−1 + a2yt+j−2 +
𝜀t+j + 𝛽1𝜀t+j−1, the j-step-ahead forecast error is

et(j) = a1(yt+j−1 − Etyt+j−1) + a2(yt+j−2 − Etyt+j−2) + 𝜀t+j + 𝛽1𝜀t+j−1

= a1et(j − 1) + a2et(j − 2) + 𝜀t+j + 𝛽1𝜀t+j−1

It should be clear that forecasts from any stationary ARMA(p, q) process will even-
tually satisfy the pth order difference equation comprising the homogeneous portion of

the model. As such, the multistep-ahead forecasts will converge to the long-run mean

of the series.

Forecast Evaluation

Now that you have estimated a series and have forecasted its future values, the obvious

question is, “How good are my forecasts?” Typically, there will be several plausible

models that you can select to use for your forecasts. Do not be fooled into thinking that

the one with the best fit is the one that will forecast the best. To make a simple point,

suppose you wanted to forecast the future values of the ARMA(2, 1) process given

by (2.51). If you could forecast the value of yT+1 using (2.52), you would obtain the

one-step-ahead forecast error

eT (1) = yT+1 − a0 − a1yT − a2yT−1 − 𝛽1𝜀T = 𝜀T+1 (2.57)

Since the forecast error is the pure unforecastable portion of yT+1, no other ARMA

model can provide you with superior forecasting performance. As such, it appears that

the “true” model will provide superior forecasts to those from any other possible model.

In practice, you will not know the actual order of the ARMA process or the actual

values of the coefficients of that process. Instead, to create out-of-sample forecasts,

it is necessary to use the estimated coefficients from what you believe to be the most

appropriate form of an ARMAmodel. Let a hat or caret (i.e.: ^) over a parameter denote

the estimated value of a parameter, and let {�̂�t} denote the residuals of the estimated

model. Hence, if you use the estimated model, the one-step-ahead forecast will be

ETyT+1 = â0 + â1yT + â2yT−1 + 𝛽1�̂�T (2.58)
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and the one-step-ahead forecast error will be

eT (1) = yT+1 − (â0 + â1yT + â2yT−1 + 𝛽1�̂�T )

Clearly, this forecast will not be identical to that from (2.57). When we forecast

using (2.58), the coefficients (and the residuals) are estimated imprecisely. The fore-

casts made using the estimated model extrapolate this coefficient uncertainty into the

future. Since coefficient uncertainty increases as the model becomes more complex, it

could be that an estimatedAR(1)model forecasts the process given by (2.51) better than

an estimated ARMA(2, 1) model. The general point is that large models usually contain

in-sample estimation errors that induce forecast errors. As shown in the studies by Clark

and West (2007), Dimitrios and Guerard (2004), and Liu and Enders (2003), forecasts

using overly parsimonious models with little parameter uncertainty can provide better

forecasts than models consistent with the actual data-generating process. Moreover, it

is very difficult to construct confidence intervals for this type of forecast error. Not only

is it necessary to include the effects of the stochastic variation in the future values of

{yT+i}, but also it is necessary to incorporate the fact that the coefficients are estimated

with error.

How do you know which one of the several reasonable models has the best fore-

casting performance? One way to answer this question is to put the alternative models

to a head-to-head test. Since the future values of the series are unknown, you can hold

back a portion of the observations from the estimation process. As such, you can esti-

mate the alternative models over the shortened span of data and use these estimates to

forecast the observations of the holdback period. You can then compare the properties

of the forecast errors from the two models. To take a simple example, suppose that {yt}
contains a total of 150 observations and that you are unsure as to whether an AR(1) or

an MA(1) model best captures the behavior of the series.

One way to proceed is to use the first 100 observations to estimate both models

and use each to forecast the value of y101. Since you know the actual value of y101, you
can construct the forecast error obtained from the AR(1) and from the MA(1). These

two forecast errors are precisely those that someone would have made if they had been

making a one-step-ahead forecast in period 100. Now, reestimate an AR(1) and an

MA(1) model using the first 101 observations. Although the estimated coefficients will

change somewhat, they are those that someone would have obtained in period 101.

Use the two models to forecast the value of y102. Given that you know the actual value

of y102, you can construct two more forecast errors. Since you know all values of the

{yt} sequence through period 150, you can continue this process so as to obtain two

series of one-step-ahead forecast errors, each containing 50 observations. To keep the

notation simple, let {f1i} and {f2i} denote the sequence of forecasts from the AR(1)

and theMA(1), respectively. If you understand the notation, it should be clear that f11 =
E100y101 is the first forecast using theAR(1) and f2,50 is the last forecast from theMA(1).

Obviously, it is desirable that the forecast errors have a mean near zero and a small

variance. A regression-based method to assess the forecasts is to use the 50 forecasts

from the AR(1) to estimate an equation of the form

y100+i = a0 + a1f1i + v1i i = 1,… , 50
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If the forecasts are unbiased, an F-test should allow you to impose the restric-

tion a0 = 0 and a1 = 1. Similarly, the residual series {v1i} should act as a white-noise

process. It is a good idea to plot {v1i} to determine if there are periods in which your

forecasts are especially poor. Now repeat the processwith the forecasts from theMA(1).

In particular, use the 50 forecasts from the MA(1) to estimate

y100+i = b0 + b1f2i + v2i i = 1,… , 50

Again, if you use an F-test, you should not be able to reject the joint hypothesis

b0 = 0 and b1 = 1. If the significance levels from the two F-tests are similar, you might

select themodel with the smallest residual variance; that is, select theAR(1) if var(v1) <
var(v2).4

More generally, you might want to have a holdback period that differs from

50 observations. If you have a large sample, it is possible to hold back as much as

50% of the data set. Also, you might want to use the j-step-ahead forecasts instead

of the one-step-ahead forecasts. For example, if you have quarterly data and want to

forecast 1 year into the future, you can perform the analysis using the four-step-ahead

forecasts. Once you have the two sequences of forecast errors, you can compare

their properties. With a very small sample, it may not be possible to hold back

many observations. Small samples are a problem since Ashley (2003) showed that

very large samples are often necessary to reveal a significant difference between the

out-of-sample forecasting performances of similar models. You need to have enough

observations to have well-estimated coefficients for the in-sample period and enough

out-of-sample forecasts so that the test has good power.

Instead of focusing on the bias, many researchers would select the model

with the smallest mean square prediction error (MSPE). Suppose you construct H
one-step-ahead forecasts from two different models. Again, let f1i be the forecasts from
model 1 and f2i be the forecasts from model 2. Since we are using the one-step-ahead

forecasts, we can suppress the subscript j and denote the two series of forecasts errors

as e1i and e2i. As such, the MSPE of model 1 can be calculated as

MSPE = 1

H

H∑
i=1

e2
1i

Several methods have been proposed to determine whether one MSPE is statisti-

cally different from the other. If you put the larger of the two MSPEs in the numerator,

a standard recommendation is to use the F-statistic

F =
H∑
i=1

e2
1i

/ H∑
i=1

e2
2i (2.59)

The intuition is that the value of F will equal unity if the forecast errors from

the two models are identical. A very large value of F implies that the forecast errors

from the first model are substantially larger than those from the second. Under the null

hypothesis of equal forecasting performance, (2.59) has a standard F-distribution with
(H, H) degrees of freedom if the following three assumptions hold:
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1. The forecast errors have zero mean and are normally distributed.

2. The forecast errors are serially uncorrelated.

3. The forecast errors are contemporaneously uncorrelated with each other.

Although it is common practice to assume that the {𝜀t} sequence is normally dis-

tributed, it is not necessarily the case that the forecast errors are normally distributed

with a mean value of zero. Similarly, the forecasts may be serially correlated; this is

particularly true if you use multistep-ahead forecasts. For example, equation (2.55)

indicated that the two-step-ahead forecast error for yt+2 is

et(2) = (a1 + 𝛽1)𝜀t+1 + 𝜀t+2

and updating by one period yields the two-step-ahead forecast error for yt+3:

et+1(2) = (a1 + 𝛽1)𝜀t+2 + 𝜀t+3

It should be clear that the two forecast errors are correlated. In particular,

E[et(2)et+1(2)] = (a1 + 𝛽1)𝜎2

The point is that predicting yt+2 from the perspective of period t and predicting yt+3
from the perspective of period t + 1 both contain an error due to the presence of 𝜀t+2.
However, for i > 1, E[et(2)et+i(2)] = 0 since there are no overlapping forecasts. Hence,

the autocorrelations of the two-step-ahead forecast errors cut to zero after lag 1. You

should be able to demonstrate the general result that the j-step-ahead forecast errors act
as an MA( j − 1) process.

Finally, the forecast errors from the two alternative models will usually be highly

correlated with each other. For example, a negative realization of 𝜀t+1 will tend to cause
the forecasts from both models to be too high. Unfortunately, the violation of any one

of these assumptions means that the ratio of the MSPEs in (2.59) does not have an

F-distribution.

THE GRANGER–NEWBOLD TEST Granger and Newbold (1976) show how to

overcome the problem of contemporaneously correlated forecast errors. If you have

H one-step-ahead forecast errors from each model, use the two sequences of forecast

errors to form

xi = e1i + e2i and zi = e1i − e2i i = 1,… ,H.

Given that the first two assumptions above are valid, under the null hypothesis of

equal forecast accuracy, xi and zi should be uncorrelated. Consider:

𝜌xz = Exizi = E(e2
1i − e2

2i)

If the models forecast equally well, it follows that Ee2
1i = Ee2

2i. Model 1 has a larger

MSPE if 𝜌xz is positive, and model 2 has a larger MSPE if 𝜌xz is negative. Let rxz denote
the sample correlation coefficient between {xi} and {zi}. Granger and Newbold (1976)
show that if assumptions 1 and 2 hold

rxz∕
√

(1 − r2xz)∕(H − 1) (2.60)
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has a t-distribution with H − 1 degrees of freedom. Thus, if rxz is statistically different
from zero, model 1 has a larger MSPE if rxz is positive, and model 2 has a larger MSPE

if rxz is negative.

THE DIEBOLD–MARIANO TEST There is a very large literature trying to extend

the Granger–Newbold test so as to relax assumptions 1 and 2. Moreover, applied

econometricians might be interested in measures of forecasting performance other than

the sum of squared errors. Indeed, it should be clear that using the sum of squared errors

as a criterionmakes sense only if the loss frommaking an incorrect forecast is quadratic.

However, there are many other possibilities. For example, if your loss depends on the

size of the forecast error, you should be concerned with the absolute values of the

forecast errors. Alternatively, an options trader receives a payoff of zero if the value

of the underlying asset lies below the strike price but receives a one-dollar payoff for

each dollar the asset price rises above the strike price. In such a circumstance, the loss

payoff is asymmetric. Diebold and Mariano (1995) have developed a test that relaxes

assumptions 1–3 and allows for an objective function that is not quadratic.

As before, if we consider only one-step-ahead forecasts, we can eliminate the sub-

script j. As such, we can let the loss from a forecast error in period i be denoted by

g(ei). In the typical case of mean-squared errors, the loss is e2i . Nevertheless, to allow

the loss function to be general, we can write the differential loss in period i from using

model 1 versus model 2 as di = g(e1i) − g(e2i). The mean loss can be obtained as

d = 1

H

H∑
i=1

[g(e1i) − g(e2i)] (2.61)

Under the null hypothesis of equal forecast accuracy, the value of d is zero. Since
d is the mean of the individual losses, under fairly weak conditions, the central limit

theorem implies that d should have a normal distribution. Hence, it is not necessary to

assume that the individual forecast errors are normally distributed. Thus, if we knew

var(d), we could construct the ratio d∕
√

var(d) and test the null hypothesis of equal

forecast accuracy using a standard normal distribution. In practice, the implementation

of the test is complicated by the fact that we need to estimate var(d).
If the {di} series is serially uncorrelated with a sample variance of 𝛾0, the estimate

of var(d) is simply 𝛾0∕(H − 1). Since we use the estimated value of the variance, the

expression d∕
√
𝛾0∕(H − 1) has a t-distribution with H − 1 degrees of freedom.

There is a very large literature on the best way to estimate the standard deviation

of d in the presence of serial correlation. Many of the technical details are not appropri-

ate here. Diebold and Mariano let 𝛾i denote the ith autocovariance of the dt sequence.
Suppose that the first q values of 𝛾i are different from zero. The variance of d can

be approximated by var(d) = [𝛾0 + 2𝛾1 + · · · + 2𝛾q](H − 1)−1; the standard deviation

is the square root. As such, Harvey, Leybourne, and Newbold (1998) recommended

constructing the Diebold–Mariano (DM) statistic as

DM = d∕
√

(𝛾0 + 2𝛾1 + · · · + 2𝛾q)∕(H − 1) (2.62)
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Compare the sample value of (2.62) to a t-statistic with H − 1 degrees of freedom.

As a practical matter, a simple way to proceed is to regress the di on a constant and

use a t-test (with robust standard errors) to determine whether the constant is statisti-

cally different from zero. Note that the construction of (2.62) can be sensitive to the

choice of q, and if one or more of the 𝛾i < 0, the estimated variance can be negative.

In such circumstances, it is preferable to use robust standard errors—such as those

in Newey and West (1987). All professional software packages allow you to directly

obtain the Newey–West estimator of the variance. Additional details are included in

the Supplementary Manual.
It is also possible to use the method for the j-step-ahead forecasts e1i( j) and e2i( j).

Construct each di = g(e1i(j)) − g(e2i) and themean d. If you constructH forecast errors,

the DM statistic is

DM = d∕
√

(𝛾0 + 2𝛾1 + · · · + 2𝛾q)∕[H + 1 − 2j + H−1j(j − 1)].

An example showing the appropriate use of the Granger–Newbold and

Diebold–Mariano tests is provided in Section 10. Nevertheless, before proceeding,

a strong word of caution is in order. Clark and McCracken (2001) show that the

Granger–Newbold and Diebold–Mariano tests have a t-distribution only when the

underlying forecasting models are not nested. For example, the tests might not work

well when comparing forecasts from an AR(1) model to those obtained from an

ARMA(2, 1) model. Clearly, the AR(1) can be obtained from the ARMA(2, 1)

specification by setting a2 = 𝛽1 = 0. The problem with nested models is that under the

null hypothesis of equal MSPEs (so that the data are generated by the small model),

the two models should predict equally well. However, the large model will always

contain some extra error as it contains unnecessary parameters. Hence, if you want

to test whether the data are actually generated from the different models, you need to

control for the parameter uncertainty.

Clark and West (2007) develop a simple procedure to adjust the forecast errors

from the large model so that a simple variant of the DM statistic can be used with

nested models. To continue with the notation developed above, denote the H forecasts

frommodel 1 as f1i and the forecast errors as e1i. Similarly, theH forecasts and forecast

errors from model 2 are f2i and e2i, respectively. Let model 1 be nested within model 2.

Given that the models are nested, the sole reason for any discrepancy between f1i and
f2i is due to parameter estimation error. If this estimation error is subtracted from e2i,
the adjusted forecast errors can be used as the basis for the modified DM test. Consider

the zi series constructed from the squares of these errors as

zi = (e1i)2 −
[(
e2i

)2 − (f1i − f2i)2
]

i = 1,… ,H.

Allowing for parameter uncertainty, under the null hypothesis of that the two mod-

els predict equally well, zi should be zero. Under the alternative hypothesis, the data are
generated from model 2. Hence, to perform the test, regress the zi series on a constant.
Since the test is one sided, if the t-statistic for the constant exceeds 1.645, reject the

null hypothesis of equal forecast accuracy at the 5% significance level. If you reject the

null hypothesis, conclude that the data are generated frommodel 2. Otherwise, the data
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are more likely to be generated from model 1. If the {zi} series is serially correlated,

you should perform the test with a robust t-statistic, such as that in the study by Newey
and West (1987).

10. A MODEL OF THE INTEREST RATE SPREAD

The term “textbook example” is supposed to connote a very clear-cut illustration.

If you are looking for a textbook example of the Box–Jenkins methodology, go

back to Section 7 or turn to Question 11 at the end of this chapter. In practice, we

rarely find a data series that precisely conforms to a theoretical ACF or PACF. This

section is intended to illustrate some of the ambiguities that can be encountered

when using the Box–Jenkins technique. These ambiguities may lead two equally

skilled econometricians to estimate and forecast the same series using very different

ARMA processes. Many view the necessity of relying on the researcher’s judgment

and experience as a serious weakness of a procedure that is designed to be scientific.

Yet, if you make reasonable choices, you will select models that come very close to

mimicking the actual data-generating process.

It is useful to illustrate the Box–Jenkins modeling procedure by estimating a

quarterly model of the spread between a long-term and a short-term interest rate.

Specifically, the interest rate spread (st) can be formed as the difference between

the interest rate on 5-year U.S. government bonds and the rate on 3-month treasury

bills. The data used in this section are the series labeled R5 and TBILL in the file

QUARTERLY.XLS. Exercise 12 at the end of this chapter will help you to reproduce

the results reported below.

Panel (a) of Figure 2.5 shows the spread over the period from 1960Q1 to 2012Q4.
Although there are a few instances in which the spread is negative, the difference

between long- and short-term rates is generally positive (the sample mean is 1.21).

Notice that the series shows a fair amount of persistence in that the durations when

the spread is above or below the mean can be quite lengthy. Moreover, there do not

appear to be any major structural breaks (such as a permanent jump in the mean or

variance) in that the dynamic nature of the process seems to be constant over time. As

such, it is quite reasonable to suppose that the {st} sequence is covariance stationary.

In contrast, as shown in Panel (b), the first difference of the spread seems to be very

erratic. As you will verify in Exercise 12, the Δst series has little informational content

that can be used to forecast its future values. As such, it seems reasonable to estimate a

model of the {st} sequence without any further transformations. Nevertheless, because

there are several large positive and negative jumps in the value of st, some researchers

might want to transform it so as to diminish its volatility. A reasonable number of such

shocks might indicate a departure from the assumption that the errors are normally dis-

tributed. Although a logarithmic or a square root transformation is impossible because

some realizations of st are negative, one could dampen the series using yt = log(st + 3).
The point is that you should always maintain a healthy skepticism of the accuracy of

your model since the behavior of the data-generating process may not fully conform to

the underlying assumptions of the methodology.
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FIGURE 2.5 Time Path of the Interest Rate Spread

Before reading on, you should examine the autocorrelations and partial autocor-

relation functions of the {st} sequence shown in Figure 2.6. Try to identify the ten-

tative models that you would want to estimate. Recall that the theoretical ACF of a

pure MA(q) process cuts off to zero at lag q, and the theoretical ACF of an AR(1)

model decays geometrically. Examination of Figure 2.6 suggests that neither of these
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FIGURE 2.6 ACF and PACF of the Spread
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specifications perfectly describes the sample data. In selecting your set of plausible

models, also note the following:

1. The ACF and PACF converge to zero quickly enough that we do not have to

worry about a time-varying mean. As suggested above, we do not want to

overdifference the data and try to model the {Δst} sequence.
2. The ACF does not cut to zero so that we can rule out a pure MA(q) process.
3. The ACF is not really suggestive of a pure AR(1) process in that the decay

does not appear to be geometric. The value of 𝜌1 is 0.857, and the values of

𝜌2, 𝜌3, and 𝜌4 are 0.678, 0.550, and 0.411, respectively.

4. The estimated values of the PACF are such that 𝜙11 = 0.858, 𝜙22 = −0.217,
𝜙33 = 0.112, and 𝜙44 = −0.188. Although 𝜙55 is close to zero, 𝜙66 = −0.151
and 𝜙77 = 0.136. Recall that, under the null hypothesis of a pure AR(p)
model, the variance of 𝜙p+i,p+i is approximately equal to 1∕T . Since there
are 212 total observations, the values of 𝜙22, 𝜙44, and 𝜙66 are more than

two standard deviations from zero (i.e., 2∕2120.5 = 0.138). In a pure AR(p)
model, the PACF cuts to zero after lag p. Hence, if the st series follows a pure
AR(p) process, the value of p could be as high as six or seven.

5. There appears to be an oscillating pattern in the PACF in that the first seven

values alternate in sign. Oscillating decay of the PACF is characteristic of a

positive MA coefficient.

Due to the number of small and marginally significant coefficients, the ACF and PACF

of the spread are probably more ambiguous than most of those you will encounter.

Hence, suppose you do not know where to start and estimate the st series using a pure

AR(p) model. To illustrate the point, if you estimate the st series as an AR(7) process,

you should obtain the estimates given in column 2 of Table 2.4. If you examine the

table, you will find that all of the t-statistics on the first six lags exceed 1.96 in absolute
value (indicating that the coefficients are significant the 5% level). Since t-statistic on
the coefficient for yt−7 is 1.93, it is unclear as to whether to include the seventh lag. The
sum or squared residuals (SSR) is 43.86 and the AIC and SBC are 791.10 and 817.68,

respectively. The significance levels of the Q-statistics for lags 4, 8, and 12 indicate no
remaining autocorrelation in the residuals.

Although the AR(7) model has some desirable attributes, one reasonable estima-

tion strategy is to eliminate the seventh lag and estimate an AR(6) model over the same

sample period. [Note that the data set begins in 1960Q1, so that with seven lags the esti-
mation of the AR(7) begins in 1961Q4.] Although the autocorrelations of the residuals
are such that 𝜌8 = 0.20, the significance levels of the Q(4), Q(8), and Q(12) statis-
tics (equal to 0.29, 10.93, and 16.75) are 0.99, 0.21, and 0.16, respectively. As such,

the Q-statistics suggest that you should not try to account to account for the residual

autocorrelations at lag 8. Although a5 appears to be statistically insignificant, it is gen-
erally not a good idea to use t-statistics to eliminate intermediate lags. As such, most

researchers would not eliminate the fifth lag and estimate a model with lags 1 through

4 and lag 6. Recall that the appropriate use of a t-statistic requires that regressor in
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Table 2.4 Estimates of the Interest Rate Spread

AR (7) AR (6) AR (2)
p = 1,2, 7

ARMA
(1,1)

ARMA
(2,1)

p = 2;
ma = (1,7)

a0 1.20 1.20 1.19 1.19 1.19 1.19 1.20
(6.57) (7.55) (6.02) (6.80) (6.16) (5.56) (5.74)

a1 1.11 1.09 1.05 1.04 0.76 0.43 0.36
(15.76) (15.54) (15.25) (14.83) (14.69) (2.78) (3.15)

a2 −0.45 −0.43 −0.22 −0.20 0.31 0.38
(−4.33) (−4.11) (−3.18) (−2.80) (2.19) (3.52)

a3 0.40 0.36
(3.68) (3.39)

a4 −0.30 −0.25
(−2.70) (−2.30)

a5 0.22 0.16
(2.02) (1.53)

a6 −0.30 −0.15
(−2.86) (−2.11)

a7 0.14 −0.03
(1.93) (−0.77)

𝛽1 0.38 0.69 0.77
(5.23) (5.65) (9.62)

𝛽7 −0.14
(−3.27)

SSR 43.86 44.68 48.02 47.87 46.93 45.76 43.72
AIC 791.10 792.92 799.67 801.06 794.96 791.81 784.46
SBC 817.68 816.18 809.63 814.35 804.93 805.10 801.07
Q(4) 0.18 0.29 8.99 8.56 6.63 1.18 0.76
Q(8) 5.69 10.93 21.74 22.39 18.48 12.27 2.60
Q(12) 13.67 16.75 29.37 29.16 24.38 19.14 11.13

Notes:
To ensure comparability, each equation was estimated over the 1961Q4 − 2012Q4 period.
Values in parentheses are the t-statistics for the null hypothesis that the estimated coefficient is equal
to zero. SSR is the sum of squared residuals. Q(n) are the Ljung–Box Q-statistics of the residual
autocorrelations.
For ARMA models, many software packages do not actually report the intercept term a0. Instead, they
report the estimated mean of process, 𝜇y along with the t-statistic for the null hypothesis that 𝜇y = 0. The

historical reason for this convention is that it was easier to first demean the data and then estimate the
ARMA coefficients than to estimate all values in one step. If your software package reports a constant
term approximately equal to 0.216, it is reporting the estimated intercept.

question be uncorrelated with the other regressors. Given the autoregressive nature of

the series, yt−5 is certainly correlated with yt−4 and yt−6. The overall result is that the
diagnostic checks of the AR(6) model suggest that it is adequate. In comparing the

AR(6) and AR(7) models, the AIC selects the AR(7) model, whereas the SBC selects

the more parsimonious AR(6) model.

Suppose that you try a very parsimonious model and estimate an AR(2). As you

can see from the fourth column of the table, the AIC selects the AR(7) model, but SBC
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selects the AR(2) model. However, the residual autocorrelations from the AR(2) are

problematic in that

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8

0.03 −0.13 0.16 0.01 0.08 −0.10 −0.14 0.16

The Q-statistics from the AR(2) model indicate significant autocorrelation in the

residuals at the shorter lags. As such, it should be eliminated from further consideration.

If you examined the AR(7) carefully, you might have noticed that a3 almost offsets

a4 and that a5 almost offsets a6 (since a3 + a4 ≈ 0 and a5 + a6 ≈ 0). If you reestimate

the model without st−3, st−4, st−5, and st−6, you should obtain the results given in col-

umn 5 of Table 2.4. Since the coefficient for st−7 is now statistically insignificant, it

might seem preferable to use the AR(2) instead. Yet, the AR(2) has been shown to be

inadequate relative to the AR(7) and the AR(6) models.

Even though the AR(6) and AR(7) models perform relatively well, they are not

necessarily the best forecasting models. There are several possible alternatives since

the patterns of the ACF and PACF are not immediately clear. Results for a number of

models with MA terms are shown in columns 6, 7, and 8 of Table 2.4:

1. From the decaying ACF, someone might try to estimate the ARMA(1, 1)

model reported in column 6 of the table. The estimated value of a1 (0.76)
is statistically different from zero and is almost five standard deviations

from unity. The estimated value of 𝛽1 (0.38) is statistically different from
zero and implies that the process is invertible. Notice that the SBC from the

ARMA(1, 1) is smaller than that of the AR(7) and the AR(6). Nevertheless,

the ARMA(1, 1) specification is inadequate because of remaining serial

correlation in the residuals. The Ljung–Box Q-statistic for four lags of the
residuals (equal to 6.63) has a significance level of 15.7%. As such, we

cannot reject the null that Q(4) = 0 any conventional significance level.

However, the Q(8) and Q(12) statistics indicate that the residuals from this

model exhibit substantial serial autocorrelation. As such, we must eliminate

the ARMA(1, 1) model from consideration.

2. Since the ACF decays and the PACF seems to oscillate beginning with lag

2 (𝜙22 = −0.217), it seems plausible to estimate an ARMA(2, 1) model.

As shown in column 6 of the table, the model is an improvement over the

ARMA(1, 1) specification. The estimated coefficients (a1 = 0.43 and a2 =
0.31) are each significantly different from zero at conventional levels and

imply characteristic roots in the unit circle. The AIC selects the ARMA(2, 1)

model over that AR(6) and the SBC selects the ARMA(2, 1) over the AR(6)

and the AR(7). The values for Q(4), Q(8), and Q(12) indicate that the auto-
correlations of the residuals are not statistically significant at the 5% level.

Consider the ACF of the residuals:

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8

0.01 0.01 −0.07 −0.02 −0.03 −0.08 −0.15 0.15
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3. In order to account for the serial correlation at lag 7, it might seem plausible

to add an MA term to the model at lag 7. As given in the last column of the

table, all of the estimated coefficients are of high quality. In particular, the

coefficient for 𝛽7 has a t-statistic of −3.27. The estimated values of a1 and a2
are similar to those of the ARMA(2, 1) model. Again, the Q-statistics indicate
that the autocorrelations of the residuals are not significant at conventional

level. Both the AIC and SBC select the ARMA[2,(1,7)] specification over

any of the other models. You can easily verify that the MA coefficient at lag 7

provides a better fit than an AR coefficient at lag 7 and that an ARMA[2,(1,8)]

model is inadequate.

Although the ARMA[2,(1,7)] model appears to be quite reasonable, other

researchers might have selected a decidedly different model. Consider some of the

alternatives listed below.

1. Parsimony versus Overfitting: In Section 7, we examined the issue of fit-

ting an MA coefficient at lag 16 to a true AR(2) process. If you reexamine the

example, you can understand why some researchers shy away from estimat-

ing a model with long lags lengths that are disjoint from those of other peri-

ods. In the example of the spread, the problem with the ARMA(2, 1) model

is that there was a small amount of residual autocorrelation around lag 7 or

8. The addition of the MA coefficient at lag 7 yielded a model with a better

fit and remedied the serial correlation problem. However, is it really plausi-

ble that 𝜀t−7 has a direct effect on the current value of the interest rate spread
while lags 3, 4, 5, and 6 have no direct effects? In other words, do the markets

for securities work in such a way that what happens 7 quarters in the past has a

larger effect on today’s interest rates than events occurring in the more recent

past? Moreover, as you can verify by estimating the ARMA[2,(1,7)] model,

the t-statistic for 𝛽7 over the 1982Q1–2012Q4 period is equal to 0.60 and is
not statistically significant. Notice that Panel (b) of Figure 2.5 suggests that

the volatility of the spread in the late 1970s and early 1980s is not typical of

the entire sample. It could be the case that the realizations from this period are

anomalies that have large effects on the coefficient estimates and their stan-

dard errors. Thus, even though the AIC and SBC select the ARMA[2,(1,7)]

model over the ARMA(2, 1) model, some researchers would prefer the latter.

More generally, overfitting refers to a situation in which an equation
is fit to some of the idiosyncrasies of present in a particular sample that are

not actually representative of the data-generating process. In applied work,

no data set will perfectly correspond to every assumption required for the

Box–Jenkins methodology. Since it is not always clear which characteristics

of the sample are actually present in the data-generating process, the attempt

to expand a model so as to capture every feature of the data may lead to

overfitting.

2. Volatility: Given the volatility of the {st} series during the late 1970s and
early 1980s, transforming the spread using some sort of a square root or log-

arithmic transformation might be appropriate. Moreover, the st series has a
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number of sharp jumps, indicating that the assumption of normality might be

violated. For a constant c such that st + c is always positive, transformations

such as ln(st + c) or (st + c)0.5 yield series with less volatility than the st series
itself. Alternatively, it is possible to model the difference between the log of

the 5-year rate and the log of the 3-month rate.

A general class of transformations was proposed by Box and Cox (1964).

Suppose that all values of {yt} are positive so that it is possible to construct
the transformed {y∗t } sequence as

y∗t = (y𝜆t − 1)∕𝜆 𝜆 ≠ 0

= ln(yt) 𝜆 = 0

The common practice is to transform the data using a preselected value

of 𝜆. The selection of a value for 𝜆 that is close to zero acts to “smooth” the

sequence. An ARMA model can be fitted to the transformed data. Although

some software programs have the capacity to simultaneously estimate 𝜆

along with the other parameters of the ARMAmodel, this approach has fallen

out of fashion. Instead, it is possible to actually model the variance using the

methods discussed in Chapter 3.

3. Trends: Suppose that the span of the data had been somewhat different in

that the first observation was for 1973Q1 and the last was for 2004Q4. If you
examine Panel (a) of Figure 2.4, you can see that someone might be confused

and believe that the data contained an upward trend. Their misinterpretation

of the data might be reinforced by the fact that the ACF converges to zero

rather slowly. As such, they might have estimated a model of the Δst series.
Others might have detrended the data using a deterministic time trend.

Out-of-Sample Forecasts

We can assess the forecasting performance of the AR(7) and ARMA[2,(1,7)] models by

examining their bias and mean square prediction errors. Given that the data set contains

a total of 205 (i.e., 205 = 212 − 7) usable observations, it is possible to use a holdback

period of 50 observations. This way, there are at least 155 observations in each of the

estimated models and an adequate number of out-of-sample forecasts. First, the two

models were estimated using all available observations through 2000Q2 and the two

one-step-ahead forecasts were obtained. The actual value of s2000∶3 = 0.40; the AR(7)

predicted a value of 0.697, and the ARMA[2,(1,7)] model predicted a value of 0.591.

Thus, the forecast of the ARMA[2,(1,7)] is superior to that of the ARMA(7) for this

first period. An additional 49 forecasts were obtained for periods 2000Q4 to 2012Q4.
Let e1t denote the forecast errors from the AR(7) model and e2t denote the forecast

errors from the ARMA[2,(1,7)] model. The mean of e1t is 1.239, the mean of e2t is
1.244, and the estimated variances are var(e1) = 0.797 and var(e2) = 0.780. As such,

the bias of AR(7) is slightly smaller while the ARMA[2,(1,7)] has the smallest MSPE.

To ascertain whether these differences are statistically significant, we first check

the bias. Let the {f1t} series contain the 50 forecasts of the AR(7) model and let {f2t}

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c02.tex V3 - 09/02/2014 1:48pm Page 95

A MODEL OF THE INTEREST RATE SPREAD 95

contain the 50 forecasts from the ARMA[2,(1,7)] model. Beginning with t = 2000Q3,
we can estimate the two regression equations:

st = 0.0594 + 0.968f1t and st = 0.004 + 1.004f2t

For the AR(7) model, the F-statistic for the restriction that the intercept equals

zero and the slope equals unity is 0.110 with significance level of 0.896. Clearly, the

restriction of unbiased forecasts does not appear to be binding. For the ARMA[2,(1,7)]

model, the F-statistic is 0.014 with a significance level of 0.986. Hence, there is strong
evidence that both models have unbiased forecasts.

Next, consider the Granger–Newbold test for equal mean square prediction errors.

Form the xi and zi series as xi = e1i + e2i and zi = e1i − e2i, respectively. The correlation
coefficient between xi and zi is rxz = 0.234. Given that there are 50 observations in the

holdback period, form the Granger–Newbold statistic

rxz∕
√

(1 − r2xz)∕(H − 1) = 0.234∕
√
(1 − (0.234)2)∕49 = 1.69

With 49 degrees of freedom, a value of t = 1.69 is not statistically significant. We

can conclude that the forecasting performance of the AR(7) is not statistically different

from that of the ARMA[2,(1,7)].

Since the e1i and e2i series contain only a low amount of serial correlation, we

obtain virtually the same answer using the DM statistic. Oftentimes, forecasters are

concerned about theMSPE. However, there are many other possibilities. In Exercise 12

at the end of this chapter, you will be asked to use the mean absolute error. Now, to

illustrate the use of the DM test, suppose that the cost of a forecast error rises extremely

quickly in the size of the error. In such circumstances, the loss function might be best

represented by the forecast error raised to the fourth power. Hence,

di = (e1i)4 − (e2i)4 (2.63)

The mean value of the {di} sequence from (2.63) (i.e., d) is 0.01732, and the esti-
mated variance is 0.002466. Since H = 50, we can form the DM statistic

DM = 0.01732∕(0.002466∕49)1∕2 = 2.441

The null hypothesis is that the models have equal forecasting accuracy, and the

alternative hypothesis is that the forecast errors from the AR[2,(1,7)] are smaller than

those of the AR(7). With 49 degrees of freedom, the t-value of 2.441 is significant

at the 1.829% level. Hence, there is evidence in favor of the AR[2,(1,7)] model. If

there is serial correlation in the {dt} series, we need to use the specification in (2.63).

Toward this end, we would want to select the statistically significant values of 𝛾q. The

autocorrelations of dt are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

−0.10 −0.15 0.26 0.01 0.36 0.00 −0.09 0.13 0.06 0.05 −0.08 0.07

Q(4) = 5.53;Q(8) = 14.76; andQ(12) = 15.93
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Although 𝜌5 is large, many applied econometricians would dismiss it as spurious.

It does not seem plausible that correlations for 𝜌1 and 𝜌2 are actually very close to zero

while the correlation between dt and dt−5 is very large. Moreover, the Ljung–BoxQ(4),
Q(8), and Q(12) statistics do not indicate that the autocorrelations are significant. The

significance levels are 0.237, 0.064, and 0.195, respectively. Nevertheless, if you do

estimate the long-run variance using (2.63) with five lags, you should find that DM =
1.848 (so that the MSPEs are not statistically different from each other). The example

underscores the point made earlier that there is no clear answer as to the best way

to measure the long-run variance of d in the presence of serial correlation. The more

general result is that the two models are not substantially different from each other.

Both should provide reasonable forecasts.

11. SEASONALITY

Many economic processes exhibit some form of seasonality. The agricultural, construc-

tion, and travel sectors have obvious seasonal patterns resulting from their dependence

on the weather. Similarly, the Thanksgiving-to-Christmas holiday season has a pro-

nounced influence on the retail trade. In fact, the seasonal variation of a series may

account for the preponderance of its total variance. Forecasts that ignore important

seasonal patterns will have a high variance.

Too many people fall into the trap of ignoring seasonality if they are working

with deseasonalized or seasonally adjusted data. Suppose you collect a data set that

the U.S. Census Bureau has “seasonally adjusted” using its X−11, X–12, or X−13
methods.5 In principle, the seasonally adjusted data should have the seasonal pattern

removed. However, caution is necessary. Although a standardized procedure may be

necessary for a government agency reporting hundreds of series, the procedure might

not be best for an individual wanting to model a single series. Even if you use season-

ally adjusted data, a seasonal pattern might remain. This is particularly true if you

do not use the entire span of data; the portion of the data used in your study can

display more (or less) seasonality than the overall span. There is another important

reason to be concerned about seasonality when using deseasonalized data. Implicit

in any method of seasonal adjustment is a two-step procedure. First, the seasonality

is removed, and second, the autoregressive and moving average coefficients are esti-

mated using Box–Jenkins techniques. As surveyed in Bell and Hillmer (1984), often

the seasonal and the ARMA coefficients are best identified and estimated jointly. In

such circumstances, it is wise to avoid using seasonally adjusted data.

Models of Seasonal Data

The Box–Jenkins technique for modeling seasonal data is only a bit different from

that of nonseasonal data. The twist introduced by seasonal data of period s is that the
seasonal coefficients of the ACF and PACF appear at lags s, 2s, 3s, … , rather than at

lags 1, 2, 3, . . . . For example, two purely seasonal models for quarterly data might be

yt = a4yt−4 + 𝜀t, |a4| < 1 (2.64)
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and

yt = 𝜀t + 𝛽4𝜀t−4 (2.65)

You can easily convince yourself that the theoretical correlogram for (2.64) is such

that 𝜌i = (a4)i∕4 if i∕4 is an integer and 𝜌i = 0, otherwise; thus, the ACF exhibits decay

at lags 4, 8, 12, . . . . For model (2.65), the ACF exhibits a single spike at lag 4, and all

other correlations are zero.

In practice, identification will be complicated by the fact that the seasonal pattern

will interact with the nonseasonal pattern in the data. The ACF and PACF for a com-

bined seasonal/nonseasonal process will reflect both elements. Note that, with quarterly

data, a seasonal MA term can have the form

yt = a1yt−1 + 𝜀t + 𝛽1𝜀t−1 + 𝛽4𝜀t−4 (2.66)

Alternatively, an autoregressive coefficient at lag 4might have been used to capture

the seasonality

yt = a1yt−1 + a4yt−4 + 𝜀t + 𝛽1𝜀t−1

Both of these methods treat the seasonal coefficients additively; an AR or an MA

coefficient is added at the seasonal period. Multiplicative seasonality allows for the

interaction of the ARMA and the seasonal effects. Consider the multiplicative specifi-

cations

(1 − a1L)yt = (1 + 𝛽1L)(1 + 𝛽4L
4)𝜀t (2.67)

(1 − a1L)(1 − a4L
4)yt = (1 + 𝛽1L)𝜀t (2.68)

Equation (2.67) differs from (2.66) in that it allows the moving average term at

lag 1 to interact with the seasonal moving average effect at lag 4. In the sameway, (2.68)

allows the autoregressive term at lag 1 to interact with the seasonal autoregressive effect

at lag 4. Many researchers prefer the multiplicative form since a rich interaction pattern

can be captured with a small number of coefficients. Rewrite (2.67) as

yt = a1yt−1 + 𝜀t + 𝛽1𝜀t−1 + 𝛽4𝜀t−4 + 𝛽1𝛽4𝜀t−5

Estimating only three coefficients (i.e., a1, 𝛽1, and 𝛽4) allows us to capture the

effects of an autoregressive term and the effects of moving average terms at lags 1, 4,

and 5. Of course, you do not really get something for nothing. The estimates of the three

moving average coefficients are interrelated. A researcher estimating the unconstrained

model yt = a1yt−1 + 𝜀t + 𝛽1𝜀t−1 + 𝛽4𝜀t−4 + 𝛽5𝜀t−5 would necessarily obtain a smaller

residual sum of squares. However, (2.67) is clearly the more parsimonious model. If

the unconstrained value of 𝛽5 approximates the product 𝛽1𝛽4, the multiplicative model

will be preferable. For this reason, most software packages have routines capable of

estimating multiplicative models. Otherwise, there are no theoretical grounds leading

us to prefer one form of seasonality over another. As illustrated in the last section,

experimentation and diagnostic checks are probably the best way to obtain the most

appropriate model.
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Seasonal Differencing

The Christmas shopping season is accompanied by an unusually large number of

transactions, and the Federal Reserve expands the money supply to accommodate the

increased demand for money. As shown by the dashed line in Figure 2.7, the U.S.

money supply, as measured by M1, has a decidedly upward trend. The series, called

M1NSA, is contained in the file QUARTERLY.XLS. You can use the data to follow

along with the discussion below. The logarithmic change, shown by the solid line,

appears to be stationary. Nevertheless, there is a clear seasonal pattern in that the value

of the fourth quarter for any year is substantially higher than that for the adjacent

quarters.

This combination of strong seasonality and nonstationarity is often found in eco-

nomic data. The ACF for a process with strong seasonality is similar to that for a

nonseasonal process; the main difference is that the spikes at lags s, 2s, 3s, … , do not

exhibit rapid decay. We know that it is necessary to difference (or take the logarithmic

change of) a nonstationary process. Similarly, if the autocorrelations at the seasonal

lags do not decay, it is necessary to take the seasonal difference so that the other auto-

correlations are not dwarfed by the seasonal effects. The ACF and PACF for the growth

rate of M1 are shown in Panel (a) of Figure 2.8. For now, just focus on the autocorrela-

tions at the seasonal lags. All seasonal autocorrelations are large and show no tendency

to decay. In particular, 𝜌4 = 0.58, 𝜌8 = 0.50, 𝜌12 = 0.38, 𝜌16 = 0.34, 𝜌20 = 0.34, and

𝜌24 = 0.37. As should be clear from the figure, these autocorrelations are larger than

any of those at nonseasonal frequencies.

The first step in the Box–Jenkins method is to transform the data so as to make

it stationary. As such, a logarithmic transformation is helpful because it can straighten
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Panel b: Seasonally Differenced M1 Growth
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FIGURE 2.8 ACF and PACF

the nonlinear trend in M1. Let yt denote the log of M1. As mentioned above, the first

difference of the {yt} sequence, illustrated by the solid line in Figure 2.7, appears to

be stationary. However, to remove the strong seasonal persistence in the data, we need

to take the seasonal difference. For quarterly data, the seasonal difference is yt − yt−4.
Since the order of differencing is irrelevant, we can form the transformed sequence

mt = (1 − L)(1 − L4)yt
Thus, we use the seasonal difference of the first difference. The ACF and PACF for

the {mt} sequence are shown in Panel (b) of Figure 2.8; the properties of this series are
muchmore amenable to the Box–Jenkinsmethodology. The autocorrelation and partial

autocorrelations for the first few lags are strongly suggestive of an AR(1) process (𝜌1 =
𝜙11 = 0.41, 𝜌2 = 0.16, and 𝜙22 = −0.01). Recall that the ACF for an AR(1) process

will decay and the PACFwill cut to zero after lag 1. Given that 𝜌4 = −0.42, 𝜌5 = −0.14,
𝜙44 = −0.44, and 𝜙55 = 0.28, there is evidence of remaining seasonality in the {mt}
sequence. The seasonal term is most likely to be in the form of an MA coefficient since

the autocorrelation cuts to zero, whereas the PACF does not. Nevertheless, it is best

to estimate several similar models and then select the best. Estimates of the following

three models are reported in Table 2.5:

mt = a0 + a1mt−1 + 𝜀t + 𝛽4𝜀t−4 Model 1: AR(1) with Seasonal MA

mt = a0 + (1 + a1L)(1 + a4L
4)mt−1 + 𝜀t Model 2: Multiplicative Autoregressive

mt = a0 + (1 + 𝛽1L)(1 + 𝛽4L
4)𝜀t Model 3: Multiplicative Moving Average

The point estimates of the coefficients all imply stationarity and invertibility.More-

over, except for the intercepts, all are at least six standard deviations from zero. How-

ever, the diagnostic statistics all suggest that model 1 is preferred. Model 1 has the best
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Table 2.5 Three Models of Money Growth

Model 1 Model 2 Model 3

a1 0.541 0.496

(8.59) (7.66)

a4 −0.476

(−7.28)
𝛽1 0.453

(6.84)

𝛽4 −0.759 −0.751

(−15.11) (−14.87)
SSR 0.0177 0.0214 0.0193

AIC; −735.9; −701.3; −720.1;
SBC −726.2 −691.7 −710.4

Q(4) 1.39 (0.845) 3.97 (0.410) 22.19 (0.000)

Q(8) 6.34 (0.609) 24.21 (0.002) 30.41 (0.000)

Q(12) 14.34 (0.279) 32.75 (0.001) 42.55 (0.000)

To ensure comparability, the three models are estimated over the
1962Q3 − 2008Q2 period. The estimated intercepts are not reported since
all were insignificantly different from zero. The figures in parentheses fol-
lowing the Q-statistics are significance levels.

fit in that it has the lowest SSR, AIC, and SBC. Moreover, the Q-statistics for lags 4,
8, and 12 indicate that the residual autocorrelations are insignificant. In contrast, the

residual correlations for model 2 are significant at the long lags [i.e., Q(8) and Q(12)
are significant at the 0.022 and 0.002 levels]. This is because the multiplicative sea-

sonal autoregressive (SAR) term does not adequately capture the seasonal pattern. An

SAR term implies autoregressive decay from period s into period s + 1. In Panel (b)

of Figure 2.8, the value of 𝜌4 is −0.42 but 𝜌5 is quite small. As such, a multiplicative

seasonal moving-average (SMA) term might be more appropriate. Model 3 properly

captures the seasonal pattern, but the MA(1) term does not capture the autoregres-

sive decay present at the short lags. Other diagnostic methods, including splitting the

sample, suggest that model 1 is appropriate.

The out-of-sample forecasts are shown in Figure 2.9. To create the one- through

twelve-step-ahead forecasts, model 1 was estimated over the full sample period

1961Q3–2012Q4. The estimated model is

mt = 0.545mt−1 + 𝜀t − 0.765 𝜀t−4 (2.69)

Given that m2012∶4 = −0.00176 and the residual for 2012:1 was 0.00272 (i.e.,

�̂�2012∶1 = 0.00272, the forecast of m2013∶1 is −0.00304. Now, use this forecast and the

value of �̂�2012∶2 to forecast m2013∶2. You can continue in this fashion so as to obtain the
out-of-sample forecasts for the {mt} sequence. Although you do not have the residuals
for periods beyond 2012:4, you can simply use their forecasted values of zero. The

trick to forecasting future values of M1 from the {mt} sequence is to sum the changes

and the seasonal changes so as to obtain the logarithm of the forecasted values of

M1. Since mt = (1 − L)(1 − L4) ln(M1t), it follows that the value of ln(M1t) can be
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FIGURE 2.9 Forecasts of M1

obtained from mt + ln(M1t−1) + ln(M1t−4) − ln(M1t−5). The first 12 of the forecasted

values are plotted in Figure 2.9.

The procedures illustrated in this example with highly seasonal data are typical

of many other series. With highly seasonal data, it is necessary to supplement the

Box–Jenkins method:

1. In the identification stage, it is usually necessary to seasonally difference the

data and to check the ACF of the resultant series. Often, the seasonally differ-

enced data will not be stationary. In such instances, the data may also need to

be first differenced.

2. Use the ACF and PACF to identify potential models. Try to estimate models

with low-order nonseasonal ARMA coefficients. Consider both additive and

multiplicative seasonality. Allow the appropriate form of seasonality to be

determined by the various diagnostic statistics.

A compact notation has been developed that allows for the efficient representation

of intricate models. As mentioned in the previous sections, the dth difference of a series
is denoted by Δd. Hence,

Δ2yt = Δ(yt − yt−1)
= yt − 2yt−1 + yt−2

A seasonal difference is denoted by Δs where s is the period of the data. The Dth
such seasonal difference isΔD

s . For example, if we want the second seasonal difference

of a monthly series, we can form

Δ2
12
yt = Δ12(yt − yt−12)
= Δ12yt − Δ12yt−12
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= yt − yt−12 − (yt−12 − yt−24)
= yt − 2yt−12 + yt−24

Combining the two types of differencing yields ΔdΔD
s . Multiplicative models are

written in the form ARIMA(p, d, q)(P,D,Q)s
where: p and q = the nonseasonal ARMA coefficients

d = number of nonseasonal differences

P = number of multiplicative autoregressive coefficients

D = number of seasonal differences

Q = number of multiplicative moving-average coefficients

s = seasonal period.

Using this notation, we can say that the fitted equation formt = ΔΔ1
4
ln(M1t) is an

ARIMA(1, 1, 0)(0, 1, 1)s model. In applied work, the ARIMA(1, 1, 0)(0, 1, 1)s and the

ARIMA(0, 1, 1)(0, 1, 1)s models occurs routinely; the latter is called the airline model
ever since Box and Jenkins (1976) used this model to analyze airline travel data.

12. PARAMETER INSTABILITY AND
STRUCTURAL CHANGE

One key assumption of the Box–Jenkins methodology is that the structure of the

data-generating process does not change. As such, the values of the ai and 𝛽i should

be constant from one period to the next. However, in some circumstances, there may

be reasons to suspect a structural break in the data-generating process. For example,

in a model of GDP growth, it seems natural to inquire whether the oil price shocks

of 1973, the events surrounding the tragedy of September 2011, and/or the financial

crisis of 2008 had any significant impacts on the coefficients. Of course, parameter

instability need not result from a single discrete event. The recent evidence concerning

climate change suggests that weather sensitive series such as crop yields, rainfall, and

the number of ski days at Snowmass are most likely to be affected in a sustained, but

gradual, way.

Testing for Structural Change

If you have reason to suspect a structural break at a particular date, it is straightforward

to use a Chow test. The essence of the Chow test is to fit the same ARMA model the

prebreak data and to the postbreak data. If the two models are not sufficiently different,

it can be concluded that there has not been any structural change in the data-generating

process.

In general, suppose you estimated an ARMA(p, q) model using a sample size of

T observations. Denote the sum of the squared residuals as SSR. Also, suppose that

you have reason to suspect a structural break immediately following date tm. You can

perform a Chow test by dividing the T observations into two subsamples with tm obser-

vations in the first and tn = T − tm observations in the second. Use each subsample to
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estimate the two models:

yt = a0(1) + a1(1)yt−1 + · · · + ap(1)yt−p + 𝜀t + 𝛽1(1)𝜀t−1 + · · · + 𝛽q(1)𝜀t−q
using t1,… , tm

yt = a0(2) + a1(2)yt−1 + · · · + ap(2)yt−p + 𝜀t + 𝛽1(2)𝜀t−1 + · · · + 𝛽q(2)𝜀t−q
using tm+1,… ,tT

Let the sum of the squared residuals from each model be SSR1 and SSR2,

respectively. To test the restriction that all coefficients are equal [i.e., a0(1) = a0(2)
and a1(1) = a1(2) and · · · ap(1) = ap(2) and 𝛽1(1) = 𝛽1(2) and · · · 𝛽q(1) = 𝛽q(2)], use
an F-test and form:6

F =
(SSR − SSR1 − SSR2)∕n
(SSR1 + SSR2)∕(T − 2n)

(2.70)

where n = number of parameters estimated (n = p + q + 1 if an intercept is included

and p + q otherwise) and the number of degrees of freedom are (n,T − 2n).
Intuitively, if the restriction is not binding (i.e., if the coefficients are equal), the

sum SSR1 + SSR2 should equal the sum of the squared residuals from the entire sample

estimation. Hence, F should equal zero. The larger the calculated value of F, the more

restrictive is the assumption that the coefficients are equal.

Of course, the method requires that there be a reasonable number of observations

in each subsample. If either tm or tn is very small, the estimated coefficients will have

little precision. An alternative type of Chow test is to a use dummy variable to detect a

break in one of more of the coefficients. For example, if a break is suspected right after

period tm, you can create a dummy variable, Dt, such that Dt = 0 for all t ≤ tm and

Dt = 1 for t > tm. To test for a break in the intercept of an AR(1) model, for example,

check for the significance of Dt in the regression yt = a0 + 𝛼0Dt + a1yt−1 + 𝜀t. To

allow for a break in both coefficients, also create the variable Dtyt−1 and estimate the

regression equation yt = a0 + 𝛼0Dt + a1yt−1 + 𝛼1Dtyt−1 + 𝜀t. You can test for a break

by examining the individual t-statistics of 𝛼0 and 𝛼1 and the F-statistic for the null

hypothesis 𝛼0 = 𝛼1 = 0.

Return to the example of the interest rate spread examined in Section 10. Suppose

that there is reason to believe a break occurred at the end of 1981Q4. Consider the
estimates for the two subperiods:

st = 0.923 + 0.367st−1 + 0.285st−2 + 𝜀t + 0.815𝜀t−1 − 0.153𝜀t−7

(1960Q3–1981Q4)

and

st = 1.799 + 0.800st−1 + 0.053st−2 + 𝜀t + 0.354𝜀t−1 + 0.097𝜀t−7

(1982Q1–2008Q1)

Although the coefficients of the models appear to be dissimilar, we can formally

test for the equality of coefficients using (2.70). Respectively, the sum of squared

residuals for the two equations are SSR1 = 27.564 and SSR2 = 21.414. Estimating

the model over the full sample period yields SSR = 49.692. Since there are 191
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usable observations in the sample and n = 5 (the intercept plus the four estimated

coefficients), (2.70) becomes

F = [(49.692 − 27.564 − 21.414)∕5]∕[(27.564 + 21.414)∕(191 − 10)] = 0.527.

With 5 degrees of freedom in the numerator and 181 in the denominator, we can-

not reject the null of no structural change in the coefficients (i.e., we can accept the

hypothesis that there is no structural change in the coefficients).

Alternatively, to test for a break in the intercept only, we can create the dummy

variable Dt equal to zero prior to 1982Q1 and equal to unity beginning in 1982Q1.
Now, consider the equation for the spread estimated over the entire 1960Q1–2008Q1
period

st = 1.277 + 0.312Dt + 0.336st−1 + 0.435st−2 + 𝜀t + 0.837𝜀t−1 − 0.134𝜀t−7
(3.55) (0.82) (3.23) (4.43) (13.14) (−3.33)

Since Dt jumps from 0 to 1 in 1982Q1, the estimate for the intercept is 1.227

prior to 1982Q1 and 1.589 (= 1.277 + 0.312) beginning in 1982Q1. However, since
the t-statistic for the null hypothesis Dt = 0 cannot be rejected, there is no evidence of

a significant intercept break.

Endogenous Breaks

The Chow test asks whether there is a break beginning at some particular known break

date tm. A break occurring at a date not prespecified by the researcher is called an

endogenous break to denote that the fact that it was not the result of a fixed break date

such as September 2011. To determine whether there is a break anywhere in the sam-

ple, you could perform a Chow test for every potential break date tm. It should not be

surprising that the break date that results in the largest value of the F-statistic provides a
consistent estimate of the actual break date, if any. In order to ensure an adequate num-

ber of observations in each of the two subsamples, it is necessary to have a “trimming”

such that the break could not occur before the first t0 observations or after the last T − t0
observations. In applied research, it is common to use a trimming value of 10% so that

there are at least 10% of the observations in each of the two subsamples. In the interest

rate spread example, there are 191 usable observations in the 1960Q1–2008Q1 period
(since the first two are lost when estimating the coefficient for st−2). If you used a 10%
trimming, you could check for a break everywhere in the interval 1965Q1–2003Q2
(each about 19 observations from the beginning and end of the usable data). Unfortu-

nately, searching for the most likely break date means that the F-statistic for the null
hypothesis of no break is inflated. After all, you have just searched for the date that leads

to the maximum, or supremum, value of the sample F-statistic. As such, the distribu-
tion for the F-statistic is not standard and cannot be obtained from a traditional F-table.
As detailed in Chapter 7, a number of papers, including Andrews and Ploberger (1994)

and Hansen (1997), show how to obtain the appropriate critical values. Fortunately, a

number of software packages can readily perform such tests.
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Parameter Instability

Notice that the Chow test and its variants require the researcher to specify a particular

break date and to assume that the break fully manifests itself at that date. The inter-

cept, for example, is a0(1) up to tm and is precisely a0(2) beginning at tm+1. However,
the assumption that a break occurs exactly at a single point in time may not always be

appropriate. As mentioned above, there is no particular date at which we can say that

significant climate change has occurred. Similarly, it is not clear how we can provide a

specific break date to denote the advent “financial deregulation” in the asset markets or

to assign a specific date to the development of the microcomputer. These are processes

that have been evolving over time. Even if we could date the precise start of financial

deregulation or the computer revolution, the full effects of these changes would not

occur instantly. As such, it should not be surprising that a number of procedures have

been developed that check for parameter stability without the need to identify a partic-

ular break date. Probably, the simplest method is to estimate the model recursively. For

example, if you have 150 observations, you can estimate the model using only the first

few, say 10, observations. Plot the individual coefficients and then reestimate the model

using the first 11 observations. You can keep repeating this process until you use all 150

observations. In general, the plots of the coefficients will not be flat since the prelimi-

nary values are estimated using a very small number of observations. However, after a

“burn-in” period, the time plots of the individual coefficients can provide evidence of

coefficient stability. If the magnitude of a coefficient suddenly begins to change, you

should suspect a structural change at that point. A sustained change in a coefficient

might indicate a model misspecification. One particularly helpful modification of this

procedure is to plot each coefficient along with its estimated ±2 standard deviation

band. The bands represent confidence intervals for the estimated coefficients. In this

way, it can be seen if the coefficients are always statistically significant and whether

the coefficients in the early periods appear to be statistically different from those of the

latter periods.

At each step along the way, it is also possible to create the one-step-ahead fore-

cast error. Let et(1) be the one-step-ahead forecast error made using all observations

through t. In other words, et(1) is the difference between yt+1 and your conditional

forecast of yt+1 (i.e., Etyt+1). If you start with the first 10 observations, the value of

e10(1) will be y11 − E10y11 and the value of e149(1) will be y150 − E149y150. [Note: If
you understand the notation, it should be clear that you cannot create the value e150(1)
since you do not have the value of y151.] If your model fits the data well, the forecasts

should be unbiased so that the sum of these forecast errors should not be “too far” from

zero. In fact, Brown, Durbin, and Evans (1975) calculate whether the cumulated sum of

the forecast errors is statistically different from zero. To be a bit more formal, define:

CUSUMN =
N∑
i=n

ei(1)∕𝜎e N = n,… , T − 1

where n denotes the date of the first forecast error you constructed, T denotes the date

of the last observation in the data set, and 𝜎e is the estimated standard deviation of
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the forecast errors. With 150 total observations (T = 150), if you start the procedure

using the first 10 observations (n = 10), 140 forecast errors (T − n) can be created.

Note that 𝜎e is created using all T − n forecast errors. If n = 10, to create CUSUM10,

use the first 10 observations to create the one-step-ahead forecast error and construct

e10(1)∕𝜎e. Now let N = 11 and create CUSUM11 as [e10(1) + e11(1)]∕𝜎e. Similarly,

CUSUMT−1 = [e10(1) + · · · + eT−1(1)]∕𝜎e. If you use the 5% significance level, the

plot value of each value of CUSUMN should be within a band of approximately

± 0.948 [(T − n)0.5 + 2(N − n)(T − n)−0.5].

An Example of a Break

In order to illustrate a breaking series, the first panel of Figure 2.10 shows 150 observa-

tions of the simulated series yt = 1 + 0.5yt−1 + 𝜀t for t < 101 and yt = 2.5 + 0.65yt−1 +
𝜀t for t ≥ 101. The series is contained in the file Y_BREAK.XLS. Of course, in applied

work, the break may not be so readily apparent. If you ignore the break and estimate

the entire series as an AR(1) process, you should obtain

yt = 0.4442 + 0.8822yt−1
(2.635) (22.764)

As indicated by the remaining two panels of the figure, the estimated AR(1) model

is seriously misspecified. Panel 2 shows the estimates of the AR(1) coefficient (along

with their ±2 standard deviation bands) resulting from a recursive estimation. The ini-

tial confidence intervals are quite wide since the first few estimations use a very small

number of observations. The estimates all seem reasonable until about t = 100. At this

point, the estimates of the AR(1) coefficient rise (the reverse of what happens in the

data-generating process). Note that the confidence bands do not even overlap those

from the middle periods. The clear suggestion is that there has been a significant struc-

tural change. The CUSUMs, shown in Panel (3), are clearly within the 90% confidence

interval for t < 101. At this point, they begin to drift upward and depart from the band

at t = 125. As such, the hypothesis of coefficient stability can be rejected.

Notice that the CUSUMs do not actually depart from the band until late in the

sample. This is indicative of the problem that the CUSUM test may not detect coeffi-

cient instability occurring late in the sample period. Moreover, the test may not have

much power if there are multiple changes with little overall effect on the CUSUMs.

Nevertheless, the test is a useful diagnostic tool that does not require the researcher

to stipulate the nature of the model’s misspecification. It is able to detect model mis-

specifications from such varied sources including smooth structural breaks, multiple

breaks, neglected nonlinearities in the data-generating process, or an overly parsimo-

nious model. A variant of the test, often called CUSUM(2), is to form the CUSUMs

using the squared errors. The use of the squared errors can help detect changes in the

variance.

If you had strong reason to believe that the break occurred in period 101, you could

form a dummy variable Dt = 0 from t = 1 to 100 and Dt = 1 thereafter. To check for
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FIGURE 2.10 Recursive Estimation of the Model
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an intercept break, estimate

yt = 0.9254 + 0.5683yt−1 + 1.936Dt

(5.36) (8.91) (5.88)

Since the coefficient for Dt is highly significant, you can conclude that there was

a break in the intercept. To check for a break in the intercept and slope coefficient, also

form the variable Dtyt−1 and estimate:

yt = 1.6015 + 0.2545yt−1 − 0.2244Dt + 0.5433Dtyt−1
(7.22) (2.76) (−0.391) (4.47)

In this particular case, the dummy variables indicate that there is a break but do

not measure the size of the break very well (Note: The actual break in the intercept

is +1.5 and the actual break in the AR(1) coefficient is 0.15.) The coefficient for the

intercept break is not significant while the break in the slope coefficient is highly sig-

nificant. The F-statistic for the joint hypothesis that the coefficients on Dt and Dtyt−1
are equal to zero is 29.568. With 2 degrees of freedom in the numerator and 145 in the

denominator, this value is significant at any conventional level. The important point

is that you can conclude that the simple AR(1) model is misspecified because of a

structural break.

If you wanted to estimate the most likely value for tm, you could repeat the estima-

tion for every time period in the interval 15 < tm < 135. The values of the F-statistics

from each recursive estimation are shown in Figure 2.11. Notice that the F-values are

largest for tm = 100. Although this consistent estimate of the break date turns out to

be exactly correct, you should expect a discrepancy when using actual data. Also note

that the F-test (and the t-statistics of the individual coefficients) for the null hypothesis
of no structural change can be tested using Hansen’s (1997) method (see Chapter 7).
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FIGURE 2.11 Recursive F-tests
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13. COMBINING FORECASTS

What should you do if you have several plausible models and want to use them to fore-

cast? For example, in Section 10, it turned out that there are several plausible models

of the interest rate spread. It makes little sense to forecast only with the “best” model

and discard the others. After all, the other models may capture some information that

is not contained in the others. The natural answer is to forecast with all of the plausible

models and then take the average of the forecasts.

In turns out that the intuitive notion of using the average, or composite, forecast is

quite reasonable. Bates andGranger (1969) were among the first to confirm the intuition

that a weighted average of forecasts can be quite beneficial. Let the series fit contain
the one-step-ahead forecasts of yt frommodel i (i = 1, 2,… , n). Consider the composite

forecast fct constructed as weighted average of the individual forecasts

fct = w1f1t + w2f2t + · · · + wn fnt (2.71)

where wi are weights such that
∑n

i=1 wi = 1.

If the forecasts are unbiased (so that Et−1fit = yt), it follows that the composite

forecast is also unbiased:

Et−1fct = w1Et−1f1t + w2Et−1f2t + · · · + wnEt−1fnt
= w1yt + w2yt + · · · + wnyt = yt

To keep the notation simple, return to the case in which n = 2. Subtract yt from
each side of (2.71) to obtain

fct − yt = w1(f1t − yt) + (1 − w1)(f2t − yt)

Now let e1t and e2t denote the series containing the one-step-ahead forecast errors
from models 1 and 2 (i.e., eit = yt − fit) and let ect be the composite forecast error. As

such, we can write

ect = w1e1t + (1 − w1)e2t

The variance of the composite forecast error is

var(ect) = w2
1
var(e1t) + (1 − w1)2var(e2t) + 2w1(1 − w1)cov(e1te2t) (2.72)

At this point, you should be able to see the potential benefits of combining such

forecasts. To take a simple example, suppose that the forecast error variances are the

same size and that cov(e1te2t) = 0. If you take a simple average by setting w1 = 0.5,

(2.72) indicates that the variance of the composite forecast is 25% of the variances of

either forecast: var(ect) = 0.25var(e1t) = 0.25var(e2t).

Optimal Weights

Although simple averaging can work to reduce the forecast error variance, it is possible

to find the optimal weights. If we use (2.72) and select the weight w1 so as to minimize
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var(ect):

𝛿 var(ect)
𝛿w1

= 2w1 var(e1t) − 2(1 − w1) var(e2t) + 2(1 − 2w1) cov(e1te2t)

The optimal value of w1 (called w
∗
1
) is

w∗
1
=

var(e2t) − cov(e1te2t)
var(e1t) + var(e2t) − 2 cov(e1te2t)

(2.73)

and if cov(e1te2t) = 0, w∗
1
can be written as

w∗
1
=

var(e2t)
var(e1t) + var(e2t)

=
var(e1t)−1

var(e1t)−1 + var(e2t)−1

Hence, if the covariance is zero, the optimal weight is inversely proportional to

its variance. As var(e1t) gets relatively small, the weight attached to f1t goes to unity,

and as var(e1t) gets relatively large, the weight attached to f1t goes to zero. Since the

actual forecast error variances are not known, in practice, they replaced by the estimated

forecast error variances from the type of out-of-sample forecast exercises conducted

above. In a setting with a large number of competing forecasting models, constructing

optimal weights as in (2.73) can be quite tedious. Moreover, estimates of the covariance

terms are often poor. As such, a number of researchers, including Bates and Granger

(1969), recommend constructing the weights excluding the covariance terms. Hence,

in the n-variable case, the weights can be constructed as

w∗
n =

var(e1t)−1

var(e1t)−1 + var(e2t)−1 + · · · + var(ent)−1
(2.74)

It is straightforward to compute the reciprocals of forecast error variance from

each model and then to normalize each by the sum across all of the models. Granger

and Ramanathan (1984) show that an equivalent method for constructing the weights

is to use a regression model. Consider the regression equation

yt = 𝛼0 + 𝛼1f1t + 𝛼2f2t + · · · + 𝛼nfnt + vt (2.75)

Of course, it would be possible to force 𝛼0 = 0 and 𝛼1 + 𝛼2 + · · · + 𝛼n = 1. Under

these conditions, the 𝛼i’s would have the direct interpretation of optimal weights so

that w∗
i could be set equal to 𝛼i. However, Granger and Ramanathan recommend the

inclusion of an intercept to account for any bias and to leave the 𝛼i’s unconstrained. As

surveyed in Clemen (1989), not all researchers agree with the Granger–Ramanathan

recommendation and a substantial amount of work has been conducted so as to obtain

optimal weights.

There are two important differences between (2.74) and (2.75). In (2.75), one

or more of the estimated weights may be negative. In such circumstances, most

researchers would reestimate the regression without the forecast associated with

the most negative coefficient. Moreover, in (2.75), the {vt} sequence can be serially

correlated. In such circumstances, Diebold (1988) recommends using lagged values

of yt and/or moving average terms to capture the serial correlation.
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It is also possible to use the SBC as a weighting factor. Now the weights are deter-

mined by in-sample fit instead of out-of-sample forecasts. Let SBCi be the SBC from

model i and let SBC∗ be the SBC from the best fitting model. You can easily form

𝛼i = exp[(SBC∗ − SBCi)∕2] and then construct the weights

w∗
i = 𝛼i∕

n∑
t=1

𝛼i

Since exp(0) = 1, the model with the best fit has the weight 1∕Σ𝛼i. Since 𝛼i is

decreasing in the value of SBCi, models with a poor fit have smaller weights than mod-

els with large values of the SBC.

Example Using the Spread

In Section 10, we examined seven different ARMA models of the interest rate spread.

Given that the data ends in April 2012, if you were to use each of the seven models to

make a one-step-ahead forecast for January 2013, you should find

AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1, 1) ARMA(2, 1) ARMA(2,||1,7||)

fi2013∶1 0.775 0.775 0.709 0.687 0.729 0.725 0.799

Simple averaging of the individual forecasts (i.e., setting all weights equal to 1/7)

results in a combined forecast of 0.743. Now, use the methodology discussed in

Section 10 to construct 50 one-step-ahead out-of-sample forecasts for each of the

seven models so as to obtain the fit series. After constructing the eit sequences as

fit − yt, it is trivial to find the seven values of var(eit). If you use (2.74), you should

find that the forecast error variances and the associated weights are

AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1, 1) ARMA(2, 1) ARMA(2,||1,7||)

var(eit) 0.635 0.618 0.583 0.587 0.582 0.600 0.606
wi 0.135 0.139 0.147 0.146 0.148 0.143 0.141

The weights are very similar because the forecast error variances are alike.Weight-

ing the individual forecasts yields the composite forecast fc2013∶1 = 0.741.

Next, use the spread (st) to estimate a regression in the form of (2.75). If you omit

the intercept and constrain the weights to unity, you should obtain

st = 0.55f1t − 0.25f2t − 2.37f3t + 2.44f4t + 0.84f5t − 0.28f6t + 1.17f7t (2.76)

Although some researchers would include the negative weights in (2.76), most

would eliminate those that are negative. If you successively reestimate the model by

eliminating the forecast with the most negative coefficient, you should obtain

st = 0.326f4t + 0.170f5t + 0.504f7t

All of the coefficients are positive and the residuals do not show any sign of serial

correlation. As such, it is reasonable to use the weights 0.326, 0.170, and 0.504 for

the forecasts from the AR(‖1, 2, 7‖), ARMA(1, 1), and ARMA(2, ‖1, 7‖), models,
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respectively. The composite forecast using the regression method is 0.326(0.687) +
0.170(0.729) + 0.504(0.799) = 0.751.

Finally, if you use the values of the SBC as weights, you should obtain

AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1, 1) ARMA(2, 1) ARMA(2,||1,7||)

wi 0.000 0.000 0.011 0.001 0.112 0.103 0.773

The composite forecast using SBC weights is 0.782. In actuality, the spread in

2013:1 turned out to be 0.74 (the actual data contains only two decimal places). Of

the four methods, simple averaging and weighting by the forecast error variances did

quite well. In this instance, the regression method and constructing the weights using

the SBC provided the worst composite forecasts.

14. SUMMARY AND CONCLUSIONS

The chapter focuses on the Box–Jenkins (1976) approach to identification, estimation,

diagnostic checking, and forecasting a univariate time series. ARMA models can be

viewed as a special class of linear stochastic difference equations. By definition, an

ARMA model is covariance stationary in that it has a finite and time-invariant mean

and covariances. For an ARMA model to be stationary, the characteristic roots of the

difference equation must lie inside the unit circle. Moreover, the process must have

started infinitely far in the past or the process must always be in equilibrium.

In the identification stage, the series is plotted, and the sample autocorrelations and

partial correlations are examined. A slowly decaying autocorrelation function suggests

nonstationarity behavior. In such circumstances, Box and Jenkins recommend differ-

encing the data. Formal tests for nonstationarity are presented in Chapter 4. A common

practice is to use a logarithmic or Box–Cox transformation if the variance does not

appear to be constant. Chapter 3 presents some modern techniques that can be used to

model the variance.

The sample autocorrelations and partial correlations of the suitably transformed

data are compared to those of various theoretical ARMA processes. All plausible mod-

els are estimated and compared using a battery of diagnostic criteria. A well-estimated

model (i) is parsimonious, (ii) has coefficients that imply stationarity and invertibility,

(iii) fits the data well, (iv) has residuals that approximate a white-noise process, (v) has

coefficients that do not change over the sample period, and (vi) has good out-of-sample

forecasts.

A useful check for coefficient instability involves recursive estimation techniques.

A sudden change in the recursive estimates of one or more coefficients is indicative of a

structural break. The Chow test can be used to test for a break at a known date and more

gradual changes can be detected by recursive estimation or by a CUSUM test. As dis-

cussed in Chapter 7, the Andrews and Ploberger (1994) test can detect an endogenous

break. Bai and Perron (1998, 2003) show how to test for multiple endogenous breaks.

In utilizing the Box–Jenkins methodology, you will find yourself making many

seemingly ad hoc choices. The most parsimonious model may not have the best fit

but may have the best out-of-sample forecasts. You will find yourself addressing the
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following types of questions: What is the most appropriate data transformation? Is an

ARMA(2, 1) model more appropriate than an ARMA(1, 2) specification? How can sea-

sonality best bemodeled?What should be done about seemingly significant coefficients

at reasonably long lags? Given this latitude, many view the Box–Jenkins methodology

as an art rather than a science. Nevertheless, the technique is best learned through expe-

rience. The exercises at the end of this chapter are designed to guide you through the

types of choices you will encounter in your own research.

QUESTIONSANDEXERCISES
1. In the coin-tossing example of Section 1, your average winnings on the last four tosses (wt)

can be denoted by

wt = 1∕4𝜀t + 1∕4 𝜀t−1 + 1∕4 𝜀t−2 + 1∕4 𝜀t−3
a. Find the expected value of your winnings. Find the expected value given that 𝜀t−3 =

𝜀t−2 = 1.

b. Find var(wt). Find var(wt) conditional on 𝜀t−3 = 𝜀t−2 = 1.

c. Find cov(wt,wt−1), cov(wt,wt−2), and cov(wt,wt−5).
2. Consider the second-order autoregressive process yt = a0 + a2yt−2 + 𝜀t where |a2| < 1.

a. Find:

i. Et−2yt ii. Et−1yt iii. Etyt+2 iv. cov(yt, yt−1)
v. cov(yt, yt−2) vi. the partial autocorrelations 𝜙11 and 𝜙22.

b. Find the impulse response function. Given yt−2, trace out the effects of an 𝜀t shock on the
{yt} sequence.

c. Determine the forecast function: Etyt+s. The forecast error et(s) is the difference between
yt+s and Etyt+s. Derive the correlogram of the {et(s)} sequence. {Hint: Find Etet(s),
var[et(s)], and Et[et(s)et(s − j)] for j = 0 to s}.

3. Substitute (2.10) into yt = a0 + a1yt−1 + 𝜀t. Show that the resulting equation is an identity.

a. Find the homogeneous solution to yt = a0 + a1yt−1 + 𝜀t.

b. Find the particular solution given that |a1| < 1.

c. Show how to obtain (2.10) by combining the homogeneous and particular solutions.

4. The general solution to an nth-order difference equation requires n arbitrary constants. Con-
sider the second-order equation yt = a0 + 0.75yt−1 − 0.125yt−2 + 𝜀t.

a. Find the homogeneous and particular solutions. Discuss the shape of the impulse

response function.

b. Find the values of the initial conditions that ensure the {yt} sequence is stationary.
c. Given your answer to part (b), derive the correlogram for the {yt} sequence.

5. Consider the second-order stochastic difference equation: yt = 1.5yt−1 − 0.5yt−2 + 𝜀t.

a. Find the characteristic roots of the homogeneous equation.

b. Demonstrate that the roots of 1 − 1.5L + 0.5L2 are the reciprocals of your answer in
part a.

c. Given initial conditions for y0 and y1, find the solution for yt in terms of the current and

past values of the {𝜀t} sequence.
d. Find the forecast function for yT+s (i.e., find the solution for the values of yT+s given the

values of yT and yT−1).
e. Find Eyt, Eyt+1, var(yt), var(yt+1), and cov(yt+1, yt).
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6. There are often several representations for the identical time-series process. In the text, the

standard equation for an AR(1) model is given by yt = a0 + a1yt−1 + 𝜀t.

a. Show that equivalent representations are i. (yt − y) = a1(yt−1 − y) + 𝜀t where y is the
unconditional mean of the {yt} series and ii. yt = a0∕(1− a1) +𝜇t where 𝜇t = a1𝜇t− 1 + 𝜀t.

b. In Chapter 1, we considered several models with a deterministic time trend. For

example, a modified version of equation (1.62) is yt = a0 + a1yt−1 + a2t + 𝜀t where|a1| < 1. Explain why the yt sequence is not stationary. Also, explain why the yt
sequence is stationary about the trend line a0 + a2t. What does it mean to say that the yt
sequence is trend stationary?

c. Verify that the process generated by yt = 16.2 + 0.2t + 𝜇t where 𝜇t = 0.95𝜇t−1 + 𝜀t is

identical to the process generated by yt = 1 + 0.95yt−1 + 0.01t + 𝜀t.

d. Show that the first-order trend-stationary process yt = a0 + a1yt−1 + a2t + 𝜀t where|a1| < 1 can be written in the form yt = c0 + c1t + 𝜇t where 𝜇t = c2𝜇t−1 + 𝜀t. Also, use

the method of undetermined coefficients to find the values of c0, c1, and c2.

7. As you read more of the time-series literature, you will find that different authors and dif-

ferent software packages report the AIC and the SBC in various ways. The purpose of

this exercise is to show that, regardless of the method you use, you will always select the

same model. The examples in the text use AIC = T ln(SSR) + 2n and SBC = T ln(SSR) +
n ln(T) where SSR = sum of squared residuals. However, other common formulas include

AIC∗ = −2 ln(L)∕T + 2n∕T and SBC∗ = −2 ln(L)∕T + n ln(T)∕T

and

AIC’ = exp(2n∕T) ⋅ SSR∕T SBC’ = Tn∕T ⋅ SSR∕T

where SSR = sum of squared residuals, ln(L) = maximized value of the log of the likeli-

hood function = −(T∕2) ln(2𝜋) − (T∕2) ln(𝜎2) − (1∕2𝜎2) (SSR), and 𝜎2 = variance of the

residuals.

a. Jennifer estimates two different models over the same time period and assesses their fit

using the formula AIC∗ = −2 ln(L)∕T + 2n∕T . She denotes the two values AIC∗(1) and
AIC∗(2) and finds that AIC∗(1) < AIC∗(2). Justin estimates the same two models over

the same time period but assesses the fit using the formula AIC = T ln(SSR) + 2n. Show
that Justin’s results must be such that AIC(1) < AIC(2).
Hint: Since AIC∗(1) < AIC∗(2), it must be the case that ln(2𝜋) + ln(𝜎12) +
T (1∕𝜎12) (SSR1) + 2n1∕T < ln(2𝜋) + ln(𝜎22) + T (1∕𝜎22) (SSR2) + 2n2∕T .
where ni, SSRi, and 𝜎i

2 are the number of parameters, the sum of squared residuals, and

the residual variance of model i, respectively. Recall that the estimate of 𝜎2 is SSR∕T .
If you simplify the inequality relationship, you should find that it is equivalent to T
ln(SSR1) + 2n1 < T ln(SSR2) + 2n2.

b. Show that all the three methods of calculating the SBC will necessarily select the same

model.

c. Select one of the three pairs above. Show that the AIC will never select a more parsimo-

nious model than the SBC.

8. The file entitled SIM_2.XLS contains the simulated data sets used in this chapter. The

first series, denoted Y1, contains the 100 values of the simulated AR(1) process used in

Section 7. Use this series to perform the following tasks (Note: Due to differences in data
handling and rounding, your answers need only approximate those presented here.)

a. Plot the sequence against time. Does the series appear to be stationary?

b. Use the data to verify the results given in Table 2.2.
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c. Estimate the series as an AR(2) process without an intercept. Letting et denote the resid-
ual (which may be serially correlated), you should obtain

yt = 0.701yt−1 + 0.105yt−2 + et; usable observations: 98

(7.01) (1.047)

Ljung–Box Q-statistics: Q(8) = 5.13. Q(16) = 15.86. Q(24) = 21.02

d. Estimate the series as an ARMA(1, 1) process without an intercept. You should obtain

yt = 0.844yt−1 − 0.144𝜀t−1 + et; usable observations: 99

(12.16) (−1.12)

Verify that the ACF and PACF of the residuals do not indicate any serial correlation.

9. The second column in file SIM_2.XLS contains the 100 values of the simulated

ARMA(1, 1) process used in Section 7. This series is entitled Y2. Use this series to perform

the following tasks (Note: Due to differences in data handling and rounding, your answers
need only approximate those presented here.):

a. Plot the sequence against time. Does the series appear to be stationary? Plot the ACF.

b. Verify the results in Table 2.3.

c. Estimate the process using a pure MA(2) model. You should obtain

yt = −1.15𝜀t−1 + 0.522𝜀t−2 + et; usable observations: 100

(−13.22) (5.98)

Verify that the Ljung–Box Q-Statistics are Q(8) = 28.48, Q(16) = 37.47, and Q(24) =
38.84 with significance levels of 0.000, 0.000, and 0.015, respectively.

d. Compare the MA(2) to the ARMA(1, 1).

10. The third column in file SIM_2.XLS contains the 100 values of the simulated AR(2) process

used in Section 7. This series is entitled Y3. Use this series to perform the following tasks

(Note: Due to differences in data handling and rounding, your answers need only approxi-
mate those presented here.):

a. Plot the sequence against time. Verify the ACF and the PACF coefficients reported in

Section 7. Compare the sample ACF and PACF to those of a theoretical AR(2) process.

b. Estimate the series as an AR(1) process. You should find that the estimated AR(1) coef-

ficient and the t-statistic are

yt = 0.467yt−1 + et
(5.24)

Show that the standard diagnostic checks indicate that this AR(1) model is inadequate.

Be sure to perform a recursive estimation of the AR(1) model and to plot the CUSUMs.

c. Could an ARMA(1, 1) process generate the type of sample ACF and PACF found in

part a? Estimate the series as an ARMA(1, 1) process. You should obtain

yt = 0.183yt−1 + 0.510𝜀t−1 + et; usable observations: 99

(1.15) (3.64)

Use the Ljung–Box Q-statistics to show that the ARMA(1, 1) model is inadequate.

d. Estimate the series as an AR(2) process to verify the results reported in the text.

11. If you have not already done so, download the Programming Manual that accompanies this

text and the data set QUARTERLY.XLS.

a. Section 2.7 examines the price of finished goods as measured by the PPI. Form the

logarithmic change in the PPI as dlyt = log(ppit) − log(ppit−1). Verify that an AR(‖1, 3‖)
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model of the dlyt series has a better in-sample fit than an AR(3) or an ARMA(1, 1)

specification.

b. How does the out-of-sample fit of the AR(‖1, 3‖) compare to that of the ARMA(1, 1)?

c. What is the problem in comparing the out-of-sample fit of the AR(‖1, 3‖) to that of the
AR(3)?

d. Experiment with an AR(5) and an ARMA(2, 1) model (see Exercise 2.1 on page 32 of

the manual) to see how they compare to the AR(‖1, 3‖).
12. Section 2.9 of the Programming Manual that accompanies considers several seasonal mod-

els of the variable Currency (Curr) on the data set QUARTERLY.XLS.

a. First-difference the log of currt and obtain the ACF and PACF of the resultant series.

Does the seasonal pattern best reflect an AR, MA, or a mixed pattern? Why is there a

problem in estimating the first difference using the Box–Jenkins methodology?

b. Now, obtain the ACF and PACF of the seasonal difference of the first difference. What is

likely the pattern present in the ACF and PACF?

c. Although the manual indicates that the ARMA(1, 1, 0)(0, 1, 1) has the best in-sample fit,

prepare a careful comparison of this model with an ARMA(0, 1, 1)(0, 1, 1) specification.

13. The file QUARTERLY.XLS contains a number of series including the U.S. index of indus-

trial production (indprod), unemployment rate (urate), and producer price index for finished
goods (finished). All of the series run from 1960Q1 to 2012Q4.

a. Exercises with indprod.

i. Construct the growth rate of the series as yt = log(indprodt) − log(indprodt−1). Since
the first few autocorrelations suggest an AR(1), estimate yt = 0.0028 + 0.600yt−1 + 𝜀t
(the t-statistics are 2.96 and 10.95, respectively).

ii. Show that adding an AR term at lag 8 improves the fit and removes some of the serial

correlation. What concerns do you have about simply adding an AR(‖8‖) term to the

industrial production series?

b. Exercises with urate.

i. Graph the time path and the ACF of the series. Do you have any concerns that the

series may not be covariance stationary with normally distributed errors?

ii. Temporarily ignore the issue of differencing the series. Estimate urate as an
AR(2) process including an intercept. You should find yt = 0.226 + 1.65yt−1 −
0.683yt−2 + 𝜀t.

iii. Find the characteristic roots of the deterministic part of the difference equation and

discuss the nature of the implied adjustment process.

iv. Compare the model of ii to that obtained by estimating the first difference of the

series as an AR(1) process.

c. Exercises with cpicore.

i. It is not very often that we need to second difference a series. However, construct the

inflation rate as measured by the core CPI as dlyt = log(cpicoret) − log(cpicoret−1).
Form the ACF and PACF of the series any indicate why a Box–Jenkins modeler

might want to work with the second difference of the logarithm of the core CPI.

ii. Let d2lyt denote the second difference of the dlyt series. Find the best model of the

d2lyt series. In particular, show that an MA(1) model fits the data better than an

AR(1).

iii. Does the MA(1) or the AR(1) has better forecasting properties?

iv. Estimate the dlyt series as an AR(2) process. Beginning with 2013:1, use your

answer to obtain the 1-step- through 12-step-ahead forecasts of the cpicoret
series. Compare these to the forecasts of cpicoret from the d2lyt estimated as an
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MA(1). (Note: You will need to transform your forecasts to the forecasts of the

cpicoret.)

14. The file QUARTERLY.XLS contains U.S. interest rate data from 1960Q1 to 2012Q4. As
indicated in Section 10, form the spread by subtracting the T-bill rate from the 5-year rate.

a. Use the full sample period to obtain estimates of the AR(7) and the ARMA(1, 1) model

reported in Section 10.

b. Estimate the AR(7) and ARMA(1, 1) models over the period 1960Q1–2000Q3.
Obtain the one-step-ahead forecast and the one-step-ahead forecast error from each.

As in Section 10, continue to update the estimation period so as to obtain the 50

one-step-ahead forecast errors from each model. Let f1t denote the forecasts from the

AR(7) and f2t denote the forecasts from the ARMA(1, 1). You should find that the

properties of the forecasts are such that

y2000Q3+t = 0.0536 + 0.968f1t and y2000Q3+t = −0.005 + 1.000f2t.

Are the forecasts unbiased?

c. Construct the Diebold–Mariano test using the mean absolute error. How do the results

compare to those reported in Section 10.

d. Use the Granger–Newbold test to compare the AR(7) model to the ARMA(1, 1).

e. Construct the ACF and PACF of the first difference of the spread. What type of model is

suggested?

f. Show that a model with 2 AR lags and MA lags at 3 and 8 has a better fit than any of the

models reported in the text. What do you think about such a model?

15. The file QUARTERLY.XLS contains the U.S. money supply as measured by M1 (M1NSA)

and as measured by M2 (M2NSA). The series are quarterly averages over the period 1960:1

to 2012Q4.

a. Reproduce the results for M1 that are reported in Section 11 of the text.

b. How do the three models of M1 reported in the text compare to a model with a seasonal

AR(1) term with an additive MA(1) term?

c. Obtain the ACF for the growth rate of the M2NSA series. What type of model is sug-

gested by the ACF?

d. Denote the seasonally differenced growth rate of M2NSA by m2t. Estimate an AR(1)

model with a seasonal MA term over the 1962:3 to 2014:4 period. You should obtain

m2t = 0.5412m2t−1 + 𝜀t − 0.8682𝜀t−4. Show that this model is preferable to (i) an AR(1)

with a seasonal AR term, (ii) MA(1) with a seasonal AR term, and (iii) an MA(1) with a

seasonal MA term.

e. Would you recommend including an MA term at lag 2 to remove any remaining serial

correlation in the residuals?

16. The file labeled Y_BREAK.XLS contains the 150 observations of the series constructed as

yt = 1 + 0.5yt−1 + (1 + 0.1yt−1)Dt + 𝜀t where Dt is a dummy variable equal to 0 for t < 101

and equal to 1.5 for t ≥ 101.

a. Explain how this representation of the model allows the intercept to jump from 1 to 2.5

and the AR(1) coefficient to jump from 0.5 to 0.65.

b. Use the data to verify the results reported in the text.

c. Why do you think that the estimated intercept actually falls beginning with period 101?

d. Estimate the series as an AR(2) process. In what sense does the AR(2) model perform

better than the AR(1) model estimated in part a?

e. Perform a recursive estimation of the AR(2) model and plot the CUSUMs. Is the AR(2)

model adequate?
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CHAPTER3
MODELING VOLATILITY

Learning Objectives
1. Examine the so-called stylized facts concerning the properties of economic

time-series data.

2. Introduce the basic ARCH and GARCH models.

3. Show how ARCH and GARCH models have been used to estimate inflation

rate volatility.

4. Illustrate how GARCH models can capture the volatility of oil prices, real

U.S. GDP, and the interest rate spread.

5. Show how a GARCH model can be used to estimate risk in a particular

sector of the economy.

6. Explain how to estimate a time-varying risk premium using the ARCH-M

model.

7. Explore the properties of the GARCH(1, 1) model and forecasts from

GARCHmodels.

8. Derive the maximum likelihood function for a GARCH process.

9. Explain several other important forms of GARCH models including

IGARCH, asymmetric TARCH, and EGARCHmodels.

10. Illustrate the process of estimating a GARCH model using the NYSE 100

Index.

11. Show how multivariate GARCH models can be used to capture volatility

spillovers.

12. Develop volatility impulse response functions and illustrate the estimation

technique using exchange rate data.

Many economic time series do not have a constant mean, and most exhibit phases of

relative tranquility followed by periods of high volatility. Much of the current econo-

metric research is concerned with extending the Box–Jenkins methodology to analyze

these types of time-series variables.

1. ECONOMIC TIME SERIES:
THE STYLIZED FACTS

Figures 3.1 through 3.6 illustrate the behavior of some of the more important variables

encountered inmacroeconomic analysis. Casual inspection does have its perils, and for-

mal testing is necessary to substantiate any first impressions. However, the strong visual

118

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c03.tex V2 - 09/02/2014 1:54pm Page 119

ECONOMIC TIME SERIES: THE STYLIZED FACTS 119

pattern is that these series are not stationary; the sample means do not appear to be con-

stant, and/or there is the strong appearance of heteroskedasticity. We can characterize

the key features of the various series with these stylized facts:

1. Many of the series contain a clear trend. Real and potential U.S. GDP, con-
sumption, and investment (see Figure 3.1) exhibit a decidedly upward trend.

Note that real consumption is smoother than real GDP and that real invest-

ment is more volatile than real GDP.

2. The volatility of many series is not constant over time. Real investment

grew smoothly throughout most of the 1960s but became highly variable

in the 1970s and in 2007 with the onset of the financial crisis. Note that the

volatility of real GDP (see Figure 3.2) appears to fall in 1984, shows a neg-

ative spike in 2007, and then stabilizes. More dramatic are the daily changes

in the log of the NYSE U.S. 100 stock price index. In Figure 3.3, you can see

periods where the stock market seems tranquil alongside periods with large

increases and decreases in the market. Such series are called conditionally
heteroskedastic if the unconditional (or long-run) variance is constant, but
there are periods in which the variance is relatively high.

3. Shocks to a series can display a high degree of persistence. Neither of the
interest rate series shown in Figure 3.4 has a clear upward or downward trend.

Nevertheless, both show a high degree of persistence. Notice that the 3-month

T-bill rate experienced two upward surges in the 1970s and remained at

those high levels for several years. Similarly, after a sharp decrease in the late

1980s, the rate never again displayed the levels attained in the early 1980s.
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FIGURE 3.2 Annualized Growth Rate of Real GDP
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FIGURE 3.3 Percentage Change in the NYSE U.S. 100 (January 4, 2000–July 16, 2012)
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FIGURE 3.4 Short- and Long-Term Interest Rates

4. Some series seem to meander. Both the euro and Swiss franc appear to
have a slight upward trend whereas the British pound (see Figure 3.5)

shows no particular propensity to increase or decrease. Nevertheless, in

the short run, the values of all three exchange rates to go through sustained

periods of appreciation and depreciation without a tendency to revert to a
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FIGURE 3.5 Daily Exchange Rates (January 3, 2000–April 4, 2013)
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long-run mean. This type of “random walk” or “drifting” behavior is typical

of nonstationary series.

5. Some series share comovements with other series. Individually, the
3-month T-bill rate and the 5-year yield on U.S. government securities do not

appear to be stationary. Even though the rates show no tendency for mean

reversion, the two series never drift too far apart. Moreover, large shocks to

the 3-month rate appear to be timed similarly with those to the 5-year rate.

The presence of such comovements should not be too surprising since the

forces driving short-term and long-term rates should be similar. On the other

hand, it is not clear whether the various exchange rate series exhibit the same

long-run trend. The movements in the three series are such that all seem to

experience appreciations and depreciations simultaneously. However, it is not

clear whether the differences among the trend rates of growth are statistically

significant.

6. Some of the series exhibit breaks. The financial crisis of 2007–2008 caused
a number of time series to experience structural breaks. Notice how real GDP,

consumption, and investment all show particularly sharp declines at the time

of the crisis. Also note that the pound depreciated sharply, whereas the euro

and Swiss franc declined less dramatically. As economic activity declined, so

did the price of oil (see Figure 3.6) as evidenced by the extremely sharp drop

in the spot price of Brent crude oil.

Please be aware that “eyeballing” the data is not a substitute for formally testing for

the presence of conditional heteroskedasticity or for nonstationary behavior. Although
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FIGURE 3.6 Weekly Values of the Spot Price of Oil (May 15, 1987–November 1, 2013)
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most of the variables shown in the figures are nonstationary and/or homoskedastic, the

issue will not always be so obvious. Fortunately, it is possible to modify the tools devel-

oped in the last chapter to help in the identification and estimation of such series. The

remainder of this chapter considers the issue of conditional heteroskedasticity. Models

and formal tests for the presence of trends (either deterministic and/or stochastic) are

discussed in the next chapter. The order in which you read Chapters 3 and 4 is immate-

rial; some instructors may wish to cover the material in Chapter 4 and then the material

in Chapter 3. However, the issue of comovements in multivariate time series must wait

until Chapters 5 and 6. Potential nonlinearities and structural breaks are considered in

Chapter 7.

2. ARCH AND GARCH PROCESSES

In conventional econometric models, the variance of the disturbance term is assumed to

be constant. However, Figures 3.2 and 3.3 demonstrate that many economic time series

exhibit periods of unusually large volatility followed by periods of relative tranquility.

In such circumstances, the assumption of a constant variance (homoskedasticity) is
inappropriate. It is easy to imagine instances in which you might want to forecast the

conditional variance of a series. As an asset holder, you would be interested in forecasts

of the rate of return and its variance over the holding period. The unconditional variance
(i.e., the long-run forecast of the variance) would be unimportant if you plan to buy the

asset at t and sell at t + 1.

One approach to forecasting the variance is to explicitly introduce an independent

variable that helps to predict the volatility. Consider the simplest case in which

yt+1 = 𝜀t+1xt

where: yt+1 is the variable of interest

𝜀t+1 is a white-noise disturbance term with variance 𝜎2

xt is an independent variable that can be observed at period t

If xt = xt−1 = xt−2 = · · · = constant, the {yt} sequence is the familiar white-noise

process with a constant variance. However, when the realizations of the {xt} sequence
are not all equal, the variance of yt+1 conditional on the observable value of xt is

var(yt+1|xt) = x2t 𝜎
2

Here the conditional variance of yt+1 is dependent on the realized value of xt. Since you
can observe xt at time period t, you can form the variance of yt+1 conditionally on the

realized value of xt. If the magnitude (xt)2 is large (small), the variance of yt+1 will be
large (small) as well. Furthermore, if the successive values of {xt} exhibit positive serial
correlation (so that a large value of xt tends to be followed by a large value of xt+1), the
conditional variance of the {yt} sequence will exhibit positive serial correlation as well.
In this way, the introduction of the {xt} sequence can explain periods of volatility in the
{yt} sequence. In practice, you might want to modify the basic model by introducing

the coefficients 𝛼0 and 𝛼1 and estimating the regression equation in logarithmic form as

ln(yt) = 𝛼0 + 𝛼1 ln(xt−1) + et

where et is the error term [formally, et = ln(𝜀t)].
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This procedure is simple to implement since the logarithmic transformation results

in a linear regression equation; OLS can be used to estimate 𝛼0 and 𝛼1 directly. A major

difficulty with this strategy is that it assumes a specific cause for the changing variance.

Moreover, the methodology also forces {xt} to affect the mean of ln(yt). Oftentimes,

you might not have a firm theoretical reason for selecting one candidate for the {xt}
sequence over other reasonable choices. Was it the oil price shocks, a change in the

conduct of monetary policy, and/or the breakdown of the Bretton Woods system that

was responsible for the volatility of real investment during the 1970s? Moreover, the

technique necessitates a transformation of the data such that the resulting series has

a constant variance. In the example at hand, the {𝜀t} sequence is assumed to have a

constant variance. If this assumption is violated, some other transformation of the data

is necessary.

ARCH Processes

Instead of using ad hoc variable choices for xt and/or data transformations, Engle

(1982) shows that it is possible to simultaneously model the mean and the variance

of a series. As a preliminary step to understanding Engle’s methodology, note that con-

ditional forecasts are vastly superior to unconditional forecasts. To elaborate, suppose

you estimate the stationary ARMA model yt = a0 + a1yt−1 + 𝜀t and want to forecast

yt+1. The conditional mean of yt+1 is

Etyt+1 = a0 + a1yt

If we use this conditional mean to forecast yt+1, the forecast error variance is

Et[(yt+1 − a0 − a1yt)2] = Et𝜀
2
t+1 = 𝜎2. However, if unconditional forecasts are used,

the unconditional forecast is always the long-run mean of the {yt} sequence equal to

a0∕(1 − a1). The unconditional forecast error variance is

E{[yt+1 − a0∕(1 − a1)]2} = E[(𝜀t+1 + a1𝜀t + a2
1
𝜀t−1 + a3

1
𝜀t−2 + · · ·)2]

= 𝜎2∕(1 − a2
1
)

Since 1∕(1 − a2
1
) > 1, the unconditional forecast has a greater variance than the

conditional forecast. Thus, conditional forecasts (since they take into account the

known current and past realizations of series) are clearly preferable.

Similarly, if the variance of {𝜀t} is not constant, you can estimate any tendency

for sustained movements in the variance using an ARMAmodel. For example, let {�̂�t}
denote the estimated residuals from the model yt = a0 + a1yt−1 + 𝜀t so that the condi-

tional variance of yt+1 is

var(yt+1|yt) = Et[(yt+1 − a0 − a1yt)2]
= Et(𝜀t+1)2

To this point, we have set Et(𝜀t+1)2 equal to the constant 𝜎2. Now suppose that the

conditional variance is not constant. One simple strategy is to model the conditional

variance as an AR(q) process using squares of the estimated residuals

�̂�2t = 𝛼0 + 𝛼1�̂�
2
t−1 + 𝛼2�̂�

2
t−2 + · · · + 𝛼q�̂�

2
t−q + vt (3.1)

where vt is a white-noise process.
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If the values of 𝛼1, 𝛼2,… , 𝛼n all equal to zero, the estimated variance is simply the

constant 𝛼0. Otherwise, the conditional variance of yt evolves according to the autore-

gressive process given by (3.1). As such, you can use (3.1) to forecast the conditional

variance at t + 1 as

Et�̂�
2
t+1 = 𝛼0 + 𝛼1�̂�

2
t + 𝛼2�̂�

2
t−1 + · · · + 𝛼q�̂�

2
t+1−q

For this reason, an equation like (3.1) is called an autoregressive conditional
heteroskedastic (ARCH) model. There are many possible applications for ARCH

models since the residuals in (3.1) can come from an autoregression, an ARMAmodel,

or a standard regression model.

In actuality, the linear specification of (3.1) is not the most convenient. The reason

is that themodel for {yt} and the conditional variance are best estimated simultaneously

using maximum likelihood techniques. Moreover, instead of the specification given by

(3.1), it is more tractable to specify vt as a multiplicative disturbance.

The simplest example from the class of multiplicative conditionally heteroskedas-

tic models proposed by Engle (1982) is

𝜀t = vt

√
𝛼0 + 𝛼1𝜀

2
t−1 (3.2)

where vt = white-noise process such that 𝜎2
v = 1, vt and 𝜀t−1 are independent of each

other, and 𝛼0 and 𝛼1 are constants such that 𝛼0 > 0 and 0 ≤ 𝛼1 ≤ 1.

Consider the properties of the proposed {𝜀t} sequence. Since vt is white noise and
is independent of 𝜀t−1, it is easy to show that the elements of the {𝜀t} sequence have a
mean of zero and are uncorrelated. The proof is straightforward. Take the unconditional

expectation of 𝜀t. Since Evt = 0, it follows that

E𝜀t = E[vt(𝛼0 + 𝛼1𝜀
2
t−1)

1∕2]
= EvtE(𝛼0 + 𝛼1𝜀

2
t−1)

1∕2 = 0 (3.3)

Since Evtvt−i = 0, it also follows that

E𝜀t𝜀t−i = 0 i ≠ 0 (3.4)

The derivation of the unconditional variance of 𝜀t is also straightforward. Square

𝜀t and take the unconditional expectation to form

E𝜀2t = E[v2t (𝛼0 + 𝛼1𝜀
2
t−1)]

= Ev2t E(𝛼0 + 𝛼1𝜀
2
t−1)

Since 𝜎2
v = 1 and the unconditional variance of 𝜀t is identical to that of 𝜀t−1

(i.e., E𝜀2t = E𝜀2t−1), the unconditional variance is

E𝜀2t = 𝛼0∕(1 − 𝛼1) (3.5)

Thus, the unconditional mean and variance are unaffected by the presence of the

error process given by (3.2). Similarly, it is easy to show that the conditional mean of 𝜀t
is equal to zero. Given that vt and 𝜀t−1 are independent and that Evt = 0, the conditional

mean of 𝜀t is

E(𝜀t|𝜀t−1, 𝜀t−2, …) = Et−1vtEt−1(𝛼0 + 𝛼1𝜀
2
t−1)

1∕2 = 0
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At this point, you might be thinking that the properties of the {𝜀t} sequence are

not affected by (3.2) since the mean is zero, the variance is constant, and all autocovari-

ances are zero. However, the influence of (3.2) falls entirely on the conditional variance.

Because Ev2t = 1, the variance of 𝜀t conditioned on the past history of 𝜀t−1, 𝜀t−2, … is

E[𝜀2t |𝜀t−1, 𝜀t−2, …] = 𝛼0 + 𝛼1𝜀
2
t−1 (3.6)

In (3.6), the conditional variance of 𝜀t is dependent on the realized value of 𝜀2t−1.

If the realized value of 𝜀2t−1 is large, the conditional variance in t will be large as well.
In (3.6), the conditional variance is a first-order AutoRegressive Conditionally Het-

eroskedastic process denoted by ARCH(1). As opposed to a usual autoregression, the

coefficients 𝛼0 and 𝛼1 have to be restricted. In order to ensure that the conditional vari-

ance is never negative, it is necessary to assume that both 𝛼0 and 𝛼1 are positive. After

all, if 𝛼0 is negative, a sufficiently small realization of 𝜀t−1 will mean that (3.6) is neg-

ative. Similarly, if 𝛼1 is negative, a sufficiently large realization of 𝜀t−1 can render a

negative value for the conditional variance. Moreover, to ensure the stability of the

process, it is necessary to restrict 𝛼1 such that 0 ≤ 𝛼1 ≤ 1.

Equations (3.3)–(3.6) illustrate the essential features of any ARCH process. In

an ARCH model, the conditional and unconditional expectations of the error terms

are equal to zero. Moreover, the {𝜀t} sequence is serially uncorrelated because, for all

s ≠ 0, E𝜀t𝜀t−s = 0. The key point is that the errors are not independent since they are

related through their second moment (recall that correlation is a linear relationship).

The conditional variance itself is an autoregressive process resulting in conditionally

heteroskedastic errors. When the realized value of 𝜀t−1 is far from zero—so that 𝛼1𝜀
2
t−1

is relatively large—the variance of 𝜀t will tend to be large. As youwill seemomentarily,

the conditional heteroskedasticity in {𝜀t}will result in {yt} being heteroskedastic itself.
Thus, the ARCHmodel is able to capture periods of tranquility and volatility in the {yt}
series.

The four panels of Figure 3.7 depict two different ARCH models. Panel (a), rep-

resenting the {vt} sequence, shows 100 serially uncorrelated and normally distributed

random deviates. From casual inspection, the {vt} sequence appears to fluctuate around
a mean of zero and have a constant variance. Note the moderate increase in volatility

between periods 50 and 60. Given the initial condition 𝜀0 = 0, these realizations of the

{vt} sequence were used to construct the next 100 values of the {𝜀t} sequence using

equation (3.2) and setting 𝛼0 = 1 and 𝛼1 = 0.8. As illustrated in Panel (b), the {𝜀t}
sequence also has a mean of zero, but the variance appears to experience an increase

in volatility around t = 50.

How does the error structure affect the {yt} sequence? Clearly, if the autoregressive
parameter a1 is zero, yt is nothingmore than 𝜀t. Thus, Panel (b) can be used to depict the

time path of the {yt} sequence for the case of a1 = 0. Panels (c) and (d) show the behav-

ior of the {yt} sequence for the cases of a1 = 0.2 and 0.9, respectively. The essential

point to note is that the ARCH error structure and the autocorrelation parameters of the

{yt} process interact with each other. Comparing Panels (c) and (d) illustrates that the

volatility of {yt} is increasing in a1 and a1. The explanation is intuitive. Any unusu-

ally large (in absolute value) shock in vt will be associated with a persistently large

variance in the {𝜀t} sequence; the larger is 𝛼1, the longer the persistence. Moreover,

the greater the autoregressive parameter a1, the more persistent is any given change
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 White-noise process vt ε t = vt  1 + 0.8 ε t–1
2

yt = 0.2yt–1 + εt yt = 0.9yt–1 + εt

FIGURE 3.7 Simulated ARCH Processes

in yt. The stronger the tendency for {yt} to remain away from its mean, the greater the

variance.

To formally examine the properties of the {yt} sequence, the conditional mean and

variance are given by

Et−1yt = a0 + a1yt−1

and

var(yt|yt−1, yt−2, …) = Et−1(yt − a0 − a1yt−1)2

= Et−1(𝜀t)2

= 𝛼0 + 𝛼1(𝜀t−1)2
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Since 𝛼1 and 𝜀
2
t−1 cannot be negative, the minimum value for the conditional vari-

ance is 𝛼0. For any nonzero realization of 𝜀t−1, the conditional variance of yt is pos-
itively related to 𝛼1. The unconditional mean and variance of yt can be obtained by

solving the difference equation for yt and then taking expectations. If the process began
sufficiently far in the past (so that the arbitrary constant A0 can safely be ignored), the

solution for yt is

yt =
𝛼0

1 − a1
+

∞∑
i=0

ai
1
𝜀t−i (3.7)

Since E𝜀t = 0 for all t, the unconditional expectation of (3.7) is Eyt = a0∕(1 − a1).
The unconditional variance can be obtained in a similar fashion using (3.7). Given

that E𝜀t𝜀t−i is zero for all i ≠ 0, the unconditional variance of yt follows directly from

(3.7) as

var(yt) =
∞∑
i=0

a2i
1
var(𝜀t−i)

From the result that the unconditional variance of 𝜀t is constant [i.e., var(𝜀t) =
var(𝜀t−1) = var(𝜀t−2) = · · · = 𝛼0∕(1 − 𝛼1)], it follows that

var(yt) =
(

𝛼0
1 − 𝛼1

)(
1

1 − a2
1

)
Clearly, the variance of the {yt} sequence is increasing in 𝛼1 and in the absolute

value of a1. The point clearly generalizes to higher order autoregressive processes.

The ARCH process given by (3.2) has been extended in several interesting

ways. Engle’s (1982) original contribution considered the entire class of higher order

ARCH(q) processes:

𝜀t = vt

√√√√𝛼0 +
q∑
i=1

𝛼i𝜀
2
t−i (3.8)

In (3.8), all shocks from 𝜀t−1 to 𝜀t−q have a direct effect on 𝜀t, so that the condi-

tional variance acts like an autoregressive process of order q. It is a good exercise to

demonstrate that the forecast for Et𝜀
2
t+1 arising from (3.1) is precisely the same as that

from (3.8).

The GARCH Model

Bollerslev (1986) extended Engle’s original work by developing a technique that allows

the conditional variance to be an ARMA process. Now let the error process be such that

𝜀t = vt
√
ht

where 𝜎2
v = 1 and

ht = 𝛼0 +
q∑
i=1

𝛼i𝜀
2
t−i +

p∑
i=1

𝛽iht−i (3.9)
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Since {vt} is a white-noise process, the conditional and unconditional means of 𝜀t
are equal to zero. Taking the expected value of 𝜀t, it is easy to verify that

E𝜀t = Evt(ht)1∕2 = 0

The important point is that the conditional variance of 𝜀t is given by Et−1𝜀
2
t = ht.

Thus, the conditional variance of 𝜀t is the ARMA process given by the expression ht
in (3.9).

This generalized ARCH(p, q) model—called GARCH(p, q)—allows for both

autoregressive and moving average components in the heteroskedastic variance. If we

set p = 0 and q = 1, it is clear that the first-order ARCHmodel given by (3.2) is simply

a GARCH(0, 1) model. Similarly, if all values of 𝛽i equal zero, the GARCH(p, q)
model is equivalent to an ARCH(q) model. The benefits of the GARCH model

should be clear; a high-order ARCH model may have a more parsimonious GARCH

representation that is much easier to identify and estimate. This is particularly true

since all coefficients in (3.9) must be positive. Clearly, the more parsimonious model

will entail fewer coefficient restrictions. Moreover, to ensure that the variance is finite,

all characteristic roots of (3.9) must lie and imply that the process is stable.1

The key feature of GARCH models is that the conditional variance of the distur-
bances of the {yt} sequence acts like an ARMA process. Hence, it is to be expected

that the residuals from a fitted ARMAmodel should display this characteristic pattern.

To explain, suppose you estimate {yt} as an ARMA process. If your model of {yt} is

adequate, the ACF and PACF of the residuals should be indicative of a white-noise

process. However, the ACF of the squared residuals can help identify the order of the

GARCH process. Equation (3.9) looks very much like a standard ARMA(p, q) process.
As such, if there is conditional heteroskedasticity, the correlogram should be suggestive

of such a process. The technique to construct the correlogram of the squared residuals

is as follows:

STEP 1: Estimate the {yt} sequence using the “best-fitting” ARMAmodel (or regres-

sion model) and obtain the squares of the fitted errors {�̂�2t }. Also, calculate
the sample variance of the residuals (�̂�2) defined as

�̂�2 =
T∑
t=1

�̂�2t ∕T

where T = number of residuals.

STEP 2: Calculate and plot the sample autocorrelations of the squared residuals as

𝜌i =

T∑
t=i+1

(�̂�2t − �̂�2)(�̂�2t−i − �̂�2)

T∑
t=1

(�̂�2t − �̂�2)2

STEP 3: Recall from Chapter 2, in large samples the standard deviation of 𝜌i can

be approximated by 1∕
√
T .2 Individual values of 𝜌i that are significantly
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different from zero are indicative of GARCH errors. Ljung–Box Q-statistics
can be used to test for groups of significant coefficients. As in Chapter 2, the

statistic

Q = T(T + 2)
n∑
i=1

𝜌2i ∕(T − i)

has an asymptotic 𝜒2 distribution with n degrees of freedom if the {�̂�2t }
sequence is serially uncorrelated. Rejecting the null hypothesis that the {�̂�2t }
sequence is serially uncorrelated is equivalent to rejecting the null hypothe-

sis of no ARCH or GARCH errors. In practice, you should consider values

of n up to T∕4.
A more formal Lagrange multiplier test for ARCH errors is the test by McLeod

and Li (1983). The methodology involves the following two steps:3

STEP 1: Use OLS to estimate the most appropriate regression equation or ARMA

model and let {�̂�2t } denote the squares of the fitted errors.
STEP 2: Regress these squared residuals on a constant and on the q lagged values

�̂�2t−1, �̂�
2
t−2, �̂�

2
t−3,… , �̂�2t−q, that is, estimate a regression of the form

�̂�2t = 𝛼0 + 𝛼1�̂�
2
t−1 + 𝛼2�̂�

2
t−2 + · · · + 𝛼q�̂�

2
t−q

If there are no ARCH or GARCH effects, the estimated values of 𝛼1 through 𝛼q
should be zero. Hence, this regression will have little explanatory power so that the

coefficient of determination (i.e., the usual R2) will be quite low. Using a sample of

T residuals, under the null hypothesis of no ARCH errors, the test statistic TR2 con-

verges to a 𝜒2 distribution with q degrees of freedom. If TR2 is sufficiently large,

rejection of the null hypothesis that 𝛼1 through 𝛼q are jointly equal to zero is equiv-

alent to rejection of the null hypothesis of no ARCH errors. On the other hand, if TR2

is sufficiently low, it is possible to conclude that there are no ARCH effects. In the

small sample sizes typically used in applied work, an F-test for the null hypothesis

𝛼1 = · · · = 𝛼q = 0 has been shown to be superior to a 𝜒2 test. Compare the sample

value of F to the values in an F-table with q degrees of freedom in the numerator and

T − q degrees of freedom in the denominator.

3. ARCH AND GARCH ESTIMATES
OF INFLATION

ARCH and GARCH models have become very popular in that they enable the econo-

metrician to estimate the variance of a series at a particular point in time. Clearly, asset

pricing models indicate that the risk premium will depend on the expected return and

the variance of that return. The relevant measure is the risk over the holding period,

not the unconditional risk. Similarly, a portfolio manager who uses value-at-risk (see

the Supplementary Manual) might be unwilling to hold a portfolio with a 5% chance

of losing $1 million. The assessment of the risk should be determined using the condi-

tional distribution of asset returns. To use Engle’s example of the importance of using
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the conditional variance rather than the unconditional variance, consider the nature of

the wage-bargaining process. Clearly, firms and unions need to forecast the inflation

rate over the duration of the labor contract. Economic theory suggests that the terms of

the wage contract will depend on the inflation forecasts and the uncertainty concern-

ing the accuracy of these forecasts. Let Et𝜋t+1 denote the conditional expected rate of

inflation for t + 1 and let 𝜎2
𝜋t denote the conditional variance. If parties to the contract

have rational expectations, the terms of the contract will depend on Et𝜋t+1 and 𝜎2
𝜋t as

opposed to the unconditional mean or the unconditional variance.

This example illustrates a very important point. The rational expectations hypoth-

esis asserts that agents do not waste useful information. In forecasting any time series,

rational agents use the conditional distribution, rather than the unconditional distribu-

tion, of the series. Hence, any test of the wage bargaining model above that uses the

historical variance of the inflation rate would be inconsistent with the notion that ratio-

nal agents make use of all available information (i.e., conditional means and variances).

Engle’s 2003 Nobel prize (shared with Clive Granger) is a testament to the importance

of ARCH models. Theoretical models using variance as a measure of risk (such as
mean-variance analysis) can be tested using the conditional variance. As such, the
growth in the use of ARCH/GARCH methods has been nothing short of impressive.

In fact, there are so many types of models of conditional volatility that it is common

practice to refer to the entire class of models as ARCH or GARCH models.

Engle’s Model of U.K. Inflation

Although Section 2 focused on the residuals of a pure ARMA model, it is possible to

estimate the residuals of a standard multiple regression model as ARCH or GARCH

processes. In fact, Engle’s (1982) seminal paper considered the residuals of a simple

model of the wage/price spiral for the U.K. over the 1958Q2–1977Q2 period. Let pt
denote the log of the U.K. consumer price index and wt denote the log of the index

of nominal wage rates. Thus, the rate of inflation is 𝜋t = pt − pt−1, and the real wage

is rt = wt − pt. Engle reports that, after some experimentation, he chose the following

model of the U.K. inflation rate 𝜋t (standard errors are in parentheses):

𝜋t = 0.0257 + 0.334𝜋t−1 + 0.408𝜋t−4 − 0.404𝜋t−5 + 0.0559rt−1 + 𝜀t
(0.006) (0.103) (0.110) (0.114) (0.014) (3.10)

where var(𝜀t) is estimated to be the constant 8.9 × 105.

The nature of the model is such that increases in the previous period’s real wage

increase the current inflation rate. Lagged inflation rates at t − 4 and t − 5 are intended

to capture seasonal factors. All coefficients have a t-statistic greater than 3.0 and a bat-
tery of diagnostic tests did not indicate the presence of serial correlation. The estimated

variance was the constant value 8.9 × 105. In testing for ARCH errors, the Lagrange

multiplier test for ARCH(1) errors was not significant but the test for an ARCH(4) error

process yielded a value of TR2 equal to 15.2. At the 0.01 significance level, the critical

value of 𝜒2 with 4 degrees of freedom is 13.28; hence, Engle concludes that there are

ARCH errors.
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Engle specified anARCH(4) process forcing the following declining set of weights

on the errors:

ht = 𝛼0 + 𝛼1(0.4𝜀2t−1 + 0.3𝜀2t−2 + 0.2𝜀2t−3 + 0.1𝜀2t−4) (3.11)

The rationale for choosing a two-parameter variance function was to ensure the

nonnegativity and stationarity constraints that might not be satisfied using an unre-

stricted estimating equation. Given this particular set of weights, the necessary and

sufficient conditions for the two constraints to be satisfied are 𝛼0 > 0 and 0 < 𝛼1 < 1.

Engle shows that the estimation of the parameters of (3.10) and (3.11) can be con-

sidered separately without loss of asymptotic efficiency. One procedure is to estimate

(3.10) using OLS and to save the residuals. From these residuals, an estimate of the

parameters of (3.11) can be constructed, and based on these estimates, new estimates

of (3.10) can be obtained. To estimate both with full efficiency, continued iterations

can be checked to determine whether the separate estimates are converging. Now that

many statistical software packages contain nonlinear maximum likelihood estimation

routines, the current procedure is to simultaneously estimate both equations using the

methodology discussed in Section 8.

Engle’s maximum likelihood estimates of the model are

𝜋t = 0.0328 + 0.162𝜋t−1 + 0.264𝜋t−4 − 0.325𝜋t−5 + 0.0707rt−1 + 𝜀t
(0.005) (0.108) (0.089) (0.099) (0.012)

(3.12)

ht = 1.4 × 10−5 + 0.955(0.4𝜀2t−1 + 0.3𝜀2t−2 + 0.2𝜀2t−3 + 0.1𝜀2t−4)
(8.5 × 10−6) (0.298)

The estimated values of ht are the conditional forecast error variances. All coef-
ficients (except the first lag of the inflation rate) are significant at conventional levels.

For a given real wage, the point estimates of (3.12) imply that the inflation rate is a

convergent process. Using the calculated values of the {ht} sequence, Engle finds that
the standard deviation of inflation forecasts more than doubled as the economy moved

from the “predictable sixties into the chaotic seventies.” The point estimate of 0.955

indicates an extreme amount of volatility persistence.

Bollerslev’s Estimates of U.S. Inflation

Bollerslev’s (1986) estimate of U.S. inflation provides an interesting comparison of

a standard autoregressive time-series model (which assumes a constant variance), a

model with ARCH errors, and a model with GARCH errors. He notes that the ARCH

procedure has been useful in modeling different economic phenomena but points out

(see pp. 307–308):

Common to most … applications, however, is the introduction of a rather

arbitrary linear declining lag structure in the conditional variance equation

to take account of the long memory typically found in empirical work,

since estimating a totally free lag distribution often will lead to violation

of the nonnegativity constraints.
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There is no doubt that the lag structure Engle used tomodel ht in (3.12) is subject to
this criticism. Using quarterly data over the 1948Q2–1983Q4 period, Bollerslev (1986)
calculated the inflation rate (𝜋t) as the logarithmic change in the U.S. GNP deflator. He

then estimated the autoregression (the standard errors are in parentheses):

𝜋t = 0.240 + 0.552𝜋t−1 + 0.177𝜋t−2 + 0.232𝜋t−3 − 0.209𝜋t−4 + 𝜀t
(0.080) (0.083) (0.089) (0.090) (0.080)

(3.13)

where var(𝜀t) is estimated to be the constant value 0.282.

Equation (3.13) seems to have all the properties of a well-estimated time-series

model. All coefficients are significant at conventional levels, and the estimated values

of the autoregressive coefficients imply stationarity. Bollerslev reports that the ACF and

PACF do not exhibit any significant correlations at the 5% significance level. However,

as is typical of ARCH errors, the ACF and PACF of the squared residuals (i.e., 𝜀2t )

show significant correlations. The Lagrange multiplier tests for ARCH(1), ARCH(4),

and ARCH(8) errors are all highly significant.

Bollerslev next estimates the restricted ARCH(8) model originally proposed by

Engle and Kraft (1983). By way of comparison to (3.13), he finds

𝜋t = 0.138 + 0.423𝜋t−1 + 0.222𝜋t−2 + 0.377𝜋t−3 − 0.175𝜋t−4 + 𝜀t
(0.059) (0.081) (0.108) (0.078) (0.104)

(3.14)

ht = 0.058 + 0.802

8∑
i=1

[(9 − i)∕36]𝜀2t−i
(0.003) (0.265)

Note that the autoregressive coefficients of (3.13) and (3.14) are similar. The mod-

els of the variance, however, are quite different. Equation (3.13) assumes a constant

variance, whereas (3.14) assumes that the variance (ht) is a geometrically declining

weighted average of the variance in the previous eight quarters. Hence, the inflation rate

predictions of the two models should be similar, but the confidence intervals surround-

ing the forecasts will differ. Equation (3.13) yields a constant interval of unchanging

width. Equation (3.14) yields a confidence interval that expands during periods of infla-

tion volatility and contracts in relatively tranquil periods. Note that constraining the

coefficients of ht to follow a decaying pattern conserves degrees of freedom and consid-

erably eases the estimation process. Moreover, the lagged coefficients given by (9 − i)
are necessarily positive.

Of course, the declining weight structure of 8/36, 7/36, 6/36, … in (3.14) is

completely arbitrary. Bollerslev goes on to estimate the following parsimonious

GARCH(1, 1) model:

𝜋t = 0.141 + 0.433𝜋t−1 + 0.229𝜋t−2 + 0.349𝜋t−3 − 0.162𝜋t−4 + 𝜀t
(0.060) (0.081) (0.110) (0.077) (0.104)

(3.15)

ht = 0.007 + 0.135𝜀2t−1 + 0.829ht−1
(0.006) (0.070) (0.068)

Diagnostic checks indicate that the ACF and PACF of the squared residuals do not

reveal any coefficients exceeding 2T−0.5. LM tests for the presence of additional lags

of 𝜀2t are not significant at the 5% level.
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4. THREE EXAMPLES OF GARCH MODELS

GARCH models have found their greatest use in modeling financial data. However,

this section and Section 5 are intended to illustrate some other uses of GARCH mod-

els. The first example is a straightforward estimation of the variance of the price of oil.

It is shown that uncertainty in the petroleum market is very persistent. In the second

example, the issue is whether there has been a significant reduction in the volatility

of real GDP. In the third example, the intent is to obtain reasonable conditional confi-

dence intervals when forecasting. The example also shows that inference in an ARMA

(or regression) framework can be improved by accounting for GARCH effects. The

example in Section 5 uses a GARCH framework to measure the attitudes and behavior

toward risk in the U.S. broiler market.

A GARCH Model of Oil Prices

To get a better idea of the actual process of fitting a GARCH model, it is instructive

to work with the price of oil shown in Figure 3.6. The file OIL.XLS contains the 1382

weekly values of the spot price of a barrel of Brent crude over the periodMay 15, 1987,

to November 1, 2013. Use the data set to create the logarithmic change in the price of

oil as pt = 100.0∗[log(spott) − log(spott−1)]. If you experiment with several ARMA

models, you should find that the following MA model works well:

pt = 0.127 + 𝜀t + 0.177𝜀t−1 + 0.095𝜀t−3
(0.90) (6.72) (3.60)

The ACF of the residuals is

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
0.002 0.013 −0.002 0.009 −0.013 −0.008 0.010 0.005

Although the residuals are not serially correlated, the ACF of the squared residuals

is

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
0.18 0.17 0.14 0.16 0.12 0.15 0.18 0.15

If you conduct the McLeod–Li (1983) test for ARCH errors using four lags, you

should obtain

�̂�2t = 9.68 + 0.13�̂�2t−1 + 0.11�̂�2t−2 + 0.08�̂�2t−3 + 0.11�̂�2t−4

The sample value of the F-statistic for the null hypothesis that the coefficients 𝛼1
through 𝛼4 all equal zero is 26.42. With 4 numerator and 1372 denominator degrees of

freedom, we reject the null hypothesis of no ARCH errors at any conventional signifi-

cance level. If you are worried about the break shown in Figure 3.6 and include a break

dummy at July 11, 2008 (see Question 12 at the end of the chapter), you should find

that it is not significant.

It is generally best to begin with a very simple specification for the variance such

as an ARCH(1) or a GARCH(1, 1) model. If you begin by estimating a GARCH(1, 1)
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model for the conditional variance, you should find that the MA(3) term in the model

of the mean is not significant. If you reestimate the model without the 𝜀t−3 term in the

mean equation, you should obtain

pt = 0.130 + 𝜀t + 0.225𝜀t−1

ht = 0.402 + 0.097𝜀2t−1 + 0.881ht−1

In order to check for model adequacy, it is possible to form the standardized residu-

als and the squared standardized residuals as �̂�t∕h0.5t and �̂�2t ∕ht, respectively. In essence,
you standardize each estimated residual (�̂�t) by its own conditional standard devia-

tion (h0.5t ) and each squared residual by its own conditional variance. Another way to

view the standardized residuals is to reconsider equation (3.9). The estimated value of

�̂�t∕
√
ht is an estimate of vt. The estimated vt series needs to be serially uncorrelated

with a constant variance approximately equal to unity.

The autocorrelations of the standardized residuals and standardized squared resid-

uals are

Correlations 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
𝜀t∕h0.5t 0.05 −0.01 0.01 0.01 −0.04 −0.01 −0.00 −0.01
𝜀2t ∕ht 0.00 0.00 −0.00 −0.01 −0.02 −0.01 −0.01 −0.00

The Q-statistics for correlations in the �̂�t∕h0.5t series are Q(4) = 3.73 and Q(8) =
6.16. Both of these values are not significant at conventional levels so that we can

accept the null hypothesis of no remaining serial correlation. Similarly, the Q(4)- and
Q(8)-statistics for serial correlation in the �̂�2t ∕ht series are 0.00 and 1.36, respectively.

Since these are not significant, we can accept the null hypothesis of no remaining

GARCH effects. Instead of using the Q-statistics, you could check for remaining serial

autocorrelation using a model of the form:

�̂�t∕h0.5t = 𝛼0 + 𝛼1�̂�t−1∕h0.5t−1 + · · · + 𝛼n�̂�t−n∕h0.5t−n

In small samples, it is common to use an F-test (instead of a 𝜒2 test) to determine

whether the squared autocorrelations are significant. If you use four lags, you should

find that the F-statistic for the null hypothesis 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0 is 0.951 with a

prob-value of 0.43. Again, you can conclude that there is not any significant correlation
in the standardized residuals.

Given that coefficients of the GARCH model sum to nearly one (0.097 + 0.881 =
0.971), the conditional volatility is highly persistent. As such, we should anticipate

that any shock creating uncertainty in the oil market should show little tendency to

dissipate.

Volatility Moderation

There is a large body of literature indicating that the volatility of important macroeco-

nomic variables in the industrialized economies decreased in early 1984. For example,

Stock and Watson (2002) reported that the standard deviation of real U.S. GDP growth

during the 1984–2002 period was 61% smaller than that during the 1960–1983 period.
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As discussed in Romer (1999), some have argued that better monetary policies enabled

central bankers to better stabilize economic activity. Others have argued that it is a mat-

ter of luck that there had not been any major negative supply shocks (such as oil price

shocks or widespread failures) since the 1970s. Although this so-called “Great Mod-

eration” came to an end with the financial crisis of 2008, we can use the GARCH

framework to test whether or not there was a volatility break in 1984Q1.
The file RGDP.XLS contains the four series that were used to construct Figures 3.1

and 3.2. You can use the data in the file to construct the growth rate of real U.S.

GDP as yt = log(RGDPt∕RGDPt−1). Without going into detail, if you worked through

Chapter 2, it should be clear that a reasonable model for the growth rate of real

GDP is

yt = 0.005 + 0.371yt−1 + 𝜀t
(6.80) (6.44)

Although the ACF of the residuals is such that 𝜌2 = 0.12, the Ljung–BoxQ(4) and
Q(8) statistics of 5.48 and 9.98, respectively, are not statistically significant. The issue
is to measure the extent of the volatility break in 1984Q1. As a preliminary test, we can

try to determine if there is any conditional volatility. Since we are using quarterly data,

it makes sense to use the McLeod–Li (1983) test with a four-quarter lag. Consider

�̂�2t = 5.56x10−5 + 0.116�̂�2t−1 + 0.127�̂�2t−2 − 0.029�̂�2t−3 + 0.123�̂�2t−4

The sample value of the F-statistic for the null hypothesis that the coefficients 𝛼1
through 𝛼4 all equal zero is 3.48. With 4 numerator and 253 denominator degrees of

freedom, this is significant at the 0.009 level. Hence, there is strong evidence that the

{yt} series exhibits conditional volatility.
Now create the dummy variable Dt that is equal to 1 beginning in 1984Q1 and is

equal to 0 prior to 1984Q1. If you estimate the yt series allowing for ARCH(1) errors

and include Dt in the variance equation, you should find

yt = 0.004 + 0.398yt−1 + 𝜀t
(7.50) (6.76)

ht = 1.10 × 10−4 + 0.182�̂�2t−1 − 8.76 × 10−5Dt
(7.87) (2.89) (−6.14)

Although it is statistically significant, the magnitude of the ARCH(1) term is such

that there is only a small amount of volatility persistence. Given that the coefficient on

Dt is statistically different from zero, we can conclude that there is a volatility break

in 1984. Notice that the intercept of the variance equation was 1.10 × 10−4 prior to

1984Q1 and experienced a significant decline to 2.22 × 10−5(= 1.10 × 10−4 − 8.76 ×
10−5) beginning in 1984Q1. The estimated decline is even greater than the 61% figure

indicated by Stock and Watson (2002). Question 8 asks you to experiment with alter-

native models including one for the effects of the financial crisis.

A GARCH Model of the Spread

To take a more difficult example of fitting a GARCHmodel, reconsider the estimates of

the interest rate spread used in the last chapter. Recall that the Box–Jenkins approach

led us to give serious consideration to the ARMA[2,(1,7)] model. If you estimate the
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model for the entire 1960Q3–2012Q4 period, you should obtain

st = 1.215 + 0.373st−1 + 0.372st−2 + 𝜀t + 0.762𝜀t−1 − 0.141𝜀t−7
(6.00) (3.33) (3.50) (9.60) (−3.23)

(3.16)

As shown in Chapter 2, the estimated model performs quite well. All estimated

parameters are significant at conventional levels, and both the AIC and SBC selected

this specification. The Ljung–Box Q-statistics for serial correlation using lags of 4,

8, and 12 quarters are not significant at conventional levels. Moreover, there was no

evidence of structural change in the estimated coefficients. Nevertheless, during the

very late 1970s and early 1980s, there was a period of unusual volatility that could be

indicative of a GARCH process. The aim of this section is to illustrate a step-by-step

analysis of a GARCH estimation of the spread. You should be able to follow along

using the data in the file labeled QUARTERLY.XLS.

Formal Tests for ARCH Errors

Although (3.16) appears to be quite reasonable, the volatility during the 1970s

suggests that it is prudent to examine the ACF and PACF of the squared residuals.

The autocorrelations of the squared residuals are such that 𝜌1 = 0.043, 𝜌2 = 0.179,

𝜌3 = 0.178, 𝜌4 = 0.319, and 𝜌7 = 0.373. Other values for 𝜌i are generally 0.14 or less.

The Ljung–Box Q-statistics for the squared residuals are all highly significant; for

example, Q(4) = 35.98 and Q(8) = 71.75, which are both highly significant at any

conventional level.

Next, let �̂�t denote the residuals of (3.16) and consider the McLeod–Li (1983) test

using a lag length of seven quarters:

�̂�2t = 0.08 − 0.02�̂�2t−1+0.14�̂�2t−2+ 0.09�̂�2t−3+0.26�̂�2t−4−0.02�̂�2t−5−0.09�̂�2t−6+0.30�̂�2t−7
(1.82) (−0.29) (2.07) (1.30) (3.85) (−0.35) (−1.34) (4.34)

(3.17)

The value of TR2 = 46.17 so that there is strong evidence of ARCH errors; with

7 degrees of freedom, the 5% critical value of 𝜒2 is 14.1, and the 1% critical value

is 18.5. In practice, it is typical to use an F-test to determine whether it is possible to

reject the restriction 𝛼1 = 𝛼2 = · · · = 𝛼q = 0. In (3.17) with q = 7, the sample value of

F is 8.20; with 7 degrees of freedom in the numerator and 195 in the denominator, this

is highly significant.

At this point, you might be tempted to plot the ACF and PACF of the squared

residuals and estimate the squared residuals using Box–Jenkins methods. In this way,

a parsimonious model of the error process could be obtained. Also, you might be con-

cerned that some of the coefficients in (3.17) are negative and try to reestimate the

equation using some other value for q. However, a word of caution is in order. The

problem with this strategy is that (3.16) was estimated under the assumption that the

conditional variance was constant. Moreover, equations such as (3.17) can tell you

whether or not there are GARCH errors but not the precise order of p and/or q.

Alternative Estimates of the Model

The appropriate way to obtain the proper order of the GARCH process is to estimate

the model of the spread and the model of the conditional variance simultaneously. As

such, GARCH processes are typically estimated by maximum likelihood techniques
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so as to obtain estimates that are fully efficient. A low-order ARCH(q) process seems

like a reasonable starting place for a model of the conditional variance. Even though the

coefficient of �̂�2t−7 in (3.17) is significant, it is not a good idea to begin a highly parame-

terizedARCH(7)model. As noted byBollerslev (1986), theGARCH(1, 1) specification

can mimic the properties of a high-order ARCH process. Consider

st = 0.192 + 0.514st−1 + 0.304st−2 + 𝜀t + 0.686𝜀t−1 − 0.130𝜀t−7
(2.86) (4.02) (2.55) (8.08) (−2.65)

ht = 0.017 + 0.233𝜀2t−1 + 0.697ht−1
(1.93) (3.56) (11.42)

Themodel seems to be quite plausible. All of the slope coefficients are sensible and

are highly significant. Although the intercept in the ht equation is not significant at the
5% level, you do not want to eliminate this term—without an intercept, the conditional

volatility could be zero. The autoregressive coefficients in the model of the mean imply

convergence. The coefficients in the ht equation are both positive and the sum 𝛼1 +
𝛽1 is less than unity. Now, form the standardized errors as the residuals divided by

their conditional standard deviations, that is form the series 𝜀t∕(ht)0.5. The estimated

standardized residuals are an estimate of the vt series. If you check for serial correlation
in the standardized residuals, you will find that the autocorrelations are such that

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
0.04 0.01 0.02 0.07 −0.06 −0.14 −0.01 0.02

The Q-statistics are Q(4) = 1.47 and Q(8) = 7.07 so that we can be confident that

there is no remaining serial correlation in the standardized residuals. Now, the issue is

whether or not the GARCH(1, 1) specification is sufficient to capture all of the dynam-

ics in the conditional variance. To answer this question, form the autocorrelations of

the squared standardized residuals:

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
−0.13 0.16 0.00 0.05 0.00 −0.06 0.14 −0.03

Although the values of 𝜌1 and 𝜌2 are reasonably large, we can formally test for

remaining GARCH errors using the McLeod–Li (1983) test. If you use two lags of the

standardized squared residuals, you should obtain

�̂�2t ∕ht = 0.95 − 0.11�̂�2t−1∕ht−1 + 0.14�̂�2t−2∕ht−2
(6.11) (−1.57) (2.10)

The value of TR2 is 7.66; with 2 degrees of freedom, the 5% critical value of 𝜒2 is

5.99, and the 2% critical value is 7.38. As such, we can reject the null hypothesis of no

remaining GARCH effects. To improve on the small sample properties of the 𝜒2 test,

you can test the joint restriction that the coefficients of 𝜀2t−1 and 𝜀2t−2 equal zero using

an F-test. The sample value of F is 3.92. With 2 numerator degrees of freedom and

205 denominator degrees of freedom, the significance level of the test is 2.1%. Again,
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we reject the null hypothesis of no remaining GARCH effects and try several other

specifications for the ht equation.
If you try to capture any remaining GARCH effects by estimating a GARCH(1, 2)

or a GARCH(2, 1) model, you should find that both the models are unsatisfactory.

Specifically, the coefficient of 𝜀2t−1 is negative and insignificant in the GARCH(1, 2)

model and the coefficient of ht−2 is negative in the GARCH(2, 1) model. At this point,

there is an important decision to make. Some researchers might stop at this point and

settle for the model at hand. This group might be particularly concerned about overfit-

ting the data since the model of the mean seems reasonable and the ht equation captures
most of the conditional volatility in a reasonably parsimonious way. Others might go

on to eliminate any remaining conditional volatility. For our purposes, it is instructive

to try an ARCH(2) specification as an alternative to the GARCH(1, 1) reported above.

If you estimate the ARCH(2) model, you should find

st = 0.307 + 0.586st−1 + 0.151st−2 + 𝜀t + 0.688𝜀t−1 − 0.112𝜀t−7
(6.46) (17.84) (5.49) (21.66) (−2.71)

ht = 0.115 + 0.071𝜀2t−1 + 0.387𝜀2t−2
(8.26) (1.16) (3.35)

Notice that the coefficient on 𝜀2t−1 has a very small t-statistic. However, it hardly
makes sense to eliminate this term while retaining the second lagged term. A second

problem with the ARCH(2) model is that it does not capture all of the conditional

volatility in the spread. The autocorrelations of the standardized errors and the squared

standardized errors are given by

Correlations 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
𝜀t∕h0.5t 0.05 0.09 0.08 0.08 −0.02 −0.09 −0.02 0.04

𝜀2t ∕ht −0.02 −0.04 0.21 0.21 0.01 −0.01 −0.24 −0.08

Although the correlations of the standardized residuals are small, some of those

for the standardized squared residuals are rather large. If you perform the formal test

for remaining GARCH errors, you should obtain

�̂�2t ∕ht = 0.67 − 0.06�̂�2t−1∕ht−1 − 0.03�̂�2t−2∕ht−2 + 0.21�̂�2t−3∕ht−3 + 0.22�̂�2t−4∕ht−4
(3.09) (−0.91) (−0.42) (3.07) (3.25)

Given that the value of TR2 is 18.82 and that the F-statistic for the null hypothesis
that all coefficients on the �̂�2t−i terms jointly equal zero is 5.50, we can conclude that

the ARCH(2) specification is not adequate. In order to capture some of the remaining

serial correlation in the standardized squared residuals (i.e., the 𝜀2t ∕ht series), if you try
an ARCH(3) model, you should find

st = 0.222 + 0.588st−1 + 0.194st−2 + 𝜀t + 0.700𝜀t−1 − 0.157𝜀t−7
(5.95) (19.50) (5.25) (25.48) (−5.99)

ht = 0.069 + 0.068𝜀2t−1 + 0.374𝜀2t−2 + 0.271𝜀2t−3
(6.09) (1.23) (3.91) (2.89)
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The autocorrelations of the standardized errors and the squared standardized errors

are given by

Correlations 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
𝜀t∕h0.5t −0.05 0.07 0.04 0.07 −0.05 −0.11 0.04 −0.12
𝜀2t ∕ht −0.07 −0.03 −0.05 0.15 −0.04 −0.03 −0.15 0.03

You should be able to show that there is no remaining serial correlation. For

example, if you perform the test for remaining serial correlation with four lags, the

value of TR2 is 6.29 and the sample value of F is 1.58. As such, the ARCH(3) model

seems to do quite well. At this point, you can compare the GARCH(1, 1) to the

ARCH(3) model. Both yield reasonable coefficient estimates, although the ARCH(3)

is superior in that it captures all of the conditional volatility. If we use the model

selection criteria, the AIC and SBC values for the GARCH(1, 1) model are 247.91

and 274.68 while those for the ARCH(3) are 243.91 and 274.03, respectively. Thus,

the ARCH(3) also yields a better fit than the GARCH(1, 1).

Although the model of the mean implies that the spread is reasonably persistent

(the sum of the autoregressive coefficients is 0.782), for reasons discussed in Section 10

of Chapter 2, we do not want to use the first difference of the spread. The solid line

in Figure 3.8 shows the one-step-ahead forecast of Etst+1 using the ARMA[2, (1, 7)]
model with ARCH(3) errors. Since ht is an estimate of the conditional variance of st,
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FIGURE 3.8 Forecasts of the Spread
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(ht+1)0.5 is the standard error of the one-step-ahead forecast. The dashed lines in the

figure represent a band of ±2(ht+1)0.5 surrounding the one-step-ahead forecast of st+1.
In contrast to the assumption of a constant conditional variance, note that the bandwidth

increases in the late 1970s through the mid-1980s.

5. A GARCH MODEL OF RISK

An interesting application of GARCH modeling is provided by Holt and Aradhyula

(1990). Their theoretical framework stands in contrast to the cobweb model (see

Section 5 of Chapter 1) in that rational expectations are assumed to prevail in the

agricultural sector. The aim of the study is to examine the extent to which producers

in the U.S. broiler (i.e., chicken) industry exhibit risk-averse behavior. To this end, the

supply function for the U.S. broiler industry takes the form

qt = a0 + a1p
e
t − a2ht − a3pfeedt−1 + a4hatcht−1 + a5qt−4 + 𝜀1t (3.18)

where: qt = quantity of broiler production (in millions of pounds) in t
pet = expected real price of broilers at t conditioned on the information at

t − 1 (so that pet = Et−1pt)
ht = expected variance of the price of broilers in t conditioned on the

information at t − 1

pfeedt−1 = real price of broiler feed (in cents per pound) at t − 1

hatcht−1 = hatch of broiler-type chicks in commercial hatcheries (measured in

thousands) in period t − 1

𝜀1t = supply shock in t

and the length of the time period is one quarter. Note that seasonal dummy variables

were also included in the model.

The supply function is based on the biological fact that the production cycle of

broilers is about 2 months. Since bimonthly data are unavailable, the model assumes

that the supply decision is positively related to the price expectation formed by produc-

ers in the previous quarter. Given that feed accounts for the bulk of production costs,

real feed prices that lagged one quarter are negatively related to broiler production in t.
Obviously, the hatch available in t − 1 increases the number of broilers that can be mar-

keted in t. The fourth lag of broiler production is included to account for the possibility
that production in any period may not fully adjust to the desired level of production.

For our purposes, the most interesting part of the study is the negative effect of

the conditional variance of price on broiler supply. The timing of the production pro-

cess is such that feed and other production costs must be incurred before output is sold

in the market. In the planning stage, producers must forecast the price that will prevail

2 months hence. The greater the pet , the greater the number of chicks that will be fed and

brought to market. If price variability is very low, these forecasts can be held with confi-

dence. Increased price variability decreases the accuracy of the forecasts and decreases

broiler supply. Risk-averse producers will opt to raise and market fewer broilers when

the conditional volatility of price is high.
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In the initial stage of the study, broiler prices are estimated as the AR(4) process:

(1 − 𝛽1L − 𝛽2L
2 − 𝛽3L

3 − 𝛽4L
4)pt = 𝛽0 + 𝜀2t (3.19)

Ljung–Box Q-statistics for various lag lengths indicate that the residual series

appear to be white noise at the 5% level. However, the Ljung–Box Q-statistic for the
squared residuals—that is, the {𝜀2

2t}—of 32.4 is significant at the 5% level. Thus, Holt

and Aradhyula conclude that the variance of the price is conditionally heteroskedastic.

In the second stage of the study, several low-order GARCH estimates of (3.19)

are compared. Goodness-of-fit statistics and significance tests suggest a GARCH(1, 1)

process. In the third stage, the supply equation (3.18) and a GARCH(1, 1) process

are simultaneously estimated. The estimated price equation (with standard errors in

parentheses) is

(1 − 0.511L − 0.129L2 − 0.130L3 − 0.138L4) pt = 1.632 + 𝜀2t
(0.092) (0.098) (0.094) (0.073) (1.347) (3.20)

ht = 1.353 + 0.162𝜀2
2t−1 + 0.591ht−1

(0.747) (0.80) (0.175) (3.21)

Equations (3.20) and (3.21) are well-behaved in that (1) all estimated coefficients

are significant at conventional significance levels; (2) all coefficients of the conditional

variance equation are positive; and (3) the coefficients all imply convergent processes.

Holt and Aradhyula assume that producers use (3.20) and (3.21) to form their price

expectations. Combining these estimates with (3.18) yields the supply equation

qt = 2.767pet − 0.521ht − 4.325pfeedt−1 + 1.887hatcht−1 + 0.603qt−4 + 𝜀1t
(0.585) (0.344) (1.463) (0.205) (0.065)

All estimated coefficients are significant at conventional levels and have the

appropriate sign. An increase in the expected price increases broiler output. Increased

uncertainty, as measured by conditional variance, acts to decrease output. This

forward-looking rational expectations formulation is at odds with the more traditional

cobweb model discussed in Chapter 1. In order to compare the two formulations,

Holt and Aradhyula (1990) also considered an adaptive expectations formulation (see

Exercise 2 in Chapter 1). Under adaptive expectations, price expectations are formed

according to a weighted average of the previous period’s price and the previous

period’s price expectation:

pet = 𝛼pt−1 + (1 − 𝛼)pet−1
or, solving for pet in terms of the {pt} sequence, we obtain

pet = 𝛼

∞∑
i=0

(1 − 𝛼)ipt−1−i

Similarly, the adaptive expectations formulation for conditional risk is given by

ht = 𝛽

∞∑
i=0

(1 − 𝛽)i(pt−1−i − pet−1−i)
2 (3.22)

where 0 < 𝛽 < 1 and (pt−1−i − pet−1−i)
2 is the forecast-error variance for period t − i.
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Note that, in (3.22), the expected measure of risk as viewed by producers is not

necessarily the actual conditional variance. The estimates of the two models differ con-

cerning the implied long-run elasticities of supply with respect to expected price and

conditional variance. Respectively, the estimated long-run elasticities of supply with

respect to expected price are 0.587 and 0.399 in the rational expectations and adap-

tive expectations formulations. Similarly, rational and adaptive expectations formula-

tions yield long-run supply elasticities of conditional variance of −0.030 and −0.013,
respectively. Not surprisingly, the adaptive expectations model suggests a more slug-

gish supply response than does the forward-looking rational expectations model.

6. THE ARCH-M MODEL

Engle, Lilien, and Robins (1987) extended the basic ARCH framework to allow the

mean of a sequence to depend on its own conditional variance. This class of model,

called the ARCH in mean (ARCH-M) model, is particularly suited to the study of asset

markets. The basic insight is that risk-averse agents will require compensation for hold-

ing a risky asset. Given that an asset’s riskiness can be measured by the variance of

returns, the risk premium will be an increasing function of the conditional variance of

returns. Engle, Lilien, and Robins express this idea by writing the excess return from

holding a risky asset as

yt = 𝜇t + 𝜀t (3.23)

where: yt = excess return from holding a long-term asset relative to a one-period

treasury bill

𝜇t = risk premium necessary to induce the risk-averse agent to hold the

long-term asset rather than the one-period bond

𝜀t = unforecastable shock to the excess return on the long-term asset

To explain (3.23), note that the expected excess return from holding the long-term

asset must be just equal to the risk premium:

Et−1yt = 𝜇t

Engle, Lilien, and Robins assume that the risk premium is an increasing function

of the conditional variance of 𝜀t; in other words, the greater the conditional variance

of returns, the greater the compensation necessary to induce the agent to hold the

long-term asset. Mathematically, if ht is the conditional variance of 𝜀t, the risk premium

can be expressed as

𝜇t = 𝛽 + 𝛿ht 𝛿 > 0 (3.24)

where ht is the ARCH(q) process:

ht = 𝛼0 +
q∑
i=1

𝛼i𝜀
2
t−i (3.25)

As a set, equations (3.23), (3.24), and (3.25) constitute the basic ARCH-Mmodel.

From (3.23) and (3.24), the conditional mean of yt depends on the conditional vari-

ance ht. From (3.25), the conditional variance is an ARCH(q) process. It should be
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pointed out that, if the conditional variance is constant (i.e., if 𝛼1 = 𝛼2 = · · · = 𝛼q =
0), the ARCH-M model degenerates into the more traditional case of a constant risk

premium.

Figure 3.9 illustrates two different ARCH-M processes. Panel (a) of the figure

shows 60 realizations of a simulated white-noise process denoted by {𝜀t}. Note the

temporary increase in volatility during periods 20–30. By initializing 𝜀0 = 0, the con-

ditional variance was constructed as the first-order ARCH process:

ht = 1 + 0.65𝜀2t−1

As you can see in Panel (b), the volatility in {𝜀t} translates into increases in con-

ditional variance. Note that large positive and negative realizations of 𝜀t−1 result in a

large value of ht; it is the square of each {𝜀t} realization that enters the conditional

variance. In Panel (c), the values of 𝛽 and 𝛿 are set equal to −4 and +4, respectively. As
such, the yt sequence is constructed as yt = −4 + 4ht + 𝜀t. You can clearly see that yt is
above its long-run value during the period of volatility. In the simulation, conditional

volatility translates itself into increases in the values of {yt}. In the latter portion of

the sample, the volatility of {𝜀t} diminishes, and the values y30 through y60 fluctuate
around their long-run mean.

Panel (d) reduces the influence of ARCH-M effects by reducing the magnitude of

𝛿 and 𝛽 (see Exercise 4). Obviously, if 𝛿 = 0, there are no ARCH-M effects at all. As

you can see by comparing the two lower graphs, yt more closely mimics the 𝜀t sequence

when the magnitude of 𝛿 is diminished from 𝛿 = 4 to 𝛿 = 1.4
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FIGURE 3.9 Simulated ARCH-M Processes
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As in any ARCH or GARCH model, a Lagrange multiplier test can be used to

detect the presence of conditional volatility. The LM tests are relatively simple to

conduct since they do not require estimation of the full model. The statistic TR2 is

asymptotically distributed as 𝜒2 with degrees of freedom equal to the number of

restrictions.

Implementation

Using quarterly data from 1960Q1 to 1984Q2, Engle, Lilien, and Robins (1987) con-

structed the excess yield on 6-month treasury bills as follows. Let rt denote the quarterly
yield on a 3-month treasury bill held from t to (t + 1). Rolling over all proceeds, at the
end of two quarters, an individual investing $1 at the beginning of period t will have
(1 + rt)(1 + rt+1) dollars. In the same fashion, if Rt denotes the quarterly yield on a

6-month treasury bill, buying and holding the 6-month bill for the full two quarters

will result in (1 + Rt)2 dollars. The excess yield, yt, due to holding the 6-month bill is

yt = (1 + Rt)2 − (1 + rt+1)(1 + rt)

which is approximately equal to

yt = 2Rt − rt+1 − rt

The results from regressing the excess yield on a constant are as follows, with the

t-statistic in parentheses:
yt = 0.142 + 𝜀t

(4.04) (3.26)

The excess yield of 0.142% per quarter is more than four standard deviations from

zero. The problem with this estimation method is that the post-1979 period showed

markedly higher volatility than the earlier sample period. To test for the presence of

ARCH errors, the squared residuals were regressed on a weighted average of past

squared residuals, as in (3.11). The LM test for the restriction 𝛼1 = 0 yields a value

of TR2 = 10.1, which has a 𝜒2 distribution with 1 degree of freedom. At the 1% sig-

nificance level, the critical value of 𝜒2 with 1 degree of freedom is 6.635; hence, there

is strong evidence of heteroskedasticity. Thus, there appear to be ARCH errors; as a

result, (3.26) is misspecified if individuals demand a risk premium.

The maximum likelihood estimates of the ARCH-M model and the associated

t-statistics are

yt = −0.0241 + 0.687ht + 𝜀t
(−1.29) (5.15)

ht = 0.0023 + 1.64(0.4𝜀2t−1 + 0.3𝜀2t−2 + 0.2𝜀2t−3 + 0.1𝜀2t−4)
(1.08) (6.30)

The estimated coefficients imply a time-varying risk premium. The estimated

parameter of the ARCH equation of 1.64 implies that the unconditional variance is

infinite. Although this is troublesome, the conditional variance is finite. Shocks to 𝜀t−i
act to increase the conditional variance so that there are periods of tranquility and

volatility. During volatile periods, the risk premium rises as risk-averse agents seek

assets that are conditionally less risky.
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Exercise 6 asks you to estimate such an ARCH-M model using simulated data.

The questions are designed to guide you through a typical estimation procedure.

7. ADDITIONAL PROPERTIES
OF GARCH PROCESSES

Whenever you estimate a GARCH process, you will be estimating the two interrelated

equations

yt = a0 + 𝛽xt + 𝜀t

and

𝜀t = vt(𝛼0 + 𝛼1𝜀
2
t−1 + · · · + 𝛼q𝜀

2
t−q + 𝛽1ht−1 + · · · + 𝛽pht−p)0.5 (3.27)

where xt can contain exogenous variables and/or an ARMA process of order (pm, qm).
The first equation is a model of the mean and the second yields the model of the

variance. The symbols pm and qm are used to denote that the order of the ARMAprocess

for the mean need not equal the order of the GARCH(p, q) equation. The two equations
are related in that ht is the conditional variance of 𝜀t; hence, the GARCH process of

(3.27) is the conditional variance of the mean equation. Do not make the mistake of

assuming that 𝜀2t is the conditional variance itself. Given that 𝜀t = vt(ht)0.5, it follows
that the relationship between ht and 𝜀2t is

𝜀2t = v2t ht

and, since Ev2t = Et−1v
2
t = 1,

Et−1𝜀
2
t = ht

Thus, ht is the conditional variance of the {𝜀t} sequence.
A GARCH(1, 1) specification is the most popular form of conditional volatility.

This is especially true for financial data where volatility shocks are very persistent. As

such, it is worthwhile to pay special attention to this form of GARCH process.

Properties of GARCH(1, 1) Error Processes

Given the large number of GARCH(1, 1) models found in the literature, it is desir-

able to establish the properties of this particular type of error process. In doing so, we

can generalize some of the discussion of ARCH(1) models presented in Section 2. If

you take the conditional expectation of the GARCH(1, 1) process, you should have no

trouble verifying that

Et−1𝜀
2
t = 𝛼0 + 𝛼1𝜀

2
t−1 + 𝛽1ht−1

or

ht = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛽1ht−1 (3.28)

The mean of 𝜺t: The unconditional mean of 𝜀t is zero. If you take the expected value

of (3.27), you obtain

E𝜀t = E[vt(ht)1∕2]

Since ht does not depend on vt and Evt = 0, it immediately follows that E𝜀t = 0.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c03.tex V2 - 09/02/2014 1:54pm Page 147

ADDITIONAL PROPERTIES OF GARCH PROCESSES 147

The variance of 𝜺t: Since

𝜀2t = v2t (𝛼0 + 𝛼1𝜀
2
t−1 + 𝛽1ht−1)

it follows that the unconditional variance of a GARCH(1, 1) process is

E𝜀2t = Ev2t (𝛼0 + 𝛼1E𝜀
2
t−1 + 𝛽1Eht−1) (3.29)

We can simplify this expression if we recognize that Ev2t = 1 and E𝜀2t−i = Eht−i.
This second relationship follows from the law of iterated expectations. The form
of the law we need guarantees that E𝜀2t = E(Et−1𝜀2t ). In essence, the unconditional
expectation of the conditional variance is just the unconditional variance. As such,

we can lag the relationship one period and write E𝜀2t−1 = E(Et−2𝜀2t−1), so that E𝜀
2
t−1 =

E(ht−1). If we substitute this condition into (3.29), it follows that

E𝜀2t = 𝛼0 + (𝛼1 + 𝛽1)E𝜀2t−1

Since the unconditional variances are such that E𝜀2t = E𝜀2t−1, the solution for the
unconditional variance is clear. Given that 𝛼1 + 𝛽1 < 1, the unconditional variance is

E𝜀2t = 𝛼0∕(1 − 𝛼1 − 𝛽1)

For the more general GARCH(p, q) model, it follows that the variance will be

finite if

1 −
q∑
i=1

𝛼i −
p∑
i=1

𝛽i > 0

The autocorrelation function: The autocorrelations E𝜀t𝜀t−j are all equal to zero.
Consider

E𝜀t𝜀t−j = E[vt(ht)1∕2vt−j(ht−j)1∕2]

Since ht, vt−j, and ht−j do not depend on the value of vt and Evt = 0, it follows that

all autocorrelations are zero for j ≠ 0.

The conditional variance: The conditional variance of the error process is ht.
Consider

Et−1𝜀
2
t = Et−1v

2
t ht = ht

This simple result is the essential feature of GARCH modeling. The conditional

variance of the error process is not constant. With the appropriate specification of the

parameters of ht, it is possible to model and forecast the conditional variance of the

{yt} process.
Volatility persistence: In a GARCH process, the errors are uncorrelated in that

E𝜀t𝜀t−j = 0. However, as shown in (3.28), the squared errors of a GARCH(1, 1)

process are correlated. You should be able to show that the degree of autoregressive

decay of the squared residuals is (𝛼1 + 𝛽1). In fact, the ACF of the squared residuals of

a GARCH(1, 1) process tends to behave like that of an ARMA(1, 1) process.
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Large values of both 𝛼1 and 𝛽1 act to increase the conditional volatility but they do

so in different ways. The larger is 𝛼1, the larger is the response of ht to new information;

clearly, if 𝛼1 is large, a vt shock has a sizable effect on 𝜀
2
t and ht+1. To illustrate the point,

two GARCH(1, 1) processes were simulated using the identical set of random numbers

for the {vt} sequence. In both cases, h0 and 𝜀0 were initialized, and the remaining values

of the series were constructed using the relationship 𝜀2t = v2t ht and

Model 1∶ ht = 1 + 0.6𝜀2t−1 + 0.2ht−1
Model 2∶ ht = 1 + 0.2𝜀2t−1 + 0.6ht−1

In order to avoid the effect of selecting the specific values for the initial conditions,

the first 100 realizations were eliminated; the remaining 250 realizations are shown in

Figure 3.10. Given the value of ht, a large vt shock has its immediate effect on 𝜀2t . Since

Model 1 has a larger value of 𝛼1, the effect of this shock is very pronounced in period

t + 1. For Model 2, 𝛼1 is equal to only 0.2 so that peaks in the {ht} series are not as

large as those from Model 1. However, since Model 2 has the larger value of 𝛽1, its

conditional variance displays more autoregressive persistence.

Also note that the value of 𝛼1 must be strictly positive. Hence, the analogy between

the ACF of the squared residuals of a GARCH(1, 1) and the ACF of the residuals from

an ARMA(1, 1) process is not perfect. If 𝛼1 = 0, it is possible to write (3.28) as

ht = 𝛼0 + 𝛽1ht−1

so that there is no way for the {𝜀t} series to affect the {ht} series. As such, the model

for the conditional variance cannot be identified. The analogy is even less clear in

the more general case of a GARCH(p, q) process. Bollerslev (1986) proves that the

ACF of the squared residuals resulting from a GARCH(p, q) process acts like that of
an ARMA(m, p) process where m = max(p, q). This makes identification of the most

appropriate values of p and q somewhat difficult. Question 3 at the end of the chapter
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FIGURE 3.10 Persistence in the GARCH(1,1) Model
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guides you through a proof that the ACF of a GARCH(2, 1) has the same properties as

the ACF of a GARCH(2, 2) model.

Assessing the Fit

One way to assess the adequacy of a GARCH model is to see how well it fits the

data. It is now standard to assess the fit of a GARCH model using model selection

criteria such as the AIC and SBC discussed in Chapter 2. First consider the sum of

squared residuals (SSR) as a measure of the goodness of fit. Since SSR = Σ𝜀2t , the sum
of the squared residuals actually measures squared deviations of the model of the mean.

Moreover, since 𝜀t = vt(ht)1∕2, the pure innovations in the GARCHmodel are given by

the vt sequence. Instead of using SSR, in a GARCH model, a reasonable measure of

the goodness of fit is the sum of squares of the {vt} sequence

SSR′ =
T∑
t=1

v2t

Given that 𝜀t = vt(ht)1∕2, you can also write SSR′ as

SSR′ =
T∑
t=1

(𝜀2t ∕ht) (3.30)

The point is that SSR′ is a measure of the squared errors relative to the fitted values

of the conditional variance. Since SSR′ will be small if the fitted values of ht are close
to 𝜀2t , you can select the model that yields the smallest value of SSR′. Another way to

make the same point is to recognize that 𝜀t∕h0.5t is a standardized residual in that the

value of 𝜀t is divided by its conditional standard error. Hence, SSR
′ measures the sum

of squares of the standardized residuals.

Another goodness-of-fit measure is simple, the maximized value of the likelihood

function. As explained in more detail in Section 8, if you assume that the error process

is normal, the maximized value of the log likelihood function can be written such that

2 lnL = −
T∑
t=1

[ln(ht) + 𝜀2t ∕ht] − T ln(2𝜋)

= −
T∑
t=1

[ln(ht) + v2t ] − T ln(2𝜋)

where L = maximized value of the likelihood function.

Hence, models with a large value of L will tend to have small values of ht and/or
small values of SSR′. Notice that L does not include a penalty for the estimation of

additional parameters. However, you can construct the AIC and SBC using

AIC = −2 lnL + 2n

SBC = −2 lnL + n ln(T)

where L is defined above and n is the number of estimated parameters. As discussed in

Chapter 2, some programmers will not incorporate the expression −T ln(2𝜋) into the

calculation of the likelihood function when reporting model-selection criteria.
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Diagnostic Checks for Model Adequacy

In addition to providing a good fit, an estimated GARCH model should capture all

dynamic aspects of the model of the mean and the model of the variance. The esti-

mated residuals should be serially uncorrelated and should not display any remaining

conditional volatility. You can test to ensure that your model has captured these proper-

ties by standardizing the residuals as indicated above. Simply divide �̂�t by ĥ
1∕2
t in order

to obtain an estimate of what we have been calling the {vt} sequence. Since 𝜀t has a

zero mean and a variance of ht, you can think of vt = 𝜀t∕(ht)1∕2 as the standardized

value of 𝜀t. The resulting series, which we will call st, should have a mean of zero and

a variance of unity.

If there is any serial correlation in the {st} sequence, the model of the mean is not

properly specified. To test the model of the mean, form the Ljung–Box Q-statistics for
the {st} sequence. You should not be able to reject the null hypothesis that the various
Q-statistics are equal to zero.

To test for remaining GARCH effects, form the Ljung–Box Q-statistics of the

squared standardized residuals (i.e., s2t ). The basic idea is that s2t is an estimate of

𝜀2t ∕ht = v2t . Hence, the properties of the s
2
t sequence should mimic those of v2t . If there

are no remaining GARCH effects, you should not be able to reject the null hypothesis

that the sample values of the Q-statistics are equal to zero. Otherwise, there is remain-

ing conditional volatility. If you assumed normality, you should check to determine

whether the estimated {vt} series actually follows a normal distribution.

Once you have obtained a satisfactory model, you can forecast future values of

yt and its conditional variance. Moreover, you can place confidence bands around the

forecast using the estimates of conditional standard deviation. Since Et𝜀
2
t+1 = ht+1, a

two-standard deviation confidence interval for your forecast can be constructed using

Etyt+1 ± 2(ht+1)0.5

The result is quite general; since the mean of each value of {𝜀t} is zero, the optimal
j-step-ahead forecast of yt+j does not depend on the presence of GARCH errors. How-
ever, the size of any confidence interval surrounding the forecasts does depend on the

conditional volatility. Clearly, in times when there is substantial conditional volatility

(i.e., when ht+1 is large), the variance of the forecast error will be large. Simply put, we

cannot be as confident of our forecasts in periods when conditional volatility is high.

Forecasting the Conditional Variance

The one-step-ahead forecast of the conditional variance is easy to obtain. If we update

ht by one period, we find

ht+1 = 𝛼0 + 𝛼1𝜀
2
t + 𝛽1ht

Since 𝜀2t and ht are known in period t, the one-step-ahead forecast is simply 𝛼0 +
𝛼1𝜀

2
t + 𝛽1ht. It is only somewhat more difficult to obtain the j-step-ahead forecasts. To

begin, use the fact that 𝜀2t = v2t ht so that 𝜀2t+j = v2t+jht+j. If you update by j periods and
take the conditional expectation of each side, it should be clear that

Et𝜀
2
t+j = Et(v2t+jht+j)
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Since vt+j is independent of ht+j and Etv
2
t+j = 1, it follows that

Et𝜀
2
t+j = Etht+j (3.31)

We can use (3.31) to obtain the forecasts of the conditional variance of the

GARCH(1, 1) process. Update (3.28) by j periods to obtain

ht+j = 𝛼0 + 𝛼1𝜀
2
t+j−1 + 𝛽1ht+j−1

and take the conditional expectation

Etht+j = 𝛼0 + 𝛼1Et𝜀
2
t+j−1 + 𝛽1Etht+j−1

If you combine this relationship with (3.31), it is easy to verify that

Etht+j = 𝛼0 + (𝛼1 + 𝛽1)Etht+j−1 (3.32)

Thus, (3.32) can be viewed as a first-order difference equation in the Etht+i
sequence with the initial condition for ht. Given ht, we can use (3.32) to forecast all

subsequent values of the conditional variance as

Etht+j = 𝛼0[1 + (𝛼1 + 𝛽1) + (𝛼1 + 𝛽1)2 + · · · + (𝛼1 + 𝛽1)j−1] + (𝛼1 + 𝛽1)jht
If 𝛼1 + 𝛽1 < 1, the conditional forecasts of ht+j will converge to the long-run value

Eht = 𝛼0∕(1 − 𝛼1 − 𝛽1)

Similarly, we can forecast the conditional variance of the ARCH(q) process

ht = 𝛼0 + 𝛼1𝜀
2
t−1 + · · · + 𝛼q𝜀

2
t−q (3.33)

If we update (3.33) by one period, we obtain

ht+1 = 𝛼0 + 𝛼1𝜀
2
t + · · · + 𝛼q𝜀

2
t−q+1

As mentioned above, at period t, we have all of the information necessary to calcu-

late the value of ht+1 for any GARCH process. Now, if we update (3.33) by two periods

and take the conditional expectation, we obtain

Etht+2 = 𝛼0 + 𝛼1Et𝜀
2
t+1 + · · · + 𝛼q𝜀

2
t−q+2

Since Et𝜀
2
t+1 = ht+1, it follows that

Etht+2 = 𝛼0 + 𝛼1ht+1 + · · · + 𝛼q𝜀
2
t−q+2

The point is that it is possible to obtain the j-step-ahead forecasts of the conditional
variance recursively. As the value of j→ ∞, the forecasts of ht+j should converge to

the unconditional mean

E𝜀2t = 𝛼0∕(1 − 𝛼1 − 𝛼2 − · · · − 𝛼q)

It should be clear that a necessary condition for convergence is for the roots

of the inverse characteristic equation 1 − 𝛼1L − · · · − 𝛼qL
q to lie outside the unit
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circle. This is a necessary condition for the long-run mean to have the representation

𝛼0∕(1 − Σ𝛼i). To ensure that the variance is always positive, we also require that

𝛼0 > 0 and 𝛼i ≥ 0 for i ≥ 1.

You should have no trouble generalizing these results to the general GARCH(p, q)
process. Fortunately, most statistical software packages can perform these calculations

automatically.

8. MAXIMUM LIKELIHOOD ESTIMATION
OF GARCH MODELS

Many software packages contain built-in routines that estimate GARCH and ARCH-M

models such that the researcher simply specifies the order of the process and the com-

puter does the rest. Even if you have access to an automated routine, it is important

to understand the numerical procedures used by your software package. Other pack-

ages require user input in the form of a small optimization algorithm. This section

explains the maximum likelihood methods required to understand and write a program

for GARCH-type models.

Suppose that values of {𝜀t} are drawn from a normal distribution having a mean

of zero and a constant variance 𝜎2. From standard distribution theory, the likelihood of

any realization of 𝜀t is

Lt =

(
1√
2𝜋𝜎2

)
exp

(
−𝜀2t
2𝜎2

)
where Lt is the likelihood of 𝜀t.

Since the realizations of {𝜀t} are independent, the likelihood of the joint realiza-

tions of 𝜀1, 𝜀2, … , 𝜀T is the product in the individual likelihoods. Hence, if all have

the same variance, the likelihood of the joint realizations is

L =
T∏
t=1

(
1√
2𝜋𝜎2

)
exp

(
−𝜀2t
2𝜎2

)
It is far easier to work with a sum than with a product. As such, it is convenient to

take the natural log of each side so as to obtain

lnL = −T
2
ln(2𝜋) − T

2
ln 𝜎2 − 1

2𝜎2

T∑
t=1

(𝜀t)2 (3.34)

The procedure used in maximum likelihood estimation is to select the distribu-

tional parameters so as to maximize the likelihood of drawing the observed sample.

In Appendix 1 of Chapter 2, we considered the case where the {𝜀t} sequence was an

MA(1) process. In the example at hand, suppose that {𝜀t} is generated from the model:

𝜀t = yt − 𝛽xt (3.35)

In the classical regression model, the mean of 𝜀t is assumed to be zero, the variance

is the constant 𝜎2, and the various realizations of {𝜀t} are independent. Using a sample
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with T observations, we can substitute (3.35) into the log-likelihood function given by

(3.34) to obtain

lnL = −T
2
ln(2𝜋) − T

2
ln 𝜎2 − 1

2𝜎2

T∑
t=1

(yt − 𝛽xt)2 (3.36)

Maximizing the log-likelihood function (3.36) with respect to 𝜎2 and 𝛽 yields

𝜕 lnL

𝜕𝜎2
= − T

2𝜎2
+ 1

2𝜎4

T∑
t=1

(yt − 𝛽xt)2

and

𝜕 lnL
𝜕𝛽

= 1

𝜎2

T∑
t=1

(yt xt − 𝛽x2t ) (3.37)

Setting these partial derivatives equal to zero and solving for the values of 𝜎2 and

𝛽, which yield the maximum value of ln L result in the familiar OLS estimates of the

variance and 𝛽 (denoted by 𝛽 and �̂�2). Hence,

�̂�2 =
∑

𝜀2t ∕T (3.38)

and

𝛽 =
∑

xtyt∕
∑

x2t (3.39)

All of this should be familiar ground since most econometric texts concerned with

regression analysis discuss maximum likelihood estimation. The point to emphasize

here is that the first-order conditions are easily solved since they are all linear. Calcu-

lating the appropriate sums may be tedious, but the methodology is straightforward.

Unfortunately, this is not the case in estimating an ARCH or GARCH model since the

first-order equations are nonlinear. Instead, the solution requires some sort of search

algorithm. The simplest way to illustrate the issue is to introduce an ARCH(1) error

process into the regression model given by (3.35). Continue to assume that 𝜀t is the

error term in linear equation yt − 𝛽xt = 𝜀t. Now let 𝜀t be given by

𝜀t = vt(ht)0.5

Although the conditional variance of 𝜀t is not constant, the necessary modification

of (3.34) is clear. Since each realization of 𝜀t has the conditional variance ht, the joint
likelihood of realization 𝜀1 through 𝜀T is

L =
T∏
t=1

(
1√
2𝜋ht

)
exp

(
−𝜀2t
2ht

)
so that the log-likelihood function is

lnL = −T
2
ln(2𝜋) − 0.5

T∑
t=1

ln ht − 0.5

T∑
t=1

(𝜀2t ∕ht)
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Now suppose that 𝜀t = yt − 𝛽xt and that the conditional variance is the ARCH(1)

process ht = 𝛼0 + 𝛼1𝜀
2
t−1. Substituting for ht and yt yields

lnL = −T − 1

2
ln(2𝜋) − 0.5

T∑
t=2

ln(𝛼0 + 𝛼1𝜀
2
t−1) −

1

2

T∑
t=2

[(yt − 𝛽xt)2∕(𝛼0 + 𝛼1𝜀
2
t−1)]

Note that the initial observation is lost since 𝜀0 is outside the sample. Once you

substitute (yt−1 − 𝛽xt−1)2 for 𝜀2t−1, it is possible to maximize lnL with respect to 𝛼0,

𝛼1, and 𝛽. As you can surmise, there are no analytic solutions to the first-order con-

ditions for a maximum. Fortunately, computers are able to select the parameter values

that maximize this log-likelihood function. In most time-series software packages, the

procedure necessary to write such programs is quite simple. Be aware that numerical

optimization routines cannot guarantee exact solutions for the estimated coefficients.

Instead, various “hill-climbing” methods are used to find the parameter values that

maximize lnL. If the partial derivatives of the likelihood function are close to zero

(so that the likelihood function is flat), the algorithms may not be able to find a max-

imum. Section 4.4 of the Programming Manual discusses the Simplex algorithm and

the so-called BFGS algorithm often used in the maximum likelihood estimates of a

GARCH model.

9. OTHER MODELS OF CONDITIONAL VARIANCE

Financial analysts are especially keen to obtain precise estimates of the conditional

variance of an asset price. Since GARCH models can forecast conditional volatility,

they are able to measure the risk of an asset over the holding period. As such, a number

of extensions of the basic GARCHmodel have been developed that are especially suited

to estimating the conditional volatility of financial instruments.

The IGARCH Model

In financial time series, the conditional volatility is typically quite persistent. In fact,

if you estimate a GARCH(1, 1) model using a long time series of stock returns, you

will find that the sum of 𝛼1 and 𝛽1 is very close to unity. Nelson (1990) argued that

constraining 𝛼1 + 𝛽1 to equal unity can yield a very parsimonious representation of the

distribution of an asset’s return. In some respects, this constraint forces the conditional

variance to act like a process with a unit root. This integrated-GARCH (IGARCH)

specification has some very interesting properties. From (3.32), if 𝛼1 + 𝛽1 = 1, the

one-step-ahead forecast of the conditional variance is

Etht+1 = 𝛼0 + ht

and the j-step-ahead forecast is

Etht+j = j𝛼0 + ht

Thus, except for the intercept term 𝛼0, the forecast of the conditional variance for

the next period is the current value of the conditional variance. Moreover, the uncondi-

tional variance is clearly infinite. Nevertheless, Nelson (1990) showed that the analogy
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between the IGARCH process and an ARIMA process with a unit root is not perfect.

Given that 𝛼1 + 𝛽1 = 1 and that ht−1 = Lht, we can write the conditional variance as

ht = 𝛼0 + (1 − 𝛽1)𝜀2t−1 + 𝛽1Lht

and solving for ht

ht = 𝛼0∕(1 − 𝛽1) + (1 − 𝛽1)
∞∑
i=0

𝛽 i
1
𝜀2t−1−i

Thus, unlike a true nonstationary process, the conditional variance is a geometri-

cally decaying function of the current and past realizations of the {𝜀2t } sequence. As

such, an IGARCH model can be estimated like any other GARCH model.

Models with Explanatory Variables

Just as the model of the mean can contain explanatory variables, the specification of

ht also allows for exogenous variables. In Section 4, the example concerning the Great

Moderation used a dummy variable in the conditional variance equation. Similarly,

suppose that you want to determine whether the terrorist attacks of September 11, 2001,

increased the volatility of asset returns. One way to accomplish the task would be to

create a dummy variableDt equal to 0 before September 2011 and equal to 1 thereafter.

Consider the following modification of the GARCH(1, 1) specification

ht = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛽1ht−1 + 𝛾Dt

If it is found that 𝛾 > 0, it is possible to conclude that the terrorist attacks increased

the mean of the conditional volatility.

Models with Asymmetry: TARCH and EGARCH

An interesting feature of asset prices is that “bad” news seems to have a more pro-

nounced effect on volatility than does “good” news. For many stocks, there is a strong

negative correlation between the current return and the future volatility. The reasoning

is that a negative stock price shock reduces the value of a firm’s equity relative to its

debt. As the debt-to-equity (i.e., leverage) ratio rises, the riskiness of holding the firm’s

stock will rise as well. This tendency for volatility to decline when returns rise and to

rise when returns fall is often called the leverage effect. The idea of the leverage effect
is captured in Figure 3.11, where “new information” is measured by the size of 𝜀t. If

𝜀t = 0, expected volatility (Etht+1) is the distance 0a. Any news increases volatility;

however, if the news is good (i.e., if 𝜀t is positive), volatility increases along ab. If the
news is bad, volatility increases along ac. Since segment ac is steeper than ab, a posi-
tive 𝜀t shock will have a smaller effect on volatility than a negative shock of the same

magnitude.

Glosten, Jaganathan, and Runkle (1994) showed how to allow the effects of good

and bad news to have different effects on volatility. In a sense, 𝜀t−1 = 0 is a threshold

such that shocks greater than the threshold have different effects than shocks below the

threshold. Consider the threshold-GARCH (TARCH) process

ht = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝜆1dt−1𝜀

2
t−1 + 𝛽1ht−1
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New information

Expected
volatility (Etht +1)

0

a

c

b

εt

FIGURE 3.11 The Leverage Effect

where dt−1 is a dummy variable that is equal to one if 𝜀t−1 < 0 and is equal to zero if

𝜀t−1 ≥ 0.

The intuition behind the TARCHmodel is that positive values of 𝜀t−1 are associated
with a zero value of dt−1. Hence, if 𝜀t−1 ≥ 0, the effect of an 𝜀t−1 shock on ht is 𝛼1𝜀

2
t−1.

When 𝜀t−1 < 0, dt−1 = 1, and the effect of an 𝜀t−1 shock on ht is (𝛼1 + 𝜆1)𝜀2t−1. If
𝜆1 > 0, negative shocks will have larger effects on volatility than positive shocks. You

can easily create a dummy variable dt and the product dt−1𝜀
2
t−1. If the coefficient 𝜆1 is

statistically different from zero, you can conclude that your data contain a threshold

effect.

Another model that allows for the asymmetric effect of news is the exponential-

GARCH model. One problem with a standard GARCH model is that it is necessary

to ensure that all of the estimated coefficients are positive. Nelson (1991) proposed a

specification that does not require nonnegativity constraints. Consider

ln(ht) = 𝛼0 + 𝛼1(𝜀t−1∕h0.5t−1) + 𝜆1|𝜀t−1∕h0.5t−1| + 𝛽1 ln(ht−1) (3.40)

Equation (3.40) is called the exponential-GARCH or EGARCH model. There are

three interesting features to notice about the EGARCH model:

1. The equation for the conditional variance is in log-linear form. Regardless of

the magnitude of ln(ht), the implied value of ht can never be negative. Hence,
it is permissible for the coefficients to be negative.

2. Instead of using the value of 𝜀2t−1, the EGARCH model uses the level of stan-

dardized value of 𝜀t−1 [i.e., 𝜀t−1 divided by (ht−1)0.5]. Nelson argues that
this standardization allows for a more natural interpretation of the size and

persistence of shocks. After all, the standardized value of 𝜀t−1 is a unit-free
measure.

3. The EGARCH model allows for leverage effects. If 𝜀t−1∕(ht−1)0.5 is positive,
the effect of the shock on the log of the conditional variance is 𝛼1 + 𝜆1. If

𝜀t−1∕(ht−1)0.5 is negative, the effect of the shock on the log of the conditional
variance is −𝛼1 + 𝜆1.
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Although the EGARCH model has some advantages over the TARCH model, it is

difficult to forecast the conditional variance of an EGARCH model. For the TARCH

model, it makes sense to assume that Etdt+j = 0.5. If asset returns are symmetric, there

is a 50:50 chance that the realized value of 𝜀t+j will be positive.

Testing for Leverage Effects

One way to test for leverage is to estimate the TARCH or EGARCHmodel and perform

a t-test for the null hypothesis �̂�1 = 0. However, there is a specific diagnostic test that

allows you to determine whether there are any leverage effects in your residuals. After

you estimate an ARCH or GARCH model, form the standardized residuals

st = �̂�t∕ĥ
1∕2
t

Thus, the {st} sequence consists of each residual divided by its standard deviation.
To test for leverage effects, estimate a regression of the form

s2t = a0 + a1st−1 + a2st−2 + · · ·

If there are no leverage effects, the squared errors should be uncorrelated with

the level of the error terms. Hence, you can conclude that there are leverage effects if

the sample value of F for the null hypothesis a1 = a2 = · · · exceeds the critical value
obtained from an F-table.

Engle and Ng (1993) developed a second way to determine whether positive and

negative shocks have different effects on the conditional variance. Again, let dt−1 be a
dummy variable that is equal to 1 if �̂�t−1 < 0 and is equal to zero if �̂�t−1 ≥ 0. The test is

to determine whether the estimated squared residuals can be predicted using the {dt−1}
sequence. The sign bias test uses the regression equation of the form

s2t = a0 + a1dt−1 + 𝜀1t

where 𝜀1t is a regression residual.

If a t-test indicates that a1 is statistically different from zero, the sign of the current

period shock is helpful in predicting the conditional volatility. To generalize the test,

you can estimate the regression

s2t = a0 + a1dt−1 + a2dt−1st−1 + a3(1 − dt−1)st−1 + 𝜀1t

The presence of dt−1st−1 and (1 − dt−1)st−1 is designed to determine whether

the effects of positive and negative shocks also depend on their size. You can use an

F-statistic to test the null hypothesis a1 = a2 = a3 = 0. If you conclude that there is a

leverage effect, you can estimate a specific form of the TARCH or EGARCH model.

Nonnormal Errors

For most financial assets, the distribution function for the rate of return is fat tailed. A
fat-tailed distribution has more weight in the tails than a normal distribution. Suppose

that the rate of return on a particular stock has a higher probability of a very large loss (or

gain) than indicated by the normal distribution. As such, you might not want to perform
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FIGURE 3.12 Comparison of the Normal and t-Distributions (3 degrees of freedom)

a maximum likelihood estimation using a normal distribution. Figure 3.12 compares

the standardized normal distribution to a t-distribution with 3 degrees of freedom. You

can see that the t-distribution has more clustering near the mean and far larger tails than

the normal distribution. Since many financial variables have fat tails, many computer

packages allow you to estimate a GARCH model using a t-distribution.5

10. ESTIMATING THE NYSE U.S. 100 INDEX

We can illustrate the process of fitting a GARCH model to financial data by using the

logarithmic change in the NYSE Index of 100 U.S. Stocks shown in Figure 3.3. The

index is broad based in that the listed firms comprise more than 81% of the capitalized

value of the entire U.S. market and over 87% of the total company revenues. You can

follow along using the series labeled RATE in the data set NYSE(RETURNS).XLS.

The series consists of the total daily returns of the index over the period January 4,

2000, through July 16, 2012.6 The series is a good candidate to be a GARCH process;

you can clearly see periods in which there are only small changes in the series (such as

the 2004–2006 period) and others (such as in 2008) where there are clusters of large

increases and decreases in the index.

In Section 4, the main focus of the example of the interest rate spread was to

estimate a model of the mean and to estimate the appropriate conditional confidence

intervals. Here, the model of the mean is of little interest. Asset prices tend to behave

as random walks or as random walks with a drift term. For this reason, there is lit-

tle informational content in the model of the mean. Instead, our goal is to accurately

capture the behavior of the conditional volatility. Accurately modeling the conditional
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variance requires a large number of observations. Moreover, since financial data are

readily available, GARCH models of asset prices typically use large data sets.

The Model of the Mean

The first step in modeling any GARCH process is to estimate the model of the mean.

Since the level of the index is clearly nonstationary, the daily rate of return on the

index was constructed as the percentage change in the closing NYSE’s total RETURN

measure. For weekdays on which the exchange was closed, the value of the previous

day’s RETURN was used. If you examine the file, you will see that the daily rate of

return (RATE or rt), was constructed as

rt = 100∗ ln(RETURNt∕RETURNt−1)

The 3270 observations in the {rt} series have a mean value of 0.003 and a sam-

ple variance of 1.637. The solid line in Figure 3.13 shows the actual distribution of

these 3270 observations superimposed on the normal and t-distributions plotted in

Figure 3.12. You can see that the distribution of returns is more peaked than the normal

and t-distributions. Moreover, the tails are a bit fatter than a normal distribution but not

as fat as a t-distribution with 3 degrees of freedom. Overall, it makes sense to estimate

the {rt} series using a t-distribution along with the degrees of freedom parameter. We

should anticipate that the estimated degrees of freedom parameter will be more than

three. Most professional software packages can estimate a GARCH process using a

t-distribution. You do not need to specify the degrees of freedom since it can be esti-

mated along with the other parameters of the model. Since the t-distribution approaches

0.1

0.2

0.3

0.4

–5 –4 –3 –2 –1 0 1 2 3 4 5

Actual returns Normal distribution t-distribution

FIGURE 3.13 Returns of the NYSE Index of 100 Stocks
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the normal as the degrees of freedom increase, a large value for the degrees of freedom

estimate indicates that the series appears to be normally distributed.

Although the autocorrelations of the {rt} sequence are all very small, with such a

large number of observations, several appear to be statistically significant. For example,

𝜌1 = −0.090 and 𝜌2 = −0.050. Since 2(3270)−1∕2 = 0.035, both of these correlations

are significant at the 5% level. The first choice to make concerns the model of the

mean since the AIC selects an AR(2) model, whereas the SBC selects anMA(1) model.

Consider the AR(2) model estimated over the entire sample period

rt = 0.0040 + 𝜀t − 0.0946rt−1 − 0.0575rt−2
(0.209) (−5.42) (−3.29) (3.41)

Notice that it is possible to eliminate the intercept term from the regression since

the t-statistic is quite low. Nevertheless, there are advantages to using regressions con-
taining intercept terms. Also, as the t-statistics can change as we posit different models

for the conditional variance, the intercept will be included in the model of the mean.

Once we have found the most appropriate GARCH representation for ht, we can con-

sider reestimating a model without an intercept term. If you check the ACF of the

residuals, all are insignificant except for the fact that 𝜌5 and 𝜌8 equal −0.045.

Testing for GARCH errors

Given that the model of themean is satisfactory, we can test for GARCH errors by using

the squared residuals of (3.41). The ACF of the squared residuals is such that 𝜌1 =
0.20, 𝜌2 = 0.41, 𝜌3 = 0.20, 𝜌4 = 0.29, and 𝜌5 = 0.33. The Q-statistics formed using

the correlations of the squared residuals are significant at conventional levels, implying

strong evidence of GARCH errors. It is also possible to test for the presence of GARCH

errors using a Lagrange multiplier test. Let �̂�2t denote the squared residuals from (3.41).

If we use five lags of the �̂�2t series (since there are five workdays in a week), we obtain

�̂�2t = 0.487 + 0.047�̂�2t−1 + 0.309�̂�2t−2 + 0.004�̂�2t−3 + 0.104�̂�2t−4 + 0.234�̂�2t−5
(5.63) (2.78) (18.22) (0.20) (6.14) (13.73)

The sampleF-statistic for the null hypothesis that all coefficients on the lagged val-
ues of {�̂�2t } are equal to zero is 209.98; with 5 degrees of freedom in the numerator and

3275 in the denominator (we restrict five coefficients and lose five usable observations),

the prob-value is 0.000. Hence, we can conclude that there are GARCH errors.

Now take a little quiz. How accurately does the lag length need to be estimated to

perform the test? The obvious answer (“As accurately as possible!”) begs the question.

Clearly, you do not want to include lags that have very small t-values; including lags

that are insignificant will reduce the power of the test. If your lag length is too short,

you could fail to detect the presence of conditional volatility. However, if your lag

length is shorter than the true structure, and if you still detect GARCH effects, you can

conclude that GARCH effects are present in the data. To take a simple example, if you

find GARCH effects using only �̂�2t−1, you can conclude there is some type of ARCH

effect.
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Alternative Estimates of the Model

As in the Box–Jenkins method, we want to estimate a parsimonious model. Not only

can we alter the lag lengths for the GARCH(p, q) process, but we can also allow for

ARCH-M effects and for specifications with asymmetry. Given the tremendous number

of possible specifications, it is very easy to overfit the data. Consequently, it is best to

start with a simple model and determine whether or not it is adequate. If it fails any

of the diagnostic checks, it is possible to use a more complicated model. We begin

by estimating (3.41) using a GARCH(1, 1) error process. The results from maximum

likelihood estimation using the normal distribution are as follows:

rt = 0.043 + 𝜀t − 0.058rt−1 − 0.038rt−2 AIC = 9295.36, SBC = 9331.91

(2.82) (−3.00) (−1.91)
ht = 0.014 + 0.084𝜀2t−1 + 0.906ht−1

(4.91) (9.59) (98.31)

Instead, if we use a t-distribution, we obtain

rt = 0.061 + 𝜀t − 0.062rt−1 − 0.045rt−2 AIC = 9162.72, SBC = 9205.37

(5.24) (−3.77) (−2.64)
ht = 0.009 + 0.089𝜀2t−1 + 0.909ht−1

(3.21) (8.58) (95.24)

where the estimated number of degrees of freedom parameter for the t-distribution is

6.14 with a standard error of 0.67. As such, we can conclude that the degrees of freedom

parameter is far from that needed to approximate a normal distribution. Although the

two parameter sets are very close, Figure 3.13 also suggests that we proceed using

the t-distribution. Moreover, if you calculate the sum of squares of the standardized

residuals as in (3.30), you should find SSR′ = 3269.42 from the first model and that

SSR′ = 3225.53 from the model using the t-distribution. Note that in computing the

AIC and SBC using the t-distribution, you want to be sure to count the degrees of

freedom parameter as a regressor.

Since the sum of the coefficients on 𝜀2t−1 and ht−1 is almost identically equal to

unity, we can estimate the IGARCH(1, 1) model using the t-distribution:

rt = 0.061 + 𝜀t − 0.062rt−1 − 0.045rt−2 AIC = 9160.88, SBC = 9197.43

(4.41) (−3.25) (−2.60)
ht = 0.008 + 0.090𝜀2t−1 + 0.910ht−1

(5.69) (13.00) (130.72)

Note that there are offsetting tendencies regarding the fit of the GARCH specifi-

cation versus that of the IGARCH specification. On one hand, the fit of the IGARCH

model will not be as good as that of the GARCH model since the IGARCH model

imposes a constraint on the sum of the coefficients. However, the IGARCH model

is more parsimonious than the GARCH(1, 1) model since there is one fewer coef-

ficient to actually estimate (i.e., 𝛽1 = 1 − 𝛼1). Note that the AIC and the BIC select

the IGARCH specification. If you experiment by introducing the second lag 𝜀2t−2, you
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should find that it is not significant. If you try to include additional values of p into an

IGARCH(p, 1) model, you will find that the coefficient of ht−2 is negative. Moreover,

the ARCH-M specification is not favorable to the presumption that the return on the

return of the NYSE 100 contains a time-varying risk premium. For example, if we use

the IGARCH(1, 1) specification for ht, we find that the model for the mean is

rt = 0.049 + 𝜀t − 0.062𝜀t−1 − 0.045𝜀t−2 + 0.016ht
(2.69) (−3.70) (−2.58) (1.02)

Diagnostic Checking

Now we need to know whether the IGARCH(1, 1) model passes the various diagnostic

checks for model adequacy. As all diagnostic tests are performed on the standardized

residuals, begin by forming the series st = �̂�t∕ĥ0.5t .

Remaining serial correlation: The autocorrelations of the {st} series are all very
small; the Ljung–Box Q(5), Q(10), and Q(15) statistics are 3.69, 8.30, and 15.12,
respectively. None of these values are significant at conventional levels; hence, we

conclude that the standardized residuals are serially uncorrelated.

Remaining GARCH effects: It appears that the IGARCH(1, 1) is sufficient to capture
almost all of the GARCH effects. The ACF of the squared standardized residuals is

such that

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10
−0.05 0.03 −0.01 0.02 −0.01 −0.01 0.03 −0.01 0.02 0.04

Now use the standardized squared residuals s2t to estimate a regression of the form

s2t = a0 + a1s
2
t−1 + · · · + ans

2
t−n

If you use various values of n, you will find that none of the a3 through an are sta-
tistically significant. However, if you use n = 2, you cannot reject the null hypothesis

a1 = a2 = 0. Consider

s2t = 0.99 − 0.05s2t−1 + 0.03s2t−2
(23.55) (−2.58) (1.79)

The restriction a1 = a2 = 0 has an F-value of 5.15 and a prob-value of 0.006.
Hence, you can reasonably conclude that there are small but statistically significant

remaining GARCH effects. At this point, it is a judgment call as to whether to flush-out

the remaining conditional volatility. With such a large number of observations, even

very small coefficients can readily be found to be statistically significant. As already

discussed, the estimates of higher order GARCH processes are unsatisfactory.

Trying to estimate a pure ARCH process also yields poor results. For example, if you

estimate the conditional variance as an ARCH(12) process, you will find that each

one of the ARCH coefficients will be positive and statistically significant. Although

the 12 lags successfully remove any remaining GARCH effects, the model is clearly

overparameterized. As such, we retain the IGARCH(1, 1) specification.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c03.tex V2 - 09/02/2014 1:54pm Page 163

ESTIMATING THE NYSE U.S. 100 INDEX 163

Leverage effects: If there are no leverage effects, s2t should be uncorrelated with the
lagged levels of {st}. However, if considering the regression equation

s2t = 0.960 − 0.095st−1 − 0.178st−2
(28.24) (−2.76) (−5.18)

The coefficients on st−1 and st−2 are highly significant and the F-statistic for the
null hypothesis that the coefficients on the two lagged values are jointly equal to zero

is 17.33 with a prob-value of 0.000. Given that the signs are negative, we conclude that
negative shocks are associated with large values of the conditional variance (i.e., when

st−1 and st−2 are negative, the expected value of s
2
t is large). This result is reinforced by

the Engle–Ng sign test. Set dt−1 = 1 if st−1 < 0; otherwise, set dt−1 = 0. Now if you

perform the sign bias test, you will find

s2t = 0.658 + 0.293dt−1 + 0.140dt−2 + 0.201dt−3
(9.63) (4.32) (2.07) (2.96)

The coefficients on dt−1, dt−2, and dt−3 are all significant and the F-statistic for

the null hypothesis that the three coefficients are jointly equal to zero is 10.54 with a

prob-value of 0.000. As such, negative values of st−1 are associated with large values

of s2t . If you use the general form of the test, you will find

s2t = 0.940 + 0.268dt−1 + 0.104dt−1st−1 − 0.130(1 − dt−1)st−1
(14.48) (2.96) (2.20) (−2.41)

The implication is that there is a leverage effect such that positive shocks are asso-

ciated with a diminished variance. Since all terms including the expression dt−1 enter
with positive coefficients, the size of the leverage effect depends on the magnitude of

the shock (not just the direction).

The Asymmetric Models

A TARCH model is unsatisfactory since the estimated coefficient on 𝜀2t−1 is negative.
The estimated equation for the conditional variance is

ht = 0.010 − 0.022𝜀2t−1 + 0.154dt−1𝜀t−1 + 0.933ht−1
(4.70) (−2.92) (9.51) (114.46)

It is not possible to reestimate the model without the variable 𝜀2t−1. Recall the argu-
ment demonstrating that 𝛼1 must be present in the model for a GARCH(1, 1) model

to be identified. You should be able to show that the identical reasoning applies to

the TARCH model. One possibility is to constrain the coefficients to be positive. An

alternative is to estimate an EGARCH model using a t-distribution. Consider

rt = 0.038 − 0.060rt−1 − 0.032rt−2 AIC = 9055.66, SBC = 9104.39

(2.88) (−3.59) (−1.94)

ln(ht) = −0.087 + 0.108|𝜀t−1∕h0.5t−1| − (0.129)𝜀t−1∕h0.5t−1 + 0.986 ln(ht−1)
(−57.72) (30.50) (−12.12) (387.10)

where the degrees of freedom parameter is 6.88.
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All of the coefficients in the equation for ln(ht) are highly significant. Notice that

the form of the asymmetry is somewhat different from that shown in Figure 3.11. If

you let ht−1 = 1, a one unit decline in 𝜀t−1 will increase the log of conditional volatil-

ity by 0.237 units (0.108 + 0.129 = 0.237). However, a one-unit increase in 𝜀t−1 is

estimated to induce a decline in the log of the conditional variance by −0.021 units

(0.108 − 0.129 = −0.021). The implication is that “bad news” has a large effect on the

conditional volatility but “good news” actually induces a small decrease in volatility.

It is interesting to note that a 𝜒2-test for the restriction that the two coefficients sum to

zero yields a value of 3.54; with 1 degree of freedom, the prob-value is 0.06.
The two most plausible models seem to be the IGARCH and EGARCH models.

The EGARCH model captures a leverage effect such that good news shocks (i.e., pos-

itive shocks) actually decrease volatility, whereas bad news shocks have a large and

positive effect on volatility. The AIC and SBC select the EGARCH model over the

GARCH(1, 1) model. For the EGARCH model, the AIC is 9055.66 and the SBC is

9104.39. Recall that those for the GARCH(1, 1) are such that AIC = 9160.88, SBC =
9197.43. The major downside of the EGARCH model is that the asymmetry makes it

very difficult to use for forecasting. As a final check on the adequacy of the EGARCH

model, the following diagnostic checks were performed:

1. Checks of the standardized residuals: The standardized residuals were

checked to determine whether they exhibited serial correlation. Similarly,

the squares of the standardized residuals were checked for serial correlation.

Any correlation in the {s2t } series implies that there are neglected GARCH

effects in the residuals. It does turn out that there is a small, albeit significant

amount of serial correlation at the first lag. If we use the LM test for remain-

ing GARCH errors, we find

s2t = 1.04 − 0.054s2t−1
(27.95) (−3.07)

2. Q-plots to determine the distribution of the errors: In order to determine

whether the standardized errors are normally distributed, a standard proce-

dure is to plot the quantiles of the {st} sequence against the quantiles of the
normal distribution. After all if {st} has a standardized normal distribution,

0.5% should be below −2.54, 2.5% of the values should be below −1.96,
50% should be negative, 95% should be above 1.64, and 99.5% should

be above 2.54. The point is that if {st} is truly normally distributed, the

quantiles should lie along a straight line when plotted against the quantiles

of the normal distribution. Since the example under consideration uses a

t-distribution, the quantiles of the st series can be plotted against the quantiles
of the t-distribution. As you can see in Figure 3.14, except for one extreme

observation (not shown in the figure), the standardized residuals do appear to

have a t-distribution.

Figure 3.15 shows the fitted values of ht for the period from January 4, 2000,

through July 16, 2012. It should be clear that there is a volatile period beginning in

mid-2002, a relatively tranquil period frommid-2003 to early 2007, and huge increases

in ht at the time of the financial crisis and toward the middle of 2011.
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FIGURE 3.14 Standardized Errors and Fractiles of the t-Distribution
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FIGURE 3.15 The Estimated Variance

11. MULTIVARIATE GARCH

If you have a data set with several variables, it often makes sense to estimate the con-

ditional volatilities of the variables simultaneously. Multivariate GARCH models take

advantage of the fact that the contemporaneous shocks to variables can be correlated

with each other. Moreover, multivariate GARCH models allow for volatility spillovers
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in that volatility shocks to one variable might affect the volatility of other related vari-

ables. For example, instead of simply modeling the NYSE’s U.S. 100, suppose that

we also wanted to model the NYSE Composite Index. Although we could separately

model the variance of each index, we might expect the volatilities of two interrelated.

After all, shocks that increase the uncertainty of one index are likely to increase the

uncertainty of the other. (If you are comfortable with matrix algebra, you may want to

look at the first part of Appendix 3.1 in the Supplementary Manual before proceeding.)
To keep the analysis as simple as possible, suppose there are just two variables, y1t

and y2t. For now, we are not interested in the means of the series so we can consider

only the two error processes

𝜀1t = v1t(h11t)0.5

𝜀2t = v2t(h22t)0.5

As in the univariate case, if we assume var(v1t) = var(v2t) = 1, we can think of

h11t and h22t as the conditional variances of 𝜀1t and 𝜀2t, respectively. Since we want to

allow for the possibility that the shocks are correlated, denote h12t as the conditional
covariance between the two shocks. Specifically, let h12t = Et−1𝜀1t𝜀2t.

As detailed in Appendix 3.1 in the Supplementary Manual, a natural way to con-

struct a multivariate GARCH(1, 1) process is to allow all of the volatility terms to

interact with each other. Consider the so-called vech model

h11t = c10 + 𝛼11𝜀
2
1t−1 + 𝛼12𝜀1t−1𝜀2t−1 + 𝛼13𝜀

2
2t−1

+ 𝛽11h11t−1 + 𝛽12h12t−1 + 𝛽13h22t−1 (3.42)

h12t = c20 + 𝛼21𝜀
2
1t−1 + 𝛼22𝜀1t−1𝜀2t−1 + 𝛼23𝜀

2
2t−1

+ 𝛽21h11t−1 + 𝛽22h12t−1 + 𝛽23h22t−1 (3.43)

h22t = c30 + 𝛼31𝜀
2
1t−1 + 𝛼32𝜀1t−1𝜀2t−1 + 𝛼33𝜀

2
2t−1

+ 𝛽31h11t−1 + 𝛽32h12t−1 + 𝛽33h22t−1 (3.44)

Here, the conditional variance of each variable (h11t and h22t) depends on its own past,
the past of the other variable, the conditional covariance between the two variables

(h12t), the lagged squared errors (𝜀2
1t−1 and 𝜀2

2t−1), and the product of lagged errors

(𝜀1t−1𝜀2t−1). Notice that the conditional covariance depends on the same set of vari-

ables. Clearly, there is a rich interaction between the variables. For example, after one

period, a v1t shock affects h11t, h12t, and h22t.
Although simple to conceptualize, multivariate GARCH models in the form of

(3.42)–(3.44) can be very difficult to estimate. Some of the details concerning maxi-

mum likelihood estimation are contained in Appendix 3.1. Nevertheless, it should be

clear that:

◾ The number of parameters necessary to estimate can get quite large. In the

two-variable case above, there are 21 parameters. The number grows very

quickly as more variables are added to the system and as the order of the

GARCH process increases. If you understand the nature of the multivariate

model above, you should be able to show that a GARCH(2, 1) model necessi-

tates the estimation of nine additional parameters. You can also verify that, in
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the three-variable case, a GARCH(1, 1) model contains six equations (since

there are equations for h11t, h22t, h33t, h12t, h13t, and h23t) and that each of the
equations entails the estimation of 12 coefficients plus a constant.

Moreover, we have not begun to specify the models of the mean. If we have

two variables y1t and y2t, it is possible to estimate the means by specifying

y1t − 𝜇1 = 𝜀1t and y2t − 𝜇2 = 𝜀2t. Once lagged values of {y1t} and {y2t}
and/or explanatory variables are added to the mean equation, it should be clear

that the estimation problem can be quite complicated.

◾ As in the univariate case, there is not an analytic solution to the maximiza-

tion problem. As such, it is necessary to use numerical methods to find the

parameter values that maximize the function L. Unfortunately, such methods

may not be able to find a maximum value if the model is overparameterized.

To explain, if a coefficient is small relative to its standard error, it necessar-

ily has a large confidence interval. As such, there is a large range in which

the coefficient may lie and slight changes in the coefficient’s value will have

little influence on the value of L. The numerical “hill climbing” techniques

that computers use in their maximization routines will have difficulty pinning

down the value of such a coefficient. Hence, when attempting to estimate an

overparameterized model, it is typical for a software package to indicate that

its search algorithm did not converge.

◾ Since conditional variances are necessarily positive, the restrictions for the

multivariate case are far more complicated than for the univariate case. The

results of the maximization problem must be such that each one of the condi-

tional variances is always positive and that the implied correlation coefficients,

𝜌ij = hij∕(hiihjj)0.5, are between −1 and +1.
In order to circumvent these problems, much of the recent work involving multi-

variate GARCHmodeling involves finding suitable restrictions on the general model of

(3.42)−(3.44). One set of restrictions that became popular in the early literature is the

so-called diagonal vechmodel. The idea is to diagonalize the system such that hijt con-
tains only lags of itself and the cross products of 𝜀it𝜀jt. For example, the diagonalized

version of (3.42)−(3.44), called the diagonal vech, is given by

h11t = c10 + 𝛼11𝜀
2
1t−1 + 𝛽11h11t−1

h12t = c20 + 𝛼22𝜀1t−1𝜀2t−1 + 𝛽22h12t−1
h22t = c30 + 𝛼33𝜀

2
2t−1 + 𝛽33h22t−1

Given the large number of restrictions, the model is relatively easy to estimate.

Each conditional variance is equivalent to that of a univariate GARCH process and the

conditional covariance is quite parsimonious as well. The problem is that setting all

𝛼ij = 𝛽ij = 0 (for i ≠ j) means that there are no interactions among the variances. A 𝜀1t−1
shock, for example, affects h11t and h12t but does not affect the conditional variance h2t.
Notice that the system-wide estimation does have the advantage of controlling for the

contemporaneous correlation of the residuals across equations.

Baba, Engle, Kraft, and Kroner (1991) and Kroner (1995) popularized what is now

called the BEKK model that ensures that the conditional variances are positive. The
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idea is to force all of the parameters to enter the model via quadratic forms ensuring

that all the variances are positive. Although there are several different variants of the

model, consider the specification

Ht = C′C + A′𝜀t−1𝜀t−1
′A + B′Ht−1B

where for the two-variable case considered in (3.42)–(3.44),

H =
[
h11t h12t
h12t h22t

]
; C =

[
c11 c12
c12 c22

]
; A =

[
𝛼11 𝛼12
𝛼21 𝛼22

]
; B =

[
𝛽11 𝛽12
𝛽21 𝛽22

]
(3.45)

For example, if you perform the indicated matrix multiplications, you will find

h11t = (c2
11
+ c2

12
) + (𝛼2

11
𝜀2
1t−1 + 2𝛼11𝛼21𝜀1t−1𝜀2t−1 + 𝛼2

21
𝜀2
2t−1)

+ (𝛽2
11
h11t−1 + 2𝛽11𝛽21h12t−1 + 𝛽2

21
h22t−1)

In general, hijt will depend on the squared residuals, cross-products of the residuals,
and the conditional variances and covariances of all variables in the system. As such,

it is the model that allows for shocks to the variance of one of the variables to “spill

over” to the others. The problem is that the BEKK formulation can be quite difficult to

estimate. The model has a large number of parameters that are not globally identified.

Changing the signs of all elements of A, B, or C will have no effect on the value of the

likelihood function. As such, convergence can be quite difficult to achieve.

Another popular multivariate GARCH specification is constant conditional cor-
relationmodel. As the name suggests, the constant correlation coefficient (CCC)model

restricts the correlation coefficients to be constant. As such, for each i ≠ j, the CCC

model assumes hijt = 𝜌ij(hiithjjt)0.5. In a sense, the CCC model is a compromise in that

the variance terms need not be diagonalized, but the covariance terms are always pro-

portional to (hiithjjt)0.5. For example, a CCC model could consist of (3.42), (3.44), and

h12t = 𝜌12(h11th22t)0.5

Hence, the covariance equation entails only one parameter instead of the seven

parameters appearing in (3.43).

Bollerslev (1990) illustrates the usefulness of the CCC specification by examin-

ing the weekly values of the nominal exchange rates for five different countries—the

German mark (DM), the French franc (FF), the Italian lira (IL), the Swiss franc (SF),

and the British pound (BP)—relative to the U.S. dollar. Note that a five-equation sys-

tem would be too unwieldy to estimate in an unrestricted form. For the model of the

mean, the log of each exchange rate series was modeled as a random walk plus a drift.

If yit is the percentage change in the nominal exchange rate for country i, the model of

the mean for each country is simply

yit = 𝜇i + 𝜀it (3.46)

Ljung–Box tests indicated that each series of residuals did not contain any serial

correlation. This is consistent with the fact that nominal exchange rates behave as

random-walk processes when using high-frequency data. As a next step, Bollerslev

(1990) tested the squared residuals for serial dependence. He reports that the autocorre-

lations of the squared residuals are strongly indicative of GARCH effects. For example,
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for the British pound, the Q(20)-statistic has a value of 113.020; this is significant at
any conventional level. Given the presence of conditional heteroskedasticity, Boller-

slev next turned to finding the appropriate orders for the five GARCH(p, q) processes.
Individually, each residual series could be well estimated as a GARCH(1, 1) process.

As such, the specification for the full model has the form of (3.46) plus

hiit = ci0 + 𝛼ii𝜀
2
it−1 + 𝛽iihiit−1 (i = 1,…, 5)

hijt = 𝜌ij(hiithjjt)0.5 (i ≠ j)

Notice that the full model requires that only 30 parameters be estimated (5 values

of 𝜇i, the 5 equations for hiit each have 3 parameters, and 10 values of the 𝜌ij). He reports

that, with 333 observations, the required number of matrix inversions is reduced from

10,323 to 31. Also notice that the CCCmodel has an important advantage over the sep-

arate estimation of each equation. As in a seemingly unrelated regression framework,

the system-wide estimation provided by the CCCmodel captures the contemporaneous

correlation between the various error terms. As such, the coefficient estimates of the

GARCH process are more efficient than those from a set of single equation estimations.

The estimated correlations for the period during which the European Monetary System

(EMS) prevailed are

DM FF IL SF

FF 0.932

IL 0.886 0.876

SW 0.917 0.866 0.816

BP 0.674 0.678 0.622 0.635

It is interesting that correlations among continental European currencies were all

far greater than those for the pound. Moreover, the correlations were much greater

than those of the pre-EMS period. Clearly, EMS acted to keep the exchange rates of

Germany, France, Italy, and Switzerland tightly in line prior to the introduction of

the euro.

If you are familiar with matrix algebra, the last part of Appendix 3.1 shows you

how to generalize Bollerslev’s method so as to estimate time-varying (or dynamic)

conditional correlations.

Updating the Study

The file labeled EXRATES(DAILY).XLS contains the 3475 daily values of the euro,

British pound, and Swiss franc over the January 3, 2000–April 26, 2013 period. The

time paths of the three series are shown in Figure 3.5. Denote the U.S. dollar value

of each of these nominal exchange rates as eit where i = EU, BP, and SW. If you

plot the three currencies, you will see that all three tend to move together through

mid-2008. However, the comovements seem to weaken in the later part of the sam-

ple. As a preliminary step, construct the logarithmic change of each nominal exchange

rate as yit = log(eit∕eit−1). As in any GARCH estimation, the first step is to estimate

the model of the mean. If you follow Bollerslev (1990) and estimate equations in the
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form of (3.46), you should obtain the means as

euro BP SW

7.16 × 10−5 −1.01 × 10−5 1.49 × 10−4

(0.66) (−0.14) (1.26)

The residual autocorrelations are all very small in magnitude, and none is signifi-

cant using the Ljung–Box Q(4) or Q(8) test. For example, the autocorrelations for the

euro are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6
0.012 −0.026 0.003 0.022 0.006 −0.014

With T = 3474, there is no reason to incorporate any lagged changes in the mean

equation.

For the second step, you should check the squared residuals for the presence of

GARCH errors. Since we are using daily data (with a 5-day week), it seems reasonable

to begin using a model of the form

�̂�2t = 𝛼0 +
5∑
i=1

𝛼i�̂�
2
t−5

The sample values of the F-statistics for the null hypothesis that 𝛼1 = · · · = 𝛼5 = 0

are 24.72, 65.45, and 5.80 for the euro, BP, and SW, respectively. Since all of these

values are highly significant, it is possible to conclude that all three series exhibit

GARCH errors.

For the third step, you should try to find the proper form of the GARCH model for

each exchange rate series. Although some other GARCH forms (such as the IGARCH

model) might seem more appropriate than Bollerslev’s specification, proceed as if the

GARCH(1, 1) model is appropriate for each series. If you estimate the three series as

a multivariate GARCH(1, 1) process using the CCC restriction, you should find the

results reported in Table 3.1.

If we let the numbers 1, 2, and 3 represent the euro, pound, and franc, the corre-

lations are 𝜌12 = 0.68, 𝜌13 = 0.87, and 𝜌23 = 0.60. As in Bollerslev’s paper, the pound

and the franc continue to have the lowest correlation coefficients.

Table 3.1 The CCC Model of Exchange Rates

c 𝜶1 𝜷1

Euro 1.32 × 10−7 0.047 0.951

(2.44) (10.79) (240.91)

Pound 2.42 × 10−7 0.040 0.953

(3.28) (7.71) (149.15)

Franc 2.16 × 10−7 0.059 0.940

(2.57) (12/82) (215.36)

Note: t-statistics in parentheses.
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By way of contrast, it is instructive to estimate the model using a standard diagonal

vech specification such that

hijt = cij + 𝛼ij𝜀it−1𝜀jt−1 + 𝛽ijhijt−1

The estimation results are given in Table 3.2. Now, the correlation coefficients are

time varying. For example, the correlation coefficient between the pound and the franc

is given by h23t∕(h22th33t)0.5. The time path of this correlation coefficient is shown in

Figure 3.16. Although the correlation does seem to fluctuate around 0.60 (the value

found by the CCC method), there are substantial departures from this average value.

Beginning in mid-2006, the correlation between the pound and the franc began a long

and steady decline ending in early 2008. The correlation increased with fears of a U.S.

recession and then sharply fell with the onset on the U.S. financial crisis in the Fall of

2008. Notice that the correlation actually becomes negative for a short period in early

2009. Thereafter, the correlation rises to nearly 0.80.

Table 3.2 Estimates Using the Diagonal vech Model

h11t h12t h13t h22t h23t h33t

c 4.01 × 10−7 2.50 × 10−7 4.45 × 10−7 2.62 × 10−7 2.32 × 10−7 5.88 × 10−7

(18.47) (6.39) (33.82) (4.31) (6.39) (10.79)

𝛼1 0.047 0.035 0.047 0.037 0.033 0.050

(14.51) (11.89) (14.97) (9.59) (12.01) (14.07)

𝛽1 0.946 0.956 0.945 0.956 0.959 0.941

(319.44) (268.97) (339.91) (205.04) (309.29) (270.55)

Note: t-statistics in parentheses.
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FIGURE 3.16 Pound/Franc Correlation from the Diagonal vech
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12. VOLATILITY IMPULSE RESPONSES

As we learned from the Great Recession, a shock to one market can readily spill over

into other markets. Although much of the financial crisis originated in the housing mar-

ket, a great deal of uncertainty was created in interest rate sensitive sectors such as auto-

mobile production. Such volatility spillovers can readily be captured by a multivariate

GARCH model in that it allows an 𝜀it shock to affect the variances and covariances of

every variable. For example, if you update (3.42)−(3.44) by one period, it should be

clear that an 𝜀1t shock will affect h11t+1, h12t+1, and h22t+1. Yet, the story does not end

in period t + 1 because of volatility persistence. Obviously, if the values of the hijt+1
are large, we would anticipate that the values of the hijt+2 will be large as well.

Although the mathematical specification of the GARCH model does allow for a

rich set of interactions among the volatilities, the large number of parameters estimated

means that it is near impossible to interpret the magnitudes of the spillovers from an

examination of the estimated coefficients alone. Hafner and Herwartz (2006) show how

to construct a volatility impulse response function so as to plot out the consequences

of volatility shocks on the entire system.

In the two-variable case given by (3.42)−(3.44), the volatility forecasts for period
t + 1 are straightforward. For example, from (3.42), the one-step-ahead forecast for

h11t+1 is

Eth11t+1 = c10 + 𝛼11𝜀
2
1t + 𝛼12𝜀1t𝜀2t + 𝛼13𝜀

2
2t + 𝛽11h11t + 𝛽12h12t + 𝛽13h22t

Now if you update the equation for h11t by two periods and take the conditional

expectation, you should obtain

Eth11t+2 = c10 + 𝛼11Et𝜀
2
1t+1 + 𝛼12Et𝜀1t+1𝜀2t+1 + 𝛼13Et𝜀

2
2t+1 + 𝛽11Eth11t+1

+ 𝛽12Eth12t+1 + 𝛽13Eth22t+1

As in (3.22), Et𝜀
2
it+2 = Ethiit+2, and since Et𝜀it+2𝜀jt+2 = Ethijt+2, it follows that

Eth11t+2 = c10 + (𝛼11 + 𝛽11)Eth11t+1 + (𝛼12 + 𝛽12)Eth12t+1 + (𝛼13 + 𝛽13)Eth22t+1.

In principle, it is possible to solve the entire system recursively so as to obtain the

variance and covariance forecasts for every variable in the model. Fortunately, this is

unnecessary since most professional statistical software packages can make the appro-

priate calculations to obtain the entire set of volatility forecasts. Of course, the forecasts

will change if any of the values of the 𝜀it (or hijt) are allowed to change. The differences
in the volatility forecasts for any two sets of the initial values comprise the volatility

impulse functions.

Formally, Hafner and Herwartz (2006) define the volatility impulse response func-

tion for h11t as follows. Let the information set at T consist of all values of 𝜀it and hijt
for t = 1, 2, … ,T and form the conditional volatility forecasts ETh11T+i(i = 1, 2, …).
Now suppose that we disturb one or more of the 𝜀iT by some given amount and again

obtain the volatility forecasts. Call these forecasts ET∗h11T+i. The differences between
the two sets of forecasts (i.e., ET∗h11T+i − ETh11T+i) comprise the variance impulse

response function. In essence, the differences between the forecasts measure the
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influences of the shocks. Oftentimes, an external shock will simultaneously affect 𝜀1T
and 𝜀2T . As shown in the example below, it is possible to plot the volatility effects of

this external shock.

An Example

As you can see in Figure 3.5, during the last part of October and the early part of

November 2008, there were several large exchange rate shocks resulting from the finan-

cial crisis. One way to estimate the influence of these shocks on the exchange rate

volatilities is to reestimate the series in the file EXRATES(DAILY).XLS and then cre-

ate a variance impulse function. For our purposes here, it is desirable to reestimate

the model since the constant conditional correlation restriction does not allow for any

interesting volatility spillovers. To keep the analysis simple, first estimate the euro and

pound exchange rates as a multivariate GARCH(1, 1) process using the BEKK speci-

fication. In terms of (3.45), you should find

A =
[
0.132 −0.031
0.028 0.214

]
; B =

[
0.993 0.008

0.010 0.971

]
where the intercepts are c10 = 0.000360, c20 = 0.000403, and c30 = 0.000275. If you

form h11t as in (3.45), you should find

h11t = 0.000360 + 0.0174𝜀2
1t−1 + 0.00739𝜀1t−1𝜀2t−1 + 0.00078𝜀2

2t−1
+ 0.986h11t−1 + 0.020h12t−1 + 0.0001h22t−1

One issue is how to select the shocks to use for the comparison. A seemingly nat-

ural way to measure the influence of the shocks is to simply shock one of the variables

(holding the other shock at zero). For example, you could try to shock one of the vari-

ables by, say one standard deviation, and measure how it affects the volatility forecasts

of all variables. However (as discussed in detail in Chapter 5), shocks are usually corre-

lated across equations, a typical shock to one sector involves contemporaneous changes

in the other sectors. As such, you do not want to simply shock one variable and hold

all other 𝜀it at zero. Moreover, not only are zero values atypical, zero values of 𝜀it rep-

resent the lowest volatility state possible. Conditioning on a zero value means that the

volatility impulse responses will necessarily rise over time.

One way to circumvent the problem is to pick a set of shocks equal to the actual

residuals at some particular date T∗ in the data set. Obtain the volatility forecasts using
these residuals (i.e., the values of 𝜀1T∗ and 𝜀2T∗ ) as the initial shocks. A comparison of

these volatility forecasts to the volatility forecasts using the actual values of 𝜀1T and

𝜀2T comprise the volatility impulse response function. If you pick a date at which there

is a large external shock, you can trace the effects of this event on the volatilities.

Although there is no one specific date at which the financial crisis occurred, we

can let there be a shock to both 𝜀1t and 𝜀2t equal in magnitude to actual values of the

shocks on October 29, 2008. The issue is: How would knowledge of the values of these

shocks lead us to revise our volatility forecasts? The results are shown on the three

panels of Figure 3.17. The responses have been standardized in that each is divided by

the actual volatility on October 29, 2008. As you can see from Panels (a) and (c), the
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Panel (a) Volatility response of the euro
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Panel (c) Volatility response of the pound
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FIGURE 3.17 Variance Impulse Responses from October 29, 2008

financial crisis shocks induced increases in both the forecasted volatilities of the euro

and the British pound. The volatility of the euro increases by about 25% and that for the

pound by about 38%. These volatility increases were quite persistent in that the euro’s

volatility increase is estimated to last until July 2009 and that for the pound is estimated

to last even longer. Given that both currencies appreciated on October 29, 2008, it is

not surprising that the forecasted covariance between the two variables is estimated to

be higher than otherwise.

13. SUMMARY AND CONCLUSIONS

Many economic time series exhibit periods of volatility. Conditionally heteroskedastic

models (ARCH or GARCH) allow the conditional variance of a series to depend on the

past realizations of the error process. A large realization of the current period’s distur-

bance increases the conditional variance in subsequent periods. For a stable process,

the conditional variance will eventually decay to the long-run (unconditional) variance.

As such, ARCH and GARCHmodels can capture periods of turbulence and tranquility.

Conditional variance is often used as ameasure of risk. ARCH andGARCH effects

have been included in a regression framework to test hypotheses of risk-averse agents.

For example, if producers are risk averse, conditional price variability will affect prod-

uct supply. Producers may reduce their exposure by withdrawing from the market in

periods of substantial risk. Similarly, asset prices should be negatively related to their
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conditional volatility. Such ARCH effects in the mean of a series (ARCH-M) are a

natural implication of asset-pricing models.

The basic ARCH and GARCH models have been extended in a number of inter-

esting ways. The IGARCH model allows volatility shocks to be permanent and the

TARCH and EGARCH models allow negative shocks to behave differently than posi-

tive shocks. You can also include explanatory variables in the equation for the condi-

tional volatility.

One interesting development is the application of GARCHmodels in amultivariate

setting. The problem is that an unrestricted multivariate GARCH has too many param-

eters to reasonably estimate. Nevertheless, most software packages now incorporate

a number of specifications that restrict the parameters of the multivariate model. For

example, EVIEWS and RATS are able to use the method of Engle and Kroner (1995)

and Bollerslev’s (1990) constant conditional correlations.

Estimating any type of GARCHmodel can be difficult. Here are some suggestions

to improve your estimates.

1. Be sure that your model of the mean is appropriate. Any misspecification in

the mean equation will carry over into the variance equation. Clearly, the esti-

mated {𝜀t} series must be serially uncorrelated in order to obtain a sensible

model of the conditional variance.

2. It is very easy to “overfit” the data; you could wind up with a very compli-

cated model when a far more parsimonious model actually captures the nature

of the data-generating process. Pretest the squared residuals for the presence

of ARCH errors. Similarly, do not simply include leverage effects, ARCH-M

effects, or large values of p and/or q without good reason.

3. It is very common to find that the sum of the 𝛼i and the 𝛽i is very close to

unity. Such highly persistent volatilities do seem to be the case for financial

data. However, Hillebrand (2005) showed that a neglected structural break in

the variance series can create the appearance of a highly persistent conditional

volatility. After all, if the conditional variance is always small before some

date t∗ and then is always large, the conditional volatility is definitely persis-
tent. However, in such a circumstance, the volatility would be best captured

by a dummy variable indicating the break date. Plot the conditional volatility

to ensure that there are several periods with high and low volatilities.

Moreover, as shown by Ma, Nelson, and Startz (2007), the estimated

sum of the GARCH coefficients can also be close to unity when the true

GARCH effect is very small or absent. To explain, suppose you estimate a

GARCH(1, 1) model and find that 𝛼1 + 𝛽1 ≈ 1. As such, the current level

of conditional volatility is expected to prevail into the future. However, this

could happen because the actual data-generating process is a near-IGARCH

process or because the amount of conditional volatility is always constant

(so that ht = ht−1 · · · = 𝛼0). As such, it is important to examine the ACF of

the squared residuals and pretest for conditional heteroskedasticity. You can

also compare the GARCH model to a low-order ARCH(q) process check if
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the persistence is actually large. You do not want to estimate a near-IGARCH

process when the amount of conditional volatility is actually quite small.

4. Multivariate GARCH models can be quite difficult to estimate. There are

a number of different specifications that ease the estimation problems. If

the diagonal vech model does not provide sufficient interaction among the

conditional variances and covariances, try the BEKK specification. The CCC

model, or the DCC model described in the Supplementary Manual (See
Section 3.1: Appendix 1 to Chapter 3), can be especially helpful in a large

system.

QUESTIONSANDEXERCISES
1. Suppose that the {𝜀t} sequence is the ARCH(q) process

𝜀t = vt(𝛼0 + 𝛼1𝜀
2
t−1 + · · · + 𝛼q𝜀2t−q)1∕2

Show that the conditional expectation of Et−1𝜀
2
t has the same form as the conditional expec-

tation of (3.1).

2. Consider the ARCH-M model represented by equations (3.23)–(3.25). Recall that {𝜀t} is a
white-noise disturbance; for simplicity, let E𝜖2t = E𝜀2t−1 = · · · = 1.

a. Find the unconditional mean Eyt. How does a change in 𝛿 affect the mean? Using the

example of Section 6, show that changing 𝛽 and 𝛿 from (−4, 4) to (−1, 1) preserves the
mean of the {yt} sequence.

b. Show that the unconditional variance of yt when ht = 𝛼0 + 𝛼1𝜀
2
t−1 does not depend on 𝛽,

𝛿, or 𝛼0.

3. Bollerslev (1986) proved that the ACF of the squared residuals resulting from the

GARCH(p, q) process represented by (3.9) acts as an ARMA(m, p) process where
m = max(p, q). You are to illustrate this result using the examples below.

a. Consider the GARCH(1, 2) process: ht = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛼2𝜀

2
t−2 + 𝛽1ht−1. Add the expres-

sion (𝜀2t − ht) to each side so that

𝜀2t = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛼2𝜀

2
t−2 + 𝛽1ht−1 + (𝜀2t − ht)

= 𝛼0 + (𝛼1 + 𝛽1)𝜀2t−1 + 𝛼2𝜀
2
t−2 − 𝛽1(𝜀2t−1 − ht−1) + (𝜀2t − ht)

Define 𝜂t = (𝜀2t − ht), so that

𝜀2t = 𝛼0 + (𝛼1 + 𝛽1)𝜀2t−1 + 𝛼2𝜀
2
t−2 − 𝛽1𝜂t−1 + 𝜂t

Show that

i. 𝜂t is serially uncorrelated.

ii. The {𝜀2t } sequence acts as an ARMA(2, 1) process.

b. Consider the GARCH(2, 1) process ht = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛽1ht−1 + 𝛽2ht−2. Show that it is

possible to add 𝜂t to each side so as to obtain

𝜀2t = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛽1ht−1 + 𝜂t + 𝛽2ht−2

Show that adding and subtracting the terms 𝛽1𝜂t−1 and 𝛽2𝜂t−2 to the right-hand side of this

equation yields an ARMA(2, 2) process.
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c. Provide an intuitive explanation of the statement: “The Lagrange multiplier for ARCH

errors test cannot be used to test the null of white noise squared residuals against an alter-

native of a specific GARCH(p, q) process.”
d. Sketch the proof of the general statement that the ACF of the squared residuals resulting

from the GARCH(p, q) process represented by (3.9) acts as an ARMA(m, p) process
where m = max(p, q).

4. Let y0 = 0, and let the first five realizations of the {𝜀t} sequence be (1,−1,−2, 1, 1). Plot
each of the following sequences:

Model 1∶ yt = 0.5yt−1 + 𝜀t

Model 2∶ yt = 𝜀t − 𝜀2t−1

Model 3∶ yt = 0.5yt−1 + 𝜀t − 𝜀2t−1

a. How does the ARCH-M specification affect the behavior of the {yt} sequence? What is

the influence of the autoregressive term in model 3?

b. For each of the three models, calculate the sample mean and variance of {yt}.
5. The file labeled ARCH.XLS contains the 100 realizations of the simulated {yt} sequence

used to create the lower right-hand panel of Figure 3.7. Recall that this series was simu-

lated as yt = 0.9yt−1 + 𝜀t where 𝜀t is the ARCH(1) error process 𝜀t = vt(1 + 0.8𝜀t−1)1∕2. You
should find the series has a mean of 0.263, a standard deviation of 4.894, and minimum and

maximum values of −10.8 and 15.15, respectively.
a. Estimate the series using OLS and save the residuals. You should obtain

yt = 0.944yt−1 + 𝜀t
(26.51)

Note that the estimated value of a1 differs from the theoretical value of 0.9. This is due to

nothing more than sampling error; the simulated values of {vt} do not precisely conform
to the theoretical distribution. However, can you provide an intuitive explanation of why

positive serial correlation in the {vt} sequence might shift the estimate of a1 upward in
small samples?

b. Obtain the ACF and the PACF of the residuals. Use Ljung–BoxQ-statistics to determine

whether the residuals approximate white noise. You should find

1 2 3 4 5 6 7 8

ACF 0.149 0.004 −0.018 −0.013 0.072 −0.002 −0.110 −0.152
PACF 0.149 −0.018 −0.016 −0.008 0.077 −0.025 −0.109 −0.122

Q(4) = 2.31,Q(8) = 6.39,Q(24) = 18.49.

c. Obtain the ACF and the PACF of the squared residuals. You should find

1 2 3 4 5 6 7 8

ACF 0.474 0.128 −0.057 −0.077 0.055 0.245 0.279 0.223

PACF 0.474 −0.125 −0.087 0.005 0.132 0.205 0.074 0.067

Based on the ACF and PACF of the residuals and the squared residuals, what can you

conclude about the presence of ARCH errors?
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d. Estimate the squared residuals as 𝜀2t = 𝛼0 + 𝛼1𝜀
2
t−1. You should verify 𝛼0 =

1.55 (t-statistic = 2.83) and 𝛼1 = 0.474 (t-statistic = 5.28).
Show that the Lagrange multiplier test for ARCH(1) errors is TR2 = 22.03 with a signif-

icance level of 0.00000269.

e. Simultaneously estimate the {yt} sequence and the ARCH(1) error process using maxi-

mum likelihood estimation. You should find

yt = 0.886yt−1 + 𝜀t ht = 1.19 + 0.663𝜀2t−1
(32.79) (4.02) (2.89)

6. The second series on the file ARCH.XLS contains 100 observations of a simulated

ARCH-M process.

a. Estimate the {yt} sequence using the Box–Jenkins methodology. Try to improve on the

model
yt = 1.07 + 𝜀t + 0.254𝜀t−3 − 0.262𝜀t−6

(22.32) (2.57) (−2.64)

b. Examine the ACF and the PACF of the residuals from theMA(‖3, 6‖)model above. Why

might someone conclude that the residuals appear to be white noise? Now examine the

ACF and PACF of the squared residuals. You should find

1 2 3 4 5 6

ACF 0.498 0.251 0.290 0.163 0.043 0.114

PACF 0.498 0.004 0.217 −0.088 −0.041 0.101

Perform the LM test for ARCH errors.

c. Estimate the {yt} sequence as the ARCH-M process:

yt = 0.908 + 0.625ht + 𝜀t
(14.05) (1.79)

ht = 0.108 + 0.597𝜀2t−1
(5.59) (2.50)

d. Check ACF and the PACF of the estimated {𝜀t} sequence. Do they appear to be satisfac-
tory? Experiment with several other simple formulations of the ARCH-M process.

7. Consider the ARCH(2) process Et−1𝜀
2
t = 𝛼0 + 𝛼1𝜀

2
t−1 + 𝛼2𝜀

2
t−2

a. Suppose that the residuals come from the model yt = a0 + a1yt−1 + 𝜀t. Find the condi-

tional and unconditional variance of {yt} in terms of the parameters a1, 𝛼0, 𝛼1, and 𝛼2.
b. Suppose that {yt} is an ARCH-M process such that the level of yt is positively related to

its own conditional variance. For simplicity, let yt = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛼2𝜀

2
t−2 + 𝜀t. Trace out

the impulse response function of {yt} to an {𝜀t} shock. You may assume that the system

has been in long-run equilibrium (𝜀t−2 = 𝜀t−1 = 0) but now 𝜀1 = 1. Thus, the issue is to

find the values of y1, y2, y3, and y4 given that 𝜀2 = 𝜀3 = · · · = 0.

c. Use your answer to part b to explain the following result. A student estimated {yt} as an
MA(2) process and found the residuals to be white noise. A second student estimated

the same series as the ARCH-M process yt = 𝛼0 + 𝛼1𝜀
2
t−1 + 𝛼2𝜀

2
t−2 + 𝜀t. Why might both

estimates appear reasonable? How would you decide which is the better model?

d. In general, explain why an ARCH-M model might appear to be a moving average

process.

8. The file RGDP.XLS contains the data used to construct Figures 3.1 and 3.2.
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a. If you examine ACF of the residuals formed from the model in Section 4 concerning the

volatility break in real GDP growth, you should find

1 2 3 4 5 6

ACF −0.065 0.117 −0.047 −0.043 −0.120 0.004

However, if you examine the ACF of the standardized residuals, you should find

1 2 3 4 5 6

ACF −0.072 0.182 −0.054 0.033 −0.070 0.025

The Ljung−Box Q-statistics indicate no significant serial autocorrelation in the residuals
but significant autocorrelation in the standardized residuals. Explain why the residuals

may show no serial correlation while the standardized residuals indicate serial correla-

tion.

b. Show that a second lag of yt in the mean equation removes the serial correlation from the

standardized residuals.

c. Create a dummy variable representing the financial crisis. Specifically, let D2t be a

dummy variable such that D2t = 0 prior to August 2007 and is 1 thereafter. If you

include both Dt and D2t in the variance equation, do you conclude that a volatility break

occurred as a result of the financial crisis?

d. Use the method presented in Section 4 to show that there were significant volatility

reductions in real consumption and investment in 1984Q1. Compart the volatility

persistence of investment to that of consumption.

9. The file NYSE(RETURNS).XLS contains the daily values of the New York Stock

Exchange Index that was used in Section 10.

a. Reproduce the results of Section 10.

b. Compare the results reported in the text to those obtained by assuming normality.

10. Use the data of the file EXRATES(DAILY).XLS to estimate a bivariate model of the pound

and euro exchange rates. In particular,

a. Does a bivariate diagonal vech model yield very different results from those shown in

Section 11?

b. Experiment with the convergence criteria and search methods on your software pack-

age to determine how they influence the estimates you found in part a. Pay particular
attention to the standard errors on the coefficients.

c. Try to get convergence for a pure vechmodel. Compare the results to those you found in

part a.

11. In answering the following, you should consult Appendix 3.1 of the Supplementary Manual.

a. Justin finds that a GARCH(2, 1) specification is appropriate for all hijt in a two variable
diagonal vechmodel. What is the formula for h12t?

b. Jennifer finds that a GARCH(1, 2) specification is appropriate for all hijt in a two variable
diagonal vechmodel. What is the formula for h12t?

c. In the two variable BEKK model, it was shown that

h11t = (c211 + c212) + (𝛼2
11𝜀

2
1t−1 + 2𝛼11𝛼21𝜀1t−1𝜀2t−1 + 𝛼2

21𝜀
2
2t−1)

+ (𝛽2
11h11t−1 + 2𝛽11𝛽21h12t−1 + 𝛽2

21h22t−1)
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Let all of the coefficients be positive. If the 𝜀1t−1 and 𝜀2t−1 are of opposite signs, can the

term 𝛼2
11
𝜀2
1t−1 + 2𝛼11𝛼21𝜀1t−1𝜀2t−1 + 𝛼2

21
𝜀2
2t−1 be negative?

d. Suppose that, in period t, h11t = 2 and h22t = 4.5. If the CCCmodel indicates 𝜌12 = −0.5,
find h12t.

12. In Section 4, it was established that a reasonable model for the price of oil is an MA(1) with

the GARCH conditional variance: ht = 0.402 + 0.097𝜀2t−1 + 0.881ht−1
a. Estimate the model using a t-distribution. You should find ht = 0.37 + 0.10𝜀2t−1 +

0.88ht−1, where the degrees of freedom parameter is estimated to be 8.77. Why do you

think that the two estimates are so similar?

b. Why is it reasonable to estimate the conditional variance as an IGARCH process?

c. Figure 3.6 shows that price has a sharp break. What happens to the estimates if your

model of the mean includes a break dummy variable such thatDt = 0 if t < July11, 2008,

and Dt = 1 otherwise? What happens if you use a dummy such that Dt = 0 unless t =
July11, 2008? What if you set the dummy such that Dt = 1 if t is between July 11, 2008,
and December 31, 2008?

d. Return to the case of normally distributed errors, but allow the GARCH(1, 1) variance

to affect mean returns. Your estimated ARCH-In-Mean model should be pt = 0.026 +
0.225𝜀t−1 + 0.008ht. Given that the t-statistic on the coefficient of ht is 0.65, what do you
conclude?

e. Explain why it is reasonable to argue that an IGARCH model with normally distributed

returns (an no ARCH-In-Mean effects) is a reasonable model for pt. Perform the stan-

dard diagnostic checks for no remaining serial correlation and for no remaining GARCH

effects. Test the model for leverage. Show that the Engle–Ng sign test with 1 lag indi-

cates leverage, but most other tests indicate the absence of a leverage term.

f. Estimate an EGARCHmodel and show that it indicates the absence of a leverage effect.
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CHAPTER4
MODELS WITH TREND

Learning Objectives
1. Formalize simple models of variables with a time-dependent mean.

2. Compare models with deterministic versus stochastic trends.

3. Show that the so-called unit root problem arises in standard regression and

in times-series models.

4. Explain how Monte Carlo and simulation techniques can be used to derive

critical values for hypothesis testing.

5. Develop and illustrate the Dickey–Fuller and augmented Dickey–Fuller

tests for the presence of a unit root.

6. Apply the Dickey–Fuller tests to U.S. GDP and real exchange rates.

7. Show how to apply the Dickey–Fuller test to series with serial correlation,

moving average terms, multiple unit roots, and seasonal unit roots.

8. Consider tests for unit roots in the presence of structural change.

9. Illustrate the lack of power of the standard Dickey–Fuller test.

10. Show that generalized least squares (GLS) detrending methods can enhance

the power of the Dickey–Fuller tests.

11. Explain how to use panel unit root tests in order to enhance the power of the

Dickey–Fuller test.

12. Decompose a series with a trend into its stationary and trend components.

1. DETERMINISTIC AND STOCHASTIC TRENDS

It is helpful to represent the general solution to a linear stochastic difference equation

as consisting of these three distinct parts:1

yt = trend + stationary component + noise

Chapter 2 explained how to model the stationary component using the Box–

Jenkins methodology. Chapter 3 showed you how to model the variance of the error

(i.e., noise) component. A critical task for applied econometricians is to develop

simple stochastic difference equation models that mimic the behavior of trending

variables. The file RGDP.XLS contains the quarterly values of real U.S. GDP over

the 1947Q1–2012Q4 period (in billions of year 2005 dollars). From the plot of the

data shown in Figure 4.1, it is clear that the distinguishing feature real GDP {rgdpt}
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Actual Fitted Forecasts
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FIGURE 4.1 A Deterministic Trend in Real GDP

is that it increases over time. For such a series, a naive forecaster might estimate the

sustained increase using the following cubic polynomial model for the trend:

rgdpt = 1890.247 + 9.108t + 0.170t2 − 0.0001t3

(27.66) (4.09) (8.70) (−2.07) (4.1)

The fitted values are shown as the dashed lines in the figure, and the forecasted val-

ues are shown as the solid line extending past 2012Q4. Regardless of the t-statistics, the
use of such a model for the trend of real GDP is problematic. Since there are no stochas-

tic components in the trend, (4.1) implies that there is a deterministic long-run growth

rate of the real economy. The “Real Business Cycle” school argues that technological

advancements have permanent effects on the trend of the macroeconomy. Since techno-

logical innovations are stochastic, the trend should reflect this underlying randomness.

Adherents to other schools of macroeconomics would also argue that the trend is not

completely deterministic. For example, they might point out that an oil price shock or

a targeted tax reduction could affect investment and the economy’s long-term growth

rate. Moreover, the implications for the behavior of the business cycle are not credible.

The deterministic trend implies that, whenever real GDP is below trend, in subsequent

periods, there will be unusually high growth as real GDP returns to the trend. The reac-

tion to the 2007–2008 financial crisis suggests that most economists and politicians do

not take this notion very seriously. In fact, the forecasts beyond 2012 seem to totally

ignore decline in GDP resulting from the financial crisis. Lastly, the negative coefficient

on the t3 term implies permanent declines in future GDP after a sufficiently long time.
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Reexamine the 3-month T-bill rate and the yield on 5-year U.S. federal govern-

ment securities shown in Figure 3.4. The two interest rates have no obvious tendency

to increase or decrease. Moreover, there are no decided structural breaks that induce

one-time shifts in the mean. Nevertheless, there is no pronounced tendency for either

series to revert to a long-run mean. The key feature of a trend is that it has a permanent

effect on a series. If the trend is defined as the permanent or nondecaying component

of a time series, the two interest rates have a trend.

Suppose that a series always changes by the same fixed amount from one period

to the next. To be more specific, suppose that

Δyt = a0

As you know from Chapter 1, the solution to this linear difference equation is

yt = y0 + a0t

where y0 is the initial condition for period zero.

Hence, the solution for Δyt = a0 turns out to be nothing more than a deterministic

linear time trend; the intercept is y0 and the slope is a0. Now, if we add the stationary

component A(L)𝜀t to the trend, we obtain

yt = y0 + a0t + A(L)𝜀t (4.2)

In (4.2), yt can differ from its trend value by the amount A(L)𝜀t. Since this deviation
is stationary, the {yt} sequence will exhibit only temporary departures from the trend.

As such, the long-term forecast of yt+s will converge to the trend line y0 + a0(t + s). In
the jargon of the profession, this type of model is called a trend stationary (TS) model.

Now suppose that the expected change in yt is a0 units. In particular, let Δyt be
equal to a0 plus a white-noise term:

Δyt = a0 + 𝜀t (4.3)

Sometimes, Δyt exceeds a0 and sometimes it falls short of a0. Since Et−1𝜀t = 0,

(4.3) implies that yt is expected to change by a0 units from one period to the next. The

seemingly innocuous modification of (4.2) has profound differences for the trend. If y0
is the initial condition, it is readily verified that the general solution to the first-order

difference equation represented by (4.3) is

yt = y0 +
t∑
i=1

𝜀i + a0t

Here, yt consists of the deterministic trend component a0t and the component

y0 + Σ𝜀i. We can think of this second component as a stochastic intercept term. In the

absence of any shocks, the intercept is y0. However, each 𝜀i shock represents a shift in
the intercept. Since all values of {𝜀i} have a coefficient of unity, the effect of each shock
on the intercept term is permanent. In the time-series literature, such a sequence is said

to have a stochastic trend since each 𝜀i shock imparts a permanent, albeit random,

change in the conditional mean of the series. If a0 = 0, this type of model seems to

capture some of the behavior of the interest rates. The two rates have no particular ten-

dency to increase or decrease over time; neither do they exhibit any tendency to revert

to a given mean value.
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The Random Walk Model

Equation (4.3) is the basic building block for modeling series containing stochastic

trends. Since these models are probably unfamiliar to you, the remainder of this section

explores the nature of stochastic trends. We begin by considering the special case of

(4.3) when a0 = 0. This model, known as the random walkmodel, has a special place

in the economics and finance literature. For example, some formulations of the efficient

market hypothesis posit that the change in the price of a stock from one day to the next

is completely random. As such, the current price (yt) should be equal to last period’s

price plus a white-noise term, so that

yt = yt−1 + 𝜀t (or Δyt = 𝜀t)

Similarly, suppose you were betting on the outcome of a coin toss and a head

added $1 to your wealth while a tail cost you $1. We could let 𝜀t = +$1 if a head

appears and−$1 in the event of a tail. Thus, your current wealth (yt) equals last period’s
wealth (yt−1) plus the realized value of 𝜀t. If you play again, your wealth in t + 1 is

yt+1 = yt + 𝜀t+1.
If y0 is a given initial condition, it can be readily verified that the general solution

to the first-order difference equation represented by the random walk model is

yt = y0 +
t∑
i=1

𝜀i

Taking expected values, we obtain Eyt = Eyt−s = y0; thus, the mean of a random

walk is a constant. However, all stochastic shocks have nondecaying effects on the {yt}
sequence. Given the first t realizations of the {𝜀t} process, the conditional mean of

yt+1 is
Etyt+1 = Et(yt + 𝜀t+1) = yt

Similarly, the conditional mean of yt+s (for any s > 0) can be obtained from

yt+s = yt +
s∑
i=1

𝜀t+i

so that

Etyt+s = yt + Et

s∑
i=1

𝜀t+i = yt

For any positive value of s, the conditional means for all values of yt+s are equiv-
alent. Hence, the constant value of yt is the unbiased estimator of all future values of

yt+s. To interpret, note that an 𝜀t shock has a permanent effect on yt. This permanence

is directly reflected in the forecasts for yt+s.
It is easy to show that the variance is time dependent. Given the value of y0, the

variance can be constructed as

var(yt) = var(𝜀t + 𝜀t−1 + · · · + 𝜀1) = t𝜎2
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and

var(yt−s) = var(𝜀t−s + 𝜀t−s−1 + · · · + 𝜀1) = (t − s)𝜎2

Since the variance is not constant [i.e., var(yt) ≠ var(yt−s)], the random walk pro-

cess is nonstationary. Moreover, as t → ∞, the variance of yt also approaches infin-

ity. Thus, the random walk meanders without exhibiting any tendency to increase or

decrease. It is also instructive to calculate the covariance of yt and yt−s. Since the mean

is constant, we can form the covariance 𝛾t−s as

E[(yt − y0)(yt−s − y0)] = E[(𝜀t + 𝜀t−1 + · · · + 𝜀1)(𝜀t−s + 𝜀t−s−1 + · · · + 𝜀1)]
= E[(𝜀t−s)2 + (𝜀t−s−1)2 + · · · + (𝜀1)2]
= (t − s)𝜎2

To form the correlation coefficient 𝜌s, we can divide 𝛾t−s by the product of the stan-
dard deviation (SD) of yt multiplied by the SD of yt−s. Thus, the correlation coefficient
𝜌s is

𝜌s = (t − s)∕
√
(t − s)t

= [(t − s)∕t]0.5 (4.4)

This result plays an important role in the detection of nonstationary series. For

the first few autocorrelations, the sample size t will be large relative to the number

of autocorrelations formed; for small values of s, the ratio (t − s)∕t is approximately

equal to unity. However, as s increases, the values of 𝜌s will decline. Hence, when using
sample data, the autocorrelation function for a random walk process will show a slight
tendency to decay. Thus, it will not be possible to use the autocorrelation function to

distinguish between a unit root process and a stationary process with an autoregressive

coefficient that is close to unity.

Panel (a) in Figure 4.2 shows the time path of a simulated random walk process.

First, 100 normally distributed random deviates were drawn from a theoretical distribu-

tion with a mean of zero and a variance equal to unity. By setting y0 = 1, each value of

yt (t = 1, … , 100) was constructed by adding the random variable to the value of yt−1.
As expected, the series meanders without any tendency to revert to a long-run value.

However, there does appear to be a slight positive trend in the simulated data. The rea-

son for the upward trend is that this particular simulation happened to contain more

positive values than negative values. The impression of a steadily increasing trend in

the true data-generating process is false and serves as a reminder against relying solely

on causal inspection.

The Random Walk Plus Drift Model

Now, let the change in yt be partially deterministic and partially stochastic. The random
walk plus drift model augments the random walk model by adding a constant term

a0, so that
yt = yt−1 + a0 + 𝜀t
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FIGURE 4.2 Four Series With Trends

Hence, you can see that (4.3) is actually a random walk plus drift process. Given

the initial condition y0, the general solution for yt is given by

yt = y0 + a0t +
t∑
i=1

𝜀i (4.5)

Here, the behavior of yt is governed by two nonstationary components: a linear

deterministic trend and the stochastic trend Σ𝜀i. As such, a random walk plus drift is a

pure model of a trend; there is no separate stationary component in (4.5).

If we take expectations, the mean of yt is y0 + a0t and the mean of yt+s is

Eyt+s = y0 + a0(t + s). To explain, the deterministic change in each realization of {yt}
is a0; after t periods, the cumulated change is a0t. In addition, there is the stochastic

trend Σ𝜀i; each 𝜀i shock has a permanent effect on the mean of yt. Notice that the first
difference of the series is stationary; taking the first difference yields the stationary

sequence Δyt = a0 + 𝜀t.

Panel (b) of Figure 4.2 illustrates a simulated random walk plus drift model. The

value of a0 was set equal to 0.5, and (4.5) was simulated using the same 100 deviates

used for the random walk model above. Clearly, the deterministic time trend dominates

the time path of the series. In a very large sample, asymptotic theory suggests this

will always be the case. However, you should not conclude that it is always easy to

discern the difference between a random walk model and a model with drift. In a small

sample, increasing the variance of {𝜀t} or decreasing the absolute value of a0 could

cloud the long-run properties of the sequence. Panel (c) uses the same random numbers

to generate the TS series yt = 0.5t + 𝜀t. The patterns evident in the random walk plus

drift model and the TS series look strikingly similar to each other and to the real GDP

series shown in Figure 4.1.
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To obtain the s-step-ahead forecast for a random walk plus drift, update (4.5) by s
periods to obtain

yt+s = y0 + a0(t + s) +
t+s∑
i=1

𝜀i

= yt + a0s +
s∑
i=1

𝜀t+i

Taking the conditional expectation of yt+s, it follows that

Etyt+s = yt + a0s.

In contrast to the pure random walk model, the forecast function is not flat. The

fact that the average change in yt is always the constant a0 is reflected in the fore-

cast function. In addition to the given value of yt, we project this deterministic change

s times into the future.

Generalizations of the Stochastic Trend Model

It is not too difficult to generalize the random walk model to allow yt to be the sum of

a stochastic trend and a white-noise component. Formally, this third model—called a

random walk plus noise—is represented by

yt = y0 +
t∑
i=1

𝜀i + 𝜂t (4.6)

where {𝜂t} is a white-noise process with variance 𝜎2
𝜂 ; and 𝜀t and 𝜂t−s are independently

distributed for all t and s [i.e., E(𝜀t𝜂t−s) = 0].

If we take the first difference of (4.6), the random walk plus noise model becomes

Δyt = 𝜀t + Δ𝜂t (4.7)

You can easily verify that (4.6) and (4.7) are equivalent by writing yt−1 as

yt−1 = y0 +
t−1∑
i=1

𝜀i + 𝜂t−1

Subtract this expression from (4.6) to obtain (4.7). From (4.6), you can see that the

key properties of the random walk plus noise model are as follows:

1. Given the value y0, the mean of the {yt} sequence is constant: Eyt = y0 and
updating by s periods yields Eyt+s = y0. Notice that the successive 𝜀t shocks
have permanent effects on the {yt} sequence in that there is no decay factor
on the past values of 𝜀i. Hence, yt has the stochastic trend component Σ𝜀i.

2. The {yt} sequence has a pure noise component in that the {𝜂t} sequence has
only a temporary effect on the {yt} sequence. The current realization of 𝜂t
affects only yt but not the subsequent values yt+s.
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3. The variance of {yt} is not constant: var(yt) = t𝜎2 + 𝜎2
𝜂 and var(yt−s) =

(t − s)𝜎2 + 𝜎2
𝜂 . As in the other models with a stochastic trend, the variance

of yt approaches infinity as t increases. The presence of the noise component

means that the correlation coefficient between yt and yt−s is smaller than that

for the pure random walk model.

To prove that the sample correlogram will exhibit even faster decay than in the

pure random walk model, note that the covariance between yt and yt−s is

cov(yt, yt−s) = E[(yt − y0)(yt−s − y0)]
= E[(𝜀1 + 𝜀2 + 𝜀3 + · · · + 𝜀t + 𝜂t)(𝜀1 + 𝜀2 + 𝜀3 + · · · + 𝜀t−s + 𝜂t−s)]

Since {𝜀t} and {𝜂t} are independent white-noise sequences

cov(yt, yt−s) = (t − s)𝜎2

Thus, the correlation coefficient 𝜌s is

𝜌s =
(t − s)𝜎2√

(t𝜎2 + 𝜎2
𝜂 )[(t − s)𝜎2 + 𝜎2

𝜂 )]

Comparison of 𝜌s with the correlation coefficient for the pure random walk model

(i.e., equation 4.4) verifies that the autocorrelations for the random walk plus noise

model are always smaller for 𝜎2
𝜂 > 0. Panel (d) of Figure 4.2 shows a random walk plus

noise model. The series was simulated by drawing a second 100 normally distributed

random terms to represent the {𝜂t} series. For each value of t, yt was calculated using

(4.6). If we compare Panels (a) and (d), it can be seen that the two series track each other

quite well. The random walk plus noise model could mimic the same set of macroeco-

nomic variables as the random walk model. The effect of the “noise” component {𝜂t}
is to increase the variance of {yt} without affecting its long-run behavior. After all,

the random walk plus noise series is nothing more than the random walk model with a

purely temporary component added.

The randomwalk plus noise and the randomwalk plus drift models are the building

blocks of more complex time-series models. For example, the noise and drift compo-

nents can easily be incorporated into a single model by modifying (4.7) such that the

trend in yt contains a deterministic and a stochastic component. Specifically, replace

(4.7) with

Δyt = a0 + 𝜀t + Δ𝜂t
or

yt = y0 + a0t +
t∑
i=1

𝜀i + 𝜂t (4.8)

Equation (4.8) is called the trend plus noisemodel; yt is the sum of a deterministic

trend, a stochastic trend, and a pure white-noise term. Moreover, the noise sequence

does not need to be a white-noise process. Let A(L) be a polynomial in the lag operator
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L; it is possible to augment a randomwalk plus drift process with the stationary process

A(L)𝜂t so that the general trend plus irregular model is

yt = y0 + a0t +
t∑
i=1

𝜀i + A(L)𝜂t (4.9)

Thus, (4.9) has a deterministic trend, a stochastic trend, and a stationary compo-

nent.

Many more details of these unobserved components models are examined in

Section 4.1 of the Supplementary Manual. It is useful to work through this section and
to understand the application of signal extraction methods to this class of model.

2. REMOVING THE TREND

From the previous section, it should be clear that there are important differences

between a series with a trend and a stationary series. Shocks to a stationary time

series are necessarily temporary; over time, the effects of the shocks will dissipate,

and the series will revert to its long-run mean level. On the other hand, a series

containing a stochastic trend will not revert to a long-run level. Note that the trend

can have deterministic and stochastic components. These components of the trend

have important implications for the appropriate transformation necessary to attain

a stationary series. The usual methods for eliminating the trend are differencing
and detrending. For historical reasons, regressing a variable on a constant and time
and saving the residuals is called detrending. We still use this term even though the

method removes only a deterministic, not a stochastic, trend. A series containing a

unit root can be made stationary by differencing. In fact, we already know that the

dth difference of ARIMA(p, d, q) model is stationary. The aim of this section is to

compare these two methods of isolating the trend.

Differencing

First consider the solution for the random walk plus drift model:

yt = y0 + a0t +
t∑
i=1

𝜀i

Taking the first difference, we obtain Δyt = a0 + 𝜀t. Clearly, the {Δyt}
sequence—equal to a constant plus a white-noise disturbance—is stationary.

Viewing Δyt as the variable of interest, we have

E(Δyt) = E(a0 + 𝜀t) = a0
var(Δyt) ≡ E(Δyt − a0)2 = E(𝜀t)2 = 𝜎2

and for s ≠ 0

cov(Δyt,Δyt−s) ≡ E[(Δyt − a0)(Δyt−s − a0)] = E(𝜀t𝜀t−s) = 0
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Since the mean and variance are constants and the covariance between Δyt and
Δyt−s does not depend on t, the {Δyt} sequence is stationary.

The random walk plus noise model is an interesting case study. In first differences,

the model can be written as Δyt = 𝜀t + Δ𝜂t. In this form, it is easy to show that Δyt is
stationary. Clearly, the mean is zero because

EΔyt = E(𝜀t + Δ𝜂t) = 0

Moreover, the variance and all autocovariances are constant and time invariant

because

var(Δyt) = E[(Δyt)2] = E[(𝜀t + Δ𝜂t)2]
= E[(𝜀t)2 + 2𝜀tΔ𝜂t + (Δ𝜂t)2]
= 𝜎2 + 2E[𝜀tΔ𝜂t] + E[(𝜂t)2 − 2𝜂t𝜂t−1 + (𝜂t−1)2] = 𝜎2 + 2𝜎2

𝜂

cov(Δyt,Δyt−1) = E[(𝜀t + 𝜂t − 𝜂t−1)(𝜀t−1 + 𝜂t−1 − 𝜂t−2)] = −𝜎2
𝜂

and

cov(Δyt,Δyt−s) = E[(𝜀t + 𝜂t − 𝜂t−1)(𝜀t−s + 𝜂t−s − 𝜂t−s−1)] = 0 for s > 1.

If we set s = 1, the correlation coefficient between Δyt and Δyt−1 is

𝜌1 =
cov(Δyt,Δyt−1)

var(Δyt)
=

−𝜎2
𝜂

𝜎2 + 𝜎2
𝜂

Examination reveals −0.5 < 𝜌1 < 0 and that all other correlation coefficients are

zero. Since the first difference of yt acts exactly as an MA(1) process, the random walk

plus noise model is ARIMA(0, 1, 1). Since adding a constant to a series has no effect

on the correlogram, it additionally follows that the trend plus noise model of (4.8) also

acts as an ARIMA(0,1,1) process.

Now consider the general class of ARIMA(p, d, q) models:

A(L)yt = B(L)𝜀t (4.10)

where A(L) and B(L) are polynomials of orders p and q in the lag operator L.
First, suppose that A(L) has a single unit root and that B(L) has all roots outside

the unit circle. We can factor A(L) into two components (1 − L)A∗(L), where A∗(L) is
a polynomial of order p − 1. Since A(L) has only one unit root, it follows that all roots
of A∗(L) are outside the unit circle. Thus, we can write (4.10) as

(1 − L)A∗(L)yt = B(L)𝜀t
Now, define y∗t = Δyt so that

A∗(L)y∗t = B(L)𝜀t (4.11)

The {y∗t } sequence is stationary since all roots of A∗(L) lie outside the unit circle.
The point is that the first difference of a unit root process is stationary. If A(L) has
two unit roots, the same argument can be used to show that the second difference of

{yt} is stationary. The general point is that the dth difference of a process with d unit
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roots is stationary. Such a sequence is integrated of order d and is denoted by I(d).
An ARIMA(p, d, q) model has d unit roots; the dth difference of such a model is a

stationary ARMA(p, q) process.

Detrending

We have shown that differencing can sometimes be used to transform a nonstation-

ary model into a stationary model with an ARMA representation. This does not mean

that all nonstationary models can be transformed into well-behaved ARMA models by

appropriate differencing. Consider, for example, a model that is the sum of a determin-

istic trend and a pure noise component:

yt = y0 + a1t + 𝜀t

The first difference of yt is not well-behaved because

Δyt = a1 + 𝜀t − 𝜀t−1

Here, Δyt is not invertible in the sense that Δyt cannot be expressed in the form of an

autoregressive process. Recall that invertibility of a stationary process requires that the

MA component does not have a unit root.

Instead, an appropriate way to transform this model is to estimate the regression

equation yt = a0 + a1t + 𝜀t. Subtracting the estimated values of yt from the observed

series yields estimated values of the {𝜀t} series. More generally, a time series may have

the polynomial trend as in

yt = a0 + a1t + a2t
2 + a3t

3 + · · · + ant
n + et

where {et} = a stationary process.

Detrending is accomplished by regressing {yt} on a deterministic polynomial time

trend, as in (4.1). The appropriate degree of the polynomial can be determined by stan-

dard t-tests, F-tests, and/or using statistics such as the AIC or the SBC. The common

practice is to estimate the regression equation using the largest value of n deemed rea-

sonable. If the t-statistic indicates an is zero, consider a polynomial trend of order n − 1.

Continue to pare down the order of the polynomial trend until a nonzero coefficient

is found. F-tests can be used to determine whether a group of coefficients, say, an−i
through an, is statistically different from zero. The AIC and SBC statistics can be used

to reconfirm the appropriate degree of the polynomial.

Simply subtracting the estimated values of the {yt} sequence from the actual values

yields an estimate of the stationary sequence {et}. The detrended process can then be

modeled using traditional methods (such as ARMA estimation).

Difference versus Trend Stationary Models

We have encountered two ways to eliminate a trend. A trend stationary series can be

transformed into a stationary series by removing the deterministic trend. A series with

a unit root, sometimes called a difference stationary (DS) series, can be transformed

into a stationary series by differencing. A serious problem is encountered when the
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inappropriate method is used to eliminate trend. We saw an example of the problem in

attempting to difference the equation yt = y0 + a1t + 𝜀t. Consider a more general trend

stationary process of the form

A(L)yt = a0 + a1t + et

where the characteristic roots of the polynomial A(L) are all outside the unit circle, and
the expression et is allowed to have the form et = B(L)𝜀t. Subtracting an estimate of

the deterministic time trend yields a stationary and invertible ARMAmodel. However,

if we use the notation of (4.11), the first difference of such a model yields

A(L)y∗t = a1 + (1 − L)B(L)𝜀t
First differencing the TS process has introduced a noninvertible unit root process

into the MA component of the model. Of course, the same problem is encountered in

a model with a polynomial time trend.

In the same way, subtracting a deterministic time trend from a DS process is also

inappropriate. For example, in the general trend plus irregular model of (4.9), sub-

tracting y0 + a0t from each observation does not result in a stationary series since the

stochastic portion of the trend is not eliminated.

Are There Business Cycles?

Traditional business cycle research decomposed real macroeconomic variables into a

long-run (secular) trend and a cyclical component. The typical decomposition is illus-

trated by the hypothetical data in Figure 4.3. The secular trend, portrayed by the straight

line, was deemed to be in the domain of growth theory. The slope of the trend line was

thought to be determined by long-run factors such as technological growth, fertility,

immigration, and educational attainment levels.

One source of the deviations from trend occurs because of the wavelike motion of

real economic activity called the business cycle. Although the actual period of the cycle
was never thought to be as regular as that depicted in the figure, the periods of prosperity

and recovery were regarded to be as inevitable as the tides. The goal of monetary and

fiscal policy was to reduce the amplitude of the cycle (measured by distance ab). In
terms of our previous discussion, the trend is the nonstationary component, and the

cyclical and irregular components are stationary.

Although there have been recessions and periods of high prosperity, the post-World

War II experience taught us that business cycles do not have a regular period. Even so,

there is a widespread belief that, over the long run, macroeconomic variables grow at

a constant trend rate and that any deviations from trend are eventually eliminated by

the invisible hand. The belief that trend is unchanging over time leads to the common

practice of detrendingmacroeconomic data using a linear (or polynomial) deterministic

regression equation. The lower portion of the figure shows the cycle and the noise (or

irregular) component after detrending.

Nelson and Plosser (1982) challenged the traditional view by demonstrating that

important macroeconomic variables tend to be DS rather than TS processes. They

obtained time-series data for 13 important macroeconomic time series: real GNP,

nominal GNP, industrial production, employment, unemployment rate, GNP deflator,
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FIGURE 4.3 The Business Cycle?

consumer prices, wages, real wages, money stock, velocity, bond yields, and an index

of common stock prices. The sample began as early as 1860 for consumer prices

to as late as 1909 for GNP data and ended in 1970 for all of the series. Some of

their findings are reported in Table 4.1. The first two columns report the first- and

second-order autocorrelations of real and nominal GNPs, industrial production, and

the unemployment rate. Notice that the autocorrelations of the first three of the series

are strongly indicative of a unit root process. Although 𝜌1 for the unemployment rate

is 0.75, the second-order autocorrelation is less than 0.5.

First differences of the series yield the first- and second-order sample autocorre-

lations r(1) and r(2), respectively. Sample autocorrelations of the first differences are
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Table 4.1 Selected Autocorrelations From Nelson and Plosser

𝝆1 𝝆2 r(1) r(2) d(1) d(2)

Real GNP 0.95 0.90 0.34 0.04 0.87 0.66

Nominal GNP 0.95 0.89 0.44 0.08 0.93 0.79

Industrial production 0.97 0.94 0.03 −0.11 0.84 0.67

Unemployment rate 0.75 0.47 0.09 −0.29 0.75 0.46

Notes:
1Full details of the correlogram can be obtained from Nelson and Plosser (1982), who report the first six
sample autocorrelations.
2𝜌i , r(i), and d(i) refer to the ith-order autocorrelation coefficient for each series, for the first difference of
the series, and for the detrended values of the series, respectively.

indicative of stationary processes. The evidence supports the claim that the data are

generated from DS processes. Nelson and Plosser point out that the positive autocor-

relation of differenced real and nominal GNP at lag 1 only is suggestive of an MA(1)

process. To further strengthen the argument for DS processes, recall that differencing

a TS process yields a noninvertible moving average process. None of the differenced

series reported by Nelson and Plosser appears to have a unit root in the MA terms.

The results from fitting a linear trend to the data and forming sample autocorre-

lations of the residuals are given in the last two columns of the table. An interesting

feature of the data is that the sample autocorrelations of the detrended data are reason-

ably high. This is consistent with the fact that detrending a DS series will not eliminate

the nonstationarity. Notice that detrending the unemployment rate has no effect on the

autocorrelations. The overall implication is that macroeconomic variables do not grow

at a smooth long-run rate. Some macroeconomic shocks are of a permanent nature; the

effects of such shocks are never eliminated.

The Trend in Real GDP

Another way to make the same point is to note that the real GDP series shown in

Figure 4.1 has a clear trend. However, the tight fit of the estimated model might fool

a researcher into thinking the series is actually stationary around the cubic trend line

shown in Figure 4.1. Our eyes can be deceived because such trend lines are fit so as to

make the observed residuals as small as possible. The ACF and PACF of the residuals

from (4.1) are shown in Panel (a) of Figure 4.4. You can see that the ACF decays slowly

while the PACF cuts to zero after one lag. In fact, this type of slow decay in the ACF

is typical of a series with a stochastic trend. Thus, detrending the data does not seem

to result in a stationary series. Panel (b) shows the ACF and PACF of the logarithmic

change in real GDP. The ACF and PACF quickly converge to zero; after two lags, all

autocorrelations and partial autocorrelations are not statistically different from zero.

The estimated model for logarithmic change in real GDP (Δlrgdp) is
Δlrgdpt = 0.0049 + 0.3706Δlrgdpt−1

(6.80) (6.44)
Unlike the model of the deterministic trend, the residuals from this model all

appear to be white noise. Thus, differencing is sufficient to remove the trend.
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Panel (a): Detrended RGDP
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FIGURE 4.4 ACF and PACF

Rather than rely solely on an analysis of correlograms, it is possible to formally

test whether a series is stationary. We examine such tests in the next several sections.

The testing procedure is not as straightforward as it may seem. We cannot use the usual

testing techniques because classical procedures all presume that the data are stationary.

For now, it suffices to say that Nelson and Plosser are not able to reject the null hypoth-

esis of a unit root. However, before we examine the tests for a unit root, it is important

to note that the issue of nonstationarity also arises quite naturally in the context of the

standard regression model.

3. UNIT ROOTS AND REGRESSION RESIDUALS

Consider the regression equation

yt = a0 + a1zt + et (4.12)

where the symbol et is used to indicate that the error term may be serially correlated.

The assumptions of the classical regression model necessitate that both the {yt}
and {zt} sequences be stationary and that the errors have a zero mean and a finite vari-

ance. In the presence of nonstationary variables, there might be what Granger and

Newbold (1974) call a spurious regression. A spurious regression has a high R2-

and t-statistics that appear to be significant, but the results are without any economic

meaning. The regression output “looks good,” but the least-squares estimates are not

consistent and the customary tests of statistical inference do not hold. Granger and

Newbold (1974) provide a detailed examination of the consequences of violating the

stationarity assumption by generating two sequences, {yt} and {zt}, as independent
random walks using the formulas:

yt = yt−1 + 𝜀yt (4.13)
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and

zt = zt−1 + 𝜀zt (4.14)

where 𝜀yt and 𝜀zt are white-noise processes that are independent of each other.

Granger and Newbold generated many such samples, and for each sample esti-

mated, a regression in the form of (4.12). Since the {yt} and {zt} sequences are inde-

pendent of each other, (4.12) is necessarily meaningless; any relationship between the

two variables is spurious. Surprisingly, at the 5% significance level, they were able to

reject the null hypothesis a1 = 0 in approximately 75% of the cases. Of course, at the

5% level, a correctly sized test would yield rejections in only 5% of the regressions.

Moreover, the regressions usually had very high R2 values, and the estimated residuals

exhibited a high degree of autocorrelation.

To explain the findings of Granger and Newbold, note that the regression

equation (4.12) is necessarily meaningless if the residual series {et} is nonstationary.

Obviously, if the {et} sequence has a stochastic trend, any error in period t never decays
so that any deviation from the model is permanent. It is hard to imagine attaching

any importance to an economic model having permanent errors. The simplest way to

examine the properties of the {et} sequence is to abstract from the intercept term a0
and rewrite (4.12) as

et = yt − a1zt

If yt and zt are generated by (4.13) and (4.14), we can impose the initial conditions

y0 = z0 = 0 so that

et =
t∑
i=1

𝜀yi − a1

t∑
i=1

𝜀zi (4.15)

Clearly, the variance of the error becomes infinitely large as t increases. Moreover,

the error has a permanent component in thatEtet+i = et for all i ≥ 0. Hence, the assump-

tions embedded in the usual hypothesis tests are violated so that any t-test, F-test, or
R2 values are unreliable. It is easy to see why the estimated residuals from a spurious

regression will exhibit a high degree of autocorrelation. Updating (4.15), you should

be able to demonstrate that the theoretical value of the correlation coefficient between

et and et+1 goes to unity as t increases.
Even though the true value of a1 = 0, suppose that you estimate (4.12) and want

to test the null hypothesis a1 = 0. From (4.15), it should be clear that the error term is

nonstationary. Yet, the assumption that the error term is a unit root process is incon-

sistent with the distributional theory underlying the use of OLS. This problem will not

disappear in large samples. In fact, Phillips (1986) proves that the larger the sample,

the more likely you are to falsely conclude that a1 ≠ 0.

Worksheet 4.1 illustrates the problem of spurious regressions. The top two graphs

show 100 realizations of the {yt} and {zt} sequences generated according to (4.13) and
(4.14). Although {𝜀yt} and {𝜀zt} are drawn from white-noise distributions, the realiza-

tions of the two sequences are such that y100 is positive and z100 is negative.
In the lower left panel, you can see that the regression of yt on zt captures the

within-sample tendency of the sequences to move in opposite directions. The straight
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WORKSHEET 4.1
SPURIOUS REGRESSIONS: EXAMPLE 1

Consider the two random walk processes

yt = yt–1 + εyt zt = zt–1 + εzt
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Since both series are unit root processes with uncorrelated error terms, the regression

of yt on zt is spurious. Given the realizations of {𝜀yt} and {𝜀zt}, it happens that yt tends
to increase as zt tends to decrease. The regression line shown in the scatter plot of yt on
zt captures this tendency. The correlation coefficient between yt and zt is −0.69 and a

linear regression yields yt = 1.41 − 0.565zt. However, the residuals from the regression

equation are nonstationary.

Scatter Plot of yt Against zt Regression Residuals
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line shown in the scatter plot is the OLS regression line yt = 1.41 − 0.565zt. The cor-
relation coefficient between {yt} and {zt} is –0.69. The residuals from this regression

have a unit root; as such, the coefficients 1.41 and −0.565 are spurious. Worksheet 4.2

illustrates the same problem using two simulated random walk plus drift sequences:

yt = 0.2 + yt−1 + 𝜀yt and zt = −0.1 + zt−1 + 𝜀zt. The drift terms dominate so that for

small values of t, it appears that yt = −2zt. As sample size increases, however, the

cumulated sum of the errors (i.e., Σet) will pull the relationship further and further

from −2.0. The scatter plot of the two sequences suggests that the R2 statistic will

be close to unity; in fact, R2 is 0.93. However, as you can see in the last panel of
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WORKSHEET 4.2
SPURIOUS REGRESSIONS: EXAMPLE 2

Consider the two random walk plus drift processes

yt = 0.2 + yt−1 + εyt zt = –0.1 + zt−1+ εzt
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Again, the {yt} and {zt} series are unit root processes with uncorrelated error terms

so that the regression of yt on zt is spurious. Although it is the deterministic drift terms that

cause the sustained increase in yt and the overall decline in zt, it appears that the two series
are inversely related to each other. The residuals from the regression yt = 6.38 − 0.10zt
are nonstationary.

Scatter Plot of yt Against zt Regression Residuals
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Worksheet 4.2, the residuals from the regression equation are nonstationary. All depar-

tures from this relationship are necessarily permanent.

The point is that the econometrician has to be very careful in working with non-

stationary variables. In terms of (4.12), there are four cases to consider:

CASE 1

Both {yt} and {zt} are stationary.When both variables are stationary, the classical

regression model is appropriate.
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CASE 2

The {yt} and {zt} sequences are integrated of different orders. Regression

equations using such variables are meaningless. For example, replace (4.14)

with the stationary process zt = 𝜌zt−1 + 𝜀zt where |𝜌| < 1. Now (4.15) is replaced

by et = Σ𝜀yi − a1Σ𝜌i𝜀zt−i. Although the expression Σ𝜌i𝜀zt−i is convergent, the

{et} sequence still contains a stochastic trend component.2

CASE 3

The nonstationary {yt} and {zt} sequences are integrated of the same order, and

the residual sequence contains a stochastic trend. This is the case in which the

regression is spurious. The results from such spurious regressions are meaning-

less in that all errors are permanent. In this case, it is often recommended that the

regression equation be estimated in first differences. Consider the first difference

of (4.12):

Δyt = a1Δzt + Δet

Since yt, zt, and et each contain unit roots, the first difference of each is station-

ary. Hence, the usual asymptotic results apply. Of course, if one of the trends is

deterministic and the other is stochastic, first differencing each is not appropriate.

CASE 4

The nonstationary {yt} and {zt} sequences are integrated of the same order and

the residual sequence is stationary. In this circumstance, {yt} and {zt} are coin-
tegrated. A trivial example of a cointegrated system occurs if 𝜀zt and 𝜀yt are

perfectly correlated. If 𝜀zt = 𝜀yt, then (4.15) can be set equal to zero (which is

stationary) by setting a1 = 1. To consider a more interesting example, suppose

that both zt and yt are the random walk plus noise processes:

yt = 𝜇t + 𝜀yt

zt = 𝜇t + 𝜀zt

where 𝜀yt and 𝜀zt are white-noise processes and 𝜇t is the random walk process

𝜇t = 𝜇t−1 + 𝜀t. Note that both {zt} and {yt} are I(1) processes but that yt − zt =
𝜀yt − 𝜀zt is stationary. The subtraction of zt from yt serves to nullify the stochastic
trend.

All of Chapter 6 is devoted to the issue of cointegrated variables. For now, it is suffi-

cient to note that pretesting the variables in a regression for nonstationarity is extremely

important. Estimating a regression in the form of (4.12) is meaningless if cases 2 or 3

apply. If the variables are cointegrated, the results of Chapter 6 apply. The remainder of

this chapter considers the formal test procedures for the presence of unit roots and/or

deterministic time trends.
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4. THE MONTE CARLO METHOD

As an applied researcher, you need to know whether a data series contains a trend and

the best way to estimate the trend. You also need to avoid several critical mistakes.

Clearly, you do not want to difference or detrend a stationary series. Moreover, you

do not want to detrend a unit root process or difference a trend stationary process.

Although the properties of a sample correlogram are useful tools for detecting the pos-

sible presence of unit roots or deterministic trends, the method is necessarily imprecise.

What may appear as a unit root to one observer may appear as a stationary process to

another. The problem is difficult because a near–unit root process will have the same

shaped ACF as that of a process containing a trend. For example, the correlogram of

a stationary AR(1) process such that 𝜌1 = 0.95 will exhibit the type of gradual decay

indicative of a nonstationary process. To illustrate some of the issues involved, suppose

that we know a series is generated from the following first-order process:

yt = a1yt−1 + 𝜀t (4.16)

where {𝜀t} is white noise.
First, suppose that we wish to test the null hypothesis that a1 = 0. Under the main-

tained null hypothesis of a1 = 0, we can estimate (4.16) using OLS. The fact that 𝜀t is

a white-noise process and that |a1| < 1 guarantees that the {yt} sequence is stationary
and that the estimate of a1 is efficient. Calculating the standard error of the estimate

of a1, the researcher can use a t-test to determine whether a1 is significantly different

from zero.

The situation is quite different if we want to test the hypothesis a1 = 1. Now, under

the null hypothesis, the {yt} sequence is generated by the nonstationary process:

yt = y0 +
t∑
i=1

𝜀i (4.17)

Thus, if a1 = 1, the variance becomes infinitely large as t increases. Under the
null hypothesis, it is inappropriate to use classical statistical methods to estimate and

perform significance tests on the coefficient a1. If the {yt} sequence is generated as in

(4.17), it is simple to show that the OLS estimate of (4.16) will yield a biased estimate

of a1. In Section 1, it was shown that the first-order autocorrelation coefficient in a

random walk model is

𝜌1 = [(t − 1)∕t]0.5 < 1

Since the estimate of a1 is directly related to the value of 𝜌1, the estimated value

of a1 is biased to be below its true value of unity. The estimated model will mimic that

of a stationary AR(1) process with a near unit root. Hence, the usual t-test cannot be
used to test the hypothesis a1 = 1.

Figure 4.5 shows the sample correlogram for a simulated random walk process.

One hundred normally distributed random deviates were obtained so as to mimic the

{𝜀t} sequence. Assuming y0 = 0, the next 100 values in the {yt} sequence were cal-

culated as yt = yt−1 + 𝜀t. This particular correlogram is characteristic of most sample

correlograms constructed from nonstationary data. The estimated value of 𝜌1 is close
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FIGURE 4.5 A Simulated Random Walk Process

to unity and the sample autocorrelations die out slowly. If we did not know the way in

which the data were generated, inspection of Figure 4.5 might lead us to falsely con-

clude that the data were generated from a stationary process. With this particular data,

estimates of an AR(1) model with and without an intercept yield (standard errors are

in parentheses):

yt = 0.9546yt−1 + 𝜀t R2 = 0.860

(0.030) (4.18)

yt = 0.164 + 0.9247yt−1 + 𝜀t R2 = 0.864

(0.037) (4.19)

Examining (4.18), a careful researcher would not be willing to dismiss the possibil-

ity of a unit root since the estimated value of a1 is only 1.5133 standard deviations from
unity: [(1 − 0.9546)∕0.30 = 1.5133]. We might correctly recognize that, under the null

hypothesis of a unit root, the estimate of a1 will be biased below unity. If we knew the

true distribution of a1 under the null of a unit root, we could perform such a signifi-

cance test. Of course, if we did not know the true data-generating process, we might
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estimate the model with an intercept. In (4.19), the estimate of a1 is more than two stan-

dard deviations from unity: (1 − 0.9247)∕0.037 = 2.035. However, it would be wrong

to use this information to reject the null of a unit root. After all, the point of this section

has been to indicate that such t-tests are inappropriate under the null of a unit root.
Fortunately, Dickey and Fuller (1979, 1981) devised a procedure to formally test

for the presence of a unit root. Their methodology is similar to that used in construct-

ing the data reported in Figure 4.5. Suppose that we generated thousands of random

walk sequences and that, for each, we calculated the estimated value of a1. Although
most of the estimates would be close to unity, some would be further from unity than

others. In performing this experiment, Dickey and Fuller found that in the presence of

an intercept:

◾ 90% of the estimated values of a1 are less than 2.58 standard errors from
unity;

◾ 95% of the estimated values of a1 are less than 2.89 standard errors from
unity;

◾ 99% of the estimated values of a1 are less than 3.51 standard errors from unity.

The application of these Dickey–Fuller critical values to tests for unit roots is

straightforward. Suppose we did not know the true data-generating process and were

trying to ascertain whether the data used in Figure 4.5 contained a unit root. Using

these Dickey–Fuller statistics, we would not reject the null of a unit root in (4.19).

The estimated value of a1 is only 2.035 standard deviations from unity. In fact, if the

true value of a1 does equal unity, we should find the estimated value to be within 2.58

standard deviations from unity 90% of the time.

Be aware that stationarity necessitates −1 < a1 < 1 or, equivalently, a2
1
< 1. Thus,

if the estimated value of a1 is close to −1, you should also be concerned about non-

stationarity. If we define 𝛾 = a1 − 1, the equivalent restriction is −2 < 𝛾 < 0. In con-

ducting a Dickey–Fuller test, it is possible to check that the estimated value of 𝛾 is
greater than−2.3 Nevertheless, with economic data, such a case is exceedingly rare. As

such, almost all unit root tests are one-sided tests with the alternative hypothesis 𝛾 < 0.

Monte Carlo Experiments

The procedure that Dickey and Fuller (1979, 1981) used to obtain their critical values

is typical of that found in the modern time-series literature. Hypothesis tests concern-

ing the coefficients of nonstationary variables cannot be conducted using traditional

t-tests or F-tests. The distributions of the appropriate test statistics are nonstandard and
cannot be analytically evaluated. However, given the trivial cost of computer time, the

nonstandard distributions can easily be derived using a Monte Carlo simulation.

A Monte Carlo experiment attempts to replicate an actual data-generating process

(DGP) on a computer. To be more specific, you simulate a data set with the essential

characteristics of the actual data in question. A Monte Carlo experiment generates a

random sample of size T and the parameters and/or sample statistics of interest are

calculated. This process is repeated N times (where N is a large number) so that the

distribution of the desired parameters and/or sample statistics can be tabulated. These

empirical distributions are used as estimates of the actual distributions.
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All major statistical software packages have a built-in random number generator.

The first step in aMonte Carlo experiment is to computer generate a set of random num-

bers (sometimes called pseudorandom numbers) from a given distribution. Of course,

the numbers cannot be entirely random since all computer algorithms rely on a deter-

ministic number-generating mechanism. However, the numbers are drawn so as to

mimic a random process having some specified distribution. Usually, the numbers are

designed to be normally distributed and serially uncorrelated. The idea is to use these

numbers to represent one replication of the entire {𝜀t} sequence. If you want to know

more about pseudorandom number generation, see Section 4.2 of the Supplementary
Manual. The Programming Manual illustrates the Monte Carlo method for a number

of different time-series models.

The second step is to construct the {yt} sequence using the random numbers and

the parameters of the data-generating process. For example, Dickey and Fuller (1979,

1981) obtained 100 values for {𝜀t}, set a1 = 1, y0 = 0 and calculated 100 values for

{yt} according to (4.16). Once a series has been generated, the third step is to estimate

the parameters of interest (such as the estimate of a1 or the in-sample variance of the

{yt} series).
The beauty of the method is that all important attributes of the constructed {yt}

sequence are known to the researcher. For this reason, aMonte Carlo simulation is often

referred to as an “experiment.” The only problem is that the set of random numbers

drawn is just one possible outcome. Obviously, the estimates in (4.18) and (4.19) are

dependent on the values of the simulated {𝜀t} sequence. Different outcomes for {𝜀t}
will yield different values of the simulated {yt} sequence.

This is whyMonte Carlo studies performmany replications of the process outlined

above. The fourth step is to replicate steps 1 and 3 thousands of times. The goal is to

ensure that the statistical properties of the constructed {yt} sequence are in accordance
with the true distribution. Thus, for each replication, the parameters of interest are tab-

ulated and critical values (or confidence intervals) obtained. As such, the properties of

your data can be compared to the properties of the simulated data so that hypothesis

tests can be performed.

For our purposes, it suffices to say that the use of the Monte Carlo method is

warranted by the Law of LargeNumbers. Consider the simplest casewhere vt is an iden-
tically and independently distributed (i.i.d.) random number with mean 𝜇 and variance

𝜎2 so that

vt ∼ (𝜇, 𝜎2)

The sample mean constructed by using T observations of the {vt} sequence is

v = (1∕T)
T∑
t=1

vt

By the Law of Large Numbers, as the sample size T grows sufficiently large,

v converges to the true mean 𝜇. Hence, the sample mean v is an unbiased estimate of the

population mean. This is the justification for using the Dickey–Fuller critical values to

test the hypothesis a1 = 1. Moreover, if the draws are independent and the sample size
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T grows sufficiently large, the distribution of v approaches a normal distribution with

mean 𝜇 and variance 𝜎2∕T .4
An important limitation of a Monte Carlo experiment is that the results are spe-

cific to the assumptions used to generate the simulated data. If you change the sample

size, include (or delete) an additional parameter in the data-generating process, or use

alternative initial conditions, an entirely new simulation needs to be performed. More-

over, the precision of your estimates depends on the number of replications you use.

Oftentimes, you do not need many replications to obtain a good estimate of a popu-

lation mean. However, it is necessary to use many thousands of replications to obtain

good estimates of critical values. Nevertheless, you should be able to envision many

applications of Monte Carlo experiments. As discussed in Hendry, Neale, and Erics-

son (1990), they are particularly helpful for studying the small-sample properties of

time-series data. As you will see shortly, Monte Carlo experiments are the workhorse

of many tests used in modern time-series analysis.

Example of the Monte Carlo Method

Suppose you did not know the probability distribution for the sum of the roll of two

dice. One way to calculate the probability distribution would be to buy a pair of dice

and roll them several thousand times. If the dice were fair, you would find that a sum

on your rolls would approximate this result:

Sum 2 3 4 5 6 7 8 9 10 11 12

Percentage 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Instead of actually rolling the dice, you can easily replicate the experiment on a

computer. You could draw a random number from a uniform [0, 1] distribution to repli-

cate the roll of the first die. If the computer-generated number falls within the interval

[0, 1/6], set the variable r1 = 1. Similarly, if the number falls within the interval [1/6,

2/6], set r1 = 2, and so on. In this way, r1 will be some integer 1 through 6, each with a

probability 1/6. Next, draw a second number from the same uniform [0, 1] distribution

to represent the roll of die 2 (r2). You complete your first Monte Carlo replication by

computing the sum r1 + r2. If you compute several thousand such sums, the sample

distribution of the sums will approximate the true distribution.

Of course, more complicated experiments are possible. It is interesting to note that

this method was used to reform a standard recommendation at the blackjack tables. At

one time, the recommendation was to “stick” if the dealer shows a 2 or a 3 and you

hold a 12. Monte Carlo experiments of a game of blackjack showed that this recom-

mendation was incorrect. Now, a sharp blackjack player will take another card in these

circumstances.

Generating the Dickey–Fuller Distribution

We need to modify the procedure above only slightly to obtain the Dickey and Fuller

(1979) distribution. To generate the distribution for a sample size of 100, we can
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perform the following steps:

STEP 1: First, we need a set of random numbers to represent the {𝜀t} sequence. If we
use the usual set of assumptions, we can draw a set of 100 random numbers

from a standard normal distribution. Of course, the Monte Carlo method

would allow us to experiment with other distributions.

STEP 2: We need to generate the sequence yt = yt−1 + 𝜀t. Note that we need to ini-

tialize the value of y0. Once we draw the value of 𝜀1, we cannot construct y1
without positing some value for y0. However, we do not want the results
to be sensitive to the initial value chosen for the series. Two slightly dif-

ferent procedures are used to purge the effects of the initial condition from

the Monte Carlo results. First, you can initialize the value of y0 to equal the
unconditional mean of the {yt} sequence. Alternatively, suppose you want to
generate T values of the {yt} sequence. You can pick an initial condition for
y0 and then generate the next T + 50 realizations. Discard the first 50 real-

izations and use only the last T values. The idea is that the effect of the initial

condition will dissipate after 50 periods.

STEP 3: We need to estimate the model under the alternative hypothesis. As such, we

estimate an equation of the form Δyt = a0 + 𝛾yt−1 + 𝜀t. Obtain the t-statistic
for the null hypothesis 𝛾 = 0. Note that the data are generated under the null

hypothesis of a unit root and estimated under the alternative hypothesis.

STEP 4: Repeat steps 1–3, 10,000 or more times. If you use a sample size such that

T = 100, you should obtain something very similar to the Dickey–Fuller 𝜏𝜇
distribution plotted in Figure 4.6. Of course, you will not obtain the exact

numbers used in the figure since you will be using a different set of random

numbers.

The data used to draw Figure 4.6 contains 10,000 replications. Additional replica-

tions would reveal a somewhat smoother probability distribution. As you might expect,
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the mean of the distribution is far below zero. The mean of the t-statistics shown in the
figure is −1.53. The distribution of t-statistics for the null hypothesis 𝛾 = 0 is only

slightly different from those reported by Dickey and Fuller; about 95% are more than

−2.89 and 99% are more than −3.51. Hence, if you estimate a model in the form

Δyt = a0 + 𝛾yt−1 + 𝜀t and find that the t-statistic for the null hypothesis 𝛾 = 0 is−3.00,
you can reject the null hypothesis of a unit root at the 5%, but not at the 1%, level of

significance. We will encounter a number of additional applications of Monte Carlo

experiments throughout the text. Additional details of Monte Carlo and bootstrap-

ping techniques are discussed in Section 4.3 of the Supplementary Manual and in the

Programming Manual.

5. DICKEY–FULLER TESTS

The last section outlined a simple procedure to determine whether a1 = 1 in the model

yt = a1yt−1 + 𝜀t. Begin by subtracting yt−1 from each side of the equation in order

to write the equivalent form: Δyt = 𝛾yt−1 + 𝜀t where 𝛾 = a1 − 1. Of course, testing

the hypothesis a1 = 1 is equivalent to testing the hypothesis 𝛾 = 0. Dickey and Fuller

(1979) actually consider three different regression equations that can be used to test for

the presence of a unit root:

Δyt = 𝛾yt−1 + 𝜀t (4.20)

Δyt = a0 + 𝛾yt−1 + 𝜀t (4.21)

Δyt = a0 + 𝛾yt−1 + a2t + 𝜀t (4.22)

The difference between the three regressions concerns the presence of the deter-

ministic elements a0 and a2t. The first is a pure random walk model, the second adds

an intercept or a drift term, and the third includes both a drift and a linear time trend.

The parameter of interest in all the regression equations is 𝛾; if 𝛾 = 0, the

{yt} sequence contains a unit root. The test involves estimating one (or more) of

the equations above using OLS in order to obtain the estimated value of 𝛾 and the

associated standard error. Comparing the resulting t-statistic with the appropriate

value reported in the Dickey–Fuller tables allows the researcher to determine whether

to accept or reject the null hypothesis 𝛾 = 0.

Recall that, in (4.18), the estimate of yt = a1yt−1 + 𝜀t was such that a1 = 0.9546

with a standard error of 0.030. Clearly, the OLS regression in the formΔyt = 𝛾yt−1 + 𝜀t
will yield an estimate of 𝛾 equal to −0.0454 with the same standard error of

0.030. Hence, the associated t-statistic for the hypothesis 𝛾 = 0 is −1.5133 (i.e.,

−0.0454∕0.03 = −1.5133).
Themethodology is precisely the same regardless of which of the three forms of the

equations is estimated. However, be aware that the critical values of the t-statistics do
depend on whether an intercept and/or time trend is included in the regression equation.

In their Monte Carlo study, Dickey and Fuller (1979) found that the critical values for
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𝛾 = 0 depend on the form of the regression and sample size. The statistics called 𝜏, 𝜏𝜇,

and 𝜏𝜏 are the appropriate statistics to use for (4.20–4.22), respectively.

Now, look at Table A in the Supplementary Manual. With 100 observations, there

are three different critical values for the t-statistic 𝛾 = 0. For a regression without the

intercept and trend terms (a0 = a2 = 0), use the section labeled 𝜏. With 100 observa-

tions, the critical values for the t-statistic are −1.61, −1.95, and −2.60 at the 10%,

5%, and 1% significance levels, respectively. Thus, in the hypothetical example with

𝛾 = −0.0454 and a standard error of 0.03 (so that t = −1.5133), it is not possible to

reject the null of a unit root at conventional significance levels. Note that the appropriate

critical values depend on sample size. As in most hypothesis tests, for any given level

of significance, the critical values of the t-statistic decrease as sample size increases.

Including an intercept term but not a trend term (only a2 = 0) necessitates the

use of the critical values in the section labeled 𝜏𝜇. Estimating (4.19) in the form

Δyt = a0 + 𝛾yt−1 + 𝜀t necessarily yields a value of 𝛾 equal to (0.9247 − 1) = −0.0753
with a standard error of 0.037. The appropriate calculation for the t-statistic yields

−0.0753∕0.037 = −2.035. If we read from the appropriate row of Table A, with the

same 100 observations, the critical values are −2.58, −2.89, and −3.51 at the 10%,

5%, and 1% significance levels, respectively. Again, the null of a unit root cannot be

rejected at conventional significance levels. Finally, with both intercept and trend,

use the critical values in the section labeled 𝜏𝜏 ; now, the critical values are −3.45
and −4.04 at the 5% and 1% significance levels, respectively. The equation was not

estimated using a time trend; inspection of Figure 4.5 indicates that there is little

reason to include a deterministic trend in the estimating equation.

As discussed in Section 7, these critical values are unchanged if (4.20–4.22) are

replaced by the autoregressive processes:

Δyt = 𝛾yt−1 +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.23)

Δyt = a0 + 𝛾yt−1 +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.24)

Δyt = a0 + 𝛾yt−1 + a2t +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.25)

Tests including lagged changes are called augmented Dickey–Fuller tests and

the same 𝜏, 𝜏𝜇, and 𝜏𝜏 statistics are all used to test the hypotheses 𝛾 = 0. Dickey and

Fuller (1981) provide three additional F-statistics (called 𝜙1, 𝜙2, and 𝜙3) to test joint

hypotheses on the coefficients. Using (4.21) or (4.24), the null hypothesis 𝛾 = a0 = 0

is tested using the 𝜙1 statistic. Including a time trend in the regression—so that (4.22)

or (4.25) is estimated—the joint hypothesis a0 = 𝛾 = a2 = 0 is tested using the 𝜙2

statistic and the joint hypothesis 𝛾 = a2 = 0 is tested using the 𝜙3 statistic.
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Table 4.2 Summary of the Dickey–Fuller Tests

Test Critical Values for 95% and
Model Hypothesis Statistic 99% Confidence Intervals

Δyt = a0 + 𝛾yt−1 + a2t + 𝜀t 𝛾 = 0 𝜏𝜏 −3.45 and −4.04

𝛾 = a2 = 0 𝜙3 6.49 and 8.73

a0 = 𝛾 = a2 = 0 𝜙2 4.88 and 6.50

Δyt = a0 + 𝛾yt−1 + 𝜀t 𝛾 = 0 𝜏𝜇 −2.89 and −3.51

a0 = 𝛾 = 0 𝜙1 4.71 and 6.70

Δyt = 𝛾yt−1 + 𝜀t 𝛾 = 0 𝜏 −1.95 and −2.60

Note: Critical values are for a sample size of 100.

The 𝜙1, 𝜙2, and 𝜙3 statistics are constructed in exactly the same way as ordinary

F-tests:

𝜙i =
[SSR(restricted) − SSR(unrestricted)]∕r

SSR(unrestricted)∕(T − k)

where SSR(restricted) and SSR(unrestricted) = the sums of the squared residuals

from the restricted and unrestricted

models, respectively,

r = number of restrictions,

T = number of usable observations, and

k = number of parameters estimated in

the unrestricted model.

Hence, T − k = degrees of freedom in the unrestricted model.

Comparing the calculated value of 𝜙i to the appropriate value reported in Dickey

and Fuller (1981) allows you to determine the significance level at which the restriction

is binding. The null hypothesis is that the data are generated by the restricted model,

and the alternative hypothesis is that the data are generated by the unrestricted model.

If the restriction is not binding SSR(restricted) should be close to SSR(unrestricted)
and 𝜙i should be small; hence, large values of 𝜙i suggest a binding restriction and a

rejection of the null hypothesis. Thus, if the calculated value of 𝜙i is smaller than that

reported by Dickey and Fuller, you can accept the restricted model (i.e., you do not

reject the null hypothesis that the restriction is not binding). If the calculated value of

𝜙i is larger than that reported by Dickey and Fuller, you can reject the null hypothesis

and conclude that the restriction is binding. The critical values of the three 𝜙i statistics

are reported in Table B in the Supplementary Manual. The complete set of test statistics

and their critical values for a sample size of 100 is summarized in Table 4.2.

An Example

To illustrate the use of the various test statistics, Dickey and Fuller (1981) use quar-

terly values of the logarithm of the Federal Reserve Board’s Production Index over the
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1950Q1–1977Q4 period to estimate the following three equations:

Δyt = 0.52 + 0.00120t − 0.119yt−1 + 0.498Δyt−1 + 𝜀t SSR = 0.056448

(0.15) (0.00034) (0.033) (0.081) (4.26)

Δyt = 0.0054 + 0.447Δyt−1 + 𝜀t SSR = 0.063211

(0.0025) (0.083) (4.27)

Δyt = 0.511Δyt−1 + 𝜀t SSR = 0.065966

(0.079) (4.28)

where SSR = sum of squared residuals and standard errors are in parentheses.

To test the null hypothesis that the data are generated by (4.28) against the alter-

native that (4.26) is the “true” model, use the 𝜙2 statistic. Dickey and Fuller test the

null hypothesis a0 = a2 = 𝛾 = 0 as follows. Note that the residual sums of squares of

the restricted and unrestricted models are 0.065966 and 0.056448, respectively, and

that the null hypothesis entails three restrictions. With 110 usable observations and

4 estimated parameters, the unrestricted model contains 106 degrees of freedom. Since

0.056448∕106 = 0.000533, the 𝜙2 statistic is given by

𝜙2 = (0.065966 − 0.056448)∕[3(0.000533)] = 5.95

With 110 observations, the critical value of 𝜙2 calculated by Dickey and Fuller is

5.59 at the 2.5% significance level. Hence, it is possible to reject the null hypothesis

of a random walk against the alternative that the data contain an intercept and/or a unit

root and/or a deterministic time trend (i.e., rejecting a0 = a2 = 𝛾 = 0 means that one

or more of these parameters does not equal zero).

Dickey and Fuller also test the null hypothesis a2 = 𝛾 = 0 given the alternative

of (4.26). If we now view (4.27) as the restricted model and (4.26) as the unrestricted

model, the 𝜙3 statistic is calculated as

𝜙3 = (0.063211 − 0.056448)∕[2(0.000533)] = 6.34

With 110 observations, Table B indicates that the critical value of 𝜙3 is 6.49 at the

5% significance level and 5.47 at the 10% significance level. At the 10% level, they

reject the null hypothesis and accept the alternative that the series is TS. However, at

the 5% level, the calculated value of 𝜙3 is smaller than the critical value of 6.49; at

this significance level, they do not reject the null hypothesis. Hence, at the 5% signif-

icance level, they maintain the hypothesis that the series contains a unit root and/or a

deterministic time trend.

To compare with the 𝜏𝜏 test (i.e., the hypothesis that only 𝛾 = 0), note that

𝜏𝜏 = −0.119∕0.033 = −3.61

so that it is possible to reject the null of a unit root at the 5% level.

A number of examples and tips about the test are given in Chapter 6 of the

Programming Manual that accompanies the text.
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6. EXAMPLES OF THE DICKEY–FULLER TEST

Section 2 reviewed the evidence reported by Nelson and Plosser (1982) suggesting that

macroeconomic variables are DS rather than trend stationary. We are now in a position

to consider their formal tests of the hypothesis. For each series under study, Nelson and

Plosser estimated the regression in the form of (4.25):

Δyt = a0 + 𝛾yt−1 + a2t +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t

The chosen lag lengths are reported in the column labeled p in Table 4.3. The

estimated values a0, a2, and 𝛾 are reported in columns 3, 4, and 5, respectively.

Recall that the old school view of business cycles maintains that GNP and pro-

duction levels are trend stationary rather than DS. An adherent to this view must assert

that 𝛾 is different from zero; if 𝛾 = 0, the series has a unit root and is DS. Given the

sample sizes used by Nelson and Plosser (1982), at the 0.05 level, the critical value of

the t-statistic for the null hypothesis 𝛾 = 0 is −3.45. Thus, only if the estimated value

of 𝛾 is more than 3.45 standard deviations from zero it is possible to reject the hypoth-

esis that 𝛾 = 0. As can be seen from inspection of Table 4.3, the estimated values of

𝛾 for real GNP, nominal GNP, and industrial production are not statistically different

from zero. Only the unemployment rate has an estimated value of 𝛾 that is significantly

different from zero at the 0.05 level.

Quarterly Real U.S. GDP

Now use the data on the file RGDP.XLS to estimate the logarithmic change in real

GDP as

Δlrgdpt = 0.1248 + 0.0001t − 0.0156lrgdpt−1 + 0.3663Δlrgdpt−1
(1.58) (1.31) (−1.49) (6.26) (4.29)

Table 4.3 The Tests by Nelson and Plosser for Unit Roots

p a0 a2 𝜸 𝜸 + 1

Real GNP 2 0.819 0.006 −0.175 0.825

(3.03) (3.03) (−2.99)
Nominal GNP 2 1.06 0.006 −0.101 0.899

(2.37) (2.34) (−2.32)
Industrial production 6 0.103 0.007 −0.165 0.835

(4.32) (2.44) (−2.53)
Unemployment rate 4 0.513 −0.000 −0.294∗ 0.706

(2.81) (−0.23) (−3.55)

Notes:
1p is the chosen lag length. Coefficients divided by their standard errors are in parentheses. Thus,
entries in parentheses represent the t-test for the null hypothesis that a coefficient is equal to zero.
Under the null of nonstationarity, it is necessary to use the Dickey–Fuller critical values. At the 0.05
significance level, the critical value for the t-statistic is −3.45.
2An (*) denotes significance at the 0.05 level. For real and nominal GNPs and industrial production, it is
not possible to reject the null hypothesis 𝛾 = 0 at the 0.05 level. Hence, the unemployment rate appears
to be stationary.
3The expression 𝛾 + 1 is the estimate of a1.
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The t-statistic on the coefficient for lrgdpt−1 is −1.49. Table A indicates that, with

244 usable observations, the 10% and 5% critical values of 𝜏𝜏 are about −3.13 and

−3.43, respectively. As such, we cannot reject the null hypothesis of a unit root. The
sample value of 𝜙3 for the null hypothesis a2 = 𝛾 = 0 is 2.97. As Table B indicates that

the 10% critical value is 5.39, we cannot reject the joint hypothesis of a unit root and no

deterministic time trend. Since the sample value of 𝜙2 (equal to 17.61) far exceeds the

5% critical value of 4.75, we do not want to exclude the drift term. We can conclude

that the growth rate of the real GDP series acts as a random walk plus drift plus the

irregular term 0.3663Δlrgdpt−1. Additional details are contained in Section 4.4 of the

Supplementary Manual.

Unit Roots and Purchasing Power Parity

Purchasing power parity (PPP) is a simple relationship linking national price levels and

exchange rates. In its simplest form, PPP asserts that the rate of currency depreciation

is approximately equal to the difference between domestic and foreign inflation rates.

If pt and p
∗
t denote the logarithms of U.S. and foreign price levels and et denotes the

logarithm of the dollar price of foreign exchange, PPP implies

et = pt − p∗t + dt

where dt represents the deviation from PPP in period t.
In applied work, pt and p

∗
t usually refer to national price indices in t relative to

a base year, so that et refers to an index of the domestic currency price of foreign

exchange relative to a base year. For example, if the U.S. inflation rate is 10% while the

foreign inflation rate is 15%, the dollar price of foreign exchange should fall by approx-

imately 5%. The presence of the term dt allows for short-run deviations from PPP.

Because of its simplicity and intuitive appeal, PPP has been used extensively in

theoretical models of exchange rate determination. However, as in the well-known

Dornbusch (1976) “overshooting” model, real economic shocks, such as productiv-

ity or demand shocks, can cause permanent deviations from PPP. For our purposes, the

theory of PPP serves as an excellent vehicle to illustrate many time-series testing proce-

dures. One test of long-run PPP is to determine whether dt is stationary. After all, if the
deviations from PPP are nonstationary (i.e., if the deviations are permanent in nature),

we can reject the theory. Note that PPP does allow for persistent deviations; the auto-

correlations of the {dt} sequence need not be zero. One popular testing procedure is to
define the “real” exchange rate in period t:

rt ≡ et + p∗t − pt

Long-run PPP is said to hold if the {rt} sequence is stationary. For example, in

Enders (1988), I constructed real exchange rates for three major U.S. trading partners:

Germany, Canada, and Japan. The data were divided into two periods: January 1960 to

April 1971 (representing the fixed exchange rate period) and January 1973 toNovember

1986 (representing the flexible exchange rate period). Each nation’s Wholesale Price

Index (WPI) was multiplied by an index of the U.S. dollar price of the foreign currency

and then divided by the U.S.WPI. The log of the constructed series is the {rt} sequence.
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FIGURE 4.7 Real Exchange Rates

A critical first step in any econometric analysis is to visually inspect the data. The

plots of the three real exchange rate series during the flexible exchange rate period

(through 1989) are shown in Figure 4.7. Each series seems to meander in a fashion

characteristic of a random walk process. Notice that there is little visual evidence of

explosive behavior or a deterministic time trend. The autocorrelation function for all

of the series in the analysis look similar to that in Figure 4.5. In particular, the autocor-

relation functions show little tendency to decay while the autocorrelations of the first

differences display the classic pattern of a stationary series.

To formally test for the presence of a unit root in the real exchange rates, aug-

mentedDickey–Fuller tests of the form given by (4.24) were conducted. The regression

Δrt = a0 + 𝛾rt−1 + 𝛽2Δrt−1 + 𝛽3Δrt−2 + · · · + 𝜀t was estimated based on the following

considerations:

1. The theory of PPP does not allow for a deterministic time trend. Any such

findings would refute the theory as posited. Given that the series all decline

throughout the early 1980s and all increase during the middle to late 1980s,

there is no reason to entertain the notion of trend stationarity. As such, the

expression a2t was not included in the estimating equation.

2. For the fixed exchange rate period, various lag length tests indicated that all

values of 𝛽i could be set equal to zero for all three countries. However, differ-

ent lag length tests yielded ambiguous results for the flexible exchange rate
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period. Lag length tests indicated that 𝛽11 was statistically different from zero

for all three countries. In contrast, F-tests and the SBC selected two lags for

Germany and Japan and no lagged changes for Canada. As such, for the flex-

ible rate period, the Dickey–Fuller tests were conducted using two different

lag lengths for each country.

For the Canadian case during the 1973–1986 period, the t-statistic for the null

hypothesis that 𝛾 = 0 is −1.42 using no lags and −1.51 using all 11 lags. Given the

critical value of the 𝜏𝜇 statistic, it is not possible to reject the null of a unit root in the

Canadian/U.S. real exchange rate series. Hence, PPP fails for the Canadian–U.S. case.

In the 1960–1971 period, the calculated value of the t-statistic is −1.59; again, it is
possible to conclude that PPP fails.

Table 4.4 reports the results of all six estimations using the short lag lengths sug-

gested by the F-tests and the SBC. Notice the following properties of the estimated

models:

1. For all six models, it is not possible to reject the null hypothesis that PPP fails.

As can be seen from the third column of Table 4.4, the absolute value of the

t-statistic for the null 𝛾 = 0 is never more than 1.59. The economic interpre-

tation is that real productivity and/or demand shocks have had a permanent

influence on real exchange rates.

2. As measured by the sample SD, real exchange rates were far more volatile in

the 1973–1986 period than in the 1960–1971 period. Moreover, as measured

by the standard error of the estimate (SEE), real exchange rate volatility is

Table 4.4 Real Exchange Rate Estimation

𝜸𝟏 H0: 𝜸 = 02 Lags Mean3 𝝆/DW F SD/SEE

1973−1986

Canada −0.022
(0.016)

t = −1.42 0 1.05 0.059
1.88

0.194 5.47
1.16

Japan −0.047
(0.074)

t = −0.64 2 1.01 −0.007
2.01

0.226 10.44
2.81

Germany −0.027
(0.076)

t = −0.28 2 1.11 −0.014
2.04

0.858 20.68
3.71

1960−1971

Canada −0.031
(0.019)

t = −1.59 0 1.02 −0.107
2.21

0.434 0.014
0.004

Japan −0.030
(0.028)

t = −1.04 0 0.98 0.046
1.98

0.330 0.017
0.005

Germany −0.016
(0.012)

t = −1.23 0 1.01 0.038
1.93

0.097 0.026
0.004

Notes:
1Standard errors are in parentheses.
2Entries are the t-statistic for the hypothesis 𝛾 = 0.
3Mean is the sample mean of the series. SD is the standard deviation of the real exchange rate. SEE
is the estimated standard deviation of the residuals (i.e., the standard error of the estimate). F is the
significance level of the test that lags 2 (or 3) through 12 can be excluded. DW is the Durbin–Watson
statistic for first-order serial correlation, and 𝜌 is the estimated autocorrelation coefficient.
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associated with unpredictability. The SEE during the flexible exchange rate

period is several hundred times that of the fixed rate period. It seems reason-

able to conclude that the change in the exchange rate regime (i.e., the end of

Bretton Woods) affected the volatility of the real exchange rate.

3. Care must be taken to keep the appropriate null hypothesis in mind. Under

the null of a unit root, classical test procedures are inappropriate, and we

resort to the statistics tabulated by Dickey and Fuller. However, classical test

procedures (which assume stationary variables) are appropriate under the

null that the real rates are stationary. Thus, the following possibility arises:

Suppose that the t-statistic in the Canadian case happened to be −2.16 instead
of −1.42. If you used the Dickey–Fuller critical values, you would not reject
the null of a unit root. Hence, you could conclude that PPP fails. However,

under the null of stationarity (where we can use classical procedures), 𝛾 is

more than two standard deviations from zero and you would not reject the
null of stationarity.

This apparent dilemma commonly occurs when analyzing series with

roots close to unity in absolute value. Unit root tests do not have much power

in discriminating between characteristic roots close to unity and actual unit

roots. The dilemma is only apparent since the two null hypotheses are quite

different. It is perfectly consistent to maintain a null that PPP holds and not

be able to reject a null that PPP fails! Notice that this dilemma does not arise

for any of the series reported in Table 4.4; for each, it is not possible to reject

a null of 𝛾 = 0 at conventional significance levels.

One way to circumvent this problem is to directly test the null hypothesis

of stationarity against the alternative of nonstationarity. Kwiatowski, Phillips,

Schmidt, and Shin (1992) show how to perform this type of test.

4. Looking at some of the diagnostic statistics, the F-statistics all indicate
that it is appropriate to exclude lags 2 (or 3) through 12 from the regression

equation. To reinforce the use of short lags, notice that the first-order

correlation coefficient of the residuals (𝜌) is low and that the Durbin–Watson

statistic is close to two. It is interesting that the point estimates of the charac-

teristic roots all indicate that real exchange rates are convergent. To obtain

the characteristic roots, rewrite the estimated equations in the autoregressive

form rt = a0 + a1rt−1 or rt = a0 + a1rt−1 + a2rt−2. For the four AR(1)
models, the point estimates of the slope coefficients are all less than unity.

In the post-Bretton Woods period (1973–1986), the point estimates of the

characteristic roots of Japan’s second-order process are 0.931 and 0.319; for

Germany, the roots are 0.964 and 0.256. Yet, this is precisely what we would

expect if PPP fails; under the null of a unit root, we know that 𝛾 is biased

downward.

To update the study, the file PANEL.XLS contains quarterly values of the real

effective exchange rates (CPI based) for Australia, Canada, France, Germany, Japan,

Netherlands, the United Kingdom, and the United States over the 1980Q1–2013Q1
period. These are multilateral (not bilateral) real exchange rates. As an exercise, you
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should use these data to verify that very little has changed. You should find that only,

for France and the Netherlands, is it possible to reject a unit root in the real exchange

rate at the 5% significance level. Try not to peek; for each country, the estimated value

of 𝛾 and the appropriate lag length are reported in Table 4.8.

7. EXTENSIONS OF THE DICKEY–FULLER TEST

Not all time-series variables can be well represented by the first-order autoregressive

process Δyt = a0 + 𝛾yt−1 + a2t + 𝜀t. It is possible to use the Dickey–Fuller tests in

higher-order equations such as (4.23–4.25). Consider the pth order autoregressive pro-
cess:

yt = a0 + a1yt−1 + a2yt−2 + a3yt−3 + · · · + ap−2yt−p+2 + ap−1yt−p+1 + apyt−p + 𝜀t

To best understand the methodology of the augmented Dickey–Fuller (ADF)

test, add and subtract apyt−p+1 to obtain

yt = a0 + a1yt−1 + a2yt−2 + a3yt−3 + · · · + ap−2yt−p+2
+ (ap−1 + ap)yt−p+1 − apΔyt−p+1 + 𝜀t

Next, add and subtract (ap−1 + ap)yt−p+2 to obtain

yt = a0 + a1yt−1 + a2yt−2 + a3yt−3 + · · · − (ap−1 + ap)Δyt−p+2 − apΔyt−p+1 + 𝜀t

Continuing in this fashion, we obtain

Δyt = a0 + 𝛾yt−1 +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.30)

where 𝛾 = −

(
1 −

p∑
i=1

ai

)
and 𝛽i =

p∑
j=i

aj

In (4.30), the coefficient of interest is 𝛾; if 𝛾 = 0, the equation is entirely in first

differences and, so, has a unit root. We can test for the presence of a unit root using the

same Dickey–Fuller statistics discussed earlier. Again, the appropriate statistic to use

depends on the deterministic components included in the regression equation. Without

an intercept or a trend, use the 𝜏 statistic; with only the intercept, use the 𝜏𝜇 statistic; and

with both intercept and trend, use the 𝜏𝜏 statistic. It is worthwhile pointing out that the

results here are perfectly consistent with our study of difference equations in Chapter 1.

If the coefficients of a difference equation sum to 1, at least one characteristic root is
unity. Here, if Σai = 1, 𝛾 = 0, and the system has a unit root.

Note that the Dickey–Fuller tests assume that the errors are independent and have

a constant variance. This raises six important problems related to the fact that we do

not know the true data-generating process:

1. We cannot properly estimate 𝛾 and its standard error unless all of the autore-

gressive terms are included in the estimating equation. Clearly, the simple

regression Δyt = a0 + 𝛾yt−1 + 𝜀t is inadequate to this task if (4.30) is the true
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data-generating process. Since the true order of the autoregressive process is

unknown, the problem is to select the appropriate lag length.

2. The DGP may contain both autoregressive and moving average components.

We need to know how to conduct the test if the order of the moving average

terms (if any) is unknown.

3. The Dickey–Fuller test considers only a single unit root. However, a pth
order autoregression has p characteristic roots; if there are d ≤ p unit roots,
the series needs to be differenced d times to achieve stationarity.

4. As we saw in Chapter 2, there may be roots that require first differences and

others that necessitate seasonal differencing. We need to develop a method

that can distinguish between these two types of unit root processes.

5. There might be structural breaks in the data. As shown in Section 8, such

breaks can impart an apparent trend to the data.

6. It might not be known whether an intercept and/or time trend belongs in

(4.30). Section 9 is concerned with the issue of the appropriate deterministic

regressors. (Additional details are given in Section 4.4 entitled “Determinants

of the Deterministic Regressors” in the Supplementary Manual.)

Selection of the Lag Length

It is important to use the correct number of lags in conducting a Dickey–Fuller test. Too

few lags mean that the regression residuals do not behave like white-noise processes.

The model will not appropriately capture the actual error process so that 𝛾 and its stan-

dard error will not be well estimated. Including too many lags reduces the power of the

test to reject the null of a unit root since the increased number of lags necessitates the

estimation of additional parameters and a loss of degrees of freedom. The degrees of

freedom decrease since the number of parameters estimated has increased and the num-

ber of usable observations has decreased. (We lose one observation for each additional

lag included in the autoregression.) As such, the presence of unnecessary lags will

reduce the power of the Dickey–Fuller test to detect a unit root. In fact, an augmented

Dickey–Fuller test may indicate a unit root for some lag lengths but not for others.

How does a careful researcher select the appropriate lag length in such circum-

stances? One approach is the general-to-specific methodology. The idea is to start

with a relatively long lag length and pare down the model by the usual t-test and/or
F-tests. For example, one could estimate equation (4.30) using a lag length of p∗. If
the t-statistic on lag p∗ is insignificant at some specified critical value, reestimate the

regression using a lag length of p∗ − 1. Repeat the process until the last lag is signifi-

cantly different from zero. In the pure autoregressive case, such a procedure will yield

the true lag length with an asymptotic probability of unity, provided the initial choice

of lag length includes the true length. Using seasonal data, the process is a bit differ-

ent. For example, using quarterly data, one could start with 3 years of lags (p = 12). If
the t-statistic on lag 12 is insignificant at some specified critical value and if an F-test
indicates that lags 9–12 are also insignificant, move to lags 1–8. Repeat the process

for lag 8 and lags 5–8 until a reasonable lag length has been determined.
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Once a tentative lag length has been determined, diagnostic checking should be

conducted. As always, plotting the residuals is a most important diagnostic tool. There

should not appear to be any strong evidence of structural change or serial correla-

tion. Moreover, the correlogram of the residuals should appear to be white noise. The

Ljung–Box Q-statistic should not reveal any significant autocorrelations among the

residuals. It is inadvisable to use the alternative procedure of beginning with the most

parsimonious model and continuing to add lags until the first insignificant lag is found.

Monte Carlo studies show that this procedure is biased toward selecting a value of p
that is less than the true value.

As long as the regression equation does not omit a deterministic regressor present

in the data-generating process, it is possible to perform lag length tests using t-tests
or F-tests. The rationale follows from an important result proved by Sims, Stock, and

Watson (1990). We will have cause to refer to several of the results of their paper. Here

is the key finding of interest:

Rule 1: Consider a regression equation containing a mixture of I(1) and
I(0) variables such that the residuals are white noise. If the model is such

that the coefficient of interest can be written as a coefficient on zero-mean

stationary variables, then asymptotically, the OLS estimator converges to

a normal distribution. As such, a t-test is appropriate.

Although this rule refers to any regression equation estimated by OLS, it applies

directly to unit root tests. As shown above, the pth-order autoregressive process:

yt = a0 + a1yt−1 + a2yt−2 + a3yt−3 + · · · + ap−2yt−p+2 + ap−1yt−p+1 + apyt−p + 𝜀t

can be written as

Δyt = a0𝛾yt−1 + 𝛽2Δyt−1 + 𝛽3Δyt−2 + · · · + 𝛽pΔyt−p+1 + 𝜀t (4.31)

From Rule 1, all the coefficients on the expressions Δyt−i converge to

t-distributions. As such, groups of these coefficients will converge to an F-distribution.
Hence, you can perform a test of the form 𝛽i = 𝛽i+1 = · · · = 𝛽p = 0 using an F-test.
Nevertheless, under the null hypothesis of a unit root, the value of 𝛾 multiplies a

nonstationary variable. As such, a test of 𝛾 = 0 cannot be conducted using a standard

t-test.
In addition to the use of F-tests and t-tests, it is also possible to determine the lag

length using an information criterion such as the AIC or SBC. Of course, in very large

samples with normally distributed errors, the methods should all select the same lag

length. In practice, the SBC will select a more parsimonious model than will either the

AIC or t-tests. Nevertheless, whichever method is used, the researcher must ensure that

residuals act as white-noise processes.

An Example: In order to illustrate the various procedures to select the lag length for

an augmented Dickey–Fuller test, 200 realizations of the following unit root process

were generated

Δyt = 0.5 + 0.5Δyt−1 + 0.2Δyt−3 + 𝜀t
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FIGURE 4.8 Unit Root Plus Drift

Notice that the {yt} sequence contains a single unit root and that the appropriate lag
length is 3. The drift parameter gives the series the decidedly increasing pattern shown

in Figure 4.8. (You can follow along using the data on the file LAGLENGTH.XLS.)

Pretend that you do not know the actual DGP. As such, the time path of the sequence

allows for two possible DGPs; the series may be trend stationary or a unit root process

containing a drift term. Hence, the null hypothesis is that of a unit root process contain-

ing a drift against the alternative of a trend stationary process. The appropriate way to

proceed is to estimate the series under the alternative hypothesis; hence, we estimate a

regression equation of the form:

Δyt = a0 + 𝛾yt−1 + a2t +
p∑
i=1

𝛽iΔyt−i + 𝜀t

If it is possible to reject the null hypothesis 𝛾 = 0, the process is trend stationary.

The problem is to determine the appropriate value for p. Toward this end, the equation
was estimated for lag lengths of 1 through 4. As given in Table 4.5, the AIC selects a lag

length of three and the SBC selects a lag length of one. Nevertheless, in this instance,

the lag length seems not to make a difference; at the 5% significance level, the critical

value for the null hypothesis 𝛾 = 0 is −3.43. As such, the lag lengths selected by the

AIC and the SBC are such that the null hypothesis of a unit root is not rejected. We can

conclude that the sequence is not trend stationary.

The 𝜙3 allows us to test the null hypothesis 𝛾 = a2 = 0; at the 5% significance

level, the critical value is 6.49. As such, for any lag length, we would not reject the null

hypothesis and conclude that the sequence has a stochastic trend. However, at the 5%

significance level, the critical value for the null hypothesis a0 = 𝛾 = a2 = 0 (i.e., the

critical value of the 𝜙2 statistic) is 4.88. For the lag lengths selected by the AIC and

the SBC, this null hypothesis is clearly rejected. The test statistics reflect the fact that

the data-generating process does contain the drift term a0.
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Table 4.5 Dickey–Fuller Tests and Lag Length

p AIC SBC 𝜸 t-Statistic 𝝓2 𝝓3

1 1076.211 1089.303 −0.017 −1.776 17.390 1.579

2 1073.076 1089.441 −0.020 −2.049 11.188 2.101

3 1071.817 1091.455 −0.022 −2.285 8.622 2.616

4 1073.799 1096.710 −0.022 −2.276 8.026 2.595

It is also possible to use t-tests and F-tests to determine the lag length. Estimating
the equation using the lag length p = 4 yields

Δyt = 1.24 + 0.042t − 0.022yt−1 + 0.397Δyt−1 + 0.108Δyt−2 + 0.125Δyt−3 + 0.009Δyt−4 + 𝜀t
(4.05) (2.28) (−2.28) (5.57) (1.42) (1.64) (0.13)

A t-test for the coefficient on Δyt−4 suggests a lag length no greater than 3. More-

over, the F-statistic for the null hypothesis 𝛽3 = 𝛽4 = 0 is 1.59 with a prob-value of

0.206. As such, we can eliminate lags 3 and 4. Moreover, the F-statistic for the null

hypothesis 𝛽2 = 𝛽3 = 𝛽4 = 0 is 2.76 with a prob-value of 0.043. Hence, if we use a 5%
significance level, the F-tests select a model with two lags. In this instance, the results

regarding the significance of 𝛾 are not very sensitive to the alternative lag lengths.

The standard practice is to perform your lag lengths tests first and then check for

a unit root. After all, the appropriate lag length can be selected regardless of whether

or not the series in question is stationary.

The Test with MA Components

Since an invertible MA model can be transformed into an autoregressive model, the

procedure can be generalized to allow for moving average components. Let the {yt}
sequence be generated from the mixed autoregressive/moving average process:

A(L)yt = C(L)𝜀t
where A(L) and C(L) are polynomials of orders p and q, respectively.

If the roots of C(L) are outside the unit circle, we can write the {yt} sequence as

the autoregressive process:

A(L)yt∕C(L) = 𝜀t

or, defining D(L) = A(L)∕C(L), we can write the process as

D(L)yt = 𝜀t

Even though D(L) will generally be an infinite-order polynomial, in principle, we

can use the same technique as used to obtain (4.30) to form the infinite-order autore-

gressive model:

Δyt = 𝛾yt−1 +
∞∑
i=2

𝛽iΔyt−i+1 + 𝜀t

As it stands, this is an infinite-order autoregression that cannot be estimated using

a finite data set. Fortunately, Said and Dickey (1984) have shown that an unknown

ARIMA(p, 1, q) process can often be well approximated by an ARIMA(n, 1, 0)
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autoregression of order n where n ≤ T1∕3. Thus, we can usually solve the problem

by using a finite-order approximation of the infinite-order autoregression. The test

for 𝛾 = 0 can be conducted using the aforementioned Dickey–Fuller 𝜏, 𝜏𝜇, or 𝜏𝜏 test

statistics.

LAG LENGTHS AND NEGATIVE MA TERMS Unit root tests generally work

poorly if the error process has a strongly negative MA component. While the result

of Said and Dickey (1984) that an ARIMA(p, 1, q) process can be well approximated

by an ARIMA(n, 1, 0) process (n ≤ T1∕3), the interaction between the unit root and the
negative MA component can lead to over-rejections of a unit root. To explain the nature

of the problem, consider the ARIMA(0,1,1) process:

yt = yt−1 + 𝜀t − 𝛽1𝜀t−1 0 < 𝛽1 < 1.

If we have the initial condition y0, we can write the general solution for yt as

yt = y0 + 𝜀t + (1 − 𝛽1)
t−1∑
i=1

𝜀i

Clearly, the {yt} sequence is not stationary since the effects of an 𝜀t shock never

decay to zero. However, unlike a random walk process for which 𝛽1 = 0, the presence

of the negative MA term means that 𝜀t has a one-unit effect on yt in period t only.
Since for all subsequent periods 𝜕yt+i∕𝜕𝜀t = (1 − 𝛽1) < 1, the magnitude of the effect

is diminished when compared to that of a pure random walk. For a finite sample with

t observations, we can construct the autocovariances as

𝛾0 = E[(yt − y0)2] = 𝜎2 + (1 − 𝛽1)2E[(𝜀t−1)2 + (𝜀t−2)2 + · · · + (𝜀1)2]
= [1 + (1 − 𝛽1)2(t − 1)]𝜎2

𝛾s = E[(yt − y0)(yt−s − y0)]
= E[(𝜀t + (1 − 𝛽1)𝜀t−1 + · · · + (1 − 𝛽1)𝜀1)(𝜀t−s + (1 − 𝛽1)𝜀t−s−1 + · · · + (1 − 𝛽1)𝜀1)
= (1 − 𝛽1)[1 + (1 − 𝛽1)(t − s − 1)]𝜎2

The autocorrelations are formed from 𝜌s = 𝛾s∕(𝛾s𝛾0)0.5. It is easy to verify that

all of the autocorrelations 𝜌i approach unity as the sample size t becomes infinitely

large. However, for the sample sizes usually found in applied work, the autocorrela-

tions can be small. To see the point, let 𝛽1 be close to unity so that terms contain-

ing (1 − 𝛽1)2 can be safely ignored. In such circumstances, the ACF can be approxi-

mated by 𝜌1 = 𝜌2 · · · = (1 − 𝛽1)0.5. For example, if 𝛽1 = 0.95, all of the autocorrela-

tions should be close to 0.22. As such, the autocorrelations will be small, appear to be

marginally significant, and show little tendency to decay.

From the example, it should not be surprising than that unit root tests do not

work well in the presence of a strongly negative MA component. Since many of the

autocorrelations are small, the ACF will resemble that of a truly stationary process.

In fact, if 𝛽1 is very close to unity, there is a common factor such that yt = yt−1 +
𝜀t − 𝛽1𝜀t−1 approximates the white-noise process yt = 𝜀t. Any test will have a diffi-

cult time distinguishing between the two types of processes and will over-reject the

null hypothesis of a unit root. Moreover, in conducting the test, it is necessary to use

a large number of lags. We can use lag operators to write Δyt = (1 − 𝛽1L)𝜀t, so that
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Δyt = 𝛽1Δyt−1 + (𝛽1)2Δyt−2 + (𝛽1)3Δyt−3 + · · · + 𝜀t. When 𝛽1 is large, many autore-

gressive lags are needed to properly capture the dynamics of the process. The need to

estimate a large number of coefficients can diminish the power of the test.

Nevertheless, there are some precautions to take when testing for a unit root in the

presence of a negative MA component. Clearly, you want to use a methodology that

properly captures the need to use a large number of lags. Ng and Perron (2001) show

that a modified version of the AIC (MAIC) yields a better estimate of the lag length

than either the AIC or the BIC. Consider

MAIC = T ln(sum of squared residuals) + 2n + 2𝜏(n)

where 𝜏(n) = �̂�2Σty2t−1∕�̂�, �̂� is the estimated value of 𝛾 and �̂�2 is the estimated variance.

Notice that theMAIC is equal to the usual expression for theAIC plus an additional

penalty term 2𝜏(n). Given that all models are estimated over the same sample period,

the value of Σy2t−1 is the same for all models. As such, 𝜏(n) will generally be small for

models with a small value of 𝛾2 relative to the variance 𝜎2. Hence, the MAIC will tend

to select the lag length resulting in a value of 𝛾 closest to that of a unit root.

At one time, it was popular to use the Phillips–Perron (1988) test if a large negative

moving average component is suspected. However, the test does not generally perform

as well as the Dickey–Fuller test when using the MAIC. The Phillips–Perron (1988)

test is discussed in Section 4.6 of the Supplementary Manual.

Multiple Roots

Dickey and Pantula (1987) suggest a simple extension of the basic procedure if more

than one unit root is suspected. In essence, the methodology entails nothing more than

performing Dickey–Fuller tests on successive differences of {yt}. When exactly one

root is suspected, the Dickey–Fuller procedure is to estimate an equation such asΔyt =
a0 + 𝛾yt−1 + 𝜀t. In contrast, if two roots are suspected, estimate the equation:

Δ2yt = a0 + 𝛽1Δyt−1 + 𝜀t (4.32)

Use the appropriate statistic (i.e., 𝜏, 𝜏𝜇, or 𝜏𝜏 , depending on the deterministic ele-

ments actually included in the regression) to determine whether 𝛽1 is significantly

different from zero. If you cannot reject the null hypothesis that 𝛽1 = 0, conclude that

the {yt} sequence is I(2). If 𝛽1 does differ from zero, go on to determine whether there

is a single unit root by estimating

Δ2yt = a0 + 𝛽1Δyt−1 + 𝛽2yt−1 + 𝜀t (4.33)

Since there are not two unit roots, you should find that 𝛽1 and/or 𝛽2 differ from zero.

Under the null hypothesis of a single unit root, 𝛽1 < 0 and 𝛽2 = 0; under the alternative

hypothesis, {yt} is stationary so that 𝛽1 and 𝛽2 are both negative. Thus, estimate (4.33)

and use the Dickey–Fuller critical values to test the null hypothesis 𝛽2 = 0. If you reject

this null hypothesis, conclude that {yt} is stationary.
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As a rule of thumb, economic series do not need to be differenced more than two

times. However, in the odd case in which at most r unit roots are suspected, the proce-
dure is to first estimate

Δryt = a0 + 𝛽1Δr−1yt−1 + 𝜀t

IfΔryt is stationary, you should find that−2 < 𝛽1 < 0. If the Dickey–Fuller critical

values for 𝛽1 are such that it is not possible to reject the null of a unit root, you accept

the hypothesis that {yt} contains r unit roots. If we reject this null of exactly r unit
roots, the next step is to test for r − 1 roots by estimating

Δryt = a0 + 𝛽1Δr−1yt−1 + 𝛽2Δr−2yt−1 + 𝜀t

If both 𝛽1 and 𝛽2 differ from zero, reject the null hypothesis of r − 1 roots. You

can use the Dickey–Fuller statistics to test the null of exactly r − 1 unit roots if the

t-statistics for 𝛽1 and 𝛽2 are both statistically different from zero. If you can reject this

null, the next step is to form

Δryt = a0 + 𝛽1Δr−1yt−1 + 𝛽2Δr−2yt−1 + 𝛽3Δr−3yt−1 + 𝜀t

As long as it is possible to reject the null hypothesis that the various values of the

𝛽i are nonzero, continue toward the equation

Δryt = a0 + 𝛽1Δr−1yt−1 + 𝛽2Δr−2yt−1 + 𝛽3Δr−3yt−1 + · · · + 𝛽ryt−1 + 𝜀t

Continue in this fashion until it is not possible to reject the null of a unit root or until

the {yt} series is shown to be stationary. Notice that this procedure is quite different

from the sequential testing for successively greater numbers of unit roots. It might seem

tempting to test for a single unit root, and if the null cannot be rejected, go on to test

for the presence of a second root. In repeated samples, this method tends to select too

few roots.

Seasonal Unit Roots

You will recall that the best-fitting model for U.S. money supply data used in Chapter 2

had the form:

(1 − L4)(1 − L)(1 − a1L)yt = (1 + 𝛽4L
4)𝜀t

The specification implies that the money supply has a unit root and a seasonal unit

root. Since seasonality is a key feature of many economic series, a sizable literature

has been developed to test for seasonal unit roots. Before proceeding, note that the first

difference of a seasonal unit root process will not be stationary. To keep matters simple,

suppose that the quarterly observations of {yt} are generated by

yt = yt−4 + 𝜀t

Here, the seasonal difference of {yt} is stationary; using the notation of Chapter 2,
we can write Δ4yt = 𝜀t. Given the initial condition y0 = y−1 = · · · = 0, the solution for

yt is
yt = 𝜀t + 𝜀t−4 + 𝜀t−8 + · · ·
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so that

yt − yt−1 =
t∕4∑
i=0

𝜀4i −
t∕4∑
i=0

𝜀4i−1

Hence, Δyt equals the difference between two stochastic trends. Since each shock
has a permanent effect on the level ofΔyt, the sequence is not mean reverting. However,

the seasonal difference of a unit root process may be stationary. For example, if {yt} is
generated by yt = yt−1 + 𝜀t, the fourth difference (i.e., Δ4yt = 𝜀t + 𝜀t−1 + 𝜀t−2 + 𝜀t−3)
is stationary. The point is that the Dickey–Fuller proceduremust bemodified in order to

test for seasonal unit roots and distinguish between seasonal versus nonseasonal roots.

There are several alternative ways to treat seasonality in a nonstationary sequence.

The most direct method occurs when the seasonal pattern is purely deterministic. For

example, letD1,D2, andD3 represent quarterly seasonal dummy variables such that the

value of Di is unity in season i and zero otherwise. Estimate the regression equation:

Δyt = a0 + 𝛼1D1 + 𝛼2D2 + 𝛼3D3 + 𝛾yt−1 +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.34)

The null hypothesis of a unit root (i.e., 𝛾 = 0) can be tested using the

Dickey–Fuller 𝜏𝜇 statistic. (Note that you use the 𝜏𝜇 statistic since the original

data contain an intercept). Rejecting the null hypothesis is equivalent to accepting the

alternative that the {yt} sequence is stationary. The test is possible as Dickey, Bell, and
Miller (1986) show that the limiting distribution for 𝛾 is not affected by the removal of

the deterministic seasonal components. If you want to include a time trend in (4.34),

use the 𝜏𝜏 statistic.

Notice that the specification in (4.34) makes it difficult to test hypothesis concern-

ing a0. Since the mean of each Di series is 1/4, the presence of the seasonal dummies

affects the magnitude of the drift term a0. To correct for this, it is common to use cen-
tered seasonal dummy variables. Simply let Di = 0.75 in season i and −0.25 in each

of the other three quarters of the year. Hence, the mean ofDi = 0 so that the magnitude

of a0 is unchanged.
If you suspect a seasonal unit root, it is necessary to use an alternative procedure. To

keep the notation simple, suppose you have quarterly observations on the {yt} sequence
and want to test for the presence of a seasonal unit root. To explain the methodology,

note that the polynomial (1 − 𝛾L4) can be factored such that there are four distinct

characteristic roots:

(1 − 𝛾L4) = (1 − 𝛾1∕4L)(1 + 𝛾1∕4L)(1 − i𝛾1∕4L)(1 + i𝛾1∕4L) (4.35)

If yt has a seasonal unit root, 𝛾 = 1. Equation (4.35) is a bit restrictive in that it only

allows for a unit root at an annual frequency. Hylleberg et al. (1990) develop a clever

technique that allows you to test for unit roots at various frequencies; you can test for

a nonseasonal unit root, a unit root at a semiannual frequency, and/or a seasonal unit

root. To understand the HEGY test (named after the four authors of the paper), suppose

yt is generated by

A(L)yt = 𝜀t
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where A(L) is a fourth-order polynomial such that

(1 − a1L)(1 + a2L)(1 − a3iL)(1 + a4iL)yt = 𝜀t (4.36)

Now, if a1 = a2 = a3 = a4 = 1, (4.36) is equivalent to setting 𝛾 = 1 in (4.35).

Hence, if a1 = a2 = a3 = a4 = 1, there is a seasonal unit root. Consider some of the

other possible cases:

CASE 1

If a1 = 1, one homogeneous solution to (4.36) is yt = yt−1. As such, the {yt}
sequence will act as a random walk in that it tends to repeat itself each and

every period. This is the case of a nonseasonal unit root; the appropriate period of

differencing is Δyt.

CASE 2

If a2 = 1, one homogeneous solution to (4.36) is yt + yt−1 = 0. In this instance,

the sequence tends to replicate itself at 6-month intervals so that there is a semi-

annual unit root. For example, if yt = 1, follows that yt+1 = −1, yt+2 = +1, yt+3 =
−1, yt+4 = 1, and so forth.

CASE 3

If either a3 or a4 is equal to unity, the {yt} sequence has an annual cycle. For

example, if a3 = 1, a homogeneous solution to (4.36) is yt = iyt−1. Thus, if
yt = 1, yt+1 = i, yt+2 = i2 = −1, yt+3 = −i, and yt+4 = −i2 = 1 so that the

sequence replicates itself every fourth period. The appropriate degree of

differencing is Δ4yt = (1 − L4)yt.

To develop the test, view (4.36) as function of a1, a2, a3, and a4 and take a Taylor
series approximation of A(L) around the point a1 = a2 = a3 = a4 = 1. Although the

details of the expansion are messy, first, take the partial derivative:

𝜕A(L)∕𝜕a1 = 𝜕(1 − a1L)(1 + a2L)(1 − a3iL)(1 + a4iL)∕𝜕a1
= −(1 + a2L)(1 − a3iL)(1 + a4iL)L

Evaluating this derivative at the point a1 = a2 = a3 = a4 = 1 yields

−L(1 + L)(1 − iL)(1 + iL) = −L(1 + L)(1 + L2) = −L(1 + L + L2 + L3)

Next, form

𝜕A(L)∕𝜕a2 = 𝜕(1 − a1L)(1 + a2L)(1 − a3iL)(1 + a4iL)∕𝜕a2
= (1 − a1L)(1 − a3iL)(1 + a4iL)L

Evaluating at the point a1 = a2 = a3 = a4 = 1, yields (1 − L + L2 − L3)L.
It should not take too long to convince yourself that evaluating 𝜕A(L)∕𝜕a3 and
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𝜕A(L)∕𝜕a4 at the point a1 = a2 = a3 = a4 = 1 yields

𝜕A(L)∕𝜕a3 = −(1 − L2)(1 + iL)iL

and

𝜕A(L)∕𝜕a4 = (1 − L2)(1 − iL)iL

Since A(L) evaluated at a1 = a2 = a3 = a4 = 1 is (1 − L4), it is possible to approx-
imate (4.36) by

[(1 − L4) − L(1 + L + L2 + L3)(a1 − 1) + (1 − L + L2 − L3)L(a2 − 1)
− (1 − L2)(1 + iL)iL(a3 − 1) + (1 − L2)(1 − iL)iL(a4 − 1)]yt = 𝜀t

Define 𝛾i such that 𝛾i = (ai − 1) and note that (1 + iL)i = i − L and (1 − iL)i =
i + L; hence,

(1 − L4)yt = 𝛾1(1 + L + L2 + L3)yt−1 − 𝛾2(1 − L + L2 − L3)yt−1
+ (1 − L2)[𝛾3(i − L) − 𝛾4(i + L)]yt−1 + 𝜀t

so that

(1 − L4)yt = 𝛾1(1 + L + L2 + L3)yt−1 − 𝛾2(1 − L + L2 − L3)yt−1
+ (1 − L2)[(𝛾3 − 𝛾4)i − (𝛾3 + 𝛾4)L]yt−1 + 𝜀t (4.37)

To purge the imaginary numbers from this expression, define 𝛾5 and 𝛾6 such that

2𝛾3 = −𝛾6 − i𝛾5 and 2𝛾4 = −𝛾6 + i𝛾5. Hence, (𝛾3 − 𝛾4)i = 𝛾5 and 𝛾3 + 𝛾4 = 𝛾6. Substi-

tuting into (4.37) yields

(1 − L4)yt = 𝛾1(1 + L + L2 + L3)yt−1 − 𝛾2(1 − L + L2 − L3)yt−1
+(1 − L2)(𝛾5 − 𝛾6L)yt−1 + 𝜀t

Fortunately, many software packages can perform the test directly on quarterly

and monthly data. However, to understand the mechanics necessary to implement the

procedure, use the following steps:

STEP 1: For quarterly data, form the following variables:

y1t−1 = (1 + L + L2 + L3)yt−1 = yt−1 + yt−2 + yt−3 + yt−4
y2t−1 = (1 − L + L2 − L3)yt−1 = yt−1 − yt−2 − yt−3 − yt−4
y3t−1 = (1 − L2)yt−1 = yt−1 − yt−3 so that y3t−2 = yt−2 − yt−4

STEP 2: Estimate the regression:

(1 − L4)yt = 𝛾1y1t−1 − 𝛾2y2t−1 + 𝛾5y3t−1 − 𝛾6y3t−2 + 𝜀t

You might want to modify the form of the equation by including an inter-

cept, deterministic seasonal dummies, and a linear time trend. As in the

augmented form of the Dickey–Fuller test, lagged values of (1 − L4)yt−i
may also be included. Perform the appropriate diagnostic checks to ensure

that the residuals from the regression equation approximate a white-noise

process.
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STEP 3: Form the t-statistic for the null hypothesis 𝛾1 = 0; a selection of the appro-

priate critical values are reported below. If you do not reject the hypothesis

𝛾1 = 0, conclude that a1 = 1 so that there is a nonseasonal unit root. Next,

form the t-test for the hypothesis 𝛾2 = 0. If you do not reject the null hypoth-

esis, conclude that a2 = 1 and that there is a unit root with a semiannual

frequency. Finally, perform the F-test for the hypothesis 𝛾5 = 𝛾6 = 0. If the

calculated value is less than the critical value reported in Hylleberg et al.

(1990), conclude that 𝛾5 and/or 𝛾6 is zero so that there is a seasonal unit root.

Be aware that the three null hypotheses are not alternatives; a series may

have nonseasonal, semiannual, and a seasonal unit roots.

At the 5% significance level, Hylleberg et al. (1990) report that the critical values

are for 100 and 200 observations are

T = 100 T = 200

𝛾1 = 0 𝛾2 = 0 𝛾5 = 𝛾6 = 0 𝛾1 = 0 𝛾2 = 0 𝛾5 = 𝛾6 = 0

Intercept −2.88 −1.95 3.08 −2.87 −1.92 3.12

Intercept + trend −3.47 −1.95 2.96 −3.44 −1.95 3.07

Intercept + seasonal

dummies

−2.95 −2.94 6.57 −2.91 −2.89 6.62

Intercept + seasonal

dummies + trend

−3.53 −2.94 6.60 −3.49 −2.91 6.57

An Example: In Chapter 2, we took the nonseasonal and the seasonal differences of

the U.S. money supply and estimated a model of the form:

mt = a0 + a1mt−1 + 𝜀t + 𝛽4𝜀t−4

where

mt = (1 − L)(1 − L4)yt

and yt is the logarithm of U.S. money supply as measured by M1.
We can use the HEGY test to determine if it is appropriate to use the seasonal and

nonseasonal differences. Since it is clear that the money supply series has a sustained
upward movement (see Section 11 in Chapter 2), we want to allow for the possibility
that the series is TS. Hence, we include a deterministic trend and an intercept in the
regression. You can open the file QUARTERLY.XLS, form yt as above, and estimate
the following regression

(1 − L4)yt = 0.062 + 1.88∗10−4t − 0.003∗10−4y1t−1 − 0.668y2t−1 − 0.280y3t−1 − 0.217y3t−2
(2.05) (2.17) (−2.17) (−4.17) (−2.88) (−2.24)

+
3∑
i=1

𝛼iDi +
8∑
i=1

𝛽i(1 − L4)yt−i

where the lag length of seven was chosen by the general-to-specific method beginning

with a lag length of 12, the Di are seasonal dummies, and y1t−1, y2t−1, y3t−1, and y3t−2
are defined above.
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The coefficient on y1t−1 has a t-statistic of –2.17. Given the 5% critical value,

we cannot reject the null hypothesis of a nonseasonal unit root. The t-statistic for the
coefficient on y2t−1 is −4.17; so, it is unlikely that there is a seasonal unit root at a semi

annual frequency. The sample F-statistic for the null hypothesis that the coefficient on
y3t−1 and y3t−2 jointly equal zero is 6.81. Hence, at the 5% significance level, there is

not a seasonal unit root at the annual frequency (6.81 < 6.57). Thus, as in Chapter 2, it
might not have been correct to difference and seasonally difference in the presence of

deterministic seasonal dummy variables. As group, the seasonal dummies are highly

significant; the sample F-statistic for the presence of the seasonal dummies is 7.49.

Nevertheless, if you experiment with themodel in the formmt = (1 − L)(1 − L4)yt used
in Chapter 2, you should find the AR(1) and MA(4) terms perform better than a model

with deterministic seasonal dummy variables. Moreover, if you perform the HEGY test

without seasonal dummies, you will find both seasonal and annual unit roots.

8. STRUCTURAL CHANGE

In performing unit root tests, special care must be taken if it is suspected that structural

change has occurred. When there are structural breaks, the various Dickey–Fuller test

statistics are biased toward the nonrejection of a unit root. To explain, consider the

situation in which there is a one-time change in the mean of an otherwise stationary

sequence. In the top graph of Figure 4.9, the {yt} sequence was constructed so as to

be stationary around a mean of zero for t = 0,… , 50 and then to fluctuate around a

mean of 6 for t = 51,… , 100. The sequence was formed by drawing 100 normally and

independently distributed values for the {𝜀t} sequence. Setting y0 = 0, the next 100

values in the sequence were generated using the formula:

yt = 0.5yt−1 + 𝜀t + DL (4.38)

where DL is a dummy variable such that DL = 0 for t = 1,… , 50 and DL = 3 for t =
51,… , 100. The subscript L is designed to indicate that the level of the dummy changes.

At times, it will be convenient to refer to the value of the dummy variable in period t
as DL(t); in the example at hand, DL(50) = 0 and DL(51) = 3.

In practice, the structural change may not be as apparent as the break shown in

the figure. However, the large simulated break is useful for illustrating the problem

of using a Dickey–Fuller test in such circumstances. The straight line shown in the

figure highlights the fact that the series appears to have a deterministic trend. In fact,

the straight line is the best-fitting OLS equation:

yt = a0 + a2t + et

In the figure, you can see that the fitted value of a0 is negative and the fitted value
of a2 is positive. The proper way to estimate (4.38) is to fit a simple AR(1) model and

allow the intercept to change by including the dummy variable DL. However, suppose

that we unsuspectingly fit the regression equation:

yt = a0 + a1yt−1 + et (4.39)
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yt = yt – 1 + εt + DP

FIGURE 4.9 Two Models of Structural Change

As you can infer from Figure 4.9, the estimated value of a1 is necessarily biased

toward unity. The reason for this upward bias is that the estimated value of a1 captures
the property that “low” values of yt (i.e., those fluctuating around zero) are followed by
other “low” values, and “high” values (i.e., those fluctuating around a mean of six) are

followed by other “high” values. For a formal demonstration, note that as a1 approaches
unity, (4.39) approaches a random walk plus drift. We know that the solution to the

random walk plus drift model includes a deterministic trend; that is,

yt = y0 + a0t +
t∑
i=1

𝜀i
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Thus, the misspecified equation (4.39) will tend to mimic the trend line shown in

Figure 4.9 by biasing a1 toward unity. This bias in a1 means that the Dickey–Fuller

test is biased toward accepting the null hypothesis of a unit root even though the series
is stationary within each of the subperiods.

Of course, a unit root process can also exhibit a structural break. The lower portion

of Figure 4.9 simulates a random walk process with a structural change occurring at

t = 51. This second simulation used the same 100 realizations for the {𝜀t} sequence

and the initial condition y0 = 2. The 100 realizations of the {yt} sequence were

constructed as

yt = yt−1 + 𝜀t + DP

where DP(51) = 4 and all other values of DP = 0.

Here, the subscript P refers to the fact that there is a single pulse in the dummy

variable. In a unit root process, a single pulse in the dummywill have a permanent effect

on the level of the {yt} sequence. In t = 51, the pulse in the dummy is equivalent to an

𝜀t+51 shock of four extra units. Hence, the one-time shock to DP(51) has a permanent
effect on the mean value of the sequence for t ≥ 51. In the figure, you can see that the

level of the process takes a discrete jump in t = 51, never exhibiting any tendency to

return to the prebreak level.

This bias in the Dickey–Fuller tests was confirmed in a Monte Carlo experiment.

Perron (1989) generated 10,000 replications of a process like that of (4.38). Each repli-

cation was formed by drawing 100 normally and independently distributed values for

the {𝜀t} sequence. For each of the 10,000 replicated series, he used OLS to estimate a

regression in the form of (4.39). As could be anticipated from our earlier discussion,

Perron found that the estimated values of a1 were biased toward unity. Moreover, the

bias became more pronounced as the magnitude of the break increased.

Perron’s Test for Structural Change

Returning to the two graphs of Figure 4.9, there may be instances in which the unaided

eye cannot easily detect the difference between the alternative types of sequences. One

econometric procedure to test for unit roots in the presence of a structural break involves

splitting the sample into two parts and using Dickey–Fuller tests on each part. The

problem with this procedure is that the degrees of freedom for each of the resulting

regressions are diminished. Moreover, you may not know when the breakpoint actually

occurs. It is preferable to have a single test based on the full sample.

Perron (1989) goes on to develop a formal procedure to test for unit roots in the

presence of a structural change at time period t = 𝜏 + 1. Consider the null hypothe-

sis of a one-time jump in the level of a unit root process against the alternative of a

one-time change in the intercept of a trend stationary process. Formally, let the null

and alternative hypotheses be

H1 : yt = a0 + yt−1 + 𝜇1DP + 𝜀t (4.40)

A1 : yt = a0 + a2t + 𝜇2DL + 𝜀t (4.41)

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c04.tex V2 - 08/18/2014 7:05pm Page 230

230 CHAPTER 4 MODELS WITH TREND

10 20 30 40 50 60 70 80 90 100

–5

0

5

10

15

20

25

FIGURE 4.10 Alternative Representations of Structural Change

where DP represents a pulse dummy variable such that DP = 1 if t = 𝜏 + 1 and zero

otherwise and DL represents a level dummy variable such that DL = 1 if t > 𝜏 and zero

otherwise.

Under the null hypothesis, {yt} is a unit root process with a one-time jump in the

level of the sequence in period t = 𝜏 + 1. Under the alternative hypothesis, {yt} is trend
stationary with a one-time jump in the intercept. Figure 4.10 can help you to visualize

the two hypotheses. Simulating (4.40) by setting a0 = 0.2 and using 100 realizations

for the {𝜀t} sequence, the erratic dashed line in the figure depicts the time path of {yt}
under the null hypothesis. You can see the one-time jump in the level of the process

occurring in period 51. Thereafter, the {yt} sequence continues the original random

walk plus drift process. The alternative hypothesis posits that the {yt} sequence is sta-
tionary around the broken trend line. Up to t = 𝜏, {yt} is stationary around a0 + a2t, and
beginning at 𝜏 + 1, yt is stationary around a0 + a2t + 𝜇2. As illustrated by the broken

line, there is a one-time increase in the intercept of the trend if 𝜇2 > 0.

The econometric problem is to determine whether an observed series is best mod-

eled by (4.40) or (4.41). The implementation of Perron’s (1989) technique is straight-

forward:

STEP 1: Unlike the Dickey–Fuller test, the null hypothesis is not directly embedded

in the alternative hypothesis. In other words, there is no direct way to restrict

the coefficients of the alternative so as to obtain the null hypothesis. As such,

we need to combine the null and alternative as follows:

yt = a0 + a1yt−1 + a2t + 𝜇1DP + 𝜇2DL + 𝜀t
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STEP 2: Estimate the regression equation formed in Step 1. Under the null hypoth-

esis of a unit root, the theoretical value of a1 is unity. Perron (1989) shows
that, when the residuals are identically and independently distributed, the

distribution of a1 depends on the proportion of observations occurring prior
to the break. Denote this proportion by 𝜆 = 𝜏∕T where T = total number of

observations.

STEP 3: Perform diagnostic checks to determine if the residuals from Step 2 are seri-

ally uncorrelated. If there is serial correlation, use the augmented form of the

regression:

yt = a0 + a1yt−1 + a2t + 𝜇1DP + 𝜇2DL +
p∑
i=1

𝛽iΔyt−i + 𝜀t

STEP 4: Calculate the t-statistic for the null hypothesis a1 = 1. This statistic can be

compared to the critical values calculated by Perron. Perron generated 5000

series according to H1 using values of 𝜆 ranging from 0 to 1 by increments

of 0.1. For each value of 𝜆, he estimated the each of the regressions and cal-

culated the sample distribution of a1. Naturally, the critical values are iden-
tical to the Dickey–Fuller statistics when 𝜆 = 0 and 𝜆 = 1; in effect, there

is no structural change unless 0 < 𝜆 < 1. The maximum difference between

the two statistics occurs when 𝜆 = 0.5. For 𝜆 = 0.5, the critical value of the

t-statistic at the 5% level of significance is −3.76 (which is larger in abso-
lute than the corresponding Dickey–Fuller statistic of −3.41). If you find a
t-statistic greater than the critical value calculated by Perron, it is possible to
reject the null hypothesis of a unit root.

In addition, the methodology is quite general in that it can also allow for a one-time

change in the drift or a one-time change in both the mean and the drift. For example,

it is possible to test the null hypothesis of a permanent change in the drift term versus

the alternative of a change in the slope of the trend. Here, the null hypothesis is

H2: yt = a0 + yt−1 + 𝜇2DL + 𝜀t

where DL = 1 if t > 𝜏 and zero otherwise. With this specification, the {yt} sequence

is generated by Δyt = a0 + 𝜀t up to period 𝜏 and by Δyt = a0 + 𝜇2 + 𝜀t thereafter. If

𝜇2 > 0, the magnitude of the drift increases for t > 𝜏. Similarly, a reduction in the drift

occurs if 𝜇2 < 0.

The alternative hypothesis posits a trend stationary series with a change in the slope

of the trend for t > 𝜏

A2: yt = a0 + a2t + 𝜇3DT + 𝜀t

where DT = t − 𝜏 for t > 𝜏 and zero otherwise.

For example, suppose that the break occurs in period 51 so that 𝜏 = 50. Thus,

DT (1) through DT (50) are all zero, so that, for the first 50 periods, {yt} evolves as yt =
a0 + a2t + 𝜀t. Beginning with period 51,DT (51) = 1,DT (52) = 2, … so that, for t > 𝜏,

{yt} evolves as yt = a0 + a2t + 𝜇3(t − 50) + 𝜀t = a0 + (a2 + 𝜇3)t − 50𝜇3 + 𝜀t. Hence,

DT changes the slope of the deterministic trend line. The slope of the trend is a2 for

t ≤ 𝜏 and a2 + 𝜇3 for t > 𝜏.
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To be even more general, it is possible to combine the two null hypotheses H1 and

H2. A change in both the level and drift of a unit root process can be represented by

H3: yt = a0 + yt−1 + 𝜇1DP + 𝜇2DL + 𝜀t

where DP and DL are the pulse and level dummies, respectively, defined earlier.

The appropriate alternative for this case is

A3: yt = a0 + a2t + 𝜇2DL + 𝜇3DT + 𝜀t

Again, the procedure entails combining the null and alternative hypotheses into a

single equation. Consider

yt = a0 + a1yt−1 + a2t + 𝜇1DP + 𝜇2DL + 𝜇3DT + 𝜀t

Compare the t-statistic from the estimate of a1 to the critical value calculated by

Perron (1998). If the errors from this second regression equation do not appear to be

white noise, estimate the equation in the form of an augmented Dickey–Fuller test.

The t-statistic for the null hypothesis a1 = 1 can be compared to the critical values cal-

culated by Perron (1989). For various values of 𝜆, Perron reports the following critical

values of the t-statistic at the 5% significance level:

𝝀 H1 H2 H3

0.15–0.25 −3.77 −3.80 −3.99
0.45–0.55 −3.76 −3.96 −4.24
0.65–0.75 −3.80 −3.85 −4.18

Perron’s Test and Real Output

Perron (1989) used his analysis of structural change to challenge the findings of Nelson

and Plosser (1982). With the same variables, his results indicate that most macro-

economic variables are not characterized by unit root processes. Instead, the variables

appear to be TS processes coupled with structural breaks. According to Perron (1989),

the stock market crash of 1929 and the dramatic oil price increase of 1973 were exoge-

nous shocks having permanent effects on the mean of most macroeconomic variables.

The crash induced a one-time fall in the mean. Otherwise, macroeconomic variables

appear to be trend stationary.

All variables in the Perron’s study (except real wages, stock prices, and the station-

ary unemployment rate) appeared to have a trend with a constant slope and exhibited

a major change in the level around 1929. In order to entertain various hypotheses con-

cerning the effects of the stock market crash, consider the regression equation:

yt = a0 + 𝜇1DL + 𝜇2Dp + a2t + a1yt−1 +
k∑
i=1

𝛽iΔyt−i + 𝜀t

where DP(1930) = 1 and zero otherwise

DL = 1 for all t beginning in 1930 and zero otherwise
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Table 4.6 Retesting the Data by Nelson and Plosser for Structural Change

T 𝝀 k a0 𝝁1 𝝁2 a2 a1

Real GNP 62 0.33 8 3.44
(5.07)

−0.189
(−4.28)

−0.018
(−0.30)

0.027
(5.05)

0.282
(−5.03)

Nominal GNP 62 0.33 8 5.69
(5.44)

−3.60
(−4.77)

0.100
(1.09)

0.036
(5.44)

0.471
(−5.42)

Industrial production 111 0.66 8 0.120
(4.37)

−0.298
(−4.56)

−0.095
(−0.095)

0.032
(5.42)

0.322
(−5.47)

Notes:
1T = number of observations; 𝜆 = proportion of observations occurring before the structural change; k =
lag length.
2The appropriate t-statistics are in parenthesis. For a0, 𝜇1, 𝜇2, and a2, the null is that the coefficient is
equal to zero. For a1, the null hypothesis is a1 = 1. Note that all estimated values of a1 are significantly
different from unity at the 1% level.

Under the presumption of a one-time change in the level of a unit root process,

a1 = 1, a2 = 0, and 𝜇2 ≠ 0. Under the alternative hypothesis of a permanent one-time

break in the trend stationary model, a1 < 1 and 𝜇1 ≠ 0. Perron’s (1989) results using

real GNP, nominal GNP, and industrial production are reported in Table 4.6. Given the

length of each series, the 1929 crash means that 𝜆 is 1/3 for both real and nominal

GNP and equal to 2/3 for industrial production. Lag lengths (i.e., the values of k) were
determined using t-tests on the coefficients 𝛽i. The value k was selected if the t-statistic
on 𝛽k was greater than 1.60 in absolute value and the t-statistic on 𝛽i for i > k was less
than 1.60.

First consider the results for real GNP. When you examine the last column of the

table, it is clear that there is little support for the unit root hypothesis; the estimated

value of a1 = 0.282 is significantly different from unity at the 1% level. Instead, real

GNP appears to have a deterministic trend (a2 is estimated to be over five SD from

zero). Also note that the point estimate 𝜇1 = −0.189 is significantly different from zero

at conventional levels. Thus, the stock market crash is estimated to have induced a

permanent one-time decline in the intercept of real GNP.

These findings receive additional support since the estimated coefficients and their

t-statistics are quite similar across the three equations. All values of a1 are about five
SD from unity, and the coefficients of the deterministic trends (a2) are all over five

SD from zero. Since all the estimated values of 𝜇1 are significant at the 1% level and

negative, the data seem to support the contention that real macroeconomic variables

are TS, except for a structural break resulting from the stock market crash.

Tests with Simulated Data

To further illustrate the procedure, 100 random numbers were drawn to represent the

{𝜀t} sequence. By setting y0 = 0, the next 100 values in the {yt} sequence were drawn
as

yt = 0.5yt−1 + 𝜀t + DL

where DL = 0 for t = 1,… , 50 and DL = 1 for t = 51,… , 100
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Thus, the simulation is identical to (4.38) except that the magnitude of the struc-

tural break is diminished. This simulated series is in the data file labeled BREAK.XLS;

you should try to reproduce the following results. If youwere to plot the data, youwould

see the same pattern as in Figure 4.10. However, if you did not plot the data or were

otherwise unaware of the break, you might easily conclude that the {yt} sequence had
a unit root. The ACF of the {yt} sequence suggests a unit root process; for example,

the first six autocorrelations are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6

Levels 0.95 0.89 0.86 0.84 0.80 0.77

First differences −0.002 −0.211 −0.112 0.083 −0.007 −0.025

Dickey–Fuller tests yield

Δyt = −0.0233yt−1 + 𝜀t t-statistic for 𝛾 = 0: − 0.985

Δyt = 0.0661 − 0.0566yt−1 + 𝜀t t-statistic for 𝛾 = 0: − 1.706

Δyt = −0.0488 − 0.1522yt−1 + 0.004t + 𝜀t t-statistic for 𝛾 = 0: − 2.734

Diagnostic tests indicate that longer lags are not needed. Regardless of the presence

of the constant or the trend, the {yt} sequence appears to be DS. Of course, the problem
is that the structural break biases the data toward suggesting a unit root.

Now, using the Perron procedure, the first step is to estimate the model

yt = 0.083 + 0.479yt−1 − 0.002t + 0.025DP + 0.479DL + 𝜀t
(1.30) (5.52) (−1.25) (0.076) (5.52)

In the next step, all of the diagnostic statistics indicate that {𝜀t} approximates a

white-noise process. Finally, since the standard error of a1 is 0.0897, the t-statistic for
a1 = 1 is −6.01 (i.e., a1 is about six SD from unity). Since the 5% critical value is

−3.76, we can reject the null of a unit root and conclude that the simulated data are

stationary around a break point at t = 51.

Some care must be exercised in using Perron’s procedure since it assumes that the

date of the structural break is known. In your own work, if the date of the break is

uncertain, you should consult Amsler and Lee (1995), Perron (1997), Vogelsang and

Perron (1998), Zivot andAndrews (1992), Enders and Lee (2012), or Lee and Strazicich

(2003). The entire issue of the July 1992 Journal of Business and Economic Statistics is
devoted to breakpoints and unit roots. An interesting application is found in Ben-David

and Papell (1995). They consider a long span (of up to 130 years) of GDP data for

16 countries. Allowing for breaks, they reject the null of a unit root in approximately

half of the cases. The appropriate use of the tests of Perron (1989), Zivot and Andrews

(1992), and Lee and Strazicich (2003) are shown in Chapter 6 of the Programming
Manual.
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9. POWER AND THE DETERMINISTIC
REGRESSORS

Tests for unit roots are not especially good at distinguishing between a series with a

characteristic root that is close to unity and a true unit root process. Part of the problem

concerns the power of the test and the presence of the deterministic regressors in the

estimating equations.

Power

Formally, the power of a test is equal to the probability of rejecting a false null hypoth-
esis (i.e., one minus the probability of a type II error). A test with good power would

correctly reject the null hypothesis of a unit root when the series in question is actu-

ally stationary. Monte Carlo simulations have shown that the power of the various

Dickey–Fuller tests can be very low. As such, these tests will too often indicate that

a series contains a unit root. The problem is that, in finite samples, any trend station-

ary process can be arbitrarily well approximated by a unit root process, and a unit root

process can be arbitrarily well approximated by a trend stationary process. To explain,

examine the interest rate series and exchange rate series shown in the beginning of

Chapter 3. If you did not know the actual data-generating processes, it would be difficult

to tell which, if any, are stationary. Similarly, it is difficult for any statistical procedure

to distinguish between unit root processes and series that are highly persistent.

It is simple to conduct a Monte Carlo experiment that determines the power of the

Dickey–Fuller test. To be more specific, suppose that the true data-generating process

for a series is yt = a0 + a1yt−1 + 𝜀t where |a1| < 1. If you did not know the actual

data-generating process, you might test the series for a unit root using a Dickey–Fuller

test. The question at hand is How often will the Dickey–Fuller test fail to detect that

the series is actually stationary? Since the confidence intervals for the t-statistics of
the Dickey–Fuller exceed those for the usual t-test, it is to be expected that the power

of the Dickey–Fuller test is low. To find out the exact answer to the question, we can

generate 10,000 stationary series and apply a Dickey–Fuller test to each. We can then

calculate the percentage of the times that the test correctly identifies a truly stationary

process.

The ability of the test to properly detect that the series is stationary will depend on

the value of a1. We would expect the test to have the least power when |a1| is close to
unity. Thus, it makes sense to examine how the magnitude of a1 affects the power of
the test. We first construct 100 observations of the series yt = a0 + a1yt−1 + 𝜀t using a

value of a1 = 0.8 and an {𝜀t} sequence drawn from a standardized normal distribution.

The magnitude of a0 is unimportant and, so, is set equal to zero. The initial value of

y0 is set equal to the unconditional mean of zero. Next, the simulated series is esti-

mated in the form Δyt = a0 + 𝛾yt−1 + 𝜀t. The Dickey–Fuller 𝜏𝜇 statistics are used to

determine whether the null hypothesis that 𝛾 = 0 can be rejected at the 10%, 5%, and

1% significance levels. The experiment is repeated 10,000 times, and the proportion

of the instances in which the null hypothesis is correctly rejected is recorded. Finally,
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the entire experiment is repeated for other values of a1. Consider the following table of
proportions:

a𝟏 10% 5% 1%

0.80 95.9 87.4 51.4

0.90 52.1 33.1 9.0

0.95 23.4 12.7 2.6

0.99 10.5 5.8 1.3

When the true value of a1 = 0.8, the test does reasonably well. For example, at the

5% significance level, the false null hypothesis of a unit root is rejected in 87.4% of

the Monte Carlo replications. However, when a1 = 0.95, the probability of correctly

rejecting the null hypothesis of a unit root is estimated to be only 12.7% at the 5%

significance level and 2.6% at the 1% level. Thus, the test has very low power to detect

near unit root series.

Does it matter that it is often impossible to distinguish between borderline station-

ary, trend stationary, and unit root processes? The realistic answer is that it depends on

the question at hand. In borderline cases, the short-run forecasts from the alternative

models may have nearly identical forecasting performance. In fact, Monte Carlo stud-

ies indicate that when the true data-generating process is stationary but has a root close

to unity, the one-step-ahead forecasts from a differenced model are usually superior to

the forecasts from a stationary model. However, the long-run forecasts of a model with

a deterministic trend will be quite different from those of other models.

Determination of the Deterministic Regressors

Unless the researcher knows the actual data-generating process, there is a question

concerning whether it is most appropriate to estimate (4.20), (4.21), or (4.22). It might

seem reasonable to test the hypothesis 𝛾 = 0 using the most general of the models:

Δyt = a0 + 𝛾yt−1 + a2t +
p∑
i=2

𝛽iΔyt−i+1 + 𝜀t (4.44)

After all, if the true process is a random walk process, this regression should find

that a0 = 𝛾 = a2 = 0. One problem with this line of reasoning is that the presence of

the additional estimated parameters reduces degrees of freedom and the power of the

test. Reduced power means that the researcher will not be able to reject the null of a unit

root when, in fact, no unit root is present. The second problem is that the appropriate

statistic (i.e., 𝜏, 𝜏𝜇, and 𝜏𝜏 ) for testing 𝛾 = 0 depends on which regressors are included

in the model. As you can see by examining the three Dickey–Fuller tables, for a given

significance level, the confidence intervals around 𝛾 = 0 dramatically expand if a drift

and a time trend are included in the model. This is quite different from the case in

which {yt} is stationary. When {yt} is stationary, the distribution of the t-statistic does
not depend on the presence of other regressors.
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The point is that it is important to use a regression equation that mimics the actual

data-generating process. Inappropriately omitting the intercept or time trend can cause

the power of the test to go to zero. For example, if as, in (4.44), the data-generating

process includes a trend, omitting the term a2t imparts an upward bias in the estimated

value of 𝛾 . On the other hand, extra regressors increase the critical values so that you

may fail to reject the null of a unit root.

Campbell and Perron (1991) report the following results concerning unit root tests:

1. If the estimated regression includes deterministic regressors that are not in

the actual data-generating process, the power of the unit root test against

a stationary alternative decreases as additional deterministic regressors

are added. Hence, you do not want to include regressors that are not in the

data-generating process.

2. If the estimated regression omits an important deterministic trending variable

present in the true data-generating process—such as the expression a2t in
(4.44)—the power of the t-statistic test goes to zero as sample size increases.

If the estimated regression omits a nontrending variable (such as an inter-

cept), the t-statistic is consistent, but the finite sample power is adversely

affected and decreases as the magnitude of the coefficient on the omitted

component increases. Hence, you do not want to omit regressors that are in

the data-generating process.

The direct implication of these findings is that the researcher may fail to reject the

null hypothesis of a unit root because of a misspecification concerning the determin-

istic part of the regression. Too few or too many regressors may cause a failure of the

test to reject the null of a unit root. How do you know whether to include a drift or

time trend in performing the tests? The key problem is that the tests for unit roots are
conditional on the presence of the deterministic regressors and tests for the presence
of the deterministic regressors are conditional on the presence of a unit root. Although
we can never be sure that we are including the appropriate deterministic regressors in

our econometric model, there are some useful guidelines.

1. Always plot your data. Visual inspection can help you determine whether

there is a clear trend in the data.

2. Be clear about the appropriate null hypothesis and the alternative hypoth-
esis. When you perform a Dickey–Fuller test, always estimate the model

under the alternative hypothesis and impose the restriction implied by the

null hypothesis. Since the null hypothesis is that the series has a unit root,

always estimate the series as if it were stationary or TS. For example, the

real GDP series shown in Figure 4.1 moves decidedly upward over time. The

issue is whether the series is trend stationary or contains a unit root plus a

drift term. As such, the appropriate model to estimate has the form Δyt =
a0 + 𝛾yt−1 + a2t + Σ𝛽iΔyt−i + 𝜀t. You then test the restrictions 𝛾 = 0 and/or

𝛾 = a2 = 0. There is no need to estimate a model without a2t since the alter-
native hypothesis is not represented in such a specification.
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3. You do not want to reject the null hypothesis when the series actually has a
unit root (a Type I error) or incorrectly accept the null of a unit root when the
series is stationary or TS (a Type II error). Nevertheless, any test involves
the possibility of making such errors. As such, you do not want to perform

needless tests. In the example of real GDP, there is little point in testing the

restriction a0 = 𝛾 = a2 = 0 since real GDP clearly increases over time.

4. Testing a restriction on a model that has already been restricted creates the
possibility of compounding your errors. Suppose that a test for the presence
of the time trend allows you to set a2 = 0. A subsequent test of the restriction

a0 = 𝛾 = 0 in the model Δyt = a0 + 𝛾yt−1 + Σ𝛽iΔyt−i + 𝜀t is conditional on

whether the first test was correct in allowing you to exclude the deterministic

trend.

At one time, researchers would apply a battery of tests on the values of a0 and/or a2
when the form of the deterministic regressors was completely unknown. One standard

procedure is discussed in Section 4.4 of the Supplementary Manual and in Chapter 6

of the Programming Manual. Now, when power seems to be an issue, it is typical to

use variants of the Dickey−Fuller test that have enhanced power.

10. TESTS WITH MORE POWER

If you examine the basic regression used in the Dickey−Fuller test,Δyt = a0 + 𝛾yt−1 +
a2t + 𝜀t, you will see that there are two different types of regressors. The intercept and

the time trend are purely deterministic while yt−1 is a unit root process under the null
hypothesis. Notice that the coefficients of the deterministic expressions, a0 and a2, play
very different roles under the null and alternative hypotheses. If we change equation

numbers and symbols to match those used in the text, Phillips and Schmidt (1992,

p. 258) make the following observation about the parameters in the Dickey−Fuller
regressions

“… the parameter a0 represents trend when 𝛾 = 0 (since the solution for

yt, then includes the deterministic trend term a0t), but it determines level

when 𝛾 < 0 (since yt is then stationary around the level −a0∕𝛾). Simi-

larly, [in equation (4.44)], when 𝛾 = 0, the parameter a0 represents trend
and a2 represents quadratic trend, while under the alterative a0 determines

level and a2 determines trend. This confusion over the meanings of the

parameters shows up in the properties of the Dickey−Fuller tests.”

The essential problem is that the intercept and the slope of the trend are often

poorly estimated in the presence of a unit root. In a sense, the least squares principle is

unable to properly separate the movements of yt into those induced by the deterministic

trend and those induced by the stochastic trend. Even in the circumstance in which {yt}
is stationary, the intercept and trend can be poorly estimated if the {yt} series is quite

persistent. Of course, if the estimates of a0 and a2 have substantial error, the estimate

of 𝛾 will have a large standard error too. You can see this effect by comparing the

Dickey−Fuller critical values for 𝜏, 𝜏𝜇, and 𝜏𝜏 to those in a standard t-table. The overly
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wide confidence interval for 𝛾 means that you are less likely to reject the null hypothesis

of a unit root even when the true value of 𝛾 is not zero.

A number of authors have devised clever methods to improve the estimates of

the intercept and trend coefficients. For example, Schmidt and Phillips (1992) pro-

posed a two-step testing procedure that has better power than the Dickey−Fuller test.
Although they call their test a Lagrange Multiplier (LM) test, the method is actually

quite simple. Instead of the Dickey−Fuller specification, under the null hypothesis, the
{yt} sequence is a random walk plus a drift so that:

yt = a0 + a2t +
t−1∑
i=0

𝜀t−i

or

Δyt = a2 + 𝜀t

The idea is to estimate the trend coefficient, a2, using the regressionΔyt = a2 + 𝜀t.

As such, the presence of the stochastic trend Σ𝜀i does not interfere with the estimation

of a2. The resulting estimate of a2 (called â2) is an estimate of the slope of the time

trend. Use this estimate to form the detrended series as ydt = yt − (y1 − â2) − â2t, where
y1 is the initial value of the {yt} series. Note that (y1 − â2) acts as the intercept of the
estimated trend line and â2 acts as the slope. The use of (y1 − â2) in the detrending

procedure ensures that the initial value of the detrended series (i.e., yd
1
) is zero. In the

second step of the procedure, you estimate a variant of the Dickey−Fuller test using
the detrended series in place of the level of yt−1

Δyt = a0 + 𝛾ydt−1 + 𝜀t

or, if there is any serial correlation in the residuals, estimate

Δyt = a0 + 𝛾ydt−1 +
p∑
i=1

ciΔydt−i + 𝜀t

The null of a unit root can be rejected if it is found that 𝛾 ≠ 0. The point is that

Schmidt and Phillips (1992) show that it is preferable to estimate the parameters of

the trend using a model without the persistent variable yt−1. Once the trend is effi-

ciently estimated, it is possible to detrend the data and perform the unit root test on the

detrended data. Some of the critical values for the test are

Critical Values of the Schmidt−Phillips Unit Root Test

T 1% 2.5% 5% 10%

50 −3.73 −3.39 −3.11 −2.80
100 −3.63 −3.32 −3.06 −2.77
200 −3.61 −3.30 −3.04 −2.76
500 −3.59 −3.29 −3.04 −2.76
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Elliott, Rothenberg, and Stock (1996) show that it is possible to further enhance

the power of the test by estimating the model using something close to first differ-

ences. The idea is that, under the alternative hypothesis that the series is stationary, the

Schmidt–Phillips model in first differences is misspecified. Hence, consider the TS

model:

yt = a0 + a2t + B(L)𝜀t
Instead of creating the first difference of yt, Elliott, Rothenberg, and Stock (ERS)

preselect a constant close to unity, say 𝛼, and subtract 𝛼yt−1 from yt to obtain

ỹt = a0 + a2t − 𝛼a0 − 𝛼a2(t − 1) + et, for t = 2,… , T

where ỹt = yt − 𝛼yt−1 and et is a stationary error term. For t = 1, such near differencing

is not possible and the initial value ỹ1 is set equal to y1. For simplicity, collect terms

with a0 and a2 to obtain

ỹt = (1 − 𝛼)a0 + a2[(1 − 𝛼)t + 𝛼)] + et

Now, it should be clear how to obtain estimates of a0 and a2 using OLS. Create the
variable z1t equal to the constant (1 − 𝛼) and the variable z2t equal to the deterministic

trend 𝛼 + (1 − 𝛼)t. To obtain the desired estimates of a0 and a2, simply regress z1t and
z2t on ỹt. In other words, use OLS to estimate:

ỹt = a0z1t + a2z2t + et

Note that the test is conditional on the initial value of the {yt} series in that y1 =
a0 + a2 + 𝜀1. As such, the initial values of z1t and z2t should be set equal to unity and

the initial value of ỹt should be set equal to y1 (i.e., set z11 = 1, z21 = 1, and ỹ1 = y1).
Since the goal is to obtain the estimated values of a0 and a2, at this step, it is not

especially important if the residual, et, is serially correlated. The important point is

that the estimates a0 and a2 can be used to detrend the {yt} series as

ydt = yt − â0 − â2t

In the second step of the procedure, estimate the basic Dickey–Fuller regression

using the detrended data. Hence, estimate the regression equation:

Δydt = 𝛾ydt−1 + 𝜀t

If there is serial correlation in the residuals, the augmented form of the test can be

estimated as

Δydt = 𝛾ydt−1 +
p∑
i=1

ciΔydt−i + 𝜀t

Elliott, Rothenberg, and Stock (1996) recommend selecting the lag length p using
the SBC. As in the Schmidt–Phillips test, the null of a unit root can be rejected if it is

found the 𝛾 ≠ 0. The critical values of the test depend on whether a trend is included in

the test. If there is an intercept but not a trend, the critical values are precisely those of
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the Dickey–Fuller 𝜏 test reported in the top portion of Table A. In essence, you use the
Dickey–Fuller critical values as if there is no intercept in the data-generating process.

If there is a trend, the critical values depend on the value of 𝛼 selected to perform the

“near differenced” variable ŷt. ERS report that the value of 𝛼 that seems to provide the

best overall power is 𝛼 = (1 − 7∕T) for the case of an intercept and 𝛼 = (1 − 13.5∕T) if
there is an intercept and trend. The table below reports the critical values for the case of

a trend and 𝛼 = 1 − 13.5∕T . Notice that, as the sample size T increases, 𝛼 approaches

unity so that ŷt is approximately equal to Δyt. In the literature, the ERS test is often

referred to as the Dickey–Fuller generalized least squares (DF-GLS) test.5

Critical Values of the ERS Test with Trend and 𝛼= 1−𝟏𝟑.𝟓 ∕T

T 1% 2.5% 5% 10%

50 −3.77 −3.46 −3.19 −2.89
100 −3.58 −3.29 −3.03 −2.74
200 −3.46 −3.18 −2.93 −2.64
∞ −3.48 −3.15 −2.89 −2.57

One aspect of the ERS test that some researchers might find objectionable is the

assumption that the initial value ỹ1 is set equal to y1. This is equivalent to assum-

ing that the initial value of the error term is equal to zero. An alternative assumption

is that the initial value of the shock is drawn from its unconditional distribution. Note

that relaxing the assumption concerning the initial condition acts to reduce the power

of this version of the test. In this circumstance, the first value of ỹ1 is set equal to

y1(1 − 𝛼2)0.5, z11 = (1 − 𝛼2)0.5, and z21 = (1 − 𝛼2)0.5.6 Hence, instead of condition-

ing on the magnitude of y1, you condition on the number of SD from zero. Note that

Elliott (1999) recommends using 𝛼 = (1 − 10∕T) regardless of whether or not a trend
is included in the regression. The critical values for this test are different from those

reported above. The asymptotic critical values for regressions with an intercept and an

intercept plus trend are as follows:

1% 2.5% 5% 10%

Intercept −3.28 −2.98 −2.73 −2.46
Trend −3.71 −3.41 −3.17 −2.91

An Example

In order to illustrate the appropriate use of the procedure, the file labeled

ERSTEST.XLS contains 200 observations generated from the equation: yt =
1 + 0.95yt−1 + 0.01t + 𝜀t. Although the series is clearly trend stationary, the point of

this exercise is to illustrate the appropriate use of the ERS test and compare the results
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to those of a Dickey–Fuller test. If you examine the file, you will see that the first five

rows are

t y y_tilde z1 z2 yd

1 20.03339 20.03339 1.0000 1.0000 0.036376

2 21.85126 3.170125 0.0675 1.0675 1.692188

3 22.01347 1.637169 0.0675 1.1350 1.692338

4 22.08649 1.558934 0.0675 1.2025 1.603304

5 22.17255 1.576890 0.0675 1.2700 1.527297

The series in column 2, called y, contains the 200 realizations represent-

ing the yt series. Since the data contain a trend, the appropriate value of 𝛼

to use is 1 − 13.5∕200 = 0.9325. This value of 𝛼 was used to construct the

next series (y_tilde) as yt − 0.9325yt−1. For example, ỹ1 = y1, ỹ2 = y2 − 𝛼y1 =
21.85126 − 0.9325(20.03339) = 3.170125 and ỹ3 = y3 − 𝛼y2 = 1.637169. Since

𝛼 = 0.9325, z12 = z13 = · · · = 1 − 𝛼 = 0.0675. Similarly, z2t = 0.9325 + 0.0675t so
that z21 = 1.0000, z22 = 1.0675, z23 = 1.1350, … . The regression of ỹt on z1t and
z2t yields

ỹt = 19.835 ∗ z1t + 0.162 ∗ z2t
These estimates of a0 and a2 are used to construct the detrended series as

ydt = yt − 19.835 − 0.162t

This series is reported in the last column of ERSTEST.XLS. Before proceeding, it

is interesting to consider the particular solution for the skeleton of yt = 1 + 0.95yt−1 +
0.01t + 𝜀t. From your knowledge of Chapter 1 (also see question 7 of Chapter 2), you

should have no trouble verifying that the desired solution is 16.2 + 0.2t. The estimated

trend equation, 19.835 + 0.162t, is reasonably close to the particular solution.

Now that yt has been detrended, it is straightforward to perform the unit root test.

If you use the data in the spreadsheet, you should find

Δydt = −0.0975ydt−1
(−3.154)

The 2.5% and 5% critical values for the test are −3.15 and −2.89, respectively. As
such, the null hypothesis of a unit root is clearly rejected at the 5% level and just barely

rejected at the 2.5% level. You will find that augmenting this regression with lagged

values of Δydt−i only acts to increase the value of the SBC. You can perform Elliott’s

(1999) version of the test in the same way, except that you set 𝛼 = 1 − 10∕200 = 0.95,

y1(1 − 𝛼2)0.5 = 6.255, z11 = (1 − 𝛼2)0.5 = 0.3122, and z21 = (1 − 𝛼2)0.5 = 0.3122.

Hence, assuming that the initial value of the series is drawn from its unconditional

mean, you should obtain the t-statistic −3.147. The null hypothesis of a unit root is not
rejected (although it is very close to being rejected) using the 5% critical value of−3.17.

The results of Elliott’s (1999) test are very similar to the result found from the

Schmidt–Phillips test. To perform the Schmidt–Phillips LM test, you should first

regress Δyt on a constant and obtain: Δyt = 0.1713. Since y1 = 20.03339, you detrend
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the yt series using y
d
t = 20.03339 − (20.03339 − 0.1713) − 0.1713t. Now, you should

be able to reproduce the regression equation Δyt = 0.0691 − 0.0903ydt . Since the

t-statistic for the coefficient on ydt is −3.052, the null hypothesis of a unit root is

just rejected at the 5% significance level. Very different results are obtained when

performing a standard Dickey–Fuller test. Consider the estimated model:

Δyt = 2.0809 + 0.0158t − 0.0979yt−1 + 𝜀t

(3.265) (3.106) (−3.124)

The estimated value of 𝛾 is −0.0979, and the t-statistic for the null hypothesis

�̂� = 0 is −3.124. From Table A, the critical values of the 𝜏𝜏 statistic at the 5% and

10% significance levels are about −3.45 and −3.15, respectively. Hence, if we use the
Dickey–Fuller test, the null hypothesis of a unit root cannot be rejected at conventional

significance levels.

Section 9 reported the results of a simple Monte Carlo study of the power of the

standard Dickey–Fuller test for the process: yt = a0 + a1yt−1 + 𝜀t. Now, if we use the

ERS test, the proportions (out of 10,000 replications) in which the null hypothesis of a

unit root were correctly rejected are

a𝟏 10% 5% 1%

0.80 99.8 99.1 86.6

0.90 93.9 79.0 33.4

0.95 64.3 39.8 10.0

0.99 23.3 11.1 2.3

Although these results are far superior to those of theDickey–Fuller test, the power

of the test for large values of a1 is still disappointing.
Section 6.3 of the ProgrammingManual uses real U.S. DGP to illustrate the appro-

priate use of the test.

11. PANEL UNIT ROOT TESTS

Section 6 presented some strong evidence that the three real exchange rate series shown

in Figure 4.7 are unit root processes. Of course, it is possible that the series are mean

reverting but the Dickey–Fuller tests have little power to detect the fact that the series

are stationary. One way to obtain a more powerful test is to pool the estimates from a

number of separate series and then test the pooled value. The theory underlying the test

is very simple: if you have n independent and unbiased estimates of a parameter, the

mean of the estimates is also unbiased. More importantly, so long as the estimates are

independent, the central limit theory suggests that the sample mean will be normally

distributed around the true mean.

Im, Pesaran, and Shin (2002) show how to use this result to construct a test for a

unit root when you have a number of similar time-series variables (i.e., a panel). The

only complicating factor is that the OLS estimates for 𝛾 in the Dickey–Fuller test are

biased downward. Suppose you have n series each containing T observations. For each

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c04.tex V2 - 08/18/2014 7:05pm Page 244

244 CHAPTER 4 MODELS WITH TREND

series, perform an ADF test of the form

Δyit = ai0 + 𝛾iyit−1 + ai2t +
pi∑
j=1

𝛽ijΔyit−j + 𝜀it i = 1,… , n (4.45)

Because the lag lengths can differ across equations, you should perform separate

lag length tests for each equation. Moreover, you may choose to exclude the determin-

istic time trend. However, if the trend is included in one equation, it should be included

in all. Once you have estimated the various 𝛾i, obtain the t-statistic for the null hypoth-
esis 𝛾i = 0. In a traditional Dickey–Fuller test, each of these t-statistics—denoted by

ti—would be compared to the appropriate critical value reported in Table A. However,

for the panel unit root test, form the sample mean of the t-statistics as

t = (1∕n)
n∑
i=1

ti (4.46)

It is straightforward to construct the statistic Zt as

Zt =
√
n[t − E(t)]√
var(t)

where Et and var(t) denote the theoretical mean and variance of t. If the OLS estimates

of the individual ti were unbiased, the value of Et would be zero. However, to correct

for the bias, the values Et and var(t) can be calculated by Monte Carlo simulation. Im,

Pesaran, and Shin (IPS) report these values as follows:

T 6 8 10 15 20 50 100 500

Et −1.52 −1.50 −1.50 −1.51 −1.52 −1.53 −1.53 −1.53
var(t) 1.75 1.23 1.07 0.92 0.85 0.76 0.74 0.72

Im, Pesaran, and Shin show that Zt has an asymptotic standardized normal distri-

bution. Hence, for large T and n, you can approximate Zt with a normal distribution.

This fact should not be too surprising. If each of the estimated values of the various ti
are independent, the central limit theorem indicates that deviation of the sample aver-

age from the true mean will have a normal distribution. Rejecting the null hypothesis

Zt = 0 is equivalent to accepting the alternative hypothesis that at least one value of the
𝛾i differs from zero. After all, if the sample average of the t-statistics is significantly
different from zero, at least one of the values of 𝛾i is statistically different from zero.

The proof that Zt has a normal distribution relies on very large samples. For the

sample sizes typically used by applied econometricians, it is preferable to use the crit-

ical values contained in Table 4.7. Notice that the critical values depend on n, T , and
whether a time trend is included in (4.45). For example, if you have seven series each

containing 50 observations and you include a time trend in (4.45), the 5% critical value

for t is −2.67. If you had used the Dickey–Fuller test, the corresponding critical value
for each of the seven values of ti would be−3.50 (see Table A). Note that it is necessary
to have values of T and n, which are greater than four. Large values of T are standard
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Table 4.7 Selected Critical Values for the IPS Panel Unit Root Test

25 50 70
n∕T 10% 5% 1% 10% 5% 1% 10% 5% 1%

No Time Trend

5 −2.04 −2.18 −2.46 −2.02 −2.15 −2.42 −2.02 −2.15 −2.40

7 −1.95 −2.08 −2.32 −1.95 −2.06 −2.28 −1.95 −2.06 −2.28

10 −1.88 −1.99 −2.19 −1.88 −1.98 −2.16 −1.88 −1.98 −2.16

15 −1.82 −1.90 −2.07 −1.81 −1.89 −2.05 −1.81 −1.89 −2.04

25 −1.75 −1.82 −1.94 −1.75 −1.81 −1.93 −1.75 −1.81 −1.93

50 −1.69 −1.73 −1.82 −1.68 −1.73 −1.81 −1.64 −1.67 −1.73

Time Trend

5 −2.65 −2.80 −3.09 −2.62 −2.76 −3.02 −2.62 −2.75 −3.00

7 −2.58 −2.70 −2.94 −2.56 −2.67 −2.88 −2.55 −2.66 −2.67

10 −2.51 −2.62 −2.82 −2.50 −2.59 −2.77 −2.49 −2.58 −2.75

15 −2.45 −2.53 −2.69 −2.44 −2.52 −2.65 −2.44 −2.51 −2.65

25 −2.39 −2.45 −2.58 −2.38 −2.44 −2.55 −2.38 −2.44 −2.54

50 −2.33 −2.37 −2.45 −2.32 −2.36 −2.44 −2.32 −2.36 −2.44

in time-series econometrics. However, if n is too small, the calculation of t will not be
meaningful.

As mentioned in Section 6, the file PANEL.XLS contains quarterly values

of the real effective exchange rates (CPI based) for Australia, Canada, France,

Germany, Japan, the Netherlands, the United Kingdom, and the United States over

the 1980Q1–2013Q1 period. Since PPP does not allow for a deterministic time trend,

each was estimated in the form of (4.45) but without the trend. The results of the

individual Dickey–Fuller tests for the logarithmic values of the real rates are shown in

the first four columns of Table 4.8. For example, the Australian equation used five lags

of {Δyit} and the estimated value of 𝛾i was −0.049. Notice that the eight t-statistics
for the null hypothesis 𝛾i = 0 have an average value of −2.44. Since each series has a

total of 133 observations, the critical values at the 5% and 1% significance levels are

Table 4.8 The Panel Unit Root Tests for Real Exchange Rates

Lags Estimated 𝜸i t-Statistic Estimated 𝜸i t-Statistic

Log of the Real Rate Minus the Common Time Effect

Australia 5 −0.049 −1.678 −0.043 −1.434

Canada 7 −0.036 −1.896 −0.035 −1.820

France 1 −0.079 −2.999 −0.102 −3.433

Germany 1 −0.068 −2.669 −0.067 −2.669

Japan 3 −0.054 −2.277 −0.048 −2.137

The Netherlands 1 −0.110 −3.473 −0.137 −3.953

The United Kingdom 1 −0.081 −2.759 −0.069 −2.504

The United States 1 −0.037 −1.764 −0.045 −2.008
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about −2.06 and −2.28, respectively. Hence, it is possible to reject the null hypothesis
that all values of 𝛾i = 0.

One problem with the results is that the residuals from the individual equation are

contemporaneously correlated in that E𝜀it𝜀jt ≠ 0. For example, the correlation coeffi-

cient between the residuals from the French and German equations is 0.67. The expla-

nation is that the shocks that affect the French real rate are likely to affect the German

real rate. In this circumstance, a common strategy is to subtract a common time effect

from each observation. At time period t, the mean value of each series is

yt = (1∕n)
n∑
i=1

yit

The method is to subtract this common mean from each observation (i.e., form

y∗it = yit − yt) and estimate (4.45) using the values of y∗it. In the example at hand, yit is
the logarithm of real rate i at period t; hence, for each time period t, the average of these
logarithmic values was subtracted from yit. The last three columns of Table 4.8 show

the test results for the {y∗it} sequences. Notice that the lag lengths have not changed,

but the average value of the t-statistics is −2.50. As such, it is possible to reject the null
hypothesis that the real rates are not stationary.

Limitations of the Panel Unit Root Test

1. The null hypothesis for the IPS test is 𝛾i = 𝛾2 = · · · = 𝛾n = 0. Rejection of

the null hypothesis means that at least one of the 𝛾i’s differs from zero. Thus,

it is possible for only one or two values of the 𝛾i to differ from zero and still

reject the null hypothesis. Unfortunately, there is no particular way of know-

ing which of the 𝛾i are statistically different from zero. As such, the results

of a panel unit root test may be dependent on the choice of the time-series

variables included in the panel.

2. At this point, there is substantial disagreement about the asymptotic theory

underlying the test. Sample size can approach infinity by increasing n for a
given T , increasing T for a given n, or by simultaneously increasing n and T .
Unfortunately, many of the important findings about the various tests are sen-

sitive to this seemingly innocuous choice among the various assumptions. For

example, the critical values reported in Table 4.7 are invariant to augmenting

(4.45) with lagged changes for large T . However, for small T and large n, the
critical values are dependent on the magnitudes of the various 𝛽ij.

3. The test requires that the error terms from (4.45) be serially uncorrelated and

contemporaneously uncorrelated. You need to determine the values of pi to
ensure that the autocorrelations of {𝜀it} are zero. Nevertheless, the errors
may be contemporaneously correlated in that E𝜀it𝜀jt ≠ 0. If the regression

residuals are correlated across equations, the critical values in Table 4.7 are

not applicable. The example above illustrates a common technique to cor-

rect for correlation across equations. As in the example, you can subtract a

common time effect from each observation. However, there is no assurance
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that this correction will completely eliminate the correlation. Moreover, it is

quite possible that {yt} is nonstationary. Subtracting a nonstationary compo-

nent from each sequence is clearly at odds with the notion that the variables

are stationary. As an alternative, many researchers would generate their own

critical values by bootstrapping the value of t. Some of the details regarding

bootstrapping are described in Section 4.3 of the Supplementary Manual.

There are a number of other panel unit root tests in the literature. TheMaddala–Wu

(1999) test is similar to the IPS test but requires that you bootstrap your own critical

values. The Levin–Lin–Chu (2002) test has the more restrictive alternative hypothesis

𝛾1 = 𝛾2 = · · · = 𝛾n. Nevertheless, the cautions listed above are applicable to all of the

panel unit root tests. An interesting comparison of the tests can be found in the August

2001 issue of the Journal ofMoney Credit and Banking. Three different articles perform
various panel unit roots for a number of real exchange rate series.

12. TRENDS AND UNIVARIATE
DECOMPOSITIONS

The findings of Nelson and Plosser (1982) suggest that many economic time series

have a stochastic trend plus a stationary component. Having observed a series but not

the individual components, is there any way to decompose the series into its constituent

parts? Numerous economic theories suggest that it is important to distinguish between

temporary and permanent movements in a series. A sale (i.e., a temporary price decline)

is designed to induce us to purchase now rather than in the future. Labor economists

argue that “hours supplied” is more responsive to a temporary wage increase than to

a permanent increase. The idea is that workers will temporarily substitute income for

leisure time. Certainly, modern theories of the consumption function that classify an

individual’s income into permanent and transitory components highlight the impor-

tance of such as decomposition.

Any such decomposition is straightforward if it is known that the trend in {yt} is

purely deterministic. For example, a linear time trend induces a fixed change in each

and every period. This deterministic trend can be subtracted from the actual value of yt
to obtain the stationary component.

A difficult conceptual issue arises if the trend is stochastic. For example, suppose

you are asked to measure the current phase of the business cycle. If the trend in GDP is

stochastic, how is it possible to tell if GDP is above or below trend? The traditional mea-

surement of a recession by consecutive quarterly declines in real GDP is not helpful.

After all, if GDP has a deterministic trend component, a negative realization for the sta-

tionary component may be outweighed by the positive deterministic trend component.

If it is possible to decompose a sequence into its separate permanent and station-

ary components, the issue can be solved. To better understand the nature of stochastic

trends, note that—in contrast to a deterministic trend—a stochastic trend increases on
average by a fixed amount each period. For example, consider the random walk plus

drift model:

yt = yt−1 + a0 + 𝜀t
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Since E𝜀t = 0, the average change in yt is the deterministic constant a0. Of course,
in any period t, the actual change will differ from a0 by the stochastic quantity 𝜀t. Yet,
each sequential change in {yt} adds to its level regardless of whether the change results
from the deterministic or the stochastic component. As we saw in (4.5), the random

walk plus drift model has no stationary component; hence, it is a model of pure trend.

The idea that a random walk plus drift is a pure trend has proved especially use-

ful in time-series analysis. Beveridge and Nelson (1981) show how to decompose any

ARIMA(p, 1, q) model into the sum of a random walk plus drift and a stationary com-

ponent (i.e., the general trend plus irregular model). Before considering the general

case, begin with the simple example of an ARIMA(0, 1, 2) model:

yt = yt−1 + a0 + 𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 (4.47)

If 𝛽1 = 𝛽2 = 0, (4.47) is nothing more than the pure random walk plus drift model.

The introduction of the two moving average terms adds a stationary component to the

{yt} sequence. The first step in understanding the procedure of Beveridge and Nelson

(1981) is to obtain the forecast function. For now, keep the issue simple by defining et =
𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 so that we can write yt = yt−1 + a0 + et. Given an initial condition
for y0, the general solution for yt is

yt = a0t + y0 +
t∑
i=1

ei (4.48)

Updating by s periods, we obtain

yt+s = a0(t + s) + y0 +
t+s∑
i=1

ei (4.49)

Substituting (4.48) into (4.49) so as to eliminate y0 yields

yt+s = a0s + yt +
s∑
i=1

et+i (4.50)

To express the solution for yt+s in terms of {𝜀t} rather than {et}, note that
s∑
i=1

et+i =
s∑
i=1

𝜀t+i + 𝛽1

s∑
i=1

𝜀t−1+i + 𝛽2

s∑
i=1

𝜀t−2+i (4.51)

so that the solution for yt+s can be written as

yt+s = a0s + yt +
s∑
i=1

𝜀t+1 + 𝛽1

s∑
i=1

𝜀t−1+i + 𝛽2

s∑
i=1

𝜀t−2+i (4.52)

Now consider the forecast of yt+s for various values of s. Since all values ofEt𝜀t+i =
0 for i > 0, it follows that

Etyt+1 = a0 + yt + 𝛽1𝜀t + 𝛽2𝜀t−1

Etyt+2 = 2a0 + yt + (𝛽1 + 𝛽2)𝜀t + 𝛽2𝜀t−1

Etyt+s = sa0 + yt + (𝛽1 + 𝛽2)𝜀t + 𝛽2𝜀t−1 (4.53)
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Here, the forecasts for all s > 1 are equal to the expression sa0 + yt + (𝛽1 + 𝛽2)𝜀t +
𝛽2𝜀t−1. Thus, the forecast function converges to a linear function of the forecast hori-

zon s; the slope of the function equals a0 and the level equals yt + (𝛽1 + 𝛽2)𝜀t + 𝛽2𝜀t−1.
This stochastic level can be called the value of the stochastic trend at t and is denoted

by 𝜇t. This trend plus the deterministic value a0s constitutes the forecast Etyt+s. There
are several interesting points to note:

1. The trend is defined to be the conditional expectation of the limiting value of

the forecast function. In lay terms, the trend is the “long-term” forecast. This

forecast will differ at each period t as additional realizations of {𝜀t} become

available. At any period t, the stationary component of the series is the dif-

ference between yt and the trend 𝜇t. Hence, the stationary component of the

series is

yt − 𝜇t = −(𝛽1 + 𝛽2)𝜀t − 𝛽2𝜀t−1 (4.54)

At any point in time such that yt is given, the trend and the stationary compo-

nents are perfectly correlated (the correlation coefficient being −1).
2. By definition, 𝜀t is the innovation in yt, and the variance of the innovation is

𝜎2. Since the change in the trend resulting from a change in 𝜀t is 1 + 𝛽1 + 𝛽2,

the variance of the innovation in the trend can exceed the variance of yt itself.
If (1 + 𝛽1 + 𝛽2)2 > 1, the trend is more volatile than yt since the negative
correlation between 𝜇t and the stationary component act to smooth the {yt}
sequence.

3. The trend is a random walk plus drift. Since the trend at t is 𝜇t, it follows that
𝜇t = yt + (𝛽1 + 𝛽2)𝜀t + 𝛽2𝜀t−1. Hence

Δ𝜇t = Δyt + (𝛽1 + 𝛽2)Δ𝜀t + 𝛽2Δ𝜀t−1
= (yt − yt−1) + (𝛽1 + 𝛽2)𝜀t − 𝛽1𝜀t−1 − 𝛽2𝜀t−2

since yt − yt−1 = a0 + 𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2,

Δ𝜇t = a0 + (1 + 𝛽1 + 𝛽2)𝜀t

Thus, 𝜇t = 𝜇t−1 + a0 + (1 + 𝛽1 + 𝛽2)𝜀t, so that the trend at t is composed of

the drift term a0 plus the white-noise innovation (1 + 𝛽1 + 𝛽2)𝜀t.
Beveridge and Nelson show how to recover the trend and stationary components

from the data. In the example at hand, estimate the {yt} series using the Box–Jenkins

technique. After differencing the data, an appropriately identified and estimatedARMA

model will yield high-quality estimates of a0, 𝛽1, and 𝛽2. Next, obtain 𝜀t and 𝜀t−1 as

the one-step-ahead forecast errors of yt and yt−1, respectively. To obtain these values,

use the estimated ARMA model to make in-sample forecasts of each observation of

yt−1 and yt. The resulting forecast errors become 𝜀t and 𝜀t−1. Combining the estimated

values of 𝛽1, 𝛽2, 𝜀t, and 𝜀t−1 as in (4.54) yields the irregular component. Repeating for

each value of t yields the entire irregular sequence. From (4.54), this irregular compo-

nent is yt minus the value of the trend; hence, the permanent component can be obtained

directly.
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The General ARIMA(p, 𝟏,q) Model

The first difference of any ARIMA(p, 1, q) series has the stationary infinite-order mov-

ing average representation:

yt − yt−1 = a0 + 𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 + · · ·

As in the earlier example, it is useful to define et = 𝜀t + 𝛽1𝜀t−1 + 𝛽2𝜀t−2 + 𝛽3𝜀t−3 +
· · ·, so that it is possible to write the solution for yt+s in the same form as (4.50)

yt+s = yt + a0s +
s∑
i=1

et+i

The next step is to express the {et} sequence in terms of the various values of the

{𝜀t} sequence. In this general case, (4.51) becomes

s∑
i=1

et+i =
s∑
i=1

𝜀t+i + 𝛽1

s∑
i=1

𝜀t−1+i + 𝛽2

s∑
i=1

𝜀t−2+i + 𝛽3

s∑
i=1

𝜀t−3+i + · · · (4.55)

Since Et𝜀t+i = 0, it follows that the forecast function can be written as

Etyt+s = yt + a0s +

(
s∑
i=1

𝛽i

)
𝜀t +

(
s+1∑
i=2

𝛽i

)
𝜀t−1 +

(
s+2∑
i=3

𝛽i

)
𝜀t−2 + · · · (4.56)

Now, to find the stochastic trend, take the limiting value of the forecast Et(yt+s −
a0s) as s becomes infinitely large. As such, the stochastic trend is

yt +

( ∞∑
i=1

𝛽i

)
𝜀t +

( ∞∑
i=2

𝛽i

)
𝜀t−1 +

( ∞∑
i=3

𝛽i

)
𝜀t−2 + · · ·

The key to operationalizing the decomposition is to recognize that yt+s can be

written as

yt+s = Δyt+s + Δyt+s−1 + Δyt+s−2 + · · · + Δyt+1 + yt

As such, the trend can always be written as the current value of yt plus the sum

of all of the forecasted changes in the sequence. Abstracting from a0s, the stochastic
portion of the trend is

lim
s→∞

Etyt+s = lim
s→∞

Et[(yt+s − yt+s−1) + (yt+s−1 − yt+s−2) + · · · + (yt+2 − yt+1)

+(yt+1 − yt)] + yt
= lim

s→∞
Et(Δyt+s + Δyt+s−1 + · · · + Δyt+2 + Δyt+1) + yt (4.57)

The useful feature of (4.57) is that the Box–Jenkins method allows you to calcu-

late each value of EtΔyt+s. For each observation in your data set, find all s-step-ahead
forecasts and construct the sum given by (4.57). Since the irregular component is yt
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minus the sum of the deterministic and stochastic trends, the irregular component can

be constructed as

yt − lim
s→∞

(Etyt+s + a0s)

= − lim
s→∞

Et(Δyt+s +Δyt+s−1 + · · · +Δyt+2 +Δyt+1) − a0s

Thus, to use the technique of Beveridge and Nelson (1981):

STEP 1: Estimate the first difference of the series using the Box–Jenkins technique.

Select the best-fitting ARMA(p, q)model of the {Δyt} sequence.
STEP 2: Using the best-fitting ARMA model, for each time period t = 1, … T , find

the one-step-ahead, two-step-ahead, … , s-step-ahead forecasts: that is,
find EtΔyt+s for each value of t and s. For each value of t, use these fore-
casted values to construct the sums: Et[Δyt+s + Δyt+s−1 + · · · + Δyt+1] + yt.
In practice, it is necessary to find a reasonable approximation to (4.57); in

their own work, Beveridge and Nelson let s = 100. For example, for the first

usable observation (i.e., t = 1), find the sum:

𝜇1 = E1(Δy101 + Δy100 + · · · + Δy2) + y1

The value of y1 plus the sum of these forecasted changes equals E1y101; the
stochastic portion of trend in period 1 is E1y101 − a0s and the deterministic

portion is a0s. Similarly, for t = 2, construct

𝜇2 = E2(Δy102 + Δy101 + · · · + Δy3) + y2

If there are T observations in your data set, the trend component for the last

period is

𝜇T = ET (ΔyT+100 + ΔyT+99 + · · · + ΔyT+1) + yT

The entire sequence of constructed trends (i.e., 𝜇1, 𝜇2, … , 𝜇T ) constitutes

the {𝜇t} sequence.
STEP 3: Form the irregular component at t by subtracting the stochastic portion of

the trend at t from the value of yt. Thus, for each observation t, the irregular
component is −Et(Δyt+100 + Δyt+99 + · · · + Δyt+1).

Note that, for many series, the value of s can be quite small. For

example, in the ARIMA(0, 1, 2) model of (4.47), the value of s can be set
equal to 2 since all forecasts for s > 2 are equal to zero. If the ARMAmodel

that is estimated in Step 1 has slowly decaying autoregressive components,

the value of s should be large enough that the s-step-ahead forecasts

converge to the deterministic change a0.

Two Examples: The file PANEL.XLS contains quarterly values of the real British

pound estimated by the ARIMA(0, 1, 1) process:

Δyt = −0.0004 + 𝜀t + 0.386𝜀t−1
(−0.11) (4.75)

where Δyt is the logarithmic change in the real British pound.
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Although it is often desirable to maintain an insignificant intercept term in a regres-

sion, in this case, it is clearly undesirable since it imparts a deterministic trend into the

real exchange rate. As such, reestimate the model without the intercept to obtain

Δyt = 𝜀t + 0.386𝜀t−1

Step 2 requires that, for each observation, we form the one-step-ahead through

s-step-ahead forecasts. For this model, the mechanics are trivial since, for each period t,
the one-step-ahead forecast is

EtΔyt+1 = 0.386𝜀t

and all other s-step-ahead forecasts are zero.

Thus, for each observation t, the summation Et(Δyt+100 + Δyt+99 + · · · + Δyt+1) is
equal to 0.386𝜀t. As such, for 1980Q2 (the first usable observation in the sample), the

stochastic portion of the trend is y1980Q2 + 0.386𝜀1980Q2 and the temporary portion of

y1980Q2 is −0.386𝜀1980Q2. Repeating for each point in the data set yields the irregular

and permanent components of the sequence. The estimated ARIMA(0, 1, 1) model is

the special case of (4.47) in which a0 and 𝛽2 are set equal to zero. As such, you should
be able to write the equivalent of (4.48) through (4.54) for the real pound.

We have verified that the real U.S. GDP is the unit root process

Δlrgdpt = 0.0078 + 0.3706Δlrgdpt−1
Now, it is more difficult to calculate the sum of the forecasted changes.

Nevertheless, it is worthwhile to illustrate the process for the first few values. In

1947Q2, the value of lrgdpt was 7.4776 and the value of Δlrgdpt was –0.00153.

Since we are not interested in the deterministic portion of the trend, condi-

tional on the information available in 1947Q2 the one-step-ahead forecast for

1947Q3 is −5.670 × 10−4 = (0.3706)(−0.00153) and the two-step-ahead forecast

is −2.101 × 10−4 = (0.3706)(−5.670 × 10−4). The forecasts quickly converge to

zero after a few periods. Adding up all such forecasted changes, you should obtain

–0.0009. Thus, abstracting from the deterministic portion of the trend, the log of real

GDP is forecasted to change by –0.0009 in the very long run. Adding this sum to

lrgdp1947Q2 yields the stochastic component as 7.4476 − 0.0009 = 7.4467. If you take

the antilogs, you find the actual level of real GDP in 1947Q2 to be $1768 billion and

the permanent component to be $1714 billion.

Repeating this process for all observations in the data set yields the time path of the

trend component of real GDP. If you were to plot the trend along with the actual values,

you would find that the two series virtually overlap. Since the autoregressive coefficient

is so small, virtually all of the movements in the real GDP series are permanent. The

cyclical component is plotted in Panel (a) of Figure 4.11. Note that the series seems

to be jagged than what is normally deemed to be the business cycle. Nevertheless, the

decomposed series does well in the early and late 1970s and during the financial crisis.

The Hodrick–Prescott Decomposition

Another method of decomposing a series into a trend and a stationary component

has been developed by Hodrick and Prescott (1997). Suppose you observe the val-

ues y1 through yT and want to decompose the series into a trend {𝜇t} and a stationary
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component yt − 𝜇t. Consider the sum of squares

1

T

T∑
t=1

(yt − 𝜇t)2 +
𝜆

T

T−1∑
t=2

[(𝜇t+1 − 𝜇t) − (𝜇t − 𝜇t−1)]2

where 𝜆 is a constant and T is the number of usable observations.

The problem is to select the {𝜇t} sequence so as to minimize this sum of squares.

In the minimization problem, 𝜆 is an arbitrary constant reflecting the “cost” or penalty

of incorporating fluctuations into the trend. In applications with quarterly data, includ-

ing Hodrick and Prescott (1984) and Farmer (1993), 𝜆 is usually set equal to 1,600.

Increasing the value of 𝜆 acts to “smooth out” the trend. If 𝜆 = 0, the sum of squares is

minimized when yt = 𝜇t; the trend is equal to yt itself. As 𝜆 → ∞, the sum of squares is

minimized when (𝜇t+1 − 𝜇t) = (𝜇t − 𝜇t−1). As such, as 𝜆 → ∞, the change in the trend

is constant; the result is that there is a linear time trend. Intuitively, for large values

of 𝜆, the Hodrick–Prescott (HP) decomposition forces the change in the trend (i.e.,

Δ𝜇t+1 − Δ𝜇t) to be as small as possible. This occurs when the trend is linear.

The benefit of the Hodrick–Prescott decomposition is that it uses the same method

to extract the trend from a set of variables. For example, many real business cycle mod-

els indicate that all variables will have the same stochastic trend. A Beveridge–Nelson

decomposition separately applied to each variable will not yield the same trend for

each. Panel (b) of Figure 4.11 shows the relatively smooth cycle for the GDP series

obtained from the HP filter. There is a problem in that the decomposition indicates

that the economy was operating above trend in 2011 and 2012. Figure 4.12 shows the

HP filter applied to real U.S. GDP, consumption, and investment. You can see that

the smoothed lines (representing the trends extracted by the HP decomposition) are

such that the permanent components of each series account for the majority of the

variation. However, a word of warning is in order. Since the HP filter is a function

that smoothes the trend, it has been shown to introduce spurious fluctuations into the
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FIGURE 4.11 Two Decompositions of GDP
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irregular component of a series. The filter forces the stochastic trend to be a smoothed

version of (𝜇t+1 − 𝜇t) − (𝜇t − 𝜇t−1). As such, the filter works best if the {yt} series is

I(2), so that smoothing the second difference of the stochastic trend is appropriate.

Note that other types of decompositions are possible. Section 4.5 of the Supple-
mentary Manual examines an unobserved components decomposition of GDP into a

trend and cycle.

13. SUMMARY AND CONCLUSIONS

The trend in a series can contain both stochastic and deterministic components. Dif-

ferencing can remove a stochastic trend, and detrending can eliminate a deterministic

trend. However, it is inappropriate to difference a trend-stationary series and to detrend

a series containing a stochastic trend. The resultant irregular component of the series

can be estimated using Box–Jenkins techniques.

In contrast to traditional theory, the consensus view is that most macroeconomic

time series contain a stochastic trend. In finite samples, the correlogram of a unit root

process will decay slowly. As such, a slowly decaying ACF can be indicative of a unit

root or a near unit root process. The issue is especially important since many economic

time series appear to have a nonstationary component. When you encounter such a

time series, do you detrend, do you first difference, or do you do nothing since the

series might be stationary?

Adherents of the Box–Jenkins methodology recommend differencing a nonsta-

tionary variable or a variable with a near unit root. For very short-term forecasts, the

form of the trend is nonessential. Differencing also reveals the pattern of the other

autoregressive and moving average coefficients. However, as the forecast horizon
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expands, the precise form of the trend becomes increasingly important. Stationarity

implies the absence of a trend and long-run mean reversion. A deterministic trend

implies steady increases (or decreases) into the infinite future. Forecasts of a series

with a stochastic trend converge to a steady level. As illustrated by the distinction

between real business cycles and the more traditional formulations, the nature of the

trend may have important theoretical implications.

The usual t-statistics and F-statistics are not applicable to determine whether or

not a sequence has a unit root. Dickey and Fuller (1979, 1981) provide the appropriate

test statistics to determine whether a series contains a unit root, a unit root plus drift,

and/or a unit root plus drift plus a time trend. The tests can also be modified to account

for seasonal unit roots. Structural breaks will bias the Dickey–Fuller test toward the

nonrejection of a unit root. Perron (1989) shows how it is possible to incorporate a

known structural change into the tests for unit roots. Caution needs to be exercised

because it is always possible to argue that structural change has occurred; each year

has something different about it than the previous year.

All the aforementioned tests have very low power to distinguish between a unit root

and a near unit root process. A trend stationary process can be arbitrarily well approx-

imated by a unit root process, and a unit root process can be arbitrarily well approx-

imated by a trend-stationary process. Moreover, the testing procedure is confounded

by the presence of the deterministic regressors (i.e., the intercept and the deterministic

trend). The testing regression is misspecified if it omits any of the deterministic regres-

sors in the data-generating process. However, too many regressors reduce the power of

the tests. DF-GLS detrendingmethods generally have much better power than the tradi-

tional Dickey–Fuller tests. If a reasonable number of similar series are available (such

as the real exchange rates from a number of countries), panel unit root tests can be used.

The fact that macroeconomic variables are not mean reverting makes it difficult to

calculate the trend and cyclical components of GDP and its subcomponents. After all,

traditional detrending yields nothing like a stationary cyclical component when a series

contains a stochastic trend. Several methods have been devised to decompose real GDP

into its permanent and temporary components. The method by Beveridge and Nelson

(1981) indicates that innovations in the stochastic trend account for a sizable proportion

of the period-to-period movements. However, the Beveridge–Nelson decomposition

is not unique in that it forces the correlation coefficient between innovations in the

trend and irregular components to have a correlation coefficient of −1. In contrast, the
Hodrick–Prescott filter smoothes the trend component of a series. In Chapter 5, you

will be shown a multivariate technique that allows for a unique decomposition of a

series into its temporary and permanent components.

QUESTIONSANDEXERCISES
1. Given an initial condition for y0, find the solution for yt. Also find the s-step-ahead forecast

Etyt+s.

a. yt = yt−1 + 𝜀t + 0.5𝜀t−1
b. yt = 1.1yt−1 + 𝜀t
c. yt = yt−1 + 1 + 𝜀t
d. yt = yt−1 + t + 𝜀t
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e. yt = 𝜇t + 𝜂t + 0.5𝜂t−1, where 𝜇t = 𝜇t−1 + 𝜀t
f. yt = 𝜇t + 𝜂t + 0.5𝜂t−1, where 𝜇t = 0.5 + 𝜇t−1 + 𝜀t
g. Can you make the models of parts b and d stationary?

h. Does model e have an ARIMA(p, 1, q) representation?
2. Given the initial condition y0, find the general solution and the forecast function (i.e., Etyt+s)

for the following variants of the trend plus irregular model:

a. yt = 𝜇t + vt, where ut = ut−1 + 𝜀t, vt = (1 + 𝛽1L)𝜂t, and E𝜀t𝜂t = 0

b. yt = 𝜇t + vt, where ut = ut−1 + 𝜀t, vt = (1 + 𝛽1L)𝜂t and the correlation between 𝜀t and 𝜂t
equals unity

c. Find the ARIMA representation of each model.

3. As indicated in the text, the ACF of a series with a unit root shows little tendency to decay.

Nevertheless, it may difficult to detect a unit root in a series with a negative moving average.

Consider the unit root process yt = yt−1 + 𝜀t − 0.8𝜀t−1.

a. Iterate backward from yt to solve for yt in terms of the {𝜀t} series and the initial condition
y0.

b. Use the method of undetermined coefficients to yt in terms of the {𝜀t} series and the

initial condition y0. [Hint: The solution has the form: yt =
t−1∑
i=0

𝛼i𝜀t−i + y0]

c. Use your answer to part a or b to derive the first few terms of the ACF.

d. Explain how the negative MA term affects the shape of the ACF. In particular, explain

how the series is “infinitely persistent” even though the coefficients of the ACF are far

below unity.

4. Use the data sets that come with this text to perform the following:

a. The file PANEL.XLS contains the real exchange rates used to generate the results

reported in Table 4.8. Verify the lag lengths, the values of 𝛾 , and the t-statistics reported
in the left-hand side of the table.

b. Does the ERS test confirm the results you found in part a?

c. The file ERSTEST.XLS contains the data used in Section 10. Reproduce the results

reported in the text.

d. The file QUARTERLY.XLS contains the M1NSA series used to illustrate the test for

seasonal unit roots. Make the appropriate data transformations and verify the results

concerning seasonal unit roots presented in Section 7.

5. The second column in the file BREAK.XLS contains the simulated data used in Section 8.

a. Plot the data to see if you can recognize the effects of the structural break.
b. Verify the results reported in Section 8.
c. The third column in the file BREAK.XLS contains another simulated data series called

{y2t}with a structural break at t = 51. Plot the series and compare your graph to those of

Figures 4.10 and 4.11.

d. Obtain the ACF and PACF of the {y2t} sequence and first difference of the sequence. Do
the data appear to be difference stationary?

e. If you perform a Dickey–Fuller test including a constant and a trend, you should obtain

y2t = 0.072 − 1.1014∗10−4t − 0.022y2t−1
(1.01) (−0.05) (−0.66)

In addition to the fact that all t-statistics are small, in what other ways is this regression

inadequate? What diagnostic checks would you want to perform?

f. Estimate the equation: y2t = a0 + a2t + 𝜇2DL and save the residuals. Perform a

Dickey–Fuller test on the saved residuals. Perform the appropriate diagnostic tests
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on this regression to ensure that the residuals approximate white noise. You should

conclude that the series is a unit root process with a one-time pulse at t = 51.

g. Reestimate the model without the insignificant time trend. How is your answer affected?

6. The file RGDP.XLS contains the real GDP data that were used to estimate (4.29).

a. Use the series to replicate the results in Section 8.

b. It is often argued that the oil price shock in 1973 reduced the trend growth rate of real

U.S. GDP. Perform the Perron test to determine whether the series is trend stationary

with a break occurring in mid-1973.

c. Decompose the real GDP series into the temporary and permanent components using

the HP filter and the Beveridge–Nelson decomposition. Plot the transitory component

that you obtain from the HP filter and the one you obtain from the Beveridge–Nelson

decomposition. In what ways are the two series different?

d. Suppose that real GDP is trend stationary with a break occurring in mid-1973. Let the

deviations from trend constitute the transitory component of the series. How does this

transitory component compare with your answers found in part c?

7. The file PANEL.XLS contains the real exchange rate series used to perform the panel unit

root tests reported in Section 11.

a. Replicate the results of Section 11.

b. In what way do the results of the test change if Australia, France, Germany, and the

United States are excluded from the panel? Why is it inappropriate to include or include

countries based on their t-statistics?
c. Suppose that you mistakenly included a time trend in the augmented Dickey–Fuller

tests. Determine how the results reported in Section 11 change.

8. The file QUARTERLY.XLS contains the U.S. interest rate data used in Section 10 of

Chapter 2. Form the spread, st, by subtracting the t-bill rate from the 5-year rate. Recall that

the spread appeared to be quite persistent in that 𝜌1 = 0.86 and 𝜌2 = 0.68.

a. One difficulty in performing a unit root test is to select the proper lag length. Using a

maximum of 12 lags, estimate models of the form Δst = a0 + 𝛾st−1 + Σ𝛽iΔst−i. Use the
AIC, BIC, and general-to-specific (GTS) methods to select the appropriate lag length.

You should find that the AIC, SBC, and GTS methods select lag lengths of 9, l, and 8,

respectively. In this case, does the lag length matter for the Dickey–Fuller test?

b. Use a lag length of 8 and perform an augmented Dickey−Fuller test of the spread. You
should find

Δst = 0.255 − 0.211st−1 + Σ𝛽iΔst−i
(3.78) (−4.37)

Is the spread stationary?

c. Perform an augmented Dickey−Fuller test of the 5-year rate using seven lags. Is the
5-year rate stationary?

d. Perform an augmented Dickey−Fuller test of the t-bill rate using 11 lags. Is the t-bill rate
stationary?

e. How is it possible that the individual rates act as I(1) processes whereas the spread acts
as a stationary process?

9. The file QUARTERLY.XLS contains the index of industrial production, the money supply

as measured by M1, and the unemployment rate over the 1960Q1–2012Q4 period.

a. Show that the results using this data set verify the finding of Dickey and Fuller (1981)

that industrial production (INDPROD) is I(1). Use the log of INDPROD and select the

lag length using the general-to-specific method.
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b. Perform an augmented Dickey–Fuller test on the unemployment rate (UNEMP). If you

use eight lagged changes you will find

Δunempt = 0.181 − 0.029unempt−1 + Σ𝛽iΔunempt−i
(2.30) (−2.25)

Note that the t-statistic on 𝛽8 is −2.65.
c. Now estimate the unemployment rate using only 1-lagged change. You should find

Δunempt = 0.226 − 0.037unempt−1 + 0.683Δunempt−i
(3.36) (−3.43) (13.36)

The residuals show only mild evidence of serial correlation. Consider

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8
0.01 −0.01 0.08 −0.10 −0.10 0.11 0.14 −0.17

What do you conclude about the stationarity of the unemployment rate?

d. Regress INDPROD on M1NSA. You should obtain

INDPRODt = 30.48 + 0.04M1NSAt

(29.90) (36.58)

Examine the ACF of the residuals. Also create a scatter plot of INDPRODt against

M1NSAt. How do you interpret the fact that R2 = 0.98 and that the t-statistic on the
money supply is 36.58?

10. Use the data in the file QUARTERLY.XLS to perform the following:

a. Perform the DF-GLS test using 1 lagged change of the log of INDPROD. You should

find that the coefficient on 𝛾 is −2.04. (Be sure to include a time trend.)

b. Perform the DF-GLS test using eight lags of the change in UNEMP. You should find that

the coefficient on 𝛾 is −1.83.
c. The SBC indicates that only one lagged change of UNEMP is appropriate. Now perform

the DF-GLS test using 1-lagged change of UNEMP. In what important sense is your

answer quite different from that found in part b?

11. Chapter 6 of the Programming Manual analyzes the real GDP data in the file QUAR-

TERLY(2012).XLS. Unlike the real GDP data used in the text, the date in this file begin in

1960Q1. Perform parts a through e below using this shorter data set.

a. Form the log of real GDP as lyt = log(RGDP). Detrend the data with a linear time trend

and form the autocorrelations.

b. Perform an augmented Dickey–Fuller test to determine whether the series is stationary.

You should find that the sample value of the 𝜏𝜏 statistic is −2.16. Interpret the finding that
the 𝜙3-statistic is 6.34.

c. Verify the result the difference between potential and real GDP is stationary.

d. Perform the DF-GLS test on the real and the potential GDP series.

e. Compare the trends obtained from the HP filter and the Beveridge–Nelson decomposi-

tion to the values of potential GDP.

f. The Programming Manual applies the tests by Zivot and Andrews (1992) and Lee
and Strazicich (2003) to the lyt = log(RGDP) series using data beginning in 1960Q1.
Perform the test on the longer series contained in the file REAL.XLS.
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CHAPTER5
MULTIEQUATION TIME-SERIES
MODELS

Learning Objectives
1. Introduce intervention analysis and transfer function analysis.

2. Show that transfer function analysis can be a very effective tool for

forecasting and hypothesis testing when it is known that there is no feedback

from the dependent to the so-called independent variable.

3. Use data involving terrorism and tourism in Italy to explain the appropriate

way to estimate an autoregressive distributed lag (ADL).

4. Explain why the major limitation of transfer function and ADL models is

that many economic systems do exhibit feedback.

5. Introduce the concept of a vector autoregression (VAR).

6. Show how to estimate a VAR. Explain why a structural VAR is not identified

from a VAR in standard form.

7. Show how to obtain impulse response and variance decompositions.

8. Explain how to test for lag lengths, Granger causality, and exogeneity in a

VAR.

9. Illustrate the process of estimating a VAR and for obtaining the impulse

responses using transnational and domestic terrorism data.

10. Develop two new techniques, structural VARs and multivariate decomposi-

tions, which blend economic theory and multiple time-series analysis.

11. Illustrate several types of restrictions that can be used to identify a structural

VAR.

12. Show how to test overidentifying restrictions. The method is illustrated

using both macroeconomic and agricultural data.

13. Explain how the Blanchard–Quah restriction of long-run neutrality can be

used to identify a VAR.

14. The Blanchard–Quah decomposition is illustrated using real and nominal

exchange rates.

As we have seen in previous chapters, you can capture many interesting dynamic

relationships using single equation time-series methods. In the recent past, many

259
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time-series texts would end with nothing more than a brief discussion of multiequation

models. Yet, one of the most fertile areas of contemporary time-series research

concerns multiequation models.

An interesting example concerns the relationship between domestic and transna-

tional terrorism. Although the events of September 11, 2001, brought terrorism to the

world’s attention, the international community experienced a sharp increase in transna-

tional terrorism beginning in the late 1960s. Terrorists engage in a wide variety of oper-

ations, including assassinations, armed attacks, bombings, kidnappings, and skyjack-

ings. Such incidents are particularly heinous because they are often directed at innocent

victims who are not part of the decision-making apparatus that the terrorists seek to

influence. Figure 5.1 shows the quarterly totals of the number of domestic and transna-

tional terrorist incidents with at least one casualty that have occurred since 1970Q1
(excluding events in Iraq and Afghanistan). In a domestic incident, the nationalities of

the victims and perpetrators are the same as the scene of the incident. Although the num-

ber of domestic incidents far exceeds the number of transnational incidents, it appears

that the two series bear a resemblance to each other. Both series seem to rise through-

out the 1970s and decline around the time of the demise of the Soviet Union. Unlike

univariate analysis, multivariate techniques allow us to formally analyze the interrela-

tionships between the two series. You can examine the two series by opening the file

TERRORISM.XLS.

Panel (a): Domestic Incidents
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FIGURE 5.1 Domestic and Transnational Terrorism
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1. INTERVENTION ANALYSIS

The skyjackings on September 2011 and the skyjacking of Pan Am flight 103 over

Lockerbie, Scotland, on December 21, 1988, captured the attention of the international

community. However, skyjacking incidents have actually been quite numerous. The

United States launched a critical response to the rise in skyjackings when it began to

install metal detectors in all U.S. airports in January 1973. Other international author-

ities soon followed suit.

The quarterly totals of all transnational and U.S. domestic skyjackings are shown

in Figure 5.2. Although the number of skyjacking incidents appears to take a sizable and

permanent decline at this date, we might be interested in actually measuring the effects

of installing themetal detectors. If {yt} represents the quarterly total of skyjackings, one
might try to take the mean value of {yt} for all t < 1973Q1 and compare it to the mean

value of {yt} for all t ≥ 1973Q1. However, such a test is poorly designed because suc-
cessive values of yt are serially correlated. As such, some of the effects of the premetal

detector regime could “carry over” to the postintervention date. For example, some

planned skyjacking incidents already in the pipeline might not be deterred as readily

as others.

Intervention analysis allows for a formal test of a change in the mean of a time

series. Consider the model used in Enders, Sandler, and Cauley (1990) to study the

impact of metal detector technology on the number of skyjacking incidents:

yt = a0 + a1yt−1 + c0zt + 𝜀t, |a1| < 1 (5.1)
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FIGURE 5.2 Skyjackings
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where zt is the intervention (or dummy) variable that takes on the value of zero prior to

1973Q1 and unity beginning in 1973Q1 and where 𝜀t is a white-noise disturbance. In

terms of the notation in Chapter 4, zt is the level shift dummy variable DL.

To explain the nature of the model, notice that, for t < 1973Q1, the value zt
is zero. As such, the intercept term is a0 and the long-run mean of the series is

a0∕(1 − a1). Beginning in 1973, the intercept term jumps to a0 + c0 (since z1973Q1
jumps to unity). Thus, the initial or impact effect of the metal detectors is given by the

magnitude of c0. The statistical significance of c0 can be tested using a standard t-test.
We would conclude that metal detectors reduced the number of skyjacking incidents

if c0 is negative and statistically different from zero.

The long-run effect of the intervention is given by c0∕(1 − a1), which is equal

to the new long-run mean (a0 + c0)∕(1 − a1) minus the value of the original mean

a0∕(1 − a1). The various transitional effects can be obtained from the impulse response

function. Using lag operators, rewrite (5.1) as

(1 − a1L)yt = a0 + c0zt + 𝜀t

so that

yt = a0∕(1 − a1) + c0

∞∑
i=0

ai
1
zt−i+

∞∑
i=0

ai
1
𝜀t−i (5.2)

Equation (5.2) yields the impulse response function; the interesting twist added by

the intervention variable is that we can obtain the responses of the {yt} sequence to the
intervention. To trace out the effects of metal detectors on skyjackings, suppose that

t = 1973Q1 (so that t + 1 = 1973Q2, t + 2 = 1973Q3, etc.). For time period t, the
impact of zt on yt is given by the magnitude of the coefficient c0. The simplest way

to derive the remaining impulse responses is to recognize that (i) 𝜕yt∕𝜕zt– i = 𝜕yt+i∕𝜕zt
and (ii) zt+i = zt = 1 for all i > 0.

Hence, partially differentiate (5.2) with respect to zt−1 and update by one period

so that

𝜕yt+1∕𝜕zt = c0 + c0a1

The presence of the term c0 reflects the direct impact of zt+1 on yt+1, and the second
term c0a1 reflects the effect of zt on yt (= c0)multiplied by the effect of yt on yt+1(= a1).
Continuing in this fashion, we can trace out the entire impulse response function as

𝜕yt+j∕𝜕zt = c0[1 + a1 + · · · + (a1)j]

since zt+1 = zt+2 = … = 1.

Taking limits as j→ ∞, we can reaffirm that the long-run impact is given by

c0∕(1 − a1). If it is assumed that 0 < a1 < 1, the absolute value of the magnitude of

the impacts is an increasing function of j. As we move further away from the date on

which the policy was introduced, the absolute value of the magnitude of the policy

response becomes greater. If −1 < a1 < 0, the policy has a damped oscillating effect

on the {yt} sequence. After the initial jump of c0, the successive values of {yt} oscillate
toward the long-run level of c0∕(1 − a1).
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There are several important extensions to the intervention example provided here.

Of course, the model need not be a first-order autoregressive process. A more general

ARMA(p, q) intervention model has the form

yt = a0 + A(L)yt−1 + c0zt + B(L)𝜀t

where A(L) and B(L) are polynomials in the lag operator L.
Also, the intervention need not be the pure jump illustrated in Panel (a) of

Figure 5.3. In our study, the value of the intervention sequence jumps from zero

to unity in 1973Q1. However, there are several other possible ways to model the

intervention function:

1. Pulse function. As shown in Panel (b) of the figure, the function zt is zero
for all periods, except in one particular period in which zt is unity. This pulse
function best characterizes a purely temporary intervention. Of course, the

effects of the single impulse may last many periods due to the autoregressive

nature of the {yt} series.
2. Gradually changing function. An intervention may not reach its full force

immediately. Although the United States began installing metal detectors

in airports in January 1973, it took almost a full year for installations to be

completed at some major international airports. Our intervention study of the

impact of metal detectors on quarterly skyjackings also modeled the zt series
as 1∕4 in 1973Q1, 1∕2 in 1973Q2, 3∕4 in 1973Q3, and 1.0 in 1973Q4 and all
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FIGURE 5.3 Typical Intervention Functions
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subsequent periods. This type of intervention function is shown in Panel (c)

of the figure.

3. Prolonged impulse function. Rather than a single pulse, the intervention may

remain in place for one or more periods and then begin to decay. For a short

time, sky marshals were put on many U.S. flights to deter skyjackings. Since

the sky marshal program was allowed to terminate, the {zt} sequence for sky
marshals might be represented by the decaying function shown in Panel (d) of

Figure 5.3.

Be aware that the effects of these interventions change if {yt} has a unit root. From
the discussion of Perron (1989) in Chapter 4, you should recall that a pulse intervention

will have a permanent effect on the level of a unit root process. Similarly, if {yt} has a
unit root, a pure jump intervention will act as a drift term. As indicated in Question 1

at the end of this chapter, an intervention will have a temporary effect on a unit root

process if all values of {zt} sum to zero (e.g., zt = 1, zt+1 = −0.5, zt+2 = −0.5, and all

other values of the intervention variable equal zero).

Also be aware that the intervention may affect the variable of interest with a delay.

Suppose that it takes d periods for zt to begin to have any effect on the series of interest.
It is possible to capture this behavior with a model of the form

yt = a0 + A(L)yt−1 + c0zt−d + B(L)𝜀t
Often, the shape of the intervention function and the delay factor d are clear from

a priori reasoning. When there is an ambiguity, estimate the plausible alternatives and

then use the standard Box–Jenkins model selection criteria to choose the most appro-

priate model. The following two examples illustrate the general estimation procedure.

Estimating the Effect of Metal Detectors
on Skyjackings

The linear form of the intervention model yt = a0 + A(L)yt−1 + c0zt + B(L)𝜀t assumes

that the coefficients are invariant to the intervention. A useful check of this assumption

is to pretest the data by estimating the most appropriate ARIMA(p, d, q) models for

both the pre- and postintervention periods. If the two ARIMA models are quite differ-

ent, it is likely that the autoregressive and moving average coefficients have changed.

Usually, there are not enough pre- and postintervention observations to estimate two

separate models. In such instances, the researcher must be content to proceed using the

best-fitting ARIMA model over the longest data span. The procedure described below

is typical of most intervention studies.

STEP 1: Use the longest data span (i.e., either the pre- or the postintervention obser-
vations) to find a plausible set of ARIMAmodels.

You should be careful to ensure that the {yt} sequence is stationary. If
you suspect nonstationarity, you can perform unit root tests on the longest

span of data. Alternatively, you can use the Perron (1989) test for structural
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change discussed in Chapter 4. In the presence of d unit roots, estimate the

intervention model using the dth difference of yt (i.e., Δdyt).
In our study, we were interested in the effects of metal detectors on U.S.

domestic skyjackings, transnational skyjackings (including those involv-

ing the United States), and all other skyjackings. Call each of these time

series {DSt}, {TSt}, and {OSt}, respectively. Since there are only 5 years
of data (i.e., 20 observations) for the preintervention period, we estimated

the best-fitting ARIMA model over the 1973Q1–1988Q4 period. Using the
various criteria discussed in Chapter 2 (including diagnostic checks of the

residuals), we selected an AR(1) model for the {TSt} and {OSt} sequences
and a pure noise model (i.e., all autoregressive and moving average coeffi-

cients equal to zero) for the {DSt} sequence.
STEP 2: Estimate the various models over the entire sample period, including the

effect of the intervention.

The installation of metal detectors was tentatively viewed as an imme-

diate and permanent intervention. As such, we set zt = 0 for t < 1973Q1 and
zt = 1 beginning in 1973Q1. The results of the estimations over the entire

sample period are reported in Table 5.1. As you can see, the installation of

metal detectors reduced each of the three types of skyjacking incidents. The

most pronounced effect was that U.S. domestic skyjackings immediately fell

by more than 5.6 incidents per quarter. All effects are immediate because

the estimate of a1 is zero. The situation is somewhat different for the {TSt}
and {OSt} sequences because the estimated autoregressive coefficients are

different from zero. On impact, transnational skyjackings and other types

of skyjacking incidents fell by 1.29 and 3.9 incidents per quarter, respec-

tively. The long-run effects on {TSt} and {OSt} are estimated to be −1.78
and −5.11 incidents per quarter, respectively.

STEP 3: Perform diagnostic checks of the estimated equations.

Table 5.1 Metal Detectors and Skyjackings

Pre-Intervention
Mean a1

Impact
Effect (c0)

Long-Run
Effect

Transnational {TSt} 3.032 0.276 −1.29 −1.78

(5.96) (2.51) (−2.21)
US domestic {DSt} 6.70 −5.62 −5.62

(12.02) (−8.73)
Other skyjackings {OSt} 6.80 0.237 −3.90 −5.11

(7.93) (2.14) (−3.95)

Notes:

1t-Statistics are in parentheses.

2The long-run effect is calculated as c0∕(1 − a1).
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Diagnostic checking in Step 3 is particularly important since we have merged the

observations from the pre- and postintervention periods. To reiterate the discussion of

ARIMA models, a well-estimated intervention model will have the following charac-

teristics:

1. The estimated coefficients should be of “high quality.” All coefficients should

be statistically significant at conventional levels. As in all ARIMA modeling,

we wish to use a parsimonious model. If any coefficient is not significant, an

alternative model should be considered. Moreover, the autoregressive coeffi-

cients should imply that the {yt} sequence is convergent.
2. The residuals should approximate white noise. If the residuals are serially

correlated, the estimated model does not mimic the actual data-generating

process. Forecasts from the estimated model cannot possibly make use of

all available information. If the residuals do not approximate a normal dis-

tribution, the usual tests of statistical inference are not appropriate in small

samples. If the errors appear to be ARCH, the entire intervention model can

be reestimated as an ARCH process.

3. The tentative model should outperform plausible alternatives. Of course,

no one model can be expected to dominate all others in all possible criteria.

However, it is good practice to compare the results of the maintained model

to those of reasonable rivals. In the skyjacking example, a plausible alterna-

tive was to model the intervention as a gradually increasing process. This is

particularly true because the impact effect was immediate for U.S. domestic

flights and convergent for transnational and other domestic flights. Our con-

jecture was that metal detectors were gradually installed in non-U.S. airports

and, even when installed, the enforcement was sporadic. As a check, we mod-

eled the intervention as gradually increasing over the year 1973. Although the

coefficients were nearly identical to those reported in Table 5.1 for the TSt
and OSt series, the AIC and SBC were slightly lower (indicating a better fit)

using the gradually increasing process. Hence, it is reasonable to conclude

that metal detector adoption was more gradual outside of the United States.

Estimating the Effect of the Libyan Bombing

We also considered the effects of the U.S. bombing of Libya on the morning of April

15, 1986. The stated reason for the attack was Libya’s alleged involvement in the ter-

rorist bombing of the La Belle Discotheque in West Berlin. Since 18 of the F-111

fighter-bombers were deployed from British bases at Lakenheath and Upper Heyford,

England, the United Kingdom implicitly assisted in the raid. The remaining U.S. planes

were deployed from aircraft carriers in the Mediterranean Sea. Now, let yt denote
all transnational terrorist incidents directed against the United States and the United

Kingdom during month t. A plot of the {yt} sequence exhibits a large positive spike

immediately after the bombing; the immediate effect seemed to be a wave of anti-U.S.

and anti-U.K. attacks to protest the retaliatory strike. You can see this spike in each of
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the two series shown in Figure 5.1. The spikes would be even more pronounced if only

attacks against the United States and United Kingdom were shown.

Preliminary estimates of the monthly data from January 1968 to March 1986 indi-

cated that the {yt} sequence could be estimated as a purely autoregressive model with

significant coefficients at lags 1 and 5. We were surprised by a significant coefficient

at lag 5, but the AIC and SBC both indicated that the fifth lag is important. Neverthe-

less, we estimated versions of the model with and without the fifth lag. In addition,

we considered two possible patterns for the intervention series. For the first, {zt} was

modeled as 0 until April 1986 and 1 in all subsequent periods. Using this specification,

we obtained the following estimates (with t-statistics in parentheses):

yt = 5.58 + 0.336yt−1 + 0.123yt−5 + 2.65zt
(5.56) (3.26) (0.84)

AIC = 1656.3 SBC = 1669.95

Note that the coefficient of zt has a t-statistic of 0.84 (which is not significant at the
0.05 level). Alternatively, when zt was allowed to be 1 only in the month of the attack,

we obtained

yt = 3.79 + 0.327yt−1 + 0.157yt−5 + 38.9zt
(5.53) (2.59) (6.09)

AIC = 1608.68 SBC = 1626.06

In comparing the two estimates, it is clear that magnitudes of the autoregressive

coefficients are similar. Although Q-tests indicated that the residuals from both mod-

els approximate white noise, the second model is preferable. The coefficient on the

pulse term is highly significant, and the AIC and SBC both select the second specifi-

cation. Our conclusion was that the Libyan bombing did not have the desired effect of

reducing terrorist attacks against the United States and the United Kingdom. Instead,

the bombing caused an immediate increase of more than 38 attacks. Subsequently, the

number of attacks declined; 0.327 of these attacks are estimated to have persisted for

one period (0.327 ⋅ 38.9 = 12.7). Since the autoregressive coefficients imply conver-

gence, the long-run consequences of the raid were estimated to be zero.

You can practice estimating an intervention model with the terrorism data shown

in Figure 5.1. Question 2 at the end of this chapter will guide you through the process.

2. ADLs AND TRANSFER FUNCTIONS

A natural extension of the intervention model is to allow the {zt} sequence to be some-

thing other than a deterministic dummy variable. Consider the following generalization

of the intervention model:

yt = a0 + A(L)yt−1 + C(L)zt + B(L)𝜀t (5.3)

where A(L), B(L), and C(L) are polynomials in the lag operator L.
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In a typical transfer function analysis, the researcher will collect data on the endo-

geneous variable {yt} and on the exogeneous variable {zt}. The goal is to estimate the

parameter a0 and the parameters of the polynomials A(L), B(L), and C(L). The major

difference between (5.3) and the intervention model is that {zt} is not constrained to

have a particular deterministic time path. In a sense, the intervention variable is allowed

to be any stationary exogeneous process. The model is called a distributed lag in that it
distributes the effects of zt on yt across several periods. The polynomial C(L) is called
the transfer function in that it shows how a movement in the exogeneous variable

zt affects the time path of (i.e., is transferred to) the endogeneous variable {yt}. The
coefficients of C(L), denoted by ci, are called transfer function weights.

It is critical to note that transfer function analysis assumes that {zt} is an exoge-

neous process that evolves independently of the {yt} sequence. Innovations in {yt} are
assumed to have no effect on the {zt} sequence so that Ezt𝜀t−s = 0 for all values of s and
t. Since zt can be observed and is uncorrelated with the current innovation in yt (i.e., the
disturbance term 𝜀t), the current and lagged values of zt are explanatory variables for

yt. Let C(L) be c0 + c1L + c2L
2 + · · ·. If c0 = 0, the contemporaneous value of zt does

not directly affect yt. As such, {zt} is called a leading indicator in that predictions yt+1
can be made in period t using zt, zt−1, … without the need to predict zt+1.

It is easy to conceptualize numerous applications for (5.3). After all, a large part

of dynamic economic analysis concerns the effects of an “exogeneous” or “indepen-

dent” sequence {zt} on the time path of an endogeneous sequence {yt}. For example,

much of the current research in agricultural economics centers on the effects of the

macroeconomy on the agricultural sector. Using (5.3), farm output {yt} is affected by

its own past and by the current and past state of the macroeconomy {zt}. The effects
of macroeconomic fluctuations on farm output can be represented by the coefficients

of C(L). Here, B(L)𝜀t represents the unexplained portion of farm output. Alternatively,

the level of ozone in the atmosphere {yt} is a naturally evolving process; hence, in the
absence of other outside influences, we should expect the ozone level to be well repre-

sented by an ARIMAmodel. However, many have argued that the use of fluorocarbons

has damaged the ozone layer. Because of a cumulative effect, it is argued that current

and past values of fluorocarbon usage affect the value of yt. Letting zt denote fluoro-
carbon usage in t, it is possible to model the effects of fluorocarbon usage on the ozone

layer using a model in the form of (5.3). The natural dissipation of ozone is captured

through the coefficients of A(L). Stochastic shocks to the ozone layer, possibly due to

electrical storms and the presence of measurement errors, are captured by B(L)𝜀t. The
contemporaneous effect of fluorocarbons on the ozone layer is captured by the coeffi-

cient c0, and the lagged effects are captured by the other transfer function weights (i.e.,
the values of the various ci).

ADL Models

At this point, we are not especially concerned about the coefficients of B(L); let
B(L)𝜀t = 𝜀t so that we write (5.3) as

yt = a0 + A(L)yt−1 + C(L)zt + 𝜀t (5.4)
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Since (5.4) contains no moving average terms, it is often called an autoregressive
distributed lag (ADL) model. In contrast to the pure intervention model, there is no

pre- versus postintervention period so that we cannot estimate an ADL in the same

manner we used to we estimate an intervention model. However, the methods are very

similar in that the goal is to estimate a parsimonious model. The procedure involved

in fitting an ADL is easiest to explain by considering a simple case of (5.4). To begin,

suppose {zt} is generated by a white-noise process that is uncorrelated with 𝜀t at all

leads and lags. In addition, suppose that the realization of zt affects the {yt} sequence
with a lag of unknown duration. Specifically, let

yt = a1yt−1 + cdzt−d + 𝜀t (5.5)

where {zt} and {𝜀t} are white-noise processes such that E(zt𝜀t−i) = 0, a1 and cd are

unknown coefficients, and d is the “delay” or lag duration to be determined by the

econometrician.

Since {zt} and {𝜀t} are assumed to be independent white-noise processes, it is

possible to separately model the effects of each type of shock. Since we can observe

the various zt values, the first step is to calculate the cross-correlations between yt and
the various zt−i. The cross-correlation between yt and zt−i is defined to be

𝜌yz(i) ≡ cov(yt, zt−i)∕(𝜎y𝜎z)

where 𝜎y and 𝜎z = the standard deviations of yt and zt, respectively. The standard devi-
ation of each sequence is assumed to be time independent.

Plotting each value of 𝜌yz(i) yields the cross-correlation function (CCF) or

cross-correlogram. In practice, we must use the cross-correlations calculated using

sample data because we do not know the true covariances or standard deviations. The

key point is that the examination of the sample cross-correlations provides the same

type of information as the ACF in an ARMA model. To explain, solve (5.5) to obtain

yt = cdzt−d∕(1 − a1L) + 𝜀t∕(1 − a1L)

Use the properties of lag operators to expand the expression cdzt−d∕(1 − a1L):

yt = cd(zt−d + a1zt−d−1 + a2
1
zt−d−2 + a3

1
zt−d−3 + · · ·) + 𝜀t∕(1 − a1L)

Analogously to our derivation of the Yule–Walker equations, we can obtain the

cross-covariances by the successive multiplication of yt by zt, zt−1, … to form

ytzt = cd(ztzt−d + a1ztzt−d−1 + a2
1
ztzt−d−2

+ a3
1
ztzt−d−3 + · · ·) + zt𝜀t∕(1 − a1L)

ytzt−1 = cd(zt−1zt−d + a1zt−1zt−d−1 + a2
1
zt−1zt−d−2

+ a3
1
zt−1zt−d−3 + · · ·) + zt−1𝜀t∕(1 − a1L)

· · ·
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ytzt−d = cd(zt−dzt−d + a1zt−dzt−d−1 + a2
1
zt−dzt−d−2

+ a3
1
zt−dzt−d−3 + · · ·) + zt−d𝜀t∕(1 − a1L)

ytzt−d−1 = cd(zt−d−1zt−d + a1zt−d−1zt−d−1 + a2
1
zt−d−1zt−d−2

+ a3
1
zt−d−1zt−d−3 + · · ·) + zt−d−1𝜀t∕(1 − a1L)

· · ·
Now take the expected value of each of the above-mentioned equations. If we con-

tinue to assume that {zt} and {𝜀t} are independent white-noise disturbances, it follows
that

Eytzt = 0

Eytzt−1 = 0

· · ·
Eytzt−d = cd𝜎

2
z

Eytzt−d−1 = cda1𝜎
2
z

Eytzt−d−2 = cda
2
1
𝜎2
z

· · ·

so that in compact form,

Eytzt−i = 0 for all i < d

= cda
i−d
1

𝜎2
z for i ≥ d (5.6)

Dividing each value of Eytzt−i = cov(yt, zt−i) by 𝜎y𝜎z yields the CCF. Note that

the cross-correlogram consists of zeroes until lag d. The absolute value of height of

the first nonzero cross-correlation is positively related to the magnitudes of cd and a1.
Thereafter, the cross-correlations decay at the rate a1. The decay of the correlogram

matches the autoregressive patterns of the {yt} sequence.
The pattern exhibited by (5.6) is easily generalized. Suppose we allow both zt−d

and zt−d−1 to directly affect yt:

yt = a1yt−1 + cdzt−d + cd+1zt−d−1 + 𝜀t

Solving for yt, we obtain

yt = (cdzt−d + cd+1zt−d−1)∕(1 − a1L) + 𝜀t∕(1 − a1L)
= cd(zt−d + a1zt−d−1 + a2

1
zt−d−2 + a3

1
zt−d−3 + · · ·)

+ cd+1(zt−d−1 + a1zt−d−2 + a2
1
zt−d−3 + a3

1
zt−d−4 + · · ·) + 𝜀t∕(1 − a1L)

so that

yt = cdzt−d + (cda1 + cd+1)zt−d−1 + a1(cda1 + cd+1)zt−d−2
+ a2

1
(cda1 + cd+1)zt−d−3 + · · · + 𝜀t∕(1 − a1L)

Given that we are assuming Ezt = 0, the cross-covariances are Eytzt−i and the

cross-correlations are Eytzt−i∕𝜎y𝜎z. In the literature, it is also common to work with

the standardized cross-covariances denoted by Eytzt−i∕𝜎2
z . The choice between the

two is a matter of indifference since the CCF and the standardized cross-covariance
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function (CCVF) are proportional to each other. In the example at hand, the CCVF

reveals the following pattern:1

𝛾yz(i) = 0 for i < d
= cd for i = d
= cda1 + cd+1 for i = d + 1

= ai−d−1
1

(cda1 + cd+1) for i > d + 1

Panel (a) of Figure 5.4 shows the shape of the cross-covariances for d = 3, cd = 1,

cd+1 = 1.5, and a1 = 0.8. Note that there are distinct spikes at lags 3 and 4 correspond-

ing to the nonzero values of c3 and c4. Thereafter, the CCVF decays at the rate a1. Panel
(b) of the figure replaces c4 with the value −1.5. Again, all cross-covariances are zero
until lag 3; since c3 = 1, the standardized value of 𝛾yz(3) = 1. To find the standard-

ized value of 𝛾yz(4), form 𝛾yz(4) = 0.8 − 1.5 = −0.7. The subsequent values of 𝛾yz(i)
decay at the rate 0.8. The pattern illustrated by these two examples generalizes to any

intervention model of the form

yt = a0 + a1yt−1 + C(L)zt + 𝜀t (5.7)

2

1

0 5 10

yt = 0.8yt –1 + zt–3 + 1.5zt –4 + εt

15 20
Panel (a) Panel (b)

yt = 0.8yt–1 + zt–3 – 1.5zt–4 + εt

–1

0

5 10

15 20

1

Panel (d)

yt = 1.4yt –1 – 0.6yt –2 + zt –3 + εt

–0.5

0 5

5 10

15 20

1

1.5

0.5

Panel (c)

yt = 0.8yt–1 – 0.6yt –2 + zt –3 + εt

–0.5

0 5 10 15 20

1.5

1

0.5

FIGURE 5.4 Four Cross-Covariance Functions
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The theoretical CCVF (and CCF) has a shape with the following characteristics:

1. All 𝛾yz(i) will be zero until the first nonzero element of the polynomial C(L).
2. A spike in the CCVF indicates a nonzero element of C(L). Thus, a spike at lag

d indicates that zt−d directly affects yt.

3. All spikes decay at the rate a1 convergence implies that the absolute value

of a1 is less than unity. If 0 < a1 < 1, decay in the cross-covariances will be

direct, whereas if −1 < a1 < 0, the decay pattern will be oscillatory.

Only the nature of the decay process changes if we generalize equation (5.7) to

include additional lags of yt−i. In the general case of (5.4), the decay pattern in the
cross-covariances is determined by the characteristic roots of the polynomial A(L);
the shape is precisely that suggested by the autocorrelations of a pure ARMA model.

This should not come as a surprise; in the examples of (5.5) and (5.7), the decay factor

was simply the first-order coefficient a1. We know that there will be decay since all

characteristic roots of 1 − A(L) must be outside the unit circle for the process to be

stationary. Convergence will be consistent with the patterns laid out in Table 2.1.

The Cross-Covariances of a Second-Order Process

To use another example, consider the ADL:

yt = a1yt−1 + a2yt−2 + cdzt−d + 𝜀t

Using lag operators to solve for yt is inconvenient since we do not know the numer-

ical values of a1 and a2. Instead, use the method of undetermined coefficients and form

the challenge solution:

yt =
∞∑
i=0

wizt−i +
∞∑
i=0

vi𝜀t−i

where the wi and vi are the undetermined coefficients.

You should be able to verify that the values of the wi are given by

w0 = 0

· · ·
wd = cd

wd+1 = cda1
wd+2 = cd(a21 + a2)
wd+3 = a1wd+2 + a2wd+1
wd+4 = a1wd+3 + a2wd+2
· · ·

Thus, for all i > d + 1, the successive coefficients satisfy the difference equation

wi = a1wi−1 + a2wi−2. At this stage, we are not interested in the values of the various

vi, so it is sufficient to write the solution for yt as

yt = cdzt−d + cda1zt−d−1 + cd(a21 + a2)zt−d−2 + · · · + Σvi𝜀t−i
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Next, use this solution for yt to form all covariances using the Yule–Walker

equations. Forming the expressions for 𝛾yz(i) as Eytzt−i∕𝜎2
z

𝛾yz(i) = for i < d [since Eztzt−i = 0 for i < d]
𝛾yz(d) = cd

𝛾yz(d − 1) = a1cd
𝛾yz(d − 2) = cd(a21 + a2)

· · ·
Thus, there is an initial spike at lag d reflecting the nonzero value of cd. After

one period, a1 percentage of cd remains. After two periods, the decay pattern in the

standardized cross-covariances begins to satisfy the difference equation:

𝛾yz(i) = a1𝛾yz(i − 1) + a2𝛾yz(i − 2)

Panel (c) of Figure 5.4 shows the shape of the CCVF for the case of d = 3, cd = 1,

a1 = 0.8, and a2 = −0.6. The oscillatory pattern reflects the fact that the characteristic
roots of the process are imaginary. For purposes of comparison, Panel (d) shows the

CCVF of another second-order process with imaginary roots.

Higher-Order Input Processes

The econometrician will rarely be so fortunate as to work with a {zt} series that is

white noise. We need to further generalize our discussion of ADLs to consider the case

in which the {zt} sequence is a stationary AR process. As discussed in the following,

the estimation of the transfer function becomes more difficult in this case. However, the

extra difficulty is worthwhile because a rich set of interactions between the variables is

possible. For a moment, we can abstract from the estimation problem and consider the

system of equations represented by (5.4)—reproduced for your convenience—and the

{zt} process:

yt = a0 + A(L)yt−1 + C(L)zt + 𝜀t

zt =D(L)zt−1 + 𝜀zt (5.8)

where D(L) is a polynomial in the lag operator L and 𝜀zt is white noise. The roots of

D(L) are such that the {zt} sequence is stationary. Since {zt} is independent of {yt},
shocks to the {yt} sequence cannot influence {zt}. As such, it must be the case that

E𝜀t𝜀zt = 0.

Once the coefficients of the two equations have been properly estimated, it is pos-

sible to trace out three impulse response functions. As in Chapter 2, it is possible to

use (5.8) to trace out the impulses responses of an 𝜀zt shock on the {zt} series or those
of an 𝜀t on the {yt} sequence. More importantly, it is possible to trace out the effects

of an 𝜀zt shock on the entire {yt} series. A one-unit shock to 𝜀zt directly affects zt by
one unit and yt by c0𝜀zt units. It is relatively straightforward for a computer to trace out

the effects of the 𝜀zt shock on the entire {zt} and {yt} sequences. Formally, the impulse

responses of 𝜀zt shocks on the {yt} sequence are given by combining (5.4) and (5.8)

such that

yt = a0 + A(L)yt−1 + C(L)[1 − D(L)L]𝜀zt + 𝜀t

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c05.tex V2 - 07/30/2014 4:31pm Page 274

274 CHAPTER 5 MULTIEQUATION TIME-SERIES MODELS

If you solve for yt, it will be clear that the impulse responses are the coefficients

of C(L)[1 − D(L)L]∕[1 − A(L)L]. In addition, ADLs are useful because they are

conducive to multistep-ahead forecasting. Since {zt} is an independent process, you

can use (5.8) to forecast subsequent values of zt using the techniques developed in

Chapter 2. As such, if you have T observations, you can use (5.8) to form the forecasts

ETzT+1,ETzT+2, … . These forecasts are used in the multistep-ahead forecasts for

yT+i. For example, suppose that zt = d1zt−1 + 𝜀zt and yt = a1yt−1 + c1zt + 𝜀t. Since the

j-step-ahead forecasts for zT+j are (d1) jzT , the multistep-ahead forecasts for yT+j are

ETyT+1 = a1yT + c1ETzT+1 = a1yT + c1d1zT
ETyT+2 = (a1)2yT + c1d1(a1 + d1)zT

…

Identification and Estimation

Since {zt} evolves independently of {yt}, we can use the methodology developed in

Chapter 2 to estimate {zt} as the AR process given by (5.8). The residuals from such a

model, denoted by {�̂�zt}, should be white noise. The idea is to estimate the innovations
in the {zt} sequence even though the sequence itself is not a white-noise process.

Once (5.8) has been estimated, you can choose between two techniques to estimate

the ADL. If you are unconcerned about parsimony, you can simply use (5.8) such that

yt = a0 +
p∑
i=1

aiyt−i +
n∑
i=0

cizt−i + 𝜀t (5.9)

Unlike the standard Box–Jenkins approach, begin estimating the ADL using the

largest values of p and n deemed feasible. Then, F-tests and t-tests can be used to pare
down the lag lengths of the model. In addition, you could also use the AIC or the SBC to

find the lag lengths yielding the best fit. As in any time-series estimation, it is crucial to

perform the appropriate diagnostic checks to ensure that the residuals are white noise.

The benefit of this method is that it is simple to perform. However, you can easily

end up with an overly parameterized model. Since zt and zt−i are correlated (and are

correlated with the values of yt−i), it is not straightforward to use t-tests to pare down the
coefficients ofC(L). Typically, once the lag lengths p and n are determined, there are no

further attempts to pare down themodel. Nevertheless, themethod is quite common and

is consistent with the vector-autoregressive methodology discussed in Sections 5–13.

The second method tries to pare down the model is a fashion consistent with the

Box−Jenkins methodology. As in the case where {zt} is white noise, the idea is to

use the cross-correlations to obtain the pattern of the coefficients as they appear in

the ADL. It is tempting to think that we should form the cross-correlations between

the {yt} sequence and {�̂�zt−i}. However, this procedure would be inconsistent with the
maintained hypothesis that the structure of the transfer function is given by (5.4). The

reason is that zt, zt−1, zt−2, … (and not simply the innovations) directly affect the value

of yt. Cross-correlations between yt and the various 𝜀zt−i would not reveal the pattern

of the coefficients in C(L).
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The appropriate methodology is to filter the {yt} sequence by multiplying (5.4)

by the previously estimated polynomial D(L). As such, the filtered value of yt is D(L)yt
and is denoted by yft. The cross-correlations of �̂�zt and yft reveal the form of the ADL.

To explain, multiply (5.4) by D(L) to obtain

D(L)yt = D(L)a0 + D(L)A(L)yt−1 + C(L)D(L)zt + D(L)𝜀t
Given that D(L)yt = yft,D(L)yt−1 = yft−1, and D(L)zt = 𝜀zt, this is equivalent to

yft = D(L)a0 + A(L)yft−1 + C(L)𝜀zt + D(L)𝜀t (5.10)

Although you could construct the sequence D(L)yt, most software packages can

make the appropriate transformations automatically. The important point is that the

cross-covariances of yft and 𝜀zt reveal the coefficients of C(L). We can examine the

CCVF between yft and 𝜀zt to determine the spikes and the decay pattern as aids in

determining the form of C(L).
To illustrate why filtering is important, consider the example where zt = d1zt−1 +

𝜀zt and yt = a1yt−1 + c1zt + 𝜀t. Given that you can never actually observe the form of

the transfer function, you might not be able to deduce that only zt has a direct effect
on yt. In fact, substitution for zt yields yt = a1yt−1 + c1(d1zt−1 + 𝜀zt) + 𝜀t. As such, you

might be fooled into estimating an equation of the form

yt = a1yt−1 + a2zt−1 + 𝜀1t

Although there is nothing “wrong”with this equation, the interpretation is such that

zt affects the {yt} sequence with a one-period lag. It should also be clear that var(𝜀1t) =
var(c1𝜀zt + 𝜀t). Hence, the estimated transfer function will have a larger variance than

that from yt = a1yt−1 + c1zt + 𝜀t. The proper way to identify the form of the transfer

function is to filter the values of yt such that

yft = (1 − d1L)yt = yt − d1yt−1

Since the goal is to form the filtered series as D(L)yt, for the example in hand,

multiply each side of the transfer function by (1 − d1L) to obtain

(1 − d1L)yt = a1(1 − d1L)yt−1 + c1(1 − d1L)zt + (1 − d1L)𝜀t
or

yft = a1yft−1 + c1𝜀zt + 𝜀t − d1𝜀t−1

Hence, you can simply subtract d1yt−1 from yt to obtain yft. Clearly, the covariances
between yft and 𝜀zt will have the same pattern as those between yt and zt. In summary,

the full procedure for fitting an ADL entails:

STEP 1: Estimate the zt sequence. The technique used at this stage is precisely
that for estimating any AR model. A properly estimated AR model should

approximate the data-generating process for the {zt} sequence. The calcu-
lated residuals {�̂�zt} are called the filtered values of the {zt} series. These
filtered values can be interpreted as the pure innovations in the {zt} sequence.
Calculate and store the {�̂�zt} sequence.
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STEP 2: Identify plausible candidates for the C(L) function. Constrict the filtered
{yt} sequence by applying the filter D(L) to each value of {yt}; that is, use
the results of Step 1 to obtain D(L)yt ≡ yft. The cross-correlograms between

yft and �̂�zt−i can help identify the form of C(L). Remember that spikes in the

cross-correlogram indicate nonzero values of ci. In practice, examination

of the cross-correlogram will suggest several plausible transfer functions.

Of course, the sample cross-covariances will not precisely conform to their

theoretical values. Under the null hypothesis that the cross-correlations are

all zero, the sample variance of cross-correlation coefficient i asymptotically

converges to (T − i)−1 where T = number of usable observations. Let ryz(i)
denote the sample cross-correlation coefficient between yt and zt−i. Under
the null hypothesis that the true values of 𝜌yz(i) all equal zero, the variance of
ryz(i) converges to

var[ryz(i)] = (T − i)−1

For example, with 100 usable observations, the standard deviation of the

cross-correlation coefficient between yt and zt−1 is approximately equal to

0.10. If the calculated value of ryz(1) exceeds 0.2 (or is less than −0.2), the
null hypothesis can be rejected. Significant cross-correlations at lag i indicate
that an innovation in zt affects the value of yt+i. To test the significance of the
first k cross-correlations, use the statistic

Q = T(T + 2)
k∑
i=0

r2yz(i)∕(T − k)

Asymptotically, Q has a 𝜒2 distribution with (k − p1 − p2) degrees of
freedom where p1 and p2 denote the number of nonzero coefficients in A(L)
and C(L), respectively.

STEP 3: Identify plausible candidates for the A(L) function. Regress yt (not yft) on
the selected values of {zt} to obtain a model of the form

yt = C(L)zt + et

where et denotes the error term, which is not necessarily white noise.

The ACF of the {et} sequence is suggestive of the form of A(L). If the
{et} sequence is white noise, your task is complete. However, the correlo-

gram with generally reveal several suggestive forms for A(L). [Note: At this
point, you might want to model the more general model of (5.3). If the ACF

and PACF of the et series suggests that it might be an ARMA process, form

tentative models for both A(L) and B(L).]
STEP 4: Combine the results of Steps 2 and 3 to estimate the full equation. At this

stage, you will estimate A(L), and C(L) simultaneously. The properties of a

well-estimated model are such that the coefficients are of high quality, the

model is parsimonious, the residuals conform to a white-noise process, and

the forecast errors are small. You should compare your estimated model to

the other plausible candidates from Steps 2 and 3.
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There is no doubt that estimating a parsimonious ADL involves judgment on the

part of the researcher. Experienced econometricians would agree that the procedure

is a blend of skill, art, and perseverance that is developed through practice. Keep in

mind that the goal is to find a parsimonious representation of a potentially complicated

interaction among the variables. As in an ARMA process, different models can have

similar economic implications and yield similar forecasts. Nevertheless, there are some

hints that can be quite helpful.

1. After estimating the full model in Step 4, if the residuals in (5.9) are corre-

lated with {zt}, the C(L) function is probably misspecified. Return to Step 3

and reformulate the specifications of A(L) and C(L).
2. The sample cross-correlations are not meaningful if {yt} and/or {zt} are not

stationary. You can test each for a unit root using the procedures discussed in

Chapter 4. In the presence of unit roots, Box and Jenkins (1976) recommend

differencing each variable until it is stationary. Chapter 6 considers unit roots

in a multivariate context. For now, it is sufficient to note that this recommen-

dation can lead to overdifferencing.

The interpretation of the ADL depends on the type of differencing performed.

Consider the following three specifications and assume that |a1| < 1:

yt = a1yt−1 + c0zt + 𝜀t (5.11)

Δyt = a1Δyt−1 + c0zt + 𝜀t (5.12)

yt = a1yt−1 + c0Δzt + 𝜀t (5.13)

In (5.11), a one-unit shock in zt has the initial effect of increasing yt by c0 units.
This initial effect decays at the rate a1. In (5.12), a one-unit shock in zt has the initial
effect of increasing the change in yt by c0 units. The effect on the change decays at the
rate a1, but the effect on the level of the {yt} sequence never decays. In (5.13), only the
change in zt affects yt. Here, a pulse in the {zt} sequence will have a temporary effect

on the level of {yt}. Questions 3 and 4 at the end of this chapter are intended to help

you gain familiarity with the different specifications.

Be aware that it is possible to obtain a more parsimonious model by allowing for

MA terms. Just as an ARMA model can be more parsimonious than a pure AR model,

it might be possible that (5.3) provides a more parsimonious fit than (5.4). Moreover,

it is also possible to allow for MA terms in (5.8).

3. AN ADL OF TERRORISM IN ITALY

The clustering of high-profile terrorist events (e.g., the hijacking of TWA flight 847 on

June 14, 1985; the hijacking of the Achille Lauro cruise ship on October 7, 1985; and

the Abu Nidal attacks on the Vienna and Rome airports on December 27, 1985) caused

much speculation in the press about tourists changing their travel plans. Similarly,

the tourism industry was especially hard-hit after the attacks on September 11, 2001.

Although opinion polls of prospective tourists suggest that terrorism affects tourism,

the true impact, if any, can best be discovered through the application of statistical
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techniques. Polls conducted in the aftermath of significant incidents cannot indicate

whether respondents actually rebooked trips. Moreover, polls cannot account for

tourists not surveyed who may have been induced to take advantage of offers designed

to entice tourists back to a troubled spot.

To measure the impact of terrorism on tourism, in Enders, Sandler, and Parise

(1992), we constructed the quarterly values of total receipts from tourism for 12

countries.2 The logarithmic share of each nation’s revenues was treated as the depen-

dent variable {yt}, and the number of transnational terrorist incidents occurring within

each nation was treated as the independent variable {zt}. The crucial assumption for

the use of intervention analysis is that there is no feedback from tourism to terrorism.

This assumption would be violated if changes in tourism-induced terrorists to change

their activities.

Consider an ADL in the form of (5.4):

yt = a0 + A(L)yt−1 + C(L)zt + B(L)𝜀t
where yt = deseasonalized (with seasonal dummy variables) values of the logarithmic

share of a nation’s tourism revenues in quarter t and zt is the number of transnational

terrorist incidents within that country during quarter t.3

If we use the methodology developed in the previous section, the first step in fit-

ting an ADL is to fit an AR model to the {zt} sequence. For illustrative purposes, it is
helpful to consider the Italian case since terrorism in Italy appeared to be white noise

(with a constant mean of 4.20 incidents per quarter). Let 𝜌z(i) denote the autocorrela-
tions between zt and zt−i. If you are following along with the data on the file labeled

ITALY.XLS, be sure to set the sample for 1971Q1 − 1988Q4. The correlogram for

terrorist attacks in Italy is

Correlogram for Terrorist Attacks in Italy

𝜌z(0) 𝜌z(1) 𝜌z(2) 𝜌z(3) 𝜌z(4) 𝜌z(5) 𝜌z(6) 𝜌z(7) 𝜌z(8)
1 0.14 0.05 −0.06 −0.04 0.13 −0.00 0.01 −0.12

Each value of 𝜌z(i) is less than two standard deviations from unity, and the

Ljung–Box Q-statistics indicate that no groupings are significant. Since terrorist

incidents appear to be a white-noise process, we have completed Step 1; there is no

need to fit an AR model to the series or to filter the {yt} sequence for Italy. At this

point, we conclude that terrorists randomize their acts so that the number of incidents

in quarter t is uncorrelated with the number of incidents in previous periods.

Step 2 calls for obtaining the cross-correlogram between tourism and terrorism.

The cross-correlogram is

Cross-Correlogram Between Tourism and Terrorism in Italy

𝜌yz(0) 𝜌yz(1) 𝜌yz(2) 𝜌yz(3) 𝜌yz(4) 𝜌yz(5) 𝜌yz(6) 𝜌yz(7) 𝜌yz(8) 𝜌yz(9) 𝜌yz(10) 𝜌yz(11)
−0.18 −0.23 −0.24 −0.05 0.04 0.13 0.04 0.00 0.11 0.12 0.26 0.19
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There are several interesting features of the cross-correlogram:

1. With T observations and i lags, the theoretical value of the standard devi-
ation of each value of 𝜌yz(i) is (T − i)−1∕2. With 73 observations, T−1∕2 is
approximately equal to 0.117. At the 5% significance level (i.e., two stan-

dard deviations), the sample value of 𝜌yz(0) is not significantly different from
zero, and 𝜌yz(1) and 𝜌yz(2) are just on the margin. However, the Q-statistic
for 𝜌yz(0) = 𝜌yz(1) = 𝜌yz(2) = 0 is significant at the 0.01 level. Thus, there

appears to be a strong negative relationship between terrorism and tourism

beginning at lag 1 or 2.

2. It is good practice to examine the cross-correlations between yt and leading
values of zt+i. If the current value of yt tends to be correlated with future val-
ues of zt+i, it might be that the assumption of no feedback is violated. The

presence of a significant cross-correlation between yt and leads of zt might

be due to the effect of the current realization of yt on future values of the {zt}
sequence.

3. The large values of 𝜌yz(10) and 𝜌yz(11) are suggestive of a possible long-term
effect of terrorism on tourism. Although there are a relatively small number

of total observations, it is wise to entertain the possibility of several plausible

models at this point in the process.

Step 3 entails examining the cross-correlogram and estimating each of the plausi-

ble models. Based on the ambiguous evidence of the cross-correlogram, several differ-

ent models for the transfer function were estimated. We estimated models of the form

yt = c + C(L)zt + et experimenting with delay factors of 0, 1, 2, and 3 quarters. Some

of our estimates are reported in Table 5.2.

Model 1 has the form yt = c + c0zt + c1zt−1 + c2zt−2 + c3zt−3 + et. The problem

with this specification is that the c3 is not significantly different from zero. Eliminating

this coefficient yields Model 2. Notice that most of the coefficients of Model 2 are

Table 5.2 Terrorism and Tourism in Italy (Estimates from Step 3)

c c0 c1 c2 c3 AIC/SBC

Model 1 0.04 −0.0028 −0.0038 −0.0042 −0.001 −5.20∕
(1.86) (−1.15) (−1.57) (−1.76) (−0.24) 5.97

Model 2 0.04 −0.0028 −0.0039 −0.0044 −7.14∕
(1.94) (−1.15) (−1.59) (−1.82) 1.80

Model 3 0.03 −0.0042 −0.0044 −7.76∕
(1.60) (−1.74) (−1.84) −1.05

Model 4 0.01 −0.0050 −6.65∕
(0.87) (−2.05) −2.17

Model 5 0.01 −0.0048 −6.30∕
(0.82) (−1.96) −1.82

Note: The numbers in parentheses are the t-statistics for the null hypothesis of a zero coefficient. To
ensure comparability, all models were estimated over the period 1971Q4–1988Q4.
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not significant at conventional levels. Eliminating the variable z0 yields Model 3 in

which the coefficients c1 and c2 are negative yet marginally significant. The F-test for
the null hypothesis c1 = c2 = 0 is 3.69 with a significance level 0.03. As such, there

does seem to be a negative effect of terrorism on tourism. Moreover, we need to be

cautious about such t-tests since the regression residuals {et} are serially correlated.

Respectively, Models 4 and 5 seek to determine whether it is preferable to eliminate

z2 or z1. Overall, the AIC selects Model 3, whereas the SBC selects Model 4 (with a

single delay factor of 2).

Since the results at Step 3 are mixed, and cross-correlogram seems to have two

spikes and exhibits little decay, allow both zt−1 and zt−2 to directly affect yt. For Step 4,
estimateModel 3 over the full sample period, eliminate the intercept and obtain the {et}
sequence as et = yt − 0.00237zt−1 − 0.0026zt−2. The correlogram of the residuals is

𝜌(0) 𝜌(1) 𝜌(2) 𝜌(3) 𝜌(4) 𝜌(5) 𝜌(6) 𝜌(7) 𝜌(8) 𝜌(9) 𝜌(10) 𝜌(11) 𝜌(12)
1.0 0.67 0.60 0.47 0.47 0.23 0.14 0.08 −0.08 −0.17 −0.18 −0.24 −0.23

If you experiment a bit, you should find that reasonable models for the {et} series
are an AR(2), an ARMA(2,||4||), and an AR(1) with a seasonal AR(1) term. The most

promising of the three seems to be

(1 − 0.692L)(1 − 0.379L4)et
As such, the tentative transfer function is

(1 − 0.692L)(1 − 0.379L4)yt = −0.0042zt−1 − 0.0044zt−2 + 𝜀t (5.14)

The problem with (5.14) is that the coefficients in the first expression were esti-

mated separately from the coefficients in the second expression. In Step 4, if you

estimate all coefficients simultaneously you should obtain

(1 − 0.694L) (1 − 0.394L4) yt = −0.0030zt−1 − 0.0040zt−2 + 𝜀t AIC = −63.52
(7.01) (3.41) (−2.15) (−2.91) SBC = −54.82

(5.15)

Note that the coefficients of (5.15) are similar to those of (5.14). The Ljung–Box

Q-statistics indicate that the residuals of (5.15) appear to be white noise. For example,

Q(4) = 5.34, Q(8) = 9.11, and Q(12) = 20.26 with significance levels of 0.25, 33, and

0.06, respectively. Nevertheless, as 𝜌(11) = −0.27, there might be some information in

the residuals at the very long lags.

Our ultimate aim was to use the estimated transfer function to simulate the effects

of a typical terrorist incident. Initializing the system such that all values of y0 = y1 =
y2 = y3 = 0 and setting all {𝜀t} = 0, we let the value of zt = 1. Figure 5.5 shows the

impulse response function for this one unit change in the {zt} sequence. As you can

see from the figure, after a one-period delay, tourism in Italy declines sharply. After

a sustained decline, tourism returns to its initial value in approximately 3 years. As a

result of the multiplicative seasonal term, there is an oscillating decay pattern.

Integrating over time and over all incidents allowed us to estimate Italy’s total

losses to tourism. The undiscounted losses exceeded 600 million SDR; using a 5% real
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FIGURE 5.5 Italy’s Share of Tourism

interest rate, the total value of the losses exceeded 861 million 1988 SDRs (equal to

6% of Italy’s annual tourism revenues). Question 5 at the end of this chapter asks you

to compare the model estimated here to that of (5.9) estimated by simply using the

general-to-specific method.

In the actual paper, we used a slightly method than the one described here. Specif-

ically, we allowed the transfer function to have the form C(L) = E(L)∕F(L) so that the
estimated model became yt = a0 + A(L)yt−1 + E(L)zt∕F(L) + B(L)𝜀t. Instead of using

very long lags for the C(L) function, the effect of allowing for a polynomial lag in the

denominator is to further spread (or transfer) the effects of zt shocks over a number of

periods. For example, if |f1| < 1, zt−1∕(1 − f1L) is zt−1 + f1zt−2 + f 2
1
zt−3 + · · ·. In this

way, instead of estimating a large number of coefficients for the C(L) function, a sin-
gle denominator lag imparts a geometrically decaying effect of the shock. We deemed

this important because the data contain a small number of observations and the cor-

relations at long lags are large. Most software packages allow for both numerator and

denominator lags in the transfer function. To estimate such a model, in Step 2, you can

experiment with several different forms of low-order E(L) and F(L) functions.

4. LIMITS TO STRUCTURAL MULTIVARIATE
ESTIMATION

There are two important difficulties involved in fitting a multivariate equation such

as a transfer function. The first concerns the goal of fitting a parsimonious model.

Obviously, a parsimonious model is preferable to an overparameterized model. In the

relatively small samples usually encountered in economic data, estimating an unre-

stricted model may so severely limit degrees of freedom as to render forecasts use-

less. Moreover, the possible inclusion of large but insignificant coefficients will add
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variability to the model’s forecasts. However, in paring down the form of the model,

two equally skilled researchers will likely arrive at two different transfer functions.

Other researchers examining the Italian tourism data may have been concerned about

the correlations at lags 8 and 9 or picked different delay parameters. Although one

model may have a better “fit” (in terms of the AIC or SBC), the residuals of the other

may have better diagnostic properties. There is substantial truth to the consensus opin-

ion that fitting a transfer function model has many characteristics of an “art form.”

There is a potential cost to using a parsimonious model. Suppose you simply estimate

the equation yt = A(L)yt−1 + C(L)zt + B(L)𝜀t using long lags for A(L), B(L), and C(L).
As long as {zt} is exogeneous, the estimated coefficients and forecasts are unbiased

even though the model is overparameterized. Such is not the case if the researcher

improperly imposes zero restrictions on any of the polynomials in the model.

The second problem concerns the assumption of no feedback from the {yt}
sequence to the {zt} sequence. For the coefficients of C(L) to be unbiased estimates

of the impact effects of {zt} on the {yt} sequence, zt must be uncorrelated with

{𝜀t} at all leads and lags. Although certain economic models may assert that policy

variables (such as money supply or government spending) are exogeneous, there may

be feedback such that the policy variables are set with specific reference to the state

of other variables in the system. To understand the problem of feedback, suppose

that you were trying to keep a constant 70∘F temperature inside your apartment by

turning the thermostat up or down. Of course, the “true” model is that turning up

the heat (the intervention variable zt) warms up your apartment (the {yt} sequence).

However, intervention analysis cannot adequately capture the true relationship in the

presence of feedback. Clearly, if you perfectly controlled the inside temperature, there

would be no correlation between the constant value of the inside temperature and the

movement of the thermostat. Alternatively, you might listen to the weather forecast

and turn up the thermostat whenever you expected it to be cold. If you underreacted

by not turning the heat high enough, the cross-correlogram between the two variables

would tend to show a negative spike reflecting the drop in room temperature with the

upward movement in the thermostat setting. Instead, if you overreacted by greatly

increasing the thermostat setting, both room temperature and the thermostat setting

would rise together. Only if you moved the thermostat setting without reference to

room temperature would we expect to uncover the actual model.

The need to restrict the form of the transfer function and the problem of feedback

or “reverse causality” led Sims (1980) to propose a nonstructural estimation strategy.

To best understand this Noble Prize winning approach, it is useful to consider the state

of macroeconometric modeling that led Sims to his then radical ideas.

Multivariate Macroeconometric Models: Some
Historical Background

Traditionally, macroeconometric hypothesis tests and forecasts were conducted using

large-scale macroeconometric models. Usually, a complete set of structural equations

was estimated, one equation at a time. Then, all equations were aggregated in order

to form overall macroeconomic forecasts. Consider two of the equations from the
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Brookings Quarterly Econometric Model of the United States, as reported by Suits

and Sparks (p. 208, 1965):

CNF = 0.0656YD − 10.93(PCNF∕PC)t−1 + 0.1889(N + NML)t−1
(0.0165) (2.49) (0.0522)

CNEF = 4.2712 + 0.1691YD − 0.0743(ALQDHH∕PC)t−1
(0.0127) (0.0213)

where CNF = personal consumption expenditures on food

YD = disposable personal income

PCNF = implicit price deflator for personal consumption expenditures on food

PC = implicit price deflator for personal consumption expenditures

N = civilian population

NML = military population including armed forces overseas

CNEF = personal consumption expenditures for nondurables other than food

ALQDHH = end-of-quarter stock of liquid assets held by households

and standard errors are in parentheses.

The remaining portions of the model contain estimates for the other components of

aggregate consumption, investment spending, government spending, exports, imports,

the financial sector, various price determination equations, and so on. Note that food

expenditures, but not expenditures on other nondurables, are assumed to depend on

relative price and population. However, expenditures for other nondurables are assumed

to depend on real liquid assets held by households in the previous quarter.

Are such ad hoc behavioral assumptions consistent with economic theory? Sims

(1980, p. 3) considers such multiequation models and argues that

“… what ‘economic theory’ tells us about them is mainly that any vari-

able that appears on the right-hand side of one of these equations belongs

in principle on the right-hand side of all of them. To the extent that models

end up with very different sets of variables on the right-hand side of these

equations, they do so not by invoking economic theory, but (in the case

of demand equations) by invoking an intuitive econometrician’s version

of psychological and sociological theory, since constraining utility func-

tions is what is involved here. Furthermore, unless these sets of equations

are considered as a system in the process of specification, the behavioral

implications of the restrictions on all equations taken together may be less

reasonable than the restrictions on any one equation taken by itself.”

On the other hand, many of the monetarists used reduced-form equations to ascer-

tain the effects of government policy on the macroeconomy. As an example, con-

sider the following form of the St. Louis model estimated by Anderson and Jordan

(1968). Using U.S. quarterly data from 1952 to 1968, they estimated the following

reduced-form GNP determination equation:

ΔYt = 2.28 + 1.54ΔMt + 1.56ΔMt−1 + 1.44ΔMt−2 + 1.29ΔMt−3
+ 0.40ΔEt + 0.54ΔEt−1 − 0.03ΔEt−2 − 0.74ΔEt−3 (5.16)
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where ΔYt = change in nominal GNP

ΔMt = change in the monetary base

ΔEt = change in “high employment” budget deficit.

In their analysis, Anderson and Jordan used base money and the high employ-

ment budget deficit because these are the variables under the control of the monetary

and fiscal authorities, respectively. The St. Louis model was an attempt to demon-

strate the monetarist policy recommendations that changes in the money supply, but

not changes in government spending or taxation, affected GNP. The t-tests for the indi-
vidual coefficients are misleading because of the substantial multicollinearity between

each variable and its lags. However, testing whether the sum of the monetary base

coefficients (i.e., 1.54 + 1.56 + 1.44 + 1.29 = 5.83) differs from zero yields a t-value
of 7.25. Hence, they concluded that changes in the money base translate into changes

in nominal GNP. Since all the coefficients are positive, the effects of monetary pol-

icy are cumulative. On the other hand, the test that the sum of the fiscal coefficients

(0.40 + 0.54 − 0.03 − 0.74 = 0.17) equals zero yields a t-value of 0.54. According to

Anderson and Jordan, the results support “lagged crowding out” in the sense that an

increase in the budget deficit initially stimulates the economy. Over time, however,

changes in interest rates and other macroeconomic variables lead to reductions in pri-

vate sector expenditures. The cumulated effects of the fiscal stimulus are not statisti-

cally different from zero.

Sims (1980) also points out several problems with this type of analysis. Sims’s

criticisms are easily understood by recognizing that (5.16) is a transfer function with

two independent variables {Mt} and {Et} and no lags of the dependent variable. As

with any type of transfer function analysis, we must be concerned with two things:

1. Ensuring that lag lengths are appropriate. Serially correlated residuals in the
presence of lagged dependent variables lead to biased coefficient estimates.

2. Ensuring that there is no feedback between GNP and the money base or the
budget deficit. However, the assumption of no feedback is unreasonable if the

monetary or fiscal authorities deliberately attempt to alter nominal GNP. As

in the thermostat example, if the monetary authority attempts to control the

economy by changing the money base, we cannot identify the “true” model.

In the jargon of time-series econometrics, changes in GNP would “cause”

changes in the money supply. One appropriate strategy would be to simul-

taneously estimate the GNP determination equation and the money supply

feedback rule.

Comparing the two types of models, Sims (1980, pp. 14–15) states:

“Because existing large models contain too many incredible restrictions,

empirical research aimed at testing competing macroeconomic theories

too often proceeds in a single- or few-equation framework. For this reason

alone, it appears worthwhile to investigate the possibility of building large

models in a style which does not tend to accumulate restrictions so hap-

hazardly. … It should be feasible to estimate large-scale macromodels as

unrestricted reduced forms, treating all variables as endogenous.”
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When we are not confident that a variable is actually exogeneous, a natural extension

of transfer function analysis is to treat each variable symmetrically. In the two-variable

case, we can let the time path of {yt} be affected by current and past realizations of the
{zt} sequence and let the time path of the {zt} sequence be affected by current and past
realizations of the {yt} sequence. Consider the simple bivariate system:

yt = b10 − b12zt + 𝛾11yt−1 + 𝛾12zt−1 + 𝜀yt (5.17)

zt = b20 − b21yt + 𝛾21yt−1 + 𝛾22zt−1 + 𝜀zt (5.18)

where it is assumed that (i) both yt and zt are stationary; (ii) 𝜀yt and 𝜀zt are white-noise
disturbances with standard deviations of 𝜎y and 𝜎z, respectively; and (iii) {𝜀yt} and

{𝜀zt} are uncorrelated white-noise disturbances.

Equations (5.17) and (5.18) constitute a first-order vector autoregression (VAR)

because the longest lag length is unity. This simple two-variable first-order VAR is use-

ful for illustrating themultivariate higher order systems that are introduced in Section 8.

The structure of the system incorporates feedback because yt and zt are allowed to affect
each other. For example, −b12 is the contemporaneous effect of a unit change of zt on
yt and 𝛾12 is the effect of a unit change in zt−1 on yt. Note that the terms 𝜀yt and 𝜀zt are

pure innovations (or shocks) in yt and zt, respectively. Of course, if b21 is not equal to
zero, 𝜀yt has an indirect contemporaneous effect on zt, and if b12 is not equal to zero, 𝜀zt
has an indirect contemporaneous effect on yt. Such a system could be used to capture

the feedback effects in our temperature-thermostat example. The first equation allows

current and past values of the thermostat setting to affect the time path of the tempera-

ture; the second allows for feedback between current and past values of the temperature

and the thermostat setting.

Equations (5.17) and (5.18) cannot be estimated by OLS since yt has a contem-

poraneous effect on zt and zt has a contemporaneous effect on yt. The OLS estimates

would suffer from simultaneous equation bias since the regressors and the error terms

would be correlated. Fortunately, it is possible to transform the system of equations

into a more usable form. Using matrix algebra, we can write the system in the compact

form: [
1 b12
b21 1

] [
yt
zt

]
=

[
b10
b20

]
+

[
𝛾11 𝛾12
𝛾21 𝛾22

] [
yt−1
zt−1

]
+

[
𝜀yt
𝜀zt

]
or

Bxt = Γ0 + Γ1xt−1 + 𝜀t

where

B =
[
1 b12
b21 1

]
, xt =

[
yt
zt

]
, Γ0 =

[
b10
b20

]
,

Γ1 =
[
𝛾11 𝛾12
𝛾21 𝛾22

]
, 𝜀t =

[
𝜀yt
𝜀zt

]
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Premultiplication by B−1 allows us to obtain the VAR model in standard form:

xt = A0 + A1xt−1 + et (5.19)

where A0 = B−1Γ0,A1 = B−1Γ1, and et = B−1𝜀t.
For notational purposes, we can define ai0 as element i of the vector A0, aij as the

element in row i and column j of the matrix A1, and eit as the element i of the vector et.
Using this new notation, we can rewrite (5.19) in the equivalent form:

yt = a10 + a11yt−1 + a12zt−1 + e1t (5.20)

zt = a20 + a21yt−1 + a22zt−1 + e2t (5.21)

To distinguish between the systems represented by (5.17) and (5.18) versus (5.20)

and (5.21), the first is called a structural VAR or the primitive system and the second

is called a VAR in standard form. It is important to note that the error terms (i.e., e1t
and e2t) are composites of the two shocks 𝜀yt and 𝜀zt. Since et = B−1𝜀t, we can compute

e1t and e2t as

e1t = (𝜀yt − b12𝜀zt)∕(1 − b12b21) (5.22)

e2t = (𝜀zt − b21𝜀yt)∕(1 − b12b21) (5.23)

Since 𝜀yt and 𝜀zt are white-noise processes, it follows that both e1t and e2t have
zero means and constant variances and are individually serially uncorrelated. To find

the properties of {e1t}, first take the expected value of (5.22):

Ee1t = E(𝜀yt − b12𝜀zt)∕(1 − b12b21) = 0

The variance of e1t is given by

Ee2
1t = E[(𝜀yt − b12𝜀zt)∕(1 − b12b21)]2

= (𝜎2
y + b2

12
𝜎2
z )∕(1 − b12b21)2 (5.24)

Thus, the variance of e1t is time independent. The autocorrelations of e1t and e1t−i
are

Ee1te1t−i = E[(𝜀yt − b12𝜀zt)(𝜀yt−i − b12𝜀zt−i)]∕(1 − b12b21)2 = 0 for i ≠ 0

Similarly, (5.23) can be used to demonstrate that e2t is a stationary process with

zero mean, constant variance, and all autocovariances equal to zero. A critical point to

note is that e1t and e2t are correlated. The covariance of the two terms is

Ee1te2t = E[(𝜀yt − b12𝜀zt)(𝜀zt − b21𝜀yt)]∕(1 − b12b21)2

= −(b21𝜎2
y + b12𝜎

2
z )∕(1 − b12b21)2 (5.25)

In general, (5.25) will not be zero so that the two shocks will be correlated. In

the special case where b12 = b21 = 0 (i.e., if there are no contemporaneous effects of

yt on zt and zt on yt), the shocks will be uncorrelated. It is useful to define the vari-

ance/covariance matrix of the e1t and e2t shocks as

Σ =
[

var (e1t) cov
(
e1t, e2t

)
cov(e1t, e2t) var (e2t)

]
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Since all elements of Σ are time independent, we can use the more compact form

Σ =

[
𝜎2
1

𝜎12

𝜎21 𝜎2
2

]
(5.26)

where var(eit) = 𝜎2
i and cov(e1t, e2t) = 𝜎12 = 𝜎21.

Stability and Stationarity

In the first-order autoregressive model yt = a0 + a1yt−1 + 𝜀t, the stability condition is

that a1 be less than unity in absolute value. There is a direct analog between this stability
condition and thematrixA1 in the first-order VARmodel of (5.19). Using the brute force

method to solve the system, iterate (5.19) backward to obtain

xt = A0 + A1(A0 + A1xt−2 + et−1) + et
= (I + A1)A0 + A2

1
xt−2 + A1et−1 + et

where I = 2 × 2 identity matrix.

After n iterations,

xt = (I + A1 + · · · + An
1
)A0 +

n∑
i=0

Ai
1
et−i + An+1

1
xt−n−1

If we continue to iterate backward, it is clear that convergence requires that the

expression An
1
vanish as n approaches infinity. As shown below, stability requires that

the roots of (1 − a11L)(1 − a22L) − (a12a21L2) lie outside the unit circle (the stability
condition for higher-order systems is derived in Appendix 6.2 of Chapter 6). For the

time being, if we assume that the stability condition is met, we can write the particular

solution for xt as

xt = 𝜇 +
∞∑
i=0

Ai
1
et−i (5.27)

where 𝜇 = [y z]′ and
y = [a10(1 − a22) + a12a20]∕Δ; z = [a20(1 − a11) + a21a10]∕Δ
Δ = (1 − a11)(1 − a22) − a12a21.

If we take the expected value of (5.27), the unconditional mean of xt is 𝜇; hence, the
unconditional means of yt and zt are y and z, respectively. The variances and covariances
of yt and zt can be obtained as follows. First, form the variance/covariance matrix as

E(xt − 𝜇)2 = E

[ ∞∑
i=0

Ai
1
et−i

]2

Next, using (5.26) note that

Ee2t =
[
e1t
e2t

] [
e1t e2t

]
= Σ
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Since Eetet−i = 0 for i ≠ 0, it follows that

E(x1 − 𝜇)2 = (I + A2
1
+ A4

1
+ A6

1
+ · · ·)Σ

= [I − A2
1
]−1Σ

where it is assumed that the stability condition holds, so An
1
approaches zero as n

approaches infinity.

If we can abstract from an initial condition, the {yt} and {zt} sequences will be

jointly covariance stationary if the stability condition holds. Each sequence has a finite

and time-invariant mean and a finite and time-invariant variance.

In order to get another perspective on the stability condition, use lag operators to

rewrite the VAR model of (5.20) and (5.21) as

yt = a10 + a11Lyt + a12Lzt + e1t
zt = a20 + a21Lyt + a22Lzt + e2t

or

(1 − a11L)yt = a10 + a12Lzt + e1t
(1 − a22L)zt = a20 + a21Lzt + e2t

If we use this last equation to solve for zt, it follows that Lzt is

Lzt = L(a20 + a21Lyt + e2t)∕(1 − a22L)

so that

(1 − a11L)yt = a10 + a12L[(a20 + a21Lyt + e2t)∕(1 − a22L)] + e1t

Notice that we have transformed the first-order VAR in the {yt} and {zt} sequences
into a second-order stochastic difference equation in the {yt} sequence. Explicitly solv-
ing for yt, we get

yt =
a10(1 − a22) + a12a20 + (1 − a22L)e1t + a12e2t−1

(1 − a11L)(1 − a22L) − a12a21L2
(5.28)

In the same manner, you should be able to demonstrate that the solution for zt is

zt =
a20(1 − a11) + a21a10 + (1 − a11L)e2t + a21e1t−1

(1 − a11L)(1 − a22L) − a12a21L2
(5.29)

Equations (5.28) and (5.29) both have the same characteristic equation; con-

vergence requires that the roots of the polynomial (1 − a11L)(1 − a22L) − a12a21L
2

must lie outside the unit circle. (If you have forgotten the stability conditions for

second-order difference equations, you might want to refresh your memory by

reexamining Chapter 1.) Just as in any second-order difference equation, the roots

may be real or complex and may be convergent or divergent. Notice that both yt and zt
have the same characteristic equation; as long as a12 and a21 do not both equal zero,

the solutions for the two sequences have the same characteristic roots. Hence, both

will exhibit similar time paths.
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Dynamics of a VAR Model

Figure 5.6 shows the time paths of four simple systems. For each system, 100 sets of

normally distributed random numbers representing the {e1t} and {e2t} sequences were
drawn. The initial values of y0 and z0 were set equal to zero, and the {yt} and {zt}
sequences were constructed as in (5.20) and (5.21). Panel (a) uses the values:

a10 = a20 = 0; a11 = a22 = 0.7; and a12 = a21 = 0.2

When we substitute these values into (5.27), it is clear that the mean of each series

is zero. From the quadratic formula, the two roots of the inverse characteristic equation

(1 − a11L)(1 − a22L) − a12a21L
2 are 1.111 and 2.0. Since both are outside the unit cir-

cle, the system is stationary; the two characteristic roots of the solution for {yt} and

{zt} are 0.9 and 0.5, respectively. Since these roots are positive, real, and less than

unity, convergence will be direct. As you can see in the figure, there is a tendency for

the sequences to move together. Since a21 is positive, a large realization in yt induces
a large realization of zt+1; since a12 is positive, a large realization of zt induces a large
realization of yt+1. The cross-correlations between the two series are positive.

Panel (b) illustrates a stationary process with a10 = a20 = 0, a11 = a22 = 0.5, and

a12 = a21 = −0.2. Again, the mean of each series is zero, and the characteristic roots

are 0.7 and 0.3. However, in contrast to the previous case, a21 and a12 are both negative
so that positive realizations of yt can be associated with negative realizations of zt+1

2
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0 50 100 0 50 100
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FIGURE 5.6 Four VAR Processes
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and vice versa. As can be seen from comparing the second panel, the two series appear

to be negatively correlated.

In contrast, Panel (c) shows a process possessing a unit root; here, a11 =
a22 = a12 = a21 = 0.5. You should take a moment to find the characteristic roots.

Undoubtedly, there is little tendency for either of the series to revert to a constant

long-run value. Here, the intercept terms a10 and a20 are equal to zero so that Panel

(c) represents a multivariate generalization of the random walk model. You can see

how the series seem to meander together. In Panel (d), the VAR process of Panel (c)

also contains a nonzero intercept term (a10 = 0.5 and a20 = 0) that takes the role of a

“drift.” As you can see from Panel (d), the two series appear to move closely together.

The drift term adds a deterministic time trend to the nonstationary behavior of the

two series. Combined with the unit characteristic root, the {yt} and {zt} sequences are
joint random walk plus drift processes. Notice that the presence of the drift dominates

the long-run behavior of the series.

6. ESTIMATION AND IDENTIFICATION

One explicit aim of the Box–Jenkins approach is to provide amethodology that leads to

parsimonious models. The ultimate objective of making accurate short-term forecasts

is best served by purging insignificant parameter estimates from the model. Sims’s

(1980) criticisms of the “incredible identification restrictions” inherent in structural

models argue for an alternative estimation strategy. Consider the following multivariate

generalization of an autoregressive process:

xt = A0 + A1xt−1 + A2xt−2 + · · · + Apxt−p + et (5.30)

where xt = an (n × 1) vector containing each of the n variables included in the VAR

A0 = an (n × 1) vector of intercept terms

Ai = (n × n) matrices of coefficients

et = an (n × 1)vector of error terms.

Sims’s methodology entails little more than a determination of the appropriate

variables to include in the VAR and a determination of the appropriate lag length. The

variables to be included in the VAR are selected according to the relevant economic

model. Lag length tests (to be discussed below) select the appropriate lag length. Oth-

erwise, no explicit attempt is made to “pare down” the number of parameter estimates.

Thematrix A0 contains n parameters, and eachmatrixAi contains n
2 parameters; hence,

n + pn2 coefficients need to be estimated. Unquestionably, a VAR will be overparam-
eterized in that many of these coefficient estimates will be insignificant. However, the

goal is to find the important interrelationships among the variables. Improperly impos-

ing zero restrictions may waste important information. Moreover, the regressors are

likely to be highly collinear so that the t-tests on individual coefficients are not reliable
guides for paring down the model.

Note that the right-hand side of (5.30) contains only predetermined variables and

that the error terms are assumed to be serially uncorrelated with constant variance.

Hence, each equation in the system can be estimated using OLS. Moreover, OLS esti-

mates are consistent and asymptotically efficient. Even though the errors are correlated
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across equations, seemingly unrelated regressions (SUR) do not add to the efficiency of

the estimation procedure since all regressions have identical right-hand side variables.

There is an issue of whether the variables in a VAR need to be stationary. Sims

(1980) and Sims, Stock, and Watson (1990) recommended against differencing even
if the variables contain a unit root. They argued that the goal of a VAR analysis is to

determine the interrelationships among the variables, not to determine the parameter

estimates. The main argument against differencing is that it “throws away” informa-

tion concerning the comovements in the data (such as the possibility of cointegrating

relationships). Similarly, it is argued that the data need not be detrended. In a VAR, a

trending variable will be well approximated by a unit root plus drift. However, the

majority view is that the form of the variables in the VAR should mimic the true

data-generating process. This is particularly true if the aim is to estimate a structural

model. We return to these issues in Chapter 6; for now, it is assumed that all variables

are stationary. Questions 9 and 10 at the end of this chapter ask you to compare a VAR

in levels to a VAR in first differences.

Forecasting

Once the VAR has been estimated, it can be used as a multiequation forecasting model.

Suppose you estimate the first-order model xt = A0 + A1xt−1 + et so as to obtain the

values of the coefficients in A0 and A1. If your data run through period T , it is straight-
forward to obtain the one-step-ahead forecasts of your variables using the relationship

ETxT+1 = A0 + A1xT . Similarly, a two-step-ahead forecast can be obtained recursively

from ETxT+2 = A0 + A1ETxT+1 = A0 + A1[A0 + A1xT ]. Nevertheless, in a higher-order
model, there can be a large number of coefficient estimates. Since unrestricted VARs

are overparameterized, the forecasts may be unreliable. In order to obtain a parsimo-

niousmodel, many forecasters would purge the insignificant coefficients from the VAR.

After reestimating the so-called near-VARmodel using SUR, it could be used for fore-
casting purposes. Others might use a Bayesian approach by combining a set of prior

beliefs with the traditional VAR methods presented in this text. West and Harrison

(1989) provided an approachable introduction to the Bayesian approach. Litterman

(1980) proposed a sensible set of Bayesian priors that have become the standard in

Bayesian VAR models.

An interesting use of forecasting with a VAR is provided by the four-equation VAR

of Eckstein and Tsiddon (2004). The aim of the study was to investigate the effects of

terrorism (T) on the growth rates of Israeli real per capita GDP (ΔGDPt), investment

(ΔIt), exports (ΔEXPt), and nondurable consumption (ΔNDCt). The authors use quar-
terly data running from 1980Q1 to 2003Q3 so that there are 95 total observations. The
measure of terrorism is a weighted average of the number of Israeli fatalities, injuries,

and noncasualty incidents due to both domestic and transnational attacks occurring in

Israel. Consider a simplified version of their VAR model:⎡⎢⎢⎢⎣
ΔGDPt
ΔIt

ΔEXPt
ΔNDCt

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
A11 (L) … A14(L)

⋮ ⋱ ⋮
A41(L) … A44(L)

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
ΔGDPt−1
ΔIt−1

ΔEXPt−1
ΔNDCt−1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
c1Tt−1
c2Tt−1
c3Tt−1
c4Tt−1

⎤⎥⎥⎥⎦ + … +
⎡⎢⎢⎢⎣
e1t
e2t
e3t
e4t

⎤⎥⎥⎥⎦
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where the expressions Aij(L) are polynomials in the lag operator L, the ci measure the

influence of lagged terrorism on variable i, and the ei are the regression errors. The

other right-hand side variables (not shown) are the first difference of the real interest

rate, three quarterly seasonal dummies, and an intercept.

The nature of the VAR is such thatΔGDPt,ΔIt,ΔEXPt, andΔNDCt are all jointly
determined. In contrast, the terrorism variable acts as an independent variable in the

system. Notice that the magnitude of Tt−1 is allowed to affect the four macroeconomic

variables, but there is no feedback from these variables to the level of terrorism. The

authors report that lagging the terrorism variable for a single period provided a better

fit than the use of other lag lengths.

The four equations of the model were estimated through 2003Q3 and used to

obtain 1 through 12-step-ahead forecasts of ΔGDPt, ΔIt, ΔEXPt, and ΔNDCt. Unlike
forecasting with a pure VAR (in which all variables are jointly determined), it was

necessary for Eckstein and Tsiddon (2004) to specify the time path of the terrorism vari-

able. Consider the VAR representation of their model xt = A0 + A1xt−1 + cTt−1 + et,
where c is the 4 × 1 vector [c1, c2, c3, c4]′. The one-step-ahead forecast is ETxT+1 =
A0 + A1xT + cTT , and two-step-ahead forecast is ETxT+2 = A0 + A1ET [xT+1 + cTT+1].
Hence, in order to forecast the values of xT+2 and beyond, it is necessary to know the

magnitude of the terrorism variable over the forecast period. Toward this end, Eckstein

and Tsiddon supposed that all terrorism actually ended in 2003Q4 (so that all values

of Tj = 0 for j > 2003Q4. Under this assumption, the annual growth rate of GDP was

estimated to be 2.5% through 2005Q3. Instead, when they set the values of Tj at the
2000Q4–2003Q4 period average, the growth rate of GDP was estimated to be zero.

Thus, a steady level of terrorism would have cost the Israeli economy all of its real out-

put gains. In actuality, the largest influence of terrorism was found to be on investment.

The impact of terrorism on investment was twice as large as the impact on real GDP.

Identification

Suppose that you want to recover the structural VAR from your estimate of the

model in standard form. To illustrate the identification procedure, return to the

two-variable/first-order VAR of the previous section. Due to the feedback inherent in

a VAR process, the primitive equations (5.17) and (5.18) cannot be estimated directly.

The reason is that zt is correlated with the error term 𝜀yt and that yt is correlated

with the error term 𝜀zt. Standard estimation techniques require that the regressors be

uncorrelated with the error term. Note that there is no such problem in estimating the

VAR system in the form of (5.20) and (5.21). OLS can provide estimates of the two

elements of A0 and the four elements of A1. Moreover, obtaining the residuals from

the two regressions, it is possible to calculate estimates of the variance of e1t, e2t, and
the covariance between e1t with e2t. The issue is whether it is possible to recover all

of the information present in the primitive system given by (5.17) and (5.18). In other

words, is the primitive system identifiable given the OLS estimates of the VAR model

in the form of (5.20) and (5.21)?

The answer to this question is, “No, unless we are willing to appropriately restrict

the primitive system.” The reason is clear if we compare the number of parameters
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of the primitive system with the number of parameters recovered from the estimated

VAR model. Estimating (5.20) and (5.21) yields six coefficient estimates (a10, a20,
a11, a12, a21, and a22) and the calculated values of var(e1t), var(e2t), and cov(e1t, e2t).
However, the primitive system (5.17) and (5.18) contains 10 parameters. In addition to

the two intercept coefficients b10 and b20, the four autoregressive coefficients 𝛾11, 𝛾12,
𝛾21, and 𝛾22, and the two feedback coefficients b12 and b21, there are the two standard

deviations 𝜎y and 𝜎z. In all, the primitive system contains 10 parameters, whereas the

VAR estimation yields only 9 parameters. Unless one is willing to restrict one of the

parameters, it is not possible to identify the primitive system; equations (5.17) and

(5.18) are underidentified.

One way to identify the model is to use the type of recursive system proposed by

Sims (1980). Suppose that you are willing to impose a restriction on the primitive sys-

tem such that the coefficient b21 is equal to zero. Of course, forcing b21 = 0 imposes an

asymmetry on the system in that zt has a contemporaneous effect on yt but yt affects the
{zt} sequence with a one-period lag. Nevertheless, it should be clear that this restric-

tion (which might be suggested by a particular economic model) results in an exactly

identified system. Writing (5.22) and (5.23) with the constraint imposed yields

e1t = 𝜀yt − b12𝜀zt
e2t = 𝜀zt

so that

var(e1) = 𝜎2
y + b2

12
𝜎2
z (5.31)

var(e2) = 𝜎2
z (5.32)

cov(e1, e2) = −b12𝜎2
z (5.33)

Equations (5.32) through (5.33) consist of three equations in three unknowns.

Since the estimated variance/covariance matrix, Σ, contains var(e1), var(e2), and

cov(e1, e2), the values of b12, 𝜎2
z , and 𝜎2

y can be identified recursively as 𝜎2
z = var(e2),

b12 = −cov(e1, e2)∕𝜎2
z , and 𝜎2

y = var(e1) − b2
12
𝜎2
z . To put matters another way,

imposing the constraint means that the primitive system of (5.17) and (5.18) is

given by [
1 b12
0 1

] [
yt
zt

]
=

[
b10
b20

]
+

[
𝛾11 𝛾12
𝛾21 𝛾22

] [
yt−1
zt−1

]
+

[
𝜀yt
𝜀zt

]
Now, premultiplication of the primitive system by B−1 yields[
yt
zt

]
=

[
1 −b12
0 1

] [
b10
b20

]
+

[
1 −b12
0 1

] [
𝛾11 𝛾12
𝛾21 𝛾22

] [
yt−1
zt−1

]
+

[
1 −b12
0 1

] [
𝜀yt
𝜀zt

]
or [

yt
zt

]
=

[
b10 − b12b20

b20

]
+

[
𝛾11 − b12𝛾21 𝛾12 − b12𝛾22

𝛾21 𝛾22

] [
yt−1
zt−1

]
+

[
𝜀yt − b12𝜀zt

𝜀zt

]
Estimating the system using OLS yields the parameter estimates from:

yt = a10 + a11yt−1 + a12zt−1 + e1t
zt = a20 + a21yt−1 + a22zt−1 + e2t
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where a10 = b10 − b12b20, a11 = 𝛾11 − b12𝛾21, a12 = 𝛾12 − b12𝛾22, a20 = b20, a21 = 𝛾21,

and a22 = 𝛾22.

Along with (5.31) through (5.33), we have nine parameter estimates a10, a11, a12,
a20, a21, a22, var(e1), var(e2), and cov(e1, e2), which can be substituted into the nine

equations above in order to simultaneously solve for b10, b12, 𝛾11, 𝛾12, b20, 𝛾21, 𝛾22, 𝜎
2
y ,

and 𝜎2
z .

Note also that the estimates of the {𝜀yt} and {𝜀zt} sequences can be recovered.

The residuals from the second equation (i.e., the {e2t} sequence) are estimates of the

{𝜀zt} sequence. Combining these estimates along with the solution for b12 allows us to
calculate the estimates of the {𝜀yt} sequence using the relationship e1t = 𝜀yt − b12𝜀zt.

Take a minute to examine the restriction. The assumption b21 = 0 means that yt
does not have a contemporaneous effect on zt. The restriction manifests itself such that

both 𝜀yt and 𝜀zt shocks affect the contemporaneous value of yt but only 𝜀zt shocks affect
the contemporaneous value of zt. The observed values of e2t are completely attributed to

pure shocks to the {zt} sequence. Decomposing the residuals in this triangular fashion

is called a Choleski decomposition.

In fact, the result is quite general. In an n-variable VAR, B is an n × nmatrix since

there are n regression residuals and n structural shocks. As shown in Section 10, exact
identification requires that (n2 − n)∕2 restrictions be placed on the relationship between
the regression residuals and the structural innovations. Since the Choleski decomposi-

tion is triangular, it forces exactly (n2 − n)∕2 values of the B matrix to equal zero.

7. THE IMPULSE RESPONSE FUNCTION

Just as an autoregression has a moving average representation, a vector autoregression

can be written as a vector moving average (VMA). In fact, equation (5.27) is the VMA

representation of (5.19) in that the variables (i.e., yt and zt) are expressed in terms

of the current and past values of the two types of shocks (i.e., e1t and e2t). The VMA

representation is an essential feature of Sims’s (1980) methodology in that it allows you

to trace out the time path of the various shocks on the variables contained in the VAR

system. For illustrative purposes, continue to use the two-variable/first-order model

analyzed in the previous two sections. Writing the two-variable VAR in matrix form,[
yt
zt

]
=

[
a10
a20

]
+

[
a11 a12
a21 a22

] [
yt−1
zt−1

]
+

[
e1t
e2t

]
(5.34)

or, using (5.27), we get [
yt
zt

]
=

[
y
z

]
+

∞∑
i=0

[
a11 a12
a21 a22

]i [
e1t−i
e2t−i

]
(5.35)

Equation (5.35) expresses yt and zt in terms of the {e1t} and {e2t} sequences. How-
ever, it is insightful to rewrite (5.35) in terms of the {𝜀yt} and {𝜀zt} sequences. From

(5.22) and (5.23), the vector of errors can be written as[
e1t
e2t

]
= 1

1 − b12b21

[
1 −b12

−b21 1

] [
𝜀yt
𝜀zt

]
(5.36)
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so that (5.35) and (5.36) can be combined to form[
yt
zt

]
=

[
y
z

]
+ 1

1 − b12b21

∞∑
i=0

[
a11 a12
a21 a22

]i [
1 −b12

−b21 1

] [
𝜀yt−i
𝜀zt−i

]
Since the notation is getting unwieldy, we can simplify by defining the 2 × 2matrix

𝜙 with elements 𝜙jk(i):

𝜙i =
Ai

1

1 − b12b21

[
1 −b12

−b21 1

]
Hence, the moving average representation of (5.35) and (5.36) can be written in

terms of the {𝜀yt} and {𝜀zt} sequences:[
yt
zt

]
=

[
y
z

]
+

∞∑
i=0

[
𝜙11 (i) 𝜙12(i)
𝜙21(i) 𝜙22(i)

] [
𝜀yt−i
𝜀zt−i

]
or, more compactly,

xt = 𝜇 +
∞∑
i=0

𝜙i𝜀t−i (5.37)

The moving average representation is an especially useful tool to examine the

interaction between the {yt} and {zt} sequences. The coefficients of 𝜙i can be used

to generate the effects of 𝜀yt and 𝜀zt shocks on the entire time paths of the {yt} and

{zt} sequences. If you understand the notation, it should be clear that the four elements

𝜙jk(0) are impact multipliers. For example, the coefficient 𝜙12(0) is the instantaneous
impact of a one-unit change in 𝜀zt on yt. In the same way, the elements 𝜙11(1) and
𝜙12(1) are the one-period responses of unit changes in 𝜀yt−1 and 𝜀zt−1 on yt, respectively.
Updating by one period indicates that 𝜙11(1) and 𝜙12(1) also represent the effects of

unit changes in 𝜀yt and 𝜀zt on yt+1.
The accumulated effects of unit impulses in 𝜀yt and/or 𝜀zt can be obtained by

the appropriate summation of the coefficients of the impulse response functions. For

example, note that, after n periods, the effect of 𝜀zt on the value of yt+n is 𝜙12(n). Thus,
after n periods, the cumulated sum of the effects of 𝜀zt on the {yt} sequence is

n∑
i=0

𝜙12(i)

Letting n approach infinity yields the total cumulated effect. If the {yt} and {zt}
sequences are assumed to be stationary, it must be the case that for all j and k, the
values of 𝜙jk (i) converge to zero as i gets large. This follows as shocks cannot have a
permanent effect on a stationary series. It also follows that

∞∑
i=0

𝜙2
jk(i) is finite

The four sets of coefficients 𝜙11(i), 𝜙12(i), 𝜙21(i), and 𝜙22(i) are called the impulse
response functions. Plotting the impulse response functions [i.e., plotting the coef-

ficients of 𝜙jk(i) against i] is a practical way to visually represent the behavior of
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the {yt} and {zt} series in response to the various shocks. In principle, it might be

possible to know all of the parameters of the primitive system (5.17) and (5.18). With

such knowledge, it would be possible to trace out the time paths of the effects of pure

𝜀yt or 𝜀zt shocks. However, this methodology is not available to the researcher since

an estimated VAR is underidentified. As explained in the previous section, knowledge

of the various aij and the variance/covariance matrix Σ is not sufficient to identify the

primitive system. Hence, the econometrician must impose an additional restriction on

the two-variable VAR system in order to identify the impulse responses.

One possible identification restriction is to impose the recursive ordering (or

Choleski decomposition) used in (5.31), such that yt does not have a contemporaneous

effect on zt. Formally, this restriction is represented by setting b21 = 0 in the primitive

system. In terms of (5.36), the error terms can be decomposed as follows:

e1t = 𝜀yt − b12𝜀zt (5.38)

e2t = 𝜀zt (5.39)

As already noted, if we use (5.39), all of the observed errors from the {e2t}
sequence are attributed to 𝜀zt shocks. Given the calculated {𝜀zt} sequence, knowledge
of the values of the {e1t} sequence and the correlation coefficient between e1t and e2t
allows for the calculation of the {𝜀yt} sequence using (5.38). Although this Choleski

decomposition constrains the system such that an 𝜀yt shock has no direct effect on zt,
there is an indirect effect in that lagged values of yt affect the contemporaneous value

of zt. The key point is that the decomposition forces a potentially important asymmetry

on the system since an 𝜀zt shock has contemporaneous effects on both yt and zt. For
this reason, (5.38) and (5.39) are said to be an ordering of the variables. An 𝜀zt shock

directly affects e1t and e2t, but an 𝜀yt shock does not affect e2t. Hence, zt is said to be

“causally prior” to yt.
Suppose that estimates of equations (5.20) and (5.21) yield the values

a10 = a20 = 0, a11 = a22 = 0.7, and a12 = a21 = 0.2. You will recall that this is

precisely the model used in the simulation reported in Panel (a) of Figure 5.6. Also,

suppose that the elements of the Σmatrix are such that 𝜎2
1
= 𝜎2

2
and that cov(e1t, e2t) is

such that the correlation coefficient between e1t and e2t (denoted by 𝜌12) is 0.8. Hence,
the decomposed errors can be represented by4

e1t = 𝜀yt + 0.8𝜀zt (5.40)

e2t = 𝜀zt (5.41)

Panels (a) and (b) of Figure 5.7 trace out the effects of one-unit shocks to 𝜀zt and 𝜀yt
on the time paths of the {yt} and {zt} sequences. As shown in Panel (a), a one-unit shock
in 𝜀zt causes zt to jump by one unit and yt to jump by 0.8 units. [From (5.40), 80% of the

𝜀zt shock has a contemporaneous effect on e1t.] In the next period, 𝜀zt+1 returns to zero,
but the autoregressive nature of the system is such that yt+1 and zt+1 do not immediately

return to their long-run values. Since zt+1 = 0.2yt + 0.7zt + 𝜀zt+1, it follows that zt+1 =
0.86 [0.2(0.8) + 0.7(1) = 0.86]. Similarly, yt+1 = 0.7yt + 0.2zt = 0.76. As you can see

from the figure, the subsequent values of the {yt} and {zt} sequences converge to their
long-run levels. This convergence is assured by the stability of the system; as found

earlier, the two characteristic roots are 0.5 and 0.9.
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FIGURE 5.7 Two Impulse Response Functions

The effects of a one-unit shock in 𝜀yt are shown in Panel (b) of the figure. You

can see the asymmetry of the decomposition immediately by comparing the two upper

graphs. A one-unit shock in 𝜀yt causes the value of yt to increase by one unit; however,
there is no contemporaneous effect on the value of zt so that yt = 1 and zt = 0. In the

subsequent period, 𝜀yt+1 returns to zero. The autoregressive nature of the system is such

that yt+1 = 0.7yt + 0.2zt = 0.7 and zt+1 = 0.2yt + 0.7zt = 0.2. The remaining points in

the figure are the impulse responses for periods t + 2 through t + 20. Since the system

is stationary, the impulse responses ultimately decay.

Can you figure out the consequences of reversing the Choleski decomposition in

such a way that b12, rather than b21, is constrained to equal zero? Since matrix A1 is

symmetric (i.e., a11 = a22 and a12 = a21), the impulse responses of an 𝜀yt shock would

be similar to those in Panel (a) and the impulse responses of an 𝜀zt would be similar to

those in Panel (b). The only difference would be that the solid line would represent the
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time path of the {zt} sequence and the hatched line would represent the time path of

the {yt} sequence.
As a practical matter, how does the researcher decide which of the alternative

decompositions is most appropriate? In some instances, there might be a theoretical

reason to suppose that one variable has no contemporaneous effect on the other. In the

terrorism/tourism example, knowledge that terrorist incidents affect tourism with a lag

suggests that terrorism does not have a contemporaneous effect on tourism. Usually,

there is no such a priori knowledge. Moreover, the very idea of imposing a structure

on a VAR system seems contrary to the spirit of Sims’s argument against “incredible

identifying restrictions.” Unfortunately, there is no simple way to circumvent the prob-

lem; identification necessitates imposing some structure on the system. The Choleski

decomposition provides a minimal set of assumptions that can be used to identify the

structural model.

It is crucial to note that the importance of the ordering depends on the magni-
tude of the correlation coefficient between e1t and e2t. Let this correlation coefficient

be denoted by 𝜌12 so that 𝜌12 = 𝜎12∕(𝜎1𝜎2). Now suppose that the estimated model

yields a value of Σ such that 𝜌12 is found to be equal to zero. In this circumstance,

the ordering would be immaterial. Formally, (5.38) and (5.39) become e1t = 𝜀yt and

e2t = 𝜀zt. Since there is no correlation across equations, the residuals from the yt and
zt equations are necessarily equivalent to the 𝜀yt and 𝜀zt shocks, respectively. The point
is that if Ee1te2t = 0, b12 and b21 can both be set equal to zero. At the other extreme, if

𝜌12 is found to be unity, there is a single shock that contemporarily affects both vari-

ables.When 𝜌12 = 0 andmaintaining the assumption b21 = 0, (5.38) and (5.39) become

e1t = 𝜀zt and e2t = 𝜀zt, and under the alternative assumption b12 = 0, it follows that

e1t = 𝜀yt and e2t = 𝜀yt. Usually, the researcher will want to test the significance of 𝜌12.

As in a univariate model, you can test the null hypothesis 𝜌12 = 0 using a normal distri-

bution with a mean of zero and a standard deviation of T−0.5. As such, with 100 usable
observations, if |𝜌12| > 0.2, the correlation is deemed to be significant at conventional

levels. If 𝜌12 is significant, the usual procedure is to obtain the impulse response func-

tion using a particular ordering. Compare the results to the impulse response function

obtained by reversing the ordering. If the implications are quite different, additional

investigation into the relationships between the variables is necessary.

The lower half of Figure 5.7, Panels (c) and (d), show the impulse response

functions for a second model; the sole difference between models 1 and 2 is the change

in the values of a12 and a21 to −0.2. Notice that this model was used in the simulation

reported in Panel (b) of Figure 5.6. The negative off-diagonal elements of A1 weaken

the tendency for the two series to move together. Panel (c) traces out the effect of

a one-unit 𝜀zt shock using ordering represented by (5.40) and (5.41). In period t, zt
rises by one unit and yt rises by 0.8 units. In period (t + 1), 𝜀zt+1 returns to zero but

the value of yt+1 is 0.7yt − 0.2zt = 0.36 and the value of zt+1 is −0.2yt + 0.7zt = 0.54.

The points represented by t = 2 through 20 show that the impulse responses converge

to zero. Panel (d) traces the responses of a one-unit 𝜀yt shock. Since the value

of zt is unaffected by the shock, in period (t + 1), yt+1 = 0.7yt − 0.2zt = 0.7 and
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zt+1 = −0.2yt + 0.7zt = −0.2. In the same way, yt+2 = 0.7 ∗ 0.7 − 0.2 ∗ (−0.2) = 0.53

and zt+2 = −0.2 ∗ (0.7) + 0.7 ∗ (−0.2) = −0.28. Since the system is stable, both

sequences eventually converge to zero.

Confidence Intervals and Impulse Responses

One key issue concerning the impulse response functions is that they are constructed

using the estimated coefficients. Since each coefficient is estimated imprecisely, the

impulse responses also contain error. The issue is to construct confidence intervals

around the impulse responses that allow for the parameter uncertainty inherent in the

estimation process. To illustrate the methodology, consider the following estimate of

an AR(1) model:

yt = 0.60yt−1 + 𝜀t

(4.00)

Given the t-statistic of 4.00, the AR(1) coefficient seems to be well estimated. It is

easy to form the impulse response function: For any given level of yt−1, a one-unit shock
to 𝜀t will increase yt by one unit. In subsequent periods, yt+1 will be 0.60 and yt+2 will
be (0.60)2. As you can easily verify, the impulse response function can be written as

𝜙(i) = (0.60)i.
Notice that the point estimate of the AR(1) coefficient is 0.6 with a standard devi-

ation of 0.15 (0.15 = 0.60∕4.00). If we are willing to assume that the coefficient is

normally distributed, there is a 95% chance that the actual value lies within the two

standard deviation interval 0.3–0.9. As such, the decay pattern could be anywhere

between 𝜙(i) = (0.90)i and 𝜙(i) = (0.30)i. The problem is much more complicated in

higher-order systems since the estimated coefficients will be correlated. Moreover, you

may not want to assume normality. One way to obtain the desired confidence intervals

from theAR(p) process yt = a0 + a1yt−1 + · · · + apyt−p + 𝜀t is to perform the following

Monte Carlo study:

1. Estimate the coefficients a0 through ap using OLS and save the residuals.

Let âi denote the estimated value of ai and let {�̂�i} denote the estimated

residuals.

2. For a sample size of T , draw T random numbers so as to represent the {𝜀t}
sequence. Most software packages will draw the numbers using randomly

selected values of �̂�i (with replacement). In this way, they actually gener-

ate bootstrap confidence intervals. Thus, you will have a simulated series

of length T , called 𝜀st , which should have the same properties as the true

error process. Use these random numbers to construct the simulated {yst}
sequence as

yst = â0 + â1y
s
t−1 + · · · + âpy

s
t−p + 𝜀st

Be sure that you appropriately initialize the series so as to eliminate the

effects of the initial conditions.
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3. Now act as if you did not know the coefficient values used to generate the

yst series. Estimate yst as an AR(p) process and obtain the impulse response

function. If you repeat the process several thousand times, you can generate

several thousand impulse response functions. You use these impulse response

functions to construct the confidence intervals. For example, you can con-

struct the interval that excludes the lowest 2.5% and highest 2.5% of the

responses to obtain a 95% confidence interval.

The benefit of this method is that you do not need to make any special assumptions

concerning the distribution of the autoregressive coefficients. The actual calculation of

confidence intervals is only a bit more complicated in a VAR. Consider the two-variable

system:

yt = a11yt−1 + a12zt−1 + e1t
zt = a21yt−1 + a22zt−1 + e2t

The complicating issue is that the regression residuals are correlated. As such, you

need to draw e1t and e2t so as to maintain the appropriate error structure. A simple

method is to draw e1t and use the value of e2t that corresponds to that same period. If

you use a Choleski decomposition such that b21 = 0, construct 𝜀1t and 𝜀2t using (5.38)

and (5.39). Figure 5.8 reports confidence intervals from a two-variable VAR that has

been estimated using the domestic and transnational terrorism data shown in Figure 5.1.
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You can see that the responses of domestic terrorism to transnational shocks are never

significant.

Variance Decomposition

Another useful aid in uncovering interrelationships among the variables in the system

is a forecast error variance decomposition. Suppose that we knew the coefficients of

A0 and A1 and wanted to forecast the various values of xt+i conditional on the observed
value of xt. Updating (5.19) one period (i.e., xt+1 = A0 + A1xt + et+1) and taking the

conditional expectation of xt+1, we obtain

Etxt+1 = A0 + A1xt

Note that the one-step-ahead forecast error is xt+1 − Etxt+1 = et+1. Similarly,

updating two periods, we get

xt+2 = A0 + A1xt+1 + et+2
= A0 + A1(A0 + A1xt + et+1) + et+2

If we take conditional expectations, the two-step-ahead forecast of xt+2 is

Etxt+2 = (I + A1)A0 + A2
1
xt

The two-step-ahead forecast error (i.e., the difference between the realization of

xt+2 and the forecast) is et+2 + A1et+1. More generally, it is easily verified that the

n-step-ahead forecast is

Etxt+n = (I + A1 + A2
1
+ · · · + An−1

1
)A0 + An

1
xt

and that the associated forecast error is

et+n + A1et+n−1 + A2
1
et+n−2 + · · · + An−1

1
et+1 (5.42)

We can also consider these forecast errors in terms of (5.37) (i.e., the VMA form

of the structural model). Of course, the VMA and the VAR models contain exactly the

same information but it is convenient (and a good exercise) to describe the properties

of the forecast errors in terms of the {𝜀t} sequence. If we use (5.37) to conditionally

forecast xt+1, one step ahead the forecast error is 𝜙0𝜀t+1. In general,

xt+n = 𝜇 +
∞∑
i=0

𝜙i𝜀t+n−i

so that the n-period forecast error xt+n − Etxt+n is

xt+n − Etxt+n =
n−1∑
i=0

𝜙i𝜀t+n−i

Focusing solely on the {yt} sequence, we see that the n-step-ahead forecast error

is

yt+n − Etyt+n = 𝜙11(0)𝜀yt+n + 𝜙11(1)𝜀yt+n−1 + · · · + 𝜙11(n − 1)𝜀yt+1
+ 𝜙12(0)𝜀zt+n + 𝜙12(1)𝜀zt+n−1 + · · · + 𝜙12(n − 1)𝜀zt+1
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Denote the n-step-ahead forecast error variance of yt+n as 𝜎y(n)2:

𝜎y(n)2 = 𝜎2
y [𝜙11(0)2 + 𝜙11(1)2 + · · · + 𝜙11(n − 1)2]

+ 𝜎2
z [𝜙12(0)2 + 𝜙12(1)2 + · · · + 𝜙12(n − 1)2]

Because all values of 𝜙jk(i)2 are necessarily nonnegative, the variance of the fore-
cast error increases as the forecast horizon n increases. Note that it is possible to decom-

pose the n-step-ahead forecast error variance into the proportions due to each shock.

The proportions of 𝜎y(n)2 due to shocks in the {𝜀yt} and {𝜀zt} sequences are

𝜎2
y [𝜙11(0)2 + 𝜙11(1)2 + · · · + 𝜙11(n − 1)2]

𝜎y(n)2

and
𝜎2
z [𝜙12(0)2 + 𝜙12(1)2 + · · · + 𝜙12(n − 1)2]

𝜎y(n)2

respectively.

The forecast error variance decomposition tells us the proportion of the move-

ments in a sequence due to its “own” shocks versus shocks to the other variable. If

𝜀zt shocks explain none of the forecast error variance of {yt} at all forecast horizons,

we can say that the {yt} sequence is exogeneous. In this circumstance, {yt} evolves

independently of the 𝜀zt shocks and the {zt} sequence. At the other extreme, 𝜀zt shocks

could explain all of the forecast error variance in the {yt} sequence at all forecast hori-
zons, so that {yt} would be entirely endogeneous. In applied research, it is typical for a
variable to explain almost all of its forecast error variance at short horizons and smaller

proportions at longer horizons. We would expect this pattern if 𝜀zt shocks had little

contemporaneous effect on yt but acted to affect the {yt} sequence with a lag.
Note that the variance decomposition contains the same problem inherent in

impulse response function analysis. In order to identify the {𝜀yt} and {𝜀zt} sequences,
it is necessary to restrict the B matrix. The Choleski decomposition used in (5.38) and

(5.39) necessitates that all of the one-period forecast error variance of zt is due to 𝜀zt.

If we use the alternative ordering, all of the one-period forecast error variance of yt
would be due to 𝜀yt. The effects of these alternative assumptions are reduced at longer

forecasting horizons. In practice, it is useful to examine the variance decompositions

at various forecast horizons. As n increases, the variance decompositions should

converge. Moreover, if the correlation coefficient 𝜌12 is significantly different from

zero, it is customary to obtain the variance decompositions under various orderings.

Nevertheless, impulse analysis and variance decompositions (together called inno-
vation accounting) can be useful tools to examine the relationships among economic

variables. If the correlations among the various innovations are small, the identification

problem is not likely to be especially important. The alternative orderings should yield

similar impulse responses and variance decompositions. Of course, the contemporane-

ous movements of many economic variables are highly correlated. Sections 10–13

consider two attractive methods that can be used to identify the structural innova-

tions. Before examining these techniques, we consider hypothesis testing in a VAR
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framework and reexamine the interrelationships between domestic and transnational

terrorism.

8. TESTING HYPOTHESES

In principle, there is nothing to prevent you from incorporating a large number of vari-

ables in the VAR. It is possible to construct an n-equation VAR with each equation

containing p lags of all n variables in the system. You will want to include those vari-

ables that have important economic effects on each other. As a practical matter, degrees

of freedom are quickly eroded as more variables are included. For example, using

monthly data with 12 lags, the inclusion of one additional variable uses an additional 12

degrees of freedom in each equation. A careful examination of the relevant theoretical

model will help you to select the set of variables to include in your VAR model.

An n-equation VAR can be represented by

⎡⎢⎢⎢⎣
x1t
x2t
⋅
xnt

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
A10

A20

⋅
An0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
A11 (L) A12(L) ⋅ A1n(L)
A21(L) A22(L) ⋅ A2n(L)
. . ⋅ ⋅
An1(L) An2(L) ⋅ Ann(L)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1t−1
x2t−1
⋅

xnt−1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
e1t
e2t
⋅
ent

⎤⎥⎥⎥⎦ (5.43)

where Ai0 = the parameters representing intercept terms

Aij(L) = the polynomials in the lag operator L.

The individual coefficients of Aij(L) are denoted by aij(1), aij(2), . . . . Since all

equations have the same lag length, the polynomials Aij(L) are all of the same degree.

The terms eit are white-noise disturbances that may be correlated with each other.

Again, designate the variance/covariance matrix by Σ, where the dimension of Σ is

(n × n).
In addition to the determination of the set of variables to include in the VAR, it is

important to determine the appropriate lag length. One possible procedure is to allow

for different lag lengths for each variable in each equation. However, in order to pre-

serve the symmetry of the system (and to be able to use OLS efficiently), it is common

to use the same lag length for all equations. As indicated in Section 6, as long as there

are identical regressors in each equation, OLS estimates are consistent and asymptoti-

cally efficient. If some of the VAR equations have regressors not included in the others,

seemingly unrelated regressions (SUR) provide efficient estimates of the VAR coeffi-

cients. Hence, when there is a good reason to let lag lengths differ across equations,

estimate the so-called near-VAR using SUR.

In a VAR, long-lag lengths quickly consume degrees of freedom. If lag length is

p, each of the n equations contains np coefficients plus the intercept term. Appropri-

ate lag length selection can be critical. If p is too small, the model is misspecified;

if p is too large, degrees of freedom are wasted. To check lag length, begin with the

longest plausible length or the longest feasible length given degrees-of-freedom con-

siderations. Estimate the VAR and form the variance/covariance matrix of the resid-

uals. Using quarterly data, you might start with a lag length of 12 quarters based on

the a priori notion that 3 years is sufficiently long to capture the system’s dynamics.
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Call the variance/covariance matrix of the residuals from the 12-lag model Σ12. Now

suppose you want to determine whether eight lags are appropriate. After all, restricting

the model from 12 to 8 lags would reduce the number of estimated parameters by 4n
in each equation.

Since the goal is to determine whether lag 8 is appropriate for all equations, an

equation by equation F-test on lags 9 through 12 is not appropriate. Instead, the proper
test for this cross-equation restriction is a likelihood ratio test. Reestimate the VAR

over the same sample period using eight lags and obtain the variance/covariance matrix

of the residuals Σ8. Note that Σ8 pertains to a system of n equations with 4n restrictions
in each equation, for a total of 4n2 restrictions. The likelihood ratio statistic is

(T)(ln|Σ8| − ln|Σ12|)
However, given the sample sizes usually found in economic analysis, Sims (1980)

recommended using

(T − c)
(
ln ||Σ8

|| − ln ||Σ12
||)

where T is number of usable observations, c the number of parameters estimated in each

equation of the unrestricted system, and ln|Σn| = the natural logarithm of the determi-

nant of Σn.
In the example at hand, c = 1 + 12n since each equation of the unrestricted model

has 12 lags for each variable plus an intercept.

This statistic has an asymptotic 𝜒2 distribution with degrees of freedom equal to

the number of restrictions in the system. In the example under consideration, there are

4n restrictions in each equation, for a total of 4n2 restrictions in the system. Clearly, if

the restriction of a reduced number of lags is not binding, we would expect ln |Σ8| to
be equal to ln |Σ12|. Large values of this sample statistic indicate that having only eight

lags is a binding restriction; hence, we can reject the null hypothesis that lag length = 8.

If the calculated value of the statistic is less than 𝜒2 at a prespecified significance level,

we will not be able to reject the null of only eight lags. At that point, we could seek to

determine whether four lags were appropriate by constructing

(T − c)(ln |Σ4| − ln |Σ8|)
Considerable care should be taken in paring down lag length in this manner. Often,

this procedure will not reject the null hypotheses of 8 versus 12 lags and 4 versus 8

lags, although it will reject a null of 4 versus 12 lags. The problem with paring down

the model is that you may lose a small amount of explanatory power at each stage.

Overall, the total loss in explanatory power can be significant. In such circumstances,

it is better to use the longer lag lengths.

This type of likelihood ratio test is applicable to any type of cross-equation

restriction. Let Σu and Σr be the variance/covariance matrices of the unrestricted and

restricted systems, respectively. If the equations of the unrestricted model contain

different regressors, let c denote the maximum number of regressors contained in the

longest equation. Sims’s recommendation is to compare the test statistic

(T − c)(ln |Σr| − ln |Σu|) (5.44)
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to a 𝜒2 distribution with degrees of freedom equal to the number of restrictions in the

system.

To take another example, suppose youwanted to capture seasonal effects by includ-

ing three seasonal dummies in each of the n equations of a VAR. Estimate the unre-

stricted model by including the dummy variables and estimate the restricted model

by excluding the dummies. The total number of restrictions in the system is 3n. If
lag length is p, the equations of the unrestricted model have np + 4 parameters (np
lagged variables, the intercept, and the three seasonals). For T usable observations, set

c = np + 4 and calculate the value of (5.44). If for some prespecified significance level

this calculated value 𝜒2 (with 3n degrees of freedom) exceeds the critical value, the

restriction of no seasonal effects can be rejected.

The likelihood ratio test is based on asymptotic theory, which may not be very

useful in the small samples available to time-series econometricians. Moreover, the

likelihood ratio test is only applicable when one model is a restricted version of the

other. Alternative test criteria are the multivariate generalizations of the AIC and SBC:

AIC = T ln |Σ| + 2N

SBC = T ln |Σ| + N ln(T)

where |Σ| = determinant of the variance∕covariance matrix of the residuals

N = total number of parameter sestimated in all equations.

Thus, if each equation in an n-variable VAR has p lags and an intercept,

N = n2p + n; each of the n equations has np lagged regressors and an intercept.

Adding additional regressors will reduce ln |Σ| at the expense of increasing N.
As in the univariate case, select the model with the lowest AIC or SBC value. Make

sure that you adequately compare the models using the same number of observations

in each. Note that the multivariate AIC and SBC cannot be used to test the statistical
significance of alternative models. Instead, they are measures of the overall fit of the

alternatives. As in the univariate case, there are a number of ways that researchers and

software packages use to report the multivariate generalizations of the AIC and SBC.

Often, these values will be reported as

AIC∗ = −2 ln(L)∕T + 2N∕T
SBC∗ = −2 ln(L)∕T + N ln(T)∕T

where L = maximized value of the multivariate log likelihood function. Note that some

packages will omit the T in the denominator.

Granger Causality

One test of causality is whether the lags of one variable enter into the equation for

another variable. In a two-equation model with p lags, {yt} does not Granger cause
{zt} if and only if all of the coefficients of A21(L) are equal to zero. Thus, if {yt} does
not improve the forecasting performance of {zt}, then {yt} does not Granger cause {zt}.
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If all variables in the VAR are stationary, the direct way to test Granger causality is to
use a standard F-test of the restriction

a21(1) = a21(2) = a21(3) = … = a21(p) = 0

It is straightforward to generalize this notion to the n-variable case of (5.43). Since
Aij(L) represents the coefficients of lagged values of variable j on variable i, variable j
does not Granger cause variable i if all the coefficients of the polynomial Aij(L) can be
set equal to zero.

Note that Granger causality is something quite different from a test for exogeneity.

For zt to be exogeneous, we would require that it not be affected by the contempora-

neous value of yt. However, Granger causality refers only to the effects of past values

of {yt} on the current value of zt. Hence, Granger causality actually measures whether

current and past values of {yt} help to forecast future values of {zt}. To illustrate the

distinction in terms of a VMAmodel, consider the following equation such that yt does
not Granger cause zt yet zt is not exogeneous

zt = z + 𝜙21(0)𝜀yt +
∞∑
i=0

𝜙22(i)𝜀zt−i

If we forecast zt+1 conditional on the values of the 𝜀zt−i(i = 0, 1, …) alone, we
obtain the forecast error 𝜙21(0)𝜀yt+1 + 𝜙22(0)𝜀zt+1. Yet, we get the same forecast error

if we forecast zt+1 conditional on 𝜀zt−i and 𝜀yt−i(i = 0, 1, …). Given the value of zt,
information concerning yt does not aid in reducing the forecast error for zt+1. In other

words, for the model under consideration, Et(zt+1|zt) = Et(zt+1|zt, yt). Thus, {yt} does
not Granger cause {zt}. On the other hand, since we are assuming that 𝜙21(0) is not
zero, {zt} is not exogenous. Clearly, if 𝜙21(0) is not zero, pure shocks to yt+1 (i.e.,

𝜀yt+1) affect the value of zt+1 even though the {yt} sequence does not Granger cause

the {zt} sequence.
A block-exogeneity test is useful for detecting whether to incorporate an addi-

tional variable into a VAR. Given the aforementioned distinction between causality

and exogeneity, this multivariate generalization of the Granger causality test should

actually be called a block-causality test. In any event, the issue is to determine whether

lags of one variable—say wt—Granger cause any other of the variables in the system.

In the three-variable case withwt, yt, and zt, the test is whether lags ofwt Granger cause
either yt or zt. In essence, the block-exogeneity restricts all lags of wt in the yt and zt to
be equal to zero. This cross-equation restriction is properly tested using the likelihood

ratio test given by (5.44). Estimate the yt and zt equations using lagged values of {yt},
{zt}, and {wt} and calculate Σu. Reestimate excluding the lagged values of {wt} and

calculate Σr. Next, find the likelihood ratio statistic:

(T − c)(ln |Σr| − ln |Σu|)
As in (5.44), this statistic has a 𝜒2 distribution with degrees of freedom equal to

2p (since p lagged values of {wt} are excluded from each equation). Here c = 3p + 1

because the unrestricted yt and zt equations contain p lags of {yt}, {zt}, and {wt} plus
a constant.
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Granger Causality and Money Supply Changes

The usefulness of Granger causality tests can be illustrated by a reconsideration

of the type of time-series equation used in the St. Louis model. Through the late

1970s, the conventional wisdom was that fluctuations in money contained useful

information about the future values of real income and prices. In fact, the argument

in favor of conducting an active monetary policy is that there exists a systematic

relationship between current values of the money supply and future values of the price

level and/or real income. However, there is a large body of literature indicating that

this relationship broke down in the late 1970s. In an influential article, Friedman and

Kuttner (1992) argued that the issue is whether fluctuations in money help predict

future fluctuations in income that are not already predicted on the basis of income

itself or other readily observable variables. Consider the VAR equation

Δyt = 𝛼 +
4∑
i=1

𝛽iΔmt−i +
4∑
i=1

𝛾iΔgt−i +
4∑
i=1

𝛿iΔyt−i + 𝜀t

Notice how this equation differs from the St. Louis model given by (5.16). Here,

the logarithmic change in nominal income (Δyt) depends on its own past values and

on the past values of the logarithmic changes in the nominal money supply (Δmt) and
federal government expenditures (Δgt).

The issue is simple; in the presence of past values of {Δyt} and {Δgt}, does knowl-
edge of the money supply series provide any information about the future value of

nominal income? Toward this end, Friedman and Kuttner (1992) used several mea-

sures of the money supply (e.g., the money base, M1, M2, and various short-term

interest rates) and estimated a three-variable VAR over various sample periods. For the

1960Q2–1979Q2 period, the F-statistic for the null hypothesis that the money base

does not Granger cause Δyt is 3.68. At the 1% significance level, it is possible to con-

clude that money Granger causes {Δyt}. However, for the 1970Q3–1990Q4 period, the
F-statistic is only 0.82; hence, at any conventional significance level, money does not

Granger cause income. The findings are quite robust to the other measures of the mon-

etary variable. Until 1979Q2, all of the monetary aggregates Granger cause nominal

income at the 1% significance level. None of these aggregates Granger causes nominal

income in the latter period.

To provide a better understanding of the interrelationships among the three vari-

ables, Friedman and Kuttner also reported the results of the variance decompositions.

For the 1960Q2–1979Q2 period, M1 explained 27% of the forecast error variance

in {Δyt} at both the four- and eight-quarter forecast horizons. In contrast, for the

1970Q3–1990Q4 period, M1 explained about 10% of the forecast error variance in

{Δyt} at both the four- and eight-quarter forecast horizons. These results are in striking
contrast to those of the St. Louis equation. Undoubtedly, money supply changes have

become less useful in predicting the future path of nominal income.

Tests with Nonstationary Variables

In Chapter 4, we saw that it is possible to perform hypothesis tests on an individual

equation when some of the regressors are stationary and others are nonstationary. In
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particular, Rule 1 of Sims, Stock, andWatson (1990) was used to select the appropriate

lag length in an augmented Dickey–Fuller test. The issue is particularly relevant to

VARs since many of the regressors are likely to be nonstationary. Recall that a key

finding of Sims, Stock, andWatson (1990) is: If the coefficient of interest can be written
as a coefficient on a zero-mean stationary variable, then a t-test is appropriate. If the
sample size is large, you can use the normal approximation for the t-test. To take a

specific example, consider the following equation from a two-variable VAR:

yt = a11yt−1 + a12yt−2 + b11zt−1 + b12zt−2 + 𝜀t (5.45)

First consider the case in which {yt} is I(1) and {zt} is I(0). Since b11 and b12
are coefficients on stationary variables, it is possible to use a t-test to test the hypoth-

esis b11 = 0 or b12 = 0 and an F-test to test the hypothesis b11 = b12 = 0. Hence, lag

lengths involving {zt} and the test to determine whether {zt} Granger causes {yt} can
be performed using the t- or F-distributions.

Notice that it is possible to use a t-test for the restriction a11 = 0 or a12 = 0. You

can perform both of these tests even though {yt} is not stationary. However, you cannot
test the restriction a11 = a12 = 0 using an F-test. To make the point, add and subtract

a12yt−1 to the right-hand side of (5.45) to obtain

yt = a11yt−1 + a12yt−1 − a12 (yt−1 − yt−2) + b11zt−1 + b12zt−2 + 𝜀t

and if we define a11 + a12 = 𝛾 , we can write

yt = 𝛾yt−1 − a12Δyt−1 + b11zt−1 + b12zt−2 + 𝜀t

The coefficient a12 multiplies the stationary variable Δyt−1 so that it is permissible

to test the null hypothesis a12 = 0 using a t-test. Alternatively, add and subtract a11yt−2
to the right-hand side of (5.45) to obtain

yt = a11Δyt−1 − 𝛾yt−2 + b11zt−1 + b12zt−2 + 𝜀t

Thus, the null hypothesis a11 = 0 can similarly be tested using a t-statistic. It is
important to recognize that the individual coefficients may have normal distributions,

but the sum a11 + a12 = 𝛾 does not have a normal distribution. It is impossible to isolate

𝛾 as the coefficient on a stationary variable.

Now suppose that {yt} and {zt} are both I(1). It is easy to show that the coefficients

a12 and b12 can be written as coefficients on stationary variables. Add and subtract both
a12yt−1 and b12zt−1 to the right-hand side of (5.45) so that the equation becomes

yt = (a11 + a12)yt−1 − a12(yt−1 − yt−2) + (b11 + b12)zt−1 − b12(zt−1 − zt−2) + 𝜀t

or

yt = 𝛾1yt−1 − a12Δyt−1 + 𝛾2zt−1 − b12Δzt−1 + 𝜀t (5.46)

where 𝛾1 = a11 + a12 and 𝛾2 = b11 + b12.
Thus, it is possible to perform the lag length test a12 = b12 = 0 using an

F-distribution. Equation (5.46) shows that it is possible to rewrite (5.45) in such a

way that both coefficients multiply stationary variables. As such, an F-test can be

used to test the joint restriction a12 = b12 = 0. However, the restriction that {zt} does
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not Granger cause {yt} involves the setting 𝛾2 = b12 = 0. Since 𝛾2 is a coefficient

on a nonstationary variable, the test is nonstandard—a standard F-statistic is not

appropriate. Only if you know that 𝛾2 = 0, you can perform a test to determine whether

{zt} Granger causes {yt}. Given that 𝛾2 = 0, (5.46) becomes

yt = 𝛾1yt−1 − a12Δyt−1 + b12Δzt−1 + 𝜀t

Now, it is possible to perform the causality test since only b12 needs to be restricted.
In the same way, if it is known that 𝛾1 = 1, we can write5

Δyt = a12Δyt−1 + b12Δzt−1 + 𝜀t

Now the VAR is entirely in first differences. As such, all coefficients multiply sta-

tionary variables. These results are quite general and hold for higher-order systems

containing any number of lags. To summarize, in a VAR with stationary and nonsta-

tionary variables

1. You can use t-tests or F-tests on the stationary variables.

2. You can perform a lag length test on any variable or any set of variables. This

is true regardless of whether the variable in question is stationary.

3. You may be able to use an F-test to determine whether a nonstationary vari-

able Granger causes another nonstationary variable. If the causal variable

can be made to appear only in first differences, the test is permissible. For

example, suppose that yt, zt, and xt are all I(1) and that it is possible to write
the equation for {yt} as yt = 𝛾1yt−1 + a12Δyt−1 + a13Δyt−2 + b12Δzt−1 +
b13Δzt−2 + 𝛾3xt−1 + c12Δxt−1 + c13Δxt−2 + 𝜀t. It is possible to determine

whether zt Granger causes {yt} but not whether xt Granger causes {yt}. Simi-

larly, you cannot test the joint restriction 𝛾1 = a12 = 0.

4. The issue of differencing is important. If the VAR can be written entirely in

first differences, hypothesis tests can be performed on any equation or any

set of equations using t-tests or F-tests. This follows because all of the vari-
ables are stationary. As you will see in Chapter 6, it is possible to write the

VAR in first differences if the variables are I(1) and are not cointegrated.
If the variables in question are cointegrated, the VAR cannot be written in

first differences; hence, causality tests cannot be performed using t-tests or
F-tests.

9. EXAMPLE OF A SIMPLE VAR: DOMESTIC
AND TRANSNATIONAL TERRORISM

In the study by Enders, Sandler, and Gaibulloev (2010), we decomposed the Depart-

ment of Homeland Security’s Global Terrorism Database (GTD) into the transnational

and domestic terrorism series shown in Figure 5.1. The standard presumption is that

transnational terrorism responds to events on the international stage, whereas domes-

tic terrorism responds to country-specific events. In some sense, such thinking implies

a weak set of interactions between the two types of terrorism since events occurring

within countries are likely to be idiosyncratic. Nevertheless, if you examine Figure 5.1,
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it should be clear that the two series do bear a striking relationship to together. To

explain the likely comovements, we hypothesized that a planned domestic incident

could inadvertently result in collateral damage to foreigners. It is also likely that ter-

rorist groups learn from each other so that a successful domestic incident could have a

demonstration effect on transnational incidents and vice versa. Still another explanation
is that certain political events, such as the continuing Arab–Israeli conflict, generate

grievances that give rise to both domestic and transnational terrorist incidents.

To examine the strength of any potential relationships between the domestic and

transnational series, we estimated a VAR of the form

domt = a10 + A11(L)domt−1 + A12(L)transt−1 + e1t (5.47)

transt = a20 + A21(L)domt−1 + A22(L)transt−1 + e2t (5.48)

where transt is the number of transnational terrorist incidents in quarter t; domt is the

number of domestic terrorist incidents in quarter t; a10 and a20 are intercepts, the Aij(L)
are polynomials in the lag operator L; and e1t and e2t are the serially uncorrelated error
terms such that E(e1te2t) is not necessarily zero.

You can follow along using the data in the file TERRORISM.XLS. However,

because of some changes in GTD’s coding conventions and some other problems in

constructing the data set, it is best to begin the estimation at April 1979 (a date that

corresponds to the takeover of the U.S. embassy in Teheran).

Empirical Methodology

Since we are especially concerned about Granger causality, we need to ascertain

whether the variables are stationary or nonstationary. Toward this end, we performed

both the Dickey–Fuller (1979) and the Elliott, Rothenberg and Stock (1996) unit root

tests on the transt and domt series excluding the observations prior to April 1979.

If you use the general-to-specific method to determine the appropriate number of

augmented lags, you should find a lag length of 2 for domt and a lag length of 1 for

transt. The t-statistics for the two tests are

DF test ERS test

domt −2.69 −2.43
transt −2.64 −2.47

From Table A, the 0.10 and 0.05 critical values for the Dickey–Fuller 𝜏𝜇 test are

−2.58 and−2.89, respectively. Hence, if you use theDickey–Fuller test, for each series,
it is possible to reject the null hypothesis of a unit root at the 10% level but not at the 5%

level. Recall that the critical values of the ERS test without a trend term are taken from

the Dickey–Fuller 𝜏 test. The critical values at the 1% and 2.5% significance levels are

−1.61 and −1.95, respectively. Therefore, if you use the more powerful ERS test, it is

possible to reject the null hypothesis of a unit root at the 2.5% level. As such, it seems

reasonable to proceed as if the variables are stationary.
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The polynomials A12(L) and A21(L) in (5.47) and (5.48) are of particular interest. If
all of the coefficients of A12(L) are zero, then knowledge of the transnational series does
not reduce the forecast error variance of domestic incidents. Formally, transnational ter-

rorismwould not Granger cause domestic terrorism. Unless there is a contemporaneous

response of domestic to transnational terrorism, the domestic series would evolve inde-

pendently of transt. In the same way, if all of the coefficients of A21(L) are zero, then
domt does not Granger cause transt. The absence of a statistically significant contempo-

raneous correlation of the error termswould then imply that domestic terrorism does not

affect transnational terrorism. If, instead, any of the coefficients in these polynomials

differ from zero, there are interactions between the two series.

The next issue is to determine the lag length to use for the VAR. Since we are

using a multivariate model, there is no reason to use the lag lengths selected for

the Dickey–Fuller test. If you begin with a lag length of 4, you should find that

the general-to-specific method and the multivariate AIC select a lag length of 3.

Although the multivariate SBC selects a lag length of 2, in order to ensure that all of

the dynamics are captured by the VAR, proceed using a lag length of 3. Because each

equation has identical right-hand side variables, ordinary least squares (OLS) is an

efficient estimation technique.

Empirical Results

Once the VAR has been estimated, it is straightforward to determine the causality

between the variables. Consider the following F-tests (with significance levels in

parentheses)

All coefficients of A11(L) = 0 ∶ 38.49 (0.000)
All coefficients of A12(L) = 0 ∶ 1.86 (0.159)
All coefficients of A21(L) = 0 ∶ 3.36 (0.015)
All coefficients of A22(L) = 0 ∶ 25.64 (0.000)

As expected, the F-statistics of A11(L) and A22(L) are both highly significant, indi-
cating that each variable is helpful in predicting its own future values. The F-statistic
for the null hypothesis that transnational terrorism Granger causes domestic terrorism

is 1.86. Given the prob-value of 0.159, this noncausality seems to be in accordance

with the conventional wisdom. The important result is that domestic terrorism Granger

causes transnational terrorism at the 0.015 significance level. Thus, unlike the conven-

tional wisdom, the two series do not evolve independently of each other. The explana-

tion for this univariate causality is that conflicts begin locally but, over time, can spill

over into transnational incidents.

To ascertain the importance of the interactions between the two series, we obtained

the variance decompositions. The moving average representations of Equations (5.47)

and (5.48) express domt and transt as dependent on the current and past values of both

{e1t} and {e2t} sequences:

domt = c0 +
∞∑
j=1

(c1ie1t−j + c2je2t−j) + e1t (5.49)
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Table 5.3 Percent of Forecast Error Variance Accounted for by Each Shock

% Variance of domt % Variance of transt
Shock to domt Shock to transt Shock to domt Shock to transt

1-Step ahead 100.0 0.0 3.1 96.9

4-Steps ahead 97.9 2.1 11.6 88.4

8-Steps ahead 98.1 1.9 24.9 75.1

12-Steps ahead 97.6 2.4 33.6 66.4

transt = d0 +
∞∑
j=1

(d1je1t−j + d2je2t−j) + e2t (5.50)

where c0, d0, c1j, c2j, d1j, and d2j are all parameters.

Because we cannot estimate (5.49) and (5.50) directly, we used the residuals of

(5.47) and (5.48) and then decomposed the variances of domt and transt into the per-

centages attributable to each type of innovation. We used the orthogonalized innova-

tions obtained from a Choleski decomposition; the order of the variables in the fac-

torization had no qualitative effects on our results (the contemporaneous correlation

between e1t and e2t is 0.18). We report results such that the shock to domt has no con-

temporaneous effect on transt.

The variance decompositions for 1-, 4-, 8-, and 12-month forecasting horizons are

reported in Table 5.3. As expected, each series explains the preponderance of its own

past values at short forecasting horizons. For example, at a four-step-ahead forecasting

horizon, domestic terrorism explains 97.9% of its forecast error variance, while transt
explains 88.4% of its forecast error variance. As the forecasting horizon expands, the

effect of transt shocks on the variance of domt remains small. However, after 12 quar-

ters, domt explains 33.6% of the forecast error variance of transnational terrorism. Not

only is causality is unidirectional (i.e., domestic terrorism Granger causes transnational

terrorism) but also the effect of domestic terrorism on transnational terrorism is sub-

stantial.

Figure 5.8 shows the impulse responses of each series to domestic and transna-

tional terrorism shocks. The solid lines represent the impulse responses, and the dashed

lines represent a 95% confidence interval. The response to domestic terrorism to its own

one standard deviation shock (equal to 48.15 incidents per quarter) is shown in the

upper left-hand panel. Notice that the response is quite persistent in that it remains sta-

tistically significant for 10 quarters. The upper right-hand panel shows that the response

of domestic terrorism to a transnational shock is never significant. The effect of the

domestic shock on transnational terrorism is shown in the lower left-hand panel. At

onset, the level of transnational terrorism jumps by about 2 incidents per quarter and

remains significant for 18 quarters. The cumulated sum of all transnational incidents

to the domestic terrorism shock (i.e., the sum of the impulse responses) is 34.29 inci-

dents. The response of transnational terrorism to its own one standard deviation shock

is shown in the lower-right panel of Figure 5.8. As compared to domestic terrorism,

the responses are not very persistent. After an initial jump, there is a sharp decline in
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the impulse responses such that they are insignificantly different from zero after six

quarters.

Overall, the conventional wisdom that the two series evolve independently of each

other is not supported by the data. Given the unidirectional causality from domestic to

transnational terrorism, it appears that conflicts involving terrorism begin locally and,

over time, spread to becoming transnational.

10. STRUCTURAL VARs

Sims’s (1980) VAR approach has the desirable property that all variables are treated

symmetrically so that all variables are jointly endogeneous and the econometrician

does not rely on any “incredible identification restrictions.” Consider a first-order VAR

system of the type represented by (5.19):

xt = A0 + A1xt−1 + et

Although the VAR approach yields only estimated values of A0 and A1, for expo-

sition purposes, it is useful to treat each as being known. As we saw in (5.42), the

n-step-ahead forecast error is

xt+n − Etxt+n = et+n + A1et+n−1 + A2
1
et+n−2 + · · · + An−1

1
et+1 (5.51)

Even though econometric analysis will never reveal the actual values of A0 and

A1, an appropriately specified model will have forecasts that are unbiased and have

minimum variance. A researcher interested only in forecastingmight want to trim down

the overparameterized VAR model in order to improve the precision of the estimates

and reduce the forecast-error variance. Nonetheless, it should be clear that forecasting

with a VAR is a multivariate extension of forecasting using a simple autoregression.

However, given the somewhat ad hoc nature of the Choleski decomposition, the

beauty of the approach seems diminished when constructing impulse response func-

tions and forecast error variance decompositions. Moreover, the VAR approach has

been criticized as being devoid of any economic content. The sole role of the economist

is to suggest the appropriate variables to include in the VAR. From that point on, the

procedure is almost mechanical. However, it is possible to use an economic theory to

impose restrictions on the variables so that the results are not ad hoc.

Structural Decompositions

Unless the underlying structural model can be identified from the reduced-form VAR

model, the innovations in a Choleski decomposition do not have a direct economic

interpretation. However, instead of using a Choleski decomposition, it is possible to

impose restrictions on the errors so as fully identify the structural shocks in a way that

is consistent with an underlying economic model. Reconsider the two-variable VAR of

(5.17) and (5.18):

yt + b12zt = b10 + 𝛾11yt−1 + 𝛾12zt−1 + 𝜀yt

b21yt + zt = b20 + 𝛾21yt−1 + 𝛾22zt−1 + 𝜀zt
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so that it is possible to write the model in the form of (5.20) and (5.21):

yt = a10 + a11yt−1 + a12zt−1 + e1t
zt = a20 + a21yt−1 + a22zt−1 + e2t

where the various aij are defined as in (5.19). For our purposes, the important point to

note is that the two error terms e1t and e2t are actually composites of the underlying

shocks 𝜀yt and 𝜀zt. From (5.22) and (5.23),[
e1t
e2t

]
= 1

1 − b12b21

[
1 −b12

−b21 1

] [
𝜀yt
𝜀zt

]
Although these composite shocks are the one-step-ahead forecast errors in yt and

zt, they do not have a structural interpretation. Hence, there is an important difference

between using VARs for forecasting and economic analysis. In (5.51), e1t and e2t are
forecast errors. If we are interested only in forecasting, the components of the forecast

errors are unimportant. Given the economic model of (5.17) and (5.18), 𝜀yt and 𝜀zt
are the autonomous changes in yt and zt in period t, respectively. If we want to obtain

the impulse response functions or the variance decompositions, it is necessary to use

the structural shocks (i.e., 𝜀yt and 𝜀zt), not the forecast errors. The aim of a structural

VAR is to use economic theory (rather than the Choleski decomposition) to recover the

structural innovations from the residuals {e1t} and {e2t}.
The Choleski decomposition actually makes a strong assumption about the under-

lying structural errors. Suppose, as in (5.31)–(5.33), we select an ordering such that

b21 = 0. Recall that with a recursive ordering such that zt is causally prior to yt, the two
pure innovations can be recovered as

𝜀yt = e1t + b12e2t

and

𝜀zt = 𝜀2t

Forcing b21 = 0 is equivalent to assuming that an innovation in yt does not have a
contemporaneous effect on zt. Unless there is a theoretical foundation for this assump-

tion, the underlying shocks are improperly identified. As such, the impulse responses

and variance decompositions resulting from this improper identification can be quite

misleading.

If the correlation coefficient between e1t and e2t is low, the ordering is not likely

to be important. However, in a VAR with several variables, it is improbable that

all correlations will be small. After all, in selecting the variables to include in a

model, you are likely to choose variables that exhibit strong comovements. When the

residuals of a VAR are correlated, it is not practical to try all alternative orderings.

With a four-variable model, there are 24 (i.e., 4!) possible orderings. Sims (1986)

and Bernanke (1986) proposed modeling the innovations using economic analysis.

The basic idea is to estimate the relationships among the structural shocks using an

economic model. To understand the procedure, it is useful to examine the relationship

between the forecast errors and the structural innovations in an n-variable VAR.
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Since this relationship is invariant to lag length, consider the first-order model with n
variables:

⎡⎢⎢⎢⎣
1 b12 b13 · · · b1n
b21 1 b23 · · · b2n
⋅ ⋅ ⋅ · · · ⋅
bn1 bn2 bn3 · · · bnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1t
x2t
· · ·
xnt

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
b10
b20
· · ·
bn0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
𝛾11 𝛾12 𝛾13 · · · 𝛾1n
𝛾21 𝛾22 𝛾23 · · · 𝛾2n
⋅ ⋅ ⋅ · · · ⋅
𝛾n1 𝛾n2 𝛾n3 · · · 𝛾nn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1t−1
x2t−1
· · ·
xnt−1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
𝜀1t
𝜀2t
· · ·
𝜀nt

⎤⎥⎥⎥⎦
or, in compact form:

Bxt = Γ0 + Γ1xt−1 + 𝜀t

The multivariate generalization of (5.19) is obtained by premultiplying by B−1 so
that

xt = B−1Γ0 + B−1Γ1xt−1 + B−1𝜀t

Defining A0 = B−1Γ0, A1 = B−1Γ1, and et = B−1𝜀t yields (5.19). The problem,

then, is to take the observed values of et and to restrict the system so as to recover

𝜀t as 𝜀t = Bet. However, the selection of the various bij cannot be completely arbitrary.

The issue is to restrict the system so as to (i) recover the various {𝜀it} and (ii) preserve
the assumed error structure concerning the independence of the various {𝜀it} shocks. To
solve this identification problem, simply count equations and unknowns. Using OLS,

we can obtain the variance/covariance matrix Σ:

Σ =

⎡⎢⎢⎢⎢⎣
𝜎2
1

𝜎12 · · · 𝜎1n

𝜎21 𝜎2
2

· · · 𝜎2n
· · · · · · · · · · · ·
𝜎n1 𝜎n2 · · · 𝜎2

n

⎤⎥⎥⎥⎥⎦
where each element of Σ is constricted as the sum

𝜎ij = (1∕T)
T∑
t=1

eitejt

SinceΣ is symmetric, it contains only (n2 + n)∕2 distinct elements. There are n ele-
ments along the principal diagonal, (n − 1) along the first off-diagonal, (n − 2) along the
next off-diagonal, … , and one corner element for a total of (n2 + n)∕2 free elements.

Given that the diagonal elements of B are all unity, B contains n2 − n unknown val-
ues. In addition, there are the n unknown values var(𝜀it) for a total of n2 unknown values
in the structural model [i.e., the n2 − n values of B plus the n values var(𝜀it)]. Now the

answer to the identification problem is simple; in order to identify the n2 unknowns

from the known (n2 + n)∕2 independent elements of Σ, it is necessary to impose an

additional n2 − [(n2 + n)∕2] = (n2 + n)∕2 restrictions on the system. This result gen-

eralizes to a model with p lags: To identify the structural model from an estimated VAR,
it is necessary to impose (n2 − n)∕2 restrictions on the structural model.

Take a moment to count the number of restrictions in a Choleski decomposition. In

the system above, the Choleski decomposition requires all elements above the principal
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diagonal to be zero:

b12 = b13 = b14 = … = b1n = 0

b23 = b24 = … = b2n = 0

b34 = … = b3n = 0

…
bn−1n = 0

Hence, there are a total of (n2 − n)∕2 restrictions; the system is exactly identi-

fied. To take a specific example, consider the following Choleski decomposition in a

three-variable VAR

e1t = 𝜀1t

e2t = c21𝜀1t + 𝜀2t

e3t = c31𝜀1t + c32𝜀2t + 𝜀3t

From the previous discussion, you should be able to demonstrate that 𝜀1t, 𝜀2t, and

𝜀3t can be identified from the estimates of e1t, e2t, and e3t and variance/covariance

matrix Σ. In terms of our previous notation, define matrix C = B−1 with elements cij.
Hence, et = C𝜀t. An alternative way to model the relationship between the forecast

errors and the structural innovations is

e1t = 𝜀1t + c13𝜀3t
e2t = c21𝜀1t + 𝜀2t

e3t = c31𝜀2t + 𝜀3t

Notice the absence of a triangular structure. Here, the forecast error of each vari-

able is affected by its own structural innovation and the structural innovation in one

other variable. Given the (9 − 3)∕2 = 3 restrictions on C, the necessary condition for

the exact identification of B and 𝜀t is satisfied. However, as illustrated in the next

section, imposing (n2 − n)∕2 restrictions is not a sufficient condition for exact iden-

tification. Unfortunately, the presence of nonlinearities means that there are no simple

rules that guarantee exact identification.

For those wanting a bit more formality, write the variance/covariance matrix of the

regression residuals as

Eee′ = Σ =
(
𝜎2
1

𝜎12
𝜎21 𝜎2

2

)
Given that et = B−1𝜀t, it must be the case that

Eete
T
t = EB−1𝜀t𝜀

T
t (B−1)T = B−1E(𝜀t𝜀Tt )(B−1)T (5.52)

Note that E(𝜀t𝜀Tt ) is the variance/covariance matrix of the structural innovations

(Σ𝜀). Since the covariance between the structural shocks is zero, we can write Σ𝜀 as

Σ𝜀 =
[
var(𝜀1) 0

0 var(𝜀2)

]
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To find the relationship between the structural innovations and the regression resid-

uals, substitute Σ and Σ𝜀 into (5.52) to obtain(
𝜎2
1

𝜎12

𝜎21 𝜎2
2

)
= B−1

[
var(𝜀1) 0

0 var(𝜀2)

]
(B−1)T

or (
𝜎2
1

𝜎12

𝜎21 𝜎2
2

)
=

(
1 b12
b21 1

)−1 [
var(𝜀1) 0

0 var(𝜀2)

][(
1 b12
b21 1

)−1]T
Since the two sides must be identical element by element, it must be the case that

𝜎2
1
= [1∕(1 − b12b21)]2[var(𝜀1) + b2

12
var(𝜀2)]

𝜎2
12
= [1∕(1 − b12b21)]2[−b12var(𝜀2) − b21var(𝜀1)]

𝜎2
21
= [1∕(1 − b12b21)]2[−b12var(𝜀2) − b21var(𝜀1)]

𝜎2
2
= [1∕(1 − b12b21)]2[var(𝜀2) + b2

21
var(𝜀1)]

Since the four values of Σ are known, it would appear that there are four equations

to determine the four unknown values b12, b21, var(𝜀1), and var(𝜀2). However, the sym-

metry of the system is such that 𝜎21 = 𝜎12 so that there are only three independent

equations to determine the four unknown values. As such, identification is not possible

unless another restriction is imposed.

To generalize the argument to an nth-order VAR system, we have

Σ = B−1Σ𝜀(B−1)T

where Σ, B−1, and Σ𝜀 are n × n matrices. Using the same logic, it is possible to show

that it is necessary to impose (n2 − n)∕2 additional restrictions on B−1 to completely

identify the system. Some specific examples are considered in Section 11.

11. EXAMPLES OF STRUCTURAL
DECOMPOSITIONS

To illustrate the Sims–Bernanke decomposition, suppose that there are five residuals

for e1t and e2t. Although a usable sample size of five is unacceptable for estimation

purposes, it does allow us to do the necessary calculations in a simple manner. Thus,

suppose that the five error terms are

t 1 2 3 4 5

e1t 1.0 −0.5 0.0 −1.0 0.5

e2t 0.5 −1.0 0.0 −0.5 1.0

Since {e1t} and {e2t} are regression residuals, their sums are zero. It is simple

to verify that 𝜎2
1
= 0.5, 𝜎12 = 𝜎21 = 0.4, and 𝜎2

2
= 0.5; hence, the variance/covariance

matrix Σ is

Σ =
[
0.5 0.4

0.4 0.5

]

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c05.tex V2 - 07/30/2014 4:31pm Page 318

318 CHAPTER 5 MULTIEQUATION TIME-SERIES MODELS

Although the covariance between 𝜀1t and 𝜀2t is zero, the variances of 𝜀1t and 𝜀2t are

presumably unknown. As in the previous section, let the variance/covariance matrix of

these structural shocks be denoted by Σ𝜀 so that

Σ𝜀 =
[
var(𝜀1) 0

0 var(𝜀2)

]
The reason that the covariance terms are equal to zero is that 𝜀1t and 𝜀2t are deemed

to be pure structural shocks. Moreover, the variance of each shock is time invariant.

For notational convenience, the time subscript can be dropped; for example, var(𝜀1t) =
var(𝜀1t−1) = … = var(𝜀1). The relationship between the variance/covariance matrix of

the forecast errors (i.e., Σ) and the variance/covariance matrix of the pure shocks (i.e.,

Σ𝜀) is such that Σ𝜀 = BΣBT . Recall that et and 𝜀t are the column vectors (e1t, e2t)T and

(𝜀1t, 𝜀2t)T , respectively. Hence,

ete
′
t =

[
e2
1t e1te2t

e1te2t e2
2t

]
so that

Σ = 1

T

T∑
t=1

ete
′
t (5.53)

Similarly, Σ𝜀 is

Σ𝜀 =
1

T

T∑
t=1

𝜀t𝜀
′
t (5.54)

To link the two variance/covariance matrices, note that the relationship between 𝜀t
and et is such that 𝜀t = Bet. Substitute this relationship into (5.54) and recall that the

transpose of a product is the product of the transposes [i.e., (Bet)T = eTt B
T ], so that

Σ = 1

T

T∑
t=1

Bete
′
tB

′

Thus, using (5.53), we get

Σ𝜀 = BΣB′

Using the specific numbers in the example, it follows that[
var(𝜀1) 0

0 var(𝜀2)

]
=

[
1 b12
b21 1

] [
0.5 0.4

0.4 0.5

] [
1 b21
b12 1

]
Since both sides of this equation are equivalent, they must be the same element by

element. Carry out the indicated multiplication of BΣBT to obtain

var(𝜀1) = 0.5 + 0.8b12 + 0.5b2
12

(5.55)

0 = 0.5b21 + 0.4b21b12 + 0.4 + 0.5b12 (5.56)

0 = 0.5b21 + 0.4b12b21 + 0.4 + 0.5b12 (5.57)

var(𝜀2) = 0.5b2
21
+ 0.8b21 + 0.5 (5.58)
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As you can see, equations (5.56) and (5.57) are identical. There are three inde-

pendent equations to solve for the four unknowns b12, b21, var(𝜀1), and var(𝜀2). As we
saw in the last section, in a two-variable system, one restriction needs to be imposed if

the structural model is to be identified. Now consider the Choleski decomposition one

more time. If b12 = 0, we find

var(𝜀1) = 0.5

0 = 0.5b21 + 0.4 so that b21 = −0.8
0 = 0.5b21 + 0.4 so that again we find b21 = −0.8

var(𝜀2) = 0.5(b21)2 + 0.8b21 + 0.5 so that var(𝜀2) = 0.5(0.64) − 0.64 + 0.5 = 0.18

Using this decomposition, we can recover each {𝜀1t} and {𝜀2t} as 𝜀t = Bet:

𝜀1t = e1t

and

𝜀2t = −0.8e1t + e2t

Thus, the identified structural shocks are

t 1 2 3 4 5

𝜀1t 1.0 −0.5 0.0 −1.0 0.5

𝜀2t −0.3 −0.6 0.0 0.3 0.6

If you want to take the time, you can verify that var(𝜀1) = Σ(𝜀1t)2∕5 = 0.5,

var(𝜀2t) = Σ(𝜀2t)2∕5 = 0.18, and cov(𝜀1t, 𝜀2t) = Σ𝜀1t𝜀2t∕5 = 0. Instead, if we impose

the alternative restriction of a Choleski decomposition and set b21 = 0, from (5.55) to

(5.58), we obtain

var(𝜀1) = 0.5 + 0.8b12 + 0.5b12
2

0 = 0.4 + 0.5b12 so that b12 = −0.8
0 = 0.4 + 0.5b12 so again b12 = −0.8

var(𝜀2) = 0.5

Since b12 = −0.8, var(𝜀1) = 0.5 + 0.8(−0.8) + 0.5(0.64) = 0.18. Now, B is iden-

tified as

B =
[
1 −0.8
0 1

]
If we use the identified values of B, the structural innovations are such that 𝜀1t =

e1t − 0.8e2t and 𝜀2t = e2t. Hence, we have the structural innovations

t 1 2 3 4 5

𝜀1t 0.6 0.3 0.0 −0.6 −0.3
𝜀2t 0.5 −1.0 0.0 −0.5 1.0

In this example, the ordering used in the Choleski decomposition is very important.

This should not be too surprising since the correlation coefficient between e1t and e2t
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is 0.8. The point is that the ordering will have important implications for the resulting

variance decompositions and impulse response functions. Selecting the first ordering

(i.e., setting b12 = 0) gives more importance to innovations in 𝜀1t. The assumed timing

is such that 𝜀1t can have a contemporaneous effect on x1t and x2t while 𝜀2t shocks can
affect x1t only with a one-period lag. Moreover, the amplitude of the impulse responses

attributable to 𝜀1t shocks will be increased since the ordering affects the magnitude of

a “typical” (i.e., one standard deviation) shock in 𝜀1t and decreases the magnitude of a

“typical” 𝜀2t shock.

The important point to note is that the Choleski decomposition is only one type of
identification restriction. With three independent equations among the four unknowns

b12, b21, var(𝜀1t), and var(𝜀2t), any other linearly independent restriction will allow for

the identification of the structural model. Consider some of the other alternatives:

1. A coefficient restriction. Coefficient restrictions are necessarily short-run
restrictions on the dynamics of the model. The most common restriction

is a zero restriction such that one variable has no contemporaneous effect

on another. However, unlike a Choleski decomposition, there is no need

to rely on a triangular formulation. Another common type of coefficient

restriction involves setting a coefficient to unity. Suppose that we know that a

one-unit innovation 𝜀2t has a one unit effect on x1t; hence, suppose we know
that b12 = 1. By using the other three independent equations, it follows that

var(𝜀1t) = 1.8, b21 = −1, and var(𝜀2t) = 0.2.

Given that 𝜀t = Bet, we obtain[
𝜀1t
𝜀2t

]
=

[
1 1

−1 1

] [
e1t
e2t

]
so that 𝜀1t = e1t + e2t and 𝜀2t = −e1t + e2t. If we use the five hypothetical
regression residuals, the decomposed innovations become

t 1 2 3 4 5

𝜀1t 1.5 −1.5 0.0 −1.5 1.5

𝜀2t −0.5 −0.5 0.0 0.5 0.5

2. A variance restriction. One natural restriction is that var(𝜀it) = 1. To illus-

trate the decomposition with some other variance restriction, suppose that

we know var(𝜀1t) = 1.8. Given the relationship between Σ𝜀 and Σ (i.e., Σ𝜀 =
BΣBT ), a restriction on the variances contained within Σ𝜀 will always imply

multiple solutions for the coefficients of B. The first equation yields two
possible solutions for b12 = 1 and b12 = −2.6; unless we have a theoreti-
cal reason to discard one of these magnitudes, there are two solutions to the

model. If b12 = 1, the remaining solutions are b21 = −1, and var(𝜀2t) = 0.2. If

b12 = −2.6, the solutions are b21 = −5∕3 and var(𝜀2t) = 5∕9.
The two solutions can be used to identify two different {𝜀1t} and {𝜀2t}

sequences, and innovation accounting can be performed using both solutions.

Even though there are two solutions, both satisfy the theoretical restriction
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concerning var(𝜀1t). Rigonon and Sack (2004) illustrate how a volatility break

can be used to identify a structural VAR.

3. Symmetry restrictions. A linear combination of the coefficients and variances

can be used for identification purposes. Symmetry restrictions are popular

in open-economy models in that they allow a shock to have equal effects

across countries. As detailed in the Supplementary Manual, Enders and Souki
(2008) use symmetry restrictions to identify three country-specific shocks

and a global shock in a four-variable VAR. Consider the symmetry restric-

tion b12 = b21. If we use equation (5.56), there are two solutions: b12 = b21 =
−0.5 or b12 = b21 = −2.0. For the first solution, we find var(𝜀1t) = 0.225 and,

for the second solution, var(𝜀1t) = 0.9. From the first solution,[
𝜀1t
𝜀2t

]
=

[
1 −0.5

−0.5 1

] [
e1t
e2t

]
so that

t 1 2 3 4 5

𝜀1t 0.75 0.0 0.0 −0.75 0.0

𝜀2t 0.0 −0.75 0.0 0.0 0.75

4. Sign restrictions. A new area of research concerns sign restrictions. For

example, suppose it is known that an oil price shock does not affect GDP

for the first two quarters after the shock. Similarly, suppose it is known that a

monetary shock has a positive effect on inflation. Mountford and Uhlig (2008)

show how such sign restrictions can be used in identification.

12. OVERIDENTIFIED SYSTEMS

It may be that economic theory suggests more than (n2 − n)∕2 restrictions. If so, it is

necessary to modify the method earlier. The procedure for identifying an overidentified

system entails the following steps:

STEP 1: The restrictions on B or var(𝜀it) do not affect the estimation of VAR coef-

ficients. Hence, estimate the unrestricted VAR xt = A0 + A1xt−1 + · · · +
Apxt−p + et. Use the standard lag length and block-causality tests to help
determine the form of the VAR.

STEP 2: Obtain the unrestricted variance/covariance matrix Σ. The determinant of

this matrix is an indicator of the overall fit of the model.

STEP 3: Restricting B and/or Σ𝜀 will affect the estimate of Σ. Select the appropriate
restrictions and maximize the likelihood function with respect to the free

parameters of B and Σ𝜀. This will lead to an estimate of the restricted vari-

ance/covariance matrix. Denote this second estimate by ΣR. The difference|ΣR| − |Σ| has a 𝜒2 distribution with degrees of freedom equal to the number

of overidentifying restrictions.
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For those wanting a more technical explanation, note that the log likeli-

hood function can be written as

−T
2
In|Σ| − 1

2

T∑
t=1

(e′tΣ−1et)

Fix each element of et (and e
′
t) at the level obtained using OLS; call

these estimated OLS residuals êt. Now use the relationship Σ𝜀 = BΣB′ so
that the log likelihood function can be written as

−T
2
In

|||B−1Σ𝜀

(
B′)−1||| − 1

2

T∑
t=1

(ê′tB′Σ−1
𝜀 Bêt)

Now select the restrictions on B and Σ𝜀 and maximize with respect to

the remaining free elements of these two matrices. The resulting estimates of

B and Σ𝜀 imply a value of Σ that we have dubbed ΣR. A number of popular

software packages can perform this type of estimation using the Generalized

Method of Moments.

STEP 4: If the restrictions are not binding, Σ and ΣR will be equivalent. Let R =
the number of overidentifying restrictions; that is, R = the number of restric-

tions exceeding (n2 − n)∕2. Then, the 𝜒2 test statistic

𝜒2 = |ΣR| − |Σ|
with R degrees of freedom can be used to test the restricted system. If the cal-

culated value of 𝜒2 exceeds that in a 𝜒2 table, the restrictions can be rejected.

Now, allow for two sets of overidentifying restrictions such that the number

of restrictions in R2 exceeds that in R1. In fact, if R2 > R1 ≥ (n2 − n)∕2, the
significance of the extra R2 − R1 restrictions can be tested as

𝜒2 = |ΣR2| − |ΣR1| with R2 − R1 degrees of freedom

Similarly, in an overidentified system, the t-statistic for the individual coefficients
can be obtained. Sims warned that the calculated standard errors may not be very accu-

rate. Also note that Waggoner and Zha (1997) point out that the normalization can have

important effects on statistical inference.

Two Examples

Despite the so-called Great Recession, in December, 2011, theWorld Bank’s food price

index was almost three times higher than it was in 2000. In Enders and Holt (2013),

we tried to find the factors responsible for this general run-up in food prices with

particular emphasis on the price of grain. Toward that end, we used a simple VAR con-

taining measures of real energy prices, exchange rates, interest rates, and grain prices.

Consider:⎡⎢⎢⎢⎣
pet
ext
rt
pgt

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
a10
a20
a30
a40

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
A11 (L) A12(L) A13(L) A14(L)
A21(L) A22(L) A23(L) A24(L)
A31(L) A32(L) A33(L) A34(L)
A41(L) A42(L) A43(L) A44(L)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
pet−1
ext−1
rt−1
pgt−1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
e1t
e2t
e3t
e4t

⎤⎥⎥⎥⎦
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where pet = log of the World Bank’s energy price index, ext = the real trade weighted

price of the U.S. dollar, rt = 3-month T-bill rate adjusted for inflation, and pgt = log of

the World Bank’s composite price index of grain. The prices of grain and energy were

deflated by the producer price index, the ai0 are intercepts, the Aij(L) are polynomials

in the lag operator L, and the eit are the regression residuals. The estimation period

runs from January 1974 to December 2011. You can follow along using the data set

ENDERS_HOLT.XLS.

The first step in estimating the VAR is to determine the appropriate lag length. The

choice is difficult because different methods of lag length selection yield very different

optimal lag lengths. For example, the SBC selects two lags and the general-to-specific

method selects 11 lags. We did not pursue the two-lag model since we were concerned

that the short lag length would omit some important dynamics. In particular, it did not

seem reasonable to believe that grain prices fully responded to energy, exchange rate,

and interest rate changes in 2 months. Here, we can work with 7 lags since the results

are very similar to those with 11 lags.

Exact identification in a four-variable VAR requires six restrictions. However, we

wanted to determine if the three macroeconomic variables, as a block, were causally

prior to each other. Specifically, we wanted to test whether the following overidentified

system with nine restrictions was consistent with the data:⎡⎢⎢⎢⎣
e1t
e2t
e3t
e4t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
g11 0 0 0

0 g22 0 0

0 0 g33 0

g41 g42 g43 g44

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜀1t
𝜀2t
𝜀3t
𝜀4t

⎤⎥⎥⎥⎦
Imposing these nine restrictions resulted in a 𝜒2 value of 13.53; with three degrees

of freedom (since there are three overidentifying restrictions), the prob-value was

0.003. As such, we could not treat shocks to the energy price, exchange rate, and

interest rate equations as pure structural shocks. Since the correlation between e2t and
e3t was high, it seemed likely that the rejection was due to the fact that we forced g23
and/or g32 to be zero. We tried the following identification using eight restrictions:⎡⎢⎢⎢⎣

e1t
e2t
e3t
e4t

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
g11 0 0 0

0 g22 g23 0

0 0 g33 0

g41 g42 g43 g44

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜀1t
𝜀2t
𝜀3t
𝜀4t

⎤⎥⎥⎥⎦
Imposing these eight restrictions yielded a value of 𝜒2 equal to 4.57; with two

degrees of freedom (since there are two overidentifying restrictions), the restriction is

not binding (the significance level is 0.102). As such, real grain prices are contempo-

raneously affected by all variables, and the real exchange rate is contemporaneously

affected by real interest rate shocks. The innovations in real energy prices and interest

rates are due to their own pure shocks.

The beauty of the identification scheme is that it seems quite plausible, and we do

not have to worry about imposing a set of ad hoc restrictions as in a Choleski decompo-

sition. The impulse responses of grain prices to one standard deviation positive shocks

to real energy prices, interest rates, and exchange rates are shown in Figure 5.9. Note
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FIGURE 5.9 Responses of Grain to the Three Shocks

that the responses have been standardized by dividing each by the standard deviation

of the grain price shock (i.e., dividing by var(𝜀4t)0.5). On onset, the energy price shock
(the solid line in the figure) does not affect grain prices. However, grain prices begin

to rise rapidly; by 6 months, the shock causes grain prices to rise by nearly 40%. Also

note that an appreciation of the dollar, making U.S. grain more expensive to foreigners,

causes the domestic price of grain to decline. There are at least two reasons that interest

rate increases could cause grain prices to fall. Interest rate shocks curtail demand and

increase the cost of holding grain in storage. As demand falls and grain inventories are

reduced, it is expected that the price of grain will decline. It turns out that the recent

period has been characterized by high energy prices and low interest rates. Moreover,

up until the end of the financial crisis, the dollar was quite weak. All three factors help

to explain the recent increase in real grain prices.

SIM’S MODEL To take another example, Sims (1986) used a six-variable VAR of

quarterly data over the period 1948Q1–1979Q3. The variables included in the study

are real GNP (y), real business fixed investment (i), the GNP deflator (p), the money

supply as measured by M1 (m), unemployment (u), and the treasury bill rate (r). An
unrestricted VAR was estimated with four lags of each variable and a constant term.

Sims obtained the 36 impulse response functions using a Choleski decomposition with

the ordering y→ i → p→ m→ u→ r. Some of the impulse response functions had

reasonable interpretations. However, the response of real variables to a money supply

shock seemed unreasonable. The impulse responses suggested that a money supply

shock had little effect on the prices, output, or interest rate. Given a standard money

demand function, it is hard to explain why the public would be willing to hold the

expanded money supply. Sims proposed an alternative to the Choleski decomposition
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that is consistent with money market equilibrium. Sims restricts the Bmatrix such that

⎡⎢⎢⎢⎢⎢⎢⎣

1 b11 0 0 0 0

b21 1 b23 b24 0 0

b31 0 1 0 0 b36
b41 0 b43 1 0 b46
b51 0 b53 b54 1 b56
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

rt
mt
yt
pt
ut
it

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀rt
𝜀mt
𝜀yt
𝜀pt
𝜀ut
𝜀it

⎤⎥⎥⎥⎥⎥⎥⎦
Notice that there are 17 zero restrictions on the bij. The system is overidenti-

fied; with six variables, exact identification requires only (62 − 6)∕2 = 15 restrictions.

Imposing these restrictions, Sims identifies the following six relationships among the

contemporaneous innovations:

rt = 71.20mt + 𝜀rt (5.59)

mt = 0.283yt + 0.224pt − 0.0081rt + 𝜀mt (5.60)

yt = −0.00135rt + 0.132it + 𝜀yt (5.61)

pt = −0.0010rt + 0.045yt − 0.00364it + 𝜀pt (5.62)

ut = −0.116rt − 20.1yt − 1.48it − 8.98pt + 𝜀ut (5.63)

it = 𝜀it (5.64)

Sims views (5.59) and (5.60) as money supply and demand functions, respectively.

In (5.59), the money supply rises as the interest rate increases. The demand for money

in (5.60) is positively related to income and the price level and negatively related to

the interest rate. Investment innovations in (5.64) are completely autonomous. Other-

wise, Sims sees no reason to restrict the other equations in any particular manner. For

simplicity, he chooses a Choleski-type block structure for GNP, the price level, and the

unemployment rate. The impulse response functions appear to be consistent with the

notion that money supply shocks affect the prices, income, and interest rates.

13. THE BLANCHARD–QUAH DECOMPOSITION

Blanchard andQuah (1989) provide an alternativeway to obtain a structural VAR. Their

aim is to reconsider the Beveridge and Nelson (1981) decomposition of real GNP into

its temporary and permanent components. Toward this end, they developed a macroe-

conomic model such that real GNP is affected by demand-side and supply-side distur-

bances. In accordance with the natural rate hypothesis, demand-side disturbances have

no long-run effect on real GNP. On the supply side, productivity shocks are assumed to

have permanent effects on output. Using a bivariate VAR, Blanchard and Quah show

how to decompose real GNP and recover the two pure shocks.

To take a general example, suppose we are interested in decomposing an I(1)
sequence, say {yt}, into its temporary and permanent components. Let there be a sec-

ond variable {zt} that is affected by the same two shocks. For the time being, suppose

that {zt} is stationary. If we ignore the intercept terms, the bivariate moving average
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(BMA) representation of the {yt} and {zt} sequences will have the form

Δyt =
∞∑
k=0

c11(k)𝜀1t−k +
∞∑
k=0

c12(k)𝜀2t−k (5.65)

zt =
∞∑
k=0

c21(k)𝜀1t−k +
∞∑
k=0

c22(k)𝜀2t−k (5.66)

or, in a more compact form,[
Δyt
zt

]
=

[
C11 (L) C12(L)
C21(L) C22(L)

] [
𝜀1t
𝜀2t

]
where 𝜀1t and 𝜀2t are independent white-noise disturbances, each having a constant

variance, and the Cij(L) are polynomials in the lag operator L such that the individual

coefficients of Cij(L) are denoted by cij(k). For example, the third coefficient of C12(L)
is c21(3). For convenience, the time subscripts on the variances and the covariance terms

are dropped, and the shocks are normalized so that var(𝜀1) = 1 and var(𝜀2) = 1. If we

call Σ𝜀 the variance/covariance matrix of the innovations, it follows that

Σ𝜀 =
[

var(𝜀1) cov(𝜀1, 𝜀2)
cov(𝜀1, 𝜀2) var(𝜀2)

]
=
[
1 0

0 1

]
In order to use the Blanchard and Quah (BQ) technique, at least one of the vari-

ables must be nonstationary since I(0) variables do not have a permanent component.

However, to use the method, both variables must be in a stationary form. Since {yt} is
I(1), (5.65) uses the first difference of the series. Note that (5.66) implies that the {zt}
sequence is I(0); if, in your own work, you find {zt} is also I(1), use its first difference.

In contrast to the Sims–Bernanke procedure, Blanchard and Quah do not directly

associate the {𝜀1t} and {𝜀2t} shocks with the {yt} and {zt} sequences. Instead, the {yt}
and {zt} sequences are the endogenous variables, and the {𝜀1t} and {𝜀2t} sequences rep-
resent what an economic theorist would call the exogeneous variables. In their example,

yt is the logarithm of real GNP, zt is unemployment, 𝜀1t is an aggregate demand shock,

and 𝜀2t is an aggregate supply shock. The coefficients of C11(L), for example, represent

the impulse responses of an aggregate demand shock on the time path of change in the

log of real GNP.6

The key to decomposing the {yt} sequence into its permanent and stationary com-

ponents is to assume that one of the shocks has a temporary effect on the {yt} sequence.
It is this dichotomy between temporary and permanent effects that allows for the com-

plete identification of the structural innovations from an estimated VAR. For example,

Blanchard and Quah assume that an aggregate demand shock has no long-run effect on

real GNP. In the long run, if real GNP is to be unaffected by the demand shock, it must

be the case that the cumulated effect of an 𝜀1t shock on theΔyt sequence must be equal

to zero. Hence, the coefficients c11(k) in (5.65) must be such that

∞∑
k=0

c11(k)𝜀1t−k = 0
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Since this must hold for any possible realization of the {𝜀1t} sequence, it must be

the case that
∞∑
k=0

c11(k) = 0 (5.67)

Since the demand-side and supply-side shocks are not observed, the problem is to

recover them from a VAR estimation. Given that the variables are stationary, we know

that there exists a VAR representation of the form:[
Δyt
zt

]
=

[
A11 (L) A12(L)
A21(L) A22(L)

] [
Δyt−1
zt−1

]
+

[
e1t
e2t

]
(5.68)

or, to use a more compact notation,

xt = A(L)xt−1 + et

where xt is the column vector (Δyt, zt)T , et is the column vector (e1t, e2t)T , A(L) is the
2 × 2matrix with elements equal to the polynomialsAij(L), and the coefficients ofAij(L)
are denoted by aij(k).

The critical insight is that the VAR residuals are composites of the pure innova-

tions 𝜀1t and 𝜀2t. For example, e1t is the one-step-ahead forecast error of yt; that is,
e1t = Δyt − Et−1Δyt. From the BMA, the one-step-ahead forecast error is c11(0)𝜀1t +
c12(0)𝜀2t. Since the two representations are equivalent, it must be the case that

e1t = c11(0)𝜀1t + c12(0)𝜀2t (5.69)

Similarly, since e2t is the one-step-ahead forecast error of zt,

e2t = c21(0)𝜀1t + c22(0)𝜀2t (5.70)

or, combining (5.69) and (5.70), we get[
e1t
e2t

]
=

[
c11 (0) c12(0)
c21(0) c22(0)

] [
𝜀1t
𝜀2t

]
If c11(0), c12(0), c21(0), and c22(0) were known, it would be possible to recover

𝜀1t and 𝜀2t from the regression residuals e1t and e2t. Blanchard and Quah show that the

relationship between (5.68) and the BMA model plus the long-run restriction of (5.67)

provide exactly four restrictions that can be used to identify these four coefficients. The

VAR residuals can be used to construct estimates of var(e1), var(e2), and cov(e1, e2).
Hence, there are the following four restrictions:

RESTRICTION 1

Given (5.69) and noting thatE𝜀1t𝜀2t = 0, the normalization var(𝜀1) = var(𝜀2) = 1

means that the variance of e1t is

var(e1) = c11(0)2 + c12(0)2 (5.71)
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RESTRICTION 2

Similarly, using (5.70), the variance of e2t is related to c21(0) and c22(0) as

var(e2) = c21(0)2 + c22(0)2 (5.72)

RESTRICTION 3

The product of e1t and e2t is

e1te2t = [c11(0)𝜀1t + c12(0)𝜀2t][c21(0)𝜀1t + c22(0)𝜀2t]

If we take the expectation, the covariance of the VAR residuals is

Ee1te2t = c11(0)c21(0) + c12(0)c22(0) (5.73)

Thus, (5.71–5.73) can be viewed as three equations in the four unknowns

c11(0), c12(0), c21(0), and c22(0). The fourth restriction is embedded in the

assumption that the {𝜀1t} has no long-run effect on the {yt} sequence. The

problem is to transform the restriction (5.67) into its VAR representation. Since

the algebra is a bit messy, it is helpful to rewrite (5.68) as

xt = A(L)Lxt + et

so that

[1 − A(L)L]xt = et

and, by premultiplying by [1 − A(L)L]−1, we obtain

xt = [1 − A(L)L]−1et (5.74)

Denote the determinant of [1 − A(L)L] by the expression D. It should not

take too long to convince yourself that (5.74) can be written as[
Δyt
zt

]
= 1

D

[
1 − A22 (L) L A12(L)L
A21(L)L 1 − A11(L)L

] [
e1t
e2t

]
or, using the definitions of the Aij(L), we get[

Δyt
zt

]
= 1

D

[
1 − Σa22 (k) Lk+1 Σa12(k)Lk+1
Σa21(k)Lk+1 1 − Σa11(k)Lk+1

] [
e1t
e2t

]
where the summations run from k = 0 to infinity.

Thus, the solution for Δyt in terms of the current and lagged values of {e1t}
and {e2t} is

Δyt =
1

D

{[
1 −

∞∑
k=0

a22 (k)Lk+1
]
e1t +

∞∑
k=0

a12(k)Lk+1e2t

}
(5.75)
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Now e1t and e2t can be replaced by (5.69) and (5.70). Making these substi-

tutions, the restriction that the {𝜀1t} sequence has no long-run effect on yt is[
1 −

∞∑
k=0

a22 (k) Lk+1
]
c11(0)𝜀1t +

∞∑
k=0

a12(k)Lk+1c21(0)𝜀1t = 0

RESTRICTION 4

For all possible realizations of the {𝜀1t} sequence, 𝜀1t shocks will have only tem-

porary effects on the Δyt sequence (and on yt itself) if[
1 −

∞∑
k=0

a22 (k)

]
c11(0) +

∞∑
k=0

a12(k)c21(0) = 0

With this fourth restriction, there are four equations that can be used to identify

the unknown values c11(0), c12(0), c21(0), and c22(0). To summarize, the steps in the

procedure are as follows:

STEP 1: Begin by pretesting the two variables for time trends and unit roots. If {yt}
does not have a unit root, there is no reason to proceed with the decom-

position. Appropriately transform the two variables so that the resulting

sequences are both I(0). Perform lag length tests to find a reasonable spec-

ification for the VAR. The residuals of the estimated VAR should pass the

standard diagnostic checks for white-noise processes (of course, e1t and e2t
can be correlated with each other).

STEP 2: Using the residuals of the estimated VAR, calculate the variance/covariance

matrix; that is, calculate var(e1), var(e2), cov(e1, e2). Also, calculate the sums

1 −
p∑
k=0

a22(k) and
p∑
k=0

a12(k)

where p = lag length used to estimate the VAR.

Use these values to solve the following four equations for c11(0), c12(0),
c21(0), and c22(0):

var(e1) = c11(0)2 + c12(0)2

var(e2) = c21(0)2 + c22(0)
cov(e1, e2) = c11(0)c21(0) + c12(0)c22(0)

0 = c11(0)[1 − Σa22(k)] + c21(0)Σa12(k)
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Given these four values cij(0) and the residuals of the VAR, the entire {𝜀1t} and {𝜀2t}
sequences can be identified using the formulas7

e1t−i = c11(0)𝜀1t−i + c12(0)𝜀2t−i

and

e2t−i = c21(0)𝜀1t−i + c22(0)𝜀2t−i

STEP 3: As in a traditional VAR, the identified {𝜀1t} and {𝜀2t} sequences can be used
to obtain impulse response functions and variance decompositions. The

difference is that the interpretation of the impulses is straightforward. For

example, Blanchard and Quah are able to obtain the impulse responses of the

change in the log of real GNP to a typical supply-side shock. Moreover, it is

possible to obtain the historical decomposition of each series. For example,

set all {𝜀1t} shocks equal to zero and use the actual {𝜀2t} series (i.e., use the
identified values of 𝜀2t) to obtain the permanent changes in {yt} as

Δyt =
∞∑
k=0

c12(k)𝜀2t−k

The Blanchard and Quah Results

In their study, Blanchard and Quah (1989) used the first difference of the logarithm

of real GNP and the level of unemployment. They noted that unemployment exhibits

an apparent time trend and that there is a slowdown in real growth beginning in the

mid-1970s. Since there is no obvious way to address these difficult issues, they esti-

mated four different VARs. Two include a dummy allowing for the change in the rate of

growth in output, and two include a deterministic time trend in unemployment. Using

quarterly GNP and unemployment data over the period 1950Q2–1987Q4, they esti-

mated a VAR with eight lags.

Imposing the restriction that demand-side shocks have no long-run effect on real

GNP, Blanchard and Quah identified the two types of shocks. The impulse response

functions for the four VARs are quite similar:

◾ The time paths of demand-side disturbances on output and unemployment

are hump shaped. The impulse responses are mirror images of each other;

initially, output increases while unemployment decreases. The effects peak

after four quarters; afterward, they converge to their original levels.

◾ Supply-side disturbances have a cumulative effect on output. A supply distur-

bance having a positive effect on output has a small positive initial effect on

unemployment. After this initial increase, unemployment steadily decreases

and the cumulated change becomes negative after four quarters. Unemploy-

ment remains below its long-run level for nearly 5 years.

Blanchard and Quah found that the alternative methods of treating the slowdown in

output growth and the trend in unemployment affect the variance decompositions. Since
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the goal here is to illustrate the technique, consider only the variance decomposition

using a dummy variable for the decline in output growth and detrended unemployment.

Percent of Forecast Error Variance Due to Demand-Side Shocks

Horizon (Quarters) Output Unemployment

1 99.0 51.9

4 97.9 80.2

12 67.6 86.2

40 39.3 85.6

At short-run horizons, the huge preponderance of the variation in output is due

to demand-side innovations. Demand shocks account for almost all of the movement

in GNP at short horizons. Since demand shock effects are necessarily temporary, the

findings contradict those of Beveridge and Nelson. The proportion of the forecast error

variance falls steadily as the forecast horizon increases; the proportion converges to

zero since these effects are temporary. Consequently, the contribution of supply-side

innovations to real GNP movements increases at longer forecasting horizons. On the

other hand, demand-side shocks generally account for increasing proportions of the

variation in unemployment at longer forecasting horizons.

14. DECOMPOSING REAL AND NOMINAL
EXCHANGE RATES: AN EXAMPLE

In the study by Enders and Lee (1997), we decomposed real and nominal exchange

rate movements into the components induced by real and nominal factors. This section

presents a small portion of the paper in order to further illustrate the methodology of

the Blanchard and Quah technique. The results reported below are updated through

2013Q1 using the data in the file labeled EXRATES.XLS. One aim of the study is to

explain the deviations from purchasing power parity. As in Chapter 4, the real value of

the Canadian dollar (rt) can be defined as

rt = et + p∗t − pt

where p∗t and pt refer to the logarithms of U.S. and Canadian wholesale price indices,

respectively, and et is the logarithm of the Canadian/U.S. dollar nominal exchange rate.

To explain the deviations from PPP, we suppose that there are two types of shocks:

a real shock and a nominal shock. The theory suggests that real shocks can cause perma-

nent changes in the real exchange rate but that nominal shocks can cause only temporary

movements in the real rate. For example, in the long run, if Canada doubles its nominal

money supply, the Canadian price level and the exchange rate will both double (i.e., pt
and et will double). Hence, in the long run, the real exchange rate remains invariant to

a money supply shock.
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For Step 1, we perform various unit root tests on the quarterly Canadian/U.S.

dollar real and nominal exchange rates over the 1973Q1–2013Q1 period. Consistent

with other studies focusing on the post-Bretton Woods period, it is clear that real

and nominal rates can be characterized by nonstationary processes. If you follow the

general-to-specific approach and use a single lag ofΔrt in an augmented Dickey–Fuller

test, you should find that the coefficient on rt−1 is −0.063 with a t-statistic of −2.59.
Rejecting the null hypothesis of a unit root in the real exchange rate is important; if the

{rt} series is stationary, it has no permanent component. Although many researchers

argue that nominal exchange rates should act as I(1) processes, it is worthwhile to for-
mally test this claim using an ADF test. Again, follow the general-to-specific method-

ology and estimate a model with one-lagged change of Δet to obtain

Δet = 0.005 − 0.025Δet−1 + 0.345Δet−1
(1.48) (−1.76) (4.59)

As such, it seems reasonable to proceed treating the {rt} and {et} series as I(1)
processes. The BMA model has the form:[

Δrt
Δet

]
=

[
C11 (L) C12(L)
C21(L) C22(L)

] [
𝜀rt
𝜀nt

]
where 𝜀rt and 𝜀nt represent the zero-mean mutually uncorrelated real and nominal

shocks, respectively.

The restriction that the nominal shocks have no long-run effect on the real

exchange rate is represented by the restriction that the coefficients in C12(L) sum to

zero; thus, if cij(k) is the kth coefficient in Cij(L), as in (5.67), the restriction is
∞∑
k=0

c12(k) = 0 (5.76)

The restriction in (5.76) implies that the cumulative effect of 𝜀nt onΔrt is zero and,
consequently, that the long-run effect of 𝜀nt on the level of rt itself is zero. Put another
way, the nominal shock 𝜀tn has only short-run effects on the real exchange rate. Note

that there is no restriction on the effects of a real shock on the real rate or effects of

either real or nominal shocks on the nominal exchange rate.

For Step 2, we estimate a bivariate VAR model for several lag lengths. Likelihood

ratio tests indicate that a VARmodel with three lags is appropriate. For example, if you

compare the three lag and one lag models you should find that In(|Σ3|) = −16.934,
In(|Σ1|) = −16.823, the number of coefficients in each equation of the three lag model

is 7, and the number of usable observations is 157. Using these values, (5.44) becomes

(157 − 7)∗[−16.823 − (−16.934)] = 16.63

If you compare this value to a 𝜒2 distribution with 8 degrees of freedom, you will

find that the restriction is binding at the 0.034 significance level. As such, we would

conclude that the three-lag model is appropriate. The AIC and SBC with three lags are

−2630.64 and −2587.85, whereas the AIC and SBC with one lag are −2629.23 and
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−2610.90, respectively. As such, the AIC also selects the three-lag model, whereas the

SBC selects the model with only one lag.

Since the lag length selection methods give conflicting answers, a careful

researcher might want to perform the analysis using both lag lengths. For ease of

exposition, the text reports results using only the three-lag model. You can use the data

in the file EXRATES.XLS to see if the key results are dependent on the lag length.

The variance decompositions using a standard Choleski decomposition are

shown in the second and third columns of the table below. The ordering is such

that the nominal exchange rate has no contemporaneous effect on the real rate. The

decompositions using the Blanchard–Quah decomposition are given in the fourth

and fifth columns. The table shows the percentages of the forecast error variances

accounted for by the 𝜀rt shock.

Comparison of Choleski and BQ Decompositions

Choleski Blanchard–Quah

Horizon 𝚫rt 𝚫et 𝚫rt 𝚫et
One quarter 100.0 73.93 88.31 40.11

Four quarters 94.69 73.16 83.36 42.26

Eight quarters 94.61 73.06 83.91 42.19

If we use the Choleski decomposition, it is immediately evident that real shocks

explain almost all of the forecast error variance of the real exchange rate at any forecast

horizon. Nominal shocks accounted for approximately 26% of the forecast error vari-

ance of the nominal exchange rate. The interpretation is that real shocks are responsible

for movements in real and nominal exchange rates. As such, we should expect both

rates to display sizeable comovements. The effect of using the BQ decomposition is

such that real shocks explain a smaller proportion of the forecast error variance of both

exchange rates. This is particularly true for the nominal exchange rate.

Figure 5.10 shows the impulse response functions of the real and nominal exchange

rates to both types of shocks. For clarity, the results are shown for the levels of exchange

rates (as opposed to first differences) measured in terms of standard deviations. For

example, the standardized responses of the real exchange rate are obtained by dividing

each reap exchange rate response by the standard deviation of the residuals from real

exchange rate equation.

1. Consider a real shock that creates an increase in the relative demand for the

U.S. good. The effect of such a “real” shock is to cause an immediate increase

in the real and nominal exchange rates. It is interesting to note that the initial

movements in the real value of the dollar are greater than those of the nominal

dollar. Moreover, these changes are all of a permanent nature. Real and nom-

inal rates converge to their new long-run levels in about seven quarters. Since

the long-run change in rt and et is nearly identical, the implication is that the

price ratio pt − p∗t shows very little response to a real shock.
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FIGURE 5.10 Responses of Real and Nominal Exchange Rates

2. In response to a nominal shock (such as a relative increase in the Canadian

money supply), the movement in the nominal exchange rate to its long-run

level is almost immediate. There is only mild evidence of nominal exchange

rate overshooting—after one period the nominal rate rises from about 0.8 to

1.0 and, then, returns to its new long-run level. As required by our identifi-

cation restriction, the effect of a nominal shock on the real exchange rate is

necessarily temporary. Nevertheless, even the short-run changes in the real

rate show very little response to a nominal shock—the maximal change is

only 0.4 standard deviations. The implication is that pt − p∗t adjusts to offset
the change in the nominal exchange rate.

Limitations of the Technique

A problem with this type of decomposition is that there are many types of shocks. As

recognized by Blanchard and Quah (1989), the approach is limited by its ability to

identify at most only as many types of distinct shocks as there are variables. Blanchard

and Quah proved several propositions that are somewhat helpful when the presence

of three or more structural shocks is suspected. Suppose that there are several distur-

bances having permanent effects but only one having a temporary effect on {yt}. If
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the variance of one type of permanent disturbance grows “arbitrarily” small relative to

the other, then the decomposition scheme approaches the correct decomposition. The

second proposition they proved is that if there are multiple permanent disturbances

(temporary disturbances), the correct decomposition is possible if and only if the indi-

vidual distributed lag responses in the real and nominal exchange rate are sufficiently

similar across equations. By “sufficiently similar,” Blanchard and Quah mean that the

coefficients may differ up to a scalar lag distribution. Yet, both propositions essen-

tially imply that there are only two types of disturbances. For the first proposition, the

third disturbance must be arbitrarily small. For the second proposition, the third dis-

turbance must have a sufficiently similar path to one of the others. It is wise to avoid

such a decomposition when the presence of three or more important disturbances is

suspected. Alternatively, as in the study by Clarida and Gali (1994), you might be able

to develop a model implying three long-run restrictions among three variables.

A second problem is that the Blanchard–Quah restrictions produce a system of

quadratic equations so that the signs of the cij(0) are not identified. Moreover, in a

system with many variables, there can be many solutions to the nonlinear system

of equations. In these circumstances, Taylor (2003) recommends the use of overi-

dentifying restrictions or those normalizations that are consistent with an underlying

economic model.

15. SUMMARY AND CONCLUSIONS

Intervention analysis was used to determine the effects of installing metal detectors in

airports. More generally, intervention analysis can be used to ascertain how any deter-
ministic function affects an economic time series. Usually, the shape of the intervention

function is clear, as in the metal detector example. However, there are a wide variety of

possible intervention functions. If there is an ambiguity, the shape of the intervention

function can be determined using the standard Box–Jenkins criteria for model selec-

tion. The crucial assumption in intervention analysis is that the intervention function

has only deterministic components.

Transfer function analysis is appropriate if the “intervention” sequence is stochas-

tic. If {yt} is endogeneous and {zt} is exogeneous, a transfer function can be fit using the
five-step procedure discussed in Section 2. The procedure is a straightforwardmodifica-

tion of the standard Box–Jenkins methodology. Similarly, ADLs are a straightforward

way to capture the time path of an independent variable or a dependent variable. The

resulting impulse response function traces out the time path of {zt} realizations on the
{yt} sequence. This technique was illustrated by a study showing that terrorist attacks

caused Italy’s tourism revenues to decline by a total 600 million SDR.

With economic data, it is not always clear that one variable is dependent and the

others are independent. In the presence of feedback, intervention and transfer func-

tion analyses are inappropriate. Instead, use a vector autoregression, which treats all

variables as jointly endogeneous. Each variable is allowed to depend on its past real-

izations and on the past realizations of all other variables in the system. There is no

special attention paid to parsimony since the imposition of the “incredible identifica-

tion restrictions” may be inconsistent with economic theory. Granger causality tests,

block exogeneity, and lag length tests can help select a more parsimonious model.
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Ordinary least squares yield efficient estimates of the VAR coefficients. One dif-

ficulty with VAR analysis is that the underlying structural model cannot be recovered

from estimated VAR. An arbitrary Choleski decomposition provides an extra equation

necessary for identification of the structural model. For each variable in the system,

innovation accounting techniques can be used to ascertain: (i) the percentage of the

forecast error variance attributable to each of the other variables and (ii) the impulse

responses to the various innovations. This technique was illustrated by examining the

relationship between domestic and transnational terrorism.

An important development is the convergence of traditional economic theory and

the VAR framework. Structural VARs impose an economic model on the contempora-

neous movements of the variables. As such, they allow for the identification of the

parameters of the economic model and the structural shocks. The Bernanke–Sims

procedure can be used to identify (or overidentify) the structural innovations. The Blan-

chard and Quah methodology imposes long-run restrictions on the impulse response

functions to exactly identify the structural innovations. An especially useful feature of

the technique is that it provides a unique decomposition of an economic time series

into its temporary and permanent components.

Nevertheless, as summarized in an interesting paper by Todd (1990), VAR results

may not be robust to reasonable changes in the model’s specification. Sometimes, the

addition of a time trend, changing the lag length, eliminating a variable from the model,

or changing the frequency of the data from monthly to quarterly can alter the results of

a VAR. Similarly, using several plausible ways to measure a variable (e.g., using one

short-term interest rate instead of another) might lead to different impulse responses or

variance decompositions. As such, you need to be careful in estimating a VAR. Some

suggestions are as follows:

1. Select your variables carefully. Use the variables that most accurately mea-

sure the phenomena of interest. Moreover, incorporating extraneous variables

will quickly consume degrees of freedom. Omitting important variables will

not allow you to interpret your impulse responses and variance decomposi-

tions properly.

2. You should have some idea as to whether or not the variables in question are

stationary, trend stationary, or difference stationary. Granger causality tests

can be meaningless if they involve nonstationary variables. You do not want

to include a time trend unless the variables actually contain a determinis-

tic trend. Moreover, the impulse response functions involving nonstationary

variables can have very large standard errors.

3. Be sure to perform robustness checks. Todd (1990), for example, checked

the robustness of Sims’ results using three different measures of the money

supply and two different interest rate series. He also obtained results with

and without a trend. The point is to try a number of reasonable specifications.

Compare several different performance measures of the alternative specifica-

tions (such as fit, impulse responses, and variance decompositions). Maintain

a healthy skepticism of any conclusions if the results from the alternative

estimations are very different.
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QUESTIONSANDEXERCISES
1. Consider three forms of the intervention variable:

pulse: z1 = 1 and all other zi = 0

pure jump: z1 = z2 = … = 1 and all other zi = 0 for i > 10

prolonged impulse: z1 = 1; z2 = 0.75; z3 = 0.5; z4 = 0.25; and all other values of zt = 0

a. Show how each of the following {yt} sequences responds to the three types of interven-
tions:

i. yt = 0.5yt−1 + zt + 𝜀t

ii. yt = −0.5yt−1 + zt + 𝜀t

iii. yt = 1.25yt−1 − 0.5yt−2 + zt + 𝜀t

iv. yt = yt−1 + zt + 𝜀t

v. yt = 0.75yt−1 + 0.25yt−2 + zt + 𝜀t

b. Notice that the intervention models in iv and v have unit roots. Show that the intervention

variable z1 = 1, z2 = −1, and all other values of zi = 0 has only a temporary effect on

these two sequences.

c. Show that an intervention variable will not have a permanent effect on a unit root process

if all values of zi sum to zero.

d. Discuss the plausible models you might choose if the {yt} sequence is:
i. stationary and you suspect that the intervention has a growing and then a diminishing

effect.

ii. nonstationary and you suspect that the intervention has a permanent effect on the

level of {yt}.
iii. nonstationary and you suspect that the intervention has a temporary effect on the

level of the {yt}.
iv. nonstationary and you suspect that the intervention increases the trend growth

of {yt}.
2. Former KGB General Sakharovsky has been quoted as saying, “In today’s world,

when nuclear arms have made military force obsolete, terrorism should become our

main weapon.” Now, most analysts believe that the end of the Cold War brought about

a dramatic decline in state-sponsored terrorism. The data set TERRORISM.XLS

contains the quarterly values of various types of domestic and transnational ter-

rorist incidents over the 1970Q1–2010Q4 period. The precise definition of the

variables is discussed in Enders, Sandler, and Gaibulloev (2011). If you exam-

ine Figure 5.1, you can see that the number of both types of incidents begin to

fall in the early 1990s as a result of the breakup of the Soviet Union in 1991Q4.
There is a second decline after 1997Q4. The U.S. State department attributes this

decline to diplomatic and law enforcement measures making it harder for terrorists

to operate.

a. Let {yt} denote the quarterly number of transnational incidents. The first step in

estimating an intervention model is to examine the ACF and PACF of the {yt} series
for the 1970Q1–1997Q4 period and try to identify a plausible set of models. Since

the data after 1997Q4 contains 52 observations, it is also reasonable to examine the

ACF and PACF for the 1998Q1−2010Q4 period. What models for {yt} seem most

promising?

b. Jennifer created the dummy variable zt to represent the decline in transnational terror-
ism series. Specifically, she let zt = 1 after 1997Q4 and zt = 0 for t ≤ 1997Q4. She then
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estimated the two models:

yt = 29.09 − 14.70zt and yt = 9.10 + 0.323yt−1 + 0.374yt−2 − 5.00zt
(26.37) (−1.96) (4.15) (4.39) (5.15) (−2.74)

Estimate the two models and determine which seems to be the most satisfactory.

c. Justin, who never liked to take advice, ignored Step 1 and simply looked at the ACF and

PACF for the entire sample period. Why might Justin conclude that the yt series is very
persistent?

d. Justin thought that an ARMA(1, 1) model could adequately capture the apparent persis-

tence of the {yt} series. He estimated

yt = 30.77 + 0.87yt−1 − 16.41zt − 0.51𝜀t−1 + 𝜀t
(9.68) (16.20) (−3.51) (5.11)

In what important ways are Jennifer’s and Justin’s findings for the long-run effects of zt
on yt quite different?

e. How do the results change if you use a single dummy for 1991Q4? What is the effect of

including the two dummy variables?

3. Let the realized value of the {zt} sequence be such that z1 = 1 and all other values of zi = 0.

a. Use equation (5.11) to trace out the effects of the {zt} sequence on the time path of yt.
b. Use equation (5.12) to trace out the effects of the {zt} sequence on the time paths of yt

and Δyt.
c. Use equation (5.13) to trace out the effects of the {zt} sequence on the time paths of yt

and Δyt.
d. Assume that {zt} is a white-noise process with a variance equal to unity.

i. Use (5.11) to derive the cross-correlogram between {zt} and {yt}.
ii. Use (5.12) to derive the cross-correlogram between {zt} and {Δyt}.
iii. Use (5.13) to derive the cross-correlogram between {zt} and {Δyt}.

4. Consider the transfer function model yt = 0.5yt−1 + zt + 𝜀t where zt is the autoregressive
process zt = 0.5zt−1 + 𝜀zt.

a. Derive the cross-correlations between the filtered {yt} sequence and the {𝜀zt} sequence.
b. Now suppose yt = 0.5yt−1 + zt + 0.5zt−1 + 𝜀t and zt = 0.5zt−1 + 𝜀zt. Derive the standard-

ized cross-covariances between the filtered {yt} sequence and 𝜀zt. Show that the first

and second cross-covariances are proportional to the cross-correlations. Show that the

cross-covariances decay at the rate 0.5.

5. Use the data on the file ITALY.XLS to estimate a model in the form of (5.9) using

p = n = 6.

a. Show that the sample F-value for the restriction a6 = c6 = 0 is 0.09 with a prob-value of
0.91. As such, reestimate the model with five lags of each variable and show that it is not

possible to reject the null hypothesis a5 = c5 = 0. Show that it is also reasonable to pare

down the model by restricting c0 = c1 = c2 = 0.

b. Estimate the restricted model from part b using data only from 1972:04 to 1988:04. As

measured by the AIC and SBC (AIC = −56.05 and SBC = −38.66), you should find
that this model does not fit, as well as that in (5.15). As opposed to (5.15), show that this

pared-down model indicates that terrorism increases tourism.

c. Explain why this methodology does not fare as well as that described in the text.

6. Use (5.28) to find the appropriate second-order stochastic difference equation for yt.[
yt
zt

]
=

[
0.8 0.2

0.2 0.8

] [
yt−1
zt−1

]
+

[
e1t
e2t

]
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a. Determine whether the {yt} sequence is stationary.
b. Discuss the shape of the impulse response function of yt to a one-unit shock in e1t and to

a one-unit shock in e2t.
c. Suppose e1t = 𝜀yt + 0.5𝜀zt and that e2t = 𝜀zt. Discuss the shape of the impulse response

function of yt to a one-unit shock in 𝜀yt. Repeat for a one-unit shock in 𝜀zt.
d. Suppose e1t = 𝜀yt and that e2t = 0.5𝜀zt + 𝜀zt. Discuss the shape of the impulse response

function of yt to a one-unit shock in 𝜀yt. Repeat for a one-unit shock in 𝜀zt.
e. Use your answers to c and d to explain why the ordering in a Choleski decomposition is

important.

f. Using the notation in (5.27), find A2
1
and A3

1
. Does An

1
appear to approach zero (i.e., the

null matrix)?

7. Using the notation of (5.20) and (5.21), suppose: a10 = 0, a20 = 0, a11 = 0.8, a12 = 0.2,

a21 = 0.4, and a22 = 0.1.

a. Find the appropriate second-order stochastic difference equation for yt. Determine

whether the {yt} sequence is stationary.
b. Answer parts b through f of Question 6 using these new values of the aij.
c. How would the solution for yt change if a10 = 0.2?

8. Suppose the residuals of a VAR are such that var(e1) = 0.75, var(e2) = 0.5, and

cov(e1t, e2t) = 0.25.

a. Using (5.55) through (5.58) as guides, show that it is not possible to identify the struc-

tural VAR without imposing an additional restriction.

b. Using Choleski decomposition such that b12 = 0, find the identified values of b21,
var(𝜀1), and var(𝜀2).

c. Using Choleski decomposition such that b21 = 0, find the identified values of b12,
var(𝜀1), and var(𝜀2).

d. Using a Sims–Bernanke decomposition such that b12 = 0.5, find the identified values of

b21, var(𝜀1), and var(𝜀2).
e. Using a Sims–Bernanke decomposition such that b21 = 0.5, find the identified values of

b12, var(𝜀1), and var(𝜀2).
f. Suppose that the first three values of e1t are estimated to be 1, 0, −1 and that the first

three values of e2t are estimated to be −1, 0, 1. Find the first three values of 𝜀1t and 𝜀2t
using each of the decompositions in parts b through e.

9. This set of exercises uses data from the file entitled QUARTERLY.XLS in order to estimate

the dynamic interrelationships among the level of industrial production, the unemployment

rate, and interest rates. In Chapter 2, you created the interest rate spread (st) as the differ-
ence between the 10-year rate and the T-bill rate. Now, create the logarithmic change in the

index of industrial production (indprod) as Δlipt = ln(indprodt) − ln(indprodt−1) and the
difference in the unemployment rate as Δurt = unempt –unempt−1.

a. Estimate the three-variable VAR using nine lags of each variable and a constant and save

the residuals. Explain why the estimation cannot be beginning earlier than 1962Q3.
What are the potential advantages of using the variables Δlipt and Δurt instead of ipt
and urt?

b. Verify that In(|Σ9|) = −14.68 and (assuming normality) that the log of the likelihood

function is 622.32. Calculate the multivariate AIC and SBC using the formulas AIC =
TIn(|Σ|) + 2N and SBC = TIn(|Σ|) + NIn(T). Calculate the multivariate AIC and SBC

using the formulas AIC∗ = −2In(L)∕T + 2n∕T and SBC∗ = −2In(L)∕T + nIn(T)∕T
c. Estimate the model using three lags of each variable and save the residuals. Show that

the AIC selects the nine-lag model and that the SBC selects the three-lag model. Show
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that the same ambiguity applies to the AIC* and SBC*. Why is it important to estimate

the three-variable VAR beginning with 1962Q3?
d. Construct the likelihood ratio test for the null hypothesis of nine lags against the alterna-

tive of three lags. How many restrictions are there in the system? How many regressors

are there in each of the unrestricted equations? If you answer correctly, you should find

that the calculated value 𝜒2 with 54 degrees of freedom is 98.10, with a significance level

less than 0.001. Hence, the restriction of three lags is binding.

e. Begin with a maximum lag length of 12. Show that the general-to-specific method selects

nine lags, the AIC selects three lags, and the BIC selects one lag.

10. Question 9 indicates that a 3-lag VAR seems reasonable for the variables Δlipt, Δurt, and
st. Estimate the three-VAR beginning in 1961Q1 and use the ordering such that Δlipt is
causally prior to Δurt and that Δurt is causally prior to st.
a. If you perform a test to determine whether st Grange causes Δlipt you should find that

the F-statistic is 2.44 with a prob-value of 0.065. How do you interpret this result?

b. Verify that st Granger causes Δunempt. You should find that the F-statistic is 5.93 with a
prob-value of less than 0.001.

c. It turns out that the correlation coefficient between e1t and e2t is −0.72. The correlation
between e1t and e3t is −0.11 and between e2t and e3t is 0.10. Explain why the ordering in
a Choleski decomposition is likely to be important for obtaining the impulse responses.

d. Verify that the forecast error variance decompositions are:

Proportion due to
𝚫lipt shock (%)

Proportion due to
𝚫urt shock (%)

Proportion due to
st shock (%)

Horizon 𝚫lipt 𝚫urt st 𝚫lipt 𝚫urt st 𝚫lipt 𝚫urt st

1 100.00 51.27 1.13 0.00 48.73 0.08 0.00 0.00 98.79

4 96.18 64.64 9.44 1.47 32.79 0.99 2.35 2.58 89.58

8 90.83 57.13 19.99 2.38 29.24 0.97 6.78 13.66 79.04

e. Now estimate the model using the levels of lipt and urt. Do you now find a lag length of

5 is appropriate? Compare the forecast error variances to those above.

f. Obtain the impulse response functions from the model using Δlipt, Δurt, and st. Show
that a positive shock to industrial production induces a decline in the unemployment

rate that lasts for six quarters. Then, Δurt overshoots its long-run level before returning
to zero.

g. Reverse the ordering and explain why the results depend on whether or not Δlipt pro-
ceeds Δurt.

11. This set of exercises uses data from the file entitled QUARTERLY.XLS in order to estimate

the dynamic effects of aggregate demand and supply shocks on industrial production and

the inflation rate. Create the logarithmic change in the index of industrial production (ind-
prod) as Δlipt = ln(indprodt) − ln(indprodt−1) and the inflation rate (as measured by the

CPI) as inft = log(cpit) − log(cpit−1).
a. Determine whether Δlipt and inft are stationary.
b. Estimate the two-variable VAR using three lags of each variable and a constant and

save the residuals. Verify that the three-lag specification is selected by the SBC and the

general-to-specific method, whereas the AIC selects five lags.
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c. Perform the Granger causality tests. Verify that the F-statistic for the test that inflation
Granger-causes industrial production is 4.82 (with a significance level of 0.003) and

that F-statistic for the test that industrial production Granger-inflation is 5.1050 (with a
significance level of 0.002).

d. Now use a Choleski decomposition such thatΔlipt is causally prior to inft. Verify that the
variance decompositions are:

Proportion due to
𝚫lipt shock (%)

Proportion due to
inft shock (%)

Horizon 𝚫lipt inft 𝚫lipt inft

1 100.00 1.69 0.00 98.31

4 97.47 11.21 2.53 88.79

8 91.05 15.31 8.96 84.69

e. Verify that a positive shock to industrial production acts to increase inflation and that a

positive inflation shock decreases industrial production. Does this make sense in terms of

the standard aggregate supply/aggregate demand model?

f. Now use the Blanchard–Quah decomposition such that the aggregate demand shock

has no long-run effect on industrial production. Verify that the cumulated sums of the

impulse responses are as shown in Figure 5.11. [Note that the responses have been cumu-

lated and each has been standardized. For example, the two-step response industrial

Responses to the Supply Shock
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FIGURE 5.11 Response of Industrial Production and Inflation
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production is the sum responses for Δlipt+1 + Δlipt. Moreover, each response has been

divided by the standard deviation of the residual from the equation for Δlipt.]
g. Does it make economic sense that (i) an aggregate supply shock increases output and

decreases inflation whereas (ii) an aggregate demand shock increases inflation and

short-run output and (iii) an aggregate demand shock has no effect on output in the long

run?

12. Jennifer estimates a structural VAR using output (y), money (m), and inflation (i) such that
the contemporaneous relationships among the variables are:⎡⎢⎢⎣

eyt
emt
eit

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0

g21 1 g23
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜀yt
𝜀mt
𝜀it

⎤⎥⎥⎦
where eyt, emt, and eit are the regression residual from the yt, mt, and it equations, and 𝜀yt,
𝜀mt, and 𝜀it are the pure shocks (i.e., the structural innovations) to yt, mt, and it, respectively.

a. Is this set of economic restrictions plausible?

b. Explain why the system is overidentified and how the overidentified system can be esti-

mated.

c. Given that the system is overidentified, discuss an overidentifying restriction you might

want Jennifer to test. How can the test be performed?
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CHAPTER6
COINTEGRATION AND ERROR-
CORRECTION MODELS

Learning Objectives
1. Introduce the basic concept of cointegration and show that it applies in a

variety of economic models.

2. Show that cointegration necessitates that the stochastic trends of nonstation-

ary variables be linked.

3. Consider the dynamic paths of cointegrated variables. Since the trends of the

variables are linked, the dynamic paths of such variables must respond to the

current deviation from the equilibrium relationship.

4. Develop the Engle–Granger cointegration test. The econometric methods

underlying the test procedures stem from the theory of simultaneous differ-

ence equations.

5. The Engle–Granger method is illustrated using simulated data.

6. Illustrate the Engle–Granger method using real exchange rate data.

7. Develop the Johansen full-information maximum likelihood cointegration

test.

8. Show how to test restrictions on cointegrating vectors. Discuss inference in

models with I(1) and I(2) variables.

9. Illustrate the Johansen test using simulated data.

10. Show how to estimate ADL models using nonstationary variables and

develop the ADL cointegration test.

11. Compare the Engle–Granger, Johansen, and ADL cointegration tests using

interest rate data.

This chapter explores an exciting development in econometrics: the estimation of a

structural equation or a VAR containing nonstationary variables. In univariate models,

we have seen that a stochastic trend can be removed by differencing. The resulting

stationary series can be estimated using univariate Box–Jenkins techniques. At one

time, the conventional wisdom was to generalize this idea and difference all nonsta-

tionary variables used in a regression analysis. However, the appropriate way to treat

nonstationary variables is not so straightforward in a multivariate context. It is quite

possible for there to be a linear combination of integrated variables that is stationary;

such variables are said to be cointegrated. In the presence of cointegrated variables,
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it is possible to model the long-run model and the short-run dynamics simultaneously.

Many economic models entail such cointegrating relationships.

1. LINEAR COMBINATIONS OF INTEGRATED
VARIABLES

Since money demand studies stimulated much of the cointegration literature, we begin

by considering a simple model of money demand. Theory suggests that individuals

want to hold a real quantity of money balances, so that the demand for nominal money

holdings should be proportional to the price level. Moreover, as real income and the

associated number of transactions increase, individuals will want to hold increased

money balances. Finally, since the interest rate is the opportunity cost of holdingmoney,

money demand should be negatively related to the interest rate. In logarithms, an econo-

metric specification for such an equation can be written as

mt = 𝛽0 + 𝛽1pt + 𝛽2yt + 𝛽3rt + et (6.1)

where mt = demand for money

pt = price level

yt = real income

rt = interest rate

et = stationary disturbance term

𝛽i = parameters to be estimated

and all variables but the interest rate are expressed in logarithms

The hypothesis that the money market is in equilibrium allows the researcher to

collect time-series data of the money supply (= money demand if the money market

always clears), the price level, real income (possibly measured using real GDP), and

an appropriate short-term interest rate. The behavioral assumptions require that 𝛽1 = 1,

𝛽2 > 0, and 𝛽3 < 0; a researcher conducting such a study would certainly want to test

these parameter restrictions. Be aware that the properties of the unexplained portion

of the demand for money (i.e., the {et} sequence) are an integral part of the theory. If

the theory is to make any sense at all, any deviation in the demand for money must

necessarily be temporary in nature. Clearly, if et has a stochastic trend, the errors in the
model will be cumulative so that deviations frommoney market equilibrium will not be

eliminated. Hence, a key assumption of the theory is that the {et} sequence is stationary.
The problem confronting the researcher is that real GDP, the money supply, price

level, and interest rate can all be characterized as nonstationary I(1) variables. As such,
each variable can meander without any tendency to return to a long-run level. However,

the theory expressed in (6.1) asserts that there exists a linear combination of these non-

stationary variables that is stationary! Solving for the error term, we can rewrite (6.1) as

et = mt − 𝛽0 − 𝛽1pt − 𝛽2yt − 𝛽3rt (6.2)
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Since {et} must be stationary, it follows that the linear combination of integrated

variables given by the right-hand-side of (6.2) must also be stationary. Thus, the theory

necessitates that the time paths of the four nonstationary variables {mt}, {pt}, {yt}, and
{rt} be linked. This example illustrates the crucial insight that has dominated much of

the macroeconometric literature in recent years: Equilibrium theories involving non-
stationary variables require the existence of a combination of the variables that is
stationary.

The money demand function is just one example of a stationary combination of

nonstationary variables. Within any equilibrium framework, the deviations from equi-

librium must be temporary. Other important economic examples involving stationary

combinations of nonstationary variables include the following:

1. Consumption function theory. A simple version of the permanent income

hypothesis maintains that total consumption (ct) is the sum of permanent con-

sumption (cpt ) and transitory consumption (ctt). Since permanent consumption

is proportional to permanent income (ypt ), we can let 𝛽 be the constant of

proportionality and write ct = 𝛽ypt + ctt. Transitory consumption is neces-

sarily a stationary variable, and both consumption and permanent income are

reasonably characterized as I(1) variables. As such, the permanent income

hypothesis requires that the linear combination of two I(1) variables given by
ct − 𝛽ypt be stationary.

2. Unbiased forward rate hypothesis. One form of the efficient market hypoth-

esis asserts that the forward (or futures) price of an asset should equal the

expected value of that asset’s spot price in the future. Foreign exchange mar-

ket efficiency requires that the one-period forward exchange rate equal the

expectation of the spot rate in the next period. Letting ft denote the log of the
one-period price of forward exchange in t and st the log of the spot price of
foreign exchange in t, the theory asserts that Etst+1 = ft. If this relationship
fails, speculators can expect to make a pure profit on their trades in the for-

eign exchange market. If agents’ expectations are rational, the forecast error

for the spot rate in t + 1 will have a conditional mean equal to zero, so that

st+1 − Etst+1 = 𝜀t+1 where Et𝜀t+1 = 0. Combining the two equations yields

st+1 = ft + 𝜀t+1. Since {st} and {ft} are I(1) variables, the unbiased forward
rate hypothesis necessitates that there be a linear combination of nonstation-

ary spot and forward exchange rates that is stationary.

3. Commodity market arbitrage and purchasing power parity. Theories of spa-
tial competition suggest that in the short run, prices of similar products in

varied markets might differ. However, arbiters will prevent the various prices

from moving too far apart even if the prices are nonstationary. Similarly, the

prices of Apple computers and PCs have exhibited sustained declines. Eco-

nomic theory suggests that these simultaneous declines are related to each

other since a price discrepancy between these similar products cannot con-

tinually widen. Also, as we saw in Chapter 4, purchasing power parity places

restrictions on the movements of nonstationary price levels and exchange

rates. If et denotes the log of the price of foreign exchange and pt and p
∗
t
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denote, respectively, the logs of domestic and foreign price levels, long-run

PPP requires that the linear combination et + p∗t − pt be stationary.

All of these examples illustrate the concept of cointegration as introduced by

Engle and Granger (1987). Their formal analysis begins by considering a set of eco-

nomic variables in long-run equilibrium when

𝛽1x1t + 𝛽2x2t + · · · + 𝛽nxnt = 0

Letting 𝛽 and xt denote the vectors (𝛽1, 𝛽2, … , 𝛽n) and (x1t, x2t, … , xnt)′, the

system is in long-run equilibrium when 𝛽xt = 0. The deviation from long-run

equilibrium—called the equilibrium error—is et, so that

et = 𝛽xt

If the equilibrium is meaningful, it must be the case that the equilibrium error

process is stationary. In a sense, the use of the term equilibrium is unfortunate because

economic theorists and econometricians use the term in different ways. Economic theo-

rists usually use the term to refer to an equality between desired and actual transactions.

The econometric use of the term makes reference to any long-run relationship among

nonstationary variables. Cointegration does not require that the long-run relationship

be generated by market forces or by the behavioral rules of individuals. In Engle and

Granger’s use of the term, the equilibrium relationship may be causal, behavioral,

or simply a reduced-form relationship among similarly trending variables. Engle and

Granger (1987) provide the following definition of cointegration:

The components of the vector xt = (x1t, x2t, … , xnt)′ are said to be cointegrated of
order d, b, denoted by xt ∼ CI(d, b) if

1. All components of xt are integrated of order d.

2. There exists a vector 𝛽 = (𝛽1, 𝛽2, … , 𝛽n) such that the linear combination

𝛽xt = 𝛽1x1t + 𝛽2x2t + · · · + 𝛽nxnt is integrated of order (d − b) where b > 0.

Note that the vector 𝛽 is called the cointegrating vector.1

In terms of equation (6.1), if themoney supply, price level, real income, and interest

rate are all I(1) and the linear combination mt − 𝛽0 − 𝛽1pt − 𝛽2yt − 𝛽3rt = et is station-
ary, then the variables are cointegrated of order (1, 1). The vector xt is (mt, 1, pt, yt, rt)′
and the cointegrating vector 𝛽 is (1,−𝛽0,−𝛽1,−𝛽2,−𝛽3). The deviation from long-run

money market equilibrium is et; since {et} is stationary, this deviation is temporary in

nature.

There are four important points to note about the definition:

1. Cointegration typically refers to a linear combination of nonstationary vari-

ables. Theoretically, it is quite possible that nonlinear long-run relationships

exist among a set of integrated variables. However, as discussed in Chapter 7,

the current state of econometric practice is just beginning to allow for tests of

nonlinear cointegrating relationships. Also note that the cointegrating vector

is not unique. If (𝛽1, 𝛽2, … , 𝛽n) is a cointegrating vector, then for any nonzero
value of 𝜆, (𝜆𝛽1, 𝜆𝛽2, … , 𝜆𝛽n) is also a cointegrating vector. Typically, one
of the variables is used to normalize the cointegrating vector by fixing its
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coefficient at unity. To normalize the cointegrating vector with respect to x1t,
simply select 𝜆 = 1∕𝛽1.

2. From Engle and Granger’s original definition, cointegration refers to vari-

ables that are integrated of the same order. Of course, this does not imply that

all integrated variables are cointegrated; usually, a set of I(d) variables is not
cointegrated. Such a lack of cointegration implies no long-run equilibrium

among the variables, so that they can wander arbitrarily far from each other. If

two variables are integrated of different orders, they cannot be cointegrated.

Suppose x1t is I(d1) and x2t is I(d2) where d2 > d1. Question 7 at the end of
this chapter asks you to prove that any linear combination of x1t and x2t is
I(d2).

Nevertheless, it is possible to find equilibrium relationships among

groups of variables that are integrated of different orders. Suppose that x1t
and x2t are I(2) and that the other variables under consideration are I(1). As
such, there cannot be a cointegrating relationship between x1t (or x2t) and x3t
However, if x1t and x2t are CI(2,1), there exists a linear combination of the

form 𝛽1x1t + 𝛽2x2t which is I(1). It is possible that this combination of x1t and
x2t is cointegrated with the I(1) variables. Lee and Granger (1990) use the
termmulticointegration to refer to this type of circumstance.

3. There may be more than one independent cointegrating vectors for a set of

I(1) variables. The number of cointegrating vectors is called the cointegrat-
ing rank of xt. For example, suppose that the monetary authorities followed a

feedback rule such that they decreased the money supply when nominal GDP

was high and increased the nominal money supply when nominal GDP was

low. This feedback rule might be represented by

mt = 𝛾0 − 𝛾1(yt + pt) + e1t
= 𝛾0 − 𝛾1yt − 𝛾1pt + e1t (6.3)

where {e1t} = a stationary error in the money supply feedback rule.

Given the money demand function in (6.1), there are two cointegrating

vectors for the money supply, price level, real income, and the interest rate.

Let 𝛽 be the (2 ⋅ 5) matrix:

𝛽 =
[
1 −𝛽0 −𝛽1 −𝛽2 −𝛽3
1 −𝛾0 𝛾1 𝛾1 0

]
The two linear combinations given by 𝛽xt are stationary. As such, the

cointegrating rank of xt is two. As a practical matter, if multiple cointegrating

vectors are found, it may not be possible to identify the behavioral relation-

ships from what may be reduced-form relationships. As shown below, if xt
has n nonstationary components, there may be as many as n − 1 linearly inde-

pendent cointegrating vectors. Hence, if xt contains only two variables, there
can be at most one independent cointegrating vector.

4. Most of the cointegration literature focuses on the case in which each

variable contains a single unit root. The reason is that traditional regression

or time-series analysis applies when variables are I(0) and few economic
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variables are integrated of an order higher than unity. When it is unambigu-

ous, many authors use the term cointegration to refer to the case in which
variables are CI(1, 1).

Worksheet 6.1 illustrates some of the important properties of cointegration rela-

tionships. In Case 1, both the {yt} and {zt} sequences were constructed so as to be ran-
dom walk plus noise processes. Although the 20 realizations shown generally decline,

extending the sample would eliminate this tendency. In any event, neither series shows

any tendency to return to a long-run level, and formal Dickey–Fuller tests are not able

WORKSHEET 6.1
ILLUSTRATING COINTEGRATED SYSTEMS

CASE 1: The series {𝜇t} is a random walk process and {𝜀yt} and {𝜀zt} are white noise.
Hence, the {yt} and {zt} sequences are both random walk plus noise processes. Although

each is nonstationary, the two sequences have the same stochastic trend; hence they are

cointegrated such that the linear combination (yt − zt) is stationary. The equilibrium error

term (𝜀yt − 𝜀zt) is an I(0) process.
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CASE 2: All three sequences are random walk plus noise processes. As constructed no

two are cointegrated. However, the linear combination (yt + zt − wt) is stationary; hence,
the three variables are cointegrated. The equilibrium error is an I(0) process.
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to reject the null hypothesis of a unit root in either series. Although each series is non-

stationary, you can see that they do move together. In fact, the difference between the

series (yt − zt)—shown in the second graph—is stationary; the equilibrium error term
et = (yt − zt) has a zero mean and a constant variance.

Case 2 illustrates cointegration among three random walk plus noise processes.

As in Case 1, no series exhibits a tendency to return to a long-run level, and formal

Dickey–Fuller tests are not able to reject the null hypothesis of a unit root in any of the

three. In contrast to the previous case, no two of the series appear to be cointegrated;

each series seems to “meander” away from the other two. However, as shown in the

second graph, there exists a stationary linear combination of the three such that et =
yt + zt − wt. Thus, it follows that the dynamic behavior of at least one variable must be

restricted by the values of the other variables in the system.

Figure 6.1 displays the information of Case 1 in a scatter plot of {yt} against

the associated value of {zt}; each of the 20 points represents the ordered pairs

(y1, z1), (y2, z2), … , (y20, z20). Comparing Worksheet 6.1 and Figure 6.1, you can see

that low values in the {yt} sequence are associated with low values in the {zt} sequence
and that values near zero in one series are associated with values near zero in the other.

Since both series move together over time, there is a positive relationship between

the two. The least-squares line in the scatter plot reveals this to be a strong positive

association. In fact, this line is the “long-run” equilibrium relationship between the

series, and the deviations from the line are the stationary deviations from long-run

equilibrium.
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The scatter plot was drawn using the {yt} and {zt}
sequences from Case 1 of Worksheet 6.1. Since
both series decline over time, there appears to
be a positive relationship between the two. The
equilibrium regression line is shown.

FIGURE 6.1 Scatter Plot of Cointegrated Variables
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For comparison purposes, Panel (a) in Worksheet 6.2 shows the time paths of two

random walk plus noise processes that are not cointegrated. Each seems to meander

without any tendency to approach the other. The scatter plot shown in Panel (b) confirms

the impression of no long-run relationship between the variables. The deviations from

the straight line showing the regression of zt on yt are substantial. Plotting the regression
residuals against time [see Panel (c)], suggests that the regression residuals are not

stationary.

WORKSHEET 6.2
NONINTEGRATED VARIABLES

The {yt} and {zt} sequences are constructed to independent random walk plus noise

processes. There is no cointegrating relationship between the two variables. As shown

in graph (a), both seem to meander without any tendency to come together. Graph (b)

shows the scatter plot of the two sequences and the regression line zt = 𝛽0 + 𝛽1yt. How-
ever, this regression line is spurious. As shown in graph (c), the regression residuals are

nonstationary.
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2. COINTEGRATION AND COMMON TRENDS

Stock and Watson’s (1988) observation that cointegrated variables share common

stochastic trends provides a very useful way to understand cointegration relationships.

For ease of exposition, return to the case in which the vector xt contains only two vari-
ables so that xt = (yt, zt)′. Ignoring cyclical and seasonal terms, we can write each vari-

able as a random walk plus an irregular (but not necessarily a white noise) component:

yt = 𝜇yt + eyt (6.4)

zt = 𝜇zt + ezt (6.5)

where 𝜇it = a random walk process representing the stochastic trend in variable i

eit = the stationary (irregular) component of variable i

If {yt} and {zt} are cointegrated of order (1,1), there must be nonzero values of 𝛽1
and 𝛽2 for which the linear combination 𝛽1yt + 𝛽2zt is stationary. Consider the sum

𝛽1yt + 𝛽2zt = 𝛽1(𝜇yt + eyt) + 𝛽2(𝜇zt + ezt)
= (𝛽1𝜇yt + 𝛽2𝜇zt) + (𝛽1eyt + 𝛽2ezt) (6.6)

For 𝛽1yt + 𝛽2zt to be stationary, the term (𝛽1𝜇yt + 𝛽2𝜇zt)must vanish. After all, if either

of the two trends appears in (6.6), the linear combination 𝛽1yt + 𝛽2zt will also have a

trend. Since the second term within parentheses is stationary, the necessary and suffi-

cient condition for {yt} and {zt} to be CI(1, 1) is

𝛽1𝜇yt + 𝛽2𝜇zt = 0 (6.7)

Clearly, 𝜇yt and 𝜇zt are variables whose realized values will be continually changing

over time. Since we preclude both 𝛽1 and 𝛽2 from being equal to zero, it follows that

(6.7) holds for all t if and only if

𝜇yt = −𝛽2𝜇zt∕𝛽1
For nonzero values of 𝛽1 and 𝛽2, the only way to ensure the equality is for the stochastic

trends to be identical up to a scalar. Thus, up to the scalar −𝛽2∕𝛽1, two I(1) stochastic
processes {yt} and {zt} must have the same stochastic trend if they are cointegrated of
order (1, 1).

Return your attention to Worksheet 6.1. In Case 1, the {yt} and {zt} sequences

were constructed so as to satisfy

yt = 𝜇t + 𝜀yt

zt = 𝜇t + 𝜀zt

𝜇t = 𝜇t−1 + 𝜀t

where 𝜀yt, 𝜀zt, and 𝜀t are independently distributed white-noise disturbances.

By construction, 𝜇t is a pure randomwalk process representing the same stochastic

trend for both the {yt} and {zt} sequences. The value of 𝜇0 was initialized to zero, and

three sets of 20 random numbers were drawn to represent the {𝜀yt}, {𝜀zt}, and {𝜀t}
sequences. Using these realizations and the initial value of 𝜇0, the {yt}, {zt}, and {𝜇t}
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sequences were constructed. As you can clearly determine, subtracting the realized

value of zt from yt results in a stationary sequence:

yt − zt = (𝜇t + 𝜀yt) − (𝜇t + 𝜀zt) = 𝜀yt − 𝜀zt

To state the point using Engle and Granger’s terminology, multiplying the cointe-

grating vector 𝛽 = (1,−1) by the vector by xt = (yt, zt)′ yields the stationary sequence

𝜀t = 𝜀yt − 𝜀zt. Indeed, the equilibrium error term shown in the second graph of Work-

sheet 6.1 has all the hallmarks of a stationary process. The essential insight of Stock and

Watson (1988) is that the parameters of the cointegrating vector must be such that they

purge the trend from the linear combination. Any other linear combination of the two

variables contains a trend so that the cointegrating vector is unique up to a normalizing

scalar. Hence, 𝛽3yt + 𝛽4zt cannot be stationary unless 𝛽3∕𝛽4 = 𝛽1∕𝛽2.
Recall that Case 2 ofWorksheet 6.1 illustrates cointegration between three random

walk plus noise processes. Each process is I(1), andDickey–Fuller unit root tests would
not be able to reject the null hypothesis that each contains a unit root. As you can see

in the lower portion of Worksheet 6.1, no pairwise combination of the series appears

to be cointegrated. Each series seems to meander, and, as opposed to Case 1, no one

single series appears to remain close to any other series. However, by construction, the

trend in wt is the simple summation of the trends in yt and zt:

𝜇wt = 𝜇yt + 𝜇zt

Here, the vector xt = (yt, zt,wt)′ has the cointegrating vector (1, 1,−1), so that the linear
combination yt + zt − wt is stationary. Consider

yt + zt − wt = (𝜇yt + 𝜀yt) + (𝜇zt + 𝜀zt) − (𝜇wt + 𝜀wt) = 𝜀yt + 𝜀zt − 𝜀wt

This example illustrates the general point that cointegration will occur whenever

the trend in one variable can be expressed as a linear combination of the trends in the

other variable(s). In such circumstances it is always possible to find a vector 𝛽 such that

the linear combination 𝛽1yt + 𝛽2zt + 𝛽3wt does not contain a trend. The result easily

generalizes to the case of n variables. Consider the vector representation:

xt = 𝜇t + et (6.8)

where xt = the vector (x1t, x2t, … , xnt)′

𝜇t = the vector of stochastic trends (𝜇1t, 𝜇2t, … , 𝜇nt)′

et = an n ⋅ 1 vector of stationary components

If one trend can be expressed as a linear combination of the other trends in the

system, it means that there exists a vector 𝛽 such that

𝛽1𝜇1t + 𝛽2𝜇2t + · · · + 𝛽n𝜇nt = 0

Premultiply (6.8) by this set of 𝛽is to obtain

𝛽xt = 𝛽𝜇t + 𝛽et
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Since 𝛽𝜇t = 0, it follows that 𝛽xt = 𝛽et. Hence, the linear combination 𝛽xt is sta-
tionary. As shown in Section 8, this argument easily generalizes to the case of multiple

cointegrating vectors.

3. COINTEGRATION AND ERROR CORRECTION

A principal feature of cointegrated variables is that their time paths are influenced by

the extent of any deviation from long-run equilibrium. After all, if the system is to return

to long-run equilibrium, the movements of at least some of the variables must respond

to the magnitude of the disequilibrium. Before proceeding further, be aware that we

will be examining the time paths of multiple nonstationary time-series variables. To do

so in a tractable way, we will need to draw relationship between the rank of a matrix

and its characteristic roots. The required mathematics are provided in Appendix 6.1.

The relationship between long-term and short-term interest rates illustrates how

variables might adjust to any discrepancies from the long-run equilibrium relationship.

Clearly, the theory of the term structure of interest rates implies a long-run relationship

between long- and short-term rates. If the gap between the long- and short-term rates

is “large” relative to the long-run relationship, the short-term rate must ultimately rise

relative to the long-term rate. Of course, the gap can be closed by (1) an increase in the

short-term rate and/or a decrease in the long-term rate, (2) an increase in the long-term

rate but a commensurately larger rise in the short-term rate, or (3) a fall in the long-term

rate but a smaller fall in the short-term rate. Without a full dynamic specification of the

model, it is not possible to determine which of the possibilities will occur. Neverthe-

less, the short-run dynamics must be influenced by the deviation from the long-run

relationship.

The dynamic model implied by this discussion is one of error correction. In an

error-correctionmodel, the short-term dynamics of the variables in the system are influ-

enced by the deviation from equilibrium. If we assume that both interest rates are I(1), a
simple error-correction model that could apply to the term structure of interest rates is

ΔrSt = 𝛼S(rLt−1 − 𝛽rSt−1) + 𝜀St 𝛼S > 0 (6.9)

ΔrLt = −𝛼L(rLt−1 − 𝛽rSt−1) + 𝜀Lt 𝛼L > 0 (6.10)

where 𝜀St and 𝜀Lt are white-noise disturbance terms which may be correlated, rLt and
rSt are the long- and short-term interest rates, and 𝛼S, 𝛼L, and 𝛽 are parameters.

As specified, the short- and long-term interest rates change in response to stochas-

tic shocks (represented by 𝜀St and 𝜀Lt) and in response to the previous period’s deviation
from long-run equilibrium. Everything else being equal, if this deviation happened to

be positive (so that rLt−1 − 𝛽rSt−1 > 0), the short-term interest rate would rise and the

long-term rate would fall. Long-run equilibrium is attained when rLt = 𝛽rSt so that the
expected change in each rate is zero.

Here you can see the relationship between error-correcting models and cointe-

grated variables. By assumption, ΔrSt is stationary so that the left-hand side of (6.9) is
I(0). For (6.9) to be sensible, the right-hand side must be I(0) as well. Given that 𝜀St is
stationary, it follows that the linear combination rLt−1 − 𝛽rSt−1 must also be stationary;
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hence, the two interest rates must be cointegrated with the cointegrating vector (1,−𝛽).
Of course, the identical argument applies to (6.10). The essential point to note is that

the error-correction representation necessitates that the two variables be cointegrated

of order CI(1, 1). This result is unaltered if we formulate a more general model by

introducing the lagged changes of each rate into both equations:

ΔrSt = a10 + 𝛼S(rLt−1 − 𝛽rSt−1) + Σa11(i) ΔrSt−i + Σa12(i) ΔrLt−i + 𝜀St (6.11)

ΔrLt = a20 − aL(rLt−1 − 𝛽rSt−1) + Σa21(i) ΔrSt−i + Σa22(i) ΔrLt−i + 𝜀Lt (6.12)

Again, 𝜀St, 𝜀Lt, and all terms involvingΔrSt−i andΔrLt−i are stationary. Thus, the linear
combination of interest rates rLt−1 − 𝛽rSt−1 must also be stationary.

Inspection of (6.11) and (6.12) reveals a striking similarity to the VAR models of

the previous chapter. This two-variable error-correctionmodel is a bivariate VAR in first

differences augmented by the error-correction terms 𝛼S(rLt−1 − 𝛽rSt−1) and−𝛼L(rLt−1 −
𝛽rSt−1). Notice that 𝛼S and 𝛼L have the interpretation of speed of adjustment parame-

ters. The larger 𝛼S is, the greater the response of rSt to the previous period’s deviation

from long-run equilibrium. At the opposite extreme, very small values of 𝛼S imply that

the short-term interest rate is unresponsive to last period’s equilibrium error. For the

{ΔrSt} sequence to be unaffected by the long-term interest rate sequence, 𝛼S and all

the a12(i) coefficients must be equal to zero. Of course, at least one of the speed of

adjustment terms in (6.11) and (6.12) must be nonzero. If both 𝛼S and 𝛼L are equal to

zero, the long-run equilibrium relationship does not appear and the model is not one of

error correction or cointegration.

The result can easily be generalized to the n-variable model. Formally, the (n ⋅ 1)
vector of I(1) variables xt = (x1t, x2t, … , xnt)′ has an error-correction representation if
it can be expressed in the form:

Δxt = 𝜋0 + 𝜋xt−1 + 𝜋1Δxt−1 + 𝜋2Δxt−2 + · · · + 𝜋pΔxt−p + 𝜀t (6.13)

where 𝜋0 = an (n ⋅ 1) vector of intercept terms with elements 𝜋i0

𝜋i = (n ⋅ n) coefficient matrices with elements 𝜋jk(i)
𝜋 = a matrix with elements 𝜋jk such that one or more of the 𝜋jk ≠ 0

𝜀t = an (n ⋅ 1) vector with elements 𝜀it

Note that the disturbance terms are such that 𝜀it may be correlated with 𝜀jt
Let all variables in xt be I(1). Now, if there is an error-correction representation

of these variables as in (6.13), there is necessarily a linear combination of the I(1)
variables that is stationary. Solving (6.13) for 𝜋xt−1 yields

𝜋xt−1 = Δxt − 𝜋0 − Σ𝜋iΔxt−i − 𝜀t

Since each expression on the right-hand side is stationary, 𝜋xt−1 must also be

stationary. Since 𝜋 contains only constants, each row of 𝜋 is a cointegrating vector

of xt. For example, the first row can bewritten as (𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1).
Since each series is I(1), (𝜋11, 𝜋12, … , 𝜋1n) must be a cointegrating vector for xt.
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The key feature in (6.13) is the presence of the matrix 𝜋. There are two important

points to note:

1. If all elements of 𝜋 equal zero, (6.13) is a traditional VAR in first differences.

In such circumstances there is no error-correction representation since Δxt
does not respond to the previous period’s deviation from long-run equilib-

rium.

2. If one or more of the 𝜋jk differs from zero, Δxt responds to the previous
period’s deviation from long-run equilibrium. Hence, estimating xt as a VAR
in first differences is inappropriate if xt has an error-correction representa-
tion. The omission of the expression 𝜋xt−1 entails a misspecification error if

xt has an error-correction representation as in (6.13).

A goodway to examine the relationship between cointegration and error correction

is to study the properties of the simple VAR model:

yt = a11yt−1 + a12zt−1 + 𝜀yt (6.14)

zt = a21yt−1 + a22zt−1 + 𝜀zt (6.15)

where 𝜀yt and 𝜀zt are white-noise disturbances that may be correlated with each other

and, for simplicity, intercept terms have been ignored. Using lag operators, we canwrite

(6.14) and (6.15) as

(1 − a11L)yt − a12Lzt = 𝜀yt

−a21Lyt + (1 − a22L)zt = 𝜀zt

The next step is to solve for yt and zt. Writing the system in matrix form, we obtain[(
1 − a11L

)
−a12L

−a21L (1 − a22L)

] [
yt
zt

]
=

[
𝜀yt
𝜀zt

]
Using Cramer’s Rule or matrix inversion, we can obtain the solutions for yt and zt as

yt =
(1 − a22L)𝜀yt + a12L𝜀zt

(1 − a11L)(1 − a22L) − a12a21L
2

(6.16)

zt =
a21L𝜀yt + (1 − a11L)𝜀zt

(1 − a11L)(1 − a22L) − a12a21L
2

(6.17)

We have converted the two-variable first-order system represented by (6.14) and

(6.15) into two univariate second-order difference equations of the type examined in

Chapter 2. Note that both variables have the same inverse characteristic equation: (1 −
a11L)(1 − a22L) − a12a21L

2. Setting (1 − a11L)(1 − a22L) − a12a21L
2 = 0 and solving

for L yields the two roots of the inverse characteristic equation. In order to work with

the characteristic roots (as opposed to the inverse characteristic roots), define 𝜆 = 1∕L
and write the characteristic equation as

𝜆2 − (a11 + a22)𝜆 + (a11a22 − a12a21) = 0 (6.18)

Since the two variables have the same characteristic equation, the characteristic

roots of (6.18) determine the time paths of both variables. The following remarks sum-

marize the time paths of {yt} and {zt}:
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1. If both characteristic roots (𝜆1, 𝜆2) lie inside the unit circle, (6.16) and (6.17)
yield stable solutions for {yt} and {zt}. If t is sufficiently large or if the ini-
tial conditions are such that the homogeneous solution is zero, the stability

condition guarantees that the variables are stationary. The variables cannot be

cointegrated of order (1, 1) since each is stationary.

2. If either root lies outside the unit circle, the solutions are explosive. Neither

variable is difference stationary, so they cannot be CI(1, 1). In the same way,

if both characteristic roots are unity, the second difference of each variable

will be stationary. Since each is I(2), the variables cannot be CI(1, 1).
3. As you can see from (6.14) and (6.15), if a12 = a21 = 0, the solution is trivial.

For {yt} and {zt} to be unit root processes, it is necessary for a11 = a22 = 1.

It follows that 𝜆1 = 𝜆2 = 1 and that the two variables evolve without any

long-run equilibrium relationship; hence, the variables cannot be cointe-

grated.

4. For {yt} and {zt} to be CI(1, 1), it is necessary for one characteristic root to
be unity and the other to be less than unity in absolute value. In this instance,

each variable will have the same stochastic trend and the first difference of

each variable will be stationary. For example, if 𝜆1 = 1, (6.16) will have the

form:

yt = [(1 − a22L)𝜀yt + a12L𝜀zt]∕[(1 − L)(1 − 𝜆2L)]

or, multiplying by (1 − L), we get

(1 − L)yt = Δyt = [(1 − a22L)𝜀yt + a12L𝜀zt]∕(1 − 𝜆2L)

which is stationary if |𝜆2| < 1.

Thus, to ensure that the variables are CI(1,1), we must set one of the characteristic

roots equal to unity and the other to a value that is less than unity in absolute value. For

the larger of the two roots to equal unity, the quadratic formula indicates that

0.5(a11 + a22) + 0.5

√
(a2

11
+ a2

22
) − 2a11a22 + 4a12a21 = 1

so that after some simplification, the coefficients are seen to satisfy2

a11 = [(1 − a22) − a12a21]∕(1 − a22) (6.19)

Now consider the second characteristic root. Since a12 and/or a21 must differ from

zero if the variables are cointegrated, the condition |𝜆2| < 1 requires

a22 > −1 (6.20)

and

a12a21 + (a22)2 < 1 (6.21)

Equations (6.19), (6.20), and (6.21) are restrictions we must place on the coeffi-

cients of (6.14) and (6.15) if we want to ensure that the variables are cointegrated of

order (1, 1). To see how these coefficient restrictions bear on the nature of the solution,
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write (6.14) and (6.15) as[
Δyt
Δzt

]
=

[
a11 − 1 a12
a21 a22 − 1

] [
yt−1
zt−1

]
+

[
𝜀yt
𝜀zt

]
(6.22)

Now, (6.19) implies that a11 − 1 = −a12a21∕(1 − a22) so that after a bit of manipula-

tion, (6.22) can be written in the form

Δyt = −[a12a21∕(1 − a22)]yt−1 + a12zt−1 + 𝜀yt (6.23)

Δzt = a21yt−1 − (1 − a22)zt−1 + 𝜀zt (6.24)

Equations (6.23) and (6.24) form an error-correctionmodel. If both a12 and a21 dif-
fer from zero, we can normalize the cointegrating vector with respect to either variable.

Normalizing with respect to yt, we get

Δyt = ay(yt−1 − 𝛽zt−1) + 𝜀yt

Δzt = az(yt−1 − 𝛽zt−1) + 𝜀zt

where 𝛼y = −a12a21∕(1 − a22)
𝛽 = (1 − a22)∕a21
𝛼z = a21

You can see that yt and zt change in response to the previous period’s deviation from
the long-run equilibrium yt−1 − 𝛽zt−1. If yt−1 = 𝛽zt−1, yt and zt change only in response
to 𝜀yt and 𝜀zt shocks. Moreover, if 𝛼y < 0 and 𝛼z > 0, yt decreases and zt increases in
response to a positive deviation from long-run equilibrium. You should also be able to

convince yourself that conditions (6.20) and (6.21) ensure that 𝛽 ≠ 0 and that at least

one of the speed of adjustment parameters (i.e., 𝛼y and 𝛼z) is not equal to zero. Now,

refer to (6.9) and (6.10); you can see this model is in exactly the same form as the

interest rate example presented in the beginning of this section.

Although a12 and a21 cannot both equal zero, an interesting special case arises if

one of these coefficients is zero. For example, if we set a12 = 0, the speed of adjustment

coefficient 𝛼y equals zero. In this case, yt changes only in response to 𝜀yt as Δyt = 𝜀yt.
3

The {zt} sequence does all of the correction to eliminate any deviation from long-run

equilibrium. Since {yt} does not do any of the error-correcting, {yt} is said to beweakly
exogenous.

To highlight some of the important implications of this simple model, we have

shown the following:

1. The restrictions necessary to ensure that the variables are CI(1, 1) guaran-
tee that an error-correction model exists. In our example, both {yt} and {zt}
are unit root processes but the linear combination yt − 𝛽zt is stationary; the
normalized cointegrating vector is [1,−(1 − a22)∕a21]. The variables have
an error-correction representation with speed of adjustment coefficients 𝛼y =
−a12a21∕(1 − a22) and 𝛼z = a21. It was also shown that an error-correction
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model for I(1) variables necessarily implies cointegration. This finding illus-

trates the Granger representation theorem stating that for any set of I(1)
variables, error correction and cointegration are equivalent representations.

2. A cointegration necessitates coefficient restrictions in a VAR model. It is
important to realize that a cointegrated system can be viewed as a restricted

form of a general VAR model. Let xt = (yt, zt)′ and 𝜀t = (𝜀yt, 𝜀zt)′ so that we
can write (6.22) in the form

Δxt = 𝜋xt−1 + 𝜀t (6.25)

Clearly, it is inappropriate to estimate a VAR of cointegrated variables

using only first differences. Estimating (6.25) without the expression 𝜋xt−1
would eliminate the error-correction portion of the model. It is also impor-

tant to note that the rows of 𝜋 are not linearly independent if the variables are
cointegrated. Multiplying each element in row 1 by −(1 − a22)∕a12 yields
the corresponding element in row 2. Thus, the determinant of 𝜋 is equal to

zero, and yt and zt have the error-correction representation given by (6.23)
and (6.24).

This two-variable example illustrates the very important insights of

Johansen (1988) and Stock andWatson (1988) that we can use the rank of 𝜋 to
determine whether or not two variables {yt} and {zt} are cointegrated. Com-

pare the determinant of 𝜋 to the characteristic equation given by (6.18). If the

largest characteristic root equals unity (𝜆1 = 1), it follows that the determi-

nant of 𝜋 is zero and that 𝜋 has a rank equal to unity. If 𝜋 were to have a rank

of zero, it would be necessary for a11 = 1, a22 = 1, and a12 = a21 = 0. The

VAR represented by (6.14) and (6.15) would be nothing more than Δyt = 𝜀yt
and Δzt = 𝜀zt. In this case, both the {yt} and {zt} sequences are unit root pro-
cesses without any cointegrating vector. Finally, if the rank of 𝜋 is full, then

neither characteristic root can be unity, so the {yt} and {zt} sequences are
jointly stationary. After all, if there are two independent stationary relations

for {yt} and {zt}, both variables must be stationary.

3. In general, both variables in a cointegrated system will respond to a deviation

from long-run equilibrium. However, it is possible that one (but not both) of

the speed of adjustment parameters is zero. For example, if 𝛼y = 0, {yt} does
not respond to the discrepancy from long-run equilibrium and {zt} does all
of the adjustment. In this circumstance, {yt} is weakly exogenous because it
does none of the error correction. As such, an econometric model for {zt} can
be estimated and hypothesis testing can be conducted without reference to a

specific model for {yt}. Section 10 and Appendix 6.2 consider modeling in a

cointegrated system when a variable is weakly exogenous.

Also, it is necessary to reinterpret Granger causality in a cointegrated
system. In a cointegrated system, {yt} does not Granger cause {zt} if lagged
values Δyt−i do not enter the Δzt equation and if zt does not respond to the
deviation from long-run equilibrium. Hence, {zt}must be weakly exogenous.

If a21 = 0 in (6.24), {zt} is weakly exogenous and is not Granger caused by
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{yt}. Similarly, in the cointegrated system of (6.11) and (6.12), {rLt} does not
Granger cause {rSt} if all a12(i) = 0 and if 𝛼S = 0.

The n-Variable Case

Little is altered in the n-variable case. The relationship between cointegration, error

correction, and the rank of the matrix 𝜋 is invariant to adding additional variables to

the system. The interesting feature introduced in the n-variable case is the possibility
of multiple cointegrating vectors. Now consider a more general version of (6.25):

xt = A1xt−1 + 𝜀t (6.26)

where xt = the (n ⋅ 1) vector (x1t, x2t, … , xnt)′

𝜀t = the (n ⋅ 1) vector (𝜀1t, 𝜀2t, … , 𝜀nt)′

A1 = an (n ⋅ n) matrix of parameters

Subtracting xt−1 from each side of (6.26) and letting I be an (n ⋅ n) identity matrix,

we get

Δxt = −(I − A1)xt−1 + 𝜀t

= 𝜋xt−1 + 𝜀t (6.27)

where 𝜋 is the (n ⋅ n)matrix −(I − A1) and 𝜋ij denotes the element in row i and column

j of 𝜋. As you can see, (6.27) is a special case of (6.13) such that all 𝜋i = 0.

Again, the crucial issue for cointegration concerns the rank of the (n ⋅ n)matrix 𝜋.

The only way for the rank of a matrix to be zero is for each of its elements to be zero.

Hence, if the rank of 𝜋 is zero, each element of 𝜋 must equal zero so that there are no

cointegrating vectors. In this instance, (6.27) is equivalent to an n-variable VAR in first

differences:

Δxt = 𝜀t

Here, each Δxit = 𝜀it so that all the {xit} sequences are unit root processes and

there is no linear combination of the variables that is stationary.

At the other extreme, suppose that 𝜋 is of full rank. The long-run solution to (6.27)

is given by the n-independent equations:

𝜋11x1t + 𝜋12x2t + 𝜋13x3t + · · · + 𝜋1nxnt = 0

𝜋21x1t + 𝜋22x2t + 𝜋23x3t + · · · + 𝜋2nxnt = 0

.

.

.

𝜋n1x1t + 𝜋n2x2t + 𝜋n3x3t + · · · + 𝜋nnxnt = 0. (6.28)

Each of these n equations is an independent restriction on the long-run solution of
the variables; the n variables in the system face n long-run constraints. In this case, each
of the n variables contained in the vector xt must be stationary with the long-run values

given by the solution to 6.28. The variables cannot be CI(1, 1) since all are stationary.

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c06.tex V3 - 09/02/2014 1:57pm Page 360

360 CHAPTER 6 COINTEGRATION AND ERROR-CORRECTION MODELS

In intermediate cases, in which the rank of 𝜋 is equal to r < n, there are r cointe-
grating vectors. With r independent equations and n variables, there are n − r stochastic
trends in the system. If r = 1, there is a single cointegrating vector given by any row

of the matrix 𝜋. Each {Δxit} sequence can be written in error-correction form. For

example, we can write Δx1t as

Δx1t = 𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1n xnt−1 + 𝜀1t

or, normalizing with respect to x1t−1, we can set 𝛼1 = 𝜋11 and 𝛽1j = 𝜋1j∕𝜋11 to obtain

Δx1t = 𝛼1(x1t−1 + 𝛽12x2t−1 + · · · + 𝛽1nxnt−1) + 𝜀1t (6.29)

In the long run, the {xit} will satisfy the relationship

x1t + 𝛽12x2t + · · · + 𝛽1nxnt = 0

Hence, the normalized cointegrating vector is (1, 𝛽12, 𝛽13, … , 𝛽1n) and the speed

of adjustment parameter is 𝛼1. In the same way, with two cointegration vectors the

long-run values of the variables will satisfy the two relationships

𝜋11x1t + 𝜋12x2t + · · · + 𝜋1nxnt = 0

𝜋21x1t + 𝜋22x2t + · · · + 𝜋2nxnt = 0

which can be appropriately normalized.

The main point here is that there are three important ways to test for cointegra-

tion. The Engle–Granger methodology seeks to determine whether the residuals of

the equilibrium relationship are stationary. The Johansen (1988) methodology deter-

mines the rank of 𝜋 and the error-correction method examines the speed of adjustment

coefficients. The Engle–Granger approach is the subject of the next three sections.

Sections 7 through 9 examine the Johansen (1988) methodology, and testing within the

error-correction framework is examined in Section 10.

4. TESTING FOR COINTEGRATION:
THE ENGLE–GRANGER METHODOLOGY

To explain the Engle–Granger testing procedure, let’s begin with the type of problem

likely to be encountered in applied studies. Suppose that two variables—say yt and
zt—are believed to be integrated of order 1 and we want to determine whether there

exists an equilibrium relationship between the two. Engle andGranger (1987) propose a

four-step procedure to determine if two I(1) variables are cointegrated of orderCI(1, 1).
STEP 1: Pretest the variables for their order of integration. By definition, cointegra-

tion necessitates that two variables be integrated of the same order. Thus, the

first step in the analysis is to pretest each variable to determine its order of

integration. The augmented Dickey–Fuller tests discussed in Chapter 4 can

be used to infer the number of unit roots (if any) in each of the variables. If

both variables are stationary, it is not necessary to proceed since standard
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time-series methods apply to stationary variables. If the variables are inte-

grated of different orders, it is possible to conclude they are not cointegrated.
However, as detailed in Section 5, if you have more than two variables such

that some are I(1) and some are I(2), you may want to determine whether the

variables are multicointegrated.

STEP 2: Estimate the long-run equilibrium relationship. If the results of Step 1 indi-

cate that both {yt} and {zt} are I(1), the next step is to estimate the long-run

equilibrium relationship in the form

yt = 𝛽0 + 𝛽1zt + et (6.30)

If the variables are cointegrated, an OLS regression yields a

“super-consistent” estimator of the cointegrating parameters 𝛽0 and

𝛽1. Stock (1987) proves that the OLS estimates of 𝛽0 and 𝛽1 converge

faster than they do in OLS models using stationary variables. To explain,

reexamine the scatter plot shown in Figure 6.1. You can see that the effect of

the common trend dominates the effect of the stationary component; both

variables seem to rise and fall in tandem. Hence, there is a strong linear

relationship as shown by the regression line drawn in the figure.

In order to determine if the variables are actually cointegrated, denote

the residual sequence from this equation by {êt}. Thus, the {êt} series con-
tains the estimated values of the deviations from the long-run relationship. If

these deviations are found to be stationary, the {yt} and {zt} sequences are
cointegrated of order (1, 1). It would be convenient if we could perform a

Dickey–Fuller test on these residuals to determine their order of integration.

Consider the autoregression of the residuals:

Δêt = a1êt−1 + 𝜀t (6.31)

Since the {êt} sequence is a residual from a regression equation (with

a mean necessarily equal to zero), there is no need to include an intercept

term; the parameter of interest in (6.31) is a1. If we cannot reject the null
hypothesis a1 = 0, we can conclude that the residual series contains a unit

root. Hence, we conclude that the {yt} and {zt} sequences are not cointe-
grated. The more precise wording is awkward because of a triple negative,

but to be technically correct, if it is not possible to reject the null hypothesis
a1 = 0, we cannot reject the hypothesis that the variables are not cointe-
grated. Instead, the rejection of the null hypothesis implies that the residual

sequence is stationary. Given that {yt} and {zt} were both found to be I(1)
and that the residuals are stationary, we can conclude that the series are coin-

tegrated of order (1, 1).

In most applied studies it is not possible to use the Dickey–Fuller tables

themselves. The problem is that the {êt} sequence is generated from a regres-

sion equation; the researcher does not know the actual error et, only the
estimate of the error êt. The methodology of fitting the regression in (6.30)

selects values of 𝛽0 and 𝛽1 that minimize the sum of squared residuals. Since
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the residual variance is made as small as possible, the procedure is preju-

diced toward finding a stationary error process in (6.31). Hence, the test

statistic used to test the magnitude of a1 must reflect this fact. Only if 𝛽0
and 𝛽1 were known in advance and used to construct the true {et} sequence
would an ordinary Dickey–Fuller table be appropriate. When you estimate

the cointegrating vector, use the critical values provided in Table C in the

Supplementary Manual. These critical values depend on sample size and the

number of variables used in the analysis. For example, to test for cointegra-

tion between two variables using a sample size of 100, the critical value at

the 5% significance level is –3.398.

If the residuals of (6.31) do not appear to be white noise, an augmented

form of the test can be used instead of (6.31). Suppose that diagnostic checks

indicate that the {𝜀t} sequence of (6.31) exhibits serial correlation. Instead
of using the results from (6.31), estimate the autoregression:

Δêt = a1êt−1 +
n∑
i=1

ai+1Δêt−i + 𝜀t (6.32)

Again, if we reject the null hypothesis a1 = 0, we can conclude that the

residual sequence is stationary and that the variables are cointegrated.

STEP 3: Estimate the error-correction model. If the variables are cointegrated (i.e.,

if the null hypothesis of no cointegration is rejected), the residuals from the

equilibrium regression can be used to estimate the error-correction model. If

{yt} and {zt} are CI(1, 1), the variables have the error-correction form:

Δyt = 𝛼1 + 𝛼y[yt−1 − 𝛽1zt−1] +
∑
i=1

a11(i)Δyt−i +
∑
i=1

a12(i)Δzt−i + 𝜀yt

(6.33)

Δzt = 𝛼2 + 𝛼z[yt−1 − 𝛽1zt−1] +
∑
i=1

a21(i)Δyt−i +
∑
i=1

a22(i)Δzt−i + 𝜀zt

(6.34)

where 𝛽1 = the parameter of the cointegrating vector given by (6.30), 𝜀yt,
and 𝜀zt = white-noise disturbances (which may be correlated with each

other), and 𝛼1, 𝛼2, 𝛼y, 𝛼z, 𝛼11(i), 𝛼12(i), 𝛼21(i), 𝛼22(i) are all parameters.

Engle and Granger (1987) propose a clever way to circumvent the

cross-equation restrictions involved in the direct estimation of (6.33) and

(6.34). The magnitude of the residual êt−1 is the deviation from long-run

equilibrium in period (t − 1). Hence, it is possible to use the saved residuals
{êt−1} obtained in Step 2 as an estimate of the expression yt−1 − 𝛽1zt−1 in
(6.33) and (6.34). Thus, using the saved residuals from the estimation of the

long-run equilibrium relationship, estimate the error-correcting model as

Δyt = 𝛼1 + 𝛼yêt−1 +
∑
i=1

𝛼11(i)Δyt−i +
∑
i=1

𝛼12(i)Δzt−i + 𝜀yt (6.35)

Δzt = 𝛼2 + 𝛼zêt−1 +
∑
i=1

𝛼21(i)Δyt−i +
∑
i=1

𝛼22(i)Δzt−i + 𝜀zt (6.36)
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Other than the error-correction term êt−1, (6.35) and (6.36) constitute a
VAR in first differences. This VAR can be estimated using the same method-

ology developed in Chapter 5. All of the procedures developed for a VAR

apply to the system represented by the error-correction equations. Notably:

1. OLS is an efficient estimation strategy since each equation contains the

same set of regressors.

2. Since all terms in (6.35) and (6.36) are stationary [i.e., Δyt and its lags,
Δzt and its lags, and êt−1are I(0)], the test statistics used in traditional
VAR analysis are appropriate for (6.35) and (6.36). For example, lag

lengths can be determined using a 𝜒2-test, and the restriction that all

𝛼jk(i) = 0 can be checked using an F-test. If there is a single cointegrating
vector, restrictions concerning 𝛼y or 𝛼z can be conducted using a t-test.

STEP 4: Assess Model Adequacy. There are several procedures that can help deter-

mine whether the error-correction estimated model is appropriate.

1. You should be careful to assess the adequacy of the model by per-

forming diagnostic checks to determine whether the residuals of the

error-correction equations approximate white noise. If the residuals are

serially correlated, lag lengths may be too short. Reestimate the model

using lag lengths that yield serially uncorrelated errors. It may be that you

need to allow longer lags of some variables than of others. If so, you can

gain efficiency by estimating the near-VAR using the seemingly unrelated

regressions (SUR) method. Out of sample forecasting exercises are also

useful ways to select among alternative models.

2. The speed of adjustment coefficients 𝛼y and 𝛼z are of particular interest
in that they have important implications for the dynamics of the system.

As shown in Section 3, the values of 𝛼y and 𝛼z are directly related to the

characteristic roots of the difference equation system. Direct convergence

necessitates that 𝛼y be negative and 𝛼z be positive. If we focus on (6.36)

it is clear that for any given value of êt−1, a large value of 𝛼z is associated
with a large value of Δzt. If 𝛼z is zero, the change in zt does not at all
respond to the deviation from long-run equilibrium in (t − 1). If 𝛼z is
zero and if all 𝛼21(i) = 0, then it can be said that {Δyt} does not Granger
cause {Δzt}. We know that 𝛼y and/or 𝛼z should be significantly different

from zero if the variables are cointegrated. After all, if both 𝛼y and 𝛼z are

zero, there is no error correction and (6.35) and (6.36) comprise nothing

more than a VAR in first differences. Moreover, the absolute values

of these speeds of adjustment coefficients must not be too large. The

point estimates should imply that Δyt and Δzt converge to the long-run
equilibrium relationship.

If all but one variable is weakly exogenous, you may want to

estimate that variable using the error-correction technique described in

Section 10.

3. As in a traditional VAR analysis, Lutkepohl and Reimers (1992)

show that innovation accounting (i.e., impulse responses and variance

decomposition analysis) can be used to obtain information concerning
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the interactions among the variables. As a practical matter, the two

innovations 𝜀yt and 𝜀zt may be contemporaneously correlated if yt has a
contemporaneous effect on zt and/or if zt has a contemporaneous effect on

yt. In obtaining impulse response functions and variance decompositions,

some method—such as a Choleski Decomposition—must be used to

orthogonalize the innovations.

The shape of the impulse response functions and the results of the

variance decompositions can indicate whether the dynamic responses of

the variables conform to theory. Since all variables in (6.35) and (6.36)

are I(0), the impulse responses of Δyt and Δzt should converge to zero.
You should reexamine your results from each step if you obtain a nonde-

caying or explosive impulse response function.

Before closing this section, a word of warning is in order. It is very tempting to

use t-statistics to perform significance tests on the cointegrating vector. However, you

must avoid this temptation since, in general, the coefficients do not have an asymptotic

t-distribution. To explain, suppose you estimate (6.30) so that have a model in the form:

yt = 𝛽0 + 𝛽1zt + et. Even if the variables are cointegrated, the {et} sequence is likely to
be serially correlated. Moreover, since yt and zt are jointly determined variables, there

is a simultaneity problem so that {zt} cannot be treated as an “independent” variable.

There is one case inwhich the t-statistics are appropriate. Suppose that the cointegration
relationship between {yt} and {zt} is such that

yt = 𝛽0 + 𝛽1zt + 𝜀1t

Δzt = 𝜀2t

where E𝜀1t𝜀2t = 0.

The notation is designed to illustrate the point that the residuals from both

equations are uncorrelated white-noise disturbances. The set of assumptions is fairly

restrictive in that the residuals from both equations must be serially uncorrelated and

the cross-correlations must be zero. If these conditions hold, the OLS estimates of

𝛽0 and 𝛽1 can be tested using t-tests and F-tests. If the disturbances are not normally

distributed, the asymptotic results are such that t-tests and F-tests are appropriate. Be
aware that both conditions are necessary to perform such tests. If E𝜀1t𝜀2t ≠ 0, {zt} is

not exogenous since shocks to 𝜀1t affect zt. Moreover, as in a standard regression, if

the residuals of the cointegrating vector are serially correlated, inference concerning

the coefficients is inappropriate. Phillips and Hansen (1990) develop a procedure

that allows you to construct confidence intervals for the 𝛽i in the presence of serial

correlation and the lack of independence of the {zt} sequence. The details are discussed
in Appendix 6.2 in the Supplementary Manual.

5. ILLUSTRATING THE ENGLE–GRANGER
METHODOLOGY

Figure 6.2 shows three simulated variables that can be used to illustrate the

Engle–Granger procedure. Inspection of the figure suggests that each is nonstationary,

and there is no visual evidence that any pair is cointegrated. As detailed in Table 6.1,
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FIGURE 6.2 Three Cointegrated Series

Table 6.1 The Simulated Series

{yt } {zt } {wt }

Trend 𝜇yt = 𝜇yt−1 + 𝜀yt 𝜇zt = 𝜇zt−1 + 𝜀zt 𝜇wt = 𝜇yt + 𝜇zt
Pure Irregular 𝛿yt = 0.5𝛿yt−1 + 𝜂yt 𝛿zt = 0.5𝛿zt−1 + 𝜂zt 𝛿wt = 0.5𝛿wt−1 + 𝜂wt
Series yt = 𝜇yt + 𝛿yt zt = 𝜇zt + 𝛿zt + 0.5𝛿yt wt = 𝜇wt + 𝛿wt + 0.5𝛿yt + 0.5𝛿zt

each series is constructed as the sum of a stochastic trend component plus an

autoregressive irregular component.

The first column of the table contains the formulas used to construct the {yt}
sequence. First, 150 realizations of a white-noise process were drawn to represent the

{𝜀yt} sequence. Initializing 𝜇y0 = 0, 150 values of the random walk process {𝜇yt}were
constructed using the formula 𝜇yt = 𝜇yt−1 + 𝜀yt (see the first cell of the table). Another

150 realizations of a white-noise process were drawn to represent the {𝜂yt} sequence;
given the initial condition 𝛿y0 = 0, these realizations were used to construct {𝛿yt} as

𝛿yt = 0.5𝛿yt−1 + 𝜂yt (see the next lower cell). Adding the two constructed series yields

150 realizations for {yt}. To help ensure randomness, only the last 100 observations are

used in the simulated study. Hence, {yt} is the sum of a stochastic trend and a stationary

(i.e., irregular) component.

The {zt} sequence was constructed in a similar fashion; the {𝜀zt} and {𝜂zt}
sequences are each represented by two different sets of 150 random numbers. The
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trend {𝜇zt} and the autoregressive irregular term {𝛿zt} were constructed as shown

in the second column of the table. The {𝛿zt} sequence can be thought of as a pure

irregular component in the {zt} sequence. In order to introduce correlation between

the {yt} and {zt} sequences, the irregular component in {zt} was constructed as the

sum: 𝛿zt + 0.5𝛿yt. In the third column you can see that the trend in {wt} is the simple

summation of the trends in the other two series. As such, the three series have the

cointegrating vector (1, 1,−1). The irregular component in {wt} is the sum of pure

innovation 𝛿wt and 50% of the innovations 𝛿yt and 𝛿zt.

Now pretend that we do not know the data-generating process. The issue is whether

the Engle–Granger methodology can uncover the essential details of the process. Use

the data on the file COINT6.XLS to follow along. The first step is to pretest the variables

in order to determine their order of integration. Consider the augmented Dickey–Fuller

regression equation for {yt}:

Δyt = 𝛼0 + 𝛼1yt−1 +
n∑
i=1

𝛼i+1Δyt−i + 𝜀t

If the data happened to be quarterly, it would be natural to perform the augmented

Dickey–Fuller tests using lag lengths that are multiples of 4 (i.e., n = 4, 8, … ). For

each series, the results of the Dickey–Fuller test and the augmented test using 4 lags

are reported in Table 6.2.

With 100 observations and a constant, the 5% critical value for the Dickey–Fuller

test is –2.89. Since the absolute values of all t-statistics are well below this critical

value, we cannot reject the null hypothesis of a unit root in any of the series. Of course,

if there were any serious doubt about the presence of a unit root, we could use the

procedures in Chapter 4 to test for the presence of the drift term. If various lag lengths

yield different results, we would want to test for the most appropriate lag length.

The luxury of using simulated data is that we can avoid these potentially sticky

problems and move on to Step 2. Since all three variables are presumed to be jointly

determined, the long-run equilibrium regression can be estimated using either yt, zt
or wt as the “left-hand-side” variable. The three estimates of the long-run relationship

(with t-values in parentheses) are

yt =−0.048 − 0.927zt + 0.977wt + eyt
(−0.58) (−38.10) (53.461)

zt = 0.0590 − 1.011yt + 1.026wt + ezt
(−0.67) (−38.10) (65.32)

wt =−0.085 + 0.990yt + 0.953zt + ewt
(−1.01) (53.46) (65.32)

where eyt, ezt, and ewt = the residuals from the three equilibrium regressions.

The essence of the test is to determine whether the residuals from the equilibrium

regression are stationary. Again, in performing the test, there is no presumption that

any one of the three residual series is preferable to any of the others. If we use each of

the three series to estimate an equation in the form of (6.31) [or (6.32)], the estimated

values of a1 are given in Table 6.3.
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Table 6.2 Estimated 𝛼1 and the Associated t-statistic

No Lags 4 Lags

Δyt −0.020
(−0.742)

−0.027
(−1.047)

Δzt −0.021
(−0.992)

−0.258
(−1.144)

Δwt −0.035
(−1.908)

−0.037
(−1.936)

Table 6.3 Estimated a𝟏 and the Associated t-statistic

No lags 4 Lags

Δeyt
−0.443

(−5.175)
−0.595

(−4.074)

Δezt
−0.452

(−5.379)
−0.593

(−4.226)

Δewt −0.455
(−5.390)

−0.607

(−4.225)

From Table C, you can see that the critical values of the t-statistic as −3.828.
Hence, using any one of the three equilibrium regressions, we can conclude that the

series are cointegrated of order (1, 1). Fortunately, all three equilibrium regressions

yield this same conclusion. We should be very wary of a result indicating that the vari-

ables are cointegrated using one variable for the normalization but are not cointegrated

using another variable for the normalization. In such circumstances, it is possible that

only a few of the variables are cointegrated. Suppose that x1t, x2t, and x3t are three

I(1) variables and that x1t and x2t are cointegrated such that x1t − 𝛽2x2t is stationary.
A regression of x1t on the other two variables should yield the stationary relationship

x1t = 𝛽2x2t + 0x3t. Similarly, a regression of x2t on the other variables should yield the
stationary relationship x2t = (1∕𝛽2)x1t + 0x3t. However, a regression of x3t on x1t and
x2t cannot reveal the cointegrating relationship. Nevertheless, the possibility of a con-

tradictory result is a weakness of the test.

You must be careful in conducting significance tests on the estimated equilib-

rium regressions. As mentioned above, the coefficients do not have an asymptotic

t-distribution unless the right-hand-side variables are actually independent and the error
terms are serially uncorrelated. FromTable 6.1, it should be clear that these assumptions

are violated by the data generating process.

Step 3 entails estimating the error-correction model. Consider the first-order sys-

tem shown with t-statistics in parentheses:

Δyt = 0.006 + 0.418ewt−1 + 0.178Δyt−1 + 0.313Δzt−1 − 0.368Δwt−1 + 𝜀yt
(0.19) (2.79) (1.08) (1.94) (−2.27) (6.37)
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Δzt =−0.042 + 0.074ewt−1 + 0.145Δyt−1 + 0.262Δzt−1 − 0.313Δwt−1 + 𝜀zt
(−1.12) (0.42) (0.75) (1.38) (−1.63) (6.38)

Δwt = −0.040 − 0.069ewt−1 + 0.156Δyt−1 + 0.301Δzt−1 − 0.420Δwt−1 + 𝜀wt
(−0.90) (−0.33) (0.68) (1.35) (−1.87)

(6.39)

where ewt−1 = wt−1 + 0.0852 − 0.9901yt−1 − 0.9535zt−1 so that ewt−1 is the lagged

value of the residual from the equilibrium relationship using wt as the dependent

variable.

Equations (6.37) through (6.39) comprise a first-order VAR augmented with the

single error-correction term ewt−1. Again, there is an area of ambiguity since the residu-

als from any of the “equilibrium” relationships could have been used in the estimation.

The signs of the speed of adjustment coefficients are in accord with convergence toward

the long-run equilibrium. In response to a positive discrepancy in ewt−1, both yt and
zt tend to increase while wt tends to decrease. The error-correction term, however, is

significant only in (6.37).

Finally, the diagnostic methods discussed in the last section should be applied

to (6.37) through (6.39) in order to assess the model’s adequacy. Using actual data,

lag-length tests and the properties of the residuals need to be considered. Moreover,

innovation accounting could help determine whether the model is adequate. Question

2 at the end of the chapter asks you to perform some of these diagnostics.

The Engle–Granger Procedure with I(2) Variables

Multicointegration refers to a situation in which a linear combination of I(2) and I(1)
variables is integrated of order zero. For example, suppose that x1t and x2t are I(2) and
that zt is I(1). It is possible that a linear combination of x1t and x2t is I(1) and that this

combination is cointegrated with zt. Hence, it is possible to have a long-run equilibrium
relationship of the form

x1t = 𝛽2x2t + 𝛼1zt

However, a richer set of possibilities is given by the stationary relationship

x1t = 𝛽2x2t + 𝛾1Δx2t + 𝛼1zt

This specification allows for the possibility that the linear combination x1t − 𝛽2x2t
is I(1) and cointegrated with the other I(1) independent variables in the system: Δx2t
and zt. To make sure you understand the issue, ask yourself if it is possible for 𝛽2 to be

zero. The answer is a resounding no. If 𝛽2 = 0 , the I(2) variable x1t cannot, by itself,

be cointegrated with the I(1) variables.
In principle, it is possible to check for multicointegration using a two-step proce-

dure. First, search for a cointegrating relationship among the I(2) variables and then use
this relationship to check for a possible cointegrating relationship with the remaining

I(1) variables. Engsted, Gonzalo and Haldrup (1997) show that this procedure is effec-

tive only if the cointegrating vector for the first step is known. Otherwise, the second
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step is contaminated with the errors generated in the first step. In the most general form

of their one-step procedure, you estimate an equation in the form

x1t = a0 + a1t + a2t
2 + 𝛽2x2t + 𝛽3x3t + 𝛾1Δx2t + 𝛾2Δx3t + 𝛼1zt + et (6.40)

where x1t, x2t, and x3t are I(2) variables, zt is a vector of I(1) variables, and the deter-

ministic regressors can include a quadratic time trend.

Hence, the test allows you to include up to two I(2) variables and an unrestricted

number of I(1) variables as regressors. You might want to include the quadratic time

trend if Δ2x1t contains a drift. Since the key issue is the stationarity of the {et} series,
estimate a regression of the form

Δêt = 𝜌êt−1 +
p∑
i=1

𝜌iΔêt−i + vt

where {êt} are the regression residuals from (6.40).

If it is possible to reject the null hypothesis 𝜌 = 0, it is possible to conclude that

there ismulticointegration. In addition to sample size, the critical values of the t-statistic
for the null hypothesis 𝜌 = 0 depend on the number of I(2) regressors (m2 = 1 or 2), the

number of I(1) regressors (m1 = 0 to 4), and the form of the deterministic regressors.

The critical values are shown in Table D in the Supplementary Manual. Consider the
U.K. money demand equations for the sample period 1963Q1 to 1989Q2 estimated by

Haldrup (1994):

mt = a0 + 0.68pt + 1.57yt − 2.67rt − 2.55Δpt (6.41)

and

mt = a0 + a1t + 0.89pt + 2.39yt − 2.69rt − 3.25Δpt (6.42)

Pretesting the variables indicated that mt (as measured by the logM1) and pt (the
log of the implicit price deflator) were I(2) and that yt (the log of total final expenditure)
and rt (a measure of the interest rate differential) were I(1). The only variable needing
explanation is the presence of Δpt in the money demand function. The idea is to allow

for the demand for money to depend on the inflation rate (i.e., change in the log of

the price level) since high inflation should reduce the desire to hold money balances.

Since there is a total of 105 observations, one I(2) regressor (so that m2 = 1), and three

I(1) regressors, the 5% critical values for models without and with the linear trend are

−4.56 and −4.91, respectively. Using the residuals from the money demand equations

given by (6.41) and (6.42), Haldrup found that the t-statistics for the null hypothesis
𝜌 = 0 were −2.35 and −2.66, respectively. Hence, it is possible to conclude that the

two regressions are spurious (i.e., it is not possible to reject the null hypothesis of no

multicointegration).

Even though multicointegration fails, Haldrup goes on to experiment with vari-

ous estimates of the error-correction mechanism. One interesting model (with standard

errors in parentheses) is

Δ2mt = −0.04êt−1 + stationary regressors

(0.02)
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where the stationary regressors can include lagged values of Δ2mt as well as current

and lagged values of Δ2pt, Δyt, Δpt, and Δrt. The point estimate is such that Δ2mt is

expected to decline in response to a positive discrepancy from the long-run relationship.

The t-statistic of −0.04∕0.02 = 2 suggests that the effect is just significant at the 5%

level.

6. COINTEGRATION AND PURCHASING POWER
PARITY

To illustrate the Engle–Granger methodology using actual data, reconsider the theory

of purchasing power parity (PPP). Respectively, if et, p
∗
t , and pt denote the logarithms

of the price of foreign exchange, the foreign price level, and the domestic price level,

long-run PPP requires that et + p∗t − pt be stationary. The unit root tests reported in

Chapter 4 indicate that real exchange rates (defined as rt = et + p∗t − pt) appear to be

nonstationary. Cointegration offers an alternative method to check the theory; if PPP

holds, the sequence formed by the sum {et + p∗t } should be cointegrated with the {pt}
sequence. Call the constructed dollar value of the foreign price level ft; that is, ft =
et + p∗t . Long-run PPP asserts that there exists a linear combination of the form ft =
𝛽0 + 𝛽1pt + 𝜇t such that {𝜇t} is stationary and the cointegrating vector is such that

𝛽1 = 1.

As reported in Chapter 4, in Enders (1988), I used price and exchange rate

data for Germany, Japan, Canada, and the United States for both the Bretton Woods

(1960–1971) and post-Bretton Woods (1973–1988) periods. Each series was con-

verted into an index number such that each series was equal to unity at the beginning

of its respective period (either 1960 or 1973). In the fixed exchange rate period, all

values of {et}were set equal to unity. Pretesting the data indicated that for each period,
the U.S. price level {pt} and the dollar values of the foreign price levels {et + p∗t } both
contained a single unit root. With differing orders of integration, it would have been

possible to immediately conclude that long-run PPP had failed.

The next step was to estimate the long-run equilibrium relation by regressing each

ft = et + pft on pt such that

ft = 𝛽0 + 𝛽1pt + 𝜇t (6.43)

Absolute PPP asserts ft = pt, so this version of the theory requires 𝛽0 = 0 and

𝛽1 = 1. The intercept 𝛽0 is consistent with the relative version of PPP, requiring only

that domestic and foreign price levels are proportional to each other. Unless there are

compelling reasons to omit the constant, the recommended practice is to include an

intercept term in the equilibrium regression. In fact, Engle and Granger’s (1987) orig-

inal Monte Carlo simulations all include intercept terms.

The estimated values of 𝛽1 and their associated standard errors are reported in

Table 6.4. Note that five of the six values are estimated to be quite a bit below unity.

Be especially careful not to make too much of these findings. It is not appropriate to
conclude that each value of 𝛽1 is significantly different from unity simply because the

values of (1 − 𝛽1) exceed two or three standard deviations. It is hard to overstate the
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Table 6.4 The Equilibrium Regressions

Germany Japan Canada

1973–1986
Estimated 𝛽1 0.5374 0.8938 0.7749

Standard Error (0.0415) (0.0316) (0.0077)
1960–1971

Estimated 𝛽1 0.6660 0.7361 1.0809

Standard Error (0.0262) (0.0154) (0.0200)

point that the assumptions underlying this type of t-test are not applicable because there
is no presumption that pt is the exogenous variable while ft is the dependent variable,
or that {𝜇t} is white noise.

The residuals from each regression equation, called {�̂�t}, were checked for unit

roots. The unit root tests are straightforward because the residuals from a regression

equation have a zero mean and do not have a time trend. The following two equations

were estimated using the residuals from each long-run equilibrium relationship:

Δ�̂�t = a1�̂�t−1 + 𝜀t (6.44)

and

Δ�̂�t = a1�̂�t−1 +
p∑
i=1

ai+1Δ�̂�t−i + 𝜀t (6.45)

Table 6.5 reports the estimated values of a1 from (6.44) and from (6.45) using a lag

length of four. It bears repeating that failure to reject the null hypothesis a1 = 0 means

we cannot reject the null of no cointegration. Alternatively, if−2 < a1 < 0, it is possible

to conclude that the {�̂�t} sequence does not have a unit root and that the {ft} and {pt}
sequences are cointegrated. Also note that it is not appropriate to use the confidence

intervals reported in Dickey and Fuller. The Dickey–Fuller statistics are inappropriate

because the residuals used in (6.44) and (6.45) are not the actual error terms. Rather,

these residuals are estimated error terms that are obtained from the estimate of the

equilibrium regression. If we knew the magnitudes of the actual errors in each period,

we could use the Dickey–Fuller tables.

Under the null hypothesis a1 = 0, the critical values for the t-statistic depend on

sample size. Comparing the results reported in Table 6.5 with the critical values pro-

vided by Table C indicates that only for Japan during the fixed exchange rate period

it is possible to reject the null hypothesis of no cointegration. At the 5% significance

level, the critical value of t is −3.398 for two variables and T = 100. Hence, at the 5%

significance level we can reject the null of no cointegration (i.e., we accept the alterna-

tive that the variables are cointegrated) and find in favor of PPP. For the other countries

in each time period, we cannot reject the null hypothesis of no cointegration and must

conclude that PPP generally failed.

The third step in the methodology entails estimation of the error-correction

model. Only the Japan/U.S. model needs estimation since it is the sole case for which
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Table 6.5 Dickey–Fuller Tests of the Residuals

Germany Japan Canada

1973–1986
No lags

Estimated a1

Standard Error
t-statistic for a1 = 0

−0.0225
(0.0169)
−1.331

−0.0151
(0.0236)
−0.640

−0.1001
(0.0360)
−2.781

4 lags
Estimated a1

Standard Error
t-statistic for a1 = 0

−0.0316
(0.0170)
−1.859

−0.0522
(0.0236)
−2.212

−0.0983
(0.0388)
−2.533

1960–1971
No lags

Estimated a1

Standard Error
t-statistic for a1 = 0

−0.0189
(0.0196)
−0.966

−0.1137
(0.0449)
−2.535

−0.0528
(0.0286)
−1.846

4 lags
Estimated a1

Standard Error
t-statistic for a1 = 0

−0.0294
(0.0198)
−1.468

−0.1821
(0.0530)
−3.437

−0.0509
(0.0306)
−1.663

cointegration holds. The final error-correction models for Japanese and U.S. price

levels during the 1960–1971 period were estimated to be

Δft = 0.00119 − 0.10548�̂�t−1
(0.00044) (0.04184) (6.46)

Δpt = 0.00156 + 0.01114�̂�t−1
(0.00033) (0.03175) (6.47)

where �̂�t−1 is the lagged residual from the long-run equilibrium regression. Note that

�̂�t−1 is the estimated value of ft−1 − 𝛽0 − 𝛽1pt−1 and that standard errors are in paren-

theses.

Lag length tests (see the discussion of 𝜒2 and F-tests for lag length in Chapter 5)

indicated that lagged values of Δft−i and Δpt−i did not need to be included in the

error-correction equations. Note that the point estimates in (6.46) and (6.47) indicate a

direct convergence to long-run equilibrium. For example, in the presence of a one-unit

deviation from long-run PPP in period t − 1, the Japanese price level converted into

dollars falls by 0.10548 units and the U.S. price level rises by 0.01114 units. Both of

these price changes in period t act to eliminate the positive discrepancy from long-run

PPP present in period t − 1.

Notice the discrepancy between the magnitudes of the two speed of adjust-

ment coefficients; in absolute value, the Japanese coefficient is approximately ten

times that of the U.S. coefficient. As compared to the Japanese price level, the

U.S. price level responded only slightly to a deviation from PPP. Moreover, the

error-correction term is about 1/3 of a standard deviation from zero for the U.S.

(0.01114∕0.03175 = 0.3509) and approximately 2.5 standard deviations from zero

for Japan (0.10548∕0.4184 = 2.5210). Hence, at the 5% significance level, we can
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conclude that the speed of adjustment term is insignificantly different from zero for the

United States but not for Japan. This result is consistent with the idea that the United

States was a large country relative to Japan—movements in U.S. prices evolved

independently of events in Japan, but movements in exchange rate adjusted Japanese

prices responded to events in the United States.

You can update the study using the data contained on the file COINT_PPP.XLS.

The file contains quarterly values of the U.K., Japanese, and Canadian wholesale prices

and bilateral exchange rates with the United States. Germany is not included because

the pre-unification data for Germany is not compatible with the more recent data. The

file also contains the U.S. wholesale price level. Question 9 at the end of the chapter

guides you through the process. The data starts in January 1973 and asks you to test

for PPP by determining whether the three variables pt, et and p
∗
t are cointegrated.

7. CHARACTERISTIC ROOTS, RANK, AND
COINTEGRATION

Although the Engle and Granger (1987) procedure is easily implemented, it does

have several important defects. The estimation of the long-run equilibrium regression

requires that the researcher place one variable on the left-hand side and use the

others as regressors. For example, in the case of two variables, it is possible to run

the Engle–Granger test for cointegration by using the residuals from either of the

following two “equilibrium” regressions:

yt = 𝛽10 + 𝛽11zt + e1t (6.48)

or

zt = 𝛽20 + 𝛽21yt + e2t (6.49)

As the sample size grows infinitely large, asymptotic theory indicates that the test

for a unit root in the {e1t} sequence becomes equivalent to the test for a unit root in

the {e2t} sequence. Unfortunately, the large sample properties on which this result is

derived may not be applicable to the sample sizes usually available to economists.

In practice, it is possible to find that one regression indicates that the variables are

cointegrated, whereas reversing the order indicates no cointegration. This is a very

undesirable feature of the procedure because the test for cointegration should be invari-

ant to the choice of the variable selected for normalization. The problem is obviously

compounded using three or more variables since any of the variables can be selected as

the left-hand-side variable. Moreover, in tests using three or more variables, we know

that there may be more than one cointegrating vector. The method has no systematic

procedure for the separate estimation of the multiple cointegrating vectors.

Another defect of the Engle–Granger procedure is that it relies on a two-step esti-
mator. The first step is to generate the residual series {êt}, and the second step uses

these generated errors to estimate a regression of the form Δêt = a1êt−1 + · · ·. Thus,
the coefficient a1 is obtained by estimating a regression using the residuals from another

regression. Hence, any error introduced by the researcher in Step 1 is carried into

Step 2. Fortunately, several methods have been developed that avoid these problems.
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The Johansen (1988) and the Stock andWatson (1988) maximum likelihood estimators

circumvent the use of two-step estimators and can estimate and test for the presence

of multiple cointegrating vectors. Moreover, these tests allow the researcher to test

restricted versions of the cointegrating vector(s) and the speed of adjustment parame-

ters. Often, we want to determine whether it is possible to verify a theory by testing

restrictions on the magnitudes of the estimated coefficients.

The Johansen (1988) procedure relies heavily on the relationship between the rank

of a matrix and its characteristic roots. Appendix 6.1 reviews the essentials of these

concepts; those of you wanting more details should review this material. For those

wanting an intuitive explanation, notice that the Johansen procedure is nothing more

than a multivariate generalization of the Dickey–Fuller test. In the univariate case, it is

possible to view the stationarity of {yt} as being dependent on the magnitude of a1; that
is,

yt = a1yt−1 + 𝜀t

or

Δyt = (a1 − 1)yt−1 + 𝜀t

If (a1 − 1) = 0, the {yt} process has a unit root. Ruling out the case in which {yt}
is explosive, if (a1 − 1) ≠ 0 we can conclude that the {yt} sequence is stationary. The
Dickey–Fuller tables provide the appropriate statistics to formally test the null hypoth-

esis (a1 − 1) = 0. Now consider the simple generalization to n variables; as in (6.26),

let

xt = A1xt−1 + 𝜀t

so that

Δxt = A1xt−1 − xt−1 + 𝜀t

= (A1 − I)xt−1 + 𝜀t

= 𝜋xt−1 + 𝜀t (6.50)

where xt and 𝜀t = (n ⋅ 1) vectors
A1 = an (n ⋅ n) matrix of parameters

I = an (n ⋅ n) identity matrix

𝜋 is defined to be (A1 − I)

As indicated in the discussion surrounding (6.27), the rank of (A1 − I) equals the
number of cointegrating vectors. By analogy to the univariate case, if (A1 − I) consists
of all zeroes—so that rank(𝜋) = 0—all of the {xit} sequences are unit root processes.
Since there is no linear combination of the {xit} processes that is stationary, the vari-

ables are not cointegrated. If we rule out characteristic roots that are greater than unity

and if rank(𝜋) = n, (6.50) represents a convergent system of difference equations, so

that all variables are stationary.

There are several ways to generalize (6.50). The equation is easily modified to

allow for the presence of a drift term; simply let

Δxt = A0 + 𝜋xt−1 + 𝜀t (6.51)

where A0 = the (n ⋅ 1) vector of constants (a10, a20, … , an0)′
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The effect of including the various ai0 is to allow for the possibility of a linear

time trend in the data-generating process. You would want to include the drift term if

the variables exhibited a decided tendency to increase or decrease. Here, the rank of 𝜋

can be viewed as the number of cointegrating relationships existing in the “detrended”

data. In the long run, 𝜋xt−1 = 0 so that each {Δxit} sequence has an expected value

of ai0. Aggregating all such changes over t yields the deterministic expression ai0t.
Figure 6.3 illustrates the effects of including a drift in the data-generating pro-

cess. Two random sequences with 100 observations each were generated; denote these

sequences as {𝜀yt} and {𝜀zt}. Initializing y0 = z0 = 0, we constructed the next 100 val-

ues of the {yt} and {zt} sequences as[
Δyt
Δzt

]
=

[
−0.2 0.2

0.2 −0.2

] [
yt−1
zt−1

]
+

[
𝜀yt
𝜀zt

]
so that the cointegrating relationship is

−0.2yt−1 + 0.2zt−1 = 0

or

yt = zt

In the top graph (a) of Figure 6.3, you can see that each sequence resembles a

random walk process and that neither wanders too far from the other. The next graph

(b) adds drift coefficients such that a10 = a20 = 0.1; now each series tends to increase

by 0.1 units in each period. In addition to the fact that each sequence shares the same
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FIGURE 6.3 Drifts and Intercepts in Cointegrating Relationships
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stochastic trend, note that each also has the same deterministic time trend. The fact that

each has the same deterministic trend is not a result of the equivalence between a10
and a20; since yt and zt are cointegrated, the general solution to (6.51) necessitates that
each have the same linear trend. For verification, Panel (c) sets a10 = 0.1 and a20 = 0.4.

Again, the sequences have the same stochastic and deterministic trends. As an aside,

note that increasing a20 and decreasing a10 would have an ambiguous effect on the slope

of the deterministic trend. This point will be important in a moment; by appropriately

manipulating the elements of A0 it is possible to include a constant in the cointegrating

vector(s) without imparting a deterministic time trend to the system.

One way to include a constant in the cointegrating relationships is to restrict the

values of the various ai0. For example, if rank(𝜋) = 1, the rows of 𝜋 can differ by only

a scalar, so that it is possible to write each {Δxit} sequence in (6.51) as
Δx1t = 𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + a10 + 𝜀1t

Δx2t = s2(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1) + a20 + 𝜀2t

.

.

.
Δxnt = sn(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1) + an0 + 𝜀nt

where si = scalars such that si𝜋1j = 𝜋ij.
If the ai0 can be restricted such that ai0 = sia10, it follows that all of the {Δxit}

sequences can be written with the constant included in the cointegrating vector:

Δx1t = (𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + a10) + 𝜀1t

Δx2t = s2(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + a10) + 𝜀2t

.

.

.
Δxnt = sn(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + a10) + 𝜀nt

or in compact form,

Δxt = 𝜋∗x∗t−1 + 𝜀t (6.52)

where

xt = (xt, x2t, … , xnt)′

x∗t−1 = (x1t−1, x2t−1, … , xnt−1, 1)′

𝜋∗ =
⎡⎢⎢⎢⎣
𝜋11 𝜋12 … 𝜋1n a10
𝜋21 𝜋22 … 𝜋2n a20
. . … . .

𝜋n1 𝜋n2 … 𝜋nn an0

⎤⎥⎥⎥⎦
The interesting feature of (6.52) is that the linear trend is purged from the system.

In essence, the various ai0 have been altered in such a way that the general solution for
each {xit} does not contain a time trend. The solution to the set of difference equations

represented by (6.52) is such that all Δxit are expected to equal zero when 𝜋11x1t−1 +
𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + a10 = 0.
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To highlight the difference between (6.51) and (6.52), the last graph (d) of

Figure 6.3 illustrates the consequences of setting a10 = 0.1 and a20 = −0.1. You can

see that neither sequence contains a deterministic trend. In fact, for the data shown

in the figure, the trend will vanish so long as we select values of the drift terms

maintaining the relationship a10 = −a20. (Question 1 at the end of this chapter will

help you to demonstrate this result).

Some econometricians prefer to include an intercept term in the cointegrating vec-

tor along with a drift term. This makes sense if the variables contain a drift and if

economic theory suggests that the cointegrating vector contains an intercept. However,

it should be clear that the intercept in the cointegrating vector is not identified in the

presence of a drift term. After all, some portion of the unrestricted drift can always

be included in the cointegration vector. In terms of the example above, the system can

always be written as

Δx1t = (𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + b10) + b11 + 𝜀1t

.

.

.
Δxnt = sn(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + b10) + bn1 + 𝜀nt

where bi1 is defined to the value that satisfies sib10 + bi1 = a10.
All that was done is to divide a10 into two parts and to place one part inside the

cointegrating relationship. As such, some identification strategy is necessary since the

proportion of the drift to include in the cointegrating vector is arbitrary. The popular

software package EViews, for example, identifies the portion belonging in the coin-

tegrating vector as the amount necessary to force the error-correction term to have a

sample mean of zero. Nevertheless, as you can see from Figure 6.3, a drift term outside

of the cointegrating relationship is necessary to capture the effects of a sustained ten-

dency for the variables to increase (or decrease). Most researchers include drift terms

if the data match Panels (b) or (c) of Figure 6.3. Otherwise, they include intercepts in

the cointegrating vector or exclude the deterministic regressors altogether. If you are

unsure, you can use the methods described in the next section to test whether the drifts

can be appropriately restricted. Some software packages allow you to include a deter-

ministic time trend in the model. However, it is best to avoid the use of a trend as an

explanatory variable unless you have a good reason to include it in the model. Johansen

(1994) discusses the role of the deterministic regressors in a cointegrating relationship.

As with the augmented Dickey–Fuller test, the multivariate model can also be

generalized to allow for a higher-order autoregressive process. Consider

xt = A1xt−1 + A2xt−2 + · · · + Apxt−p + 𝜀t (6.53)

where

xt = the (n ⋅ 1) vector (x1t, x2t, … , xnt)′

𝜀t = an independently and identically distributed n-dimensional vector with

zero mean and variance matrix Σ𝜀.
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Equation (6.53) can be put in a more usable form by adding and subtracting

Apxt−p+1 to the right-hand side to obtain

xt =A1xt−1 +A2xt−2 +A3xt−3 + · · · + Ap−2xt−p+2 + (Ap−1 +AP)xt−p+ 1 − ApΔxt−p+1 + 𝜀t

Next, add and subtract (Ap−1 + Ap)xt−p+2 to obtain

xt = A1xt−1 + A2xt−2 + A3xt−3 + · · · − (Ap−1 + Ap)Δxt−p+2 − ApΔxt−p+1 + 𝜀t

Just as in the augmented Dickey–Fuller test developed in Chapter 4, we can con-

tinue in this fashion to obtain

Δxt = 𝜋xt−1 +
p−1∑
i=1

𝜋iΔxt−i + 𝜀t (6.54)

where 𝜋 = −

(
I −

p∑
i=1
Ai

)
and 𝜋i = −

p∑
j=i+1

Aj

Again, the key feature to note in (6.54) is rank of the matrix 𝜋; the rank of 𝜋 is

equal to the number of independent cointegrating vectors. Clearly, if rank(𝜋) = 0, the

matrix is null and (6.54) is the usual VAR model in first differences. Instead, if 𝜋 is of

rank n, the vector process is stationary. In intermediate cases, if rank(𝜋) = 1, there is

a single cointegrating vector and the expression 𝜋xt−1 is the error-correction term. For

other cases in which 1 < rank(𝜋) < n, there are multiple cointegrating vectors.

As detailed in Appendix 6.1, the number of distinct cointegrating vectors can be

obtained by checking the significance of the characteristic roots of 𝜋. We know that

the rank of a matrix is equal to the number of its characteristic roots that differ from

zero. Suppose we obtained the matrix 𝜋 and ordered the n characteristic roots such that
𝜆1 > 𝜆2 > · · · > 𝜆n. If the variables in xt are not cointegrated, the rank of 𝜋 is zero and

all of these characteristic roots will equal zero. Since ln(1) = 0, each of the expressions

ln(1 − 𝜆i)will equal zero if the variables are not cointegrated. Similarly, if the rank of 𝜋

is unity, 0 < 𝜆1 < 1 so the first expression ln(1 − 𝜆1) will be negative and all the other
𝜆i = 0 so that ln(1 − 𝜆2) = ln(1 − 𝜆3) = · · · = ln(1 − 𝜆n) = 0.

In practice, we can obtain only estimates of 𝜋 and its characteristic roots. The test

for the number of characteristic roots that are insignificantly different from unity can

be conducted using the following two test statistics:

𝜆trace(r) = −T
n∑

i=r+1
ln(1 − �̂�i) (6.55)

𝜆max(r, r + 1) = −T ln(1 − �̂�r+1) (6.56)

where �̂�i = the estimated values of the characteristic roots (also called eigenvalues)
obtained from the estimated 𝜋 matrix

T = the number of usable observations

When the appropriate values of r are clear, these statistics are simply referred to as

𝜆trace and 𝜆max.
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The first statistic tests the null hypothesis that the number of distinct cointegrating

vectors is less than or equal to r against a general alternative. From the previous

discussion, it should be clear that 𝜆trace equals zero when all 𝜆i = 0. The further

the estimated characteristic roots are from zero, the more negative is ln(1 − �̂�i) and
the larger is the 𝜆trace statistic. The second statistic tests the null that the number of

cointegrating vectors is r against the alternative of r + 1 cointegrating vectors. Again,

if the estimated value of the characteristic root is close to zero, 𝜆max will be small.

Critical values of the 𝜆trace and the 𝜆max statistics are obtained using the Monte

Carlo approach. The critical values are reproduced in Table E in the Supplementary
Manual. The distribution of these statistics depends on two things:

1. The number of nonstationary components under the null hypothesis

(i.e., n − r).

2. The form of the vector A0. Use the top portion of Table E if you do not include

either a constant in the cointegrating vector or a drift term. Use the middle

portion of the table if you include a drift term A0. Use the bottom portion of

the table if you include a constant in the cointegrating vector.

Using quarterly data for Denmark over the sample period 1974:1 to 1987:3,

Johansen and Juselius (1990) let the xt vector be represented by

xt = (m2t, yt, idt , ibt )′

where m2 = log of the real money supply as measured by M2 deflated by a price

index

y = log of real income

id = deposit rate on money representing a direct return on money holding

ib = bond rate representing the opportunity cost of holding money

Including a constant in the cointegrating relationship (i.e., augmenting xt−1 with a
constant), they report that the residuals from (6.54) appear to be serially uncorrelated.

If we round off to two decimal places, the four characteristic roots of the estimated 𝜋

matrix are given in the first column below:

𝝀𝐦𝐚𝐱
−T ln(1 − �̂�r+1)

𝝀trace

−T 𝚺 ln(1 − �̂�i )

�̂�1 = 0.4332 30.09 49.14

�̂�2 = 0.1776 10.36 19.05

�̂�3 = 0.1128 6.34 8.69

�̂�4 = 0.0434 2.35 2.35

The second column reports the various 𝜆max statistics as the number of usable

observations (T = 53) multiplied by ln(1 − �̂�r+1). For example, −53 ln(1 − 0.0434) =
2.35 and −53 ln(1 − 0.1128) = 6.34. The last column reports the 𝜆trace statistics as the

summation of the 𝜆max statistics. Simple arithmetic reveals that 8.69 = 2.35 + 6.34 and

19.05 = 2.35 + 6.34 + 10.36.
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To test the null hypothesis r = 0 against the general alternative r = 1, 2, 3, or 4,

use the 𝜆trace statistic. Since the null hypothesis is r = 0 and there are four variables

(i.e., n = 4), the summation in (6.55) runs from 1 to 4. If we sum over the four values,

the calculated value of 𝜆trace is 49.14. Since Johansen and Juselius (1990) include the

constant in the cointegrating vector, this calculated value of 49.14 is compared to the

critical values reported in the bottom portion of Table E. For n − r = 4, the critical

values of 𝜆trace are 49.65, 53.12, and 60.16 at the 10, 5, and 1% significance levels,

respectively. Thus, at the 10% level, the restriction is not binding, so that the variables
are not cointegrated using this test.

To make a point and to give you practice in using the table, suppose you want

to test the null hypothesis r ≤ 1 against the alternative r = 2, 3, or 4. Under this null

hypothesis, the summation in (6.55) runs from 2 to 4 so that the calculated value of

𝜆trace is 19.05. For n − r = 3, the critical values of 𝜆trace are 32.00, 34.91, and 41.07 at

the 10, 5, and 1% significance levels, respectively. The restriction r = 0 or r = 1 is not

binding.

In contrast to the 𝜆trace statistic, the 𝜆max statistic has a specific alterna-

tive hypothesis. To test the null hypothesis r = 0 against the specific alternative

r = 1, use equation (6.56). The calculated value of the 𝜆max(0, 1) statistic is

−53 ln(1 − 0.4332) = 30.09. For n − r = 4, the critical values of 𝜆max are 25.56,

28.14, 30.32, and 33.24 at the 10, 5, 2.5, and 1% significance levels, respectively.

Hence, it is possible to reject the null hypothesis r = 0 at the 5% significance level

(but not the 2.5% level) and conclude that there is only one cointegrating vector (i.e.,

r = 1). Before reading on, you should take a moment to examine the data and convince

yourself that the null hypothesis r = 1 against the alternative r = 2 cannot be rejected

at conventional levels. You should find that the calculated value of the 𝜆max statistic

for r = 1 is 10.36 and that the critical value at the 10% level is 19.77. Hence, there is

no significant evidence of more than one cointegrating vector.

The example illustrates the important point that the results of the 𝜆trace and 𝜆max
tests can conflict. The 𝜆max test has the sharper alternative hypothesis. It is usually

preferred for trying to pin down the number of cointegrating vectors.

8. HYPOTHESIS TESTING

In the Dickey–Fuller tests discussed in Chapter 4, it was important to correctly ascer-

tain the form of the deterministic regressors. A similar situation applies in the Johansen

procedure. As you can see in Table E, the critical values of the 𝜆trace and 𝜆max statis-
tics are smallest without any deterministic regressors and largest with an intercept term

included in the cointegrating vector. Instead of cavalierly positing the form of A0, it is

possible to test restricted forms of the vector.

One of the most interesting aspects of the Johansen procedure is that it allows for

testing restricted forms of the cointegrating vector(s). In a money demand study, you

might want to test restrictions concerning the long-run proportionality between money

and prices, or the sizes of the income and interest rate elasticities of demand for money.

In terms of equation (6.1) (i.e., mt = 𝛽0 + 𝛽1pt + 𝛽2yt + 𝛽3rt + et), the restrictions of

interest are 𝛽1 = 1, 𝛽2 > 0, and 𝛽3 < 0.
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The key insight to all such hypothesis tests is that if there are r cointegrating vec-
tors, only these r linear combinations of the variables are stationary. All other linear
combinations are nonstationary. Thus, suppose you reestimate the model restricting the

parameters of 𝜋. If the restrictions are not binding, you should find that the number of

cointegrating vectors has not diminished.

To test for the presence of an intercept in the cointegrating vector as opposed to the

unrestricted driftA0, estimate the two forms of themodel. Denote the ordered character-

istic roots of the unrestricted 𝜋 matrix by �̂�1, �̂�2, … , �̂�n and the characteristic roots of

themodel with the intercept(s) in the cointegrating vector(s) by �̂�∗
1
, �̂�∗

2
, … , �̂�∗n. Suppose

that the unrestricted form of the model has r nonzero characteristic roots. Asymptoti-

cally, the statistic

−T
n∑

i=r+1
[ln (1 − �̂�∗i ) − ln(1 − �̂�i)] (6.57)

has a 𝜒2 distribution with (n − r) degrees of freedom.

The intuition behind the test is that all values of ln(1 − �̂�∗i ) and ln(1 − �̂�i) should be
equivalent if the restriction is not binding. Hence, small values for the test statistic imply

that it is permissible to include the intercept in the cointegrating vector. However, the

likelihood of finding a stationary linear combination of the n variables is greater with the
intercept in the cointegrating vector than if the intercept is absent from the cointegrating

vector. Thus, a large value of �̂�∗r+1 [and a corresponding large value of−T ln(1 − �̂�∗r+1)],
implies that the restriction artificially inflates the number of cointegrating vectors. Thus,

as proven by Johansen (1991), if the test statistic is sufficiently large, it is possible to

reject the null hypothesis of an intercept in the cointegrating vector(s) and conclude

that there is a linear trend in the variables. This is precisely the case represented by the

middle portion of Figure 6.3.

Johansen and Juselius (1990) test the restriction that their estimated Danish money

demand function does not have a drift. Since they found only one cointegrating vector

among m2, y, id, and ib, set n = 4 and r = 1. The calculated value of the 𝜒2 statistic in

(6.57) is 1.99.With three degrees of freedom, this is insignificant at conventional levels;

they conclude that the variables do not have a linear time trend and find it appropriate

to include the constant in the cointegrating vector.

In order to test other restrictions on the cointegrating vector, Johansen defines the

two matrices 𝛼 and 𝛽, both of dimension (n ⋅ r) where r is the rank of 𝜋. The properties
of 𝛼 and 𝛽 are such that

𝜋 = 𝛼𝛽′

Note that 𝛽 is the matrix of cointegrating parameters and 𝛼 is the matrix of weights

with which each cointegrating vector enters the n equations of the VAR. In a sense,

𝛼 can be viewed as the matrix of the speed of adjustment parameters. Due to the

cross-equation restrictions, it is not possible to estimate 𝛼 and 𝛽 using OLS.4 How-

ever, using maximum likelihood estimation, it is possible to (1) estimate (6.54) as an

error-correction model, (2) determine the rank of 𝜋, (3) use the r most significant coin-

tegrating vectors to form 𝛽′, and (4) select 𝛼 such that 𝜋 = 𝛼𝛽′. Question 5 at the end

of this chapter asks you to find several such 𝛼 and 𝛽′ matrices.
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It is easy to understand the process in the case of a single cointegrating vector.

Given that rank(𝜋) = 1, the rows of 𝜋 are all linear multiples of each other. Hence, the

equations in (6.54) have the form

Δx1t = 𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1 + · · · + 𝜀1t

Δx2t = s2(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1) + · · · + 𝜀2t

⋮

Δxnt = sn(𝜋11x1t−1 + 𝜋12x2t−1 + · · · + 𝜋1nxnt−1) + · · · + 𝜀nt

where the si are scalars and, for notational simplicity, the matrices 𝜋iΔxt−i have not

been written out.

Now define 𝛼i = si𝜋11 and 𝛽i = 𝜋1i∕𝜋11 so that each equation can be written as

Δxit = 𝛼i(x1t−1 + 𝛽2x2t−1 + · · · + 𝛽nxnt−1) + · · · + 𝜀it (i = 1, … , n)

or in matrix form,

Δxt =
p−1∑
i=1

𝜋iΔxt−i + 𝛼𝛽′xt−1 + 𝜀t (6.58)

where the single cointegrating vector is 𝛽 = (1, 𝛽2, 𝛽3, … , 𝛽n)′ and the speed of adjust-
ment parameters are given by 𝛼 = (𝛼1, 𝛼2, … , 𝛼n)′.

Once 𝛼 and 𝛽′ are determined, testing various restrictions on 𝛼 and 𝛽′ is straight-
forward if you remember the fundamental point that if there are r cointegrating vectors,
only these r linear combinations of the variables are stationary. Thus, the test statistics

involve comparing the number of cointegrating vectors under the null and alternative

hypotheses. Again, let �̂�1, �̂�2, … , �̂�n and �̂�∗
1
, �̂�∗

2
, … , �̂�∗n denote the ordered character-

istic roots of the unrestricted and restricted models, respectively. To test restrictions on

𝛽, form the test statistic

T
r∑
i=1

[ln(1 − �̂�∗i ) − ln(1 − �̂�i)] (6.59)

Asymptotically, this statistic has a 𝜒2 distribution with degrees of freedom equal

to the number of restrictions placed on 𝛽. Small values of �̂�∗i relative to �̂�i (for i ≤ r)
imply a reduced number of cointegrating vectors. Hence, the restriction embedded in

the null hypothesis is binding if the calculated value of the test statistic exceeds that

in a 𝜒2 table. For example, Johansen and Juselius test the restriction that money and

income move proportionally. Their estimated long-run equilibrium relationship is

m2t = 1.03yt − 5.21ibt + 4.22idt + 6.06

They restrict the coefficient of income to be unity and find the restricted values of

the �̂�∗i to be such that

�̂�
∗
i T ln (𝟏− �̂�

∗
i )

i = 1 0.433 −30.04
i = 2 0.172 −10.01
i = 3 0.044 −2.36
i = 4 0.006 −0.32
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Given that the unrestricted model has r = 1 and −T ln(1 − �̂�1) = 30.09, (6.59)

becomes −30.04 + 30.09 = 0.05. Since there is only 1 restriction imposed on 𝛽,

the test statistic has a 𝜒2 distribution with 1 degree of freedom. A 𝜒2 table indi-

cates that 0.05 is not significant; hence, they conclude that the restriction is not

binding.

Restrictions on 𝛼 can be tested in the same way. The procedure is to restrict 𝛼 and

compare the r most significant characteristic roots for the restricted and unrestricted

models using (6.59). If the calculated value of (6.59) exceeds that from a 𝜒2 table, with

degrees of freedom equal to the number of restrictions placed on 𝛼, the restrictions can

be rejected. For example, Johansen and Juselius (1990) test the restriction that only

money demand (i.e., m2t) responds to the deviation from long-run equilibrium. For-

mally, they test the restriction that 𝛼2 = 𝛼3 = 𝛼4 = 0. Restricting the three values of 𝛼i
to equal zero, they find the largest characteristic root in the restricted model is such that

T ln(1 − �̂�∗
1
) = −23.42. Since the unrestricted model is such that T ln(1 − �̂�1) =

−30.09, equation (6.59) becomes −23.42 − (−30.09) = 7.67. The 𝜒2 statistic with

three degrees of freedom is 7.81 at the 5% significance level. Hence, they find mild

support for the hypothesis that the restriction is not binding.

If there is a single cointegrating vector, the Engle–Granger and Johansen methods

have the same asymptotic distribution. If it can be determined that only one cointegrat-

ing vector exists, it is also common to rely on the estimated error-correction model to

test restrictions on 𝛼. If r = 1, and a single value of 𝛼 is being tested, the usual t-statistic
is asymptotically equivalent to the Johansen test.

Lag Length and Causality Tests

The simplest way to understand lag length tests is to consider the system in the form

of (6.54)

Δxt = 𝜋xt−1 +
p−1∑
i=1

𝜋iΔxt−i + 𝜀t

Regardless of the rank of 𝜋, all of the Δxt−i are stationary variables. Hence, we

can use Rule 1 of Sims, Stock, and Watson (1990). Recall that the rule implies that

the coefficients of interest on zero-mean stationary variables can be tested using a nor-

mal distribution. Since lag length depends solely on the values of the various 𝜋i, a 𝜒
2

distribution is appropriate to test any restriction concerning lag length. As in the case

of any VAR, let Σu and Σr be the variance/covariance matrices of the unrestricted and

restricted systems, respectively. As in Chapter 5, let c denote the maximum number of

regressors contained in the longest equation. The test statistic

(T − c)(log|Σr| − log|Σu|)
can be compared to a 𝜒2 distribution with degrees of freedom equal to the number of

restrictions in the system. Alternatively, you can use the multivariate AIC or SBC to

determine the lag length. If you want to test the lag lengths for a single equation, an

F-test is appropriate.
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The rule also means that you cannot perform Granger causality tests in a cointe-

grated system using a standard F-test. First, suppose that rank (𝜋) = 0 so that

Δxt =
p−1∑
i=1

𝜋iΔxt−i + 𝜀t

As such, Granger causality involves only stationary variables. Yet, this was pre-

cisely the case discussed in Chapter 5 when the variables in a VAR are not cointegrated.

Hence, Granger causality tests can be conducted using a standard F distribution. How-

ever, if the variables are cointegrated, a Granger causality test involves the coefficients

of 𝜋. Since these coefficients multiply nonstationary variables, it is not appropriate to

use an F-statistic to test for Granger causality. After all, if rank(𝜋) ≠ 0, it is impossible

to write the restrictions of the test as restrictions on a set of I(0) variables. Block exo-

geneity tests are also ruled out too. If wt is cointegrated with yt or zt, you cannot use a

standard 𝜒2 test to determine whether wt belongs in the equations for yt and zt.

To Difference or Not to Difference

We have reached a point where it is possible to address the issue of differencing the

nonstationary variables in an unrestricted VAR. There is no question that differencing

leads to amisspecification error if the variables are cointegrated. Suppose that the actual

data-generating process is given by the cointegrated system of (6.54) but you estimate

the following VAR in first differences:

Δxt =
p−1∑
i=1

𝜋iΔxt−i + 𝜀t

The system is misspecified since it excludes the long-run equilibrium relationships

among the variables that are contained in 𝜋xt−1. Given the misspecification error, all of

the coefficient estimates, t-tests, F-tests, tests of cross-equation restrictions, impulse

responses and variance decompositions are not representative of the true process.

Hence, there is a substantial penalty to pay if you estimate a VAR in first differences

when the data are actually cointegrated; differencing “throws away” information

contained in the cointegrating relationship(s).

Why not simply estimate all VARs in levels? The answer is that it is preferable

to use the first differences if the I(1) variables are not cointegrated. There are three

consequences if the I(1) variables are not cointegrated and you estimate the VAR in

levels:

1. Tests lose power because you estimate n2 more parameters (one extra lag of

each variable in each equation).

2. For a VAR in levels, tests for Granger causality conducted on the I(1) vari-
ables do not have a standard F distribution. If you use first differences, you

can use the standard F distribution to test for Granger causality.

3. When the VAR has I(1) variables, the impulse responses at long forecast

horizons are inconsistent estimates of the true responses. Since the impulse

responses need not decay, any imprecision in the coefficient estimates will

have a permanent effect on the impulse responses. If the VAR is estimated
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in first differences, the impulse responses decay to zero and so the estimated

responses are consistent.

The suggestion is that it is important to properly determine whether the I(1) vari-
ables are cointegrated. You can perform lag length tests regardless of whether the

variables are cointegrated. As such, the suggested methodology is to estimate an unre-

stricted VAR. Most researchers would begin with a lag length of approximately T1∕3.
You may want to alter the number of lags to correspond to the seasonal frequency of

the data. For example, with 100 observations of two variables using quarterly data, you

might want to begin with 8 lags even though T1∕3 is approximately five. Select the

most appropriate lag length and then perform a cointegration test. If the variables are

not cointegrated, estimate the system in first differences. If the variables are cointe-

grated, you can work with the error-correction model. Since the error-correction term

and all values ofΔxt−i are stationary, you can conduct inference on any variable (except
those appearing within the cointegrating vectors) using the usual test statistics. Impulse

responses and variance decompositions will yield consistent estimates of the actual

values.

Tests on Multiple Cointegrating Vectors

If the rank of 𝜋 exceeds one, it is not straightforward to interpret the cointegrating vec-

tors. When there are multiple cointegrating vectors, any linear combination of these

vectors is also a cointegrating vector. Fortunately, it is often possible to identify sep-

arate behavioral relationships by appropriately restricting the individual cointegrating

vectors. The only complication is that you need to be clear about the number of restric-

tions you impose on the system. It is important to note that if there are r cointegration
relationships in an n-variable system, there exists a cointegrating vector for each sub-
set of (n − r + 1) variables. For example, if there are two cointegrating vectors in a

three-variable system, there is a cointegrating vector for each bilateral pair of the vari-

ables (2 = n − r + 1). To demonstrate the point, let xt = (x1t, x2t, x3t, x4t)′ and suppose

there are two cointegrating vectors for these four variables. If we normalize each vector

with respect to x1t, we can write the two independent relationship in 𝛽′xt = 0 as

[
1 −𝛽12 −𝛽13 −𝛽14
1 −𝛽22 −𝛽23 −𝛽24

] ⎡⎢⎢⎢⎣
x1t
x2t
x3t
x4t

⎤⎥⎥⎥⎦ =
[
0

0

]

Consider the 2 ⋅ n matrix 𝛽′ consisting of the cointegrating parameters. Subtract row 1

from row 2 to obtain[
1 −𝛽12 −𝛽13 −𝛽14
0 −𝛽22 + 𝛽12 −𝛽23 + 𝛽13 −𝛽24 + 𝛽14

]
Now, renormalize row 2 by dividing each of its elements by (𝛽12 − 𝛽22) to obtain[

1 −𝛽12 −𝛽13 −𝛽14
0 1 −𝛽∗

23
−𝛽∗

24

]
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where −𝛽∗
23

= (𝛽13 − 𝛽23)∕(𝛽12 − 𝛽22) and −𝛽∗
24

= (𝛽14 − 𝛽24)∕(𝛽12 − 𝛽22). Hence, x2t,
x3t, and x4t are cointegrated such that x2t = 𝛽∗

23
x3t + 𝛽∗

24
x4t. Similarly, add 𝛽12 times row

2 to row 1 to obtain [
1 0 −𝛽∗

13
−𝛽∗

14
0 1 −𝛽∗

23
−𝛽∗

24

]
where 𝛽∗

1j = 𝛽1j + 𝛽12𝛽
∗
2j

Thus, x1, x3, and x4 are cointegrated such that x1t = 𝛽∗
13
x3t + 𝛽∗

14
x4t. Since the label-

ing of the variables is irrelevant, it follows that there exists a cointegrating vector for

each subset of three variables. More generally, 𝛽′ will be an r ⋅ n matrix of cointegrat-

ing parameters, and each subset of n − r + 1 variables will be cointegrated. From the

preceding discussion, it should be clear that standard row and column operations on 𝛽′

do not entail restrictions on the cointegrating vectors. Such operations merely result in

additional cointegrating vectors that are linear combinations of the original vectors.

EXAMPLE 1: VARIABLE EXCLUSION WITHIN AN EQUATION With

multiple cointegrating vectors, you cannot test whether any one particular 𝛽ij = 0 since

this assumption does not restrict the cointegrating space. In the general case where

𝛽′ is an r ⋅ n matrix, a testable exclusion restriction entails the exclusion of r or more

variables from a cointegrating vector. Hence, excluding r variables from a cointegrat-

ing vector entails only one restriction. If the sample value of the 𝜒2 statistic with one

degree of freedom (since there is only one restriction involved) exceeds a critical value,

reject the null hypothesis that this set of variables contains a cointegrating relationship.

EXAMPLE 2: VARIABLE EXCLUSION ACROSS EQUATIONS Next, sup-

pose that you want to test whether x4t can be excluded from the set of cointegrating rela-

tionships. The restriction 𝛽14 = 𝛽24 = 0 entails only one restriction on the cointegrating

space. In the general case where 𝛽′ is an r ⋅ n matrix, the test 𝛽1j = 𝛽2j = · · · = 𝛽rj = 0

still involves only one restriction. This follows since xit can be eliminated from r − 1

equations using simple row and column operations.

EXAMPLE 3: CONDITIONAL RESTRICTIONS It is also possible to restrict

one cointegrating vector conditional on the values of all other cointegrating vectors.

For example, you might want to determine if (1, 0, 𝛽23, 𝛽24)′ is a cointegrating vector

for the given normalized values of 𝛽12, 𝛽13, and 𝛽14. Thus, you fix the values of 𝛽12,

𝛽13, and 𝛽14 and determine whether you can exclude x2t from the second vector. Cutler,

Davis, and Smith (1999) consider the identification issue in considerable detail. They

examine the following four behavioral relationships in a seven variable system:

mt = d0 + d1yt + d2rt + d3pt + e1t
ct = a0 + a1yt + a2rt + e2t
it = b0 + b1yt + b2rt + e3t

imt = g0 + g1yt + g2rt + e4t
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where mt = log of nominal money holdings

yt = log of real income

rt = real interest rate

ct = log of real consumption

it = log of real investment

pt = log of the price level

imt = log of real imports

e1t, e2t, e3t, and e4t = stationary error terms

The first equation is the money demand equation. The next three equations are a

simple consumption function, an investment function, and an import demand function,

respectively. Consumption, investment, and imports are each assumed to be functions

of only income and the interest rate. The issue is to determine whether it is possible

to identify these four equations from a seven-variable system. Toward this end, they

obtained estimates of a 7 × 7 𝜋 matrix over a number of sample periods. There were

at least four cointegrating vectors in every case considered. Over the entire sample,

1960Q2 to 1990Q4, Cutler, Davis, and Smith (1999) found that they could not reject

the restrictions at conventional significance levels (the prob-value was 16%).

The Test in the Presence of I(2) Variables

It is also possible to test formulticointegration using Johansen’smethodology. Consider

the VAR system:

Δ2xt = 𝜋xt−1 + ΓΔxt−1 +
p−2∑
i=1

𝜋iΔ2xt−i + 𝜀t (6.60)

The issue of multicointegration concerns the ranks of both 𝜋 and Γ. In principle,

it is possible to consider all possible orders of cointegration for the variables in the

system. However, to illustrate the procedure, it is useful to begin with a three-variable

system consisting of the three I(2) variables x1t, x2t, and x3t that are multicointegrated

such that

𝜋11x1t + 𝜋12x2t + 𝜋13x3t + Γ11Δx1t + Γ12Δx2t + Γ13Δx3t = 0

Let r denote the rank of 𝜋 and r1 denote the rank of Γ so that (6.60) is such that

r = r1 = 1. Clearly, if r = 0, multicointegration fails since there is no linear combi-

nation of the three I(2) variables that forms an equilibrium relationship. If r = 1 and

r1 = 0, the equilibrium relationship has the form 𝜋11x1t + 𝜋12x2t + 𝜋13x3t = 0. As such,

Δ2xt = 𝜋xt−1 + I(0) variables so that 𝜋11x1t + 𝜋12x2t + 𝜋13x3t is necessarily a station-

ary relationship—the variables are CI(2, 2). All of this may seem straightforward, but

there is a complicating factor when the ranks of 𝜋 and Γ have to be estimated. To

illustrate the point, suppose that the I(2) variables are cointegrated such that

𝜋11x1t + 𝜋12x2t + 𝜋13x3t ∼ I(1)

where ∼ I(d) indicates the order of integration.
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If you take the first difference, it follows that 𝜋11Δx1t + 𝜋12Δx2t + 𝜋13Δx3t is I(0).
You should be able to figure out the problem. For any cointegrating vector in 𝜋, it is

possible to estimate an identical cointegration vector for the first differences of the

variables. Yet a linear combination of the two relationships is not stationary. Consider

the result obtained by subtracting the I(0) relationship from the I(1) relationship:

𝜋11x1t + 𝜋12x2t + 𝜋13x3t − 𝜋11Δx1t − 𝜋12Δx2t − 𝜋13Δx3t
= 𝜋11x1t−1 + 𝜋12x2t−1 + 𝜋13x3t−1

Since 𝜋11x1t−1 + 𝜋12x2t−1 + 𝜋13x3t−1 is I(1), all that has been done is to change the
time subscript for the variables in the cointegrating relationship. The point is that it is

necessary to find cointegrating vectors in Γ that are not linear combinations of those

in 𝜋.

If we take the more general case considered by Johansen (1995), let rank(𝜋) = r
and let s denote the number of cointegrating vectors in Γ that are orthogonal to those in

𝜋. In an n-variable system such that some of the variables are I(2), you should be able
to verify that:

1. If r = 0, there is no relationship among the variables that is stationary.

2. In a system with n variables, if r + s = n − 1, there is a unique multicointe-

grating vector. The number of I(2) stochastic trends in an n-variable system is

given by n − r − s.

3. The value of smust be such that s < n − r. For the analysis of I(2) variables to
be appropriate, the values of r and smust be such that s + r < n. If s = n − r,
then xt contains no I(2) variables.

Johansen’s cointegration test with I(2) variables is actually a two-step procedure.

In the first step, you estimate a model as in (6.60) to determine the rank of 𝜋. Determine

the value of r using the 𝜆trace and 𝜆max statistics in the usual way. In the second step,

you determine the value of s conditional on the value of r.5 Let the null hypothesis be
s = s0 and consider

Q∗
r,s = −T

n∑
i=s0+1

ln(1 − �̂�i) (6.61)

Hence, Q∗
r,s is constructed in the same fashion as a 𝜆trace statistic. The principal

differences are that you test the rank of Γ conditional on the value of r and that you

obtain the number of cointegrating vectors orthogonal to those in 𝜋. As such, the critical

values needed to determine the value of s have to be modified. Given the value of r,
if the sample value of Q∗

r,s exceeds the critical value calculated by Johansen, reject the

null hypothesis s = s0 in favor of the alternative s > s0. For r = 1, the critical values at

the 10, 5, and 1% significance levels are

Critical Values for Q∗
1 , s

s = 0 s = 1

10% 31.88 17.79

5% 34.80 19.99

1% 40.84 24.74
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For example, let r = 1 and suppose that the sample value of Q∗
1,s is found to be

35.00. As such, the null hypothesis s = 0 can be rejected at the 5% significance level.

9. ILLUSTRATING THE JOHANSEN
METHODOLOGY

An interesting way to illustrate the Johansen methodology is to use exactly the same

data shown in Figure 6.2. Recall that the data is contained in the file COINT6.XLS.

Although the Engle–Granger technique did find that the simulated data were cointe-

grated, a comparison of the two procedures is useful. Use the following four steps when

implementing the Johansen procedure.

STEP 1: It is good practice to pretest all variables to assess their order of integra-
tion. Plot the data to see if a linear time trend is likely to be present in the

data-generating process. In most instances you will have variables that are

integrated of the same order. In other cases, you can check for multicointe-

gration.

The results of the test can be quite sensitive to the lag length, so it is

important to be careful. The most common procedure is to estimate a vector

autoregression using the undifferenced data. Then use the same lag-length

tests as in a traditional VAR. Begin with the longest lag length deemed rea-

sonable and test whether it can be shortened. For example, if we want to test

whether lags 2 through 4 are important, we can estimate the following two

VARs:

xt = A0 + A1xt−1 + A2xt−2 + A3xt−3 + A4xt−4 + e1t
xt = A0 + A1xt−1 + e2t

where xt = the (n ⋅ 1) vector of variables
A0 = (n ⋅ 1)matrix of intercept terms

Ai = (n ⋅ n)matrices of coefficients

e1t and e2t = (n ⋅ 1) vectors of error terms.

Estimate the first system with four lags of each variable in each equation

and call the variance/covariance matrix of residuals Σ4. Now estimate the

second equation using only one lag of each variable in each equation and call

the variance/covariance matrix of residuals Σ1. Even though we are work-

ing with nonstationary variables, we can perform lag length tests using the

likelihood ratio test statistic recommended by Sims (1980):

(T − c)(log|Σ1| − log|Σ4|)
where T = number of observations

c = number of parameters in the unrestricted system

log|Σi| = natural logarithm of the determinant of Σi
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Following Sims, use the 𝜒2 distribution with degrees of freedom equal

to the number of coefficient restrictions. Since each Ai has n
2 coefficients,

constraining A2 = A3 = A4 = 0 entails 3n2 restrictions. Alternatively, you
can select lag length p using the multivariate generalizations of the AIC

or SBC. In the model at hand, you should find that the general-to-specific

method and the AIC select a lag length of 2 whereas the SBC selects a lag

length of 1.

STEP 2: Estimate the model and determine the rank of 𝜋. Many time-series statis-

tical software packages contain a routine to estimate the model. Here, it

suffices to say that OLS is not appropriate because it is necessary to impose

cross-equation restrictions on the 𝜋 matrix. In most circumstances, you may

choose to estimate the model in three forms: (1) with all elements of A0 set

equal to zero, (2) with a drift, or (3) with a constant term in the cointegrating

vector.

For example, we can use the simulated data shown in Figure 6.2 so

that xt = (yt, zt,wt)′. If we pretend that we do not know the form of the

data-generating process, we might want to include an intercept term in the

cointegrating vector(s). As we saw in the last section, it is possible to test for

the presence of the intercept. If we follow the general-to-specific method and

use a lag length of 2, the estimated model has the form

Δxt = A0 + 𝜋xt−1 + 𝜋1Δxt−1 + 𝜀t (6.62)

where A0 was constrained so as to force the intercept to appear in the cointe-

grating vector.

As always, carefully analyze the properties of the residuals of the esti-

mated model. Any evidence that the errors are not white noise usually means

that lag lengths are too short. Figure 6.4 shows deviations of yt from the

long-run relationship (𝜇t = −0.01331 − yt − 1.0350zt + 1.0162wt) and one
of the error sequences (i.e., the {𝜀yt} sequence that equals the residuals
from the yt equation in (6.62)). Both sequences conform to their theoret-

ical properties in that the residuals from the long-run equilibrium appear

to be stationary and the estimated values of the {𝜀yt} series approximate a

white-noise process.

The estimated values of the characteristic roots of the 𝜋 matrix in (6.62)

are

𝜆1 = 0.32600; 𝜆2 = 0.14032; and 𝜆3 = 0.033168

Since T = 98 (100 observations less the two lost as a result of using 2

lags), the calculated values of 𝜆max and 𝜆trace for the various possible values
of r are reported in the center column of Table 6.6.

Consider the hypothesis that the variables are not cointegrated (so that

the rank 𝜋 = 0). Depending on the alternative hypothesis, we have a choice

of two possible test statistics. If we are interested in the hypothesis that the

variables are not cointegrated (r = 0) against the alternative of one or more
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Table 6.6 The 𝜆max and 𝜆trace Tests

Alternative 95% Critical 90% Critical
Null Hypothesis Hypothesis Value Value

𝜆trace tests 𝜆trace value
r = 0 r > 0 56.786 34.91 32.00

r ≤ 1 r > 1 18.123 19.96 17.85

r ≤ 2 r > 2 3.306 9.24 7.52

𝜆max tests 𝜆max value
r = 0 r = 1 38.663 22.00 19.77

r = 1 r = 2 14.817 15.67 13.75

r = 2 r = 3 3.306 9.24 7.52

cointegrating vectors (r > 0), we can calculate the 𝜆trace(0) statistic:

𝜆trace(0) = −T [ln(1 − 𝜆1) + ln(1 − 𝜆2) + ln(1 − 𝜆3)]
= −98 [ln(1 − 0.326) + ln (1 − 0.14032) + ln(1 − 0.033168 )]
= 56.786

Since 56.786 exceeds the 5% critical value of the 𝜆trace statistic (in the

bottom panel of Table E, the critical value is 34.91), it is possible to reject the

null hypothesis of no cointegrating vectors and accept the alternative of one

or more cointegrating vectors. Next, we can use the 𝜆trace(1) statistic to test
the null of r ≤ 1 against the alternative of two or three cointegrating vectors.
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In this case, the 𝜆trace(1) statistic is
𝜆trace(1) = −T [ln(1 − 𝜆2) + ln(1 − 𝜆3)]

= −98 [ln (1 − 0.14032) + ln(1 − 0.033168)]
= 18.123

Since 18.123 is less than the 5% critical value of 19.96, we cannot reject

the null hypothesis at this significance level. However, 18.123 does exceed

the 10% critical value of 17.85; some researchers might reject the null and

accept the alternative of two or three cointegrating vectors. The 𝜆trace(2)
statistic indicates no more than two cointegrating vectors at the 10% sig-

nificance level.

The 𝜆max statistic does not help to clarify the issue. The null hypothe-
sis of no cointegrating vectors (r = 0) against the specific alternative r = 1

is clearly rejected. The calculated value 𝜆max(0, 1) = −98 ln(1 − 0.326) =
38.663 exceeds the 5% critical value of 22.00. Note that the test of the null

hypothesis r = 1 against the specific alternative r = 2 cannot be rejected at

the 5%, but can be rejected at the 10%, significance level. The calculated

value of 𝜆max(1, 2) is −98 ln(1 − 0.14032) = 14.817, whereas the critical

values at the 5 and 10% significance levels are 15.67 and 13.75, respectively.

Even though the actual data-generating process contains only one cointe-

grating vector, the realizations are such that researchers willing to use the

10% significance level would incorrectly conclude that there are two coin-

tegrating vectors. Failing to reject an incorrect null hypothesis is always an

inherent danger of using wide confidence intervals.

STEP 3: Analyze the normalized cointegrating vector(s) and speed of adjust-

ment coefficients. If we select r = 1, the estimated cointegrating vector

(𝛽0, 𝛽1, 𝛽2, 𝛽3) is
𝛽 = (0.00553, 0.41532, 0.42988,−0.42207)

If we normalize with respect to 𝛽1, the normalized cointegrating vector

and the speed of adjustment parameters are

𝛽 = (−0.01331,−1.0000,−1.0350, 1.0162)
𝛼y = 0.54627

𝛼z = 0.16578

𝛼w = 0.21895

Recall that the data were constructed imposing the long-run relation-

ship: wt = yt + zt; hence, the estimated coefficients of the normalized 𝛽

vector are close to their theoretical values of (0,−1,−1, 1). Consider the
following tests:

1. The test that 𝛽0 = 0 entails one restriction on one cointegrating vector;

hence, the likelihood ratio test has a 𝜒2 distribution with one degree of

freedom. The calculated value of 𝜒2 = 0.011234 is not significant at con-

ventional levels. Hence, we cannot reject the null hypothesis that 𝛽0 = 0.
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Thus, it is possible to use the form of the model in which there is neither

a drift nor an intercept in the cointegrating vector. Thus, to clarify the

issue concerning the number of cointegrating vectors, it would be wise

to reestimate the model excluding the constant from the cointegrating

vector.

2. To restrict the normalized cointegrating vector such that 𝛽2 = −1 and
𝛽3 = 1 entails two restrictions on one cointegrating vector; hence, the like-

lihood ratio test has a 𝜒2 distribution with two degrees of freedom. The

calculated value of 𝜒2 = 0.55350 is not significant at conventional levels.

Hence, we cannot reject the null hypothesis that 𝛽2 = −1 and 𝛽3 = 1.

3. To test the joint restriction 𝛽 = (0,−1,−1, 1) entails the three restrictions
𝛽0 = 0, 𝛽2 = −1, and 𝛽3 = 1. The calculated value of 𝜒2 with three

degrees of freedom is 1.8128 so that the significance level is 0.612.

Hence, we cannot reject the null hypothesis that the cointegrating vector

is (0,−1,−1, 1).
STEP 4: Finally, innovation accounting and causality tests on the error-correction

model of (6.62) could help to identify a structural model and determine whe-

ther the estimated model appears to be reasonable. Since the simulated data

have no economic meaning, innovation accounting is not performed here.

10. ERROR-CORRECTION AND ADL TESTS

In the Engle–Granger method, it is possible to estimate the long-run equilibrium rela-

tionship from a regression of zt on yt or from a regression of yt on zt. In the Johansen

method, all variables are treated symmetrically. Hence, either method can be used in

circumstances when you do not want to explicitly specify a “dependent” variable and

a set of “independent” variables. This can be especially advantageous if the variables

are jointly determined and you are not sure how to disentangle the interdependence

among them. For example, in a test for purchasing power parity, it is likely that the

exchange rate and the two price levels all have strong effects on each other. In other

circumstances, the selection of a dependent variable and the set of independent vari-

ables might be clear. As discussed in this section, there are potential benefits to be

had by incorporating such information into a cointegration model. The starting point is

to be precise about the econometric meaning of the term “exogenous.” To begin with

the simplest case, suppose that yt and zt are cointegrated of order (1, 1) and that the

error-correcting model (ECM) is represented by

Δyt = 𝛼1(yt−1 − 𝛽zt−1) + e1t (6.63)

Δzt = 𝛼2(yt−1 − 𝛽zt−1) + e2t (6.64)

Notice that (6.63) and (6.64) are in reduced form and not in structural form. In

order to allow for the possibility that the error terms are correlated, we can let the

relationship between the error terms and the structural shocks be given by[
e1t
e2t

]
=

[
c11 c12
c21 c22

] [
𝜀yt
𝜀zt

]
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where 𝜀yt and 𝜀zt are the structural innovations in Δyt and Δzt, and the cij are coeffi-
cients. As in the discussion of structural VARs in Section 10 of Chapter 5, the structural

shocks are uncorrelated in that E𝜀yt𝜀zt = 0. Even though E𝜀yt𝜀zt = 0, e1t and e2t will
generally be correlated if c12 and/or c21 differ from zero.

For now, suppose that the values of the cij are unknown. Nevertheless, it is always
possible to construct an orthogonalization between the two errors such that

e1t = 𝜌e2t + vt (6.65)

where 𝜌 is the regression coefficient of e1t on e2t and vt is the innovation in e1t that is
not correlated with e2t. If we substitute (6.64) and (6.65) into (6.63), we obtain

Δyt = 𝛼1(yt−1 − 𝛽zt−1) + 𝜌e2t + vt
= 𝛼1(yt−1 − 𝛽zt−1) + 𝜌[Δzt − 𝛼2(yt−1 − 𝛽zt−1)] + vt
= (𝛼1 − 𝜌𝛼2) (yt−1 − 𝛽zt−1) + 𝜌Δzt + vt

Now, if we let 𝛼 = 𝛼1 − 𝜌𝛼2, we can write

Δyt = 𝛼(yt−1 − 𝛽zt−1) + 𝜌Δzt + vt (6.66)

In general, it is not appropriate to estimate (6.66) directly since it contains the

jointly determined variables Δyt and Δzt. The general problem is that Δzt will be cor-
related with the error term vt so that there is a simultaneity problem. As such, OLS

cannot be used to recover meaningful estimates of the parameters of the model. Even if

the simultaneity problem is rectified, there is an identification problem since 𝛼1 and 𝛼2
cannot be separately identified from the OLS estimate of 𝛼. However, it is possible to

specify conditions such that the simultaneity and identification problems disappear and

that OLS is an efficient estimation and testing strategy. As will be shown below, the two

conditions are 𝛼2 = 0 (so that zt does not respond to the discrepancy from the long-run

equilibrium relationship) and c21 = 0 (so that zt does not respond to 𝜀yt). Thus, the two
required assumptions are that zt is weakly exogenous and causally prior to yt.

Cointegration with Weak Exogeneity

Following Engle, Hendry, and Richard (1983), a variable xit is weakly exogenous for

the parameter set P if the marginal distribution of xit contains no useful information

for conducting inference on P. In a cointegrated system, if a variable does not respond

to the discrepancy from the long-run equilibrium relationship, it is weakly exogenous.
Hence, if the speed of adjustment parameter 𝛼i is zero, the variable in question is weakly

exogenous. In the example used by Johansen and Juselius (1990), it might be possible

to argue that real income should be weakly exogenous. After all, in a full-employment

environment, discrepancies between long-run money demand and supply would not be

expected to change real income. For our purposes, the practical importance is that a

weakly exogeneous variable does not experience the type of feedback that necessitates

the use of a VAR.

To explain, suppose that you try to estimate an equation like (6.66) using OLS. You

could use a two-step method, such as that employed in the Engle–Granger procedure,
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and regress yt on zt to obtain an estimate of 𝛽 and then form the variable yt−1 − 𝛽zt−1.
However, at this point in time, the preference in the literature is to estimate the unre-

stricted equation

Δyt = 𝛽1yt−1 + 𝛽2zt−1 + 𝛽3Δzt + vt (6.67)

where from (6.66) the estimated coefficients are such that 𝛽1 = 𝛼1 − 𝜌𝛼2, 𝛽2 = (𝛼1 −
𝜌𝛼2)𝛽 and 𝛽3 = 𝜌.

Since the coefficients of (6.67) are unrestricted, this form of the model is often

called an autoregressive distributed lag to distinguish it from an ECM in the form of

(6.66). Notice that the value of 𝛼2 appears in the estimates for 𝛽1 and 𝛽2. However, if

zt is weakly exogenous (i.e., if 𝛼2 = 0), your coefficient estimates should be such that

𝛽1 = 𝛼1, 𝛽2 = 𝛼1𝛽 and 𝛽3 = 𝜌. Thus, you can identify 𝛼1, 𝛽, and 𝜌 from 𝛽1, 𝛽2, and 𝛽3
since the OLS estimation of (6.67) is equivalent to estimating the equation

Δyt = 𝛼1yt−1 − 𝛼1𝛽zt−1 + 𝜌Δzt + vt (6.68)

Although weak exogeneity allows the model to be identified, there is still the issue

of properly testing (6.68) for cointegration. Since {yt} and {zt} are I(1), the test statis-
tics of the null hypothesis 𝛽1 = 0 and 𝛽2 = 0 in (6.67) are nonstandard and need to be

tabulated. The usual way to test for cointegration is to use the t-statistic for the null

hypothesis 𝛽1 = 0 in (6.67).6 After all, if 𝛽1 = 0, there is no error-correction so that

yt is not cointegrated with zt. Table F in the Supplementary Manual, uses the work

of Ericsson and MacKinnon (2002) to calculate the appropriate critical values neces-

sary to determine whether 𝛽1 < 0. The critical values depend on the number of I(1)
regressors in the model (denoted by k), the adjusted sample size Ta, and the form of

the deterministic regressors. For example, if you have an adjusted sample size with 100

observations and estimate a model with an intercept (d = 1) and two weakly exogenous
variables (k = 3), Table F indicates that the appropriate critical values to test the null

hypothesis 𝛽1 = 0 are −4.181, −3.538, and −3.205 at the 1, 5, and 10% significance

levels, respectively.

If you compare (6.67) with (6.63), you can see the benefit of employing weak

exogeneity. Since the two representations are equivalent, e1t is composed ofΔzt and vt.
Since (6.67) will have a smaller variance than the error term in (6.63), the coefficients

of (6.67) can be estimated with more precision than the coefficient of (6.63). A second

benefit ascribed to estimating such a model is that the coefficients of yt−1 and zt−1

are unrestricted. As such, the short-run dynamics for Δyt are not dictated by long-run

equilibrium relationship yt−1 = 𝛽zt−1. In the Engle–Granger and Johansen approaches,
the so-called Common Factor Restriction forces the short-run changes in Δyt to be a
constant proportion of the previous period’s deviation from long-run equilibrium.

Inference on the Cointegrating Vector

Suppose you assume that weak exogeneity holds and conclude that the variables are

cointegrated (so that 𝛼1 < 0 and 𝛼2 = 0). As such, it is possible to write (6.64) and

(6.67) as

Δyt = 𝛼1(yt−1 − 𝛽zt−1) + 𝜌Δzt + vt (6.69)
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and

Δzt = e2t (6.70)

Now the question becomes: Can you conduct inference on 𝛼1 and 𝛽 in (6.69) using

standard t-tests and F-tests? The answer, quite possibly, is yes! Since all variables in
(6.69) are stationary, we are really operating within a standard OLS regression frame-

work. A simultaneity problem exists if the regressors appearing in (6.69) depend on

the error term vt. Clearly, the I(0) variable yt−1 − 𝛽zt−1 is pre-determined so that there

is no need to worry about the influence of vt on the error-correction term. Hence, the

key issue concerns the contemporaneous relationship between Δyt and Δzt. If Δzt is
unaffected by innovations in Δyt, it is appropriate to conduct inference on (6.69) using
a standard t-tests and F-tests.

Recall that the particular orthogonalization used in (6.65) is such that e1t = 𝜌e2t +
vt where e2t and vt are uncorrelated. This is actually a Choleski decomposition in that

Δzt does not respond to innovations in Δyt but Δyt responds to innovations in Δzt. It
should be clear that actual error structure has this Choleski form only if c21 = 0. In

other words, if c21 = 0, (6.65) is equivalent to e1t = 𝜌e2t + 𝜀yt and e2t = 𝜀zt. Given that

Δzt = e2t does not depend on 𝜀yt, there is no feedback from Δyt to Δzt so that it is

possible to use standard inference on (6.68) or (6.69).

Thus, testing restrictions on 𝛼1 is straightforward since it is the coefficient on the

I(0) variable (yt−1 − 𝛽zt−1). As such, given that 𝛼1 ≠ 0, it is appropriate to form confi-

dence intervals on 𝛼1 using a standard t-distribution. Similarly, given that 𝛽 ≠ 0, 𝛽 can

be written as the coefficient on the I(0) variable (yt−1∕𝛽 − 𝛼1zt−1). Inference on 𝛽 can

also be conducted using a t-distribution. Finally, note that 𝜌 is the coefficient on the

stationary variable Δzt. Hence, it is appropriate to construct confidence intervals for 𝜌

using a t-distribution.
It is straightforward to generalize these results. Since zt can actually be a vector of

I(1) variables, you can estimate (6.67) for yt and a set of weakly exogenous variables zt.
For example, with two weakly exogenous variables, z1t and z2t, the error-correction

model generalizes to

Δyt = 𝛼1(yt−1 − 𝛽1z1t−1 − 𝛽2z2t−1) + 𝛽3Δz1t + 𝛽4Δz2t + vt

so that you estimate a model of the form

Δyt = 𝛼1yt−1 + b1z1t−1 + b2z2t−1 + 𝛽3Δz1t + 𝛽4Δz2t + vt.

where b1 = −𝛽1∕𝛼1 and b2 = −𝛽2∕𝛼1.
To test for cointegration use the t-statistic for the null hypothesis 𝛼1 = 0. Since

you have three I(1) variables in the model, obtain the critical values from Table F such

that k = 3. Of course, if we start from a higher order process, additional lags of Δyt−i,
Δz1t−i, and Δz2t−i should be added to the equation. As in the two-variable case, you

need to assume that Δyt has no contemporaneous effects on any values of the Δzit.
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11. COMPARING THE THREE METHODS

In this section, we compare the Engle–Granger, Johansen and ADL tests for cointe-

gration using the three-month Treasury bill and 10-year interest rates using the data in

QUARTERLY.XLS. Although we know that the spread acts as a stationary variable,

the point of this section is to illustrate the use of the three testing methodologies. Since

we have already verified that the individual rates act as I(1) process we can skip the

preliminary step of pretesting for unit roots. To keep the discussion on point, reason-

able leg lengths for each test are simply reported. You can verify them in the exercises

at the end of the chapter.

The Engle–Granger Methodology

Given that each rate acts as a unit-root process, we can begin by estimating the long-run

equilibrium relationship

rLt = 1.642 + 0.915rSt
(13.23) (43.15) (6.71)

Next, we test the residuals from (6.71) for stationarity by estimating an equation in

the form (6.32). If you experiment with various lag lengths, you will find that various

lag lengths tests suggest a three lag model or a one lag model. If we adopt the SBC and

use one lagged change, we obtain

Δêt = −0.155êt−1 + 0.201Δêt−1
(−4.45) (2.96)

In a model with 2 variables with 208 usable observations, the 5% critical value

shown in Table C is −3.368 and the 1% value is −3.95. As such, we can reject the

null hypothesis of no cointegration. Since we are making no assumption concerning

weak-exogeneity, it is clearly possible to carry out the analysis using rSt as the left-hand
side variable. Reversing the variables in (6.71) yields

rSt = −1.103 + 0.982rLt
(−7.04) (43.15)

In this form, the Engle–Granger test also supports the finding of cointegration

since the regression of the residuals yields

Δêt = −0.172êt−1 + 0.219Δêt−1
(−4.78) (3.24)

Notice that the two estimates of the long-run equilibrium relationship are some-

what different from each other. However, it is not possible to conduct inference on either

of these cointegrating vectors unless you use the methods discussed in Appendix 6.2 in

the Supplementary Manual. As an exercise, you can repeat the cointegration test using
a three lag specification.
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The Johansen Methodology

Let xt denote the vector [rLt, rSt]′. If you estimate the unrestricted VAR in the form

of (6.53) (i.e., if you estimate the VAR xt = A0 +
∑
Aixt−i) you should find that the

SBC selects a lag length of one whereas the AIC and general-to-specific methodology

selects a lag length of eight. Again, for expositional purposes it is simplest to report the

results of the one lag model. Given this lag length, it is possible to estimate the model

in the form of (6.54). Since the interest rates do not continually increase or decrease

over time, it seems reasonable to constrain the drift terms so that a constant appears in

the cointegrating relationship. The estimated value of the 𝜋∗ matrix is such that

𝜋∗x∗t−1 =
[
−1.048
−0.446

1.102

0.100

0.956

2.133

] ⎡⎢⎢⎣
rLt
rSt
1

⎤⎥⎥⎦
The characteristic roots are such that 𝜆1 = 0.1295 and 𝜆2 = 0.0136 so that

−T ln(1 − 𝜆1) = 29.13 and −T ln(1 − 𝜆2) = 2.87. To test the null hypothesis of no

cointegration against the general alternative of 1 or 2 cointegrating vectors compare

the sum 29.13 + 2.87 = 32.00 to the 5% critical value of the 𝜆trace statistic shown in

Table E. Since 32.00 exceeds the critical value of 19.96, reject the null and conclude

that there is at least one cointegrating vector. To test the null of one cointegrating

vector against the alternative of two cointegrating vectors, compare the sample value

of 2.87 to the 5% critical value of 9.24. As such, we can conclude that there is only

one cointegrating vector.

Normalizing the cointegrating vector with respect to rLt yields

rLt = 0.912 + 1.051rSt
(2.65) (17.88)

A key difference between this estimate of the long-run equilibrium relationship

and those from the Engle–Granger test is that standard inference can be performed

on the coefficients of the cointegrating vector. For example, the likelihood ratio test

for the null hypothesis that the coefficients on the long-term and short-term rates both

equal unity is only 0.643 with a prob-value of 0.422. As such, we can conclude that

the restriction is not binding. Hence, in the long-run, the 10-year rate tends to move

1:1 with the short-term rate. If you re-estimate the model imposing the restriction, you

should find

ΔrLt = −0.098 (rLt−1 − 1.17 − rSt−1) + 0.185ΔrLt−1 + 0.002ΔrSt−1
(−2.32) (−7.10) (1.88) (0.03) (6.72)

ΔrSt = 0.084 (rLt−1 − 1.17 − rSt−1) + 0.053ΔrLt−1 + 0.229ΔrSt−1
(1.51) (−7.10) (0.41) (2.23) (6.73)

If you test for the presence of the intercept, you will find that the constant term in

the cointegrating vector is highly significant. The important point is that the t-statistics
on the error-correcting terms imply that the long-term rate adjusts to the discrepancy

from the long-run equilibrium relationship, but the short-rate does not. In other words,

rSt is weakly exogenous. Consider the dynamic adjustment mechanism if there is a posi-

tive 1-unit discrepancy from the long-run equilibrium relationship. The estimates imply
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that the long-term rate falls by−0.098 units and that the short-term rate does none of the

adjusting. As such, the deviations from the long-run relationship are quite long lived.

The Error-Correction Methodology

In contrast to the Engle–Granger and Johansen methodologies, to use the

error-correction test it is necessary to assume that one of the variables is weakly

exogenous. Suppose that we were certain that the short-term interest rate did none of

the adjustment necessary to restore the long-run equilibrium relationship. Given that

the short-term rate is weakly exogenous, we can estimate an equation in the form

ΔrLt = 𝛽0 + 𝛽1rLt−1 + 𝛽2rSt−1 + 𝛽3ΔrSt + A1(L)ΔrLt−1 + A2(L)ΔrSt−1 + vt (6.74)

Equation (6.74) looks very much like (6.72) except that elements of the cointegrating

vector are unrestricted and the contemporaneous value ofΔrSt is included. Since we are
not treating all variables symmetrically, there is no need to constrain the lag length rep-

resented by the polynomial A1(L) to be the same as that from A2(L). However, for this
case, it turns out that a lag length of six seems appropriate for each variable. Consider

the estimated equation

ΔrLt = 0.113 − 0.171rLt−1 + 0.187rSt−1 + 0.612ΔrSt +A1(L)ΔrLt−1 +A2(L)ΔrSt−1 + vt
(1.52) (−4.45) (4.80) (15.92)

(6.75)

The key point to note is that the t-statistic for the null hypothesis 𝛽1 = 0 is −4.45.
Given the presence of an intercept (d = 1), two I(1) variables (k = 2), and that the

estimation begins in 1961Q4 (T = 205), the adjusted sample size is Ta = 205 − (2∗2 −
1) − 1 = 201. From Table F, the critical values at the 1, 5, and 10% significance levels

are approximately −3.834,−3.231, and −2.916, respectively. Hence, we can reject the
null hypothesis of no cointegration and conclude that the variables are cointegrated.

We can reparameterize (6.75) such that

ΔrLt = −0.171(rLt−1 − 1.09rSt−1 − 0.661) + 0.612ΔrSt + A1(L)ΔrLt−1
+ A2(L)ΔrSt−1 + vt.

In this particular example, all three approaches find that the variables are cointe-

grated. The Engle–Granger approach indicates that the speed of adjustment parameter

is −0.155 (or −0.172), but does not indicate which variable (or variables) does the

adjustment. In response to a one-unit deviation from the long-run equilibrium,

the Johansen approach indicates that the long-term rate adjusts by −0.098 units while

the ECM approach indicates that it adjusts by −0.171 units. The Engle–Granger

approach does not allow us to readily perform inference of the cointegrating vector, but

the Johansen approach allows us to conclude that two rates move 1:1 in the long run.

So long as we are willing to assume 𝛽2 ≠ 0, it is possible to perform inference on

the coefficient on rSt−1 in the long-run equilibrium relationship. Clearly, it would have

been possible to reparameterize (6.75) such that

ΔrLt = −0.187(0.914rLt−1 − rSt−1 − 0.604) + 0.612ΔrSt + A1(L)ΔrLt−1
+A2(L)ΔrSt−1 + vt (6.76)
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Hence, 𝛽2 (= 0.187) is the coefficient on a stationary variable so that it has a

standard t-distribution. Given that the standard error of 𝛽2 is 0.038, a ±1.96 standard

deviation band runs from 0.111 to 0.263. Alternatively, we could have performed an

F-test for the null hypothesis 𝛽1 = 𝛽2 in (6.72). A traditional F-test is appropriate since
each coefficient has a t-distribution. With 1 degree of freedom in the numerator and

189 in the denominator, the sample value of F = 2.86 is significant at the 0.093 level.

If you re-estimate the model such that 𝛽1 = 𝛽2, you should find

ΔrLt = −0.175(rLt−1 − rSt−1 − 2.01) + 0.604ΔrSt + A1(L)ΔrLt−1 + A2(L)ΔrSt−1 + vt

If you are willing to abstract from the stationary dynamics, it is clear how to trace

out the effects of a one-unit shock in ΔrSt. All else equal, if ΔrSt = 1, it follows that

ΔrLt = 0.604. In period t + 1, it follows that the discrepancy from the long-run equilib-

rium is −0.396 (= 0.604 − 1) and the change in the long-rate is (−0.396)(−0.175) =
0.069. In subsequent periods, the long rate keeps rising by 17.5% of the discrepancy

from the long-run equilibrium. At this point, you could go on to perform the innovation

accounting by estimating an equation of the formΔrSt = A3(L)ΔrLt + A4(L)ΔrSt + e2t.
Note that the equation is in first-differences since the ΔrSt equation does not contain

an error-correction term. Also note that the assumption that ΔrSt is weakly exogenous

implies a causal ordering of the innovations in that a vt shock has no contemporaneous

effect on ΔrSt but an e2t shock directly affects ΔrLt.

12. SUMMARY AND CONCLUSIONS

Many economic theories imply that a linear combination of certain nonstationary vari-

ables must be stationary. For example, if the variables {x1t}, {x2t}, and {x3t} are I(1)
and the linear combination et = 𝛽0 + 𝛽1x1t + 𝛽2x2t + 𝛽3x3t is stationary, the variables

are said to be cointegrated of order (1, 1). The vector (𝛽0, 𝛽1, 𝛽2, 𝛽3) is called the coin-

tegrating vector. Cointegrated variables share the same stochastic trends and so cannot

drift too far apart. Cointegrated variables have an error-correction representation such

that each responds to the deviation from “long-run equilibrium.”

One way to check for cointegration is to examine the residuals from the long-run

equilibrium relationship. If these residuals have a unit root, the variables cannot be coin-

tegrated of order (1, 1). Another way to check for cointegration among I(1) variables
is to estimate a VAR in first differences and include the lagged level of the variables.

The Johansen methodology uses the 𝜆trace and 𝜆max test statistics to determine if the

variables are cointegrated and the number of cointegrating vectors. These tests are

sensitive to the presence of the deterministic regressors included in the cointegrating

vector(s). Restrictions on the cointegrating vector(s) and/or the speed of adjustment

parameters can be tested using 𝜒2 statistics. You should be aware of the role of the

deterministic regressors in a cointegration framework. Johansen (1994) shows how to

test to determine whether there is a deterministic trend, drift terms outside of the coin-

tegrating vector, or constants that all appear in the cointegrating vector. A third way

to test for cointegration is to estimate the error-correction model. If only one vari-

able adjusts to the discrepancy from the long-run equilibrium relationship, it can be

preferable to estimate an autoregressive distributed lag model. It is straightforward to
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estimate the model using OLS and to perform hypothesis tests on the coefficients of

the cointegrating vector. For more complicated situations, Appendix 6.2 discusses the

Phillips-Hansen (1990) method of modeling in a single equation framework.

QUESTIONSANDEXERCISES
1. Let equations (6.14) and (6.15) contain intercept terms such that

yt = a10 + a11yt−1 + a12zt−1 + 𝜀yt and zt = a20 + a21yt−1 + a22zt−1 + 𝜀zt

a. Show that the solution for yt can be written as

yt = [(1 − a22L)𝜀yt + (1 − a22)a10 + a12L𝜀zt + a12a20]∕[(1 − a11L)(1 − a22L) − a12a21L
2]

b. Find the solution for zt.
c. Suppose that yt and zt are CI(1, 1). Use the conditions in (6.19), (6.20), and (6.21) to

write the error-correcting model. Compare your answer to (6.22) and (6.23). Show that

the error-correction model contains an intercept term.

d. Show that {yt} and {zt} have the same deterministic time trend (i.e., show that the slope

coefficients of the time trends are identical).

e. What is the condition such that the slope of the trend is zero? Show that this condition is

such that the constant can be included in the cointegrating vector.

f. Modify (6.26) so that each equation has an explicit intercept. Specifically, let xt = A0 +
A1xt−1 + 𝜀t where A0 is an (n ⋅ 1) vector with elements a0i. Suppose that the rank of 𝜋
is 1. How are the solutions to 6.28 affected the presence of the intercepts? How is the

error-correction representation in (6.29) affected?

2. The data file COINT6.XLS contains the three simulated series used in Sections 5 and 9.

a. Use the data to reproduce the results in Section 5.

b. Obtain the impulse responses and variance decompositions using the ordering such that

yt → zt → wt. Do these seem reasonable, given the way in which the variables were

constructed?

c. Use the data to reproduce the results in Section 9.

d. Examine Table 6.1. Show that yt and zt, but not wt, are weakly exogenous.

e. Use the data to compare the ECM test to the Engle–Granger and Johansen tests treating

yt and zt as weakly exogenous.

3. In Question 9 of Chapter 4 you were asked to use the data on QUARTERLY.XLS to estimate

the regression equation

INDPRODt = 30.48 + 0.04M1NSAt
(29.90) (36.58)

a. Use the Engle–Granger test to show that the regression is spurious.

b. Examine the scatter plot of INDPROt againstM1NSAt. How do you explain the fact that

R2 is close to unity and that the t-statistic on the money supply is 36.58?

c. Use the data on the file labeled REAL.XLS. Denote the natural logs of real GDP and

consumption by lyt and lct, respectively. Estimate the regression

lct =−0.962 + 1.06lyt R2 = 0.999

(−51.78) (494.19)
If you perform the Engle–Granger test using four lags, you should find

Δêt = −0.092êt−1 +
4∑
i=1

𝛽iΔêt−i
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The t-statistic for êt−1 is −3.48. How do you interpret the consumption–income relation-

ship?

4. The file labeled QUARTERLY.XLS contains the interest rates paid on U.S. 3-month, 5-year,

and 10-year U.S. government securities. The data run from 1960Q1 to 2012Q4. The vari-
ables are labeled TBILL, R5 and R10, respectively.

a. Pretest the variables to show that the rates all act as unit root processes. Specifically,

perform augmented Dickey–Fuller tests using the lag length selected by deleting lags

until the t-statistic on the last lag is significant at the 5% level. If you include an intercept

(but no time trend) you should obtain:

Series Lags Estimated a1 t-statistic

TBILL 7 −0.028 −1.61
R5 5 −0.013 −1.03
R10 7 −0.011 −0.78

b. Estimate the cointegrating relationships using the Engle–Granger procedure. Perform

augmented Dickey–Fuller tests on the residuals. Using TBILL as the “dependent” vari-

able, you should find

TBILLt = 0.367 + 2.7R5t − 1.91R10t
(2.31) (−13.44) (20.78)

where t-statistics are within parentheses.
Perform the Engle–Granger test on the residuals from the equation above. Why is it

appropriate to use eight lags in the augmented form of the test? If you use eight lags,

you should find that the coefficient on the lagged residual (i.e., et−1) is −0.276 with a
t-statistic of −4.08. The 5% critical value is about −3.76. Based on this data, do you
conclude that the variables are cointegrated?

c. Repeat part b using R10 as the dependent variable. If you use 6 lags in the augmented

form of the Engle–Granger test (i.e., estimate Δet = 𝛼1et−1 + …) you should find a1 =
−0.105 and the t-statistic is −2.34. Using R10 as the dependent variable, are the three
interest rates cointegrated?

d. Estimate the model using the Johansen procedure. Use 7 lags and include a constant in

the cointegrating vector. You should find the following:

Trace Tests Maximum Eigenvalue Tests

Null Alternative 𝜆trace 5% Value Null Alternative 𝜆max 5% Value

r = 0 r ≥ 1 45.50 34.91 r = 0 r = 1 37.83 22.00

r ≤ 1 r ≥ 2 7.67 19.96 r = 1 r = 2 6.89 15.67

r ≤ 2 r = 3 0.78 9.24 r = 2 r = 3 0.78 9.24

i. Explain why the 𝜆trace test strongly suggests there is exactly one cointegrating vector.

ii. To what extent is this result reinforced by the 𝜆max test?

Verify that the cointegrating vector is

1.99TBILLt + 0.879R5t − 1.67R10t + 0.820 = 0

Compare this result to your answer in part b.
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e. Check to determine whether the individual interest rate pairs are cointegrated. In particu-

lar, is R5t with cointegrated R10t?

f. Why might you be wary about testing for cointegration using the ADL test developed in

Section 10?

5. In Question 4, the Engle–Granger methodology found that the long-run equilibrium rela-

tionship for the three interest rates was

TBILLt = 0.367 − 1.91R5t + 2.74R10t

a. Estimate an error-correcting model using 2 lagged changes of each variable. Use the

residuals from this long-run equilibrium relationship as the error-correction term and do

not include intercepts. You should find that the error-corrections are such that

ΔTBILLt = 0.062et−1 + · · · t-statistic for the error-correction term∶ 0.73

ΔR5t = −0.161et−1 + · · · t-statistic for the error-correction term∶ −2.94
ΔR10t = −0.162et−1 + · · · t-statistic for the error-correction term∶ −2.52

where et−1 is the lagged residual from your estimate in part the equilibrium relationship.

i. Verify that the multivariate AIC selects a model with 2 lagged changes of each vari-

able. Perform the appropriate diagnostic tests on the system. In particular, determine

whether the three series of residuals appear to be white noise. Are the lags lengths

unnecessarily short?

ii. Discuss the nature of the adjustment. Are any of the rates weakly exogenous? In

response to a deviation from the long-run relationship, how are the three rates pre-

dicted to change?

b. Use a Choleski decomposition such that the T-bill rate is causally prior to R5t and R5t is

causally prior to R10t.

c. Obtain the variance decompositions using the same ordering as you used in part b. Show
that the preponderance of the forecast error variance of each rate is primarily due to the

T-bill rate.

6. Suppose you estimate 𝜋 to be

𝜋 =
⎡⎢⎢⎣
0.6 −0.5 0.2

0.3 −0.25 0.1

1.2 −1.0 0.4

⎤⎥⎥⎦
a. Show that the determinant of 𝜋 is zero.

b. Show that two of the characteristic roots are zero and that the third is 0.75.

c. Let 𝛽′ = (3 − 2.51) be the single cointegrating vector normalized with respect to x3t.
Find the (3 ⋅ 1) vector 𝛼 such that 𝜋 = 𝛼𝛽′. How would 𝛼 change if you normalized 𝛽

with respect to x1t?
d. Describe how you could test the restriction 𝛽1 + 𝛽2 = 0.

Now suppose you estimate 𝜋 to be

𝜋 =
⎡⎢⎢⎣

0.8 0.4 0.0

0.1 0.1 0.0

0.75 0.25 0.5

⎤⎥⎥⎦
e. Show that the three characteristic roots are 0.0, 0.5, and 0.9.
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f. Select 𝛽 such that

𝛽 =
⎡⎢⎢⎣
0.8 0.75

0.4 0.25

0.0 0.5

⎤⎥⎥⎦
Find the (3 ⋅ 2) matrix 𝛼 such that 𝜋 = 𝛼𝛽′.

7. Suppose that x1t and x2t are integrated of orders 1 and 2, respectively. You are to sketch the
proof that any linear combination of x1t and x2t is integrated of order 2. Toward this end:

a. Allow x1t and x2t to be the random walk processes: x1t = x1t−1 + 𝜀1t and x2t = x2t−1 + 𝜀2t.

i. Given the initial conditions x10 and x20, show that the solutions for x1t and x2t have
the form x1t = x10 + Σ𝜀1t−i and x2t = x20 + Σ𝜀2t−i.

ii. Show that the linear combination 𝛽1x1t + 𝛽2x2t will generally contain a stochastic
trend.

iii. What assumption is necessary to ensure that x1t and x2t are CI(1, 1)?

b. Now let x2t be integrated of order 2. Specifically, let Δx2t = Δx2t−1 + 𝜀2t. Given initial

condition for x20 and x21, find the solution for x2t. (You may allow 𝜀1t and 𝜀2t to be per-

fectly correlated.)

i. Is there any linear combination of x1t and x2t that contains only a stochastic trend?
ii. Is there any linear combination of x1t and x2t that does not contain a stochastic trend?

c. Provide an intuitive explanation for the statement: If x1t and x2t are integrated of orders
d1 and d2 where d2 > d1, any linear combination of x1t and x2t is integrated of order d2.

8. Chapter 6 of the Programming Manual uses the variables Tbill and Tb1yr on the file QUAR-
TERLY.XLS to illustrate both the Johansen and Engle–Granger cointegration tests.

a. Verify that the t-statistics of the Dickey–Fuller tests using 7 lags are −1.61304 and
−1.39320 for the Tbill (rSt) and Tb1yr (rLt), respectively.

b. Estimate the long-run relationship alternatively using Tbill and Tb1yr as the “indepen-
dent” variable. For rSt as the left-hand-side variable, you should find rSt = −0.187 +
0.936rLt.

c. Estimate an equation in the form of (6.32) using 6 lags. The estimate of a1 should be
−0.372 with a t-statistic of −4.78. Use Table C to determine whether the variables are

cointegrated. What happens if you use rLt as the left-hand-side variable in the long-run
relationship?

d. Estimate the error-correction model and obtain the impulse response functions. Your

results should look like those in Section 6.1 of the Programming Manual.
e. If you perform the Johansen test using seven lags you should find that the eigenvalues are

0.1523 and 0.0078. Calculate the 𝜆max and the 𝜆trace statistics as in (6.55) and (6.56). Use

your results to the number of cointegrating vectors.

9. The file COINT_PPP.XLS contains monthly values of the Japanese, Canadian, and Swiss

consumer price levels and the bilateral exchange rates with the United States. The file

also contains the U.S. consumer price level. The names on the individual series should

be self-evident. For example, JAPANCPI is the Japanese price level and JAPANEX is the

bilateral Japanese/U.S. exchange rate. The starting date for all variables is January 1974

while the availability of the variables is such that most end near the end of 2013. The price

indices have been normalized to equal 100 in January 1973 and only the U.S. price index is

seasonally adjusted.

a. Form the log of each variable and pretest each for a unit root. Can the null hypothesis of

a unit root be rejected for any of the series? How might you proceed if you found that the

U.S. CPI was trend stationary?
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b. Form the log of each variable. Estimate the long-run relationship between Japan and the

U.S. as

log(japanex) = 9.97 − 0.104 log(japancpi) − 0.768 log(uscpi)
(27.25) (−0.98) (−17.05)

i. Do the point estimates of the slope coefficients seem to be consistent with long-run

PPP?

ii. From the t-statistics, can you conclude that the Japanese CPI is not significant at the
5% level?

c. Let ut denote the residuals from the long-run relationship. Use these residuals to perform

the Engle–Granger test for cointegration. If you use eleven lagged changes, you should

find

Δut = −0.025ut−1 +
11∑
i=1

aiΔut−1 + 𝜀t

The t-statistic on the coefficient for ut−1 is −3.44. From Table C, with three variables and

457 usable observations, the 5% and 10% critical values are about −3.760 and −3.464,
respectively. Do you conclude that long-run PPP fails?

d. Repeat parts i and ii using Canada and Switzerland. If you use the residuals from the

long-run equilibrium relationships you should find

Canada (10 lags) Δut = −0.012ut−1 +
∑

aiΔut−i + 𝜀t; t-stat. = −1.89
Switzerland (10 lags) Δut = −0.027ut−1 +

∑
aiΔut−i + 𝜀t; t-stat. = −3.02.

e. Although (at conventional significance levels) we reject the null hypothesis of long-run

PPP between Japan and the United States, estimate the error-correction model for

ljapanext. If you use 11 lagged changes of each variable, you should find

Δljapanext = −0.005−0.030êt−1+ΣΔ𝛽1ljapanext−i+ΣΔ𝛽2ljapancpit−i+ΣΔ𝛽3luscpit−i

U.S. Price Shock Japanese Price Shock Ex Rate Shock

‒0.02

‒0.01

0.00

0.01

0.02

0.03
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5 1510 20

FIGURE 6.5 Responses of the Japanese Exchange Rate
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where êt−1 is the residual from the equilibrium relationship above and eleven lagged

changes are used for each variable. The t-statistic on the error correction term is −3.54.
Which of the variables(s) can be said to be weakly exogenous?

f. Obtain the impulse functions using the ordering luscpit → ljapancpit → ljapanext. As in
Figure 6.5, you should find that the U.S. price shock has little effect on the exchange rate

but that a shock to the Japanese price level causes the yen to depreciate. The response of

the exchange rate to its own shock is immediate and permanent.

g. Are the results of the cointegration test sensitive to the normalization (i.e., which of the

variables is used as the ‘dependent’ variable) used in the equilibrium regression?

10. In Question 9d, you were asked to use the Engle–Granger procedure test for PPP among the

variables log(canex), log(cancpi), and log(uscpi).

a. Now use the Johansen methodology and constrain the constant to the cointegrating vec-

tor to obtain:

Rank 𝝀i 𝝀max 𝝀trace

1 0.0535 25.647 35.987

2 0.0138 6.460 10.339

3 0.0083 3.879 3.879

Use Table E to show that there is a single cointegrating vector.

b. Consider the estimated cointegrating vector:

−0.949 log(canex) − 6.484 log(cancpi) + 1.600 log(uscpi) + 31.653 = 0

Normalize with respect to the exchange rate. Does the long-run relationship seem to be

consistent with PPP?
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CHAPTER7
NONLINEAR MODELS
AND BREAKS

Learning Objectives
1. Introduce nonlinear models and compare them to linear ARMA models.

Show that nonlinear models can characterize the behavior of many eco-

nomic variables.

2. Introduce some simple nonlinear models including the generalized autore-

gressive and bilinear models.

3. Develop a number of tests that can detect the presence of nonlinear adjust-

ment. Explain the difficulties of testing when there are unidentified nuisance

parameters.

4. Explain the basic threshold autoregressive model.

5. Consider several extensions of the threshold autoregressive model and intro-

duce the threshold regression model.

6. Illustrate threshold models using examples of the unemployment rate,

Taylor rule, and capital stock in the pork sector.

7. Explain the basic smooth transition autoregressive (STAR) model. Show

how to pretest for STAR models.

8. Discuss artificial neural network and Markov switching models.

9. Estimate an LSTAR model using simulated data and discuss an ESTAR

estimate of the real exchange rate.

10. Explain how to obtain impulse responses in a nonlinear model. Illustrate

these impulses from a model of U.S. GDP and a model of transnational

terrorism.

11. Consider the issue of testing for a unit root in a nonlinear model.

12. Show that models with endogenous structural breaks have a number of

important similarities to models exhibiting nonlinearity. Consider models

with nonlinear breaks.

Economic theory suggests that a number of important time-series variables should

exhibit nonlinear behavior. For example, the observation that wages display down-

ward rigidity is a key feature of many macroeconomic models. Moreover, it has been

established that downturns in the business cycle are sharper than recoveries in that

key macroeconomic variables, such as output and employment, fall more sharply than

407
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they rise. Since the standard ARMA model relies on linear difference equations, new

dynamic specifications are necessary to capture nonlinear behavior. In fact, research in

this new area of time-series econometrics seems to be growing exponentially (itself, a

nonlinear process).

1. LINEAR VERSUS NONLINEAR ADJUSTMENT

On a long automobile trip to a new location, you might take along a road atlas. Since

the earth is not flat, the maps contained in the atlas are a linear approximation to the

actual path of your journey. Nevertheless, for most trips, such a linear approximation is

extremely useful. Try to envision the nuisance of a nonlinear road atlas. For other types

of trips, the linearity assumption is clearly inappropriate. It would be disastrous for

NASA to use a flat map of the earth to plan the trajectory of a rocket launch. Similarly,

the assumption that economic processes are linear can provide useful approximations to

the actual time paths of economic variables. Nevertheless, policy makers could make a

serious error if they ignore the empirical evidence that the unemployment rate increases

more sharply than it decreases.

One example of a nonlinear model that has been used in the literature is the thresh-

old autoregressive (TAR) model. To explain how it might be useful, let rLt and rSt be
the long-term and short-term interest rates on two similar financial instruments. Sup-

pose that the spread, defined as st = rLt − rSt, adjusts to the long-run value s. A simple

AR(1) representation of the dynamic adjustment mechanism might be:

st = a0 + a1st−1 + 𝜀t where 0 < a1 < 1.

For our purposes, it convenient to define s as the long-run value a0∕(1 − a1) and
write the adjustment process as

st = s + a1(st−1 − s) + 𝜀t

If st = s, the system is said to be in long-run equilibrium. In other circumstances, a1
percent of the current period’s deviation from the long-run value tends to persist into the

next period. Instead of displaying linear adjustment, suppose that interest rate spreads

display a nonlinear adjustment pattern. Periods in which the spread is low relative to

its long-run value (so that st−1 − s < 0) are far more persistent than periods in which

st−1 − s > 0. It is possible to model these differing degrees of persistence using:

st =

{
s + a1

(
st−1 − s

)
+ 𝜀1t when st−1 > s

s + a2(st−1 − s) + 𝜀2t when st−1 ≤ s
(7.1)

where 𝜀1t and 𝜀2t are white-noise processes.

In (7.1), when st−1 is above the threshold value s, the spread follows the AR(1)

process st = s + a1(st−1 − s) + 𝜀1t and when st−1 is below the threshold, the spread fol-

lows theAR(1) process st = s + a2(st−1 − s) + 𝜀2t. As long as |a2| > |a1|, periods when
st−1 < s will tend to be more persistent than other periods.
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To better illustrate the difference between linear and nonlinear adjustment, con-

sider the homogeneous part of the first-order AR(1) model:

yt = a1yt−1

Given that −1 < a1 < 1, we know that the long-run mean is such that Eyt = 0. The

nature of the adjustment process is such that a1 percent of any current deviation from

the long-run equilibrium persists into the next period. For example, if a1 = 0.5 and the

initial condition is such that yt−1 = 1.0, it immediately follows that Et−1yt = 0.5 and

Et−1yt+1 = 0.25. Let { y∗t−1} denote the specific sequence {1, 0.50, 0.25, 0.125,…}
generated by assuming the initial condition yt−1 = 1. The linearity of the adjustment

process can be demonstrated by considering alternative values for yt−1. If the initial

condition is such that yt−1 = 2, the subsequent values of the new sequence are exactly

twice those of the previous case. In fact, multiplying the initial value of yt−1 by any

scalar 𝜆 results in the sequence {𝜆y∗t−1}. The phase diagram shown in Panel (a) of

Figure 7.1 represents the linear nature of this adjustment process. The solid straight

line labeled A0B is constructed to have a slope equal to a1. Hence, for any value of

yt−1, you can obtain the next value in the sequence by using line A0B to project yt−1
onto the yt axis. Since the slope is constant, any scalar multiple of yt−1 will result in

the proportional value of yt. As shown in the figure, if yt−1 = 1, the expected value of

yt = a1 and if yt−1 = 2, the expected value of yt = 2a1.
Also note that adjustment is symmetric around zero. If yt−1 = −1, Et−1yt = −0.5

and Et−1yt+1 = −0.25 and so on. Hence, for the linear model, multiplying the initial

condition yt−1 by −1 results in the sequence {−y∗t−1}.
Now suppose that the phase diagram is such that adjustment occurs along the

kinked line passing through A′0B. Thus yt = a1yt−1 when yt−1 > 0 and yt = a2yt−1
when yt−1 ≤ 0. Again, if yt−1 = 1, the next value in the sequence equals a1. However,
if yt−1 = −1, the next value in the sequence equals −a2. Since a2 > a1, it should be

clear that clear that {yt} sequence will approach zero more slowly when beginning

from a negative value of yt−1 than a positive value. Hence, the adjustment process is

not linear since the choice 𝜆yt−1 does not necessarily result in the sequence {𝜆y∗t−1}.
This is precisely the type of adjustment represented by equation (7.1); if a2 > a1 and

–1

–a1

–a1
A′

A

a1

a1

2a1

B
yt = a1yt–1

yt = a2yt–1

yt–1

yt yt

Panel (a)

–1
a1/2

A

B

Panel (b)

+2 +10.50+10

FIGURE 7.1 Two Nonlinear Adjustment Paths
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s = 0, the {st} sequence has precisely the phase diagram shown by A′0B in Panel (a)

of Figure 7.1.

A different type of nonlinear model is needed to represent the process of gravita-

tional attraction. From elementary physics, we know that the speed of an object in space

will increase as it falls toward the earth. We can represent the earth as being located

at point 0 and suppose that the object in space is attracted to point 0. If yt denotes the
distance of the object from 0 at time t, gravitational attraction can be represented by

the curve passing through A0B in Panel (b) of Figure 7.1. As shown in the figure, if we

let yt−1 = 1, the value of yt will be a1. Instead, if yt−1 is 0.5, the value of yt must be less

than a1∕2. Since 𝜆yt−1 does not result in the sequence {𝜆y∗t−1}, the adjustment process

is not linear. The straight line yt = a1yt−1 passing through A0B does not capture this

feature of the adjustment process.

Take a moment to imagine other types of nonlinear processes. For example,

transport costs might deter arbitrage of a slight discrepancy between cotton prices in

Alabama and Mississippi. In contrast, large price discrepancies might be eliminated

almost immediately. If you own a car, it should not take long to convince you that

the behavior of gasoline prices is nonlinear. Clearly, gasoline price increases are far

sharper than price decreases. You should be able to think of several other examples.

The point is that once we decide to leave the realm of linearity, there are many potential

types of nonlinearity. It can be especially important to determine the most appropriate

form of the nonlinearity. After all, adopting an incorrect nonlinear specification may

be more problematic than simply ignoring the nonlinearity altogether. Since selecting

the proper nonlinear model can be difficult, it is not surprising that this remains an

important area of current research. However, some special forms of nonlinearity

have proven to be particularly useful in applied time-series research. We begin by

presenting an overview of some simple nonlinear models.

2. SIMPLE EXTENSIONS OF THE ARMA MODEL

The simplest form of the nonlinear autoregressive (NLAR) model is

yt = f (yt−1) + 𝜀t

This is a first-order nonlinear autoregressive model, denoted by NLAR(1), in that

the longest lag length is one. It is possible to reparameterize the model in a more inter-

esting way:

yt = a1(yt−1) ⋅ yt−1 + 𝜀t (7.2)

where a1(yt−1) ⋅ yt−1 ≡ f (yt−1).
Equation (7.2) looks exactly like anAR(1)model except for the fact that the autore-

gressive coefficient a1 is allowed to be a function of the value of yt−1. If we do not know
the functional form of f ( ), the usual dichotomy between nonlinearity in variables and

time-varying parameters is not really clear-cut. It can be very difficult for a statistical

test to detect the difference between a model in which some of the regressors are not

raised to the power one and a model in which the parameters are varying over time.
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More generally, the p-th order nonlinear autoregressive model is:

yt = f (yt−1, yt−2, … , yt−p) + 𝜀t (7.3)

and is denoted by NLAR(p).
The difficulty in estimating (7.3) is that the functional form of f ( ) is unknown.

One way to proceed is to use a Taylor series approximation of the unknown functional

form. For the NLAR(2) model yt = f (yt−1, yt−2) + 𝜀t, the Taylor series approximation

using terms no higher than order-three is:

yt = a0 + a1yt−1 + a2yt−2 + a12yt−1yt−2 + a11y
2
t−1 + a22y

2
t−2

+ a112y
2
t−1yt−2 + a122yt−1y

2
t−2 + a111y

3
t−1 + a222y

3
t−2 + 𝜀t

For the more general NLAR(p) we need a more compact notation. A simple way

of writing such a Taylor series approximation is:

yt = a0 +
p∑
i=1

aiyt−i +
p∑
i=1

p∑
j=1

r∑
k=1

s∑
l=1

aijkly
k
t−iy

l
t−j + 𝜀t (7.4)

where p is the order of the process and r and s are integers that are greater than or equal
to 1. In order to avoid a very large number of parameters, the sum of r and s is usually
restricted to be less than or equal to 4.

The GAR Model

Equation (7.4) is called the Generalized Autoregressive (GAR) model. GAR models

extend the standard AR model by including various powers of the lagged values of yt−i
and cross-products of the powers of yt−i and yt−j. As a Taylor series approximation, the

GAR model is capable of mimicking a wide variety of functional forms—all that is

required is that the function be differentiable. Moreover, the model is easy to estimate;

simply form the variables yjt−i and their cross-products and estimate the model using

OLS. A test for nonlinearity can be carried out directly since the linear model is nested

with the GAR model. If it is not possible to reject the null hypothesis that all values of

aijkl = 0, it can be concluded that the process is linear. On the downside, the resulting

model is likely to be overparameterized. This is especially true if the number of lags in

the model is more than two. You can use traditional t-tests and F-tests to pare down the
number of parameters estimated. However, this can be tricky since the regressors are

likely to be highly correlated. For example, the variable y2t−1 will clearly be correlated

with y4t−1. As such, the usual practice is to pare down the equation using theAIC or SBC.

The Bilinear Model

Just as a parsimonious ARMA model can well-approximate a high-order AR(p) pro-
cess, it is possible to use moving average terms in a nonlinear model. Consider the

simple bilinear (BL) model:

yt = 𝛼0 + 𝛼1yt−1 + 𝛽1𝜀t−1 + c1𝜀t−1yt−1 + 𝜀t
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The intent is to use moving average terms and the interactions of autoregressive

and MA terms to approximate a high-order GARmodel. As such, bilinear models are a

natural extension of ARMA models in that they add the cross-products of yt−i and 𝜀t−j
to account for nonlinearity. The general form of the bilinear model BL (p, q, r, s) is

yt = 𝛼0 +
p∑
i=1

𝛼iyt−i + 𝜀t +
q∑
i=1

𝛽i𝜀t−i +
r∑
i=1

s∑
j=1

cijyt−i𝜀t−j (7.5)

Notice that the linear ARMA(p, q) model is nested within (7.5); if all values of

cij = 0, (7.5) is identical to an ARMA(p, q)model. As with the GARmodel, the bilinear

model can be viewed as having stochastic parameter variation. To understand the point,

consider the BL model:

yt = 𝛼0 + 𝛼1yt−1 + c1yt−1𝜀t−1 + 𝜀t

so that:

yt = 𝛼0 + (𝛼1 + c1𝜀t−1)yt−1 + 𝜀t (7.6)

Equation (7.6) looks like an autoregressive model except for the fact at the autoregres-

sive coefficient is 𝛼1 + c1𝜀t−1. In a sense, the autoregressive coefficient is a random

variable with a mean equal to 𝛼1. If c1 is positive, the autoregressive coefficient will

increase with 𝜀t−1. In this way positive 𝜀t−1 shocks will be more persistent than negative

shocks.

Now for a little quiz. You cannot useOLS to estimate (7.5) or (7.6) since you cannot

directly form the variables yt−i𝜀t−j. The question is: If you have the single time-series

{yt}, how can you estimate the series as a bilinear process? The standard procedure

is to use maximum likelihood estimation. Many of the standard econometric software

packages allow you to perform the estimation using a straightforward generalization

of the method developed in the Supplementary Manual (see Appendix 1 of Chapter 2)
for the estimation of an MA process.

An Example

Rothman (1998) compared the in-sample fit and out-of-sample forecasting perfor-

mance of a number of nonlinear models of the U.S. unemployment rate. Toward this

end, he detrended the log of the unemployment rate and estimated the following three

models over the 1948Q1 to 1979Q4 period:

AR ut = 1.563ut−1 − 0.670ut−2 + 𝜀t
(22.46) (−10.06)

GAR ut = 1.500ut−1 − 0.553ut−2 − 0.745u3t−2 + 𝜀t variance ratio = 0.965

(23.60) (−6.72) (−2.33)
BL ut = 1.910ut−1 − 0.690ut−2 − 0.585ut−1𝜀t−3 + 𝜀t variance ratio = 0.936

(24.11) (−10.55) (−2.08)
where ut = the detrended log of the unemployment rate

variance ratio = the ratio of the residual variance of the estimated model

to the residual variance of the AR model
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The AIC was used to select the most appropriate values of p and q from the general

class of ARMA(p, q)models. The AR(2) specification yielded the best fit from the class

of linear ARMAmodels. A general specification searchwithin the class of GARmodels

was undertaken and the AIC was used to select the one with the best fit. Simply, for the

given lag length of two, all models in the form of (7.4) were estimated and the one with

the lowest AIC was retained. Notice that only the cubic term on the second lag of the

unemployment rate was deemed to be important. Since the GAR model incorporates

the AR(2) models as a special case, it is not surprising that it has a smaller residual

variance. As Rothman indicates, it is instructive to write the estimated GAR model as

ut = 1.500ut−1 − [0.553 + 0.745u2t−2]ut−2 + 𝜀t

In this form, the GAR model can be viewed as an AR(2) process such that the

coefficient on the second lag is −[0.553 + 0.745u2t−2]. As such, large deviations from
trend unemployment (so that u2t−2 is large) are associated with lower autoregressive

persistence then small deviations from trend. As such, the speed of adjustment is faster

when unemployment is far from its trend value than when it is close to the trend. Hence,

the speed of adjustment is opposite to that of gravitational attraction. As an exercise,

you should sketch the phase diagram for this adjustment process and compare your

answer to Panel (b) of Figure 7.1.

Of the three models, the BL model has the smallest residual variance. The general

BL model in the form of (7.5) was estimated for various values of r and s. Again the

AIC was used to select the best fitting model from this class. Notice that the estimated

bilinear model uses the cross-product ut−1𝜀t−3 even though the linear model contains

only two lags (i.e., r and s were allowed to exceed the order of the linear portion of

the equation). Rothman indicates that ut−1 and 𝜀t−3 are positively correlated. Since

the coefficient on ut−1𝜀t−3 is negative, large shocks to the unemployment rate imply a

faster speed of adjustment than small shocks. As ut−1 and 𝜀t−3 tend to move together,

the larger ut−1𝜀t−3, the smaller is the degree of persistence.

3. TESTING FOR NONLINEARITY

Before introducing other types of nonlinear models, it is important to be aware of sev-

eral standard tests for the presence of nonlinearity. Pretesting for nonlinearity can help

protect you from overfitting the data. Recursive estimation and the CUSUM test devel-

oped in Chapter 2 can be helpful in detecting nonlinearities. This section will present a

number of additional procedures that have been developed to determine if the data seem

to be nonlinear and to help to determine the form of the nonlinearity. Be forewarned

that no set of tests can actually pin down the proper form of nonlinearity. Rather, the

tests can only suggest the form of the nonlinearity.

The ACF and the McLeod–Li Test

In estimating an ARMA model, the autocorrelation function can help you select the

proper values of p and q, and the ACF of the residuals is an important diagnostic tool.
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Unfortunately, the ACF as used in linear models may be misleading for nonlinear mod-

els. The reason is that the autocorrelation coefficients measure the degree of linear
association between yt and yt−i. As such, the ACFmay fail to detect important nonlinear

relationships present in the data. Consider the following example:

yt = 𝜀2t−1 + 𝜀t (7.7)

where {𝜀t} is a normally distributed white-noise process.

Since yt−1 is a function of 𝜀t−1, the value of yt is dependent on the value of yt−1.
Nevertheless, with a little bit of algebra, it is possible to show that all of the autocorre-

lations are equal to zero. To derive this result, call var(𝜀t) = var(𝜀t−i) = 𝜎2. If you take

the expectation of (7.7), it follows that Eyt = Eyt−1 = 𝜎2. Thus, the autocorrelations

are

𝜌i = E(yt − 𝜎2)(yt−i − 𝜎2)
= E(𝜀2t−1 + 𝜀t − 𝜎2)(𝜀2t−1−i + 𝜀t−i − 𝜎2)
= E(𝜀2t−1𝜀

2
t−1−i + 𝜀2t−1𝜀t−i − 𝜀2t−1𝜎

2 + 𝜀t𝜀
2
t−1−i + 𝜀t𝜀t−i − 𝜀t𝜎

2

− 𝜎2𝜀2t−1−i − 𝜎2𝜀t−i + 𝜎2𝜎2)

Note that E(𝜀2t−i𝜀
2
t−j) = 𝜎2𝜎2, E(𝜀t𝜀2t−i) = 0 and E(𝜀t𝜎2) = 0. As such:

𝜌i = 𝜎2𝜎2 + E𝜀2t−1𝜀t−i − 𝜎2𝜎2 − 𝜎2𝜎2 + 𝜎2𝜎2 = E𝜀2t−1𝜀t−i.

Clearly, all values of E𝜀2t−1𝜀t−i = 0 if i ≠ 1 so that all values of 𝜌i(i ≠ 0) are equal
to zero. Moreover, if 𝜀t is normally distributed, the third moment E𝜀3t = E𝜀3t−1 = 0.

Now suppose that you observe the sample ACF for {yt} but are unaware that the data
were generated by (7.7). Based on the observation that the sample autocorrelations are

small, you might mistakenly conclude that the series is white noise. You would not

be the first person to fall into the trap of confusing a lack of correlation with statis-

tical independence. Although the autocorrelations are zero, the value of yt is clearly
dependent on the value of yt−1.

Since we are interested in nonlinear relationships in the data, a useful diagnostic

tool is to examine the ACF of the squares or cubed values of a series. For example,

the ACF of y2t (or the squares of the residuals from an estimated equation) can reveal

a nonlinear pattern. To illustrate the point, Granger, Tjostheim, and Teräsvirta (2011)

show that the ACF from chaos may be indicative of white noise but that the ACF of

squared values of the sequence may be large. A nonexplosive sequence is chaotic if it

is generated from a deterministic difference equation such that it does not converge to

a constant or to a repetitive cycle. Consider the following chaotic process:

yt = 4yt−1(1 − yt−1) for 0 < y1 < 1 (7.8)

In (7.8), yt is related to the level and the squared value of yt−1. However, the auto-
correlations of {yt} will all be small but the ACF of {y2t } will be large. To follow along

using your software package, set y1 = 0.7 and generate the next 99 values of {yt} using
(7.8). Even though the sequence is perfectly predictable, you should find that the first
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six autocorrelations are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6
−0.074 −0.072 0.008 0.032 −0.016 −0.030

All of the correlations are less than one standard deviation from zero. However, the

correlation coefficient between y2t and y
2
t−1 is−0.281 and the autocorrelation coefficient

between y3t and y
3
t−1 is−0.386.With 100 observations, these two correlations are highly

significant. The point of the example is to show that any neglected nonlinearity in your

data can be checked using the ACF of the squared (or cubed) values of the series. To be

a bit more formal, theMcLeod–Li (1983) test seeks to determine if there are significant

autocorrelations in the squared residuals from a linear equation. To perform the test,

estimate your series using the best-fitting linear model and call the residuals êt. As in a
formal test for ARCH errors (see Section 2 of Chapter 3), form the autocorrelations of

the squared residuals. Let 𝜌i denote the sample correlation coefficient between squared

residuals ê2t and ê
2
t−i and use the Ljung–Box statistic to determine whether the squared

residuals exhibit serial correlation. Hence, form:

Q = T(T + 2)
n∑
i=1

𝜌2i ∕(T − i)

The value Q has an asymptotic 𝜒2 distribution with n degrees of freedom if the

{ê2t } sequence is uncorrelated. Rejecting the null hypothesis is equivalent to accepting
that the model is nonlinear. Alternatively, you can estimate the regression:

ê2t = 𝛼0 + 𝛼1ê
2
t−1 + · · · + 𝛼nê

2
t−n + vt

If there are no nonlinearities, 𝛼1 through 𝛼n should be zero. With a sample of T
residuals, if there are no nonlinearities, the test statistic TR2 will converge to a 𝜒2

distribution with n degrees of freedom. In small samples you can use an F-test for
the null hypothesis 𝛼1 = 𝛼2 = · · · = 𝛼n = 0. If you are astute, you will remember that

this test was used to detect ARCH-type errors. It turns out that the McLeod–Li (1983)

test is the exact Lagrange multiplier (LM) test for ARCH errors. However, the test has

substantial power to detect various forms of nonlinearity. Notice that the actual form

of the nonlinearity is not specified by the test. Rejecting the null hypothesis of linearity

does not tell you the nature of the nonlinearity present in the data.

The RESET

The Regression Error Specification Test (RESET) also posits the null hypothesis of

linearity against a general alternative hypothesis of nonlinearity. If the residuals from

a linear model are independent, they should not be correlated with the regressors used

in the estimating equation or with the fitted values. Hence, a regression of the residuals

on these values should not be statistically significant. To perform the RESET:

STEP 1: Estimate the best-fitting linear model. Let {et} be the residuals from the

model and denote the fitted values by ŷt.
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STEP 2: Select a value of H (usually 3 or 4) and estimate the regression equation:

et = 𝛿zt +
H∑
h=2

𝛼hŷ
h
t for H ≥ 2.

where zt is the vector that contains the variables included in the model esti-

mated in Step 1. For example, if you estimate an ARMA(p, q)model, zt will
include a constant, yt−1 through yt−p, and 𝜀t−1 through 𝜀t−q. Note that the
test can also be applied to a regression model. As such, zt may also include

exogenous explanatory variables.

This regression should have little explanatory power if the model is truly linear.

As such, the sample value of F should be small. Hence, you can reject linearity if

the sample value of the F-statistic for the null hypothesis 𝛼2 = · · · = 𝛼H = 0 exceeds

the critical value from a standard F-table. The RESET is easy to implement, does not

require the estimation of a large number of parameters, and has reasonable power to

detect some types of nonlinearities. However, since the test uses integer powers of the

fitted values, it has little power to detect asymmetric models (such as the threshold

model shown in Panel (a) of Figure 7.1).

Other Portmanteau Tests

Portmanteau tests (derived from “a suitcase with multiple compartments”) usually

refer to residual-based tests that do not have a specific alternative hypothesis. The

Ljung–Box Q-statistics are a good example of this type of catch-all test. Similarly,

the popular Brock, Dechert, Scheinkman, and LaBarron (1996) test, called the BDS

test, is a portmanteau test for independence. In essence, the test examines the distance

between different pairs of residuals. Let d represent a given distance and let 𝜀t and

𝜀t−1 be two realizations of the {𝜀t} sequence. If all values of {𝜀t} are independent,

then the probability that the distance between any pair of residuals (𝜀i, 𝜀j) is less than d
should be the same for all i and j. Although very popular, the BDS test is able to detect

serial correlation, parameter instability, neglected nonlinearity, structural breaks and

other misspecification problems. Hence, rejecting the null hypothesis of independence

does little to help identify the nature of the problem. Also be aware that the BDS test

does not have especially good small-sample performance unless you bootstrap the

critical values.

The point is that the McLeod–Li Test, the RESET, and other portmanteau tests all

have a very general alternative hypothesis. As such, the tests are helpful in determining

whether a nonlinear model is appropriate but not in determining the nature of the non-

linearity. As noted by Clements and Hendry (1998, pp. 168–69), “parameter change

appears in many guises and can cause significant forecast error whenmodels are used in

practice.” They also establish that it can be difficult to distinguish model misspecifica-

tion from the problem of nonconstant parameters. As such, it is worthwhile to examine

Lagrange multiplier tests for nonlinearity since they have a specific null hypothesis and

a specific alternative hypothesis.
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Lagrange Multiplier Tests

Lagrange multiplier (LM) tests can be used to test for a specific type of nonlinearity.

Thus, an LM test can help you to select the proper functional form to use in your

nonlinear estimation. To keep the analysis simple, we will assume that var(𝜀t) = 𝜎2 is

constant. Let f ( ) be the nonlinear functional form and let 𝛼 denote the parameters of

f ( ). In these circumstances, the LM test can be conducted as follows:

STEP 1: Estimate the linear portion of the model to get the residuals {et}.
STEP 2: Obtain all of the partial derivatives 𝜕f ()∕𝜕𝛼 evaluated under the null hypoth-

esis of linearity. Typically, these partial derivatives will be nonlinear func-

tions of the regressors used in Step 1. Estimate the auxiliary regression by

regressing et on these partial derivatives.

STEP 3: The value of TR2 has a 𝜒2 distribution with degrees of freedom equal to the

number of regressors used in Step 2. If the calculated value of TR2 exceeds

the critical value from a 𝜒2 table, reject the null hypothesis of linearity and

accept the alternative. With a small sample, it is standard to use an F-test.

One benefit of the method is that you need not estimate the nonlinear model itself.

More importantly, the use of a number of LM tests can help you select the form of the

nonlinearity. It could be the case, for example, that an LM test rejects the GAR model

but accepts the BL model. Unfortunately, this is not the typical case. Instead, if the LM

test accepts (rejects) the GARmodel, it islikely to accept (reject) the BL model as well.

Nevertheless, comparing the prob-values of the two can be helpful. Consider the two

examples below.

Two Examples

Example 1 Suppose you want to determine whether {yt} has the specific GAR
form:

yt = 𝛼0 + 𝛼1yt−1 + 𝛼2yt−2 + 𝛼3yt−1yt−2 + 𝜀t (7.9)

Of course, it would be straightforward to estimate (7.9) directly and obtain the

t-statistic for the null hypothesis 𝛼3 = 0. However, the point of this section is to illus-

trate the appropriate use of the LM test. Toward this end, estimate the sequence an

AR(2) process and obtain the residuals {et}. Now, you need to find the partial deriva-

tives of the nonlinear functional form. It should be clear that

𝜕yt∕𝜕𝛼0 = 1; 𝜕yt∕𝜕𝛼1 = yt−1; 𝜕yt∕𝜕𝛼2 = yt−2; and 𝜕yt∕𝜕𝛼3 = yt−1yt−2

Hence, Step 2 indicates that you regress et on a constant (i.e., a vector of 1’s), yt−1,
yt−2 and yt−1yt−2. Thus, the auxiliary regression is

et = a0 + a1yt−1 + a2yt−2 + a3yt−1yt−2 + vt (7.10)

Obtain the sample value of TR2. If this value exceeds the critical value of 𝜒2 with

four degrees of freedom, reject the null hypothesis of linearity and accept the alternative

of the GAR model. Alternatively, you can perform an F-test for the joint hypothesis

a0 = a1 = a2 = a3 = 0.
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Example 2 A similar procedure can be used to determine whether {yt} has the
BL form:

yt = 𝛼0 + 𝛼1yt−1 + 𝛼2yt−2 + 𝛼3𝜀t−1yt−2 + 𝜀t.

Again, estimate the sequence an AR(2) process and obtain the residuals {et}. The
desired partial derivatives are

𝜕yt∕𝜕𝛼0 = 1; 𝜕yt∕𝜕𝛼1 = yt−1; 𝜕yt∕𝜕𝛼2 = yt−2 and 𝜕yt∕𝜕𝛼3 = 𝜀t−1yt−2

so that auxiliary regression is

et = a0 + a1yt−1 + a2yt−2 + a3𝜀t−1yt−2 + vt (7.11)

Since the actual values of {𝜀t−1} are unobserved, use the estimated residuals to form

𝜀t−1yt−2 in (7.11). If the sample value of TR2 exceeds the critical value of 𝜒2 with four

degrees of freedom, reject the null hypothesis of linearity and accept the alternative of

the BL model. Alternatively, you can use an F-test for the null hypothesis a0 = a1 =
a2 = a3 = 0.

Notice that (7.10) and (7.11) are very similar. Since 𝜀t−1 will be highly correlated
with yt−1, the values of TR

2 from the two equations will be quite similar. Hence, the

results of both tests should be quite similar; if (7.10) indicates that a GAR model is

appropriate, (7.11) should indicate that a BL model is appropriate. Nevertheless, the

two tests can be useful. If both accept the null hypothesis of linearity, you can be rea-

sonably confident that the AR(2) model is adequate. If both reject the null hypothesis,

you can be somewhat confident that a nonlinear model is appropriate. However, unless

the prob-values of the two tests are quite different, the tests will not provide much

guidance as to which nonlinear form is the most appropriate.

Inference with Unidentified Nuisance Parameters

You might think it appropriate to estimate a nonlinear model and impose some set

of parameter restrictions that allow you to test whether the model is actually linear.

However, inference in nonlinear models is often difficult because of what is called

the “unidentified nuisance parameter problem” or the “Davies problem.” The problem

arises when one (or more) of the parameters of the model is not identified when the null

hypothesis is true. The difficulty raised by the Davies problem is that it is not appropri-

ate to conduct inference using standard t-tests, F-tests, or 𝜒2-tests involving parameters

that are unidentified. To better understand when the problem arises, consider the fol-

lowing three examples.

Example 1 Consider the nonlinear model yt = 𝛼0 + 𝛼1x
𝛼2
t + 𝜀t. Suppose you

estimate the model using nonlinear least squares (NLLS) and want to test whether

𝛼2 = 0. It should be clear that under the null hypothesis 𝛼2 = 0, the values of 𝛼0 and 𝛼1
are unidentified because the model degenerates into yt = 𝛼0 + 𝛼1 + 𝜀t. If, for example,

this sum equals 5, any two values of 𝛼1 and 𝛼2 are satisfactory as long as 𝛼1 = 5 − 𝛼0.

Hence, the individual values of 𝛼0 and 𝛼1 are not identified under the null hypothesis

𝛼2 = 0. Similar remarks hold for the test 𝛼1 = 0. Under the null hypothesis 𝛼1 = 0, any

value of 𝛼2 is satisfactory. In essence, the likelihood function is invariant to the value of
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𝛼2 when 𝛼1 = 0. Note that the hypothesis 𝛼0 = 0 does not involve the Davies problem

since 𝛼1 and 𝛼2 can be identified even if 𝛼0 = 0.

Example 2 Consider the model with an endogenous break such that yt = 𝛼0 +
𝛼1yt−1 + 𝛼2Dt + 𝜀t where Dt is a dummy variable such that Dt = 1 if t ≥ t∗ and Dt = 0

otherwise. Given that the break date t∗ is unknown, the value of t∗ needs to be estimated

alongwith the other parameters of themodel. As such, under the null hypothesis 𝛼2 = 0,

t∗ is an unidentified nuisance parameter. Under the null hypothesis of no break (so that

𝛼2 = 0), t∗ is not identified. Clearly, t∗ can take on any value if 𝛼2 = 0.

Example 3 Consider the nonlinear model (called the logistic smooth transition

autoregressive model) yt = 𝛼0 + 𝛼1∕[1 + exp(−𝛾yt−1)] + 𝜀t. If 𝛾 is known, it is pos-

sible to form the variable 1∕[1 + exp(−𝛾yt−1)], estimate the model, and test the null

hypothesis 𝛼1 = 0 directly. However, if 𝛾 is unknown, there is an unidentified nuisance

parameter under the null hypothesis of linearity. If 𝛾 = 0, the yt series is a constant

plus noise: i.e., yt = 𝛼0 + 𝛼1∕2 + 𝜀t(since exp(0) = 1). Hence, any values of 𝛼0 and 𝛼1
will be satisfactory so long as they satisfy 𝛼0 + 𝛼1∕2. Similarly, the you cannot simply

test for linearity by testing the null hypothesis 𝛼1 = 0. If 𝛼1 = 0, the model becomes

yt = 𝛼0 + 𝜀t so that 𝛾 is not identified in that its value is irrelevant.

To be a bit formal, consider a 2-parameter model such that the log likelihood func-

tion can be written solely as a function of the parameters 𝛼1 and 𝛼2:

(𝛼1, 𝛼2)

In the standard case, maximizing  with respect to (w.r.t.) 𝛼1 and 𝛼2 leads to the

unrestricted parameter estimates. Call a(𝛼1, 𝛼2) this maximized value. Note that the

subscript a denotes that a(𝛼1, 𝛼2) is the maximum value under the alternative hypoth-

esis (i.e., the unrestricted version of the model). Now suppose that we restrict 𝛼1 = 𝛼1
and then maximize  w.r.t. to 𝛼2. Under the null hypothesis, the maximum value of 

is n(𝛼1, 𝛼2). The subscript n denotes that n(𝛼1, 𝛼2) is the maximum value under the

null 𝛼1 = 𝛼1. Now we can perform a likelihood ratio test by forming r as follows:

r = 2[a(𝛼1, 𝛼2) − n(𝛼1, 𝛼2)]

If the null hypothesis is true, the estimate of 𝛼1 should be 𝛼1 and the estimate of 𝛼2
should be the same under the null and under the alternative. Hence, a(𝛼1, 𝛼2) should
equal n(𝛼1, 𝛼2) so that the expected value of r is zero. Given the usual regularity

conditions, the large sample distribution of r is 𝜒2 with 1 degree of freedom (NOTE:

In the general case, the degrees of freedom will equal the number of restrictions).

Now suppose that 𝛼2 is not identified under the null hypothesis. In other words,

suppose 𝜕n∕𝜕𝛼2 = 0 for all values of 𝛼2. In essence, under the null hypothesis, 𝛼2
does not affect the likelihood function so that the value of r becomes:

r = 2[a(𝛼1, 𝛼2) − n(𝛼1)]

Now, even if the null hypothesis is true, there is no reason to believe that

a(𝛼1, 𝛼2) = n(𝛼1). Even if 𝛼1 is estimated without any error, so 𝛼1 = 𝛼1, the
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difference between a(𝛼1, 𝛼2) and n(𝛼1) will depend on the value of 𝛼2. In general

the expected value of r will not equal zero so that r does not have a standard 𝜒2

distribution with one degree of freedom. In fact, the distribution of r is non-standard
and depends on the unknown value of 𝛼2. Since the distribution r is unknown, it is not
possible to conduct inference on the parameter 𝛼1 in a standard way.

In order to circumvent the problem, Davies (1987) proposed using a supremum
test. Since the distribution of r depends on 𝛼2, the idea is to develop critical values

using the value of 𝛼2 that that makes it most difficult to reject the null hypothesis. If

you are able to reject the null hypothesis using these critical values, you can reject

the null regardless of the actual parameter value of 𝛼2. Of course, this is a very

conservative method in that you will have very large critical values (and confidence

intervals)—as such, supremum tests usually have relatively low power. In actuality, it

is not too difficult to develop such critical values. After all, the value of 𝛼2 that makes

a(𝛼1, 𝛼2) − n(𝛼1) as large as possible (so that it becomes difficult to reject the null

hypothesis with the actual data) is the one providing the best fit. Hence, one method

to develop critical values for a supremum test entails the following Monte Carlo

method:

1. Generate the {yt} series under the null hypothesis. (You can bootstrap the
critical values if you create {yt} using the actual regression residuals from the

linear model).

2. Estimate the best-fitting nonlinear model.

3. Obtain the t-statistic (F-statistic or 𝜒2-statistic) for the null hypothesis that

the coefficient(s) in question equals zero.

4. Repeat this process many times so as to obtain the distribution of the rele-

vant test statistic. For a given prob-value—say 5% in a two tailed t-test—the

sample t-statistic can be compared to the 0.025 and 97.5 percentiles of the

generated t-statistics.

Alternatively, for step 2, you can use an LM test in which you estimate the model

under the null hypothesis of linearity. Use the residuals from this model to conduct the

type of LM test discussed in the previous section. Repeating this process many times

yields the relevant test statistic.

Before moving on, take another little quiz by trying to determine whether there are

unidentified nuisance parameters in (7.4) and (7.5). The answer is that (7.4) and (7.5)

do not contain unidentified nuisance parameters. Even if all aijkl in (7.1) or all cij in
(7.5) equal zero, the remaining parameters in the model are identified.

4. THRESHOLD AUTOREGRESSIVE MODELS

A regime switching model allows the behavior of {yt} to depend on the state of the

system. In a recession, the unemployment rate is likely to rise sharply and then slowly

decline to its long-run value. However, the unemployment rate does not fall sharply in

an economic expansion. As such, the dynamic adjustment equation for the unemploy-

ment rate depends on whether the economy is in an expansionary state (or regime) or
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in a recession. When the economy changes from an expansionary regime to a contrac-

tionary regime, the dynamic adjustment of the unemployment rate is likely to change.

In other circumstances, regime switches might be due to the magnitude of the vari-

able of interest, the result of an election that changes the behavior of policymakers, or

may be completely unobservable. As you might expect, a number of regime switching

models have been developed to analyze these types of regime changes.

Before proceeding, you need to know that most regime switching models can be

quite difficult to estimate. Although many software packages allow you to estimate a

linear model by appropriately clicking on a menu, this is not true for many nonlinear

models. In general, you need to use a statistical package that has its own programming

language if you want to estimate a regime switching model. Threshold autoregressive

(TAR) models of the type developed by Tong (1983, 1990) can be estimated using

OLS. Another type of threshold model allows for gradual regime change. Such smooth

transition autoregressive (STAR)models can be estimated using nonlinear least squares

or maximum likelihood methods. Other nonlinear models, such as the artificial neural

network andMarkov switchingmodels, requiremethods that aremore sophisticated. As

such, discussion in the text emphasizes threshold and STARmodels. The Programming
Manual that accompanies this text has a number of examples of nonlinear estimation.

The Basic Threshold Model

Panel a of Figure 7.1 illustrates a simple TAR process. Recall that the degree of per-

sistence is a1 when yt−1 > 0 and a2 when yt−1 ≤ 0. If we augment the model with a

disturbance term, the behavior of the {yt} sequence can be represented by

yt =

{
a1yt−1 + 𝜀1t if yt−1 > 0

a2yt−1 + 𝜀2t if yt−1 ≤ 0
(7.12)

You can think of the equation yt−1 = 0 as being a threshold. On one side of the

threshold, the {yt} sequence is governed by one autoregressive process and on the

other side of the threshold, there is a different autoregressive process. Although {yt}
is linear in each regime, the possibility of regime switching means that the entire {yt}
sequence is nonlinear. Shocks to {𝜀1t} or {𝜀2t} are responsible for regime switching. If,

for example, yt−1 > 0, the subsequent values of the sequence will tend to decay toward

zero at the rate a1. However, a negative realization of 𝜀1t can cause yt to fall by such

an extent that it lies below the threshold. In the negative regime, the behavior of the

process is governed by yt = a2yt−1 + 𝜀2t. As you can infer, the larger the variance of

{𝜀1t}, the more likely is a switch from one regime to the other.

Another common variant of the TAR model is to assume that the variances of the

two error terms are equal [i.e., var(𝜀1t) = var(𝜀2t)]. In this circumstance, (7.12) can be

written as

yt = a1Ityt−1 + a2(1 − It)yt−1 + 𝜀t (7.13)

where It = 1 if yt−1 > 0 and It = 0 if yt−1 ≤ 0.

In equation (7.13), It is an indicator function, or dummy variable, that takes on

the value of 1 if yt−1 is above the threshold and a value of 0 otherwise. When yt−1 > 0,
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It = 1 and (1 − It) = 0, so that (7.13) is equivalent to a1yt−1 + 𝜀t. When yt−1 ≤ 0, It = 0

and (1 − It) = 1, so that (7.13) is equivalent to a2yt−1 + 𝜀t. Figure 7.2 provides a visual

comparison of the AR, GAR, BL, and TAR models. A series of 200 random numbers

were drawn from a standardized normal distribution so as to simulate the {𝜀t} sequence.
The initial value y1 was set equal to 𝜀1 and the next 199 values of {yt} were created

according to the formula

yt = 0.7yt−1 + 𝜀t

Panel (a) of Figure 7.2 shows the time path of this simulated AR(1) process. Notice

that the series fluctuates around a mean of zero. Although it may not be possible to

discern with visual inspection alone, the degree of autoregressive decay is always the

same; on average, 70% of the current value of yt persists into the next period. Next, the
same random numbers were used to generate the GAR process:

yt = 0.7yt−1 − 0.06y2t−1 + 𝜀t

or

yt = [0.7 − 0.06yt−1]yt−1 + 𝜀t.

The nature of this particular GAR process is that it behaves as an AR(1) process

with a random coefficient. The greater the value of yt−1, the smaller is the autoregressive

coefficient. For values of yt−1 = −2, 0, and 2, the degrees of autoregressive persistence
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FIGURE 7.2 Comparison of Linear and Nonlinear Processes

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c07.tex V2 - 08/18/2014 7:56pm Page 423

THRESHOLD AUTOREGRESSIVE MODELS 423

are 0.82, 0.7, and 0.58, respectively. This pattern can be seen in Panel (b) of Figure 7.2

because negative values of the simulated GAR process are far more persistent than

positive values. Compare Panels (a) and (b) and note the values of the two series sur-

rounding period 35 and period 85. You can clearly see that the GAR series returns to

zero more slowly than the AR series.

The identical random numbers were used to construct the BL sequence shown in

Panel (c). After initializing y1 = 𝜀1, the remaining values of the sequence were gener-

ated from

yt = 0.7yt−1 − 0.3yt−1𝜀t−1 + 𝜀t

or

yt = [0.7 − 0.3𝜀t−1]yt−1 + 𝜀t.

In the BL model, the degree of persistence depends on the value of 𝜀t−1; the larger
is 𝜀t−1, the smaller the degree of persistence. In fact, for those periods in which 𝜀t−1 <
−1.0, the sequence behaves like an explosive process (since the value of 0.7 − 0.3𝜀t−1
exceeds unity). In Panel (c), you can see the extreme movements in the BL process if

you examine the time intervals that surround period 55 and period 165. Nevertheless,

the successive values of 𝜀t are more likely to exceed −1, so the BL process does not

continue its decline.

Panel (d) of Figure 7.2 illustrates the time path of the TAR process

yt = 0.3Ityt−1 + 0.7(1 − It)yt−1 + 𝜀t

where It = 1 if yt−1 > 0 and It = 0 otherwise.

When yt−1 ≤ 0, this TAR process behaves exactly like the AR(1) process shown

in Panel (a). Thus, the lower portions of Panels (a) and (d) are nearly identical. How-

ever, for the TAR process, only 30% of the current value of yt tends to persist into the

subsequent period when yt−1 > 0. Hence, in contrast to the AR(1) process of Panel 1,

the TAR process displays a substantial degree of mean reversion whenever yt−1 > 0.

Estimation

Estimation of a threshold model in the form of (7.13) can be performed by simple

OLS. First construct the dummy variable It such that It = 1 if yt−1 > 0 and It = 0 if

yt−1 ≤ 0. Then construct two variables, say y+t−1 and y−t−1, such that equal to y+t−1 =
Ityt−1 and y

−
t−1 = (1 − It)yt−1. Finally, use OLS to estimate the regression equation yt =

a1y
+
t−1 + a2y

−
t−1 + 𝜀t. It is straightforward to generalize the method such that there is

a higher-order autoregressive process in each regime. For example, a more general

version of (7.13) is

yt = It

[
𝛼10 +

p∑
i=1

𝛼1iyt−i

]
+ (1 − It)

[
𝛼20 +

r∑
i=1

𝛼2iyt−i

]
+ 𝜀t (7.14)

where It = 1 if yt−1 > 𝜏 and It = 0 if yt−1 ≤ 𝜏.

In (7.14), there are two separate regimes defined by the value of yt−1. When

yt−1 > 𝜏, It = 1, and (1 − It) = 0, so that (7.14) is equivalent to 𝛼10 + 𝛼11yt−1 + · · · +
𝛼1pyt−p + 𝜀t. When yt−1 ≤ 𝜏, It = 0, and (1 − It) = 1, so that (7.14) is equivalent to
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𝛼20 + 𝛼21yt−1 + · · · + 𝛼2ryt−r + 𝜀t. Unlike the TAR models depicted in Figures 7.1

and 7.2, the value of the threshold 𝜏 is allowed to differ from zero. Moreover, the

particular phase diagram shown in the figure was a special type of TAR model in that

it is continuous. The specification in equation (7.14) allows the two segments of the

phase diagram to be discontinuous at the threshold. If 𝜏 is known, the estimation of

a TAR model is straightforward. Create the dummy variable It according to whether

yt−1 is above or below the threshold 𝜏 and form the variables Ityt−i and (1 − It)yt−i.
You can then estimate the equation using OLS.

To use a specific example, suppose that the first seven observations of a time-series

are:

t 1 2 3 4 5 6 7

yt 0.5 0.3 −0.2 0.0 −0.5 0.4 0.6

yt−1 NA 0.5 0.3 −0.2 0.0 −0.5 0.4

If the threshold 𝜏 = 0, you should be able to verify that the time path of the indi-

cator function It and the values of Ityt−1, Ityt−2, (1 − It)yt−1 and (1 − It)yt−2 are those
shown in Table 7.1.

To estimate a model with two lags in each regime, you estimate the six values of

𝛼ij from the regression equation

yt = 𝛼10It + 𝛼11Ityt−1 + 𝛼12Ityt−2 + 𝛼20(1 + It) + 𝛼21(1 − It)yt−1
+ 𝛼22(1 − It)yt−2 + 𝜀t.

Hence, when yt−1 > 0, It = 1 and (1 − It) = 0, so that

yt = 𝛼10 + 𝛼11yt−1 + 𝛼12yt−2 + 𝜀t

Similarly, when yt−1 ≤ 0, It = 0 and (1 − It) = 1, so that

yt = 𝛼20 + 𝛼21yt−1 + 𝛼22yt−2 + 𝜀t

The estimation is only a bit more complicated if you want to allow the variances

of the error terms to differ across regimes. A more general version of equation (7.14)

Table 7.1 A TAR Model with Regime Dependent Variances

t 1 2 3 4 5 6 7

yt 0.5 0.3 −0.2 0.0 −0.5 0.4 0.6

yt−1 NA 0.5 0.3 −0.2 0.0 −0.5 0.4

yt−2 NA NA 0.5 0.3 −0.2 0.0 −0.5

It NA 1 1 0.0 0.0 0.0 1

It yt−1 NA 0.5 0.3 0.0 0.0 0.0 1

(1 − It )yt−1 NA 0.0 0.0 −0.2 0.0 −0.5 0

It yt−2 NA NA 0.5 0.0 0.0 0.0 −0.5

(1 − It )yt−2 NA NA 0.0 0.3 −0.3 0.0 0.0
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is the two-regime TAR model:

yt =

{
𝛼10 + 𝛼11yt−1 + · · · + 𝛼1pyt−p + 𝜀1t if yt−1 > 𝜏

𝛼20 + 𝛼21yt−1 + · · · + 𝛼2ryt−r + 𝜀2t if yt−1 ≤ 𝜏
(7.15)

If 𝜏 is known, you can separate the observations according to whether yt−1 is above
or below the threshold. Each segment of (7.15) can then be estimated using OLS. The

lag lengths p and r can be determined as in an ARmodel. Hence, you can determine the

lag lengths using t-tests on the individual coefficients, F-tests on groups of coefficients,
or the AIC and/or SBC.

For example, for 𝜏 = 0, sort the observations into two groups according to whether

yt−1 is greater than or less than zero. Since values when yt−1 = 0 are included with those

when yt−1 < 0, the two regimes using the seven sample observations listed above would

look like this:

Positive Negative

yt yt−1 yt yt−1
0.3 0.5 0.0 −0.2

−0.2 0.3 −0.5 0.0

0.6 0.4 0.4 −0.5

The two separate AR(1) processes can be estimated for each regime. For each

(yt, yt−1) pair, the first regression would use (0.3, 0.5), (−0.2, 0.3), and (0.6, 0.4) and

the second regression would use (0.0,−0.2), (−0.5, 0.0), and (0.4,−0.5). It is only a bit
more complicated to estimate an AR(2) model for each regime. For an AR(2), the first

regression would use the (yt, yt−1yt−2) values (−0.2, 0.3, 0.5) and (0.6, 0.4,−0.5) and
the second regression would use (0.0,−0.2, 0.3), (−0.5, 0.0 − 0.2), and (0.4,−0.5, 0.0).

Regardless of whether you restrict the residual variances to be equal, OLS gives

consistent estimates of the intercept and slope coefficients conditional on the threshold

being correct.

Unknown Threshold

In most instances, the value of the threshold is unknown and must be estimated along

with the other parameters of the TAR model. Fortunately, Chan (1993) shows how

to obtain a super-consistent estimate of the threshold 𝜏. To best explain the logic of

the procedure, consider the TAR series shown in Figure 7.3. If the threshold is to be

meaningful, the series must actually cross the threshold. It would be nonsense to use a

threshold of four to estimate the TAR model since the series never crosses that thresh-

old. Thus, 𝜏 must lie between the maximum and minimum values of the series. In

practice, the highest and lowest 15% of the values are excluded from the search to

ensure an adequate number of observations on each side of the threshold. Your esti-

mates will be very imprecise if, for example, one regime has only twenty observations.

If you have a very large number of observations, you may want to exclude only the

highest and lowest 10% of the observations as potential thresholds.
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FIGURE 7.3 Estimation of the Threshold

In the example at hand, 𝜏 should lie within the band containing the middle 70%

of the observations. Each data point within the band has the potential to be the thresh-

old. Thus, try a value of 𝜏 = y1 (i.e., the first observation in the band) and estimate an

equation in the form of (7.14) or (7.15). As you can see in the figure, y2 lies outside

the band. Hence, there is no need to estimate a regression using 𝜏 = y2. Next, esti-
mate TAR models using 𝜏 = y3 and 𝜏 = y4 since these two values lie within the band.

Continue in this fashion for each observation within the band. With 200 observations,

there should be about 141 estimates of the TAR model. The regression containing the

smallest residual sum of squares contains the consistent estimate of the threshold.

Now you can see why you need to use a software package that contains a program-

ming language. Instead of estimating the 141 equations one at a time, as illustrated in

the Programming Manual, you could embed the estimations within a Do-End loop or

a For-Next loop.

Rothman’s (1998) TAR estimate of the U.S. unemployment rate tells an interesting

story. His two-regime model in the form of (7.15) is

ut = 0.0529 + 1.349ut−1 − 0.665ut−2 + 𝜀1t if ut−1 ≥ 0.062

(3.46) (16.03) (−9.37)
ut = 1.646ut−1 − 0.733ut−2 + 𝜀2t if ut−1 < 0.062

(14.27) (−6.37)

There is a high-unemployment and a low-unemployment regime separated by

the value ut−1 = 0.062. Rothman notes that unemployment is more persistent in the

high-unemployment regime than the low-unemployment regime in that shocks that

increase unemployment do not decay to zero. The variance ratio for the TAR model

is 0.942. As measured by the residual sum of squares, the TAR model fits the data
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better than the AR(2) and GAR models, but not as well as the BL model. Notice that

the estimated AR(2), GAR, BL, and TAR models contain 2, 3, 3, and 6 parameters

(remember that 𝜏 is an estimated parameter in the TAR model). As such, a different

pattern emerges if AIC is used to select the most appropriate model. The BL model

has the lowest value of the AIC followed by the AR, GAR, and TAR models. Based

on the AIC, most applied econometricians would discard the TAR model.

5. EXTENSIONS OF THE TAR MODEL

Note that there is something very different about the TAR model versus the GAR and

BL models. The latter two are designed to be useful then the functional form of the

nonlinear process is unknown. It is not surprising that some researchers view specifi-

cations based on a Taylor series approximation as being somewhat ad hoc. In contrast,
the TAR model posits a type of adjustment mechanism that corresponds to the state

of the economic system. This has led to a growing popularity of TAR models and a

number of interesting extensions.

Selecting the Delay Parameter

In the TAR models considered thus far, the regime is determined by the value of yt−1.
However, it might be that the timing of the adjustment process is such that it takes more

than one period for the regime switch to occur. In such circumstances, we could allow

the regime switch to occur according to the value of yt−d where d = 1, 2, 3, … Thus,

the system would be in regime 1 if yt−d > 𝜏 and in regime 2 if yt−d ≤ 𝜏.

There are several procedures available to select the value of thedelay parameter d.
The standard procedure is to estimate a TAR model for each potential value of d. The
one with the smallest value of the residual sum of squares yields a consistent estimate

of the delay parameter. Alternatively, you can choose the delay parameter that leads to

the smallest value of the AIC or the SBC. This second approach is most useful when

the optimal values for p and r (i.e., the lag lengths in the various regimes) depend

on the choice of d.

Multiple Regimes

In some instances, it may be reasonable to assume that there are more than two regimes.

For example, if we assume that the variance of shocks does not differ across regimes,

we can write (7.1)—the TAR model of the interest rate spread—in the form:

st =

{
s + a1

(
st−1 − s

)
+ 𝜀t when st−1 > s

s + a2(st−1 − s) + 𝜀t when st−1 ≤ s

Now suppose that there is a transaction cost c that prevents complete adjustment

of the spread to s. If the gap between st−1 and s is less than the cost of undertaking the
transaction, it would not be profitable to switch funds between the securities. As such,

there may be a neutral band within which the spread may fluctuate. Within this band,

there are no economic incentives to act in a way that equates the spread with s. Outside
of the band, however, there may be strong incentives for individuals to act in a way that
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drives the spread toward s. A simple way to model this behavior is with the band-TAR
model:

st = s + a1(st−1 − s) + 𝜀t when st−1 > s + c
st = st−1 + 𝜀t when s − c < st−1 ≤ s + c
st = s + a2(st−1 − s) + 𝜀t when st−1 ≤ s − c

For this specification, there tends to be no tendency for mean reversion unless st−1
lies outside of the neutral band formed by adding and subtracting the transaction cost

from the long-run value of the spread. Hence, inside the band, the behavior of the spread

is a random walk. Balke and Fomby (1997) use this type of band threshold process to

estimate a model of the term structure of interest rates.

In a more general multiple regime model, each regime can be represented by a

distinct autoregressive process. As discussed in the next section, graphical techniques

can be used to detect the presence of multiple thresholds.

More on Estimating the Threshold

The discussion in Section 4 gave an overview of Chan’s (1993) method of finding the

consistent estimate of the threshold. However, there are some graphical techniques that

can be helpful in fine-tuning the estimate. The general point is that we can think of

the sum of squared residuals from any TAR model as being a function of the threshold

value used in the estimation, i.e., ssr = ssr(𝜏). The closer we come to the true thresh-

old value 𝜏, the smaller should be the sum of squared residuals. Hence, ssr should be

minimized at the true value of the threshold. Moreover, the sum of squared residuals

will have several distinct local minima if there are several thresholds. This suggests the

following method to detect the thresholds:

STEP 1: Sort the threshold variable (i.e., sort yt−d) from the lowest to the highest

value. Let yi denoted the i-th value of the sorted series. Hence, in a sample

with T observations, y1 is the smallest value of yt−d and y
T is largest value.

STEP 2: Estimate a TAR model in the form of (7.14) or (7.15) using the successive

values of {yi} as thresholds. Save the sum of squared residuals associated

with each model. Since you want to maintain 15% of the observations on

each side of the threshold, use only the middle 70% of the values of yi. For
example, if you have 200 observations, estimate 141 TAR models beginning

with 𝜏 = y30 and ending with 𝜏 = y170. When you are done, you will have

141 values of the sum of squared residuals.

STEP 3: Create a graph of the successive values of the sum of squared residuals. If

ssr(30) is the sum of squared residuals using 𝜏 = y30 and ssr(170) is the
sum of squared residuals using 𝜏 = y170, plot the values of ssr(30) through
ssr(170).

In the absence of threshold behavior, there should be no clear relationship between

the sum of squared residuals and the potential thresholds. However, if there is a single

threshold, there should be a single trough in the graph you create in Step 3. For example,

if there is a distinct trough at ssr(132), the consistent estimate of the threshold is y132.
After all, 𝜏 = y132 results in the TAR model with the best fit. If there are two troughs,
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there are two potential thresholds. To explain in a bit more detail, consider the model

that was used to generate the 200 values shown in Figure 7.3:

yt = 0.3Ityt−1 + 0.7(1 − It)yt−1 + 𝜀t

where It = 1 if yt−1 > 0 and It = 0 otherwise.

Figure 7.4 reproduces the same numerical values sorted from low to high. As

shown in both figures, the first value lying within the 70% band (i.e., y30) is −1.623.
Hence, the first estimate of the TAR model uses 𝜏 = −1.623. The second estimation

uses the next sorted observation as the threshold. This second value happens to be

−1.601; thus, the second estimation uses 𝜏 = −1.601. Continuing in this fashion brings
us closer to the true threshold value of zero. As such, the fit of the TAR model should

continue to improve as we move from threshold values of −1.623 towards 𝜏 = 0. How-

ever, once we cross the true threshold and use values of 𝜏 that are greater than zero,

the sum of squared residuals should begin to increase. As such, the plot of the residual

sum of squares should reach a minimum at 𝜏 = 0. If you examine Figure 7.4, you can

see that 𝜏 = 0 corresponds to y132. You can reproduce these results using the data on

the file SIM_TAR.XLS; respectively, the second and third columns of the file contain

the 200 values of the simulated series along with their sorted values.

What would happen if the true model contained two thresholds? In particular,

suppose one threshold is −1 and the other is zero. As you can see from Figure 7.4, the

value of y55 = −1 and y132 = 0. Now consider the idealized plot of the residual sum of

squares shown in Figure 7.5. As we estimate TAR models beginning with y30 and pro-
ceed toward y55, the sum of squared residuals declines. Also depicted is the fact that the

sum of squared residuals should begin to increase as we use threshold values in excess

of −1. This increase continues until you near the second threshold. In the example at

hand, the sum of squared residuals begins another decline as we approach the second

threshold of 0. The second trough at ordered observation 132 indicates the second

threshold 𝜏 = 0. In order to estimate a two threshold model, many researchers would

simply use the trough values as shown in Figure 7.5. In practice, there is a degree of

subjectivity since the troughs might not be as distinct as those shown in the figure.
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What might appear to be a trough to one researcher might appear to be a small decline

to another.

Threshold Regression Models

It has also become popular to use a threshold in the context of a traditional regression

model. Consider the following specification

yt = a0 + (a1 + b1It)xt + 𝜀t

where It = 1 if yt−d > 𝜏 and It = 0 otherwise.

Here, a1 measures the effect of xt on yt when yt−d ≤ 𝜏. However, when yt−d > 𝜏,

the effect of xt on yt is a1 + b1. Hence, if a1 and b1 are positive, changes in xt have
a greater effect on yt, when yt−d > 𝜏 than when yt−d ≤ 𝜏. You can estimate the value

of the threshold using Chan’s method described above. For example, Shen and Hakes

(1995) estimate a nonlinear reaction function for the central band of Taiwan. The idea is

that the central bank will respond differently to changes in economic variables in a high

inflationary environment than in a low inflationary environment. Similarly, Galbraith

(1996) shows that for Canada and the United States, the effect of money on output

depends on whether credit conditions are already tight or loose.

There is no requirement that the threshold variable be given by yt−d. For example,

the threshold variable can be xt−d where the delay parameter is any nonnegative integer.

The threshold variable can even be a variable that does not appear directly in the regres-

sion equation. Two examples of threshold regression models are provided in Section 6.

Pretesting for a TAR Model

A Lagrange multiplier test cannot be used for a threshold model since it is not differ-

entiable. For example, suppose you have TAR model in the form

yt = It(𝛼10 + 𝛼11)yt−1 + (1 − It)(𝛼20 + 𝛼21yt−1) + 𝜀t (7.16)

where It = 1 of yt−1 > 𝜏 and It = 0 if yt−1 ≤ 𝜏.
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It should be clear that the model is not differentiable at 𝜏. For example, the

derivative 𝜕yt∕𝜕𝛼11 is discontinuous at 𝜏 in that 𝜕yt∕𝜕𝛼11 = yt−1 when yt−1 > 𝜏 and

𝜕yt∕𝜕𝛼11 = 0 when yt−1 ≤ 𝜏. Nevertheless, the appropriate test for threshold behavior

is straightforward if the threshold value is known. Under the null hypothesis of

linearity, (7.16) is the AR(1) process

yt = 𝛼10 + 𝛼11yt−1 + 𝜀2t

As such, it is possible to estimate (7.16) and use a standard F-test to determine

whether 𝛼10 = 𝛼20 and 𝛼11 = 𝛼22. However, if the threshold is unknown, another

method must be used since you have searched over all values of 𝜏 to estimate the

values of 𝛼10, 𝛼11, 𝛼20, and 𝛼22. You need to account for the fact that the search for all

potential values of 𝜏 makes the fit of the regression as good as possible. Hence, the

sample value of F will be overly large.

To make the point in a different fashion, under the null hypothesis of linearity,

there is an unidentified nuisance parameter. Under the null hypothesis that the model is

linear (i.e., 𝛼11 = 𝛼21), the estimate of 𝜏 can take on any value so that is an unidentified

nuisance parameter.

Following Davies (1987), the test for a threshold model can be conducted using a

supremum test. In fact, Hansen (1997) shows how to appropriately obtain the appro-

priate critical values using a bootstrapping procedure. Search over all values of 𝜏 to find

the best fitting TAR model. Let SSRu denote the unrestricted sum of squared residuals

from the estimated thresholdmodel. Similarly, let SSRr denote the sum of squared resid-

uals obtained from restricting the model to be linear. If you have T usable observations,

a traditional F-statistic could be constructed as

F =
(SSRr − SSRu)∕n
(SSRu∕(T − 2n))

where n is the number of parameters estimated in the linear version of the model. In

the example at hand, n = 1.

However, this sample value of F cannot be compared to the critical value found in

a table for F. Instead, to use Hansen’s (1997) bootstrapping method, you need to draw

T normally distributed random numbers with a mean of zero and a variance of unity;

let et denote this set of random numbers. (Alternatively, you can bootstrap the test by

using random draws of the residuals from the linear model). Estimate the auxiliary by

regressing et on a constant and yt−1 call the sum of squared residuals SSR∗
r . Also for

each potential threshold, regress et on It, (1 − It), Ity∗t−1 and (1 − It)y∗t−1 and use the

regression providing the best fit. Call the sum of squared residuals from this supremum

regression SSR∗
u. Use the two sums of squares to form

F∗ =
(SSR∗

r − SSR∗
u)∕n

(SSR∗
u∕(T − 2n))

Repeat this process several thousand times to obtain the distribution of F∗. If the
value of F from your sample exceeds the 95th percentile for F∗, you can reject the null
hypothesis of linearity at the 5% significance level.

The method generalizes to testing the null hypothesis a linear model against the

alternative of (7.14). Create SSRu by estimating (7.14) and SSRr by estimating the linear

model that constrains all values of 𝛼1i = 𝛼2i. Obtain SSR
∗
r by regressing et on all of the
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regressors in the linear model and SSR∗
u by regressing et on all of the regressors in

(7.14). In obtaining SSR∗
u, be sure to search for the best fitting threshold. After several

thousand replications, you should have a good approximation to the distribution of F∗.
A number of software packages can readily perform such a test. A detailed example of

the testing procedure is provided immediately below.

TAR Models and Endogenous Breaks

If you have been paying careful attention, you might have recognized that the thresh-

old model is equivalent to a model with a structural break. The only difference is

that in a model with structural breaks, time is the threshold variable. In Chapter 2

(see Figure 2.10 and the file Y_BREAKS.XLS), we analyzed the simulated series

yt = 1 + 0.5yt−1 + 𝜀t for 1 ≤ t ≤ 100 and yt = 2.5 + 0.65yt−1 + 𝜀t for 101 ≤ t ≤ 150.

When we treated the break date as known, we were able to form the dummy variable

Dt and the variable Dtyt−1 and estimate:

yt = 1.6015 + 0.2545yt−1 − 0.2244Dt + 0.5433Dtyt−1
(7.22) (2.76) (−0.39) (4.47)

where Dt = 1 if t < 101 and Dt = 0 otherwise. Since the coefficient on Dtyt−1 was

highly significant, we were able to verify the presence of a break in the series. Of

course, this model of a breaking series is equivalent to the threshold form

yt = (1.3771 + 0.7977yt−1)It + (1 − It)(1.6015 + 0.2545yt−1)
(2.60) (10.10) (7.22) (2.72)

where It = 1 if t < 101 and It = 0 otherwise.

If we pretend that the break date is unknown, we can illustrate the use of a supre-

mum test. It turns out that t = 100 yields the model with the smallest sum of squared

residuals. The using this value as the threshold, sum of squared residuals is 138.63. If

you estimate the model under the null hypothesis of linearity, you should find

yt = 0.4442 + 0.8822yt−1
(2.64) (22.76)

The sum of squared residuals is 195.18. Since there are 149 usable observations,

and 2 extra coefficients in the threshold model, the sample value of the F-statistic is

F =
(195.18 − 138.63)∕2
138.63∕(149 − 4)

= 29.57

Next, draw a sequence of 150 random numbers with a standard deviation of unity

to represent the et series. Since the actual residuals may not be normal, use random

draws (with replacement) of the residuals from the linear model. Estimate the auxiliary

equation of the form et = 𝛼0 + 𝛼1yt−1 + vt. Next, for each t in the interval 22 < t < 128,

create the indicator function It and estimate a threshold regression in the form

et = It(𝛼10 + 𝛼11yt−1) + (1 − It)(𝛼20 + 𝛼21yt−1) + 𝜀t
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Use the best fitting regression to construct the sample F statistic (i.e., construct

F∗) for the null hypothesis 𝛼10 = 𝛼20 and 𝛼11 = 𝛼21. Repeat this process several thou-

sand times to obtain the distribution of F∗. Compare your distribution to the value of

F = 29.75. If you perform this process using the data on the file Y_BREAKS.XLS,

approximately 95% of the constructed F∗ values should be below 3.15. As such, the

null hypothesis of linearity is clearly rejected.

There is amore general point to bemade from this example. Carrasco (2002) shows

that the usual tests for structural breaks (i.e., those using dummy variables) have little

power if the data are actually generated by a threshold process. Her observation is that

themultiplicity of regime changes in a TARmodel cannot be adequately captured be the

dummy variables. However, a test for a threshold process using yt−d as the threshold
variable has power to detect both threshold behavior and structural change. Even if

there is a single structural break at time period t, using yt−d as the threshold variable

will mimic this type of behavior. After all, if the series suddenly increases at t, values
of yt−d will tend to be low before date t and high after date t. As such, she recommends

using the threshold model as a general test for parameter instability.

6. THREE THRESHOLD MODELS

Perhaps the best way to understand the nature of threshold models is to consider a few

specific examples. This section illustrates the estimation of a threshold autoregressive

model and two threshold regression models.

The Unemployment Rate

In addition to Rothman (1998), many papers have indicated that theU.S. unemployment

rate displays nonlinear behavior. You can follow along the estimation process using the

data set UNRATE.XLS. Figure 7.6 shows the monthly values of the rate over the period

January 1960 through June 2013. In November 1982 the rate rose to as high as 10.8%

although there were also sharp increases in 1970, 1973, 1991, 2001 and 2008. Themean
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FIGURE 7.6 The U.S. Unemployment Rate
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of the 642 values is 6.10% and the standard deviation is 1.61 percentage points. After

some experimentation, you can convince yourself that it is reasonable to difference the

series and estimate:

Δut = 0.0005+ 0.058Δut−1 + 0.228Δut−2 + 0.188Δut−3 + 0.140Δut−4 − 0.128Δut−12
(0.09) (1.48) (5.88) (4.87) (3.59) (−3.58)

(7.17)

where SSR = 14.883,AIC = 1710.45,SBC = 1737.12

The first 12 autocorrelations are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12
−0.01 −0.02 −0.02 −0.01 0.04 0.04 −0.01 0.03 0.02 0.00 0.07 −0.02

Since the intercept and the coefficient on Δut−1 are not significant, general practice

would be to re-estimate the model without these two terms.

The RESET is not supportive of nonlinearity. Let et denote the regression residuals
from (7.17). If we regress the residuals on the regressors and the powers of the fitted

values, we obtain:

et = −0.006 + 1.59Δû2t + 10.36Δû3t − 33.94Δû4t +
∑
i

𝛼iΔut−i i = 1, 2, 3, 4, 12

(−0.64) (1.15) (0.88) (−1.05)

The F-statistic for the restriction that the coefficients onΔû2t ,Δû3t , andΔû4t jointly
equal zero is 1.42. With three degrees of freedom in the numerator and 620 in the

denominator, the prob-value is 0.234. Hence, the RESET does not detect the presence

of nonlinear behavior. Notice that the RESET has a very general alternative hypothesis;

as such, it does not have power against all types of nonlinearity. In particular, since the

test employs a smooth polynomial of the fitted values, it does not do especially well in

capturing asymmetric behavior.

However, other diagnostic checks indicate a potential problemwith the linear spec-

ification. The McLeod–Li (1983) test is such that

e2t = 0.018 + 0.143e2t−1 + 0.096e2t−2
(8.68) (3.59) (2.40)

The sample value of F for the restriction that the coefficient on e2t−1 and e
2
t−2 are

jointly equal to zero is 10.95; this value is highly significant. It is also interesting that

other variants of the test suggest nonlinearity. Consider the regression

et = −0.0078 + 0.3298e2t−1
(−1.11) (2.30) (7.18)

Equation (7.18) suggests that a large error (either positive or negative) in the previ-

ous period is associated with a positive error in the current period. In a linear model, the

adjustment is symmetric so that the residuals should not be correlated with the lagged

squared residuals.

If you set d = 1, and estimate a model in the form of (7.14), you should find that the

threshold value yielding the smallest residual sum of squares is such that 𝜏 = 0.070.
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Potential Thresholds
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FIGURE 7.7 SSR and the Potential Thresholds

Figure 7.7 shows the value of the sum of squared residuals for each threshold value

considered. You can see the trough in the scatter plot of ssr(𝜏) occurring at 𝜏 = 0.070.

Although there is a second trough in the scatter plot near 𝜏 = 0.025, the two troughs

are reasonably close together so that it makes sense to ignore the possibility of multiple

thresholds.

Also note that other delay parameters do not fare as well as d = 1. For example, the

residual sums of squares with d = 1, 2, and 3 are 14.296, 14.319 and 14.385, respec-

tively. (The estimated values of 𝜏 for d = 2 and 3 are 0.022 and −0.029, respectively).
Hence, we can be confident that a delay parameter of unity is appropriate.

If you set d = 1 and 𝜏 = 0.07, you should find

Δut = It(−0.070 + 0.381Δut−1 + 0.345Δut−2 + 0.126Δut−3 + 0.084Δut−4
(−3.28) (3.84) (5.22) (1.90) (1.25)
− 0.148Δut−12) + (1 − It)(−0.004 − 0.039Δut−1 + 0.122Δut−2

(−2.08) (−0.47) (−0.57) (2.48)
+ 0.179Δut−3 + 0.159Δut−4 − 0.126Δut−12)

(3.73) (3.35) (−3.09)
SSR = 14.296, AIC = 1697.12, SBC = 1750.45

where It = 1, when Δut−1 > 0.07 and It = 0, when Δut−1 ≤ 0.07

Note that the AIC selects the threshold model while the SBC selects the linear

model in (7.17). However, the threshold model contains a number of parameters that

are small relative to their standard errors. Clearly, it makes sense to test for the presence

of threshold behavior. Youmight construct the sampleF-statistic for the null hypothesis
of linearity as

F = [(14.883 − 14.296)∕6]∕[14.296∕(629 − 12)] = 4.22
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However, as it was necessary to estimate the threshold value, it is not appropriate to

compare 4.22 to a standard table ofF. Instead, if you useHansen’s (1997) bootstrapping
method, you should find that it is possible to reject the null hypothesis of linearity at

the 0.0025 level. Hence, we can conclude there is threshold behavior. Inference on

the coefficients in a threshold model is not straightforward since it was necessary to

search for 𝜏. The t-statistics yield only an approximation of the actual significance

levels of the coefficients. The problem is that the coefficients on the various Δut−i are
multiplied by It or (1 − It) and that these values are dependent on the estimated value

of 𝜏. Nevertheless, both model selection criteria indicate that you can pare down the

model by eliminating ItΔut−4, the intercept in the negative regime, and (1 − It)Δut−1.
Also note that that the coefficients on ItΔut−12 and (1 − It)Δut−12 are almost identical.

Thus, it makes sense to simply include Δut−12 in the model. Paring down the model in

this fashion results in:

Δut = It(−0.069 + 0.387Δut−1 + 0.376Δut−2 + 0.130Δut−3)
(−3.19) (3.88) (6.22) (1.99)

+ (1 − It)(0.155Δut−2 + 0.188Δut−3) − 0.124Δut−12
(3.21) (3.97) (−3.49)

AIC = 1700.38 and SBC = 1731.49

The point estimates are such that there is far more persistence when Δut−1 > 𝜏

than when Δut−1 ≤ 𝜏. This result strongly suggests that increases in unemployment

are far more persistent than decreases in unemployment. As an exercise, try to verify

these results. You might also find it interesting to estimate the series using the threshold

value near 0.025.

Asymmetric Monetary Policy

Much of the literature concerning the behavior of the Federal Reserve is based on the

type of feedback rule introduced by Taylor (1993). The so-called Taylor rule has the

form

it = 𝛾0 + 𝜋t + 𝛼1(𝜋t − 𝜋∗) + 𝛽yt + 𝛾1it−1 + 𝜀t

or setting 𝛼0 = 𝛾0 − 𝛼𝜋∗ and 𝛼 = 1 + 𝛼1, we can form

it = 𝛼0 + 𝛼𝜋t + 𝛽yt + 𝛾1it−1 + 𝜀t

where it is the nominal federal funds rate, 𝜋t is the inflation rate over the last four

quarters, 𝜋∗ is the target inflation rate, yt is output gapmeasured as percentage deviation

of real GDP from its trend, and 𝛼1, 𝛽, 𝛾0, 𝛾1 and 𝛾2 are positive parameters.

The intuition behind the rule is that the Federal Reserve wants to keep inflation

at the target level and to stabilize real GDP around its trend. Since high interest rates

discourage spending, the Taylor rule posits that the Federal Reserve will increase it
when inflation is above its target level and when the output gap is positive. The lagged

value of the interest rate creates some inertia in the system and represents the desire of

the Federal Reserve to smooth interest rate changes over time.
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In Bunzel and Enders (2010), we created the data in the file labeled TAYLOR.XLS

containing the variables necessary to estimate the Taylor rules reported below. Specif-

ically, the interest rate (it) is the quarterly average of the monthly values of the federal

funds rate. The four-quarter inflation rate (𝜋t) is constructed as:

𝜋t = 100∗(ln pt − ln pt−4)

where pt is the chain-weighted GDP deflator.

In order to account for the fact that real GDP is often subject to substantial revi-

sions, it is standard to use the real-time values of GDP available at the Philadelphia Fed-

eral Reserve Bank’s website. (http://research.stlouisfed.org/fred2). The notion is that

the Federal Reservemakes decisions using the then-current values of GDP. Revised val-

ues are only available after a substantial delay. The output gap is obtained by detrending

the real output data with a Hodrick–Prescott (HP) filter as described in Chapter 4.

Specifically, beginning with t = 1963Q2, the HP filter is applied to the real-time out-

put series running from 1947Q1 through t. The filtered series represents the trend values
of real GDP. Call y ft the last observation of the filtered series. We construct the output

gap for time period t (yt) as the percentage difference between real-time output at t and
the value of y ft We then increase t by one period and repeat the process. The aim is not

to ascertain the way that real output evolves over the long-run. Instead, the goal is to

obtain a reasonable measure of the pressure felt by the Federal Reserve to use monetary

policy to affect the level of output.

In applied work it is typical to estimate the Taylor rule over a number of sample

periods reflecting the fact that a change in the Federal Reserve’s operating procedures

occurred in 1979Q4, the Volker disinflation ended by 1983Q1, Alan Greenspan became

Fed Chairman in August 1987, and Ben Bernanke became Chairman in February 2006.

Consider the estimated model for the 1979Q4–2007Q3 sample period:

it = −0.269 + 0.464𝜋t + 0.345yt + 0.810it−1 AIC = 500.75 and SBC = 511.63

(−1.47) (6.05) (5.16) (21.83)

The estimated model appears to be reasonable in that the coefficients on infla-

tion and the output gap are both positive and significant at conventional levels. The

coefficient on the lagged interest rate (i.e., 𝛾1 = 0.810) suggests a substantial amount

of interest rate smoothing. In the long-run, it responds more than proportionally to

changes in 𝜋t[since 0.464∕(1 − 0.810) = 2.44] so that the real interest rate rises (falls)
when inflation increases (decreases).

A number of authors have questioned the linear form of the Taylor rule and have

argued that the Federal Reserve’s reactions to 𝜋t and yt are best modeled as a nonlinear

process. For example, it is likely that the Federal Reserve prefers inflation to be below

the target than above the target. Moreover, it is probable that that the Federal Reserve

prefers a positive output gap than a negative one.

The point is that interest rate changes should be more dramatic when inflation is

high and/or output is low. As such, it seems natural to estimate the Taylor rule as a

threshold regression using either the inflation rate or the output gap as the threshold

variable. Since we do not know the delay factor, we can estimate four threshold regres-

sions with 𝜋t−1, 𝜋t−2, yt−1 and yt−2 as the threshold variables. For each regression, the
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consistent estimate of 𝜏 is obtained using a grid search over all potential thresholds

using a trimming value of 15%. The estimated threshold value, sum of squared resid-

uals (SSR), AIC, and SBC for each of the four regressions are

𝛕 SSR AIC BIC

𝜋t−1 3.527 50.80 455.93 477.67

𝜋t−2 3.527 50.42 455.08 476.83

yt−1 −1.183 63.97 481.75 503.49

yt−2 −1.565 53.41 461.53 483.28

Notice that all of the threshold regressions have a better fit than the linear model.

Moreover, if you bootstrap the sample F-statistics, you will find that all are highly sig-
nificant. Nevertheless, since 𝜋t−2 provides the best fit, we should use it as the threshold
variable. As such, the estimated Taylor rule is

it = 1.383 + 1.055𝜋t + 0.472yt + 0.374it−1 when 𝜋t−2 ≥ 3.527

(3.02) (10.56) (6.25) (5.75)

and

it = −0.440 + 0.227𝜋t + 0.305yt + 0.967it−1 when 𝜋t−2 < 3.527

(−1.39) (1.88) (3.85) (24.98)

Notice the coefficients on 𝜋t and yt are much greater in the high-inflation regime

than in the low inflation regime. Moreover, the interest rate smoothing coefficient is

far greater when inflation is low than when inflation is high. In essence, in the high

inflation regime, the Federal Reserve is far more policy active than in the low inflation

regime. Also notice that the linear variant of the rule seems to ‘average’ the responses

of the Federal Reserve across the high and low inflation regimes.

Capital Stock Adjustment with Multiple Thresholds

Boetel, Hoffman and Liu (2007) estimate an interesting model that contains three

regimes. The problem addressed in the paper is that pork producers do not always

adjust their capital input in the face of changing market conditions. However, there are

times when even a very small change in market conditions induces a large adjustment

in the capital stock. Their model asserts that there is a ‘normal’ range for the price

of hogs and that price changes within this range will induce a sluggish investment

response. For our purposes, the key variables in the model are

Kt − Kt−1 = 4569 + 6360I1t + 6352I2t + 452pHt−1− 2684pFt−1 + · · · + 𝜀t
(3.30) (5.59) (5.20) (1.84) (−3.66)

where Kt is the size of the breeding stock, pHt−1 is a measure of the output price of

hogs, and pFt−1 is a measure of the price of feed. The indicators functions are such

that I1t = 1 if pHt−1 > 𝜏high = 1.1185 and I2t = −1 if pHt−1 < 𝜏low = 1.1105. The use
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of lagged values for the dependent variables is designed to reflect a one period delay

between the time of the investment decision and its realization.

It should not be surprising that the net acquisition of the breeding stock (Kt − Kt−1)
is positively related to the price of hogs and negatively related to the price of feed. An

appealing feature of the model is that the indicator functions multiply the intercepts but

not the variable pFt−1. Boetel, Hoffman and Liu (2007) note that allowing all variables

to have asymmetric effects on Kt − Kt−1 would entail estimating a large number of

parameters with a consequent loss of degrees of freedom.

Notice that the three regimes distinguished by the value of pHt−1 relative to two

threshold values. When pHt−1 is between 𝜏high and 𝜏low, I1t and I2t = 0 so that the

intercept is 4569. Instead, when pHt−1 > 𝜏high, I1t = 1 the intercept is 10929 and when

pHt−1 < 𝜏low, I2t = −1 the intercept is 8. Thus, there is a high-, sluggish- and disinvest-
ment regime whose presence is dependent on the value of pHt−1. As such, it would be

a mistake to conclude that the slope coefficient 452 measures the full effect of a price

change on net investment. When the value of pHt−1 crosses one of the thresholds, the
change in investment is enhanced since the intercept changes along with the price. Also

note that price changes within the interval 𝜏high to 𝜏low, will little effect on investment.

Boetel, Hoffman and Liu (2007) use a different method than the one described

above to estimate the two threshold values appearing in their model. First, they perform

a grid search to find the single threshold value that provides the smallest value of sum

of squared residuals. Let 𝜏1 denote this threshold value. Next, maintaining the value of

𝜏1, they estimate a second threshold—say 𝜏2—so as to further minimize the residual

sum of squares. Although Hansen (1999) shows that this second threshold estimate is

efficient, the first is not since it was estimated in the absence of the second threshold.

Finally, they fix the value of 𝜏2 and reestimate the threshold value of 𝜏1 so as to provide

the smallest value of the sum of squared residuals. An alternative would have been to

use the graphical method discussed in Section 5.

7. SMOOTH TRANSITION MODELS

For some processes, it may not seem reasonable to assume that the threshold is sharp.

Instead the speed of adjustment may be the type of nonlinear process shown in Panel

(b) of Figure 7.1. Smooth transition autoregressive (STAR) models allow the autore-

gressive parameters to change slowly. Consider the special NLAR model given by:

yt = 𝛼0 + 𝛼1yt−1 + 𝛽1yt−1f (yt−1) + 𝜀t

If f () is a smooth continuous function, the autoregressive coefficient (𝛼1 + 𝛽1)
will change smoothly along with the value of yt−1. There are two particularly useful

forms of the STAR model that allow for a varying degree of autoregressive decay. The

logistic version of the STARmodel (called the LSTARmodel) generalizes the standard

autoregressive model such that the autoregressive coefficient is a logistic function:

yt = 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + 𝜃[𝛽0 + 𝛽1yt−1 + · · · + 𝛽pyt−p] + 𝜀t (7.19)

where

𝜃 = [1 + exp(−𝛾(yt−1 − c))]−1 (7.20)
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Note that 𝛾 is called the smoothness parameter. In the limit, as 𝛾 → 0 or ∞,

the LSTAR model becomes an AR(p) model since the value of 𝜃 is constant.

For intermediate values of 𝛾 , the degree of autoregressive decay depends on

the value of yt−1. As yt−1 → −∞, 𝜃 → 0 so that the behavior of yt is given by

𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + 𝜀t. Similarly, as yt−1 → +∞, 𝜃 → 1 so that the behavior

of yt is given by (𝛼0 + 𝛽0) + (𝛼1 + 𝛽1)yt−1 + · · · + 𝜀t. Thus, the intercept and the

autoregressive coefficients smoothly change between these two extremes as the value

of yt−1 changes.
The exponential form of the model (ESTAR) uses (7.19), but replaces (7.20) with

𝜃 = 1 − exp [−𝛾(yt−1 − c)2] 𝛾 > 0.

Notice that 𝜃 contains a squared term so that the coefficients for the ESTARmodel

are symmetric around yt−1 = c. As yt−1 approaches c, 𝜃 approaches 0 so that the behav-
ior of yt is given by 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + 𝜀t As yt−1 moves further from c, 𝜃
approaches 1 so that the behavior of yt is given by (𝛼0 + 𝛽0) + (𝛼1 + 𝛽1)yt−1 + · · · + 𝜀t.

The ESTAR model has proven to be useful for periods surrounding the turning points

of a series (i.e., periods in which y2t−1 will be extreme) in that such periods have differ-

ent degrees of autoregressive decay than others. Since the ESTAR model is symmetric

around yt−1 = c so that it can approximate gravitational attraction as in Figure 7.1. Also

note that as 𝛾 approaches zero or infinity, the model becomes an AR(p) model since 𝜃

is constant. Otherwise, the model displays nonlinear behavior.

You can see the difference between the LSTAR and ESTAR models by examining

Figure 7.8. The top panel constructs 𝜃 = [1 + exp(−𝛾(yt−1 − c))]−1 for c = 0 and values

of 𝛾 = 1 and 2. As yt−1 ranges from −5 to +5, the value of 𝜃 ranges from 0 to 1. Note

that the S-shape of the transition is sharper, the greater is 𝛾 . For large values of 𝛾 , the

adjustment is so sharp that LSTARmodel acts as a TAR process. The bottom panel also

uses c = 0 and values of 𝛾 = 1 and 2, but constructs the transition function using the

ESTAR formula 𝜃 = 1 − exp[−𝛾(yt−1 − c)2]. You can see that the U-shape becomes

sharper as 𝛾 increases.

Michael, Nobay, and Peel (1997) make the point that transaction costs are an

important feature of international trade. Such costs may include the purchase of for-

eign exchange or forward cover, the payment of tariffs and import licensing fees, and

transportation costs. As in the band–TAR model, small deviations from PPP will not

be corrected through the process of commodity arbitrage. Larger discrepancies are

expected to be mean-reverting such that speed of adjustment is an increasing func-

tion of the size of the discrepancy. The idea is that very large discrepancies are quickly

eliminated but mid-size discrepancies are eliminated more slowly.

This type of behavior can be captured by an ESTAR process. The particular form

of the ESTAR model they consider is

Δyt = 𝛼0 + a1yt−1 +
p−1∑
i=1

𝛼iΔyt−i

+
[
1 − exp(−𝛾(yt−d − c)2)

](
𝛽0 + b1yt−1 +

p−1∑
i=1

𝛽iΔyt−i

)
+ 𝜀t

where yt is the real exchange rate.
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FIGURE 7.8 A Comparison of 𝜃 Values in the LSTAR and ESTAR Models

When yt−d = c, the adjustment process is given by

Δyt = 𝛼0 + a1yt−1 +
p−1∑
i=1

𝛼iΔyt−i + 𝜀t

and as yt−d → ±∞, the adjustment process is given by

Δyt = (𝛼0 + 𝛽0) + (a1 + b1)yt−1 +
p−1∑
i=1

(𝛼i + 𝛽i)Δyt−i + 𝜀t

The nature of transactions costs implies that a1 may be very small (or zero). After

all, when yt−d ≈ c, there is little incentive to arbitrage the market. However, since large

deviations are mean reverting, b1 should be negative. Their estimate of the monthly
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United States–United Kingdom real exchange rate over the 1921M1 − 1925M5 period

is (with t-statistics in parentheses):

Δyt = 0.40Δyt−1 + [1 − exp(−532.4(yt−1 − 0.038)2)]
(3.37) (2.44) (7.21)
(−yt−1 + 0.59Δyt−2 + 0.57Δyt−4 − 0.017)

(3.90) (2.89) (5.17)

The point estimates imply that when the real rate is near 0.038, there is no ten-

dency for mean-reversion since a1 = 0. However, when (yt−1 − 0.038)2 is very large,

the speed-of-adjustment coefficient is quite rapid. Hence, the adjustment of the real

exchange rate is consistent with the presence of transaction costs.

Pretests for STAR Models

It is not possible to directly perform an LM test of the presence of ESTAR or LSTAR

behavior. Consider the LSTAR model

yt = 𝛼0 + 𝛼1yt−1 + (𝛽0 + 𝛽1yt−1)[1 + exp(−𝛾(yt−d − c))]−1 + 𝜀t

For this model, the null hypothesis that the model is linear is equivalent to setting

𝛾 = 0. You should be able to see the problem with using the LM test. If 𝛾 = 0, the

magnitudes of 𝛽0, 𝛽1, and c are completely irrelevant because the model degenerates

into the linear process yt = 𝛾0 + 𝛾1yt−1 + 𝜀t where 𝛾0 = 𝛼0 + 𝛽0∕2 and 𝛾1 = 𝛼1 + 𝛽1∕2 .
The point is that the values of 𝛽0, 𝛽1, and c are unidentified under the null hypothesis that
the model is linear. For example, when 𝛾 = 0, the parameter values 𝛼0 = 1 and 𝛽0 = 0

yield identical results to those for 𝛼0 = 0 and 𝛽0 = 2. As such, it is not possible to test

for the STAR form of nonlinearity using a standard LM test. It is worth a few minutes

of your time to try the following exercise. Find the partial derivatives of the LSTAR

model and evaluate each under the null hypothesis 𝛾 = 0. Indicate the functional form

of the resulting auxiliary regression (Hint: 𝜕yt∕𝜕c evaluated at 𝛾 = 0 is zero).

Since the LM test fails for LSTAR (and ESTAR) adjustment, other means are nec-

essary to detect the presence of a smooth transition model. In contrast to a supremum

test, Teräsvirta (1994) develops a simple framework that can often detect the presence

of nonlinear behavior. Moreover, the method can be used to determine whether a series

is best modeled as an LSTAR or an ESTAR process. The test is based on a Taylor series

expansion of the general STAR model. For the LSTAR model, we can write 𝜃 as

𝜃 = [1 + exp(−𝛾(yt−d − c))]−1 ≡ [1 + exp(−ht−d)]−1

so that ht−d = 𝛾(yt−d − c).
Now, the trick is to take a third-order Taylor series approximation of 𝜃 with respect

to ht−d evaluated ht−d = 0. Recall that a Taylor series expansion of 𝜃 will have the

form:1

𝜃 ≅ 𝜃(0) + 𝜃′(0)ht−d + 𝜃′′(0)h2t−d∕2 + 𝜃′′′(0)h3t−d∕6

where 𝜃(0), 𝜃′(0), 𝜃′′(0), and 𝜃′′′(0) denote the derivatives of 𝜃 evaluated at ht−d = 0.
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Although taking the partial derivatives is a bit tedious, after a bit of manipulation

it is possible to obtain

𝜕𝜃

𝜕ht−d
= e−ht−d

(1 + e−ht−d )2
equals 1∕4 at ht−d = 0

𝜕2𝜃

𝜕h2t−d
= −e−ht−d (1 − e−ht−d )

(1 + e−ht−d )3
equals 0 at ht−d = 0

𝜕3𝜃

𝜕h3t−d
= e−ht−d (1 + e−2ht−d − 4e−ht−d )

(1 + e−ht−d )4
equals −1∕8 at ht−d = 0

Hence, the desired expansion of 𝜃 has the form

𝜃 = ht−d∕4 − h3t−d∕48

so that

yt = 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + (𝛽0 + 𝛽1yt−1 + · · · + 𝛽pyt−p)
(ht−d∕4 − h3t−d∕48) + 𝜀t

Since ht−d is linear in yt−d, [i.e., ht−d = 𝛾(yt−d − c)], we can write the approxima-

tion of the LSTAR model in the form:

yt = a0 + a1yt−1 + · · · + apyt−p + a11yt−1yt−d + · · ·
+ a1pyt−pyt−d + a21yt−1y

2
t−d + · · · + a2pyt−1y

2
t−d

+ a31yt−1y
3
t−d + · · · + a3pyt−py

3
t−d + 𝜀t.

Thus, you form the products of the regressors and the first, second, and third powers

of yt−d (i.e., yt−d, y
2
t−d, and y

3
t−d). In essence, you construct a special form of a GAR

model as in equation (7.1). Then, you can test for the presence of LSTAR behavior by

estimating an auxiliary regression:

et = a0 + a1yt−1 + · · · + apyt−p + a11yt−1yt−d + · · ·
+ a1pyt−pyt−d + a21yt−1y

2
t−d + · · · + a2pyt−1y

2
t−d

+ a31yt−1y
3
t−d + · · · + a3pyt−py

3
t−d + 𝜀t. (7.21)

The test for linearity is identical to testing the joint restriction that all nonlinear

terms are zero (i.e., a11 = · · · = a1p = a21 = · · · = a2p = a31 = · · · = a3p = 0). You

can perform the test using a standard F-test with 3p degrees of freedom in the numer-

ator. If you are not sure of the delay factor, the recommendation is to run the test using

all plausible values of d. The value of d that results in the smallest prob-value (i.e., the
value of d providing the best fit) is the best estimate of d.

With all of the background work completed, it is straightforward to rework the

details for an ESTAR model. Let 𝜃 be:

𝜃 = 1 − exp(−h2t−d)
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so that ht−d ≡ 𝛾1∕2(yt−d − c). Now, the partial derivatives are given by:

Equals Evaluated at ht−d = 0

𝜕𝜃∕𝜕ht−d 2ht−d exp(−h2t−d) 0

𝜕2𝜃∕𝜕h2t−d 2 exp(−h2t−d) − 4h2t−d exp(−h
2
t−d) 2

𝜕3𝜃∕𝜕h3t−d −12ht−d exp(−h2t−d) + 8h3t−d exp(h
2
t−d) 0

Unlike the LSTAR model, the expansion for the ESTAR model has the quadratic

form: 𝜃 = h2t−d. Thus, we can write the expansion of the ESTAR model without ht−d
and h3t−d. Hence, the Taylor series approximation has the form:

yt = 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + (𝛽0 + 𝛽1yt−1 + · · · + 𝛽pyt−p)(𝜋2h2t−d) + 𝜀t

= a0 + a1yt−1 + · · · + apyt−p + a11yt−1yt−d + · · · + a1pyt−pyt−d + a21yt−1y
2
t−d

+ · · · + a2pyt−1y
2
t−d + 𝜀t.

The key insight in Teräsvirta (1994) is that the auxiliary equation for the ESTAR

model is nested within that for an LSTARmodel. If the ESTAR is appropriate, it should

be possible to exclude all of the terms multiplied by the cubic expression y3t−d from

(7.21). Hence, the testing procedure follows these steps:

STEP 1: Estimate the linear portion of the AR(p)model to determine the order p and
to obtain the residuals {et}.

STEP 2: Estimate the auxiliary equation (7.21). Test the significance of the entire

regression by comparing TR2 to the critical value of 𝜒2. If the calculated

value of TR2 exceeds the critical value from a 𝜒2 table, reject the null

hypothesis of linearity and accept the alternative hypothesis of a smooth

transition model. (Alternatively, you can perform an F-test).

STEP 3: If you accept the alternative hypothesis (i.e., if the model is nonlinear),

test the restriction a31 = a32 = · · · = a3n = 0 using an F-test. If you reject
the hypothesis a31 = a32 = · · · = a3n = 0, the model has the LSTAR

form. If you accept the restriction, conclude that the model has the

ESTAR form.

Sometimes the tests for ESTAR versus LSTAR behavior outlined in STEP 3 may

not be clear cut. In such circumstances, Lin and Teräsvirta (1994) recommend the fol-

lowing procedure. To keep the notation compact, write the auxiliary equation given by

(7.21) as

et = 𝛼0 + A(L)yt−1 + (𝛽0 + B(L)yt−1)[𝜋1ht−d + 𝜋2h
2
t−d + 𝜋3h

3
t−d] + 𝜀t

where [𝜋1ht−d + 𝜋2h
2
t−d + 𝜋3h

3
t−d] is the Taylor series approximation of 𝜃 and A(L) and

B(L) are polynomials in the lag operator L. Consider the following hypotheses:

H0: All coefficients of (𝛽0 + B(L)yt−1)[𝜋1ht−d + 𝜋2h
2
t−d + 𝜋3h

3
t−d] = 0

H1: All coefficients of (𝛽0 + B(L)yt−1)𝜋3h3t−d = 0
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H2: All coefficients of (𝛽0 + B(L)yt−1)𝜋2h2t−d = 0 given that all coefficients of

(𝛽0 + B(L)yt−1)𝜋3h3t−d = 0

H3: All coefficients of (𝛽0 + B(L)yt−1)𝜋1ht−d = 0 given that all coefficients of

(𝛽0 + B(L)yt−1)[𝜋2h2t−d + 𝜋3h
3
t−d] = 0

As above, if you cannot reject H0, simply conclude that the model is linear. How-

ever, if you can rejectH0, obtain the prob-values forH1,H2 andH3. Since 𝜋2 should be

zero with an LSTAR but not an ESTAR process, if H2 has the smallest prob-value (so
that the restriction is more binding than the others), conclude that you have an ESTAR

process. Since 𝜋1 and 𝜋3 should be zero with an ESTAR process, if either H1 or H3 has

the smallest prob-values, conclude that you have an LSTAR process.

8. OTHER REGIME SWITCHING MODELS

The artificial neural network and the Markov switching model represent other types of

regime switching models that appear in the literature. Although they cannot be readily

estimated by OLS, it is worthwhile to review their properties.

The Artificial Neural Network

The artificial neural network (ANN) can be useful for nonlinear processes that have an

unknown functional form. The simple form of the ANN model is

yt = a0 + a1yt−1 +
n∑
i=1

𝛼i fi(yt−1) + 𝜀t (7.22)

where the function fi(yt−1) is a cumulative distribution or a logistic function such as

that in (7.20). For the case of the logistic function, we can write

yt = a0 + a1yt−1 +
n∑
i=1

𝛼i[1 + exp(−𝛾i(yt−1 − ci))]−1 + 𝜀t

Although the ANN is very similar to the LSTAR model, there are some important

differences. First, the ANN allows only the intercept to be time-varying; the autore-

gressive coefficient a1 is constant. As such, the level of the series is changing over

time. Second, the ANN uses n different logistic functions (called nodes). Kuan and

White (1994) prove that, for sufficiently large n, this type of model can approximate

any first-order nonlinear model arbitrarily closely. As such, the ANN is particularly

useful for estimating nonlinear relationships that have an unknown functional form.

Although the model can fit the data extraordinarily well, there is an obvious diffi-

culty in that the model does not have a clear economic interpretation. Since the ANN

can be extended to high-order autoregressive processes, it can have an extremely large

number of parameters. As such, there is a danger of overfitting the data. If you let n
become too large (i.e., if you use too many nodes) you will wind up fitting the noise

component of the data. The fact that R2 → 1 as n grows increasingly large, should not

be especially comforting if the goal is to forecast subsequent values of the series. Many

researchers would select the value of n using the parsimonious SBC.
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Notice that the parameters are not globally identified for n > 1. Numerical opti-

mization routines have difficulty finding the parameter values that minimize the sum

of squared residuals since many local minima often exist. To circumvent the problem,

a number of different routines are used to estimate the parameter values. Although the

details are not necessary for our purposes, it is instructive to consider the “recursive

learning” method discussed in White (1989). Suppose you use the first t observations
of your data set to obtain the nonlinear least squares estimates of the parameters. Let �̂�t
denote the vector of estimated parameters using these t observations and let ŷt+1 denote
the predicted value yt+1. The value of �̂�t acts as an initial condition in the difference

equation:

�̂�t+1 = �̂�t + 𝜂t(yt+1 − ŷt+1)

where 𝜂t is generally taken to be a multiple of vector of partial derivatives of (7.22)

with respect to the parameters evaluated at the point estimates of 𝜃t. The successive

values of �̂�t+1 are obtained until all the parameter estimates converge.

We can follow White (1989) and explore the ability of the ANN to mimic chaos.
Recall that a sequence {yt} is said to be chaotic if it is generated from a deterministic

difference equation such that it does not explode or converge to a constant or to a repet-

itive cycle. Thus, the sequence may appear to be random even though it is completely

deterministic. In particular, let y1 = y2 = 0.5 and suppose that the next 98 values of the

{yt} sequence are generated according to

yt = 1 − 1.4y2t−1 + 0.3yt−2

The actual and fitted values of the series are shown in Figure 7.9. Although just

two nodes were used to estimate the series, the fit of the ANN is quite reasonable. The
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FIGURE 7.9 The ANN Fitted to Chaos
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example illustrates the point that the ANN is capable if capturing a highly nonlinear

process when the functional form is completely unknown.

The Markov Switching Model

The basic threshold model allows the regime switch to depend on the magnitude of an

observable variable. If yt−d exceeds some threshold value, the system is in regime one;

otherwise, the system is in regime two. Although regime switching is more gradual in

the STAR and ANN models, the adjustment process depends on the current state of

the system. In contrast, the Markov switching model developed by Hamilton (1989),

posits that regime switches are exogenous. To take a simple example, suppose there

are two regimes (or states of the world) and that the autoregressive process for yt is
regime-dependent. In particular, let:

yt = a10 + a1yt−1 + 𝜀1t if the system is in regime 1

yt = a20 + a2yt−1 + 𝜀2t if the system is in regime 2

At this point, the model looks very much like a TAR model of (7.15) in that the

autoregressive coefficient is a1 in regime 1 and a2 in regime 2. However, in contrast

to the TAR model, there are fixed probabilities of a regime change. If p11 denotes the
probability that the system remains in regime one, (1 − p11) denotes the probability

that the system switches from regime one to regime two. Similarly, if p22 denotes the
probability that the system remains in regime two, (1 − p22) is the probability that the

system switches from regime two to regime one. Thus, the switching process is actually

a first-order Markov process. No attempt is made to explain the reason that regime

changes occur and no attempt is made to explain the timing of such changes. There are

several important features of the Markov switching model:

1. Since the transition probabilities (i.e., p11 and p22) are unknown, they need to
be estimated along with the coefficients of the two autoregressive processes.

As in the TAR model, if one of the regimes rarely occurs, the coefficients for

that regime will be poorly estimated.

2. The overall degree of persistence depends on the autoregressive parameters

and the transition probabilities. For example, if a1 > a2 and p11 is large, the
process will tend to remain in the regime with substantial autoregressive per-

sistence. Moreover if p22 is small, the system will have a tendency to switch

into regime one from regime two.

3. The probabilities p11, (1 − p11), p22 and (1 − p22) are all conditional probabil-
ities. For example, if the system is in regime two, (1 − p22) is the conditional
probability that the system switches into regime one. It is also of interest to

calculate the unconditional probability that the system is in regime one (p1)
and in regime two (p2). In Exercise 3 at the end of this chapter, you are asked
to show that

p1 = (1 − p22)∕(2 − p11 − p22)
p2 = (1 − p11)∕(2 − p11 − p22)

Thus, if p11 = 0.75 and p22 = 0.5, p1 = 2∕3 and p2 = 1∕3.
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4. A number of papers, including Clements, and Krolzig (1998), try to use var-

ious statistical means to distinguish between a Markov switching model and

a STAR model. It is very difficult to do so, especially if the Markov switch-

ing model is modified to allow the transition probabilities to depend on the

variables in the model.

Usually, Markov switching models are applied to estimate the level of a series.

However, Edwards and Susmel (2000) use a regime-switching model to examine the

interest rate volatility in emerging markets. It is argued that the standard GARCH

model is not applicable to emerging markets because of the occurrence of large shocks.

Although a GARCHmodel estimated using a t-distribution could account for fat-tailed
returns, such models will typically predict too much volatility persistence. As illus-

trated in Chapter 3, the sum of the coefficients in a GARCH model is often close to

unity. As an alternative, consider a three-state model containing a low-volatility regime,

a moderate volatility regime and a high-volatility regime. If the probability of switch-

ing out of a high-volatility state is large, high volatility does not need to be extremely

persistent.

Edwards and Susmel use weekly interest rate data for Argentina, Brazil, Chile,

Hong Kong, and Mexico. They begin by estimating an AR(1) equation for the model

of the mean and a GARCH(1, 1) model for the variance. Consider the estimated set

of equations for Brazil (with standard errors in parentheses) over the April 18, 1994,

through April 16, 1999, period:

Δrt = −0.0133 − 0.217Δrt−1 + 𝜀t
(0.04) (0.10)

ht = 0.058 + 1.321𝜀2t−1 + 0.395ht−1
(0.03) (0.25) (0.05)

where rt is the Brazilian short-term interest rate and ht is the conditional variance. The
model of the mean is in first differences since rt is a unit root process.

Although the coefficients are significant at the 5% level, there is a disturbing fea-

ture of the model. Notice that the sum of the coefficients in the equation for ht exceeds
unity. As such, the model predicts that volatility is explosive. As an alternative, Edward

and Susmel consider the volatility switchingARCH (SWARCH)model. The basic form

of the model is

ht∕𝛾s = 𝛼0 +
q∑
i=1

𝛼i(𝜀2t−i∕𝛾s)

where s = 1, 2 or 3 refers to the current state (i.e., low, moderate, or high).

Note that one of the values of 𝛾s must be normalized to equal unity. Moreover, if

𝛾1 = 1, the other values of 𝛾s measures the ratio of the conditional variance in state s
relative to that in state 1. The estimated SWARCH model for Brazil is

Δrt = −0.087 + 0.016Δrt−1 + 𝜀t
(0.03) (0.05)

ht∕𝛾s = 0.131 + 0.068𝜀2t−1∕𝛾s
(0.03) (0.10)
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and

𝛾1 = 1, 𝛾2 = 4.851, and 𝛾3 = 128.51

It is striking that the high-volatility state is more than 128 times more volatile than

the low-volatility state. Nevertheless, the probability of a switch from the high-volatility

state to the other states was found to be high. Hence, the high-volatility state was found

to be short-lived.

9. ESTIMATES OF STAR MODELS

This section illustrates a number of techniques used in the estimation of regime

switching models. The goal is to demonstrate a number of practical issues that arise in

applied work.

An LSTAR Model

To illustrate the process of estimating an LSTARmodel, 250 realizations of the follow-

ing sequence were generated:

yt = 1 + 0.9yt−1 + (−3 − 1.7yt−1)∕[1 + exp(−10(yt−1 − 5))] + 𝜀t (7.23)

You can follow along using the data in the file LSTAR.XLS. If you compare

(7.23) to (7.20) you will see that the smoothness parameter 𝛾 = 10 and that 𝜃 = 1∕[1 +
exp(−10(yt−1 − 5)]. As yt−1 → −∞, the behavior of yt is governed by the autoregres-

sive process 1 + 0.9yt−1 + 𝜀t and as yt−1 → +∞, the behavior of yt is governed by

−2 − 0.8yt−1 + 𝜀t. Note that in the neighborhood of yt−1 = 0, the value of 𝜃 is approx-

imately equal to zero. The 250 realizations are shown in Figure 7.10. The simulated
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FIGURE 7.10 The Simulated LSTAR Process
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sequence has a sample mean of 0.62 and a standard deviation of 3.43. The first six

autocorrelations are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6
0.552 0.270 0.067 −0.039 −0.136 −0.161

The first few autocorrelations seem to exhibit geometric decay and those for lags

5 and 6 have prob-values near 5% (2 ⋅ 2501∕2 = 0.1265). If we did not know the actual

data-generating process, we might be tempted to estimate the series as a linear AR(1)

process. In fact, the estimated linear model looks to be quite plausible; consider:

yt = 0.278 + 0.552yt−1 + et
(1.50) (10.42) (7.24)

and

AIC = 1901.19 SBC = 1908.22

The residual autocorrelations are such that there is no linear relationship in the

residuals. The first 12 autocorrelations of the residuals are

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12
0.03 0.01 −0.06 −0.02 −0.1 −0.04 −0.11 −0.09 0.07 −0.00 −0.05 −0.06

The Ljung–Box Q-statistics are such that the prob-values for the first four, eight,
and 12 lags are 0.900, 0.347, and 0.471, respectively. Since the autocorrelations of the

residuals are not significant at conventional levels, you might be tempted to conclude

that the true data-generating process was an AR(1). However, a battery of nonlinear

diagnostic testing reveals a very different picture. Note first that the autocorrelations of

the squared residuals also suggest that the linear model is adequate. The autocorrela-

tions of the squared residuals are

ACF of the squared residuals

𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12
0.03 −0.04 −0.07 −0.10 −0.09 −0.10 −0.08 −0.07 0.14 0.00 −0.02 −0.05

In contrast, the RESET test indicates a nonlinear relationship. Call et and ŷt the
residuals and the fitted values from the linear model, respectively. Given that the

best-fitting model is an AR(1), we can use the residuals from (7.24) to obtain

et = 0.932 + 0.710yt−1 + 0.058ŷ2t − 0.157ŷ3t − 0.034ŷ4t
(4.24) (9.04) (0.64) (−9.39) (−4.84)

Notice that most of the individual coefficients appear to be statistically significant.

However, you should not rely on the individual t-statistics because the regressors are
highly correlated; for example, large values of ŷ2t will be associated with large values

of ŷ4t . The issue is whether the values of ŷit have any explanatory power as a group.

The F-statistic for the null hypothesis 𝛼1 = 𝛼2 = 𝛼3 = 0 equals 95.60. Since there are

three degrees of freedom in the numerator (we impose three restrictions) and 244 in the

denominator (250 observations minus 5 estimated coefficients and 1 lost observation
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resulting from the lagged value yt−1), we can reject the null hypothesis at any conven-

tional significant level (the 1% critical value is 3.86). Hence, we conclude that the series

exhibits some form of nonlinear behavior.

It is quite a bit more difficult to pin down the form of the nonlinearity. Since the

data are simulated, there is no possibility of using economic theory to suggest the most

probable form of nonlinearity. Hence, one way to proceed is to estimate a number of

nonlinear models and select the one that fits the best. However, the danger of this pro-

cedure is that you are likely to overfit the data. A more prudent way to proceed is to

perform a number of Lagrange Multiplier tests to determine which models are likely

to be the most plausible.

One test that can be useful to select the functional form is Teräsvirta’s test for

LSTAR versus ESTAR behavior. Pretend that we do not know the value of the delay

parameter d. It seems natural to begin with d = 1. From the Taylor series expansion

for a first-order LSTAR model, we need to regress the residuals from the linear model

on the regressors (i.e, a constant and yt−1) and on yt−1, y
2
t−1 and y

3
t−1 multiplied by the

regressors. The estimated auxiliary regression is:

et = 0.933 + 0.076yt−1 − 0.027y2t−1 − 0.039y3t−1 − 0.003y4t−1
(4.35) (9.21) (−0.987) (−11.52) (−4.84)

The F-statistic for the entire regression is 71.70; with four numerator and 244

denominator degrees of freedom, the regression is highly significant. Moreover, the

F-statistic for the presence of the nonlinear terms y2t−1, y
3
t−1 and y4t−1 is 95.60; with

three numerator and 244 denominator degrees of freedom, we can conclude that there

is STAR behavior. Next, we can determine if LSTAR or ESTAR behavior is the most

appropriate. Given the t-statistic on the coefficient for y4t−1, we cannot exclude this

expression from the auxiliary equation. Hence, we can rule out ESTAR behavior in

favor of LSTAR behavior. It is possible that the delay parameter is two even though

yt−2 does not directly appear in the model. To determine whether yt−1 or yt−2 is the

most appropriate threshold variable, you can estimate the following auxiliary equation

using d = 2

et = 0.738 + 0.047yt−1 − 0.158yt−1yt−2 − 0.005yt−1y
2
t−2 + 0.003yt−1y

3
t−2

TheF-value for this regressionwas only 5.73. Since the d = 1 yields a substantially

better fit than the d = 2, we can conclude that the yt−1 is the most appropriate threshold

variable. Thus, it seems reasonable to estimate a nonlinear model of the form

yt = 𝛼0 + 𝛼1yt−1 + (𝛽0 + 𝛽1yt−1)∕(1 + exp(−𝛾(yt−1 − c))) + 𝜀t

Since the coefficients are multiplicative, OLS cannot be used to obtain the least

squares estimates of the coefficients. Instead, it is standard to estimate such models

using nonlinear least squares (NLLS) or maximum likelihood estimation. Consider the

estimates obtained using NLLS

yt = 0.941 + 0.923yt−1 + (−5.86 − 1.18yt−1)∕(1 + exp(−11.21(yt−1 − 5.01))) + 𝜀t
(14.43) (45.15) (−2.07) (−2.45) (6.77) (312.33)

AIC = 1365.22 SBC = 1386.33 (7.25)
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The point estimates of all the parameters except 𝛽0 are every close to their true

values. Clearly, 𝛽0, is poorly estimated since is within 2 standard deviations from zero.

TheAIC and the SBCboth select the LSTARmodel over the linearmodel. Note that you

need to be wary of the t-statistics for several reasons. First, the nonlinear least squares
estimates do not rely on the assumption that the error term is normally distributed.

Second, the estimates are all performed using numerical methods so that estimation

is not exact and t-statistics can be inflated. Third, some parameters are unidentified

under the null hypothesis 𝛾 = 0; clearly, the t-statistic for the null hypothesis 𝛾 = 0

is problematic. Given these caveats, the estimated model does capture the essential

features of (7.23).

In many circumstances, the numerical methods used to estimate the parameters of

STAR models have difficulty in simultaneously finding 𝛾 and c. It is crucial to provide
the numerical routine with very good initial guesses. If there are problems, a popular

modification of Haggan and Ozaki’s (1981) method is to estimate 𝛾 using a grid search.

Fix 𝛾 at its smallest possible value and estimate all of the remaining parameters using

NLLS. Slightly increase the value of 𝛾 and reestimate the model. Continue this process

until the plausible values of 𝛾 are exhausted. Use the value of 𝛾 yielding the best fit.

Note that if 𝛾 is large, the transition is sharp in the neighborhood of yt−d = c so that

the LSTAR model acts like a TAR model—in fact, if 𝛾 is large and convergence to a

solution is a problem, it could be easier to estimate a TAR model instead of the LSTAR

model. Teräsvirta (1994) notes that rescaling the expressions in 𝜃 can aid in finding a

numerical solution.With an LSTARmodel, he found it useful to standardize by dividing

exp[−𝛾(yt−d − c)] by the standard deviation of the {yt} series. With an ESTAR model,

he standardized by dividing exp[−𝛾(yt−d − c)2] by the variance of the {yt−d} series. In
this way, the threshold value c is measured in standardized units so that a reasonable

value for the initial guess (e.g., c = 1 standard deviation) can be readily made. An

example is shown in Question 5 below. There is an extended discussion of some of

these issues in Chapter 3 of the Programming Manual accompanying the text.

The Real Exchange Rate as an ESTAR Process

As indicated earlier, Michael, Nobay, and Peel (1997) argue that transaction costs

should make real exchange rates behave as ESTAR processes. For our purposes, the

series of interest is now the annual observations of the U.K.–U.S. real rate over the

1791 to 1992 period. The first issue is to determine whether or not the rates are sta-

tionary; after all, if the rates are unit root processes, the theory of PPP fails. As such,

they use augmented Dickey–Fuller tests to determine whether the series contains a unit

root. The use of annual data results in very short lags. If we ignore the intercept, the

estimated equation for the U.K.–U.S. rate is

Δyt = −0.12yt−1 + 0.12Δyt−1 + 𝜀t
(−3.62) (1.75) (7.26)

In absolute value, the t-statistic of −3.62 exceeds critical value reported in the

Dickey–Fuller table; as such, it is possible to reject the null hypothesis of a unit root in

the real exchange rate. The point estimate of−0.12 implies a fairly slow speed of adjust-

ment; approximately 88% of the current period’s discrepancy from PPP is expected to
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persist into the next year. Nevertheless, this linear model forces the speed of adjust-

ment to be constant. (Some of the issues concerned with unit roots and nonlinearity are

discussed in detail in Section 11.)

Given that the series is stationary, the next issue is to determine whether

Teräsvirta’s four-step methodology indicates the presence of ESTAR adjustment.

Given the lag lengths, the most plausible value of the delay parameter d is unity.

Nevertheless, the authors follow the standard procedure and select the value of d that

results in the best fit of the auxiliary equation. As suspected, the value d = 1, fits

the data better than the alternatives d = 2 or d = 3. The auxiliary regression has the

form as (7.21). The prob-value of F-statistic for the null hypothesis that all values of
aij = 0 in the U.K.–U.S. auxiliary equation is 0.076. Hence, there is weak evidence of

nonlinear behavior in the U.K.–U.S. rate.

Given the presence of threshold adjustment, the next issue is to test for LSTAR

versus ESTAR adjustment. The F-test for the null hypothesis that all values of

a3i = 0 has a prob-value 0.522; as such, it is not possible to reject the null hypothesis

of ESTAR adjustment. Notice that the test for nonlinearity has less power than

the test for ESTAR versus linear adjustment. The auxiliary equation for nonlinear

adjustment has coefficients for both the LSTAR and ESTAR models. If there is

ESTAR adjustment, a number of the coefficients are unnecessary. Hence, the authors

constrain all values of a3i = 0, and test whether the remaining coefficients are zero.

The F-statistic for this test has a prob-value of 0.028. Hence, this test with enhanced

power suggests ESTAR versus linear adjustment.

10. GENERALIZED IMPULSE RESPONSES
AND FORECASTING

This section presents two different estimated threshold models. Each was selected

to emphasize a different aspect of the general methodology. First, Potter’s (1995)

TAR model of U.S. GNP is presented. The interesting feature of Potter’s study is the

calculation of impulse responses from a TAR model. Second, Enders and Sandler’s

(2002) forecast function for the number of casualties caused by transnational terrorists

is examined.

Nonlinear Estimates of GNP Growth

Potter (1995) argues that a nonlinear model of U.S. GNP growth performs much better

than a linear one. To begin, Potter estimates the following AR(5) model of the logarith-

mic change in the quarterly values of real U.S. gross national product (GNP) growth
over the 1947Q1 to 1990Q4 period:

yt = 0.540 + 0.330yt−1 + 0.193yt−2 − 0.105yt−3
(4.42) (4.23) (2.35) (−1.27)
−0.092yt−4 − 0.024yt−5 + 𝜀t AIC∗ = 8.00

(−1.12) (−0.308)

where yt = 100∗[log(GNPt) − log(GNPt−1)]
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Potter also estimates a two-regime TAR model allowing the variances to differ

across regimes. He states that pre-testing yields a delay factor of 2 (i.e., d = 2) and a

threshold of zero. After purging the threshold regression of insignificant coefficients,

Potter reports the following TAR model:

yt = 0.517 + 0.299yt−1 + 0.189yt−2 − 1.143yt−5 + 𝜀1t yt−2 > 0

(3.21) (3.74) (1.77) (−16.57)
yt = −0.808 + 0.516yt−1 − 0.946yt−2 − 0.352yt−5 + 𝜀2t yt−2 ≤ 0

(−1.91) (2.79) (−2.68) (−1.63)

The presence of the AR(5) terms is unusual because the data are seasonally

adjusted and there is no particular reason to suppose that the fifth lag (but not lags

3 and 4) affect the contemporaneous value of GNP. However, Potter reports that

the AR(3) and AR(4) coefficients are not statistically different from zero at the 5%

significance level. There are 37 observations in the contractionary regime (yt−2 ≤ 0)
and 133 observations in the expansionary regime (yt−2 > 0). The estimated variance

of 𝜀1t = 0.763 and the estimated variance of 𝜀2t = 1.50. Thus, the magnitudes of

shocks while in the contractionary regime tend to be quite large. The large negative

coefficient in the AR(2) term in the contractionary regime has an interesting economic

implication. When yt−2 < 0, there tends to be a sharp reversal in the contraction of

output since the product of −0.946 and yt−2 is positive.

RECURSIVE FORECASTS The AIC was constructed by combining the resid-

ual sums of squares from the two segments of the TAR model. This value of the

AIC∗ (= −4.89) clearly selects the TAR model over the linear model. In order to

compare the out-of-sample forecasts, the following procedure was used. Beginning

with the sample period 1947Q1 through 1960Q1, linear and TAR models were esti-

mated. For each model, the one-step-ahead forecast was obtained. Then, the sample

period was updated by one quarter and new linear and TAR models were estimated.

These updated models were used to obtain one-step-ahead forecasts. Repeating this

procedure though the end of the sample yielded two sets of one-step-ahead forecasts.

The correlation of the forecasts with the actual values of output growth was 0.23 for

the linear model and 0.35 for the TAR model. As such, the forecasting performing

performance of the TAR model exceeds that of the linear model.

Impulse Responses

In a linear model, the impulse responses are not history dependent and the magnitude

of the shock does not alter the time-profile of the responses. For example, in the linear

AR(1) model yt = 𝜌yt−1 + 𝜀t, the impulse responses are given by

yt =
∞∑
i=0

𝜌i𝜀t−i

Hence, the effect of a one-unit shock on yt is 1, the effect of the shock on yt+1
is predicted to be 𝜌 (i.e., 𝜕yt+1∕𝜕𝜀t = 𝜕yt∕𝜕𝜀t−1 = 𝜌), the effect the shock on yt+2 is
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predicted to be 𝜌2, and so forth. Moreover, the effects of a two-unit shock are simply

twice those for the one-unit shock and the effects of a negative shock are simply the

negative of those for positive shocks. However, the interpretation of impulse response

functions for a nonlinear model is not straightforward. The reason is that the impulse

responses are history dependent. The effect of an 𝜀t shock on the time path of the

system depends on the magnitudes of the current and subsequent shocks. Clearly, the

sign of the shocks can matter. To take a simple example, in a TAR model with 𝜏 = 0,

the impulse responses for a one-unit positive shock will have a different time path than

a one-unit negative shock. Moreover, the size of the shocks matter; if you are in the

contractionary regime, a small positive shock can imply a different time profile than a

very large shock since the small shock is less likely to induce a regime change. Thus, to

calculate impulse responses, it is necessary to specify the history of the system and the

magnitude of the shock. Moreover, the effects of a shock to 𝜀t on yt+10 will depend on
the magnitudes of the shocks that take place in periods (t + 1) through (t + 9). There are
several ways to attack the problem. Potter considers shocks of four different magnitudes

−2%, −1%, 1%, and 2%. Moreover, he considers several different histories. Consider:

◾ In the three quarters of 1983Q3, 1983Q1 and 1984Q1, real GNP growth at an

annual rate was a remarkable 7.1%, 8.2%, and 8.2%, respectively. As such,

even a −2% shock would cause GDP growth to remain in the positive regime.

Hence, the responses are very similar to those that would are obtained from a

linear model. Since there is no regime switching, the 1% and 2% shocks are

multiples of each other. The four impulse responses for this particular history

are shown in the top panel of Figure 7.11.

◾ The situation was very different in 1970Q2 in that the economy experienced

a mild downturn. For 1969Q4, 1970Q1 and 1970Q2, GNP growth measured

at an annual rate was −1.9%,−0.46%, and 0.91%, respectively. Hence, the
negative, but not the positive, shocks push GNP growth across the threshold of

zero. The lower panel of Figure 7.11 shows the asymmetric responses. Given

that the contractionary regime has a AR(2) coefficient that is nearly −1.0,
negative shocks are less persistent then positive shocks. As such, you can see

the rather quick turnaround in GNP growth predicted to begin in 1970Q3.
Also notice that the effects of the −1% and −2% shocks are not proportional to

each other.

Notice that these impulse response functions trace out the effects of different sized

𝜀t shocks (t = 1984Q1 and 1970Q2) assuming subsequent shocks are all zero. Using

the methods discussed below, it is possible to generalize the impulse response func-

tions to allow for the effects of any ensuing shocks. The general point is that the

impulse responses from a nonlinear model depend on the sign and magnitude of the

shocks as well as the initial state, or history, of the system. Tracing out the effects of a

single period’s shock alone is problematic since it will never be that case that all subse-

quent shocks will equal zero. To remedy the problem, Koop, Pesaran and Potter (1996)

develop a generalized impulse response function. Consider the simple TAR model

yt = It0.9yt−1 + (1 − It)0.1yt−1 + 𝜀t where It = 1 if 𝜏 ≥ 0 and 0 otherwise. To trace out

the effects of a single one-unit shock to 𝜀1, suppose that the initial value is y0 = 0. As
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FIGURE 7.11 Impulse Responses for Two Histories

shown in columns 2 and 3 of Table 7.2, the first value is y1 = 1 and, since there are never

any regime changes, the subsequent values decay at the rate yt = 0.9yt−1. However, this
time path is misleading because it ignores the possibility or regime switching.

The columns 4 and 5 of Table 7.2 illustrate the effects of drawing the subsequent

values of {𝜀t} from the model’s residuals. Given 𝜀1 = 1, if the random draws are such

that 𝜀2 = −1, 𝜀3 = 0, 𝜀4 = 1, column 5 indicates that the resulting values for yt are:
y2 = −0.100, y3 = −0.010, and y4 = 0.999. As you can infer from the table, drawing

𝜀2, 𝜀3, and 𝜀4 means that decay is not geometric since the process switches between

regimes.

Table 7.2 Impulse Responses

Time 𝜺t yt 𝜺t yt 𝜺t y a
t

dt = yt − y a
t

0 0.000 0.000 0.000

1 1 1.000 1 1.000 0 0.000 1.000

2 0 0.900 −1 −0.100 −1 −1.000 0.090

3 0 0.810 0 −0.010 0 −0.010 0.000

4 0 0.729 1 0.999 1 0.990 0.009
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Now, as displayed in column 6, suppose 𝜀1 = 0 but 𝜀2, 𝜀3, and 𝜀4 are unaltered.

With these values, the alternative values for yt, say y
a
t , are y

a
1
= 0.00, ya

2
= −1.000,

ya
3
= −0.010 and ya

4
= 0.990. The difference between the two series, dt, is shown in the

last column of the table. The difference reflects the effects of a one-unit 𝜀1 shock on

the yt series.
Of course, other draws for 𝜀2, 𝜀3, and 𝜀4 would result in different values for dt.

However, it is possible to repeat the process for several thousand Monte Carlo replica-

tions. Taking the sample average of the resultant dt series yields a generalized impulse

response function for a particular history (i.e., y0 = 0) and for a particular sized shock

(𝜀1 = 1). The solid line in Figure 7.12 shows the averaged impulse responses from

2000 replications when drawing {𝜀t} from a normal distribution with a variance equal

to unity. The dashed line shows the geometric decay resulting from yt = 0.9yt−1. It
should be clear that the impulse responses decay more rapidly than the dashed line rep-

resenting yt = 0.9yt−1. The reason is that the generalized impulse responses allow for

the possibility of regime switching.

Instead of conditioning on a shock of a given size and a particular history, Koop,

Pesaran and Potter’s (1996) method allows for the averaging across all sized shocks

and all histories. For example, instead of setting 𝜀1 = 1, Panel (b) of Figure 7.12, sets

𝜀1 = 4. Notice that the impulse response function is quite close to geometric decay.

The reason is that the large initial value of 𝜀1 diminishes the likelihood that the series

switches into the negative regime. Although not shown, you should take a little quiz

and ask yourself how Panels (a) and (b) in Figure 7.12 would appear if the shocks

were −1 and −4? The answer should be obvious in that the series would begin in the

negative regime (with rapid decay). Both would decay quickly, but not as quickly as the

process yt = 0.1yt−1 since shocks could switch the series into the positive regime. It is

also possible to plot the responses for different histories (i.e., different initial values).

A common technique is to average the responses over all histories so that the typical

responses to a shock are displayed.

Panel (a): Responses to a 1-unit Shock
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FIGURE 7.12 Impulse Responses from a TAR Model

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c07.tex V2 - 08/18/2014 7:56pm Page 458

458 CHAPTER 7 NONLINEAR MODELS AND BREAKS

Terrorist Incidents with Casualties

A realistic way to capture the nature of terrorist campaigns is to use a two-regime TAR

model. In relatively tranquil regimes, terrorists can replenish and stockpile resources,

recruit newmembers, raise funds, and plan for future attacks. Terrorism can remain low

until an event occurs that switches the system into the high-terrorism regime. Because

each terrorist attack utilizes scarce resources, high-terrorism states are not anticipated

to exhibit a high degree of persistence when a shock raises the level of terrorism. On

the other hand, periods with little terrorism can be highly persistent to shocks. In order

to measure the differing persistence across the two states, Enders and Sandler (2002)

acquired quarterly data on the number of incidents containing one or more casualties

over the 1968Q1 to 2000Q4 period. You can follow along with the data on the file

TERROR_TYPES.XLS. We first estimated the number of incidents with casualties

(cas) as the linear AR(3) autoregressive process:

cast = 5.91 + 0.261cast−1 + 0.310cast−2 + 0.209cast−3 + 𝜀t AIC = 1205.72

(2.83) (2.98) (3.59) (2.40)
(7.27)

where cast represents the number of incidents with casualties.

The model appears adequate in that it satisfies the standard diagnostic tests. All

t-statistics are significant at conventional levels and the point estimates of the autore-

gressive coefficients imply stationarity. The results of a Dickey–Fuller test allow us

to reject the null hypothesis of a unit root at the 5% significance level. Moreover,

the Ljung-Box Q-statistics indicate that the residuals are serially uncorrelated. For

example, Q-statistics using the first 4, 8, and 12 lags of the residual autocorrelations

have prob-values of 0.98, 0.52, and 0.72, respectively.

Correlation coefficients are measures of linear association and may not detect non-

linearities in the data. If you perform the RESET with H = 3, you should find that the

prob-value for the test is 0.049. However, with a lag length of 3, Hansen’s threshold

test yields prob-value of 0.011 with a estimates of 𝜏 = 37 and d = 1. As such, the most

appropriate TAR model in the form of (7.14) is:

cast = (−5.38 + 0.715cast−1 + 0.204cast−2 − 0.094cast−3)It AIC = 1196.05

(−0.35) (2.25) (1.04) (−0.54)
+ (1.46 + 0.534cast−1 + 0.258cast−2 + 0.239cast−3 (1 − It) + 𝜀t

(0.64) (4.18) (2.76) (2.55)
(7.28)

where the estimates of the threshold and the delay are 𝜏 = 37 (so It = 0 if cast−1 < 38)

and d = 1.

Equation (7.28) is clearly over-parameterized, since there are a number of coeffi-

cients with t-statistics less than 1.96 in absolute value. Even though there are a number

of coefficients with very small t-values, that AIC selects the TAR model over the

linear model. (Remember that 𝜏 is also an estimated parameter). At this point some

researchers might try to pare down the model. However, is can be problematic because

the tabulated t-statistics are actually an approximation of the actual distribution since
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we searched for the best fitting threshold function.2 In terms of (7.14), the distribution

of coefficient aij depends on the accuracy of the estimated threshold. An alternative

would be to pare down the model using the AIC or SBC.

Diagnostic checking indicates that the model is appropriate. For example, the first

twelve autocorrelations of the residuals are less than 0.14 in absolute value and the

prob-values for the Ljung-BoxQ(4),Q(8), andQ(12) statistics are 0.98, 0.76, and 0.64,
respectively. Even though the TAR model contains nine parameters (i.e., eight coeffi-

cients plus 𝜏), the AIC selects it over the linear model.

The threshold model yields very different implications about the behavior of the

cast series than the linear model. Since the linear specification makes no distinction

between high- and low-terrorism states, the degree of autoregressive decay is always

constant. Regardless of whether the number of incidents is above or below the mean,

the degree of persistence is quite large; the largest characteristic root of the linear

model is 0.88. The threshold model, however, indicates that the high-terrorism regime

is less persistence than the low-terrorism regime. This is consistent with the notion

that terrorism can remain low until an event occurs that switches the system into the

high-terrorism regime.

One way to understand the nature of the system is to consider the forecast function.

As analyzed in Koop, Pesaran, and Potter (1996), the forecasts and impulse responses

from a nonlinear model are state-dependent. In terms of (7.28), a positive shock when

yt−1 > 37 will be less persistent than the same shock when yt−1 is far below the thresh-

old. Since we are interested in comparing short-run and long-run forecasts in the two

states (rather than a generalized impulse response function), we use a modified version

of Koop, Pesaran, and Potter’s methodology.

For a model with three lags, we select a particular history for yt ,, yt−1, and yt−2.
For example, in the last three quarters of 1985—a high-terrorism regime—the number

of casualty incidents were 33, 50, and 40, respectively. Hence, to forecast the subse-

quent number of incidents from the perspective of 1985:4, we let yt−2 = y1985Q2 = 33,

yt−1 = y1985Q3 = 50, and yt = y1985Q4 = 40. We then select 25 randomly drawn realiza-

tions of the residuals of (7.28). Since the residuals may not have a normal distribution,

the residuals are selected using standard bootstrapping procedures. In particular, the

residuals are drawn with replacement using a uniform distribution. Call these residuals

𝜀∗t+1, 𝜀
∗
t+2, · · · , 𝜀

∗
t+25. We then generate y∗t+1 through y∗t+25 by substituting these boot-

strapped residuals into (7.26) and setting It appropriately for high- or low-terrorism

states. In essence, y∗t+1 is one possible realization of the cast series for 1986Q1, y
∗
t+2 is

one possible realization of the cast series for 1986Q2, and so on. For this particular his-
tory, we repeat the process 1,000 times. Under very weak conditions, the Law of Large

Numbers guarantees that the sample average of the 1,000 values of y∗t+1 converges to
the conditional mean of yt+1 denoted by Etyt+1. Similarly, the sample means of the

various y∗t+i(k), where y
∗
t+i(k) is the result for draw k, converge to the true conditional

i-step-ahead forecasts, that is

lim
N→∞

[
N∑
k=1

y∗t+i (k)∕N

]
= Etyt+i
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The essential point is that the sample averages of y∗t+1 through y∗t+25 yield the

1-step- through 25-step-ahead conditional forecasts of the cast series from the per-

spective of 1985Q4. Intuitively, because the number of casualty incidents exceeds the

threshold, the value of cast should quickly decline from 40 toward the attractor of 31.1.

Nevertheless, the long-run forecast need not equal the attractor, which can be seen

by examining the conditional forecasts (indicated by the solid line) shown in the top

panel of Figure 7.13. Although the expected number of cast incidents does decline

toward 31.1, there are two reasons why the long-term forecasts continue to decline.

Since incidents below the threshold are (on average) more persistent than those above,

the system’s mean will be below the attractor. Moreover, the forecasts allow for the

possibility of a regime-switch into the low-terrorism state. As shown in Panel (a) of

the figure, the long-run expected value is about 28.5 casualty incidents per quarter.
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FIGURE 7.13 Nonlinear Forecasts of Casualty Incidents
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When the number of incidents is high, there is a rapid decline to the threshold, as ter-

rorist networks cannot maintain high-level, resource-using offensives. A comparison

of the forecasts with the actual number of casualty incidents (the dashed line in the

figure) is instructive. The close fit is remarkable given that the forecasts are not the

successive one-step-ahead forecasts. Instead, the figure traces out the 1-step- through

25-step-ahead forecasts from the perspective of 1985Q4.
In contrast, the number of terrorist incidents in the last three quarters of 1998

were quite low; y1998Q2 = 5, y1998Q3 = 15, and y1998Q4 = 6. As shown in Panel (b) of

Figure 7.13, reversion back toward the attractor is quite slow in the low-terrorism state.

In fact, conditional on the history of 1998:4, the forecasts remain low until the third

quarter of 2001. The forecasts seem to track the actual number of incidents occurring

through the end of our data set reasonably well and ultimately converge to those for

Panel (a). In either case, these long-run forecasts are relatively close to the attractor for

the high-terrorism state (31.1).

11. UNIT ROOTS AND NONLINEARITY

Suppose you were convinced that the interest rate spread displays the type of nonlinear

adjustment given by (7.1). Before estimating the TAR model directly, you might want

to determine whether the series does revert to a long-run equilibrium value (called an

attractor). However, the established tests for the presence of an attractor assume a

linear adjustment process. For example, the Dickey–Fuller (1979) test for a unit root

uses a linear adjustment process of the form:

yt = a1yt−1 + 𝜀t [or Δyt = 𝜌yt−1 + 𝜀t] (7.29)

If the null hypothesis a1 = 1 can be rejected in favor of the alternative−1 < a1 < 1,

it can be concluded that the {yt} sequence decays to the attractor y∗ = 0. However, if

the {yt} sequence is generated from a nonlinear model, the Dickey–Fuller test might

fail to detect an attractor since it is misspecified. Although (7.29) can be augmented

with deterministic regressors and lagged changes of {yt}, the crucial point to note is

that the dynamic adjustment process is assumed to be linear. The issue is important

since Pippenger and Goering (1993) and Balke and Fomby (1997) show that tests for

unit roots have low power in the presence of asymmetric adjustment. After all, (7.29)

does not appropriately capture the dynamic adjustment process of a nonlinear model.

Notice that the discussion above is directly applicable to the findings of Michael,

Nobay, and Peel (1997). Recall that their aim was to determine whether real exchange

rates should be modeled as an ESTAR processes. Nevertheless, the dynamic equation

used to determine whether the U.K.–U.S. real exchange rate was stationary [i.e.,

equation (7.26)] assumes a linear adjustment process. As it turned out, they were able

to reject the null hypothesis of a unit root. However, in other circumstances, a linear

test may not be able to detect the presence of an attractor for a nonlinear process.

To circumvent this problem, there is a large and growing literature designed to test

for the presence of an attractor in the presence of nonlinear adjustment. For example,

in Enders and Granger (1998), we generalized the Dickey–Fuller methodology to con-

sider the null hypothesis of a unit root against the alternative hypothesis of a threshold

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c07.tex V2 - 08/18/2014 7:56pm Page 462

462 CHAPTER 7 NONLINEAR MODELS AND BREAKS

autoregressive (TAR) model. The simple version TAR model is:

Δyt = It𝜌1(yt−1 − 𝜏) + (1 − It)𝜌2(yt−1 − 𝜏) + 𝜀t (7.30)

It =
{
1 if yt−1 ≥ 𝜏

0 if yt−1 < 𝜏
(7.31)

As shown by the phase diagram illustrated in Figure 7.14, when yt−1 = 𝜏,Δyt = 0.

However,Δyt equals 𝜌1(yt−1 − 𝜏) if the lagged value of the series is above 𝜏 and equals
𝜌2(yt−1 − 𝜏)) if the lagged value of the series is below 𝜏. The attractor is 𝜏 sinceΔyt has
an expected value of zero when yt−1 = 𝜏. Hence, if yt−1 = a,Δyt equals the distance ab.

If we use the specification given by (7.30) and (7.31), it is possible to test for an

attractor even though the adjustment process is nonlinear. Notice that if 𝜌1 = 𝜌2 = 0, the

process is a random walk. A sufficient condition for the {yt} sequence to be stationary
is −2 < (𝜌1, 𝜌2) < 0.3 Also notice that the Dickey–Fuller test emerges as the special

case in which 𝜌1 = 𝜌2. If it is possible to reject the null hypothesis 𝜌1 = 𝜌2 = 0, it

can be concluded that there is an attractor. However, as in the Dickey–Fuller test, it

is not possible to use a classical F-statistic to test the null hypothesis 𝜌1 = 𝜌2 = 0.

Instead, the F-statistics for the null hypothesis 𝜌1 = 𝜌2 = 0 are reported in Table G in

the Supplementary Manual.
If the null hypothesis of nonstationarity is rejected, it is possible to test for sym-

metric versus asymmetric adjustment. In particular, if the null is rejected (so that the

sequence has an attractor), then you can perform the test for symmetric adjustment (i.e.,

𝜌1 = 𝜌2) using a standard F-distribution. If the threshold is unknown (but estimated

consistently using Chan’s method), the conjecture is that you can also use a standard

F-test. However, Hansen shows that small sample properties of the OLS estimates of

the individual 𝜌1 and 𝜌2 values have inflated standard errors and the convergence prop-

erties of the OLS estimates can be poor. To avoid this problem, you can use Hansen’s

(1997) bootstrapping method that was described at the end of Section 5.

An alternative to the basic TAR model is to use what we called the momentum

threshold autoregressive (M-TAR) model. Since the exact nature of the nonlinearity

Δyt

0

a yt–1

ρ2(yt–1 – τ)

ρ1(yt–1 – τ)

b

τ

FIGURE 7.14 Phase Diagram for the TAR model
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may be unknown, it is possible to allow the adjustment to depend on the change in yt−1
(i.e., Δyt−1) instead of the level of yt−1. In this case, the model becomes (7.30) along

with the indicator function

It =
{
1 if Δyt−1 > 0

0 if Δyt−1 ≤ 0
(7.32)

This variant of the basic model, used by Enders and Granger (1998) and Caner and

Hansen (1998), allows a variable to display differing amounts of autoregressive decay

depending on whether it is increasing or decreasing. This specification is especially

relevant when the adjustment is such that the series exhibits more momentum in one

direction than the other; the resulting model is called momentum-threshold autoregres-

sive (M-TAR) model. The F-statistics for the null hypothesis 𝜌1 = 𝜌2 = 0 using the

M-TAR specification is called 𝛷M . As there is generally no presumption as to whether

to use the TAR or the M-TAR model, the recommendation is to select the adjustment

mechanism (7.31) or (7.32) by a model selection criterion such as the AIC or SBC.

To perform the test, follow these steps:

STEP 1: If you know the value of 𝜏 (for example 𝜏 = 0), estimate (7.30). Otherwise,

use Chan’s method; for each potential threshold 𝜏, set the indicator function

using (7.31). Estimate (7.30) for each potential threshold value and select the

value of 𝜏 from the regression containing the smallest value for the sum of

squared residuals.

STEP 2: If you are unsure as to the nature of the adjustment process, repeat Step 1

using the M-TAR model. For each potential threshold 𝜏 set the indicator

function using (7.32). Select the value of 𝜏 resulting in the best fit. Use the

AIC or SBC to select the TAR or M-TAR specification.

STEP 3: Use the model selected from STEP 1 or STEP 2 to calculate the F-statistic
for the null hypothesis 𝜌1 = 𝜌2 = 0. For the TAR model, compare this sam-

ple statistic with the appropriate critical value in Table G. The critical values

depend on sample size (T) and whether you augment the model with lagged

changes. Use Panel (a) if you estimate 𝜏 for a TAR model and Panel (b) if

you estimate 𝜏 for an M-TAR model. If you know the threshold and estimate

an M-TAR model, use Panel (c). In the case of a TAR model with a known

threshold, the test seems to have low power relative to the Dickey–Fuller

test. As such, the critical values for this case are not reported.

STEP 4: If the alternative hypothesis is accepted (i.e., if there is an attractor), it is pos-
sible to test for symmetric versus asymmetric adjustment since the asymp-

totic joint distribution of 𝜌1 and 𝜌2 converges to a multivariate normal. As

such, the restriction that the adjustment is symmetric (i.e., the null hypoth-

esis 𝜌1 = 𝜌2) can be tested using Hansen’s (1997) bootstrapping method or

using a standard F-test as an approximation.

STEP 5: Diagnostic checking of the residuals should be undertaken to ascertain

whether the estimated {𝜀t} series could reasonably be characterized by a
white-noise process. If the residuals are correlated, return to Step 1 and
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re-estimate the model in the form:

Δyt = It𝜌1(yt−1 − 𝜏) + (1 − It)𝜌2(yt−1 − 𝜏) +
p∑
i=1

𝛼iΔyt−i + 𝜀t (7.33)

In working with this specification, it is possible to use diagnostic checks

of the residuals and/or the various model selection criteria to determine the

lag length.

An Example

Enders and Granger (1998) use quarterly values of the 10-year government securities

(rLt) and the Federal Funds rate (rSt) over the period 1958Q1 through 1994Q1. You
can find the data used in the study on the file labeled GRANGER.XLS. The issue is to

determine how to model the relationship between the two interest rates. First form the

interest rate spread as st = rLt − rSt. After a bit of experimentation, the most appropriate

equation for the Dickey–Fuller test is

Δst = 0.120 − 0.156st−1 + 0.162Δst−1 + 𝜀t
(1.52) (−3.56) (1.94)

AIC = 669.79 SBC = 678.68

The coefficient on st−1 has a t-statistic of −3.56; hence, the null hypothesis of a

unit root can be soundly rejected. Since the point of this section is to illustrate the

test for threshold adjustment, we can pretend that the results of the Dickey–Fuller test

are ambiguous. Nevertheless, diagnostic checking reveals that the equation is inade-

quate. For example, the RESET withH = 3 andH = 4 have prob-values of 0.0016 and
0.00009, respectively. Hence there is substantial evidence of neglected nonlinearity.

Next, estimate a TAR model in the form of (7.30) and (7.31). The value of 𝜏

yielding the best fit is −0.27 so that the resulting TAR model of the spread is

Δst = −0.066It(st−1 + 0.27) − 0.286(1 − It)(st−1 + 0.27) + 0.172Δst−1 + 𝜀t
(−1.59) (−3.67) (2.07)

AIC = 669.12 SBC = 680.97

For Step 2, we can estimate an M-TARmodel by replacing (7.31) with (7.32). The

value of 𝜏 yielding the best fit is 1.64 so that the resulting M-TAR model of the spread

is

Δst = −0.299It(st−1 − 1.64) − 0.007(1 − It)(st−1 − 1.64) + 0.016Δst−1 + 𝜀t
(−4.75) (−0.145) (1.183)

AIC = 662.55 SBC = 674.40

Notice that the AIC and the SBC both select the M-TAR model even though it has

two coefficients that appear to be statistically insignificant. You might want to experi-

ment and estimate the model without these two extraneous coefficients. The F-statistic
for the null hypothesis that 𝜌1 = 𝜌2 = 0 is 11.44. If we compare this to the critical values

for 𝛷M , we can reject the null hypothesis of no attractor. As such, we can test whether
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the adjustment is symmetric or asymmetric. The F-statistic for the null hypothesis

𝜌1 = 𝜌2 is 12.24 with a prob-value of 0.0006. Hence, we can conclude that the M-TAR

best captures the adjustment process of the interest rate spread. The point estimates

suggest that the equilibrium value of the spread is 1.64. When the spread is increas-

ing (i.e., when Δst−1 > 0), the speed of adjustment is fairly rapid. However, when the

spread is decreasing (so that the long-term rate is falling relative to the referral funds

rate), the adjustment of −0.007 is almost nonexistent. This is in contrast to the linear

model; the linear model suggests that the speed of adjustment is −0.158 regardless of

whether the spread is increasing or decreasing. Moreover, the linear specification sug-

gests that the long-run equilibrium value of the spread is zero since the intercept has a

t-statistic of 1.52.

NONLINEAR ERROR-CORRECTION If you experiment with the data set, you

will find that both rLt and rSt act as I(1) processes. Since there is a linear combination

of these two I(1) variables is stationary, the Granger representation theorem indicates

that there is an error-correction model. However, there is nothing requiring that the

dynamic adjustment mechanism must be linear. Instead, it seems plausible that the

error-correction model has the M-TAR form:

ΔrLt = −0.03It(st−1 − 1.64) − 0.07(1 − It)(st−1 − 1.64)
(−0.766) (−2.11)
+ A11(L)ΔrLt−1 + A12(L)ΔrSt−1 + 𝜀1t
F11 = 0.087 F12 = 0.521

ΔrSt = 0.21It(st−1 − 1.64) − 0.04(1 − It)(st−1 − 1.64)
(2.67) (−0.67)
+ A21(L)ΔrLt−1 + A22(L)ΔrSt−1 + 𝜀2t
F21 = 0.001 F22 = 0.844

where t-statistics are in parentheses, two lags of each variable are used in each equation,
Fij is the prob-value that all coefficients in the polynomial Aij(L) = 0, and It is the

M-TAR indicator given by (7.32).

The t-statistics suggest an interesting adjustment process towards the long-run

equilibrium. Increases in the spread tend to be accompanied by changes in the federal

funds rate while decreases are accompanied by changes in the 10-year rate. When the

spread is increasing (i.e., ifΔst−1 > 0), we would expect the Fed-funds rate to increase

by 21% of the discrepancy between st−1 and the long-run value of 1.64. When the

spread is decreasing, the long-term rate declines by 7% of the discrepancy.

The linear error-correction model tells a very different story. If we use the type of

linear error-correction model used in Chapter 6, we obtain

ΔrLt = −0.114êt−1 + A11(L)ΔrLt−1 + A12(L)ΔrSt−1 + 𝜀1t
(−3.30) F11 = 0.062 F12 = 0.288

ΔrSt = −0.002êt−1 + A21(L)ΔrLt−1 + A22(L)ΔrSt−1 + 𝜀2t
(−0.04) F21 = 0.000 F22 = 0.333
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where êt−1 is the residual from the regression of rLt on a constant and rSt. Hence,
êt−1 is the estimated deviation from the long-run relationship obtained by using the

Engle-Granger technique.

In contrast to the threshold model, the linear model implies that only the 10-year

interest rate responds to the discrepancy from the long-run equilibrium.

12. MORE ON ENDOGENOUS STRUCTURAL
BREAKS

In general, models with breaks are not considered to be nonlinear. However, breaking

and nonlinear models both involve the problem of unidentified nuisance parameters

under the null hypothesis—the so-called Davis problem. To make the point, recall

that it is straightforward to perform the type of Chow test discussed in Section 12 of

Chapter 2 when the date of a potential break is known. For example, in equation (7.34)

the dummy variable Dt represents a structural break in the intercept term occurring at

time period t∗. In (7.35) the break affects the intercept and all of the autoregressive

coefficients.

yt = 𝛼0 +
p∑
i=1

𝛼iyt−i + 𝛾0Dt + 𝜀t (7.34)

yt = 𝛼0 +
p∑
i=1

𝛼iyt−i +

(
𝛾0 +

p∑
i=1

𝛾iyt−i

)
Dt + 𝜀t (7.35)

where: Dt is the Heaviside indicator indicating that a break occurs at time period t∗.
Equation (7.34) is a partial break model where the break is assumed to affect only

the intercept whereas (7.35) is a pure break model in that all parameters are allowed to

change. The test for structural change (i.e., Dt = 0) can be conducted using a t-test in
7.34 or an F-test in (7.35).

The situation is far more complicated when the break date in unknown. Typically,

the researcher will estimate regression in the form of (7.34) or (7.35) for every possible

break date and select the one with the best fit. The methodology is reasonable since the

best-fitting regression does yield a consistent estimate of t∗. However, it is no longer

appropriate to use a t-test (or F-test) to test for the presence of a structural break. Since
the best fitting regression, out of a large number of regressions, is selected, the distri-

bution of the test statistic is nonstandard. Moreover, under the null hypothesis of no

structural change, t∗ is unidentified.
Andrews (1993) and Andrews and Ploeberger (1994) develop a test that can be

used to estimate a single structural break occurring at an unknown date. Recall that a

single-break model is a threshold model with time as the threshold variable. As such,

you can estimate (7.34) or (7.35) by performing a grid search for the best-fitting break

date. The test is feasible since the selection of the best fitting regression amounts to a

supremum test.4 As in the threshold model, it is necessary to ‘trim’ the data so that each

segment of the breaking series has a sufficient number of observations to be properly

estimated. The conventional practice is to use a trimming value 𝜀 = 0.15 so that each
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regime contains at least 15% of the observations. (With large samples, a number of

researchers use 𝜀 = 0.10). Under the null hypothesis of no break, the distribution of the

Andrews (1993) test depends on the number of breaking parameters and the trimming.

If you use a 15% trimming, with 1, 2, and 3 breaking parameters, the 5% asymptotic 𝜒2

critical values are 8.85, 11.79, and 14.15, respectively. However, with the sample sizes

typically used in applied work, it makes sense to use Hansen’s (1997) bootstrapping test

for a threshold model. After all, a single structural break is a threshold model where

time is the threshold variable. If you are paying attention, you will note that this is

precisely the test that was analyzed in Section 5 using the file Y_BREAKS.XLS. Note

that the Andrews (1993) test does not require that the variance of the error term 𝜀t be

the same in each period; as such you can also use the method to test for threshold breaks

in the form of

yt =

⎧⎪⎪⎨⎪⎪⎩
𝛼0 +

p∑
i=1

𝛼iyt−i + 𝜀1t if t > t∗

𝛾0 +
p∑
i=1

𝛾iyt−i + 𝜀2t if t ≤ t

Bai and Perron (1998) generalize the Andrews (1993) test by allowing for multiple

structural breaks. Consider the following autoregressions with k breaks (k + 1 regimes):

yt = 𝛼0 +
p∑
i=1

𝛼iyt−i + (𝛾1D1t + 𝛾2D2t + · · · + 𝛾kDkt) + 𝜀t (7.36)

yt = 𝛼0 +
p∑
i=1

𝛼iyt−i +
k∑
j=1

Djt

(
𝛾0j +

p∑
i=1

𝛾ijyt−i

)
+ 𝜀t (7.37)

In the partial breakmodel of (7.36), the breaks are confined to the intercept whereas

(7.37) is the pure break model. In testing for breaks, Bai and Perron (2003) recommend

using a trimming value of 𝜀 = 0.15 and setting the maximum number of breaks k = 5.

Moreover, it is necessary to specify the minimum break size as the minimum number of

observations between breaks. With quarterly data it is usual to specify that a break lasts

at least a year or two. A large change in a series that lasts only a few periods is more

likely to represent an outlier rather than true structural change. It should be pointed

out that (7.36) and (7.37) require heterogeneity in the regression errors. Of course, this

assumption can be problematic in your data set if the variance of {𝜀t} changes in the

presence of a break.

Bai and Perron (2003) develop an algorithm that can efficiently estimate (7.36) or

(7.37) for every possible combination of break dates. There are two different ways to

select the number of breaks. First, they develop a supremum test for the null hypoth-

esis of no structural change versus the alternative hypothesis of k breaks. In essence,

their algorithm is used to estimate models for every possible combination of breaks

(given the minimum break size and maximum number of possible breaks) and then

selects the best fitting combination of break dates. The F-statistic for the null hypothe-
sis of no breaks against the alternative of k breaks is nonstandard. However, the critical
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values—called the supF(k; q) statistics—are calculated by Bai and Perron (1998). The

notation is designed to highlight the fact that the critical values depend on the number of

breaks, k, and the number of breaking parameters, q. If the null hypothesis of no breaks
is rejected, it is standard to select the actual number of breaks using a model selection

criterion such as the SBC. The AIC is not recommended as it selects too many breaks.

For q = 1, 2, and 3, the 95% critical for 1, 2, and 5 breaks are:

q k = 𝟏 k = 𝟐 k = 𝟓 UDmax

1 9.63 8.78 6.69 10.17

2 12.89 11.60 9.12 13.27

3 15.37 13.84 11.15 16.82

For the supF(k; q) statistic you need to specify the value of k. However, it also
seems reasonable to test the null of no breaks against the more general alternative of

some breaks. If the largest of the sample supF(k; q) statistics for k = 1, 2, 3, … exceeds

the UDmax statistic reported above, you can conclude that there are some breaks and

then go on to select the number of breaks using the SBC.

The second method of selecting the number of breaks is to use a sequential test.

Begin with the null hypothesis of no-breaks versus the alternative of a single break. If

the null hypothesis of no breaks is rejected, proceed to test the null of a single break

versus the alternative of two breaks, and so forth. This process is repeated until the

test fails to reject the null hypothesis of no additional breaks. The method is sequential

in that the test for the 𝓁 + 1 breaks takes the first 𝓁 breaks as given. At each stage,

the so-called F(𝓁 + 1|𝓁) statistic is calculated as the maximum F-statistic for the null
hypothesis of no additional against the alternative of one additional break. For q = 1, 2,

and 3, the 95% critical for 𝓁 = 0, 1, 2, and 5 are:

q 𝓵 = 0 𝓵 = 1 𝓵 = 2 𝓵 = 4

1 9.63 11.14 12.16 13.45

2 12.89 14.50 15.42 16.61

3 15.37 17.15 17.97 19.23

The sequential method can work poorly if the series is highly persistent or if the

breaks tend to be offsetting. As such, if the test for 𝓁 = 0 against the alternative 𝓁 = 1

is not rejected, use the UDmax test. Then, if the null of no breaks is rejected, assume

there is at least one break and go on to select additional breaks using the sequential

method.

Two Examples

Example 1 Recall (see Section 12 of Chapter 2 and Section 5 of this chapter)

that the 150 observations in the file Y_BREAK.XLS were constructed so as to have a

break at t = 101. Suppose that we have no idea how the series was constructed and

applied the Andrews test (also called the Andrews-Quandt test) for a single break.
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Allowing for a possible break in the variance as well as in the coefficients, if you use

trimming of 0.15, you should find:

Test-Statistic prob-Value Break Date

Constant 28.18 0.000 100

yt−1 42.47 0.000 100

All coefficients 42.58 0.000 100

Residual variance 2.81 0.595

The sample values for a break in the intercept, the autoregressive coefficient, and

for both coefficients are 28.18, 42.57 and 43.58, respectively. These are all highly sig-

nificant; as such, we can reject the null hypotheses that the intercept is constant, the

autoregressive coefficient is constant, and that both coefficients are constant. Notice

that we cannot reject the null hypothesis that the variance of the residuals is constant.

Moreover, the estimated break date is exactly correct.

Now suppose that we are concerned that there might be more than one break and

employ the Bai-Perron test. Again, use a 0.15 trimming, assume that the minimum

break size is eight periods, and use amaximum of five breaks. Consider the output using

the pure break specification (so that we allow both the intercept and the autoregressive

coefficient to change):

Breaks supF(k; 2) F (𝓵 + 1|𝓵) SBC

0 0.337

1 29.57 29.57 0.062

2 16.40 2.59 0.094

3 12.51 3.56 0.112

4 10.13 2.29 0.146

5 9.16 3.71 0.161

Given that we have two breaking parameters, if we use the supF(5; 2) test, the
sample value of 9.16 exceeds the 95% critical value of 9.12. As such, we barely reject

the null hypothesis of no breaks against the alternative of five breaks. However, the

sample values of the supF(k; 2) statistics drop off rapidly starting from 29.57 and falling

to 16.40 and ultimately to 9.16. If instead, we test the null of no breaks against the

alternative of exactly two breaks, the sample value of 16.10 clearly exceeds the 95%

critical value of 11.60. This illustrates the point that estimating a model with five breaks

in two coefficients entails the estimation of twelve parameters with a commensurate

loss in the power of the test. The UDmax test is quite definitive that there are some

breaks in the series. The largest supF(k; 2) statistic occurs with a single break such that
supF(1; 2) is 29.57. If we compare this to the 95% UDmax critical value of 13.57, we

reject the null of no breaks and conclude that there are some breaks. Notice that the

SBC correctly selects the model with one break.
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If instead we use sequential method, the sample value of F(1|0) = 29.57 far

exceeds the critical value of 12.89. Given that we reject the null hypothesis of no

breaks and accept the alternative of one break, we now consider whether there is a

second break. The sample value of F(2|1) of 2.59 does not exceed the critical value of
14.40 so that we do not reject the null hypothesis and conclude that there is a single

break at t = 100.

Example 2 Consider the transnational terrorism series shown in Panel (b) of

Figure 5.1. If you open the file TERRORISM.XLS and examine the series carefully, it

appears that the mean of the series spikes with the demise of the Soviet Union in 1991

and falls in 1997. There are several other possible break dates that may or may not be

significant. If you experiment a bit, you should find that the following AR(2) model of

the transnational series works quite well:

transt = 4.91 + 0.381transt−1 + 0.42transt−2
(3.06) (5.29) (5.84)

However, the model is misspecified if there are breaks in the series. Although

(7.37) is the most general model, the pure break model requires the estimation of

eighteen parameters (six parameters for each lag and the intercept). As such, many

researchers estimate the partial break model and confine the breaks to affect only the

intercept. If you estimate an equation in the form of (7.36) and allow for a maximum

of 5 breaks such that each break is at least two years long, you should find:

Breaks supF(k; 1) F (𝓵 + 1|𝓵) SBC

0 4.519

1 8.34 8.34 4.499

2 10.76 21.53 4.454

3 10.57 31.72 4.429

4 9.76 39.04 4.420

5 8.92 44.59 4.422

With one breaking coefficient (i.e., q = 1) the 95% critical value for five breaks

(i.e., k = 5) is 6.69. Since the sample value of supF(5; 1) = 8.92, we can reject the null

hypothesis of no breaks. This result agrees with the UDMax test. The largest sample

value of supF(k; 1) occurs with k = 2. Since 10.76 exceeds the 95% critical value of

10.17, we can conclude that there are some breaks in the series. If you examine the last

column in the table above, you will see that the SBC selects a model with four breaks.

Alternatively, we could use the sequential method. The sample value for the null

hypothesis of no breaks (i.e., 𝓁 = 0) against the alternative of one break (i.e., 𝓁 = 1)

is 8.34. Since the 95% critical value of the supF(𝓁 + 1|𝓁) test is 9.63 we do not reject
the null hypothesis and conclude that there are not any breaks. However, recall that this

test may not work well if the breaks are offsetting or if the data is persistent. As such,

we rely on the UDmax test that indicates that there is at least one break. To determine

if there is a second break, note that the sample value of F(2|1) is 21.53. Since this value
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exceeds 11.14, we reject the null hypothesis of only one break and accept the alterna-

tive of two breaks. Repeating the process, the sequential method indicates a total of

five breaks.

Before proceeding, note that most software packages reparameterize (7.36) such

that:

yt =
p∑
i=1

𝛼iyt−i + (𝛾0D0 + 𝛾1D1t + 𝛾2D2t + · · · + 𝛾kDkt) + 𝜀t

As such, the intercept is 𝛾0 for t ≤ t∗
1
, 𝛾1 for t

∗
1
> t ≤ t∗

2
, and so on until the intercept

is 𝛾k for t > t∗k . Now, if we estimate the partial break model using four breaks, we find:

transt = 10.28D0 + 18.92D1 + 35.29D2 + 16.04D3 + 8.64D4

(4.45) (6.76) (6.05) (6.50) (5.00)
+ 0.150transt−1 + 0.248transt−2

(1.88) (3.42)

Breakpoint Lower 95% Upper 95%

1975Q3 1970Q4 1979Q1
1992Q3 1992Q1 1994Q1
1994Q3 1994Q2 1995Q1
1997Q4 1996Q2 1999Q3

The first breakpoint is 1975Q3 so that the intercept (D0) is 10.28 for t ≤ 1975Q3.
Note that the 95% confidence interval is such the break could have come as early as

1970Q4 or as late as 1979Q1. Given that the confidence interval is so wide, we can

surmise that the break date is not well estimated. The next break occurs at 1992Q3
so the intercept increases from 10.28 to 18.92 beginning in 1975Q4 and lasting until

1992Q3. Notice that the confidence interval is quite tight. Break 3 occurs at 1994Q3;
the length between breaks is just equal to the minimum break size of eight. If you look

at Figure 5.1, you can see that the 1992Q4 − 1994Q3 period represents a spike in the

terrorism series. The intercept falls to 16.04 after 1994Q3 and falls again after 1997Q4.

Nonlinear Breaks

Unlike the dummy variable approach, structural breaks may be smooth. When you use

a dummy variable, you are implicitly assuming that the break fully manifests itself at

date t∗. However, it may take awhile for the effect of a change to have its complete influ-

ence on the variable of interest. Although oil price shocks are quite sharp, it generally

takes several quarters for the full impact to be felt on aggregate output and employment.

Moreover, some changes actually occur gradually. There is no doubt that computers

have changed the way many business activities are conducted. However, there is no

clear date at which the computer revolution can be said to have started. Instead, the

technological changes spawned by improvements in computer hardware and software

occurred gradually over time. The point is that breaks, and their effects, need not occur

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders c07.tex V2 - 08/18/2014 7:56pm Page 472

472 CHAPTER 7 NONLINEAR MODELS AND BREAKS

at one particular point in time. As such, a number or researchers have been working on

models that allow for smooth breaks. Consider the simple modification of the LSTAR

model in (7.19) and (7.20):

yt = 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + 𝜃[𝛽0 + 𝛽1yt−1 + · · · + 𝛽pyt−p] + 𝜀t

where
𝜃 = [1 + exp(−𝛾(t − t∗))]−1 (7.38)

In (7.38) the transition variable is time, t, and the centrality parameter is t∗. When

t is far below t∗, the process is given by yt = 𝛼0 + 𝛼1yt−1 + · · · + 𝛼pyt−p + 𝜀t and when

t is far above t∗, the process is given by (𝛼0 + 𝛽0) + (𝛼1 + 𝛽1)yt−1 + · · · + 𝜀t. Hence, as

time progresses, the value of 𝜃 goes from zero the unity so that the coefficients of the

series evolve smoothly instead of breaking sharply.

Estimates of a Logistic Break

The 250 observations of the series shown by the dashed line in Panels (a) and (b) of

Figure 7.15 were created as

yt = 1 + 3∕[1 + exp(−0.075∗(t − 100))] + 0.5yt−1 + 𝜀t (7.39)

so that the transition variable is t and the centrality parameter is 100. The series is

contained on the file LSTARBREAK.XLS.

Notice that the break affects only the intercept term in that the autoregressive

parameter is always 0.5. As you can see in the figure, when t is far below 100, the

series fluctuates around 2 and when t is large the series fluctuates around 8. Although

Panel (a): Bai-Perron Breaks
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FIGURE 7.15 A Simulated LSTAR Break
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the centrality is 100, the smooth break means that the series starts to display an increase

around t = 75 and seems levels off at around t = 125. If you estimated the series using

the Bai-Perron procedure with a maximum of four breaks, you would find four breaks.

The problem with the Bai-Perron method here is that it uses only sharp breaks. As

shown by the solid line in Panel (a) of Figure 7.15, the method has to employ a step

function in order to approximate the single smooth break. Consider the estimatedmodel

using a minimum span of 8 observations between breaks:

yt = 0.71 + 1.67D1t + 2.96D2t + 4.19D3t + 4.99D4t + 0.38yt−1
(4.43) (7.54) (7.57) (9.92) (10.52) (6.70)

where all Dit = 1 except D1t = 0 if t ≤ 52,D2t = 0 if t ≤ 91, D3t = 0 if t ≤ 103, and

D4t = 0 if t ≤ 142.

In order to use Teräsvirta’s (1994) pretest for an LSTAR break, use the same

methodology discussed in Section 7 and let 𝜃 = [1 + exp(−𝛾∗(t − 𝛾(t − t∗)))]−1 =
[1 + exp(−ht)]−1. The next step is to take third-order Taylor series expansion of 𝜃

with respect to ht evaluated at ht = 0. From the derivation of (7.21), we know that the

expansion has the form

𝜃 ≅ 0.25ht − h3t ∕48

Here, ht is 𝛾(t − t∗) so the model can be approximated by:

yt = 𝛼0 + 𝛼1t + 𝛼2t
2 + 𝛼3t

3 + 0.5yt−1 + 𝜀t. (7.40)

You can estimate (7.40) and test the restriction 𝛼1 = 𝛼2 = 𝛼3 = 0 or perform the

LM version of the test. The LM version of the test for a logistic break involves regress-

ing yt on a constant and yt−1 and saving the residuals. Given that time is the threshold
variable, the estimated auxiliary equation involves regressing the residuals êt on a con-
stant, yt−1, t, t

2, and t3:

êt = 0.04 − 0.39yt−1 − 4.9∗10−3t + 3.38∗10−4t2 − 1.06∗10−6t3

(0.15) (−7.22) (−0.50) (3.33) (−3.98)

The F-test test for the null hypothesis that the coefficients of t, t2 and t3 jointly

equal zero is 24.61. With three numerator degrees of freedom, this is significant at any

conventional level. Next, if you use nonlinear least squares to estimate a model in the

form of (7.39) you should obtain

yt = 0.72 + 0.43yt−1 + 3.88∕[1 + exp(−0.065(t − 97.48)]
(3.98) (7.49) (8.65) (5.15) (28.79)

The point estimates are all quite reasonable and you can verify that the resid-

uals show no evidence of remaining serial correlation. The fitted time path of the

time-varying intercept is shown by the solid line in Panel b of Figure 7.15. Additional

details of estimating this series are given in Section 3.8 of the Programming Man-
ual that accompanies this text. González and Teräsvirta (2008) contains an excellent

example of modeling a seasonal series with smooth shifts.
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13. SUMMARY AND CONCLUSIONS

Many important economic variables exhibit nonlinear behavior. The difficulty is to

properly capture the form of the nonlinearity. Once you abandon the linear framework,

you must address the specification problem. As surveyed in this chapter, there are many

nonlinear models and there is no clear way to decide which nonlinear specification is

the best. The issue is important since the use of an incorrect nonlinear specification may

be worse than ignoring the nonlinearity.Moreover, a linear model can always be viewed

as a local approximation of a nonlinear process. There are some standard recommen-

dations for estimating a nonlinear process. The most important is to use a specific to

general modeling strategy. In particular:

1. Always start by plotting your data. Visual inspection of the data can help you

detect the nature of the nonlinearity. You can save yourself substantial model-

ing time if you inspect the data for an outlier or a structural break.

2. Fit the series of interest using the best linear model possible. For example,

you might fit {yt} as an ARMA process using the Box–Jenkins methodology.

The coefficients should be well estimated and the residuals should show no

evidence of any serial correlation.

3. There are number of tests designed to detect nonlinear behavior. The

McLeod–Li, RESET and various Lagrange Multiplier tests can be used to

detect nonlinear behavior. A Lagrange Multiplier test has a specific nonlinear

model as its alternative hypothesis. You can test for coefficient stability using

the methods discussed in Chapter 2. Nevertheless, even a battery of such tests

is not able to reveal the precise nature of the nonlinearity.

4. If nonlinearity is detected, you have to decide on the appropriate form of the

nonlinear specification. There is no substitute for an underlying theoreti-

cal model of the adjustment process. For example, if your model suggests

that prices increase more readily than they decrease, some form of threshold

model is likely to be the most appropriate.

5. The fitted nonlinear model(s) should fit the data better than the linear specifi-

cation and all coefficients should be statistically significant. In most instances,

you will search over a number of plausible specifications. As such, the indi-

vidual t-statistics and F-statistics are likely to be misleading. After all, you

are examining the t-statistic on the best-fitting specification. If you examine

10 different specifications, on average, you should find one that is significant

at the 10% level. Because overfitting is a distinct possibility, many researchers

would use the parsimonious SBC as a measure of fit. Moreover, traditional

t-tests and F-tests when there are nuisance parameters that are not identified

under the null hypothesis. Hansen (1997) considers the issue of inference in

TAR models.

6. The generalized impulse response function can help you detect whether

the nonlinear model is plausible. A useful diagnostic check is to use a

Granger-Newbold or Diebold-Mariano test (see Chapter 2) to check the

out-of-sample forecasting performance of the various models.
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The nonlinear models discussed in this chapter were used to estimate a series {yt}.
However, it is possible to apply nonlinear models to the equation for the conditional

variance. For example, the TARCH model discussed in Chapter 3 is an example of a

nonlinearity applied to the equation for the conditional variance. Hamilton and Susmel

(1994) show how to apply the Markov switching model to the conditional variance of

a time series. Higgens and Bera (1992) develop a nonlinear ARCH (NARCH) model

that posits a “constant elasticity of substitution” functional form for the model of the

conditional variance.

In addition, a large literature is growing concerning the presence of unit roots and

cointegration in the presence of nonlinearities. For example, Granger, Inoue, andMorin

(1997) develop some of the issues in terms of a nonlinear error correctionmodel. Enders

and Siklos (2001) extend the TAR unit root test discussed in Section 11 to allow for a

cointegrated system. Tsay (1998) develops a test that can be used to detect threshold

cointegration. The appropriate use of the test is illustrated using spot and futures prices.

Caner and Hansen (2001) a develop a maximum likelihood method to test for a thresh-

old unit root and Hansen and Seo (2002) extend the analysis to a cointegrated system.

Kapetanios, Shin, and Snell (2003) develop a simple way to test for a unit root against

the alternative of an ESTAR model. Another way to think about nonlinear models is in

the frequency domain. Granger and Joyeux (1980) provide an introduction to the notion

that a series may be integrated of some order other than an integer. Such nonlinear

processes may be mean-reverting yet can behave similarly to a unit root processes.

Many nonlinearity tests and tests for structural change when the break date is

unknown both entail the problem of an unidentified nuisance parameter under the null

hypothesis. As such, the distributions of the relevant test statistics are nonstandard. The

Andrews (1993) test and the Bai and Perron (1998) test allow you to test for structural

breaks when the break date(s) is unknown.

QUESTIONSANDEXERCISES
1. Let pA and pM denote the price of cotton in Alabama andMississippi, respectively. The price

gap, or discrepancy, is pA − pM . For each part, present a nonlinear model that captures the

dynamic adjustment mechanism given in the brief narrative.

a. A large price gap (in absolute value) tends to be eliminated quickly as compared to a

small gap.

b. The price gap is closed more quickly if it is positive than if it is negative.

c. It costs ten cents to transport a bale of cotton between Alabama and Mississippi. Hence,

a price discrepancy of less than 10 cents will not be eliminated by arbitrage. However,

50% of any price gap exceeding 10 cents will be eliminated within a period.

d. The value of pA, but not the value of pM , responds to a price gap.

2. Draw the phase diagram for each of the following processes

a. The GAR model: yt = 1.5yt−1 − 0.5 y3t−1 + 𝜀t.

b. The TAR model: yt = 1 + 0.5yt−1 + 𝜀t if yt−1 > 2 and yt = 0.5 + 0.75yt−1 + 𝜀t
if yt−1 ≤ 2.

c. The TAR model: yt = 1 + 0.5yt−1 + 𝜀t if yt−1 > 0 and yt = −1 + 0.5yt−1 + 𝜀t if

yt−1 ≤ 0. Notice that this model is discontinuous at the threshold. Show that yt−1 = +2
and yt−1 = −2 are both stable equilibrium values for the skeleton.
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d. The TAR model: yt = −1 + 0.5yt−1 + 𝜀t if yt−1 > 0 and yt = +1 + 0.5yt−1 + 𝜀t if

yt−1 ≤ 0. Show that there is no stable equilibrium for the skeleton.

e. The LSTAR model: yt = 0.75yt−1 + 0.25yt−1∕[1 + exp(−yt−1)] + 𝜀t
f. The ESTAR model: yt = 0.75yt−1 + 0.25yt−1[1 − exp(−y2t−1)] + 𝜀t

3. In the Markov switching model, let p1 denote the unconditional probability that the system
is in regime one and let p2 denote the unconditional probability that the system is in regime

two. As in the text, let pii denote the probability that the system remains in regime i. Prove
the assertion

p1 = (1 − p22)∕(2 − p11 − p22)
p2 = (1 − p11)∕(2 − p11 − p22)

4. The file labeled LSTAR.XLS contains the 250 realizations of the series used in Section 9.

a. Verify that (7.24) represents the best fitting linear model for this process.

b. Perform the RESET using H = 3. How does this compare to the result using H = 4?
c. If you software package can perform the BDS test, determine whether the residuals from

(7.25) pass the BDS test for white noise.
d. Perform the LM tests for LSTAR adjustment and for ESTAR adjustment.

e. If you estimate the process as a GAR process, you should find

yt = 2.03 + 0.389yt−1 + 0.201yt−2 − 0.147y2t−1 + 𝜀t
(8.97) (6.97) (3.48) (−10.57)

All of the t-statistics imply that the coefficients are well estimated. Show that all of the

residual autocorrelations are less than 0.1 in absolute value.

How would you determine whether the GAR model or the LSTAR model is preferable?

5. The file GRANGER.XLS contains the interest rate series used to estimate the TAR and

M-TAR models in Section 11.

a. Estimate the TAR and M-TAR models reported in Section 11.

b. Estimate the M-TAR model without the two insignificant coefficients.

c. Calculate the AIC and the SBC for the TAR model and the M-TAR model without the

insignificant coefficients. In your calculations, be sure to adjust the two model selection

criteria to allow for the fact that you estimated the threshold.

d. Calculate the multivariate AIC for the linear error correction model. How does this value

compare to the multivariate AIC for the nonlinear error correction model?

6. Consider the linear process yt = 0.75yt−1 + 𝜀t. Given yt = 1, find Etyt+1
,Etyt+2

, and Etyt+3.

a. Now consider the GAR process yt = 0.75yt−1 − 0.25y2t−1 + 𝜀t. Given yt = 1, find Etyt+1
.

Can you find Etyt+2
and Etyt+3

? [Hint: (Etyt+1
)2 ≠ Et(y2t+1)].

b. Use your answer to Part a to explain why it is difficult to perform multi-step-ahead fore-

casting with a nonlinear model.

7. The file labeled SIM_TAR.XLS contains the 200 observations used to construct Figure 7.3.

a. Show that it reasonable to estimate the series as yt = −0.162 + 0.529yt−1 + 𝜀t.

b. Verify that the RESET does not indicate any nonlinearities. In particular, show that

the RESET (using the second, third, and fourth powers of the fitted values) yields an

F = 1.421.

c. Plot the residual sum of squares for each potential threshold value. That is the most likely

value of the threshold(s)?

d. Estimate the model yt = (0.057 + 0.260yt−1)It + (−0.464 + 0.402yt−1)(1 − It) where
It = 1 if yt−1 > −0.4012 and zero otherwise.
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e. Show that the performance of the model is improved is the intercepts are eliminated.

8. Chapter 3 of the Programming Manual contains a discussion of the appropriate way to pro-
gram smooth transition regressions, ESTAR models, and LSTAR models. If you have not

already done so, download the manual from the Estima (Estima.com), www.time-series.net,

or the Wiley Web site.

a. In Section 3.7, you are asked to use the data set QUARTERLY.XLS to form the annu-

alized inflation rate as 𝜋t = 400∗[log(ppit∕ppit−1)]. Verify that an AR(4) model is a

reasonable linear estimate of the inflation rate.

b. Perform Teräsvirta’s (1994) test for a ESTAR/LSTAR adjustment. Verify that the test

using d = 2 yields the best fit. Does the test point to a linear, an LSTAR, or an ESTAR

model?

c. Explain why the dramatic change in inflation in 2008:4 makes the nonlinear estima-

tion difficult. Verify that applying Teräsvirta’s (1994) to the pre-2008 data indicates that

adjustment is linear.

9. Chapter 5 of the Programming Manual contains a discussion of the appropriate way to
program a TAR model. If you have not already done so, download the manual from the

Estima (Estima.com): www.time-series.net, or the Wiley Web site. Use the data in the file

QUARTERLY.XLS to construct the logarithmic change in the money supply as: gm2t =
log(m2t) − log(m2t−1).
a. Estimate gm2t as an AR(‖1, 3‖) process. Verify that this model has very good diagnostic

properties. Explain why it is especially important to use a parsimonious representation

when estimating a nonlinear model.

b. Suppose that the gm2t displays more persistence when it is below the threshold then

when it is above the threshold. Explain why the sample mean of the gm2t is a biased

estimate of the actual threshold value.

c. Use Chan’s method to find the consistent estimate of the threshold. If you use delay fac-

tors of 1 and 2 you should find 𝜏 = 0.02392 and 𝜏 = 0.01660, respectively. Explain why

the model with d = 2 is superior to that with d = 1?

10. In Section 3.6 of the Programming Manual it is shown how to simulate the simple LSTAR

process:

yt = 1 + 3𝜃 + 0.5yt−1 + 𝜀t where 𝜃 = 1∕[1 + exp(−0.075(t − 100))]

a. Explain how the intercept term evolves over time. In what sense is there a structural

break in the yt process?
b. Use Teräsvirta’s (1994) test to verify that the yt series acts as an logistic process.
c. Estimate the yt series as an LSTAR process and as a threshold process using t as the

threshold variable. How do the two models compare?

11. The file OIL.XLS contains the variable SPOT measuring the weekly values of the spot price

of oil over the May 15, 1987 − Nov 1, 2013 period. In Section 4 of Chapter 3, we formed

the variable pt = 100[log(spott) − log(spott−1)] and found that it is reasonable to model pt
as an MA(‖1, 3‖) process. However, another reasonable model is the autoregressive repre-

sentation: pt = 0.095 + 0.172pt−1 + 0.084pt−3. The issue is to determine whether the {pt}
series contains breaks or nonlinearities.

a. As illustrated in Figure 2.10, graph the CUSUMs and the recursive parameter estimates

of the AR(‖1, 3‖) model. You should find that there is no evidence of parameter

instability.

b. Perform the Andrews and Ploeberger (1994) test for a structural break. You should find

that the sample estimate of the break date is June 21, 1991. Note that this date is very near
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the lower boundary of the 15% trimming). Moreover, the prob-value for a single break is
0.073 so that we cannot reject the null hypothesis of no structural change.

c. Perform the Bai and Perron (1998) test. Allow for a maximum of 5 breaks, a minimum

break size of 8 weeks and a 15% trimming. With three breaking parameters and five

potential breaks the sample value of the supremum F-test is 9.81. Given that the is less
that the critical value of 11.15, you should accept the null hypothesis of no breaks. Note

that the SBC selects 5 breaks.

d. To test this hypothesis, estimate the {pt} series as a threshold process using pt−1 as the
threshold variable. If you perform Hansen’s (1997) test, you should find that 𝜏 = 1.70

and that the prob-value is approximately 0.008. As such, you can reject the null hypoth-

esis and accept the alternative that oil process act as a threshold process. The estimated

model is:

pt = It[1.56 − 0.079pt−1 + 0.072pt−3] + (1 − It)[−0.191 + 0.131pt−1 + 0.087pt−3] + 𝜀t

where It = 1 if pt−1 ≥ 𝜏.

e. Show that it is reasonable to pare down the model such that pt = 1.24It + (1 − It)
[0.159pt−1 + 0.0876pt−3] + 𝜀t. Explain the dynamics of the model when pt is above
(below) the threshold.

f. What happens if you use pt−2 as the threshold variable?

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders bindex.tex V1 - 08/27/2014 6:48pm Page 479

INDEX

Page numbers in italics refer to figures; those in bold refer to tables.

ACF see autocorrelation function
(ACF)

ADL models see autoregressive
distributed lag (ADL)
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Lagrange multiplier test,
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CCVF, 271
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270–71

second-order process,

272–3
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tourism and terrorism, Italy,
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zeroes and nonzeroes, 270

cross-covariances, 269–70

higher-order input processes,

273–4
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procedure, 275–6
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methodology, 274

impulse response function,

280–81
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variables, 393

vs. error-correction test,
399–400

OLS estimation, 394

weakly exogenous,

394–5

transfer function, 280–81
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intervention analysis, 264–6

multiplicative model, 102

autoregressive moving average
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characteristic roots, 58–60

covariance stationary, 57–8

finite-order process, 57–8
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Diebold–Mariano test,
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Granger–Newbold test,
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holdback period, 83–4

regression-based method,
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forecast function, 79–80

higher-order models, 81–2

moving average process,
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one-step-ahead forecast error,
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stability condition, 55
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Beveridge–Nelson
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bilinear (BL) model, 411–12

bivariate moving average (BMA)

representation, 325–6

Blanchard–Quah (BQ)

decomposition

BMA representation, 325–6

demand shocks, 331

impulse response functions,

330, 333–4, 334
disadvantages, 334–5

temporary effect, shocks, 326

Box–Jenkins model see also
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ARIMA(p,1,q) series, 250–51
diagnostic checking, 78–9

estimation stage, 76

goodness-of-fit, 78

nonstationary variables, 76
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stationarity and invertibility,
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BQ decomposition see
Blanchard–Quah (BQ)

decomposition

business cycle, 192–4, 210

CCVF see Cross-covariance
function (CCVF)

chaos, 414, 446

characteristic roots
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cointegrating vector, 376–7
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process, 377

stochastic and deterministic

trends, 376

Choleski decomposition
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identification, 294

Sims–Bernanke

decomposition, 319
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314–16

cobweb model

impulse response function, 22
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18–19, 19, 21
one period multiplier, 21–2
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cointegrating vector, 395–6
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variables, 393
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399–400
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shocks, 393–4

OLS estimation, 394

weak exogenous, 394–5

consumption function theory,

345

definition, 346–8

Engle–Granger procedure see
Engle–Granger

methodology

equilibrium error, 346

error correction see error
correction models (ECM)

Johansen procedure see
Johansen methodology

money demand function,

344–5

PPP, 345–6

stochastic trends, 351–3

unbiased forward rate

hypothesis, 345

common factor restriction, 395

correlogram see also
autocorrelation function

(ACF)

ARIMA(p, d, q) models, 190

GARCH model, 129–30

terrorist attacks, Italy, 278,

278
cross-correlogram

ARMA model, 269

estimates, 279, 279
features, 279

tourism and terrorism, 278–9,

278
zeroes and nonzeroes, 270

cross-covariance function
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intervention model, 270–71

second-order process, 272–3
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ARIMA(p,1,q) model

ARMA model, 251

Box–Jenkins method,

250–51

cyclical component, 252,

253

Hodrick–Prescott

decomposition, 252–4,

254
stochastic trend, 250

BQ decomposition see
Blanchard–Quah

decomposition

Choleski decomposition

vs. BQ decompositions, 333

identification, 294

Sims–Bernanke

decomposition, 319
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314–16

drift model, 247–8

deterministic regressors, 236–8

deterministic trends see
stochastic trends

diagonal vech model

estimation result, 171, 171
positive variance, 167–8

Pound/Franc correlation, 171,

171
Dickey–Fuller test

critical values, 206–7

deterministic regressors,

236–8

deterministic trends, 201, 207
hypothesis testing, 207

lag length

AIC and SBC selection,

218–19, 219
diagnostic checking, 217

general-to-specific

methodology, 216

and negative MA

component, 220–21

unit root plus drift,

217–18, 218
Monte Carlo method see

Monte Carlo method

multiple roots, 221–2

Nelson and Plosser estimation,

210, 210
panel unit root test see panel

unit root tests

seasonal unit root process

characteristic roots, 223

HEGY test, 223–4
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semiannual roots, 226

seasonal difference, 222–3

structural change

estimated values, 228–9
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Perron’s test see Perron’s
test

test statistics, 208, 208–9
Diebold–Mariano test, 86–8

difference stationary (DS),

191–2

differencing

ACF and PACF, 98–9, 99
airline model, 102

Box–Jenkins method, 101

hypothesis testing, 384–5

seasonal difference, 101–2

ECM see error correction models

(ECM)

EGARCH model see exponential
generalized autoregressive

conditional heteroskedastic

(EGARCH) model, 156,
156–7

Engle–Granger methodology

assess model adequacy, 363–4

augmented Dickey–Fuller

tests, 366, 367
characteristic roots see

characteristic roots

data-generating process, 366

equilibrium regressions, 367

error-correction model, 362–3

first-order system, 367–8

I(2) variables, 368–70
long-run equilibrium, 361–2

PPP see purchasing power

parity (PPP)

t-tests and F-tests, 364
error correction models (ECM)

see also cointegration
characteristic roots, 355–6

implications, 357–9

long-term and short-term

rates, 353

n-variable case, 359–60
speed of adjustment

parameters, 354

VAR model, 355
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autoregressive conditional

heteroskedastic (EGARCH)

model, 156, 156–7
exponential smooth transition

autoregressive (ESTAR)

models

adjustment process, 441

LM test, 442

real exchange rate, 440, 442,

452–3

Taylor series approximation,

444

forecast error variance

decomposition, 302

forecast function, 80, 248–50,

459

forward-looking solution, 43

generalized autoregressive

conditional heteroskedastic

(GARCH) model

Bollerslev’s specification,

170, 170
constant conditional

correlation model, 168

diagnostic checking, 150

diagonal vech model

estimation result, 171, 171
positive variance, 167–8

pound/franc correlation,

171, 171
EGARCH model, 156, 156–7
fat-tailed distribution, 157–8,

158
IGARCH model, 154–5

impulse response function,

172–4, 174
inflation estimation

Bollerslev’s estimates,

132–3

Engle’s model, 131–2

value-at-risk, 130–31

maximum likelihood

estimation

classical regression model,

152–3

log-likelihood function,

153–4

nominal exchange rate, 168–9

NYSE index

normal distribution,

estimation, 159, 161–2
t-distribution approach,

159, 159–60
oil prices, 122, 134–5
one-step-ahead forecast, 140,

140–41

squared standardized errors,

138–40

standardized residuals, 138–9

TARCH model, 155–7, 156

vech model, 166–7

volatility shocks, 165–6

generalized autoregressive

(GAR) model, 411

generalized impulse response

function

GNP growth, 453–4

terrorist incidents

forecast function, 459–61,

460
threshold model, 459

Granger causality

block-exogeneity test, 306

likelihood ratio statistic, 306

and money supply changes,

307

standard F-test, 306
Granger–Newbold test, 85–6

Hodrick–Prescott

decomposition, 252–4, 254
homogeneous equation see

stochastic difference

equation

hypothesis testing

Dickey–Fuller test, 207

I(2) variables, 387–9
lag length and causality tests,

383–4

money demand study, 380

multiple cointegrating vectors,

385–7

impulse response functions see
also generalized impulse

response function

ADL models, 280–81

and confidence intervals,

299–301, 300
GARCH model, 172–4,

174
identification restriction,

296

negative off-diagonal

elements, 298

ordering of variables, 296

plotting, 295

reverse Choleski

decomposition, 297

skyjackings, metal detector

technology, 262

innovation accounting, 302
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integrated generalized

autoregressive conditional

heteroskedastic (IGARCH)

model, 154–5

intervention analysis

ADL models see
autoregressive distributed

lag (ADL) models

Libyan bombing effect,

266–7

skyjackings, metal detector

technology

ARIMA model, 263–6

impulse response function,

262

pulse function, 263, 263
pure jump function, 263,

263
transfer function analysis,

268

inverse characteristic equation,

42–3

iteration method

first-order difference equation,

10

nonconvergent sequences,

12–14, 13

Johansen methodology

characteristic roots,

398

hypothesis testing

α and β matrices, 381

characteristic roots, 381

differencing, 384–5

I(2) variables, 387–9
lag length and causality

tests, 383–4

money demand study, 380

multiple cointegrating

vectors, 385–7

lag-length test, 389–90

normalized cointegrating

vector, 392–3

lag operators

application, 42

higher order system, 42–3

properties, 40–41

Lagrange multiplier (LM) test

ARCH model, 145

ESTAR, 442

GARCH model, 130

LSTAR, 442

nonlinear model, 417–18

power, 239

leverage effect, 155–7, 156
Ljung–Box Q-statistics, 72, 75,

137, 142, 150, 280, 416, 450

logistic smooth transition

autoregressive (LSTAR)

models

AIC and SBC, 452

auxiliary regression, 443, 451

LM test, 442

NLLS, 451

numerical methods, 452

RESET test, 450

smoothness parameter, 440

testing procedure, 444

long-run equilibrium

Engle–Granger methodology,

361–2

Johansen methodology, 382

system stability, 20–21

LSTAR models see logistic
smooth transition

autoregressive (LSTAR)

models

macroeconometric models

estimating structural

equations, 282–3

GNP and money base, 284

reduced-form GNP equations,

283–4

Markov switching model, 447–9

mean square prediction error

(MSPE), 84–85

Monte Carlo method

AR(1) model, 201

Dickey–Fuller distribution,

204–6

nonstationary process, 200

random walk model, 200, 201
unit roots, 202

multiequation time-series models

domestic and transnational

terrorism, 260, 260
intervention analysis see

intervention analysis

structural multivariate

estimation limits

feedback problem, 282

VAR analysis see vector
autoregression (VAR)

analysis

nonlinear autoregressive

(NLAR) model, 410–11

nonlinear model

ACF and McLeod–Li test,

413–15

ARMA model

bilinear model, 411–12

GAR, 411

NLAR, 410–11

endogenous structural breaks

Davis problem, 466

dummy variables, 471–2

logistic breaks, 472, 472–3
partial and pure break

model, 466–7

sequential test, 468–70

supremum test, 467–9

threshold breaks, 466–7

transnational terrorism

series, 470–71

Lagrange multiplier tests,

417–18

vs. linear, 408–10
portmanteau tests, 416

regime switching models

artificial neural network,

445–7

Markov switching model,

447–9

STAR models see smooth

transition autoregressive

(STAR) models

TAR models see threshold
autoregressive (TAR)

models

unidentified nuisance

parameters

Davies problem, 418

endogenous break, 419

Monte Carlo method, 420

supremum test, 420

panel unit root tests

ADF test, 244

critical values, 244, 245
IPS test, 243–4

limitations, 246–7

real exchange rates, 245, 245
parsimonious model, 69, 76, 97,

129

partial autocorrelation function

(PACF)

first-order autoregression,

64–5

www.Ebook777.com

http://www.ebook777.com


Free ebooks ==>   www.Ebook777.com

Trim Size: 6in x 9in Enders bindex.tex V1 - 08/27/2014 6:48pm Page 483

INDEX 483

properties, 66, 66
seasonality, 98–9, 99
second-order autoregression,

65

Perron’s test

drift term vs. trend line, 231
level dummy variable, 230

null hypothesis, 229–30

pulse dummy variable,

229–30

power

definition, 235–6

DF-GLS test, 241

Dickey–Fuller regressions,

238, 243

Lagrange multiplier test, 239

Schmidt–Phillips model,

239–40, 244–3

purchasing power parity (PPP)

cointegration, 345–6

Engle–Granger methodology

equilibrium regressions,

371
lag length tests, 372

long-run equilibrium,

370–71

real exchange rates, 370

speed of adjustment

coefficient, 372–3

unit root tests, 370

real exchange rates, 211–12,

212

random walk process

autocorrelation function, 185

cointegration, 348–9

plus noise, 187–8

spurious regression, 197–8

stochastic trends, 184–5, 351

recursive forecasts, 454

regime switching models

artificial neural network,

445–7

Markov switching model,

447–9

TAR models, 420–1

regression error specification test

(RESET), 415–16

reverse causality, 282

Schmidt–Phillips model,

239–40

Schwartz Bayesian criterion

(SBC)

vs. AIC, 73
diagnostic statistics, 99–100,

100
estimated coefficients, 72, 72,

74, 74, 92–3
goodness-of-fit, 78

model selection, 69–70

weighting factor, 111–12

seasonal unit root process

characteristic roots, 223

HEGY test, 223–4

nonseasonal and semiannual

roots, 226

seasonal difference, 222–3

Taylor series, 224–5

seasonality

autoregressive coefficients, 97

differencing

ACF and PACF, 98–9, 99
airline model, 102

Q-statistics, 99–100
seasonal difference, 101–2

multiplicative model, 97

seasonal pattern, 96–7

seemingly unrelated regressions

(SUR), 291, 303

Sims–Bernanke decomposition

Choleski decomposition, 319

coefficient restriction, 320

structural shocks, 318–19

symmetry restriction, 321

variance restriction, 320–21

variance/covariance matrix,

317–18

smooth transition autoregressive

(STAR) models

ESTAR

adjustment process, 441

LM test, 442

real exchange rate, 440,

442, 452–3

Taylor series

approximation, 444

LSTAR

AIC and SBC, 452

autocorrelations, 450

auxiliary regression, 443,

451

LM test, 442

NLLS, 451

numerical methods, 452

smoothness parameter, 440

squared residuals, 450

testing procedure, 444

NLAR, 439

spurious regression

autocorrelation, 196

regression equation, 195

stationary and nonstationary

variables, 198–9

STAR models see smooth

transition autoregressive

(STAR) models

stationary time-series model

ARMA model see
autoregressive moving

average (ARMA) model

covariance stationary, 52–3

particular solution, 54

stability condition, 54–5

stochastic difference equation

see stochastic difference
equation

weakly stationary, 52–3

stochastic difference equation

cobweb model

constant coefficients, 19–20

impulse response function,

22

long-run equilibrium price,

18–19, 19, 21
one period multiplier, 21–2

deterministic process

components, 31–2

linear time trend, 33–4

homogeneous solution

characteristic roots, 23–4

convergence, 25–6, 26
higher order equation,

30–31

nth-order equation, 14–15
second-order equation,

22–4

stability condition, 27–30,

29–30
trigonometric functions,

26–7

iteration method

first-order difference

equation, 10

nonconvergent sequences,

12–14, 13
lag operators

forward-looking solution,

43

higher order systems, 42–3

particular solution, 41–3

properties, 40–41
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stochastic difference equation

(Continued)
nonlinear dynamics, 6–7

undetermined coefficients

challenge solution, 34–5

general solution, 35, 37

higher order system, 37–8

particular solution, 35, 37

stochastic trends

business cycle, 192–4

cointegration, 351–3

decompositions see
decompositions

Dickey–Fuller test see
Dickey–Fuller test

differencing

ARIMA(p, d, q) models,

190

random walk plus drift

model, 189

vs. stationary series, 191–2

permanent/nondecaying

component, 183

random walk model, 184–5

random walk plus drift model,

185–7

random walk plus noise,

187–8

trend plus noise model, 188–9

trend stationary model, 183

unit roots see unit roots
structural multivariate estimation

limits

feedback problem, 282

macroeconometric models

estimating structural

equations, 282–3

reduced-form GNP

equations, 283–4

variables as endogenous,

284

structural VAR, 286

BQ decomposition see
Blanchard–Quah (BQ)

decomposition

structural decompositions

Choleski decomposition,

314–16

forecast errors and

structural innovations,

316

n-variable VAR, 314–15,
317

reduced-form VAR model,

313

Sims–Bernanke

decomposition see
Sims–Bernanke

decomposition

TARCH model see threshold
generalized autoregressive

conditional heteroskedastic

(TARCH) model

threshold autoregressive (TAR)

models

AR(1)process, 422–3

asymmetric monetary policy

estimated model, 437

real GDP, 437

SSR, AIC, and SBC

regressions, 438

Taylor rule, 436, 438

BL model, 423

delay parameter, 427

endogenous breaks, 432–3

estimation

high and

low-unemployment

regime, 426–7

ordered threshold values,

429

regime dependent

variances, 424, 424
GAR process, 422–3

impulse responses see
generalized impulse

response function

multiple regimes, 427–8

pretesting, 430–32

recursive forecasts, 454

regime switching model,

420–21

unemployment rate

autocorrelation, 434

McLeod–Li test, 434

null hypothesis, 435

U.S. unemployment rate,

433

unit roots

adjustment process,

463–4

Dickey–Fuller test, 461–2

M-TAR model, 462–4

nonlinear error-correction,

465–6

phase diagram, 462, 462

real exchange rates, 461

threshold generalized

autoregressive conditional

heteroskedastic (TARCH)

model, 155–7, 156
transfer function analysis

distributed lag, 268

endogeneous and exogeneous

variable, 268

GNP and money base, 284

lag lengths, 284

leading indicator, 268

postestimation evaluation, 78

trend plus noise model, 188–9

trend stationary (TS) model, 183

unbiased forward rate (UFR)

hypothesis, 6, 345

undetermined coefficients

arbitrary constant, 36

challenge solution, 34–5

higher order system, 37–8

stochastic term, 39–40

unit roots

Monte Carlo method, 202

spurious regression

autocorrelation, 196

random walk process,

197–8

stationary and nonstationary

variables, 198–9

TAR models

adjustment process, 463–4

Dickey–Fuller test, 461–2

M-TAR model, 462–4

nonlinear error-correction,

465–6

phase diagram, 462, 462
real exchange rates, 461

variance decomposition, 301

vector autoregression (VAR)

analysis

bivariate system, 285

covariance matrix, 286–7

domestic and transnational

terrorism, 309–10

empirical methodology,

310–11

empirical results, 311–13,

312
dynamics, 289–90, 289
forecasting, 291–2

identification
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Choleski decomposition,

294

primitive system, 292–3

recursive system, 293

lag length, 290

multivariate generalization,

290

OLS estimates, 285, 290

overidentified system

identification procedure,

321–2

Sim’s model, 324–5

stability and stationarity,

287–8

structural VAR see structural
VAR

testing hypotheses

AIC and SBC, 305

asymptotic 𝜒2 distribution,
304

Granger causality, 305–7

likelihood ratio test, 304–5

near-VAR, 303

n-equation VAR, 303
with nonstationary

variables, 307–9

SUR, 303

vector moving average

impact multipliers, 295

impulse response functions

see impulse response

functions

moving average

representation,

295

volatility

ARCH process see
autoregressive conditional

heteroskedastic (ARCH)

model

GARCH model see genera-
lized autoregressive

conditional heteroskedas-

tic (GARCH) model

stylized facts

daily exchange rates, 121,
121–2

exchange rate series, 122

oil, spot price, 122

real GDP, consumption, and

investment, 118–20,

119–20
short and long-term interest

rates, 119, 121, 121

weakly exogenous, 394–5

Yule–Walker equation,

62–4
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