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Movimento dos organismos

Mudança na localização espacial de um indivíduo no tempo



Movimento dos organismos

Determinado por 
processos que 
atuam em 
múltiplas escalas 
espaciais e 
temporais

História de vida de 
indivíduos 

Estrutura e dinâmica 
de:

• Populações
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Adaptado de Kays et al. 2015

currently face. Finally, tracking data should be
made easily available to policy-makers, conserva-
tion organizations, and other scientists via online
data repositories such as Movebank, EuroDeer, or
WRAM (21–23). These archives for animal move-
ment data can greatly increase the scientific return
on investment and promote animal welfare by
reducing the need for new data collection.

Detailed data, diverse questions

Early ecology papers using VHF tracking typi-
cally addressed questions of animal home range
size and habitat preference (24). High-resolution
location data and sensor streams allow scientists
to consider the ultimate behavioral and ecolog-
ical mechanisms that underlie these movements,
as well as the proximate internal and external
factors that direct them (Fig. 4). There has also
been a new push to identify the consequences of
movement decisions, not only for individual ani-

mals, but also for the populations they connect
and the ecosystems they move through.

Describing movement and its causes

As the spatial accuracy and temporal resolution
of tracking data increase, we can obtain a more
process-relevant picture of animal movement.
These fine-grain data have opened up new re-
search questions and also forced the develop-
ment of new metrics and models to describe
phenomena and test hypotheses. The advance of
“big tracking data” has led to the ultimate vision
of highly predictivemodels of animalmovement.
Such models are dearly needed by conservation
managers working on habitat restoration pro-
grams, global change biologists, and intergovern-
mental agencies trying to predict the movements
of problem animals such as desert locusts or
queleas (25) or diseased animals such as ducks
carrying avian influenza (26).

The large, continuous data streams frommod-
ern GPS tracking tags have revolutionized the
study of animal space use, not only through the
sheer size of data sets (3) but also by revealing an
entirely new source of biological information
about animal behavior that comes from connect-
ing sequential movement steps. Repeat locations
along a movement trajectory are inherently non-
independent; traditional analytical approaches
attempted to factor out this interdependence be-
fore describing an animal’s space use (27).Modern
approaches leverage new biological understand-
ing from this autocorrelation by integrating space
and time to test hypotheses about animal move-
ment (28). Other approaches use high-resolution
movement andaccelerometer information to char-
acterize behaviors, providing deeper insight and pre-
dictions intowhy animals visit different areas (15).
Deducing habitat preferences remains a prior-

ity for many tracking studies. Step-selection
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Fig. 4. Discoveries from tracking data. High-resolution animal tracking is
leading to important discoveries in a variety of fields. (A) Studies of leadership
in flocking pigeons documented a consistent hierarchy in following behavior, as
representing by the gray lines (100). (B) Determining where migratory birds
died showed that mortality rate was six times higher during migration than
during the breeding orwintering groundsand thatmost of the 15 deaths (green
lines) occurred in the Sahara desert (46). (C) Tracks of large hornbills in South
Africa (red lines) showed that they move between scattered fragments of
natural vegetation (green patches), moving seeds with them, and highlight
the importance of networks of smaller forests acting as stepping stones to
connect far-flung larger forests (116). (D) Simultaneous tracks of competing

monkey groups allowed researchers to document the winners and losers of
territorial contests and discover a substantial home-field advantage that
allows smaller groups to fend off more numerous competing groups closer to
the center of their range (93). (E) Fishers (red lines) moving through sub-
urban Albany, New York, were found to repeatedly use movement corridors to
connect smaller forest fragments (green area) into home ranges that were
large enough to sustain their hunting needs (15). (F) Accelerometers com-
binedwith GPS tags allowed ecophysiologists to quantify the energy expended
(arrows show direction of travel, and colored lines the animal’s energy ex-
penditure) by cougars attacking prey and show the cost of targeting large
prey (inset graph) (80).
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Movimento dos organismos

Alguns tipos de movimentos:

Adaptado de Pretorius et al. 2015
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Movimento dos organismos

Causalmente ligado à mudanças ambientais, nas duas direções:

Resposta à fragmentação de hábitat Dispersão de sementes

Exemplos:
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Fig. 4. Discoveries from tracking data. High-resolution animal tracking is
leading to important discoveries in a variety of fields. (A) Studies of leadership
in flocking pigeons documented a consistent hierarchy in following behavior, as
representing by the gray lines (100). (B) Determining where migratory birds
died showed that mortality rate was six times higher during migration than
during the breeding orwintering groundsand thatmost of the 15 deaths (green
lines) occurred in the Sahara desert (46). (C) Tracks of large hornbills in South
Africa (red lines) showed that they move between scattered fragments of
natural vegetation (green patches), moving seeds with them, and highlight
the importance of networks of smaller forests acting as stepping stones to
connect far-flung larger forests (116). (D) Simultaneous tracks of competing

monkey groups allowed researchers to document the winners and losers of
territorial contests and discover a substantial home-field advantage that
allows smaller groups to fend off more numerous competing groups closer to
the center of their range (93). (E) Fishers (red lines) moving through sub-
urban Albany, New York, were found to repeatedly use movement corridors to
connect smaller forest fragments (green area) into home ranges that were
large enough to sustain their hunting needs (15). (F) Accelerometers com-
binedwith GPS tags allowed ecophysiologists to quantify the energy expended
(arrows show direction of travel, and colored lines the animal’s energy ex-
penditure) by cougars attacking prey and show the cost of targeting large
prey (inset graph) (80).
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in flocking pigeons documented a consistent hierarchy in following behavior, as
representing by the gray lines (100). (B) Determining where migratory birds
died showed that mortality rate was six times higher during migration than
during the breeding orwintering groundsand thatmost of the 15 deaths (green
lines) occurred in the Sahara desert (46). (C) Tracks of large hornbills in South
Africa (red lines) showed that they move between scattered fragments of
natural vegetation (green patches), moving seeds with them, and highlight
the importance of networks of smaller forests acting as stepping stones to
connect far-flung larger forests (116). (D) Simultaneous tracks of competing

monkey groups allowed researchers to document the winners and losers of
territorial contests and discover a substantial home-field advantage that
allows smaller groups to fend off more numerous competing groups closer to
the center of their range (93). (E) Fishers (red lines) moving through sub-
urban Albany, New York, were found to repeatedly use movement corridors to
connect smaller forest fragments (green area) into home ranges that were
large enough to sustain their hunting needs (15). (F) Accelerometers com-
binedwith GPS tags allowed ecophysiologists to quantify the energy expended
(arrows show direction of travel, and colored lines the animal’s energy ex-
penditure) by cougars attacking prey and show the cost of targeting large
prey (inset graph) (80).
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Movimento dos organismos

Mecanismos de movimento são diversos entre diferentes formas de vida
 Micro-organismos
 Plantas
 Animais
 
Movimentos ativos e passivos



Movimento dos organismos

A classificação idiossincrática dos diferentes modos de movimento pode confundir 
padrões e processos, e causas e efeitos
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leading to important discoveries in a variety of fields. (A) Studies of leadership
in flocking pigeons documented a consistent hierarchy in following behavior, as
representing by the gray lines (100). (B) Determining where migratory birds
died showed that mortality rate was six times higher during migration than
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allows smaller groups to fend off more numerous competing groups closer to
the center of their range (93). (E) Fishers (red lines) moving through sub-
urban Albany, New York, were found to repeatedly use movement corridors to
connect smaller forest fragments (green area) into home ranges that were
large enough to sustain their hunting needs (15). (F) Accelerometers com-
binedwith GPS tags allowed ecophysiologists to quantify the energy expended
(arrows show direction of travel, and colored lines the animal’s energy ex-
penditure) by cougars attacking prey and show the cost of targeting large
prey (inset graph) (80).
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Objetivo do movimento: forrageamento

Contexto na paisagem: movimento intrafragmento

Adaptado de Kays et al. 2015



Movimento dos organismos

Termos como dispersão e migração já foram empregados para múltiplos tipos de 
movimento, dependendo do grupo taxonômico, região geográfica e métodos de 
pesquisa

A classificação idiossincrática dos diferentes modos de movimento pode confundir 
padrões e processos, e causas e efeitos



Quatro questões fundamentais:
Por que se mover?

Para onde se mover?
Como se mover? 
Fatores externos

Movimento dos organismos



Técnicas tradicionais para o estudo do movimento 
incluem

• Marcação (anilhas, colares, etc)

• Rádio telemetria



Avanços recentes

Kays et al. 2015

1. Aparelhos com múltiplos sensores 
levados por animais (biologgers ou 
“tags”)

2. Tecnologia de sensoriamento 
remoto

3. Avanços em técnicas de 
organização, processamento e 
análise de dados de alta resolução

4. Capacidade computacional



Histórico da ecologia do movimento
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centuries later, the first radio-telemetry devices were 
deployed in the 1960s on wild porcupines (Erethizon 
dorsatum) by Marshall et al. [9], soon followed by stud-
ies on grizzly bears (Ursus arctos horribilis) by the Craig-
head brothers [10, 11] and on various mesomammals by 
Cochran and Lord Jr [12]. Approximately at the same 
time, Kooyman [13] pioneered the use of animal-borne 
sensors in marine mammals. Bird banding and telemetry 
opened the way for scientists to measure wildlife move-
ment from a Lagrangian perspective—i.e. tracking move-
ments of a single individual through time, as defined 
by Turchin [14], who borrowed terminology from fluid 
dynamics to describe organismal movement in his foun-
dational book.

In 2008, Nathan et  al. [1] proposed the movement 
ecology framework (MEF) to unify movement research. 
"e MEF intended to develop ‘an integrative theory 
of organism movement for better understanding the 
causes, mechanisms, patterns, and consequences of 
all movement phenomena’ [15]. To this aim, the MEF 
focused on the links between four components: internal 
state (why move?), navigation capacity (where to move?), 
motion capacity (how to move?), and external factors 
(the set of biotic and abiotic environmental factors that 
affect movement). While several studies already existed 
that addressed the interplay between internal state 

and external factors in determining the emergence of 
movement [16], the goal of the MEF was to formalize 
links between factors affecting movement and favor 
integration in the years to come. Technology allowing 
us to track individuals for long periods of time and at 
fine scales, as well as methodologies to infer behaviors 
from movement patterns and link them to motion 
and navigation capacities, internal characteristics, and 
external factors, were listed as main requirements and 
challenges to quantify the movement of individuals 
within the new integrative framework [1].

Technological advancements have since powered an 
exponential expansion of the field of movement ecology. 
Cagnacci et  al. [17] defined the development of GPS-
tracking technology as ‘a perfect storm of opportunities’ 
for the study of animal movement. Loggers have become 
smaller, cheaper, and more reliable, allowing for more 
animals to be tagged, for data to be collected at ever 
finer spatio-temporal resolutions [18], while uncovering 
previously unknown and unattainable behaviors in 
wildlife [2]. Wilmers et  al. [19] coined the term ‘golden 
era of biologging’ to describe this recent period, as 
the widespread diffusion of a variety of animal-borne 
sensors (including but not limited to GPS devices, 
accelerometers, magnetometers, cameras, etc.) continues 
to open new and exciting possibilities for the study of 
wildlife movement.

Modern movement literature places itself at the 
interface of several research fields, including physics [20], 
physiology [21], data science [22], and ecology [23]. "e 
development and widespread use of tracking devices 
is simultaneously propelling human mobility science 
[24], a discipline that has borrowed several concepts 
and approaches from animal studies, due to the latter’s 
longer history investigating movement from telemetry 
data [25]. Data on human mobility is often quantified 
and analyzed using collective or Eulerian approaches [26, 
27], which in turn could be beneficially incorporated into 
animal movement ecology studies. Indeed, initiatives 
for reciprocal integration of both animal movement and 
human mobility have already started [26, 27].

In recent years, the technological and analytical 
advances for animal and human tracking triggered 
the emergence of a series of reviews related to sensors, 
software, and statistical and mathematical tools to study 
different aspects of movement ecology [2, 25, 27–29]. 
We deemed it timely to complement these reviews 
with a quantitative assessment of movement research 
in animals—including humans—in 2009–2018, a full 
decade after the publication of the MEF. While some 
human mobility studies have proposed perspectives and 
frameworks alternative to the MEF [30, 31], the MEF is 
compatible with other frameworks [27] and we chose to 

Fig. 1 Number of articles published each year until 2018 in 
movement ecology of animals and human mobility as identified by 
our algorithm, along with a timeline of key movement papers and 
milestones in the field. PNAS: Proceedings of the National Academy 
of Sciences; JAE: Journal of Animal Ecology; PTRSB: Philosophical 
Transactions of the Royal Society B. See alt-text in the Alt-text section 
of the manuscript

Joo et al. 2022
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Novo arcabouço teórico para a ecologia do movimento
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• Estado interno: estado interno (e.g. fisiológico e 
neurológico) do indivíduo que afeta sua 
motivação e prontidão para se movimentar

Componentes

Estado 
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Novo arcabouço teórico para a ecologia do movimento
Nathan et al. PNAS 2008

• Fatores externos: conjunto de fatores ambientais 
bióticos e abióticos que afetam o movimento do 
indivíduo focal
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Novo arcabouço teórico para a ecologia do movimento
Nathan et al. PNAS 2008

• Capacidade de navegação: conjunto de 
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obter e usar informação) que permitem ao 
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Novo arcabouço teórico para a ecologia do movimento
Nathan et al. PNAS 2008

• Caminho de movimento: sequência de passos e 
paradas, que pode ser aplicado de forma flexível 
para várias definições de passo/parada, 
comprimento e duração total
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proach, which quantifies movement of
individuals (7) and has long been ap-
plied to study the movement of self-pro-
pelled microorganisms (2, 16). The Eu-
lerian approach, however, remains the
major and often the only practical way
to study the externally vectored trans-
port of microorganisms, airborne in-
sects, and seeds. Progress in applying
the Lagrangian approach to larger or-
ganisms relies on quantifying movement
paths with sufficiently high spatiotempo-
ral resolution and over sufficiently large
spatiotemporal scales. Inherent tradeoffs
between size and performance (spatial
accuracy, temporal recording frequency,
and battery life) of telemetry tags im-
pose limits on the body size of wild-
ranging organisms that can be tracked
for extensive time periods. Recent tech-
nological advances encompassing nu-
merous techniques, such miniaturized
radio transmitters, global positioning
systems, cellular and satellite networks,
acoustic transmitters, and light-level
geolocators are reducing these limits
(17–19). This growing capacity to collect
high-resolution spatiotemporal move-
ment data requires revolutionary im-
provements in data management, pro-
cessing, and analytical techniques, at
least as challenging as the bioinformat-
ics revolution of genomics and proteom-
ics (20). Rapidly increasing computa-
tional power is driving a parallel
ecoinformatics revolution to the point
where computations not possible a de-
cade ago can now be undertaken on
networked desktop computers. Internet
networking allows easy access to large
ecological and geographic databases,
including movement databases (e.g.,
www.movebank.org). The enhanced
computational capacity has also fueled
the development of new analytical tools,
including Lagrangian simulations of
wind-dispersed seeds (21), and state-
space models of individual animal move-
ment (22) that represent a quantum leap
beyond those used a decade ago (7).

These technological advances improve
our ability to address four fundamental
questions about organismal movement:
(i) why move? (ii) how to move? (iii)
when and where to move? and (iv) what
are the ecological and evolutionary con-
sequences of movement? A central chal-
lenge in addressing these questions is to
elucidate the proximate and ultimate
(evolutionary) causes responsible for the
observed movement paths. Before intro-
ducing a conceptual framework con-
structed to address these questions, we
highlight four major data analysis
challenges.

First, because of its inherent depen-
dency on the sampling protocol and fre-
quency, parsing the movement path into

a string of elemental units is a major
challenge. Fortunately, improved track-
ing technology promises to do for move-
ment ecology what genetic sequencing
did for molecular genetics: to provide an
elemental view of a movement track, in
the same way that a nucleotide sequence
provides an elemental view of a DNA
string. The scientific revolution potenti-
ated by genome sequencing can be com-
pared with insights about movement
drawn from mapping every step and
stop of an individual during its lifetime
track from birth to death (Fig. 1). Prac-
tically and typically, movement data de-
scribe movement paths, each composed
of a temporal sequence of recorded lo-
cations for an individual (Fig. 1). In the
same way that the 3D structure of DNA
strings is central to the function of a
DNA segment, the structure of a move-
ment path is a reflection of the basic
processes that produced it.

Second, path segments need to be
classified in terms of the basic func-
tional units of the lifetime track. Para-
phrasing our DNA metaphor, identify-
ing a nucleotide sequence that
constitutes a functionally relevant DNA
segment is analogous to identifying a
movement phase during which a particu-
lar set of goals is fulfilled (Fig. 1). At-
tempts to understand movement without
being able to identify movement phases
within observed movement paths are
analogous to attempts to understand the
meaning of the DNA sequence without
being able to detect genes. The move-

ment phase is thus a central concept in
our proposed movement ecology para-
digm (Fig. 1), linking the traditional
phenomenological emphasis on move-
ment path analysis (15) to the proposed
mechanistic, process-based, movement
ecology approach. The deconstruction
of a movement path into a sequence of
movement phases depends on the tem-
poral resolution of the data. Because
phases with duration shorter than the
inverse of the sampling frequency are
obscured, the set of movement phases
used to parse the structure of a particu-
lar path must be compatible with the
sampling frequency used to generate
that path (23). Given movement data
sampled with a sufficient resolution, the
greatest challenge is to identify the
proximate and ultimate drivers that
break up the path into different move-
ment phases. Potential solutions for
this challenge used by Special Feature
contributions are highlighted below
(see Applying the Movement Ecology
Approach).

Third, a major challenge is to assess
how processes operating at multiple spa-
tiotemporal scales determine the com-
position of movement phases and their
frequency in an individual’s lifetime
track. Movement phases are made up of
smaller units that we call canonical ac-
tivity modes (23), such as runs and tum-
bles in bacteria (16) and standing, walk-
ing, running, and gliding in larger
animals, much as genes coding for pro-
teins are composed of a limited number
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Fig. 1. Fundamental spatiotemporal scaling of movement of an individual organism. A short movement
path representing five steps and one stop (A); a longer path representing three movement phases (B); a
lifetime track (C). The concept of movement phase, as defined here, provides the essential link between
movement patterns and their underlying processes. Glossary: Movement, a change in the spatial location
of the whole individual over time; Movement step (or simply ‘‘step’’), a displacement between two
successive positional records of the organism; Movement phase, a sequence of steps and stops associated
with the fulfillment of a particular goal or a set of goals; Goal, a proximate cause of movement, combining
ultimate internal drivers (e.g., to gain energy, seek safety, learn, or reproduce) and external stimuli;
Lifetime track, the complete sequence of steps and stops of an individual from birth to death; Movement
path, a general term for a sequential collection of steps and stops, applied flexibly to various step/stop
definitions and overall length or duration.
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proach, which quantifies movement of
individuals (7) and has long been ap-
plied to study the movement of self-pro-
pelled microorganisms (2, 16). The Eu-
lerian approach, however, remains the
major and often the only practical way
to study the externally vectored trans-
port of microorganisms, airborne in-
sects, and seeds. Progress in applying
the Lagrangian approach to larger or-
ganisms relies on quantifying movement
paths with sufficiently high spatiotempo-
ral resolution and over sufficiently large
spatiotemporal scales. Inherent tradeoffs
between size and performance (spatial
accuracy, temporal recording frequency,
and battery life) of telemetry tags im-
pose limits on the body size of wild-
ranging organisms that can be tracked
for extensive time periods. Recent tech-
nological advances encompassing nu-
merous techniques, such miniaturized
radio transmitters, global positioning
systems, cellular and satellite networks,
acoustic transmitters, and light-level
geolocators are reducing these limits
(17–19). This growing capacity to collect
high-resolution spatiotemporal move-
ment data requires revolutionary im-
provements in data management, pro-
cessing, and analytical techniques, at
least as challenging as the bioinformat-
ics revolution of genomics and proteom-
ics (20). Rapidly increasing computa-
tional power is driving a parallel
ecoinformatics revolution to the point
where computations not possible a de-
cade ago can now be undertaken on
networked desktop computers. Internet
networking allows easy access to large
ecological and geographic databases,
including movement databases (e.g.,
www.movebank.org). The enhanced
computational capacity has also fueled
the development of new analytical tools,
including Lagrangian simulations of
wind-dispersed seeds (21), and state-
space models of individual animal move-
ment (22) that represent a quantum leap
beyond those used a decade ago (7).

These technological advances improve
our ability to address four fundamental
questions about organismal movement:
(i) why move? (ii) how to move? (iii)
when and where to move? and (iv) what
are the ecological and evolutionary con-
sequences of movement? A central chal-
lenge in addressing these questions is to
elucidate the proximate and ultimate
(evolutionary) causes responsible for the
observed movement paths. Before intro-
ducing a conceptual framework con-
structed to address these questions, we
highlight four major data analysis
challenges.

First, because of its inherent depen-
dency on the sampling protocol and fre-
quency, parsing the movement path into

a string of elemental units is a major
challenge. Fortunately, improved track-
ing technology promises to do for move-
ment ecology what genetic sequencing
did for molecular genetics: to provide an
elemental view of a movement track, in
the same way that a nucleotide sequence
provides an elemental view of a DNA
string. The scientific revolution potenti-
ated by genome sequencing can be com-
pared with insights about movement
drawn from mapping every step and
stop of an individual during its lifetime
track from birth to death (Fig. 1). Prac-
tically and typically, movement data de-
scribe movement paths, each composed
of a temporal sequence of recorded lo-
cations for an individual (Fig. 1). In the
same way that the 3D structure of DNA
strings is central to the function of a
DNA segment, the structure of a move-
ment path is a reflection of the basic
processes that produced it.

Second, path segments need to be
classified in terms of the basic func-
tional units of the lifetime track. Para-
phrasing our DNA metaphor, identify-
ing a nucleotide sequence that
constitutes a functionally relevant DNA
segment is analogous to identifying a
movement phase during which a particu-
lar set of goals is fulfilled (Fig. 1). At-
tempts to understand movement without
being able to identify movement phases
within observed movement paths are
analogous to attempts to understand the
meaning of the DNA sequence without
being able to detect genes. The move-

ment phase is thus a central concept in
our proposed movement ecology para-
digm (Fig. 1), linking the traditional
phenomenological emphasis on move-
ment path analysis (15) to the proposed
mechanistic, process-based, movement
ecology approach. The deconstruction
of a movement path into a sequence of
movement phases depends on the tem-
poral resolution of the data. Because
phases with duration shorter than the
inverse of the sampling frequency are
obscured, the set of movement phases
used to parse the structure of a particu-
lar path must be compatible with the
sampling frequency used to generate
that path (23). Given movement data
sampled with a sufficient resolution, the
greatest challenge is to identify the
proximate and ultimate drivers that
break up the path into different move-
ment phases. Potential solutions for
this challenge used by Special Feature
contributions are highlighted below
(see Applying the Movement Ecology
Approach).

Third, a major challenge is to assess
how processes operating at multiple spa-
tiotemporal scales determine the com-
position of movement phases and their
frequency in an individual’s lifetime
track. Movement phases are made up of
smaller units that we call canonical ac-
tivity modes (23), such as runs and tum-
bles in bacteria (16) and standing, walk-
ing, running, and gliding in larger
animals, much as genes coding for pro-
teins are composed of a limited number
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Fig. 1. Fundamental spatiotemporal scaling of movement of an individual organism. A short movement
path representing five steps and one stop (A); a longer path representing three movement phases (B); a
lifetime track (C). The concept of movement phase, as defined here, provides the essential link between
movement patterns and their underlying processes. Glossary: Movement, a change in the spatial location
of the whole individual over time; Movement step (or simply ‘‘step’’), a displacement between two
successive positional records of the organism; Movement phase, a sequence of steps and stops associated
with the fulfillment of a particular goal or a set of goals; Goal, a proximate cause of movement, combining
ultimate internal drivers (e.g., to gain energy, seek safety, learn, or reproduce) and external stimuli;
Lifetime track, the complete sequence of steps and stops of an individual from birth to death; Movement
path, a general term for a sequential collection of steps and stops, applied flexibly to various step/stop
definitions and overall length or duration.
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ECOLOGY

Terrestrial animal tracking as an eye
on life and planet
Roland Kays,* Margaret C. Crofoot, Walter Jetz, Martin Wikelski

BACKGROUND: The movement of animals
makes them fascinating but difficult study sub-
jects. Animal movements underpinmany biol-
ogical phenomena, and understanding them is
critical for applications in conservation, health,
and food. Traditional approaches to animal
tracking used field biologists wielding anten-
nas to record a few dozen locations per ani-
mal, revealing only the most general patterns
of animal space use. The advent of satellite
tracking automated this process, but initially
was limited to larger animals and increased
the resolution of trajectories to only a few hun-
dred locations per animal. The last few years
have shown exponential improvement in track-
ing technology, leading to smaller tracking de-

vices that can return millions of movement
steps for ever-smaller animals. Finally, we have
a tool that returns high-resolution data that
reveal the detailed facets of animal movement
and its many implications for biodiversity, an-
imal ecology, behavior, and ecosystem function.

ADVANCES: Improved technology has brought
animal tracking into the realm of big data, not
only through high-resolution movement tra-
jectories, but also through the addition of oth-
er on-animal sensors and the integration of
remote sensing data about the environment
throughwhich these animals aremoving. These
new data are opening up a breadth of new
scientific questions about ecology, evolution,

and physiology and enable the use of animals
as sensors of the environment. High–temporal
resolution movement data also can document
brief but important contacts between animals,
creating new opportunities to study social net-
works, as well as interspecific interactions such
as competition andpredation.With solar panels

keeping batteries charged,
“lifetime” tracks cannowbe
collected for some species,
while broader approaches
are aiming for species-wide
sampling across multiple
populations.Miniaturized

tags also help reduce the impact of the devices
on the study subjects, improving animal wel-
fare and scientific results. As in other disciplines,
the explosion of data volume and variety has
created new challenges and opportunities for
information management, integration, and
analysis. In an exciting interdisciplinary push,
biologists, statisticians, and computer scien-
tists have begun to develop new tools that are
already leading to new insights and scientific
breakthroughs.

OUTLOOK: We suggest that a golden age of
animal tracking science has begun and that
the upcoming years will be a time of unpre-
cedented exciting discoveries. Technology con-
tinues to improve our ability to track animals,
with the promise of smaller tags collecting
more data, less invasively, on a greater variety
of animals. The big-data tracking studies that
are just now being pioneered will become
commonplace. If analytical developments can
keep pace, the fieldwill be able to develop real-
time predictive models that integrate habitat
preferences, movement abilities, sensory capac-
ities, and animal memories into movement
forecasts. The unique perspective offered by
big-data animal tracking enables a new view
of animals as naturally evolved sensors of en-
vironment, which we think has the potential
to help us monitor the planet in completely
new ways. A massive multi-individual moni-
toring programwould allow a quorum sensing
of our planet, using a variety of species to tap
into the diversity of senses that have evolved
across animal groups, providing new insight
on our world through the sixth sense of the
global animal collective. We expect that the
field will soon reach a transformational point
where these studies do more than inform us
about particular species of animals, but allow
the animals to teach us about the world.▪
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Big-data animal tracking. The red trajectory shows how studies can now track animals with
unprecedented detail, allowing researchers to predict the causes and consequences ofmovements,
and animals to become environmental sensors. Multisensor tracking tags monitor movement,
behavior, physiology, and environmental context. Geo- and biosciences merge now using a
multitude of remote-sensing data. Understanding how social and interspecific interactions affect
movement is the next big frontier.
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and the absolute cumulative turning angle in these segments, and we used the expectation maximization
binary clustering (EmbC) algorithm to discern the flight behaviours, introducing these two metrics as
delimiters. The algorithm, implemented in the R package EmbC [37], efficiently detected changes in
the flight behaviour, distinguishing a high turning angle (circular soaring) from two low turning
angle clusters (linear flight). Based on the average vertical speed, we further differentiated the linear
flight segments into gliding (linear descending flights) and linear soaring (linear ascending flights).
Each 15 s segment along the animal trajectory was individually assigned to one of the behavioural
classes based on its specific parameters. We applied a smoother to avoid abrupt and unnatural
behavioural changes from one segment to the next along the same trajectory. Our smoother worked
as a moving window: each segment assigned to a different behaviour relative to its closest neighbours
was reclassified to match the modal value of two segments before and after the considered segment.

Given the high resolution of the GPS data, we could visually inspect and confirm the results of the
segmentation using three-dimensional plots (figure 2). We then investigated the different classified
behaviours in terms of their flight parameters, such as ground speed or vertical speed (electronic
supplementary material, S1, figure S1.1).

In the subsequent steps, we wanted to contrast the use of active versus passive flight, focusing on the
dichotomy soaring/flapping. We therefore did not differentiate between circular and linear soaring (both
classified as soaring), and we excluded gliding segments, as they are not considered as an alternative to
soaring (like flapping) but rather as its consequence [12]. In these analyses, we considered for each
individual only soaring segments with a duration longer than 30 s, and treated consecutive soaring
segments as different units only when separated by at least 60 s. The location of each soaring segment
was defined by its centroid (mean longitude and latitude).

2.2.2. Flapping flight ( from tri-axial accelerometry)

We interpolated the spatial location of each ACC burst based on the closest GPS locations using the R
package move [38]. We associated each ACC burst with the height above ground corresponding to the
GPS location closest in time (less than 30 s difference). The height above ground was calculated by
subtracting the ground elevation value from the height above the ellipsoid.

We used ACC values to identify bursts of active flight behaviour (flapping flight). Specifically, we
used overall dynamic body acceleration (ODBA), already shown to be a good proxy for energy
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Figure 2. Example of behavioural segmentation based on the GPS data of one stork. The figure shows the classified three-
dimensional trajectory after smoothing; the red segment was identified as soaring flight, grey corresponds to gliding flight.
Data for plotting the surface are provided by the EU-DEM. The black line and the red point on the ground represent the two-
dimensional projection of the trajectory and the centroid of the soaring segment, respectively.
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continues with collecting the data either directly by retrapping the
animal, or by remote data retrieval through radio link, cellular phone
networks or satellite communication. In parallel, ACC measurements
can be calibrated and ground-truthed by observing tagged animals in
the field during ACC measurements. The ground-truthed ACC
segments are then used to train classification or machine-learning
algorithms that are then validated against independent observations
and subsequently used to classify unobserved behaviors from non-
ground-truthed ACC data. Individual applications of this protocol
can skip some stages or apply different methods at various stages.
For example, most studies of free-ranging wild animals, including
penguins (Yoda et al., 2001), cormorants (Laich et al., 2008) and
raptors (Halsey et al., 2009a), have discriminated behavior by visual
observation of the ACC data, without specifically developing a
classification function. Other studies have applied several
classification techniques such as linear discriminant analysis (LDA),
k-means clustering and support vector machines (SVMs) to
automatically discern different behaviors of domestic animals such
as cats (Watanabe et al., 2005), cows (Martiskainen et al., 2009;
Nielsen et al., 2010) and free-ranging wild shags (Sakamoto et al.,
2009). The latter study proposed an approach to skip the ground-
truthing stage, and yet not all basic behaviors were discernible by the
proposed approach.

Machine learning algorithms

Here, we implement and compare five supervised machine-learning
algorithms: LDA, SVMs, classification and regression trees (CART),
random forest (RF) and artificial neural networks (ANNs). The
algorithms selected are those most commonly used for various
pattern recognition and classification tasks. We perform a
comparative analysis using LDA as a baseline, anticipating that the
other methods, through incorporation of nonlinearities or decision
trees to separate out categories, are likely to perform better than LDA.
We applied these algorithms to our ACC vulture data using the R

R. Nathan and others

programming environment. We employed a variety of R packages to
implement the various methods, as detailed in supplementary
material TableS1. The following list summarizes the methods.

Linear discriminant analysis

LDA reduces the dimensionality of the data by maximizing the
variance between the classes while minimizing the variance within
the classes. LDA is a parametric method that assumes unimodal
Gaussian distributions of classes. Often this is unlikely to be the
case. The linear boundaries of LDA are also a restriction. Other
variants, such as quadratic discriminant analysis, relax this
restriction. In any event, the use of such restrictive assumptions can,
in practice, have the beneficial effect of lessening the likelihood of
over fitting (which then incorporates the particulars of the noise,
thereby degrading predictive performance), and generally LDA is
found to perform acceptably well.

Support vector machines

SVMs construct a hyperplane to separate transformed observations,
while trying to maximize the distance of observations from this
separating hyperplane. These methods were developed in the 1990s
and have since become quite popular (Cortes and Vapnik, 1995)
because they have a strong theoretical foundation and often produce
good results. Fundamentally, SVM is a binary classifier. Multiclass
classifications can be implemented by treating such problems as a
set of binary ones – for instance, by constructing a set of classifiers,
where each classifier compares one of the classes versus all the
other classes. SVMs are relatively computationally intensive.

Classification and regression trees

CART methods can be used either for predicting continuous
variables or choosing among categories. In the categorical case, a
set of hierarchical decision rules is developed that can be used to
predict the class of unclassified samples. Each rule can branch into
another rule or a terminal category. CART has a number of
advantageous features. Its decision rules can be applied very
quickly and are also relatively easy to interpret. One of the potential
weaknesses of CART is over-fitting, which can be mitigated
through a pruning operation that reduces the number of decision
rules incorporated in the tree. Another potential issue is the
hierarchical partitioning which reduces the effective sample sizes
making it more difficult to identify rules and trends in each
subsample. Relationships between variables can also be difficult to
identify owing to this hierarchical partitioning.

Random forests

RFs are ensemble classifiers in which sets of classification trees are
constructed using a procedure similar to CART, but including
introduced stochasticity (Breiman, 2001). Instead of potentially
using all the variables to determine the best split at each node, only
a randomly selected subset of variables is used. RF offers increased
accuracy in relation to CART. However, this accuracy comes at a
cost: RFs are more computationally expensive to train and to use
as predictors; it is no longer possible to display directly and
interpret the CART tree (there are many separate and distinct trees);
and, given the stochastic nature of the algorithm, each invocation
of the algorithm will result in different decision rules and slightly
different results.

Artificial neural networks

ANNs are inspired by biological neural networks and are
collections of interconnected ‘neurons’ that sum their inputs and
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(c) A leatherback turtle, where rotations through 90° in 
the heave axis and simultaneous rotations through 
180° in the sway axis describe a rolling maneuver that 
almost involved complete inversion 

Shepard et al.: Behavioural categorisation using accelerometry

Since pitch is derived from the static acceleration,
this component needs to be derived from the total
acceleration, which includes both static and dynamic
acceleration. Static acceleration may be derived by
subjecting the total acceleration to an appropriate pass
filter (e.g. Tanaka et al. 2001, Watanuki et al. 2005) or,
as for this work, by smoothing (Yoda et al. 2001, Wilson
et al. 2008) before converting the resultant value into
degrees using the arcsine function (Fig. 2a). It is thus
possible to estimate the approximate body pitch and
roll angle of animals by simple visual inspection of the
total acceleration data (Fig. 2a), assuming that the
device is aligned perfectly with the horizontal plane.
We note that imperfect orientation of the device on the
animal will result in pitch angles offset from the ani-
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continues with collecting the data either directly by retrapping the
animal, or by remote data retrieval through radio link, cellular phone
networks or satellite communication. In parallel, ACC measurements
can be calibrated and ground-truthed by observing tagged animals in
the field during ACC measurements. The ground-truthed ACC
segments are then used to train classification or machine-learning
algorithms that are then validated against independent observations
and subsequently used to classify unobserved behaviors from non-
ground-truthed ACC data. Individual applications of this protocol
can skip some stages or apply different methods at various stages.
For example, most studies of free-ranging wild animals, including
penguins (Yoda et al., 2001), cormorants (Laich et al., 2008) and
raptors (Halsey et al., 2009a), have discriminated behavior by visual
observation of the ACC data, without specifically developing a
classification function. Other studies have applied several
classification techniques such as linear discriminant analysis (LDA),
k-means clustering and support vector machines (SVMs) to
automatically discern different behaviors of domestic animals such
as cats (Watanabe et al., 2005), cows (Martiskainen et al., 2009;
Nielsen et al., 2010) and free-ranging wild shags (Sakamoto et al.,
2009). The latter study proposed an approach to skip the ground-
truthing stage, and yet not all basic behaviors were discernible by the
proposed approach.

Machine learning algorithms

Here, we implement and compare five supervised machine-learning
algorithms: LDA, SVMs, classification and regression trees (CART),
random forest (RF) and artificial neural networks (ANNs). The
algorithms selected are those most commonly used for various
pattern recognition and classification tasks. We perform a
comparative analysis using LDA as a baseline, anticipating that the
other methods, through incorporation of nonlinearities or decision
trees to separate out categories, are likely to perform better than LDA.
We applied these algorithms to our ACC vulture data using the R

R. Nathan and others

programming environment. We employed a variety of R packages to
implement the various methods, as detailed in supplementary
material TableS1. The following list summarizes the methods.

Linear discriminant analysis

LDA reduces the dimensionality of the data by maximizing the
variance between the classes while minimizing the variance within
the classes. LDA is a parametric method that assumes unimodal
Gaussian distributions of classes. Often this is unlikely to be the
case. The linear boundaries of LDA are also a restriction. Other
variants, such as quadratic discriminant analysis, relax this
restriction. In any event, the use of such restrictive assumptions can,
in practice, have the beneficial effect of lessening the likelihood of
over fitting (which then incorporates the particulars of the noise,
thereby degrading predictive performance), and generally LDA is
found to perform acceptably well.

Support vector machines

SVMs construct a hyperplane to separate transformed observations,
while trying to maximize the distance of observations from this
separating hyperplane. These methods were developed in the 1990s
and have since become quite popular (Cortes and Vapnik, 1995)
because they have a strong theoretical foundation and often produce
good results. Fundamentally, SVM is a binary classifier. Multiclass
classifications can be implemented by treating such problems as a
set of binary ones – for instance, by constructing a set of classifiers,
where each classifier compares one of the classes versus all the
other classes. SVMs are relatively computationally intensive.

Classification and regression trees

CART methods can be used either for predicting continuous
variables or choosing among categories. In the categorical case, a
set of hierarchical decision rules is developed that can be used to
predict the class of unclassified samples. Each rule can branch into
another rule or a terminal category. CART has a number of
advantageous features. Its decision rules can be applied very
quickly and are also relatively easy to interpret. One of the potential
weaknesses of CART is over-fitting, which can be mitigated
through a pruning operation that reduces the number of decision
rules incorporated in the tree. Another potential issue is the
hierarchical partitioning which reduces the effective sample sizes
making it more difficult to identify rules and trends in each
subsample. Relationships between variables can also be difficult to
identify owing to this hierarchical partitioning.

Random forests

RFs are ensemble classifiers in which sets of classification trees are
constructed using a procedure similar to CART, but including
introduced stochasticity (Breiman, 2001). Instead of potentially
using all the variables to determine the best split at each node, only
a randomly selected subset of variables is used. RF offers increased
accuracy in relation to CART. However, this accuracy comes at a
cost: RFs are more computationally expensive to train and to use
as predictors; it is no longer possible to display directly and
interpret the CART tree (there are many separate and distinct trees);
and, given the stochastic nature of the algorithm, each invocation
of the algorithm will result in different decision rules and slightly
different results.

Artificial neural networks

ANNs are inspired by biological neural networks and are
collections of interconnected ‘neurons’ that sum their inputs and
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Fig.2. (A)Schematic representation of a tri-axial accelerometer attached to
a vulture, recording linear acceleration along the x (medial–lateral, sway), 
y (anterior–posterior, surge) and z (inferior–superior, heave) axes. (B)Two
illustrative signals recorded by a tri-axial accelerometer (3.3Hz per axis),
demonstrating switches from standing through running to eating and from
passive to active flight.
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Overall Dynamic Body 
Acceleration:

ODBA=|DAx|+|DAy|+|DAz|
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where	c	=	RMR	(where	the	DBA	value	is	typically	around	zero)	and	k	is	
the	gradient	of	the	line,	also	holds	for	all	species	tested	thus	far.	This	in-
cludes	shellfish	(Robson,	Chauvaud,	Wilson,	&	Halsey,	2012),	fish	(Wright	
et	al.,	2014),	amphibia	 (Halsey	&	White,	2010),	reptiles	 (Halsey,	Jones,	
Jones,	Jones,	Liebsch,	&	Booth,	2011),	mammals	and	birds	(Halsey	et	al.,	
2009).	The	generality	of	this	relationship	means	that	it	should	be	possible	
to	couple	activity‐specific	metabolic	rate	measured	within	one	context	
(e.g.	Allers	&	Culik,	1997)	to	DBA‐specific	activities	from	another	study	
(Graf,	Hochreiter,	Hackländer,	Wilson,	&	Rosell,	2016)	 (see	e.g.	Figure	
4).	Furthermore,	determination	of	both	the	 intercept	and	the	gradient	
of	 the	V̇O2	versus	DBA	 line,	with	error	bars,	should	allow	workers	to	
approximate	the	metabolic	costs	of	other	activities	using	just	DBA	met-
rics.	Although	the	method	will	not	be	perfect	(e.g.	see	Gómez‐Laich	et	
al.	 (2011),	Elliott	et	al.	 (2013)	and	Elliott	et	al.	 (2013)	for	consideration	
of	the	effects	of	movement	by	different	muscle	groups	and	in	variable	
media	may	affect	the	relationship),	it	will	be	more	informed	than	having	
no	measure	to	link	DBA	with	metabolic	rate	and	will	also	capitalize	on	the	
extensive	work	undertaken	by	all	relevant	studies.

2.4 | Linking DBA and V̇ O2 over variable time-
scales; (i) laboratory tests

There	is	general	acceptance	that	DBA	is	a	powerful	proxy	for	move-
ment‐based	metabolic	rate	but	little	discussion	of	the	shortest	period	

of	time	over	which	this	might	be	valid.	A	standard	method	used	to	
calibrate	DBA	(as	well	as	heart	rate)	is	indirect	respirometry,	meas-
uring	 oxygen	 consumption	 (and/or	 carbon	 dioxide	 production)	 for	
laboratory	animals	moving	at	a	number	of	constant	velocities	(e.g.	on	
a	treadmill),	each	for	at	least	3	min	of	steady‐state	motion	(Halsey,	
Shepard,	&	Wilson,	2011).	The	3‐min	time	imposition	allows	oxygen	
deficits,	incurred	due	to	mechanical	movement,	to	be	translated	out	
of	 the	muscles,	 through	 the	blood	 stream	and	 into	 the	 inhaled	air	
(Barstow,	Casaburi,	&	Wasserman,	1993).	It	also	allows	time	for	the	
respirometry	system	to	move	sampled	air	into	the	gas	analyser	(al-
though	this	can	be	calibrated).	However,	there	is	no	reason	why	this	
3‐min	resolution	should	be	mandated	on	DBA	metrics.	As	explained	
above,	the	link	between	movement‐based	DBA	and	energy	expendi-
ture	should	be	precisely	linked	in	time.

How	much,	therefore,	can	be	said	about	the	costs	of	movement	
over	periods	of	<3	min?	In	the	simplest	case	of	an	animal	engaging	in	
repetitive	motion,	such	as	striding	at	a	constant	frequency	at	gaseous	
equilibrium	in	a	respirometry	chamber,	the	mean	DBA	can	be	equated	
to	the	mean	V̇O2	 (Wilson	et	al.,	2006).	Theoretically,	the	mean	DBA	
can	also	be	equated	to	the	mean	V̇O2	over	one	second,	not	least	be-
cause	when	V̇O2	is	converted	to	power	(cf.	Randall,	Eckert,	Burggren,	
&	French,	2002),	it	is	expressed	in	joules	per	second.	Indeed,	given	this,	
it	is	logical	that	the	cost	of	single	strides	can	also	be	calculated	by	di-
viding	oxygen	consumption	over	a	defined	period	by	the	number	of	
strides.	Importantly	though,	within‐stride	variation	in	DBA	reflects	a	
suite	of	processes	that	are	not	all	based	on	muscular	contraction	forces	
directly,	such	as	recovery	of	elastic	energy	stored	temporarily	within	
tendons	(Alexander,	2002)	(Figure	5).	This	restricts	the	time‐scale	over	
which	DBA	metrics	can	be	used	to	derive	V̇O2,	as	sub‐stride	variation	
in	DBA	should	not	be	translated	linearly	into	a	V̇O2	estimate	(Figure	5).	
Nonetheless,	it	should	be	possible	to	estimate	the	costs	of	movement	
above	individual	strides	(and	perhaps	even	single	strides)	following	ap-
propriate	smoothing	of	the	acceleration	data,	coupled	with	V̇O2 col-
lected	over	an	appropriate	3‐min	steady‐state	calibration	period.

Interestingly,	detailed	examination	of	the	practice	of	determin-
ing	 V̇O2	 and	DBA	 of	 subjects	 on	 treadmills	 reveals	 variation	 that	
is	 problematic	 to	 explain,	 and	 rarely	 highlighted.	 A	 fundamental	
concept	behind	the	use	of	treadmills	is	that	they	should	allow	per-
fectly	steady‐state	locomotion,	particularly	in	humans,	who	can	be	
instructed	to	adhere	most	to	those	conditions,	so	that	both	DBA	and	
V̇O2	metrics	should	be	constant	at	any	given	speed.	This	is	not	the	
case	for	either	 (Figure	6).	The	variation	 in	V̇O2	 (Figure	6b)	may	be	
partly	due	to	variation	 in	DBA	(Figure	6a),	albeit	with	an	unknown	
and	 presumably	 varying	 time‐lag,	 but	 why	 DBA,	 even	 smoothed,	
should	 vary	 to	 the	 extent	 that	 it	 does,	 is	 unclear.	 Further	work	 is	
needed	 to	clarify	 this	because	 the	consequences	 for	DBA	metrics	
and	their	relation	to	V̇O2	are	appreciable	(Figure	6).

2.5 | Linking DBA and V̇ O2 over variable time-
scales; (ii) Free-living options

Conceptually,	DBA	 can	 be	 likened	 to	 energy,	where	 the	 accelera-
tion	metric	is	equivalent	to	joules	(see	Equations	4–10),	and	so	can	

(11)̇VO2=kDBA+c

F I G U R E  4  The	relationship	between	DBA	and	V̇O2	(±SD)	in	
Eurasian	beavers	Castor fiber,	estimated	by	combining	data	from	
different	studies,	two	of	which	quantified	DBA	during	swimming	
and	resting	(PMG	&	FR	unpublished	data,	n	=	7,	and	(Graf,	Wilson,	
Qasem,	Hackländer,	&	Rosell,	2015),	n	=	12)	and	one	which	
quantified	V̇O2	for	the	same	activities	(Allers	&	Culik,	1997,	n	=	6).	
Although	imperfect,	the	points	and	the	spread	around	them	show	
the	general	expected	relationship	between	ODBA	and	V̇O2,	
following	the	standardized	y = mx + c	linear	model	found	to	date	
across	taxa	(see	text)
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